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RESUMEN 

 

La fosforilación reversible de proteínas es un mecanismo esencial en la regulación del 

ciclo celular. Mientras que el papel llevado a cabo en mitosis por las proteínas quinasa 

ha sido profundamente caracterizado, la identidad y la función específica de las 

fosfatasas en la mitosis de mamíferos está aún por determinar. La proteína fosfatasa 2A 

(PP2A) es una fosfatasa de residuos serina y treonina de gran importancia en células 

eucarióticas. Existen evidencias de que los complejos formados por PP2A con 

subunidades reguladoras de la familia B55 juegan un importante papel en la 

desfosforilación de sustratos de quinasas dependiente de ciclina (CDKs) durante mitosis 

en diferentes organismos. Este hecho sugiere su posible relevancia también en la mitosis 

de mamíferos. Con el objetivo de dilucidar la función de estos complejos PP2A-B55 en 

mitosis en mamíferos, hemos generado modelos de ratón deficientes para los genes 

Ppp2r2a (B55α) y Ppp2r2d (B55δ) que codifican dos de las cuatro isoformas de esta 

familia de subunidades reguladoras; en particular, aquellas consideradas ubicuas y  

previamente relacionadas con el ciclo celular. El estudio de estos modelos ha revelado 

que B55α, pero no B55δ, es necesaria durante el desarrollo embrionario y resulta 

esencial para la supervivencia del animal. Además, a nivel celular, ambas isoformas 

tienen funciones específicas y redundantes. Las células deficientes para los complejos 

PP2A-B55 presentan alteraciones en la duración de mitosis y en la segregación 

cromosómica que ocurre en esta etapa del ciclo celular, dando lugar a defectos de 

proliferación. El análisis detallado de la progresión del ciclo celular en células 

deficientes para B55 ha revelado un nuevo papel de estos complejos en la agrupación 

cromosómica durante mitosis, mediada al menos parcialmente por la proteína 

pericromosómica Ki-67. El tratamiento con compuestos que afectan la polimerización 

de microtúbulos, en las células deficientes para B55, provoca dispersión cromosómica 

durante mitosis, una acumulación de la proteína Ki-67 y, en algunos casos, muerte 

celular. Estos datos ponen de manifiesto la importancia de estos complejos en la 

regulación de mitosis en mamíferos y en la respuesta a los fármacos que afectan la 

polimerización de microtúbulos, los cuales se utilizan frecuentemente en tratamientos 

contra el cáncer.  
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SUMMARY 

 

Reversible protein phosphorylation is an essential mechanism of cell cycle 

regulation.  Whereas the role of mitotic kinases has been deeply characterized, the 

identity and specific functions of mitotic phosphatases in mammalian cells has not been 

fully resolved yet. Protein phosphatase 2A (PP2A) is a major serine/threonine 

phosphatase in eukaryotic cells and there is evidence that PP2A complexes containing 

the B55 family of regulatory subunits play a key role in dephosphorylating CDK 

substrates during mitosis in different organisms. This fact makes these phosphatase 

complexes might be important for mitosis in mammals. To address the functional 

relevance of those PP2A-B55 complexes in mammalian cell cycle, we have generated 

loss-of-function mouse models for Ppp2r2a (B55α) and Ppp2r2d (B55δ), which encode 

the ubiquitous and cell cycle-related isoforms out of the four existing ones in mammals 

(B55α, β, γ, δ). Using these models we have found that B55α, but not B55δ, is required 

during late embryonic development and therefore essential for mouse survival. 

Moreover, at the cellular level, both isoforms have specific and overlapping roles in cell 

cycle regulation. PP2A-B55-null cells display defects in timing and chromosome 

segregation during mitosis resulting in impaired proliferation. Interestingly, analysis of 

cell cycle progression in B55-null cells has also revealed a new role for PP2A/B55 

complexes in chromosome clustering during mitosis, which is mediated through the 

perichromosomal protein Ki-67. Treatment of B55 deficient cells with microtubule 

depolymerizing drugs leads to massive chromosome scattering in mitosis, excessive 

Ki67 accumulation and eventually mitotic cell death. These data highlight the 

importance of these phosphatase complexes in regulating mammalian mitosis and the 

response to microtubule poisons, a common chemotherapeutic reagent used for cancer 

treatment. 
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1. INTRODUCTION 

1.1. Mitosis in the mammalian cell division cycle 

When Rudolf Virchow in 1858 postulated “Omnis cellula e cellula”, an important 

dogma in cell biology was born establishing that every cell must derive from a pre-

existing cell. And, certainly, cell division is the only way for life to be expanded and, 

unfortunately, when uncontrolled, also a road to cancer. The cell division cycle 

constitutes a series of events that ensures faithful transmission of the genetic 

information from one cell generation to the next one. The majority of mammalian adult 

cells are in a quiescent state called G0, and, only when they are exposed to specific 

mitogenic stimuli or signalling, cells enter the cell cycle. In eukaryotic cells, the cell 

cycle was first described as two distinct phases: interphase and mitosis. Interphase was 

later on divided into three phases, S-phase standing for synthesis of DNA, surrounded 

by two Gap-phases G1 (gap1) and G2 (gap2). The stage preceding S-phase in which the 

cell grows and prepares for DNA synthesis is G1. Next, during S-phase the cell 

replicates its genetic material, and in G2 the cell prepares for its division. During mitosis 

(M phase) the cell segregates its DNA into two daughter cells, which are completely 

individualized once the cytoplasm is divided between them during the cytokinesis 

process (Figure 1) (Morgan, 2007). 

 

Figure 1. Cell cycle phases. Quiescent cells in G0 are induced to cycle and enter into G1 to prepare for 

DNA replication in S phase. Once the genome is duplicated, cells prepare to divide in G2. Finally, 

chromosome segregation takes place in M phase and cell divides by cytokinesis. Adapted from 

Malumbres, 2011. 

1.1.1. Phases of mitosis 

Mitosis, described by Walter Flemming 135 years ago, is the nuclear division process in 

which the previously duplicated genome is reorganized into compact chromosomes, 
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each made up of two sister chromatids that are equally segregated into two daughter 

cells. It is the most striking and sophisticated part of the cell cycle. In less than an hour 

the mother cell organizes complex machinery aiming to have each daughter cell 

inheriting a complete set of chromosomes, a centrosome (the main microtubule-

organizing centre of animal cells), the cytoplasm and all required organelles. Mitosis is 

divided in five different phases that are mainly defined by the organization and 

behaviour of the chromosomes: prophase (P), prometaphase (PM), metaphase (M), 

anaphase (A) and telophase (T) (Figure 2). 

 

 

Figure 2. Phases of mitosis. Interphasic chromatin is condensed and kinetochores assemble in prophase. 

In prometaphase, upon nuclear envelope breakdown, kinetochores bind to microtubules. Chromosomes 

are bioriented and aligned during metaphase in the spindle midzone, forming a metaphase plate. In 

anaphase, sister chromatids are pulled apart. At telophase, chromatin decondenses and the nuclear 

envelope is reformed. 

 

During prophase, interphasic chromosomes start to condense moving to the poles of the 

cell where the spindle structure will be formed. Nuclear envelope breakdown (NEB) 

signals the transition between prophase and prometaphase and is an essential step for 

the mitotic spindle formation. The spindle microtubules rapidly assemble and 

disassemble searching for attachment sites at chromosome kinetochores, which are 

complex structures that assemble during prometaphase on one face of each sister 

chromatid at its centromere. Microtubules from opposite poles interact with 

chromosomes and make them to become bioriented and congressed. Congression of the 

last chromosome marks the transition to the next stage of mitosis, metaphase, in which 

all chromosomes reach the equator of the spindle forming the “metaphase plate”. The 

progression of cells into anaphase is marked by the abrupt separation of sister 

chromatids. Early in anaphase, chromosomes lose their cohesion and each chromatid 

moves apart towards one spindle pole. At late anaphase, the spindle is elongated and 

separates further the two set of chromatids. Mitosis ends with telophase, the stage at 

which the chromosomes reach the poles, decondense into their interphase conformation, 

https://www.nature.com/scitable/topicpage/Chromosome-Segregation-in-Mitosis-The-Role-of-242
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and the nuclear envelope is reformed around the two daughter nuclei. Then, the 

cytoplasm division, also called cytokinesis, and whose regulation is precisely linked to 

mitosis, occurs. A contractile ring is formed at the cortex of the cell giving rise to the 

midbody that marks the abscission site. Finally, abscission of the midbody results in the 

complete physically separation of the two daughter cells which have identical genetic 

composition (Morgan, 2007). 

1.1.2. Molecular mechanisms of mitosis 

From the molecular point of view, there are various mechanisms that regulate mitotic 

progression, being protein degradation and reversible protein phosphorylation the most 

essential ones. Although for a long time, this phosphoregulation has mostly been 

attributed to oscillatory kinase activities, it is now appreciated the equal importance of 

phosphatases for this regulation. 

1.1.2.1. Mitotic entry and progression to metaphase 

In mammals, activation of the cyclin-dependent protein kinase 1 (Cdk1) triggers entry 

into mitosis. This requires dephosphorylation of its inhibitory phosphorylation by 

Cdc25 phosphatases, starting just in this point a very complex and ordered balance 

between kinases and phosphatases. Surprisingly, Cdk1 itself phosphorylates and inhibits 

their kinase inhibitors, Wee1 and Myt1; whereas it is also the responsible of activate its 

own activator, Cdc25. By this way, a positive feedback loop of progressive activation of 

Cdk1-Cyclin B complexes occurs (Lindqvist et al., 2009) (Figure 3). The activation of 

Cdk1 results in the phosphorylation of hundreds of substrates, such as laminins, 

condensins or Golgi elements, among others. In addition to Cdk1, other kinases 

participates in mitotic entry, such as Polo-like kinase (Plk)1 or the Aurora kinases, A 

and B. All these kinases participates in diverse processes, such as activation of Cdk1-

Cyclin B complexes (Seki et al., 2008, Toyoshima-Morimoto et al., 2001), centrosome 

maturation and duplication (Barr and Gerlegy, 2007), spindle assembly (Cowley et al., 

2009, Brennan et al., 2007, Seong et al., 2002), chromatin condensation (Goto et al., 

2002) and proper orientation and stabilization of mitotic chromosomes in the metaphase 

plate (Adams et al., 2001, Lens et al., 2010, Malumbres, 2011). The activity of all these 

mitotic kinases is rigorously controlled by protein phosphatases (Bollen et al., 2009, 

Medema and Lindqvist, 2011). More recently, Mastl (microtubule-associated 

serine/threonine kinase-like protein), also known as Greatwall, has been identified as a 

new player in mitosis (Figure 3). When cells enter into mitosis Mastl is auto-
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phosphorylated, in part by Cdk1 and increases its kinase activity. Its activity results in 

the indirect inhibition of Cdk-counteracting PP2A-B55 phosphatase complexes, 

providing a molecular link between kinase and phosphatase activity at these initial steps 

of mitosis. MASTL phosphorylates Ensa and ARPP19, two small endosulphine proteins 

that, when phosphorylated, act as specific inhibitors of PP2A complexes containing the 

B55 regulatory subunit (Glover, 2012, Lorca and Castro, 2013). Collectively, we can 

conclude that mitotic entry is the result of the activation of an ordered cascade of 

mitotic kinases always controlled by their counteracting phosphatases (Álvarez-

Fernández and Malumbres, 2014). 

1.1.2.2. Metaphase to anaphase transition and mitotic exit 

Once cell enters into mitosis its transition until anaphase, and consequently exit from 

mitosis, is controlled by the spindle assembly checkpoint (SAC). The SAC is a control 

mechanism that monitors chromosome biorientation on the mitotic spindle, and, as long 

as unattached chromosomes remain, it stops cells in mitosis and prevents passage into 

anaphase (Figure 4). The effector of the SAC, known as the mitotic checkpoint complex 

(MCC), is specifically located at unattached kinetochores, and is composed by the 

mitotic arrest deficient 2 protein (Mad2), mitotic checkpoint serine/threonine-protein 

kinase BUB1 beta (BubR1) and the mitotic checkpoint protein Bub3 (Sudakin et al., 

2001). This complex joined to Cdc20 binds to the anaphase promoting complex (APC) 

preventing its catalytic activity and delaying the anaphase onset. Then, the main 

function of the SAC is therefore to avoid loss of sister chromatid cohesion (the initiation 

 

Figure 3. Kinase-phosphatase balance at 

mitotic entry.  Mitotic entry requires Cdk1 

activation, which is dependent on reversible 

phosphorylation of its inhibitor Wee1/Myt1 by 

Cdc25 phosphatase. Once activated, Cdk1 

phosphorylates a wide spectrum of substrates 

that allow mitotic entry and progression. Among 

them it is Mastl (Gwl) kinase that is in charge of 

indirectly inhibition of PP2A-B55 complexes, 

which are the latest responsible of Cdk1 

inactivation, and their phosphorylated substrates. 

Adapted from Álvarez-Fernández and 

Malumbres, 2014. 
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of anaphase) and premature chromosome segregation in the presence of unattached or 

incorrectly attached chromosomes. Similar to other pathways, reversible protein 

phosphorylation is a crucial regulator of the SAC signalling (Musacchio, 2015). In this 

step, two different phosphatases, PP2A and PP1, have roles in promoting and 

maintaining kinetochore-microtubule attachment and SAC silencing (Funabiki and 

Wynne, 2013). Once all chromosomes are properly attached, SAC is inactivated and 

Cdc20 binds to APC turning on its activity as ubiquitin-ligase. Once APC is activated, 

this promotes securin and cyclin B degradation leading to chromatid separation and 

Cdk1 inactivation, respectively. Both, securin degradation and lower Cdk1 activity 

activate separase, which release centromeric cohesins. It is now known that PP2A 

phosphatase is also involved in sister chromatid cohesion by counteracting centromeric 

cohesin phosphorylation and by timing exactly cohesion degradation (Tang et al., 

2006). Therefore, to revert all morphologic changes that a cell suffers at mitotic entry, it 

is essential the complete inactivation of Cdk1 by Cyclin B degradation. Once Cdk1 is 

inactivated, phosphatases dephosphorylate and activate Cdh1, the second APC 

activator. APC/Cdh1 allows completion of mitotic exit through the degradation of other 

important mitotic regulators. 

 

Figure 4. The SAC. During prometaphase the 

SAC is active, when chromosomes kinetochores 

start to attach to the spindle microtubules. Properly 

attached kinetochores (green) ‘satisfy’ the SAC, 

which stops signalling, whereas unattached or 

improperly attached kinetochores (red) prolongs  

the SAC signal provoking that MCC binds and 

inhibits APC/C
Cdc20

, which is required for the 

metaphase–anaphase transition. Once SAC is 

satisfied on all kinetochores (at metaphase), 

activation of APC/C
Cdc20

 promotes Cyclin B and 

securin ubiquitination and proteolysis. This 

promotes mitotic exit and sister chromatid 

separation, the latter through activation of separase. 

Adapted from Musacchio, 2015. 

1.1.2.3. Dephosphorylation as an essential step of mitotic exit 

As mentioned above, the progression and entry into mitosis is mostly driven by the 

kinase activity of Cdk1. Then, to exit from mitosis it is necessary the inactivation of 

Cdk1 and also the active dephosphorylation of all previously phosphorylated proteins. 
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This step is mediated by protein phosphatases, for which their importance in mitosis has 

not been fully recognized until few years ago (Bollen et al., 2009). In Saccharomyces 

cerevisiae, activation of protein phosphatase Cdc14 plays a key role in the direct 

inactivation of mitotic Cdk1 and also in the dephosphorylation of Cdk substrates 

(Queralt and Uhlmann, 2008). Although its orthologs in mammals seem to maintain 

some functional conservation (Vazquez-Novelle et al., 2005), it is not clear its relevance 

during mammalian mitotic exit (Berdougo et al., 2008, Guillamot et al., 2011). Indeed, 

other phosphatases assume these functions in other organisms. In Xenopus laevis, PP1 

has a key role for Cdk substrates dephosphorylation (Wu et al., 2009). In mammals, 

however, PP2A in complexes with B regulatory subfamily isoforms (B55) has been 

proposed as the main Cdk-counteracting phosphatase. Its deregulation in mitotic exit 

impairs several events of mitotic exit, such as reassembly of the nuclear envelope and 

Golgi apparatus, and chromatin decondensation (Schmitz et al., 2010); and also the 

dephosphorylation of Cdk phosphosites (Manchado et al., 2010). Nevertheless, the 

specific B55 isoforms responsible for mitotic exit and the underlying molecular 

mechanism remains unclear. 

1.2. Protein phosphatase 2A (PP2A) 

1.2.1. PP2A structure and function 

PP2A is the major serine-threonine phosphatase in mammals contributing to almost 1% 

of the total cellular protein, and plays a crucial role in regulating most cellular functions. 

In its active form, PP2A is a heterotrimeric complex composed of one catalytic subunit 

C, one scaffold subunit A, and one of the many regulatory subunits B (Seshacharyulu et 

al., 2013).  

The PP2A C catalytic subunit is the responsible of the phosphatase function targeting 

phosphatase groups on either serine or threonine. This subunit is encoded by two 

different and ubiquitously expressed genes, Ppp2ca and Ppp2cb, resulting in two 

isoforms, Cα and Cβ. Although both isoforms share almost 100% amino acid sequence, 

Cα is expressed 10 fold higher than Cβ due to its stronger promoter, which makes it 

essential and irreplaceable (Eichhorn et al., 2009). 

The PP2A A scaffold subunit is in charge of the structural basis. It supports the catalytic 

subunit promoting the interaction with the regulatory subunit and other substrates to be 
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a fully active phosphatase. This subunit is also encoded by two different genes, Ppp2r1a 

and Ppp2r1b, which also results in two different isoforms, Aα and Aβ. The more 

abundant isoform is Aα being responsible of almost 90% of PP2A assemblies (Eichhorn 

et al., 2009) 

The PP2A B regulatory subunit is considered as the master regulator of PP2A 

complexes. These subunits can be expressed in a tissue specific manner and they 

provide substrate specificity and intracellular localization. The human genome encodes 

about 15 regulatory subunits that have been classified into four different subfamilies: 

B55 or PR55, B56 or PR61, B’’ or PR72 and B’’’ or PR93. Each subfamily contains 2 

to 5 isoforms and additional splicing variants (Eichhorn et al., 2009) ( 

Figure 5). 

 

 

Subunit Gene Isoform 

Scaffold (A) PPP2R1A Α 

PPP2R1B Β 

Catalytic (C) PPP2CA Α 

PPP2CB Β 

Regulatory 
(B55) 

PPP2R2A Α 

PPP2R2B Β 

PPP2R2C Γ 

PPP2R2D Δ 

Regulatory 
(B56) 

PPP2R5A Α 

PPP2R5B Β 

PPP2R5C γ 1,2,3  

PPP2R5D Δ 

PPP2R5E Ε 

Regulatory 
(B’’) 

PPP2R3A α 1,2 

PPP2R3B Β 

PPP2R3C Γ 

PPP2R3D Δ 

Regulatory 
(B’’’) 

STRN  

STRN3  

PPP2R4  
 

 

Figure 5. Diversity of the PP2A holoenzyme:  different 

genes and subunits (A) Scheme of PP2A core protein: 

scaffold and catalytic subunits and the four different B 

regulatory subfamilies. (B). The table shows the three 

different subunits that allow heterotrimeric active 

formation of PP2A: scaffold, catalytic and regulatory 

subunits. Each subunit is encoded by two or more genes 

resulting in different isoforms. In case of regulatory 

subunits, there are four different subfamilies: B55, B56, 

B’’ and B’’’, each one containing more than three 

isoforms and allowing the formation of a huge number of 

different PP2A complexes. 



Introduction 

28 
 

The combinatorial assembly of these various A, B and C subunits permits the formation 

of more than 70 heterotrimeric PP2A complexes, which are distinguished by the B 

regulatory subunit they contain. 

1.2.2. Mouse models of PP2A 

The structural complexity of PP2A makes difficult to develop suitable mouse models 

for the study of its biological function and its tumour suppressor role in cancer. Still, 

some mouse models have already been generated in an attempt to the study of this 

phosphatase. 

For the PP2A A scaffold subunit, four different mouse models were generated by the 

same group: an Aα constitutive and an Aα conditional knockout mice, and two knock-in 

mice expressing human lung and breast cancer-associated Aα point mutants (Ruediger 

et al., 2011). These four models showed the continuously requirement of Aα in 

embryonic development and in adult mice, and probed the tumour suppressor activity of 

PP2A in multiple signalling pathways in vivo (Walter and Ruediger, 2012). 

Regarding the PP2A C catalytic subunit, knockout mice for both isoforms, Cα and Cβ, 

were generated (Gotz et al., 1998, Gu et al., 2012), being Cα knockout embryonic lethal 

whereas Cβ-deficient mice were viable without any obvious phenotype. This fact 

explains the differential abundance of both isoforms despite being almost identical in 

protein sequence. Moreover, some tissue specific knockout models for PP2A Cα have 

recently been studied (Fang et al., 2016, Li et al., 2016, Pan et al., 2015, Lu et al., 2015, 

Xian et al., 2015),  highlighting the wide and important functions of this subunit in the 

entire organism, participating in the development, proliferation and metabolism of very 

different tissues through multiple and diverse signalling pathways. 

The limitation of mouse models is very noticeable in the study of the PP2A B regulatory 

subunits, in which the diversity of subfamilies with multiple isoforms is immense. To 

date, only some knockout and overexpression models for the B56 subunit, one of the 

four existing subfamilies, have been described. The B56α knockout model is viable, 

with some cardiac defects (Litter et al., 2015). A B56δ-null mouse model also resulted 

viable despite its high levels during normal embryogenesis, and, it only developed a 

tauopathy based on hyperphosphorylation of the protein tau (Louis et al., 2011), or 

some cardiac aberrancies (Varadkar et al., 2014). In contrast, the B56γ model of 

overexpression in lung resulted in neonatal death due to its specific expression in a 
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particular stage of lung development related with the Wnt/β-catenin signalling pathway 

(Everett et al., 2002). Besides that, no models for any other family of B regulatory 

subunits have been described. So, the development of new mouse models for the PP2A 

B regulatory subunits becomes essential to gain more knowledge in the molecular and 

physiological function of specific PP2A complexes. 

1.2.3. PP2A and cancer 

Several genetic alterations have to be acquired for normal cells to become malignant. 

Some studies have linked tumoural formation and Darwin’s evolutive theory 

considering that, in both cases, successive genetic alterations provide a growth 

advantage (Gillies et al., 2012). In case of tumoural cells, they acquire more 

proliferative capacity, the capability to avoid cell death signals, a non-limited potential 

to duplicate its genetic material, and also they develop angiogenic capacities and 

mechanism to invade adjacent tissues (Hanahan and Weinberg, 2011). 

PP2A is a recognized tumor suppressor frequently inactivated in cancer, but also in 

other non-neoplastic diseases. PP2A complexes are targets of natural toxins like the 

tumor promoter okadaic acid (Bialojan and Takai, 1988), and of small and medium T 

antigens which are known viral oncogenes (Pallas et al., 1990). The PP2A scaffold  and 

regulatory subunits were shown to be mutated or aberrantly expressed in many different 

types of cancer, such as breast, lung, colon, endometrium, ovarian, leukemia, pancreas 

and melanoma cancer (Seshacharyulu et al., 2013, Ruvolo, 2016, Calin et al., 2000). 

Reports of different mutations in the PPP2R5C (B56γ) have been identified in diverse 

cell lines derived from solid tumors including, melanoma and lung cancer (Nobumori et 

al., 2013). Also, some genomic studies have identified 8p21.2 chromosomic deletions, 

which include the PPP2R2A gene encoding for the B55α regulatory subunit, in different 

tumors. In particular, somatic deletions of PPP2R2A have been described in prostate 

cancer at a frequency of 67.1%, from which 2.1% were homozygous deletions (Mao et 

al., 2011, Cheng et al., 2011). In breast, PPP2R2A deletion and loss of its transcript was 

associated with estrogen-receptor (ER)–positive breast tumors (Curtis et al., 2012, Beca 

et al., 2015). Furthermore, PPP2R2A is also deleted in primary plasma cell leukemia 

(Mosca et al., 2013). These data suggest that PPP2R2A (B55α) regulatory subunit could 

act as a haploinsufficient tumor suppressor in human cancer. Epigenetic inactivation of 

PPP2R2B  by methylation has been found in several tumors, such as gliomas, colorectal  
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tumors and breast cancer, also suggesting a tumor supressor role for this B isoform 

(Muggerud et al., 2010, Tan et al., 2010, Majchrzak-Celinska et al., 2016).  

Moreover, aberrant expression of endogenous PP2A inhibitors such as, Cancerous 

Inhibitor of PP2A (CIP2A) (Junttila et al., 2007) and Inhibitor 2 of PP2A (SET) 

(Neviani et al., 2005), promotes malignant transformation of cells in some human 

cancers, emerging as key players in cancer cell survival and drug resistance. In these 

cases, restoring PP2A activity has become a therapeutic strategy for cancer treatment 

(Neviani and Perrotti, 2014, Cristobal et al., 2016).   

1.3.  PP2A-B55 complexes 

In mammals, the B55 family of regulatory subunits includes 4 different isoforms (α, β,  

and δ), each one encoded by a distinct gene (Ppp2r2a-d) in a different genomic locus, in 

some cases with additional splicing variants, giving rise to different isoforms within 

isoforms (Table 1). This fact increases the complexity of this family of PP2A 

complexes and the difficulties to understand the specific functions among isoforms of 

the same regulatory family. Within each of the 4 isoforms, the complexity is even 

higher in humans, with multiple splicing variants, in comparison to mouse (Table 1).  

Table 1. B55 isoforms in mouse and human  

B55 isoform Mouse Human 

B55α 
Ppp2r2a: one isoform (447 aa) PPP2R2A: Isoform-1 (447 aa) 

                  Isoform-2 (457 aa) 

B55β 

Ppp2r2b: Isoform-1 (443 aa) 

                Isoform-2 (446 aa) mito.signal 

                Isoform-3 (425 aa) 

PPP2R2B: Isoform-1 (443 aa) 

                  Isoform-2 (446 aa) mito.signal 

                  Isoform-3 (449 aa) 

                  Isoform-4 (501 aa) 

                  Isoform-5 (509 aa) 

                  Isoform-6 (432 aa) 

                  Isoform-7 (549 aa) 

B55γ 

Ppp2r2c:one isoform (447 aa) PPP2R2C: Isoform-1 (447 aa) 

                  Isoform-2 (447 aa)  

                  Isoform-3 (430 aa) 

                  Isoform-4 (440 aa) 

B55δ Ppp2r2d: one isoform (453 aa) PPP2R2D: one isoform (453 aa) 
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At the protein level, these huge number of isoforms share almost 80% of identity. 

Regarding their expression pattern, it has been described that both B55α and B55δ 

isoforms are widely expressed, while B55β and B55γ are highly enriched in brain 

(Strack et al., 1998, Schmidt et al., 2002, Strack et al., 1999). How three of these four 

isoforms are regulated during brain development was further studied. Whereas B55α 

remains present with invariant levels along brain development, B55β and B55γ have 

opposite expression levels, being B55β highly expressed before birth, then stabilized, 

and B55γ highly expressed upon birth (Strack et al., 1998).  

1.3.1. Function of PP2A-B55 in cell cycle progression 

Diverse studies, in different organisms, evidence that B55 has a role in mitosis by 

targeting PP2A complexes towards substrates phosphorylated at CDKs consensus 

sequences (S/TP). In Drosophila the absence of the only regulatory B55 subunit of 

PP2A, twins, affects mitosis by provoking overcondensed chromosomes and abnormal 

anaphase figures with bridges or lagging chromosomes (Mayer-Jaekel et al., 1993, 

Gomes et al., 1993). It was also demonstrated that the absence of this protein led to 

reduced phosphatase activity towards CDK-substrates (Mayer-Jaekel et al., 1994). 

Studies in Xenopus egg extracts have shown that PP2A-B55δ is suppresed during 

mitosis but it is essential for dephosphorylation of CDK substrates on mitotic exit. 

Moreover this isoform also participates in timing mitotic entry (Mochida et al., 2009).  

In mammals, a siRNA screening to identify phosphatases implicated in mitotic exit, 

revealed that only depletion of B55α isoform delays mitotic exit and the postmitotic 

reassembly of some interphase cell structures, such as nuclear envelope or golgi 

apparatus, in Hela cells. In the same study, siRNAs against the other existing B55 

isoforms (β,γ and δ) were also tested, but no effect was detected for any of those, 

conluding that B55α was the main isoform involved in mitotic exit in human cells 

(Schmitz et al., 2010).  However, in mouse cells, siRNA depletion of both, B55α 

together with B55δ, was required for dephosphorylation of CDK targets to allow fully 

mitotic exit, whereas depletion of B55β was not required for this function probably due 

to low expression of this isoform in this cell type, individual B55 was not evaluated in 

this study (Manchado et al., 2010). Those data, therefore, revealed that PP2A-B55 

phosphatases play a role in mitotic exit in mammals, although the specific isoforms 

responsible for this function are still controversial.  
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1.2.1. Regulation of PP2A-B55 complexes by the kinase MASTL 

(Greatwall) 

As mentioned above, a key player in the regulation of PP2A-B55 complexesduring 

mitosis is MASTL (microtubule-associated serine/threonine kinase-like protein) 

(Glover, 2012). MASTL is the recently found mammalian ortholog of Greatwall (Gwl) 

and participates in the maintenance of the mitotic state by inhibiting PP2A phosphatases 

(Voets and Wolthuis, 2010, Burgess, 2010). Gwl was originally identified in Drosophila 

as a protein required for DNA condensation and normal progression through mitosis 

(Yu et al., 2004). In mammalian cells, MASTL depletion causes multiple mitotic 

defects characterized by  problems in DNA condensation, and also defects on 

chromosome segregation and cytokinesis (Voets and Wolthuis, 2010; Burgess et al., 

2010). Notably, the defects in chromosome condensation could be rescued by 

concomitant ablation of B55 proteins (Álvarez-Fernández et al., 2013).  

PP2A-B55 complexes are indirectly regulated by MASTL through the phosphorylation 

of two small proteins, Arpp19 and α-endosulfine (Ensa) (Castilho et al., 2009, Gharbi-

Ayachi et al., 2010, Mochida et al., 2010, Vigneron et al., 2009). The control of PP2A 

through the Gwl-dependent phosphorylation of Arpp19/Ensa proteins has also been 

supported by genetic studies in Drosophila (Wang et al., 2011; Rangone et al., 2011). 

In mammals, PP2A inhibition prevents the dephosphorylation of CDK1 substrates, 

whereas the inhibition of MASTL and reactivation of this phosphatase is required for 

mitotic exit (Alvarez-Fernandez et al, 2013; Burgess et al, 2010; Manchado et al, 2010; 

Voets & Wolthuis, 2010). 

 

Figure 6. Regulation of PP2A-B55 

complexes during mitosis. PP2A-B55 

complexes are directly inhibited by the small 

proteins, Ensa and Arpp19, which are 

activated through phosphorylation by the 

kinase, MASTL. At mitotic entry, Cdk1-

CycB promotes Mastl phosphorylation, 

activating the inhibitory pathway of PP2A-

B55. Those complexes are the responsible of 

dephosphorylating Cdk1-mitotic substrates 

promoting mitotic exit. 
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1.2.2. Role of PP2A-B55 in other cell cycle phases 

Besides its mitotic function, it has been proposed a role for PP2A-B55 complexes in 

other phases of the cell cycle. The retinoblastoma family of proteins or pocket proteins, 

(pRb, p107 and p130) in their active –hypophosphorylated- form, negatively regulate 

cell cycle progression through the G0/G1 transition and the G1/S transition, at least in 

part by repressing expression of E2F-dependent genes Then, in S and G2 phases and 

part of mitosis, Cyclin-Cdk complexes phosphorylate and inactivate these pocket 

proteins, allowing cell cycle progression. It has been shown that PP2A-B55 complexes, 

mainly B55α and, to a lesser extent, B55δ isoforms, play an active role in the 

dephosphorylation of p107 and likely p130, inducing its activation, suggesting its role 

in the entry or maintenance of the quiescent state (Jayadeva et al., 2010, Kurimchak et 

al., 2013). Accordingly, depletion of B55α delays mitotic exit in rat chondrocytes upon 

FGF stimulation (Kurimchak, 2013). Whether PP2A-B55 plays a role in these cell cycle 

transitions in other cellular contexts remains to be studied. Using small t antigen (st) of 

SV40 virus to abolish the specific binding of B55α isoforms with PP2A core dimer it 

was demonstrated not only the disappearance of active –hypophosphorylated- form of 

these pocket proteins. Nevertheless, the same defect in quiescence cells did not affect 

phosphorylation of pocket protein meaning this fact depends on Cdk activity (Jayadeva 

et al., 2010). Although it has not been proved the direct role of PP2A-B55 complexes in 

proliferation through the reversible phosphorylation of these proteins, it could be 

conceivable.  

1.2.3. Cell cycle independent functions of PP2A-B55 

The huge diversity of PP2A complexes allows their participation in multiple and diverse 

cellular processes, beyond cell cycle regulation. 

PP2A-B55 complexes have been found regulating cell proliferation pathways. For 

example, B55α and B55δ have redundant functions controlling MAPK signaling 

pathway throught active dephosphorylation of Raf1 protein (Adams et al., 2005). Or, in 

the same pathway, B55α actively dephosphorylates kinase suppresor of Ras (KSR)-1 

protein (Ory et al., 2003). These both activities result in consequential activation of 

MEK1/2 and ERK1/2 proteins. As well, B55α participates regulating cell proliferation 

and survival through PI3K pathway in which it regulates Akt phosphorylation status by 

Thr-308 desphosphorylation (Kuo et al., 2008, Ruvolo et al., 2011). In addition, B55γ is 

involved in mTOR pathway through dephosphorylation of S6K protein (Fan et al., 
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2013). Moreover, these complexes are also involved in the Wnt/β-catenin signaling 

pathway, which has essential roles in developmental processes. In this pathway, B55α 

directly interacts with β-catenin regulating its phosphorylation and degradation (Zhang 

et al., 2009).  

Furthermore, it is well-known that PP2A participates in neuronal development through 

regulation of multiple signaling pathways, and defects in PP2A activity have been 

reported in several neurodegenerative diseases (Nematullah et al., 2017). As we 

previously mentioned, all PP2A-B55 complexes are highly expressed in brain and also 

developmentally regulated, and, as such, it has been extensively proposed their 

involvement in neurological disorders. In Alzheimer’s and Parkinson’s disease, PP2A-

B55α controls the phosphorylation status of the proteins tau  (Sontag et al., 2004) and α-

synuclein (Lee et al., 2011), which appear frequently hyperphosphorylated in those 

diseases, respectively. Further, spinocerebellar ataxia type 12 is a neurodegenerative 

disease characterized by an expanded CAG repeats mutation found immediately 

upstream of the B55β gene (Cohen and Margolis, 2016).   

As well, this B regulatory subfamily has been found to regulate the function of 

structural proteins, such as vimentin (Turowski et al., 1999), and to participate in 

clathrin-coated vesicles transport through phosphorylation of proteins involved in 

efficient cargo recruitment (Ricotta et al., 2007). 

1.3. The mitotic chromosome 

The main objective of mitosis is achieving the equal segregation of genetic material 

from mother to daughter cells. In this process it is essential the chromosome 

condensation and compaction in the characteristic ‘X-shaped’ morphology conferred by 

the two compacted sister chromatids in metaphase. The formation of this characteristic 

structure starts at prophase when both, resolution of replicated sister chromatids and 

chromatin compaction, occurs (Nagasaka et al., 2016). The mitotic chromosome was 

one of the first observations in cell biology studies since 19
th

 century, but nowadays it is 

still unknown how it precisely acquires its composition and structure.  

In the mitotic chromosomes four structural domains are distinguished: centromeres, 

telomeres, the periphery or perichromosomal layer, and the chromosome arms (Figure 

7)  
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The centromere with its associated kinetochore both comprise a complex structure 

necessary for spindle microtubules binding during metaphase and consequent chromatid 

segregation. Telomeres consist on repetitive ribonucleoprotein complexes present at 

ends of chromosomes that act protecting mitotic chromosome edges. The 

perichromosomal layer comprises a huge amount of different proteins that supports 

chromosome external scaffolding and protects chromosome surface (Van Hooser et al., 

2005). Finally, the chromosome arms, which contain the highly ordered chromatin 

around the chromosome scaffold, are mainly composed, in addition to DNA, of non-

histone proteins, including condensin, topoisomerase IIα (Topo IIα), and kinesin family 

member 4 (KIF4). These three proteins are also key determinants in the characteristic 

shape of mitotic chromosomes (Samejima et al., 2012).       

 

Figure 7. The mitotic chromosome. 

Scheme of a typical mitotic chromosome 

at metaphase is shown. It is composed by 

two sister chromatids joined by the 

centromere structure, which is flanked by 

kinetochores, one on each chromatid, 

which are the responsible of spindle 

microtubules (MTs) attachment. The 

chromatids present telomere structures at 

both ends, and the whole chromosome is 

surrounded by a structure called 

perichromosomal layer.  

MTs: microtubules. 

 

These four structures comprising several and diverse proteins actively interact with the 

chromatin, and confer identity to the characteristic mitotic chromosome. But how they 

are tightly regulated to reach this extremely organized structure is not well known. 

Recently, a phosphoproteomic study comparing phosphorylation patterns in mitotic 

chromosome-associated proteins in mitotic cells and asynchronous cells revealed more 

than 300 mitosis-specific phosphorylation sites  (Ohta et al., 2016). Therefore, the 

coordinated activity of specific kinases and phosphatases during mitosis is also clearly 

associated to the regulation of mitotic chromosome establishment.    
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1.3.1. The perichromosomal layer 

The perichromosomal layer has probably been the less studied structure of mitotic 

chromosomes. However, in the last years, its composition and relevance in mitotic 

chromatin compaction has partially been revealed.  

This layer appears on chromosomes from prophase to telophase and it is distributed 

around most of the chromosome surface and in-between sister chromatids, excluding 

centromeres (Traut et al., 2002). It is composed by several proteins that play diverse 

functions in interphase cells, although in their majority belongs to the nucleolar 

structure (Hernandez-Verdun and Gautier, 1994, Van Hooser et al., 2005).  Recent 

studies revealed that the perichromosomal layer represents 1.4% of the chromosome 

proteome (Ohta et al., 2010) and comprises more than 40% of the entire chromosome 

volume (Booth et al., 2016). Despite the knowledge about this layer around mitotic 

chromosomes since years, the function of this complex structure is not fully understood 

and until last years it had been overlooked.  

1.3.2. Ki67: more than a proliferation marker 

Of all components of the perichromosomal layer, Ki-67 is the one most deeply studied. 

Ki-67 protein is widely used as histological marker for cell proliferation (Whitfield et 

al., 2006). However, although its localization during the cell cycle is known since years 

ago (Gerdes et al., 1984), until last year its function remained poorly characterized.  

Ki-67 gene contains from the N-terminus to the C-terminus, a phosphopeptide-binding-

Forkhead-associated (FHA), a protein phosphatase 1 (PP1)-binding site, 16 repeats of 

unknown function and a region called LR (leucine-arginine) domain that binds 

heterochromatin protein HP1(Scholzen et al., 2002, Kametaka et al., 2002) (Figure 8). It 

encodes a big protein of 350kDa, which is located in the nucleolus in interphase and 

localized to the mitotic perichromosomal layer from late prophase to telophase 

(Starborg et al., 1996). 

 

Figure 8. Ki-67 domains. Schematic diagram of Ki-67 human protein. Domains are indicated by boxes, 

from N-terminus are located: FHA, forkhead-associated domain; PP1-BD, PP1-binding domain; 

conserved domain among species; 16 Ki-67 repeats; and, LR (leucine-arginin) domain. 
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Although some studies have unexpectedly shown that Ki-67 is dispensable for cell 

proliferation (Sobecki et al., 2016), it is clear that it plays a role in chromatin 

organization. In interphase, it is required for the organization of heterochromatin 

(Sobecki et al., 2016). And, during mitosis, it is the responsible of the recruitment of 

other nucleolar proteins in the perichromosomal layer affecting the formation of 

functional nucleoli in the subsequent interphase (Booth et al., 2014). Furthermore, it 

acts as a biological surfactant preventing chromosome coalescence into a single 

chromatin mass upon NEB by its binding to the chromatin surface (Cuylen et al., 2016). 

Also, it has been proposed a model in which Ki-67 could provide external support to 

mitotic chromosomes cooperating with the internal support provided by TopoIIα 

(Takagi et al., 2016). 

The specific perichromosomal localization of Ki-67 in mitotic cells must be regulated. It 

has been described that Ki-67 is hyperphosphorylated in mitosis (Ohta et al., 2016), at 

least in part by Cdk1 (Takagi et al., 2014). And, it is well known its direct interaction 

with PP1 through its binding site (Booth et al., 2014, Takagi et al., 2014, Kumar et al., 

2016).  However, the fact that the mutation of this site does not induce clear defects in 

progression of mitosis, but only a delay in the timing of dephosphorylation of Ki-67 

mutant (Takagi el al., 2014), opens the possibility to be regulated by others 

phosphatases. 
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2. OBJECTIVES 
 

The identity and regulation of mitotic phosphatases in mammalian cells is not fully 

resolved yet. Based on the evidence that PP2A-B55 has a conserved key role in 

dephosphorylating CDK substrates during mitosis in different organisms, such as 

Xenopus or Drosophila, we propose that these phosphatase complexes might also be 

important for mitosis in mammals. Therefore, the aim of the work presented in this 

thesis was to characterize the physiological function of PP2A-B55 complexes in 

mammals. With this purpose the specific following objectives have been proposed: 

1. Generate PP2A-B55 loss of function mouse models for B55α and B55δ 

isoforms.  

2. Characterize the relevance of B55α and B55δ phosphatases in cell cycle 

progression in mammals. 

3. Explore a new function of PP2A-B55 in chromosome clustering during mitosis.  
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3. MATERIALS AND METHODS 

3.1. Genetically modified mouse models 

3.1.1. Animal housing 

All the mice used in this study were housed in the pathogen-free animal facility of the 

Centro Nacional de Investigaciones Oncológicas (CNIO; Madrid) following the animal 

care standards of the institution. All mouse procedures carried out in this memory were 

previously approved by the Bioethics Committee of the Instituto de Salud Carlos III and 

Comunidad de Madrid. These animals were observed on a daily basis by our specialized 

technicians, and sick mice were killed humanely in accordance with the Guidelines for 

Humane End Points for Animals used in biomedical research. All animals were 

maintained in a mixed 129/Sv(25%) x CD1(25%) x C57BL/6J(50%) background. 

3.1.2. Generation of genetically modified mouse models 

3.1.2.1. Construction of targeting vectors 

The Ppp2r2d conditional targeting vector was constructed by Gene Bridges by flanking 

exon 3 of the murine Ppp2r2d locus with loxP sequences (Figure 16). The genomic 

sequences containing Ppp2r2d gene were obtained from two bacterial artificial 

chromosomes (BACs) named RP23-197B6 and RP23-438L24. A neomycin resistance-

gene (neo
r
) driven by the phosphoglycerate kinase (PGK) promoter was used for 

positive selection of clones. 

3.1.2.2. Generation of quimeras 

To generate the Ppp2r2d model, mouse ES cells V6.4 obtained from a hybrid (129 x 

C57BL/6J) strain were electroporated with 100μg of linearized DNA from the 

corresponding Ppp2r2d targeting vector. Recombinant ES cells and clones were 

selected in the presence of G418 (neomycin). This step was done at the Transgenic 

Mice Unit of the CNIO. The identification of the recombinant clones was performed by 

Southern blot analysis using new restriction sites from the recombinant alleles and 

external probes to the homology arms. Positive recombinant clones were microinjected 

into C57BL/6J blastocysts by the Transgenic Mice Unit of the CNIO. The male 

quimeras obtained were crossed with wild-type females for transmission of the 

recombinant allele. 
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For the Ppp2r2a gene, ES cell clone EPD0328_1_G08 (KOMP Repository) was 

directly microinjected into C57BL/6J blastocysts by the Transgenic Mice Unit of the 

CNIO. The obtained male quimeras were crossed with wild-type females for 

transmission of the recombinant allele. 

3.1.2.3. Generation of Ppp2r2a and Ppp2r2d alleles 

Heterozygous recombinant mice Ppp2r2a (+/loxfrt) were first crossed with Tg.pCAG-

Flpe transgenic mice that ubiquitously and constitutively express Flp recombinase, to 

remove the neo selection marker and thus, to generate the conditional Ppp2r2a (lox). To 

generate the null alleles, we crossed Ppp2r2a (+/lox) and Ppp2r2d (+/loxfrt) mice with 

Tg.EIIa-Cre transgenic mice that ubiquitously and constitutively express Cre 

recombinase. In the Ppp2r2a (lox) allele, Cre-mediated recombination between the two 

loxP sites excises exons 5-8; whereas, in the Ppp2r2d (loxfrt) allele, Cre-mediated 

recombination between the two loxP sites excises exon 3, giving rise to Ppp2r2a (-) and 

Ppp2r2d (-) null alleles, respectively.  

To generate a conditional model for Ppp2r2a, homozygous Ppp2r2a(lox/lox) mice were 

crossed with mice harbouring a tamoxifen-inducible Cre recombinase (Cre-ERT2), 

under the ubiquitous promoter of the RNA polymerase II. In this case, tamoxifen 

administration is required to induce the deletion of the Ppp2r2a gene and to obtain the 

Ppp2r2a(Δ) deleted allele.  

3.1.3. Mouse genotyping 

The genotyping of the mutant mice was done by PCR. The PCR was performed using 

tail genomic DNA from 3-4-week old mice and the oligonucleotides shown in (Table 

2).  

The standard PCR protocol was: 5 minutes at 95°C for denaturalizing the DNA 

followed by 35 cycles of: DNA denaturalization at 95°C during 30 seconds, primer 

annealing at 60°C during 30 seconds and polymerase extension at 72°C during 1 

minute. The protocol finished with a final elongation step of 10 minutes at 72°C. 

 

 



Materials & Methods 

47 
 

Table 2. Oligonucleotides used for Ppp2r2a and Ppp2r2d locus genotyping  

((c)KO: (conditional) knock-out; F:forward, R:reverse primers) 

Mouse model Name Sequence (5`-3’) Alleles and PCR size 

Ppp2r2a cKO 

1F 

2R 

AAGAATCATGCTGTGCTGCCAAGG 

GGTGCTAGAATTAAGAGTGAGCC 

Ppp2r2a(+): 264bp 

Ppp2r2a(lox): 449bp 

1F 

1R 

AAGAATCATGCTGTGCTGCCAAGG 

CATGCTCTTTATACCTGCCTTATGGACC 
Ppp2r2a(null): 518bp 

Ppp2r2d KO 
1F 

1R 

GCCACCTGGGGTGTTTTG 

CATGCTCTTTATACCTTATGGACC 

Ppp2r2d(+):771bp 

Ppp2r2d(null): 445bp 

 

3.1.4.  Histological and immunohistochemical analysis 

For histological observation, dissected organs or embryos were fixed in 10%-buffered 

formalin (Sigma) and embedded in paraffin wax. Sections of 3- or 5-μm thickness were 

stained with haematoxylin and eosin (H&E).  

3.2. Generation of PP2A-B55 antibodies 

The four members of the B55 family of regulatory subunits display greater than 80% 

sequence identity at the protein level (Figure 9). Because of that, the development of 

highly specific reagents is necessary to study their differential expression in cells and 

tissues. Due to the absence of some B55 isoform-specific commercial antibodies (Table 

3), we designed three specific peptides against mouse B55α, B55β/γ and B55 proteins 

to immunize rabbits and generate specific antibodies. 

The three different antibodies: B55α, B55β/γ and B55δ, were raised in rabbits against 

synthetic peptides conjugated to keyhole limpet hemocyanin by GenScript (Figure 9 & 

Table 3). The resulting sera were adsorbed thoroughly with the CNBr-activated 

sepharose
TM

 4 Fast Flow or rProtein A GraviTrap
TM

 (GE Healthcare), previously 

conjugated with the mentioned peptides. After washing the column extensively with 

PBS, the specific antibodies, which were retained in the column, were eluted with 0.1M 

glycine (pH 2.5), immediately neutralized with the appropriate amount of 1M Tris (pH 

8.8), and dialyzed against PBS.  

To test the specificity of these antibodies, the four different human B55 isoforms were 

overexpressed in 293T cells and whole protein extracts were immunoblotted with all 

available antibodies against B55, including commercial available ones and the new 

generated ones (Figure 10 and Table 3). The B55α antibody recognized specifically the 

overexpression of B55α, but not the other isoforms (Figure 10, middle lower panel). 
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The B55β/γ antibody recognized specifically B55β but not the others, including B55γ 

(Figure 10, right lower panel). This can be explained by the completely different N-

terminal sequence of human Ppp2r2c compared to mouse Ppp2r2c. And, unfortunately, 

the B55δ antibody did not recognized any isoform in spite of the specificity of the 

peptide sequence we used, so it was discarded. 

 

Figure 9. Alignment of the amino acid sequences of the murine B55 isoforms. Peptide sequences 

designed for antibody generation are shown; in red for B55α, in orange for B55δ and in dark blue for 

B55β/γ; note that in light blue are the common amino acids of B55γ for the designed peptide against both 

B55β/γ isoforms. An * (asterisk) indicates positions which have a single, fully conserved residue; a.: 

(colon) indicates conservation between groups of strongly similar properties; and a . (period) indicates 

conservation between groups of weakly similar properties.  

B55α       ------ QVK-GAVDDDVAEADIISTVEFNHSGELLATGDKGGRVV MAGA GGGNDIQWCFS

B55δ       FQWCFSQVK-GAVDEDVAEADIISTVEFNYSGDLLATGDKGGRVV MAGAGGGGCPAGGND

B55γ       --------- G --T H LRDHSYVTEADVISTVEFNHTGELLATGDKGGRVV M ED DTRKIN SF

B55β1      ---------MEED--IDTRKINNSFLRDHSYATEADIISTVEFNHTGELLATGDKGGRVV 

B55β2      ------MKCFSRY--LPYIFRPPNTILSSSCHTEADIISTVEFNHTGELLATGDKGGRVV 

                                  .     .  :***:*******::*:************ 

B55α       IFQQEQENKIQSHSRGEYNVYSTFQSHEPEFDYLKSLEIEEKINKIRWLPQKNAAQFLLS 

B55δ       IFQREQENKGRAHSRGEYNVYSTFQSHEPEFDYLKSLEIEEKINKIRWLPQQNAAHFLLS 

B55γ       IFQREPESKNAPHSQGEYDVYSTFQSHEPEFDYLKSLEIEEKINKIKWLPQQNAAHSLLS 

B55β1      IFQREQESKNQVHRRGEYNVYSTFQSHEPEFDYLKSLEIEEKINKIRWLPQQNAAYFLLS 

B55β2      IFQREQESKNQVHRRGEYNVYSTFQSHEPEFDYLKSLEIEEKINKIRWLPQQNAAYFLLS 

           ***:* *.*   * :***:***************************:****:***  *** 

B55α       TNDKTIKLWKISERDKRPEGYNLKEEDGRYRDPTTVTTLRVPVFRPMDLMVEASPRRIFA 

B55δ       TNDKTIKLWKISERDKRAEGYNLKDEDGRLRDPFRITALRVPILKPMDLMVEASPRRIFA 

B55γ       TNDKTIKLWKITERDKRPEGYNLKDEEGKLKDLSTVTSLQVPVLKPMDLMVEVSPRRTFA 

B55β1      TNDKTVKLWKVSERDKRPEGYNLKDEEGRLRDPATITTLRVPVLRPMDLMVEATPRRVFA 

B55β2      TNDKTVKLWKVSERDKRPEGYNLKDEEGRLRDPATITTLRVPVLRPMDLMVEATPRRVFA 

           *****:****::***** ******:*:*: :*   :*:*:**:::*******.:*** ** 

B55α       NAHTYHINSISINSDYETYLSADDLRINLWHLEITDRSFNIVDIKPANMEELTEVITAAE 

B55δ       NAHTYHINSISVNSDHETYLSADDLRINLWHLEITDRSFNIVDIKPANMEELTEVITAAE 

B55γ       NGHTYHINSISVNSDCETYMSADDLRINLWHLAITDRSFNIVDIKPANMEDLTEVITASE 

B55β1      NAHTYHINSISVNSDYETYMSADDLRINLWNFEITNQSFNIVDIKPANMEELTEVITAAE 

B55β2      NAHTYHINSISVNSDYETYMSADDLRINLWNFEITNQSFNIVDIKPANMEELTEVITAAE 

           *.*********:*** ***:**********:: **::*************:*******:* 

B55α       FHPNSCNTFVYSSSKGTIRLCDMRASALCDRHSKLFEEPEDPSNRSFFSEIISSISDVKF 

B55δ       FHPHQCNVFVYSSSKGTIRLCDMRSSALCDRHAKFFEEPEDPSSRSFFSEIISSISDVKF 

B55γ       FHPHHCNLFVYSSSKGSLRLCDMRAAALCDKHSKLFEEPEDPSNRSFFSEIISSVSDVKF 

B55β1      FHPHHCNTFVYSSSKGTIRLCDMRASALCDRHTKFFEEPEDPSNRSFFSEIISSISDVKF 

B55β2      FHPHHCNTFVYSSSKGTIRLCDMRASALCDRHTKFFEEPEDPSNRSFFSEIISSISDVKF 

           ***: ** ********::******::****:*:*:********.**********:***** 

B55α       SHSGRYMMTRDYLSVKIWDLNMENRPVETYQVHEYLRSKLCSLYENDCIFDKFECCWNGS 

B55δ       SHSGRYMMTRDYLSVKVWDLNMEGRPVETHQVHEYLRSKLCSLYENDCIFDKFECCWNGS 

B55γ       SHSGRYMLTRDYLTVKVWDLNMEARPIETYQVHDYLRSKLCSLYESDCIFDKFECAWNGS 

B55β1      SHSGRYIMTRDYLTVKVWDLNMENRPIETYQVHDYLRSKLCSLYENDCIFDKFECVWNGS 

B55β2      SHSGRYIMTRDYLTVKVWDLNMENRPIETYQVHDYLRSKLCSLYENDCIFDKFECVWNGS 

           ******::*****:**:****** **:**:***:***********.********* **** 

B55α       DSVVMTGSYNNFFRMFDRNTKRDITLEASRENNKPRTVLKPRKVCASGKRKKDEISVDSL 

B55δ       DSAIMTGSYNNFFRMFDRNTRRDVTLEASRENSKPRASLKPRKVCTGGKRKKDEISVDSL 

B55γ       DSVIMTGAYNNFFRMFDRNTKRDVTLEASRESSKPRAVLKPRRVCVGGKRRRDDISVDSL 

B55β1      DSVIMTGSYNNFFRMFDRNTKRDVTLEASRENSKPRAILKPRKVCVGGKRRKDEISVDSL 

B55β2      DSVIMTGSYNNFFRMFDRNTKRDVTLEASRENSKPRAILKPRKVCVGGKRRKDEISVDSL 

           **.:***:************:**:*******..***: ****:**..***::*:****** 

B55α       DFNKKILHTAWHPKENIIAVATTNNLYIFQDKVN---- 

B55δ       DFNKKILHTAWHPMESIIAVAATNNLYIFQDKIN---- 

B55γ       DFTKKILHTAWHPAENIIAIAATNNLYIFQDKVNSDMH 

B55β1      DFSKKILHTAWHPSENIIAVAATNNLYIFQDKVN---- 

B55β2      DFSKKILHTAWHPSENIIAVAATNNLYIFQDKVN---- 

           **.********** *.***:*:**********:*  
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Table 3. Primary antibodies against PP2A-B55 used in this work 

Antibody 
Source 

(reference) 
Species Antigen 

Isoform 

reactivity 
Applications 

PP2A-B55-α 

(2G9) 

Santa Cruz 

(sc-81606) 

Mouse 

monoclonal 

Aas 398-411 

(rat B55α) 
α/δ>β>γ 

WB 

(not for IHQ) 

PP2A B 

subunit 

(100C1) 

Cell Signalling 

(#2290) 

Rabbit 

monoclonal 

Peptide human PP2A B 

subunit 
All isoforms WB, IHQ 

PP2A B 
Cell Signalling 

(#4953) 

Rabbit 

polyclonal 

Peptide human PP2A B 

subunit 

(N-terminus) 

All isoforms WB 

PPP2R2D 

(N2C3) 

Genetex 

(GTX116609) 

Rabbit 

polyclonal 

aas 91-380  

(human B55δ) 

B55δ 

(human/mouse) 

WB  

(not for IHQ) 

B55α 
“Homemade” 

#8683 

Rabbit 

polyclonal 

MAGAGGGNDIQWCFS 

(aa 1-15 mouse B55α) 

B55α 

(human/mouse) 

WB  

(not for IHQ) 

B55β/γ 
“Homemade” 

#8653 

Rabbit 

polyclonal 

MEEDIDTRKINSF 

(aa1-14 mouse B55β-iso1) 

hB55β (iso-1, 4, 

5, 7) mB55β 

(iso-1) mB55γ? 

WB 

B55δ 
“Homemade” 

#8655 

Rabbit 

polyclonal 

MAGAGGGGCPAGGND 

(aa 1-15 mouse B55δ) 
- - 
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Figure 10. PP2A-B55 antibodies isoform reactivity. All PP2A-B55 primary antibodies were tested in 

whole cell extracts from HEK293T human cells overexpressing GFP alone or each one of the different 

isoforms of B55 regulatory subunits N-terminal fused to GFP. Depending on the isoform reactivity of 

each antibody we can observe a different enrichment of one band or other. The B55-GFP band and the 

endogenous B55 band are shown. In the upper panel, the antibodies with lower isoform specificity are 

shown; whereas in the lower panel, antibodies with higher isoform specificity are shown. Note that 

“Homemade” #8653 cannot recognize human B55γ, but it is expected to recognize mouse B55γ, although 

we do not have mouse cDNAs to be tested yet. More details regarding PP2A-B55 antibodies are shown in 

Table 3.  

3.3. Cell culture 

3.3.1. MEFs extraction and culture 

Mouse embryonic fibroblasts (MEFs) were prepared from E13.5 embryos and cultured 

using standard protocols. E13.5 embryos were extracted from the uterus of pregnant 

females from heterozygous intercrosses, the placenta was removed, and embryos were 

isolated from the yolk sac. Embryos, without liver and head, were minced and dispersed 
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in 0.1% trypsin (5 minutes at 37°C). Cells were grown for two population doublings and 

then frozen. Once reaching confluence, MEFs were subcultured at a ratio of 1:4. All 

cultures were maintained in Dulbecco’s modified Eagle’s medium (DMEM; Lonza) 

supplemented with 0.1% gentamicin and 10% foetal bovine serum (FBS), and were 

grown at 37°C in a humidified 5% CO2 atmosphere. 

3.3.2. MEFs immortalization 

MEFs at 50-75% confluency were infected with retroviruses expressing Antigen T121 

from SV40 virus, in the presence of polybrene (4μg/mL). In order to increase the 

infection efficiency, two consecutive rounds of infection were performed. Infected 

MEFs were selected with hygromycin B (150μg/mL) during 2 days and passaged for 

several weeks to obtained immortalized MEFs (iMEFs). 

3.3.3. Viral infections 

In order to obtain a Ppp2r2a(Δ) allele from a conditional Ppp2r2a(lox) allele in vitro, 

iMEFs infection was performed using adenoviruses expressing CMV-Empty or CMV-

Cre (Cre recombinase) obtained from The University of Iowa (Iowa City, IA). Infection 

was carried out at 250 MOI during 2 days in a cell culture synchronized in G0 by serum 

deprivation and/or confluence.  

For videomicroscopy, iMEFs at 60-70% confluency were infected with lentiviruses 

containing H2B-RFP in the presence of polybrene (4μg/mL). In order to increase the 

infection efficiency, two consecutive rounds of infection were performed. Then, RFP-

positive cells were sorted in an Influx or FACs Aria sorter, to generate H2B-RFP stable 

cell lines. 

3.3.4. Human and mouse cell lines 

HEK293 and U2OS human cells; and, NIH-3T3 mouse cells, were maintained in 

DMEM medium supplemented with 10% FBS and antibiotics and were grown at 37°C 

in a humidified 5% CO2 atmosphere.  

3.3.5. Transfection / Nucleofection 

Cell lines and MEFs were transfected in subconfluency with Lipofectamine 2000 

(Invitrogen) and NEON transfection system (Invitrogen), respectively, in accordance 

with the manufacturer’s instructions.  
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3.3.6. Flow cytometry 

For DNA content analysis, cells were fixed in 70% ethanol at 4ºC at least 1 hour. Then, 

cells were stained with propidium iodide (PI) (50 µg/mL; Sigma) in presence of 

RNAseA (0.1 mg/mL; Qiagen) for 30 minutes at 37ºC and keep overnight at 4ºC. The 

following day the samples were analyzed with a FACS-Canto flow cytometer (BD 

Bioscience). FlowJo Version 9.6.4 software was used to analyze cell populations 

(TreeStar). 

 

In order to determine S phase entry, serum starved cells stimulated with FBS 10% were 

pulsed with EdU (10 μM, Sigma) for 30 minutes and then fixed in 70% ethanol 

overnigth at 4ºC. The following day, EdU and PI stainings were performed, and the 

samples were analyzed with a FACS-Canto flow cytometer (BD Bioscience). FlowJo 

Version 9.6.4 software was used to analyze cell populations (TreeStar). 

3.3.7. RNA interference assays 

For RNA interference, iMEFs were nucleofected with specific siRNAs against Mki67 

(5’-CGUUGAUAUCAGCAACUUU-3’), gene (Ambion) using Amaxa® Nucleofector® (Lonza) 

in accordance with the manufacturer’s instructions.  

3.3.8. Drugs 

The following drugs were used in cultured cells at the indicated concentrations: 

nocodazole (0.8μM, Sigma) and taxol (1μM, Sigma). 

3.4. Biochemical and molecular biology procedures 

3.4.1. DNA cloning 

Human Ppp2r2a, Ppp2r2b, Ppp2r2c and Ppp2r2d cDNAs were amplified by PCR from 

the plasmids #13804 (Addgene), hAF9765, hAF8700 and hAF90289 (Mammalian Gene 

Collection), respectively,subcloned into pENTR-D-TOPO vector using TOPO 

technology (Invitrogen), and transferred to a destiny vector as N-terminal-GFP fusions 

by a LR recombination reaction of the Gateway system (Invitrogen). 

GeneArt 
TM

 Strings
TM

 DNA fragments (Invitrogen) were designed to contain the 

sequence of the eight last Ki67-repeat domains of human MKI67 in their wild-type 

form, a phospho-mimetic form and a phospho-mutant form. Each of these sequences, of 

almost 3Kb, were subcloned as fusions into a lentiviral plasmid (PLVXpuro, Clontech), 
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in which it was previously subcloned the sequence of the LR domain of MKI67 gene 

fused to a reporter fluorescent protein (mNeonGreen). 

3.4.2. RNA extraction and Real-time-PCR 

To quantify expression of transcripts, total RNA from cells and tissues was isolated 

using Trizol (Invitrogen). cDNA was synthetized with a M-MLV reverse transcriptase 

(Promega) and PCR amplification was performed using SYBR Green PCR Master Mix 

(Applied Biosystems). Amplification of β-actin was used for normalization. The 

oligonucleotides used for amplification of Ppp2r2a, Ppp2r2b, Ppp2r2c, Ppp2r2d and β-

actin are shown in Table 4. 

Table 4. Oligonucleotides used for RT-qPCR.  

(F: forward, R: reverse primers) 

RT-PCR oligos Species Target sequence (5`-3’) 

Ppp2r2a  

Mouse 
F: CGCTCTGTGACAGGCATTCT 

R: AACGACCGCTATGGCTGAAT 

Human 
F: TGTGGATATCAAGCCTGCCA 

R: TGCCCTCATGTCACATAGCC 

Ppp2r2b  

Mouse 
F: ACCACAGCTATGCAACCGAA 

R: CACCCCTACGATGAACCTGG 

Human 
F:AAGAGCCGGAAGATCCAAGC 

R: CTGGTAAGTCTCGATGGGGC 

Ppp2r2c 

Mouse 
F: GAGGTGAGCCCAAGAAGGAC 

R: TGCCAGAGGTTGATGCGTAG 

Human 
F: GGCCACACCTACCACATCAA 

R: CTGGTAAGTCTCGATGGGGC 

Ppp2r2d 

Mouse 
F: GCGGAAGCCGACATCATC 

R: CATGACTCTGAAAGGTACTG 

Human 
F: TTGAGTGTTGCTGGAACGGT 

R: GTCTTTCCTCCGCTTACCCC 

β-actin 

Mouse 
F: GACGGCCAGGTCATCACTATTG 

R: AGGAAGGCTGGAAAAGAGCC 

Human 
F: GTCTTCCCCTCCATCGTG 

R: GGTCATCTTCTCGCGGTTG 

 

3.4.3. Protein extraction and analysis 

For immunodetection in protein lysates, cultured cells were harvested and lysed in 

Laemmli buffer (60 mM Tris pH 6.8; 2% SDS; 10% Glycerol). Proteins were separated 

on SDS-PAGE, transferred to nitrocellulose membranes (Biorad) and probed using 

specific primary antibodies (Table 3 &Table 5). HRP-coupled secondary antibodies 
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(DAKO) were used for immunodetection. Finally, the membranes were developed using 

the ECL system (PerkinElmer). 

3.4.5. Chromosome spreads 

Synchronous culture cells were exposed to colcemid (0.5μg/mL; KaryoMax) for 6 hours 

and hypotonically swollen in KCl (75mM) for 30 minutes at 37ºC. Cells were then spun 

down and fixed with Carnoy’s solution (75% pure methanol, 25% glacial acetic acid). 

After fixation, cells were dropped from a 5-cm height onto glass slides previously 

treated with 45% of acetic acid. Slides were mounted with Fluoromount-G® 

(SouthernBiotech) and 4,6-diamidino-2-phenylindole (DAPI; Invitrogen) or treated for 

immunofluorescence. 

3.5. Microscopy techniques 

3.5.1. Videomicroscopy 

For videomicroscopy, synchronous, histone H2B-RFP expressing iMEFs were plated on 

eight-well glass-bottom dishes (Ibidi) and recorded with a DeltaVision RT imaging 

system (Olympus IX70/71, Applied Precision) equipped with a Plan Apochromatic 

20X/1.42 NA objective lens, and maintained at 37ºC in a humidified CO2 chamber. 

Images were acquired every 7.5 or 10 minutes, in the absence or presence of drugs, 

respectively. Images were processed and analysed using ImageJ software.  

3.5.2. Immunofluorescence 

For immunofluorescence, synchronous cultured cells were grown in coverslips, fixed 

with 4% paraformaldehyde for 10 minutes at RT and incubated with 0.5% Triton X-100 

for 10 minutes at RT for permeabilization. Cells were then blocked with 3% BSA and 

incubated during 2 hours at RT or ON at 4ºC with the indicated primary antibodies 

(Table 5), followed by incubation with fluorescent-conjugated secondary antibodies and 

staining with 4,6-diamidino-2-phenylindole (DAPI; Invitrogen) to visualize DNA, and 

with Phalloidin-AF647 to visualize the actin pattern. Secondary antibodies, coupled to 

different Alexa dies (488, 594 or 647), were purchased from Molecular Probes 

(Invitrogen).  

For immunofluorescence over chromosome spreads, previously prepared spreads were 

rehydrated in PBS for 15 minutes before being swollen in TEEN buffer (1mM 

triethanolamine-HCl pH8.5, 0.2 mM NaEDTA, 25mM NaCl) for 7 minutes. The 
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primary and secondary antibodies were diluted (1:100, 1:200) in TEEN plus 0.5% FBS, 

and washes were performed in TEEN buffer. Final washing was done in KB solution 

(10mM Tris-HCl pH 7.7, 0.15 M NaCl, 0.5% FBS).  

In both cases, image acquisition was performed using either a Leica D3000 microscope 

or a TCS-SP5 (AOBS) Laser scanning confocal equipped with an oil immersion 

objective of 40X (HCX-PLAPO 1.2 N.A.). LASAF v2.6. software was used for image 

acquisition, and analysis was performed with ImageJ or Definiens XD v2.5 softwares, 

using a customized programmed ruleset. 

Table 5. Primary antibodies used in different assays. 

(IF: immunofluorescence; WB: Western-blot; IHQ: immunohistochemistry) 

Antibody Source (reference) Species Dilution Applications 

ACA (Centromeres) Antibodies incorporated Human polyclonal 1:500 IF 

C3 Cleaved Caspase-3 

(Asp175) 

Cell Signaling 

Technology 
Rabbit polyclonal 1:200 IHQ 

GFP Roche Mouse monoclonal 1:1000 WB 

Ki67 Abcam Rabbit polyclonal 1:500 IF 

MPM2 Millipore Mouse monoclonal 1:500 IF 

Phospho-Histone H3 

(Ser10) 
Millipore Rabbit polyclonal 1:250 IHQ 

α-Tubulin Sigma Mouse monoclonal 1:2000 IF 

Vinculin Sigma Mouse monoclonal 1:5000 WB 

 

3.6. Statistical analysis 

Statistical analysis was carried out using Prism 5 (Graphpad Software Inc.). All 

statistical tests of comparative data were done using two-sided, unpaired Student’s t-test 

or ANOVA for differential comparison between two groups or more groups, 

respectively. Chi square’s test was used for categorical data. Data with P<0.05 were 

considered statistically significant (*, P<0,05; **, P<0.01; ***, P<0.001) 
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4. RESULTS 

4.1. PP2A-B55 expression in mammalian cells 

It has been reported that B55α and B55δ isoforms are widely expressed in mammalian 

cells (including fibroblasts), whereas B55β and B55γ are restricted to the nervous 

system (Strack et al., 1998, Schmidt et al., 2002). In agreement with that, our data at the 

RNA level in different mouse (3T3 and wild-type MEFs) and human (293 and U2OS) 

cell lines resulted in high expression of both B55α and B55δ isoforms, but almost no 

expression of B55β and B55γ isoforms (Figure 11A). Whereas B55α appears to be the 

most abundant isoform in human cells, both B55δ, and to a lesser extent B55α, are the 

predominant ones in mouse cells. Furthermore, study of RNA levels in wild-type mouse 

tissues revealed that B55δ appears to be the predominant B55 isoform in mice in all 

analysed tissues, except for brain, where B55β and specially B55γ are also highly 

expressed (Figure 11B). 

 

Figure 11. Endogenous B55 mRNA levels. (A) Endogenous mRNA levels for all B55 isoforms (α, β, γ 

and δ) were analysed in two human cell lines (293T and U2OS) and two mouse cell lines (NIH3T3 and 

MEFs). (B) Endogenous mRNA levels of all B55 isoforms (α, β, γ and δ) in several wild-type mouse 

tissues. mRNA levels were measured by qRT-PCR and normalized to the mean of β-actin. Error bars 

show standard error of mean (SEM). 

 

To analyse the expression of these PP2A B regulatory subunits at the protein level we 

first generated some new antibodies against B55α, B55β/γ and B55 δ isoforms (see 

Materials and Methods 3.2). Since the one against B55δ did not work, we made use of a 

commercial antibody (Genetex), which is specific for this isoform (Table 3). Specific 

B55α and B55δ antibodies identified a single band per isoform in immunoblots, which 
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corresponds to the expected B55 size. In case of B55β/γ antibody, two bands were 

detected in mouse brain lysates, which may correspond to B55β (lower band) and B55γ 

(upper band) (Figure 12B) as previously described (Strack, 1998). 

The study of B55α protein expression using our homemade antibody revealed its wide 

expression in the organism. This isoform was detected in brain, liver, muscle, intestine 

and lung tissues (Figure 12A) in spite of not being the most abundant at the mRNA 

level. On the other hand, the analysis of B55β and B55γ protein levels with our other 

homemade antibody revealed their specific expression in brain tissue. In this case, and 

according to mRNA data, all B55 isoforms could be detected in protein extracts from 

brain but not from other wild-type tissues (Figure 12B).   

 

Figure 12. B55 protein levels in wild-type mouse tissues. (A) Protein expression levels of B55α in 

mouse tissues. Two independent MEFs clones (I and II) were used, and tissues from four wild-type mice 

(1, 2, 3 and 4) were analysed. (B) Tissue expression of all B55 isoforms (α, β, γ and δ) in brain lysates. 

Whole extracts (30µg/lane) of the indicated samples were immunoblotted with the indicated antibodies. 

Vinculin was used as a loading control. OE: overexposure. Int., intestine.  

 

4.2. Loss of function of PP2A-B55α: Ppp2r2a mouse model 

4.2.1. Generation of Ppp2r2a knock-out mouse models 

To generate the Ppp2r2a knock-out (KO) model we used ES cell clones positive for a 

Ppp2r2a targeting vector, obtained by the KOMP repository (EPD0328_1_G08, 

www.komp.org). The Ppp2r2a targeting vector contains exons 5-8 flanked with loxP 

sequences and a frt-IRES-LacZ (reporter)-loxP-neo
r
 (neomycin-resistant gene)-frt 

cassette for selection purposes (Figure 13A). The corresponding ES cells were 

microinjected into wild-type blastocysts to generate Ppp2r2a(+/loxfrt) mice. After this 
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process, we obtained only one chimeric male with 60% of chimerism. The IRES-LacZ 

and neo
r 

cassette were first removed by crossing with transgenic mice expressing the 

Flp recombinase resulting in the conditional Ppp2r2a(lox) allele. Germline deletion of 

exons 5-8 was achieved by additional crosses with EIIa-Cre transgenic mice, which 

express constitutive and ubiquitous Cre recombinase (Cre), to generate the Ppp2r2a(-) 

allele. Genotyping of these alleles was done by PCR using genomic DNA extracted 

from the tails of these mice and two distinct combinations of primers (1F+2R and 

1F+1R, Figure 13A,B) 

 

Figure 13. Generation of Ppp2r2a conditional and null mutants. (A) Schematic representation of the 

Ppp2r2a genomic structure and targeting vector, with the resulting alleles. The mouse Ppp2r2a locus that 

encodes B55α contains 10 exons (red boxes) harbouring noncoding (open boxes) or protein-coding (filled 

boxes) sequences. LoxP (green triangles) sites and frt (orange triangles) sites are used to flank B55α 

exons and the neo-resistance or the neo-resistance and IRES-LacZ in the targeting vector, respectively. 

The neo cassette (light orange arrow) was used for selection of clones after homologous recombination 

(HR) in ES cells. The IRES-LacZ and the neo cassette are eliminated in vivo by crossing 

Ppp2r2a(+/loxfrt) mice with transgenic mice expressing Flp recombinase. Further excision of exons 5-8 
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is mediated by expression of Cre recombinase resulting in the Ppp2r2a(-) null allele. Primers used for 

genotyping are also indicated. (B) Representative PCR products confirm the presence of Ppp2r2a(wt), 

Ppp2r2a(lox) and Ppp2r2a(-) null alleles after amplification from tail genomic DNA using the indicated 

oligonucleotides.  

4.2.2. Ppp2r2a is essential for mouse embryonic development 

Ppp2r2a(+/-) mice develop normally and are fertile. However, intercrosses of 

heterozygous Ppp2r2a(+/-) mice yielded no live Ppp2r2a(-/-) offspring (Figure 14A). 

No postnatal Ppp2r2a(-/-) mice were found among 129 live-born mice from the 

intercrosses, which suggests that homozygous deficiency in Ppp2r2a leads to 

embryonic lethality, although the timing of embryo demise is not known. Therefore, 

timed matings were set up between heterozygous animals, and foetuses were collected 

at E13.5 days of gestational development. A reduced proportion of Ppp2r2a(-/-) 

embryos were obtained (12% vs 25% expected),  suggesting that constitutive ablation of  

Ppp2r2a compromise mouse survival during late embryonic development (Figure 14B). 

 

Figure 14. Ppp2r2a is essential for late embryonic development. (A) Offspring distribution of crosses 

between heterozygous Ppp2r2a(+/-) mice. Percentage of live-birth mice is shown, demonstrating non-

Mendelian inheritance of the knockout allele (red bars: obtained offspring vs. black bars: expected 

offspring). (B) Distribution of E13.5 embryos (in percentage) obtained from crosses between 

heterozygous Ppp2r2a(+/-) mice. The number (and percentage) of mice or embryos with the indicated 

genotype is shown below the graphs. *P<0,05; ***P<0,001 (Chi-square test). 

 

Inspection of E13.5 embryos by histopathology revealed that Ppp2r2a(-/-) embryos that 

reach this stage are smaller and present a delay in development compared to their wt 

littermates (Figure 15). Although we could distinguish all organs in the Ppp2r2a(-/-) 

E13.5 embryo , they were generally smaller compared to the wt. Interestingly, a higher 
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reduction or almost total absence of brain tissues was observed in the null embryos, 

suggesting that this isoform is essential for brain development during embryonic stages.   

 
 

Figure 15 Defective development in Ppp2r2a(-/-) mice. Representative H&E images of E13.5 

Ppp2r2a/d(+/+) and Ppp2r2a(-/-) embryos of the same litter. Differences in size and in developmental 

stage of whole organism are shown. Hypophysis is marked with an asterisk (*) as reference.  

 

4.3. Loss of function of PP2A-B55δ: Ppp2r2d mouse model 

4.3.1. Generation of Ppp2r2d knock-out mouse model  

To generate the Ppp2r2d knockout model we first constructed a targeting vector in 

which Ppp2r2d exon 3 is flanked with loxP sequences and a frt-neo
r
-frt cassette for 

selection purposes (Figure 16A). At both ends of the constructs we cloned two 

homology arms to facilitate recombination in ES cells. After homologous 

recombination, we selected two different clones (ESMS1.137 and ESMS1.129) carrying 

the recombinant allele Ppp2r2d(loxfrt) (Figure 16B) and the corresponding ES cells 

were microinjected into wild-type blastocysts to generate Ppp2r2d(+/loxfrt) mice. After 

this process, we obtained seven chimeric males with 70-100% of chimerism. Germline 

deletion of exon 3 was achieved by additional crosses of these chimeras with EIIa-Cre 

transgenic mice to generate the Ppp2r2d(-) allele. Genotyping of these alleles was 

performed by PCR using genomic DNA from the tails and two combinations of primers 

(2F+1R+2R and 1F+1R, Figure 16A,C). 
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Figure 16. Generation of Ppp2r2d null allele. (A) Schematic representation of the Ppp2r2d genomic 

structure, targeting vector and resulting alleles. The mouse Ppp2r2d locus encoding B55δ contains 9 

exons (orange boxes) harboring noncoding (open boxes) or protein-coding (filled boxes) sequences. LoxP 

(green triangles) sites and frt (orange triangles) sites are used to flank B55δ exons or the neo-resistance in 

the targeting vector, respectively. The neo cassette (light orange arrow) is used for selection of clones 

following homologous recombination (HR) in ES cells. The exon 3 and neo cassette are eliminated in 

vivo by crossing Ppp2r2d(+/loxfrt) mice with transgenic mice expressing the EIIa-Cre recombinase. SacI 

and MunI restriction sites and 5’ and 3’ probes for Southern blot are indicated; and positions of primers 

used for genotyping are also shown. (B) Southern blot analysis of recombinant ES cells showing two 

Ppp2r2d(+/loxfrt) clones (marked with arrows) that underwent HR. DNA was firstly digested with SacI 

and hybridized with the 3’ probe. Positive clones were also digested with MunI and hybridized with the 

5’ probe for confirmation. (C) Representative PCR products showing the presence of the Ppp2r2d(loxfrt) 

allele in chimeras (upper panel), and the Ppp2r2d(null) allele after crossing chimeras with transgenic 

mice EIIa-Cre (lower panel). Amplification was performed with the indicated oligonucleotides. 
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4.3.2. Ppp2r2d loss is dispensable for embryonic development 

Ppp2r2d(+/-) mice develop normally and are fertile; and, the result of intercrosses of 

these heterozygous mice produced Ppp2r2d(+/+), Ppp2r2d(+/-), and Ppp2r2d(-/-) 

offspring with normal Mendelian ratios (Figure 17), suggesting that loss of Ppp2r2d has 

no major consequences in embryonic development. Moreover, the complete germline 

deletion of Ppp2r2d gene did not cause any impact in the survival or fertility of these 

mice. In addition, histopathological analysis of representative tissues from Ppp2r2d(-/-) 

young (12 weeks) and aged mice (48 weeks) did not show any specific or severe 

pathological sign.  

 Figure 17. Ppp2r2d is dispensable for 

embryonic development. Offspring 

distribution of crosses between 

heterozygous Ppp2r2d(+/-) mice. Live-

birth mice numbers demonstrate normal 

Mendelian inheritance of the knockout 

allele (blue bars: obtained offspring vs. 

black bars: expected offspring). Number of 

mice and percentage of each obtained 

genotype are shown below the graphs. 

(P>0.05, not significant differences; Chi-

square test) 

  

As we mentioned in the introduction, the four members of the B55 family of regulatory 

subunits display greater than 80% sequence identity at the protein level, so it is 

important to consider the putative compensation between isoforms. With this purpose, 

we analysed the expression of the other B55 isoforms in different regions of the brain: 

cortex, cerebellum and hippocampus, where we can detect all isoforms at protein levels. 

We analysed expression both at the mRNA and protein level (Figure 18), confirming in 

both cases how the germline deletion of Ppp2r2d gene completely abolished 

transcription and translation of B55δ, respectively. At the mRNA level we only detected 

an increase in Ppp2r2a expression in hippocampus of Ppp2r2d(-/-) mice compare to 

Ppp2r2a/d(+/+) tissue. This was also the case in lung tissue, where there were only 

detectable mRNA levels of both Ppp2r2a and Ppp2r2d in wild-type tissues but no other 

B55 isoforms (Figure 18A, left upper panel). However, at the protein level, we could 

only detect a slight increase of Ppp2r2a (B55α) in cortex of Ppp2r2d(-/-) mice, but not 
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in hippocampus, compared to the Ppp2r2a/d(+/+) tissue. Interestingly, there was a clear 

increase in protein expression of the other isoforms, B55β and B55γ, in all brain regions 

analysed (Figure 18B), although there were not differences in mRNA expression. These 

data suggest the possibility of other B55 isoforms displaying some compensatory roles 

in B55δ-null mice. 

 

Figure 18. B55 mRNA and protein expression levels in Ppp2r2d(-/-) brain tissues. (A) mRNA levels 

for all B55 isoforms (α, β, γ and δ) were analysed in several wild-type (Ppp2r2a/d(+/+)) and mutant 

Ppp2r2d(-/-) mouse brain tissues, and lung as a control. mRNA levels were measured by qRT-PCR and 

normalized to the mean of β-actin. Bars show the average of two mice, and error bars show SEM. Cb, 

cerebellum; HC, hippocampus. *P<0.05; **P<0.01; ***P<0.001(Student t test). (B) Protein expression of 

B55 isoforms (α, β, γ and δ) in different wild-type and Ppp2r2d(-/-) mouse brain regions. Whole protein 

extracts (30µg/lane) of the indicated tissues were immunoblotted with antibodies against specific B55 

isoforms. Vinculin was used as a loading control.  
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4.4. Function of PP2A-B55 phosphatase in cell cycle progression 

To analyse the functional relevance of PP2A-B55 complexes in cell cycle progression 

we obtained mouse embryonic fibroblast (MEFs) from E13.5 embryos, resulting from 

heterozygous crosses between previously described different alleles. All MEFs used in 

these assays were immortalized to work with more stable -not senescence- cell lines and 

to have enough material for all the performed assays.  

4.4.1. Depletion of PP2A-B55 α/δ results in proliferation defects 

We first analysed the effect of B55δ ablation on cell proliferation. To do that, we 

monitored the growth of asynchronous cultures of wild type (wt) Ppp2r2a/d(+/+) and 

Ppp2r2d(-/-) MEFs during six days. MEF lines from both genotypes grew at 

comparable rates and displayed no differences in cell proliferation, indicating that B55δ 

is not required for cell proliferation at least in MEFs (Figure 19A).  

Then, we analysed the consequence of eliminating the α isoform (Ppp2r2a) of B55. 

Since acute ablation of Ppp2r2a led to embryonic lethality we made use of MEFs 

derived from the conditional Ppp2r2a_lox model. Ppp2r2a(lox/lox) MEFs were 

infected with adenoviruses expressing Cre recombinase (AdCre) to induce the genetic 

ablation of B55α generating the null [Ppp2r2a(Δ)] allele. As a control, 

Ppp2r2a(lox/lox) cells were infected with an empty adenovirus (AdEmpty). 

Ppp2r2a(Δ/Δ) cells only showed a slight delay in proliferation in comparison with their 

wt counterparts Ppp2r2a(lox/lox) cells, indicating that MEFs are able to proliferate in 

the absence of B55α (Figure 19B).  

 

Figure 19. Single deficiency of B55α or B55δ does not cause major proliferation defects. (A) Relative 

cell proliferation of Ppp2r2d(-/-) and wild-type MEFs. (B) Relative cell proliferation of Ppp2r2a(Δ/Δ) 
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and Ppp2r2a(lox/lox) MEFs. Data are means ±SEM (n=3 independent clones). n.s., not significant 

differences (P>0.05; Student t test). Western Blot analysis of B55α and B55δ expression in one 

representative clone of each genotype is also shown. Vinculin was used as a loading control. 

 

Since there were no major differences in cell proliferation upon B55α- or B55δ 

depletion, we decided to generate a new mouse model combining both alleles, the 

conditional allele for B55α, Ppp2r2a(lox), and the constitutive null allele for B55δ, 

Ppp2r2d(-), to avoid the potential compensatory effect between both isoform. We 

generated MEF lines from Ppp2r2a(lox/lox);Ppp2r2d(-/-) embryos, in which AdCre 

infection results in genetic deletion of B55α and, therefore, combined depletion of both 

B55α and δ isoforms (Ppp2r2a(Δ/Δ);Ppp2r2d(-/-) (Figure 20A). B55α/δ-deficient cells 

showed a clear reduction in proliferation when compared with single depletion of B55δ 

(Figure 20A). All together, these data show that whereas the absence of one of these 

B55 isoforms, either α or δ, does not significantly compromise cell proliferation, 

combined deletion of both B55 isoforms leads to a severe proliferation defect (Figure 

20B). 

 

Figure 20. Concurrent depletion of Ppp2r2a and Ppp2r2d affects MEFs proliferation. (A) Relative 

cell proliferation of Ppp2r2a(Δ/Δ);Ppp2r2d(-/-) and Ppp2r2a(lox/lox); Ppp2r2d(-/-) MEFs. Protein 

expression of B55α and B55δ in one representative clone of each genotype was analysed by Western 

Blot. Vinculin was used as a loading control. (B) Relative cell proliferation at D6 of the indicated 

genotypes, where cell proliferation of their corresponding wild-type allele was set as 100%. Data are 

means ± SEM (n=3 independent clones). n.s., not significant differences; **P<0.01 (Student t test). 
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Analysis of cell cycle profiles at different days during the growth curve assay only 

revealed  a slight increase in the over 4n population in the B55α/δ deficient cells at day 

6, whereas in the other cells there were not any significantly change (Figure 21). This 

suggests that decrease in proliferation when both isoforms are depleted could be due to 

a mitotic defect that increases polyploidy in cells. 

 

Figure 21. Concurrent depletion of Ppp2r2a and Ppp2r2d affects G2/M and over 4n populations. 

Cell cycle profiles of MEFs showing population-based DNA content analysis by flow cytometry 

(propidium iodide staining), at day 6 of the growth curve. Numbers indicate percentage of the over 4n 

population.  

4.4.2. Elimination of PP2A-B55α/δ does not affect S-phase entry 

Besides the role of PP2A/B55 in mitosis, it has been reported that PP2A/B55α 

counteracts CDK-mediated phosphorylation of retinoblastoma protein (pRB) and the 

pocket proteins, p130 and 107, and might restrain cell cycle progression at the G0/G1 or 

G1/S transitions (Jayadeva et al., 2010).  

To assess if the proliferation defects of Ppp2r2a(Δ/Δ);Ppp2r2d(-/-) cells were due to a 

defect in S phase entry or progression, we monitored S phase entry from quiescence in 

B55α/δ-deficient cells. To perform this assay, Ppp2r2a(lox/lox); Ppp2r2d(-/-) MEFs 

were synchronized in G0 by serum deprivation and infected with AdCre to generate the 

double B55α/δ KO, or AdEmpty as a control.  Then, cells were collected at different 

time points after addition of serum: 0h, 12h, 16h, 20h and 24h to follow S phase entry 

and progression. Before harvesting, cells were incubated in the presence of EdU for 30 

min to monitor DNA replication and therefore S-phase. No differences were observed in 

Ppp2r2a(Δ/Δ);Ppp2r2d(-/-) cells compared to their controls (Figure 22), indicating that 

impaired proliferation of B55α/δ -deficient cells is not probably due to a S phase defect. 
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Figure 22. Ppp2r2a(Δ/Δ);Ppp2r2d(-/-) cells did not show defects in S-phase entry. Analysis of S-phase 

entry and progression by flow cytometry. The correlation between DNA content (Propidium Iodide 

staining) and DNA-replicating cells (EdU incorporation) is shown for a representative clone of 

Ppp2r2a(Δ/Δ);Ppp2r2d(-/-) (lower panel) and its corresponding Ppp2r2a(lox/lox);Ppp2r2d(-/-) control 

(upper panel). Percentages of EdU-positive cells are indicated.  

4.4.3. Mitotic defects in PP2A-B55-deficient cells 

Although there were not differences in the proliferation of single KO Ppp2r2d(-/-) or 

Ppp2r2a(Δ/Δ) cells compared to their controls, we decided to perform an in depth 

analysis of mitosis in these cells,  due to the reported data about their role in mitosis in 

other organisms (Mayer-Jaekel et al., 1993, Mayer-Jaekel et al., 1994, Mochida et al., 

2009). 

To study the kinetics of mitotic entry and progression, wt and Ppp2r2d(-/-) MEFs, 

stably expressing histone H2B-mRFP, were arrested in G0 in the absence of serum, and 

stimulated with serum to reenter the cell cycle. Twenty hours after the addition of 

serum, cells were monitored by using time-lapse microscopy during 24h. No differences 

were observed in the kinetics of mitotic entry (determined by cell rounding and 

chromosome condensation) in Ppp2r2d(-/-) cells  compared to wt cells (Figure 23A). 

Moreover, there were no significant differences in the duration of mitosis in Ppp2r2d(-/-

) compared with the wt control, Ppp2r2a/d(+/+) (55,26±3,92min vs. 61.92±6.86min) 

(Figure 23B) compared with the wt control, Ppp2r2a/d(+/+).Finally, the study of the 

segregation defects occurring during mitosis did not reveal any major difference in 

conditions of depletion of B55δ isoform. 
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Figure 23 Ppp2r2d deletion does not affect mitosis. (A) Quantification of mitotic entry (as scored by 

cell rounding and chromosome condensation) in wild-type (Ppp2r2a/d(+/+)) and Ppp2r2d(-/-) cells after 

visual analysis of time-lapse images. (B) Duration of mitosis (from mitotic entry until mitotic exit, based 

on DNA decondensation and loss of rounded morphology) in wild-type (Ppp2r2a/d(+/+)) and Ppp2r2d(-/-

) cells. (C) Quantification of mitotic aberrations in wild-type (Ppp2r2a/d(+/+)) and Ppp2r2d(-/-) cells. 

Data are means +SEM of n=3 different clones. 

 

Then, to study the kinetics of mitotic entry and progression in the absence of B55α 

isoform we made use of the conditional MEF lines. Ppp2r2a(lox/lox)  MEFs, stably 

expressing histone H2B-mRFP, were arrested in G0 in the absence of serum, transduced 

with AdenoEmpty or AdenoCre viruses, and stimulated with serum to reenter the cell 

cycle. Twenty hours after the addition of serum, cells were monitored by using time-

lapse microscopy during 24h. No major differences were observed in the kinetics of 

mitotic entry in Ppp2r2a(Δ/Δ) compared to Ppp2r2a(lox/lox) control cells (Figure 

24A). Similarly, there were no significant differences in the duration of mitosis in 

Ppp2r2a(Δ/Δ) compared with its corresponding control,  Ppp2r2a(lox/lox) 

(71.83±8.77min vs. 63.82±7.16min) (Figure 24B), and a similar percentage and type of 

segregation defects was observed in Ppp2r2a-deficient cells compared to wt ones 
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(Figure 24C). In summary, these data indicate that deletion of B55α or B55δ does not 

lead to major mitotic defects in mouse cells. 

 

Figure 24. Ppp2r2a deletion does not induce mitotic defects. (A) Quantification of mitotic entry (as 

scored by cell rounding and chromosome condensation) in Ppp2r2a(lox/lox)) and Ppp2r2a(Δ/Δ) cells 

after visual analysis of time-lapse images. (B) Duration of mitosis (from mitotic entry until mitotic exit, 

based on DNA decondensation and loss of rounded morphology) in Ppp2r2a(lox/lox) and Ppp2r2a(Δ/Δ) 

cells. (C) Quantification of mitotic aberration in Ppp2r2a(lox/lox)) and Ppp2r2a(Δ/Δ) cells. Data are 

means + SEM of n=3 different clones. 

 

Considering the potential redundancy between B55α and B55δ isoforms, we decided to 

analyze mitotic progression upon combined deletion of both isoforms. Simultaneous 

depletion of both subunits revealed that Ppp2r2a(Δ/Δ); Ppp2r2d(-/-) MEFs entered 

earlier in mitosis than  Ppp2r2a(lox/lox); Ppp2r2d(-/-) MEFs (23.74±13.07h after serum 

stimulation vs. 27.57±13.04h), when released from quiescence (Figure 25A). Moreover, 

the lack of both isoforms caused a significant increased in the duration of mitosis 

(80.97±2.61min compared to 69.65±2.07min in Ppp2r2a(lox/lox);Ppp2r2d(-/-) MEFs) 

(Figure 25B,C and Figure 26). A more detailed analysis revealed no differences in 
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timing between NEB and metaphase; however, timing from anaphase onset till the end 

of mitosis was on average 10 min longer in Ppp2r2a(Δ/Δ);Ppp2r2d(-/-) cells compared 

to control cells (43.58±6.19min vs. 33.30±3.03min) (Figure 25C). These data suggest 

that the prolonged duration of mitosis in B55α/δ-deficient cells was more likely due to a 

defect in mitotic exit. 

 

Figure 25. Ppp2r2a/d deficiency affects the kinetics of mitotic entry and progression. (A) 

Quantification of mitotic entry (as scored by cell rounding and chromosome condensation) in 

Ppp2r2a(lox/lox));Ppp2r2d(-/-) (black) and Ppp2r2a(Δ/Δ);Ppp2r2d(-/-) cells (green) after visual analysis 

of time-lapse images. (B) Duration of mitosis (from mitotic entry until mitotic exit, based on DNA 

decondensation and loss of rounded morphology) in Ppp2r2a(lox/lox));Ppp2r2d(-/-) and 

Ppp2r2a(Δ/Δ);Ppp2r2d(-/-) cells. (C) Quantification of duration of mitosis from NEB until metaphase; 

and, from anaphase onset until mitotic exit in Ppp2r2a(lox/lox);Ppp2r2d(-/-) and 

Ppp2r2a(Δ/Δ);Ppp2r2d(-/-) cells. n.s., not significant differences; *P<0.05; **P<0.01 (Student t test). 

Data are means +SEM of n=3 different clones. 
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This prolonged duration in the last phases of mitosis could be related to the segregation 

defects that we found in those cells. Although, we did not detect a big increase in the 

number of cells with segregation defects, we observed a qualitative change in the 

severity of those defects and, as such, we decided to classify those alterations in two 

different grades: mild and severe. Mild grade corresponds to the appearance of a single 

lagging chromosome or chromosome bridge during anaphase (Figure 26C (upper 

panel)), whereas severe grade corresponds to the occurrence of more than one lagging 

chromosome or chromosome bridge, and in some cases mix of both defects (Figure 26C 

(middle and lower panels)). Featuring those two grades, we detected a significant 

increase in severe segregation defects in Ppp2r2a(Δ/Δ);Ppp2r2d(-/-) cells compared to 

their control (Figure 26D). Furthermore, a defect in the kinetics of chromatin 

decondensation was observed in those cells, in which usually one of the daughter cells 

maintained the DNA condensed during a longer time than the other daughter cell 

(Figure 26C (lower panel)). Significant differences (P=0.0138) were observed for this 

unexpected phenotype that we have termed ‘asymmetric decondensation’ (Figure 26E).  

In summary, simultaneous depletion of B55α and B55δ isoforms showed several mitotic 

alterations, which were not detected upon single elimination of any of those isoforms, 

probably due to overlapping functions. These data, therefore, suggest an important role 

for these PP2A complexes in mitosis, which could explain the proliferation defect of 

PP2A-B55α/δ-deficient cells.
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Figure 26. Ppp2r2a/d deficiency induces severe segregation defects and assymetric decondensation. 

Representative time-lapse images of Ppp2r2a/d(+/+) (A); Ppp2r2a(lox/lox); Ppp2r2d(-/-) (B) and 

Ppp2r2a(Δ/Δ);Ppp2r2d(-/-) cells(C). H2B-RFP is in red.  Mild defect and severe defects are marked by 

white and yellow arrows, respectively. (D) Quantification and classification of segregation defects in 

Ppp2r2a(lox/lox); Ppp2r2d(-/-) (black labelled) and Ppp2r2a(Δ/Δ);Ppp2r2d(-/-) (green labelled) mitotic 

cells. (E) Quantification of assymetric decondensation between daugther cells. Data are mean +SEM of  

n=3 different clones.*P<0.05 (Student t test).  

 

4.5. Role of PP2A-B55 phosphatase in chromosome clustering in mitosis 

4.5.1. Response of PP2A-B55 deficient cells to microtubule poisons 

Proper chromosome segregation during mitosis is controlled by the spindle assembly 

checkpoint (SAC), a surveillance mechanism that delays mitosis until all chromosomes 

are bipolar attached to the spindle microtubules. The phenotype of severe segregation 

defects that we observed in B55α/δ –deficient cells, could be explained by a deficient 

SAC that allows cells to continue to anaphase before all chromosomes are bipolar 

attached. 

To evaluate the robustness of the SAC in B55-deficient cells, we performed 

videomicroscopy analysis in the presence of nocodazole, a microtubule depolimerizing 

poison that disrupts the formation of the spindle and, as such, leads to the activation of 

the SAC. In this case, we added the drugs just before imaging, 20 hours after serum 

addition when cells were reentering into the cell cycle from a G0 arrest. As expected, wt 

cells were arrested in mitosis for a long time (about 10h) in the presence of nocodazole, 

and a similar delayed in mitosis was observed in B55-deficient cells, (Figure 27A) 

suggesting that the SAC is properly activated in the absence of PP2A-B55 complexes.  
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Mitotic progression in the presence of nocodazole is clearly impaired by improper 

spindle formation and SAC activation. However, cells in this condition eventually exit 

from mitosis by mitotic slippage,  a process in which progressive degradation of cyclin 

B1 occurs despite the unsatisfaction of the mitotic checkpoint (Brito and Rieder CL, 

Current Biology, 2006). Cells that escape from a prometaphase arrest induced by 

nocodazole can exit as one tetraploid nucleus, or, in some cases, with some multinuclei; 

or they might die during the arrest state in mitosis. Interestingly, we observed an 

unexpected and intriguing phenotype in nocodazole-arrested B55 deficient cells. 

Whereas wt cells stayed in mitosis with condensed chromosomes as a unique 

chromosome mass (Figure 28 (upper panels)), MEFs lacking either B55α or B55δ or 

both isoforms together, frequently showed chromosomes scattering from the main 

chromosome mass (Figure 27B,C). Importantly, this phenotype was already observed 

upon single elimination of B55δ or B55α, and its incidence increased upon depletion of 

both isoforms (Figure 27B).  

Some cells showing chromosome scattering could exit from mitosis, mostly as 

multinucleated cells with high number of micronuclei, whereas other cells died during 

mitosis (Figure 29). In the case of B55δ-null cells, around 50% of cells exhibiting 

chromosome scattering exited as multinucleated cells, whereas the remaining 50% died 

in mitosis (Figure 29). A similar phenotype was observed in the depletion of B55α, 

although with an increase percentage of cells dying in mitosis.  However, when both 

B55α and B55δ isoforms were depleted at the same time, the presence of nocodazole 

led in the majority of cells to mitotic cell death after a strong chromosome scattering 

phenotype (Figure 29). Comparing all analysed genotypes we could detect a correlation 

between the frequency of chromosome scattering (Figure 27B) and the percentage of 

mitotic cell death, (Figure 27A (red dots) and Figure 29) , suggesting that the observed 

death in mitosis likely resulted from the lack of chromosome clustering during the 

arrest. Although there were no significant differences in the duration of the mitotic 

arrest when comparing cells exiting with cells dying there was a trend to a shorter 

maintenance of the arrest in cells dying in mitosis (Figure 27A, compare black vs red 

dots) , which is significant when we co-depleted both B55α/δ isoforms. 

In summary, we have identified three major cell fates by videomicroscopy in the 

presence of nocodazole (Figure 28): i) Exit without DNA segregation, in which the cell  
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Figure 27. Nocodazole treatment induces chromosome scattering in mitosis in B55-deficient cells. 

Cells were serum starved and putted in presence of nocodazole, upon 20h of serum stimulation, just 

before imaging. (A) Percentage of chromosome scattering found in the different genotypes after 

nocodazole (0.8µM) treatment. Data are means +SEM (n=3 independent clones) *P<0.05; **P<0.01 

(Student t test).  (B). Representative image of chromosome scattering in Ppp2r2d(-/-) cells. (C) Duration 

of mitosis of the indicated genotypes in the presence of nocodazole (0.8µM). Black dots represent cells 

that exit from mitosis and red dots represent cells that die in mitosis. Mean ±SD is shown. 

 

arrest in prometaphase, showing in some cases a slight chromosome scattering, but, at 

the end, exiting as a unique daughter cell with one tetraploid nucleus. This was the 

predominant phenotype in wt cells; ii) Exit as multinucleated cell, in which the cell 

usually arrest with strong chromosome scattering and, at the end, it exits as a unique 

daughter cell but with a huge amount of micronuclei; This phenotype was mostly 
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observed in B55-deficient cells. iii) Death in mitosis, usually after strong chromosome 

scattering, which was the major fate, almost reaching 80%, in the combined depletion of 

both B55α and B55δ isoforms (Figure 29).  The fact that Ppp2r2a/d(+/+) had the same 

behaviour as the Ppp2r2a(lox/lox) treated with AdEmpty viruses, and that Ppp2r2d(-/-) 

cells showed the same phenotype of Ppp2r2a(lox/lox);Ppp2r2d(-/-) AdEmpty-infected 

(Figure 29), ensured that the observed phenotype was not due to the viral infection, but, 

indeed, caused by the depletion of PP2A/B55 phosphatase. 

 

Figure 28. Major phenotypes in nocodazole-treated PP2A-B55-deficient cells. Representative time-

lapses images of MEFs treated with nocodazole (0.8µM) showing the major phenotypes observed. White 

arrows indicate chromosome scattering.  
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Figure 29. Treatement of PP2A-B55-deficient cells with nocodazole leads to multinucleation and 

mitotic cell death. (A) Cell fate analysis by videomicroscopy of cells with the indicated genotypes in the 

presence of nocodazole (0.8µM) . All conditional alleles were analyzed after adenoviral infection with 

AdEmpty (lox allele)  or AdCre  (D allele). Only Ppp2r2a/d(+/+) and Ppp2r2d(-/-) were not infected with 

adenoviruses. Each row represents the status of an individual cell. (B) Quantification of cell fates in 

presence of nocodazole of each genotype, as described in Figure 28. Data are means -SEM (n=3  

independent clones; n=1 in Ppp2r2a(Δ/Δ)) *P<0.05; **P<0.01 (Student t test) 
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As mentioned above, those B55-deficient cells that exit mitosis after chromosome 

scattering usually exit as multinucleated cells with a huge number of small nuclei. 

Although wt cells sometimes also exit as multinucleated cells, the number of 

micronuclei per cell was significantly higher in B55-deficient cells, suggesting that the 

multinucleation phenotype was also a consequence of the chromosome scattering during 

the prometaphase arrest (Figure30). 

 
 

Figure 30. Chromosome scattering during mitotic exit provokes multinucleation in daughter cells. (A) 

Representative images of multinucleated cells found in Ppp2r2a/d(+/+) and Ppp2r2d(-/-) cultures after 

nocodazole (0.8µM) treatment by IF. DAPI was used to dye DNA and tubulin to mark microtubules. Scale 

bars: 10µm. (B) Quantification of nuclei number per multinucleated cell in Ppp2r2a/d(+/+) and Ppp2r2d(-/-

) cultures after nocodazole (0.8µM) treatment. Mean ± SEM of each clone is shown.  
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To test if this phenotype was also induced by other microtubules poisons we performed 

the same analysis using taxol, a microtubule-stabilizing drug. Cells slipping from a 

taxol-induced mitotic arrest usually exit as multinucleated cells. When compared 

Ppp2r2d(-/-) with wt cells we did not find significant differences in the number of 

nuclei per cell among these genotypes (Figure 31). This suggests that the defect in 

chromosome clustering in B55-deficient cells is specifically induced in the absence of 

microtubules upon nocodazole treatment.  

 

 
 

 

Figure 31. Taxol provokes 

multinucleation independently of the 

genotype.  Quantification of nuclei number 

per multinucleated cell in Ppp2r2a/d(+/+) 

and Ppp2r2d(-/-) cultures after taxol (1µM) 

treatment. Mean ± SEM of each clone is 

shown.  

 

4.5.2. PP2A-B55 regulates chromosome clustering through Ki67 

The chromosome scattering phenotype that we have observed in B55-deficient cells 

could be due to a defect in maintenance chromosome clustering during the mitotic 

arrest.  Interestingly, a recent study looking for molecular factors that contributes to 

spatial separation of mitotic chromosomes shows that depletion of Ki-67, in presence of 

nocodazole, favours chromosome clustering (Cuylen et al, 2016). This resembles the 

opposite phenotype to the one we have observed. Indeed, by measuring the 

chromosomal area (μm
2
) of nocodazole arrested prometaphases as a more direct  

indicator of the level of chromosome clustering, we have detected a clear increase in 

this value in Ppp2r2d(-/-) iMEFs versus wild-type, suggesting reduced clustering and 

chromatin compaction in B55-deficient cells (Figure 32). 
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Figure 32. Chromosomal area increases in Ppp2r2d(-/-) prometaphase arrested cells. (A) 

Representative DAPI images of Ppp2r2a/d(+/+) (upper panels) and Ppp2r2d-deficient  nocodazole-

arrested cells (lower panels). (B) Quantification of chromosomal area per cell in several Ppp2r2a/d(+/+) 

and Ppp2r2d(-/-) clones. All measured cells were arrested in prometaphase by nocodazole treatment and 

stained positive for the MPM2 mitotic marker. Mean(SD) of each clone is shown. **P<0.01 (Student t 

test). Scale bars: 10µm. 

 

In agreement with that, immunofluorescence over metaphase spreads of Ppp2r2d(-/-) 

iMEFs reveals a higher expresion of total Ki-67 levels in comparison with the wt 

(Figure 33), suggesting higher recrutiment of Ki-67 to the perichromosomal layer in the 

absence of B55. This data together with the recent identification of Ki67 as a putative 
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PP2A/B55 substrate (Cundell et al., 2016), places Ki-67 as a candidate to mediate the 

chromosome clustering defect of PP2A/B55 deficient cells. 

 

 

Figure 33. KI-67 levels increase in Ppp2r2d(-/-) cells. (A) Images of metaphase spread 

immunofluorescences of one representative Ppp2r2a/d(+/+) clone and one Ppp2r2d(-/-) clone. Scale bars: 

10µm. (B) Quantification of Ki-67 intensity per chromosome of images showed in panel A. Mean(SD) of 

each clone is shown. ***P<0.001 (Student t test).***P<0.001 (Student t test). 

 

To prove that, we treated Ppp2r2d(-/-) iMEFs with siRNAs against Ki-67 to try to  

rescue the chromosome clustering defect we observed in B55 deficient cells in the 

presence of nocodazoleAs we previously showed by immunofluorescence over 

metaphase spreads, Ki67 levels increased  in Ppp2r2d(-/-) cells  versus wt cells. 

Importantly, the level of Ki-67 was significantly reduced in cells treated with the 

specific siRNA against Ki67, both in wt and in B55δ-null cells, validating the 

specificity of Ki67 signal and confirming the efficiency of Ki67 depletion (Figure 34). 
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Figure 34. Ki-67 levels in PP2A-B55δ deficient cells. (A) Ppp2r2a/d(+/+) and Ppp2r2d(-/-) cells were 

nucleofected with siRNAs against Ki-67, treated with nocodazole after 24h of nucleofection and fixed for 

IF against Ki67. DAPI was used as DNA marker. Scale bars: 10µm. (A) Representative images of the 

immunofluorescence using the indicated siRNAs. (B) Quantification of Ki-67 intensity per chromosomal 

area. siRNA-luciferase was used as control. Mean(SD) of each clone is shown. ***P<0.001 (Student t 

test). 

 

Interestingly, depletion of  Ki-67 siRNAs decreased the chromosomal area of Ppp2r2d(-

/-) nocodazole-arrested cells to the wild-type size (Figure 35A). Importantly, the number 

of nuclei in Ppp2r2d(-/-) multinucleated cells also diminished upon Ki-67 depletion 

(Figure 35B). These data suggest that the chromosome scattering phenotype 

accompanied by strong multinucleation in PP2A-B55 deficient cells might indeed be 

due to a defect in chromosome clustering in mitosis, probably caused by the excessive 

accumulation of Ki-67 at the chromosome surface. 
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Figure 35. Ki-67 knockdown rescues Ppp2r2d(-/-) reduced clustering. (A) Quantification of 

chromosomal area per cell in Ppp2r2a/d(+/+) and Ppp2r2d(-/-) clones treated with the indicated siRNAs. 

All measured cells were arrested in prometaphase by nocodazole treatment and were positive for the 

MPM2 mitotic marker. (B) Quantification of nuclei number per multinucleated cell in Ppp2r2a/d(+/+) 

and Ppp2r2d(-/-) clones treated with the same siRNAs and treated with nocodazole. Mean(SD) of each 

clone is shown.) n.s., not significant differences; *P<0.05 (Student t test). 

 

Considering the evidences of Ki-67 as a putative PP2A-B55 substrate, our data suggest 

that PP2A-B55 may play a role in maintaining chromosome clustering in mitosis by 

regulating the association of Ki67 to the chromosome surface. 
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5. DISCUSSION 

Reversible protein phosphorylation is a fundamental regulatory mechanism of many 

biological processes such as metabolism, transcription, translation, cytoskeleton 

reorganization, motility, protein stabilization, cell cycle and cell death processes among 

others. Phosphorylation is a really powerful control mechanism because it is very rapid 

and does not require new proteins to be synthesized or degraded, and can be easily 

reverted. This ubiquitous signal transduction mechanism is tightly coordinated by 

kinases and phosphatases. The fact that in the human genome we find more than 500 

kinases whereas it encodes only half number of phosphatases has focused over the years 

the major scientific interest on kinases (Chen et al., 2017). However, several studies 

along time have led to the recognition of protein phosphatases as active key players in 

all these multiple biological processes in which kinases are implicated, including 

mitotic regulation (Bollen et al., 2009, Medema and Lindqvist, 2011).    

5.1. Is PP2A-B55 an essential phosphatase? 

Since the beginning of the life of an organism, mitosis is essential. In a very simplistic 

manner, embryonic development consists of continuous cell cycle rounds since the 

zygote is formed until the organism is completely developed. Then, some mitotic 

kinases, such as, Plk1, Cdk1 or Mastl, among others, are essential for embryonic 

development. And, therefore, germline biallelic disruption of these kinases in loss of 

function mouse models results in embryonic lethality (Santamaria et al., 2007, 

Wachowicz et al., 2016, Álvarez-Fernández et al., 2013).  

Much less is known about the essentiality of specific phosphatases due to the common 

existence of multimeric complexes composed by several subunits, which sometimes 

also contain multiple isoforms in mammals. In the case of PP2A, it is known to date that 

the scaffold and catalytic subunits of PP2A in their major expressed isoforms, Aα and 

Cα, respectively, are essential for mouse development (Ruediger et al., 2011, Gotz et 

al., 1998, Gu et al., 2012). This is not surprising, since it involves the elimination of 

most PP2A complexes in the cell. The only loss of function mouse models for specific 

PP2A complexes are knockouts for B56α and B56δ, and both of them are viable (Litter 

et al., 2015, Louis et al., 2011). In this work, we have generated the first loss of function 

models in mammals for PP2A-B55 complexes, in particular, B55α and B55δ, which 

appear to be the ubiquitous isoforms of the family. Our data reflects that in the first 
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steps of development the absence of B55δ, and probably also the lack of B55α, does not 

compromise early development. Later on, B55δ is also dispensable but B55α becomes 

essential to complete mouse embryonic development (Figure 15). This differential 

requirement could be due to the differential expression of these isoforms during 

development, or to specific non-redundant functions for the B55α isoform. During 

mouse development different expression of B55 isoforms have been reported. Between 

embryonic day (E)7 and E17 the highest expressed isoform, at least at mRNA levels,  

seems to be B55β (Schmidt et al., 2002). In brain, specifically, from E18 to postnatal 

day (P)21 and adults, B55β expression, at both mRNA and protein levels, decreases in 

contraposition to the increase of B55γ expression; while B55α maintains its expression 

along the time; with no available data for B55δ in these studies (Strack et al., 1998). 

Recent data published in The e-Mouse Atlas Project 

(http://www.emouseatlas.org/emap/home.html) complemented this information with in-

situ hibridization data of Ppp2r2b-d genes, but unfortunately not of Ppp2r2a, in E14.5 

embryos. These data showed very high levels of B55β mainly in brain, restricted levels 

of B55γ to the central nervous system, and more ubiquitous but very low expression 

levels of B55δ, which could partially explain why Ppp2r2d gene was dispensable 

during development and might not be able to compensate the lack of B55α, its more 

similar isoform. In any case, the embryonic lethality of Ppp2r2a(-/-) mice indicates that 

PP2A-B55α phosphatase complexes play a role during development that cannot be 

replaced by any other isoforms of the family (B55β-δ).  

In adult mice, B55δ is not essential either, suggesting redundancy or compensation 

among isoforms. This is partially supported by our data in brain tissues showing 

increase protein levels of B55β and B55γ, and also mRNA levels of B55α, in B55δ-null 

mice (Figure 18). These data suggest that other B55 isoforms, most likely B55β and γ in 

brain, and maybe B55α in other tissues, might display some compensatory roles in the 

absence of B55δ. Whether B55α is also essential in the adult still has to be proved, and 

the conditional model generated in this work constitutes the ideal tool to answer this 

question. Finally, the generation of mouse models for the remaining isoforms, B55β and 

B55γ, and the combinations with the existing ones, will allow knowing definitely 

whether PP2A-B55 complexes, and/or particular B55 isoforms, are essential for 

mammalian development and survival.  
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5.2. Cell cycle functions of PP2A-B55 in mammals 

5.2.1. Role of PP2A-B55 in mitotic entry and progression 

Before this work the only study in mammals on the role of PP2A-B55 in mitotic entry 

was performed in Hela cells using siRNAs to deplete single B55 subunits. This study 

did not reveal any defect in mitotic entry, at least in B55α-depleted cells, which seems 

to be the predominant isoform in this specific cell line (Schmitz et al., 2010). (Schmitz 

et al., 2010). In this direction, our data shows that individually elimination of B55α or 

B55δ does not significantly affect the kinetics of mitotic entry. However, the lack of 

both isoforms provokes a premature mitotic entry, suggesting putative overlapping roles 

among these two isoforms. However, this possibility was not considered in the human 

cell line study, in which combined depletion of isoforms was not tested. Therefore, this 

role of PP2A-B55α/δ regulating the timing of mitotic entry might also be conserved in 

human cells. Previously, only depletion studies in Xenopus egg extracts have related 

PP2A-B55 phosphatase complexes with mitotic entry, specifically B55δ, since B55α 

and B55β  could not be detected probably due to their lower levels in these extracts and 

B55γ was not considered in this work (Mochida et al., 2009). The earlier mitotic entry 

in the absence of PP2A-B55 activity could be explained by a reduced threshold of Cdk 

activity required for entering mitosis, as a consequence of the prolonged maintenance of 

a lower phosphatase state. However, the specific PP2A-B55 substrates responsible for 

that are not known so far.  

To date, no data on PP2A-B55 affecting chromosome segregation in mammals have 

been reported. In this work, we have shown that co-depletion of both isoforms, B55α 

and B55δ, in mouse cells, affects mitotic progression through an increase in severe 

segregation defects. The appearance of this type of defects in anaphase in the absence of 

PP2A-B55 has only been previously described in two different mutants of Twins, the 

B55 isoform in Drosophila (Gomes et al., 1993; Mayer-Jaekel et al., 1993). The severe 

segregation defects that we observed in the double B55α/δ knockout during anaphase 

could be the consequence of a premature mitotic entry in these cells, probably before 

DNA replication has been properly finished, affecting connections between sister 

chromatids. On the other hand, these defects could be the result of a direct role of these 

PP2A-B55 complexes in chromatid segregation that has not previously been 

demonstrated in mammals. Interestingly, PP2A-B55 phosphatase have been related with 

maintenance of centrioles assembly and duplication in other organisms, such as C. 
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elegans (Song et al., 2011) and Drosophila (Brownlee et al., 2011) through stabilization 

of Plk4. It is well known that centrosome dynamics alterations during mitosis may also 

lead to chromosome missegregation (Nam et al., 2015). A putative deregulation in 

centrosomes by deficiency in PP2A-B55 in mammals has to be demonstrated. 

Considering the existence of a wide spectrum of Cdk-substrates that participate 

regulating all these processes, which ensure chromosome segregation fidelity, a 

significant number of putative substrates of these phosphatase complexes could mediate 

these functions.   

5.2.2. Role of PP2A-B55 in mitotic exit 

The implication of PP2A-B55 in mammalian mitotic exit had already been proposed.  

Depletion of B55α by siRNA in Hela cells, but no other isoforms (β, γ and γ), slightly 

delays postmitotic reassembly of the nuclear envelope and Golgi apparatus, and 

chromatin decondensation (Schmitz et al., 2010). Since this phenotype was relatively 

mild, the authors of this study performed most assays using siRNAs that co-depleted 

also the scaffold (Aα) and the catalytic (Cα) subunits of PP2A complexes, causing an 

exacerbation of this phenotype, which suggest other B55 isoforms or other PP2A 

complexes might cooperate in mitotic exit. On the other hand, in mouse cells, siRNA 

depletion of both B55α together with B55δ was required for dephosphorylation of CDK 

targets to allow complete mitotic exit (Manchado et al., 2010). Our data revealed that 

the depletion of only one isoform, in mouse cells, did not suppose any major change in 

mitotic exit, whereas co-depletion of B55α/δ complexes significantly prolonged the 

mitotic exit duration. The apparent controversial data from human and mouse about the 

specific isoform responsible of mitotic exit in mammals could be due to a specialization 

in isoform function during evolution, or just a matter of expression levels, since B55α 

appears to be the most expressed isoform in human cell lines, whereas mouse cell lines 

present similar expression levels of both B55α and B55δ isoforms, at least at the mRNA 

level (Figure 11). The prolonged mitotic exit observed in B55α/δ-deficient cells 

supports the PP2A-B55 role in Cdk-substrates dephosphorylation that occurs during this 

mitotic time. In agreement with that, how different Cdk-substrates are recognized by 

PP2A-B55 has been disclosed. All these substrates present consensus sequence 

determined by a bipartite polybasic motif flanking Cdk1 phosphorylation sites. 

Interestingly, when more basic are these regions more rapidly are dephosphorylated by 

PP2A-B55 determining the timing of substrate dephosphorylation (Cundell et al., 2016). 
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Alternatively, we cannot forget that this prolonged mitotic exit could be also the 

consequence of the severe segregation defects observed in anaphase caused by defects 

in earlier mitotic phases, which would force cells to spend more time to solve mitosis.  

On the other hand, in late anaphase and telophase, chromosome decondensation is 

essential to recover its interphase state. This event requires, as all in mitotic exit, 

inactivation of the kinases and reversion of mitotic phosphorylation by phosphatases. 

The direct role of PP2A-B55 in this process is unclear although it has been previously 

described in Drosophila mutants for twins (Mayer-Jaekel et al., 1993), and also in Hela 

B55α-depleted cells (Schmitz et al., 2010), that the deficiency of these complexes 

affects chromosome decondensation. In this work, the depletion of B55α and B55δ 

isoforms prolonged a condensed state of chromatin once cells supposedly have already 

exited from mitosis, very curiously in one of the two daughter cells (asymmetric 

decondensation, Figure 26). In this process, the role of phosphatase PP1 is well-defined, 

its isoform PP1γ is in charge of dephosphorylate the mitotic histone marks Thr3, Ser10 

and Ser28 on histone H3 among others, which are supposed to be reverted to trigger 

reacetylation of H4 K16 and allow chromatin decondensation (Qian et al., 2011). It is 

known that the Repo-Man protein is responsible for PP1γ recruitment to anaphase 

chromosomes, although depletion of Repo-Man but does not impair chromatin 

decondensation, but  nuclear envelope formation (Vagnarelli et al., 2011). Interestingly, 

Ki67 presents a PP1-binding domain that can also be responsible for PP1γ recruitment 

to allow chromosome decondensation (Booth et al., 2014). Considering that in our work 

Ki-67 recruitment to chromosomes is increased in the absence of PP2A-B55 isoforms, 

and it’s a candidate PP2A-B55 substrate (Cundell et al., 2016), it is plausible that PP2A-

B55 regulates indirectly PP1g through Ki67 and, as such, also regulates chromosome 

condensation. The precise molecular mechanism underlying this potential role of PP2A-

B55 in chromosome decondensation, and why its depletion leads to an asymmetric 

decondensation is not known.   

In any case, the fact that cells expend more time in mitosis but, at the end, they exit, 

suggests that other phosphatases are also implicated in mitotic exit. We cannot discard 

the putative participation of the others isoforms from this family, B55β and B55γ, 

although they have not been previously related with this function possibly by their 

lower or lack of expression in the majority of the tissues, except brain. But also, we 

should consider the other multiple PP2A complexes with other B regulatory subunits, 
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for which their specific function have not been revealed yet. In addition,  we cannot 

forget that PP1 is responsible together with PP2A of more than 90% of phosphatase 

activity in eukaryotic cells, and that it has also been reported its participation in mitotic 

exit (Wurzenberger and Gerlich, 2011, Samuel Rogers, 2015).  

It is clear that whereas in budding yeast, only one phosphatase, Cdc14, is essential for 

regulating all mitotic exit events, in mammals it is more plausible a cooperative 

mechanism between a set of phosphatases. This occurs in fission yeast, where the 

ordered phosphatase activity of the orthologues of mammalian PP1, PP2A-B55 and 

PP2A-B56 are required for completing mitotic exit (Grallert et al., 2015). This type of 

mechanism would explain why in mammals depletion of only PP2A-B55α/δ isoforms 

does not completely prevent mitotic exit. 

 

 

Figure 36. PP2A-B55 cell cycle functions in mammals. The upper panel shows PP2A-B55 functions 

previously described in human cells (Schmitz et al., 2010). The lower panel shows PP2A-B55 functions 

described in this work in mouse cells. Separate arrows mean specific functions, mixed arrows mean 

overlapping function between isoforms. B55α functions are indicated in red. B55δ functions are indicated 

in blue. 
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5.3 PP2A-B55 as a new player in chromosome clustering in 

mitosis  

The mitotic chromosome rod-shape structure formation is essential for proper DNA 

equal segregation during mitosis. Although the initial DNA compaction is principally 

the result of condensins action, the structure that surrounds the chromosome periphery 

could also in some manner be involved in this process. Besides chromatin condensation, 

other mechanisms, such as chromosome individualization and clustering may also 

contribute to the global chromatin compaction status required for mitosis.  In this sense, 

it has recently been reported that proteins from the perichromosomal layer, such as Ki-

67, could bind chromatin and affect the individualization of mitotic chromosomes. This 

fact was due to the ‘surfactant’ properties that this big molecule has, which is 

determined by its amphiphilic structure. How size or charge truncation of this molecule 

decreases the spatial separation of mitotic chromosomes underlies the importance of 

overall electric charge for Ki-67 function (Cuylen et al., 2016). It is known that Ki-67 

binds to HP1 through its LR domain (Kametaka et al., 2002); and, a very recent work 

has also reported that p150, the major isoform of Chromatin Assembling Factor (CAF)-

1, binds Ki-67 regulating nuclear architecture across the cell cycle (Matheson and 

Kaufman, 2017).   

In this work we show that the absence of PP2A-B55 affects chromosome mitotic 

clustering (Figure 32), probably due to high levels of Ki-67 in the perichromosomal 

layer (Figure 33; 34). It is well known that Ki-67 has to be hyperphosphorylated to 

locate around the chromosome during mitosis (Ohta et al., 2016) leaving its interphase 

nucleolar location. It is also known that this phosphorylation is in part result of CDK1 

activity over a region considered the core of Ki-67-repeat domain (CKRD), which is 

present in each Ki-67 repeats containing a threonine-proline (TP) consensus 

phosphorylation site for mitotic kinases such as CDK. The highest phosphorylation 

levels of these sites occurred in metaphase, which slightly start at prometaphase ending 

at anaphase onset (Takagi et al., 2014). However, how this activation mechanism is 

regulated it was unknown. Our data suggest that Ki-67 is kept at the perichromosomal 

layer localization in a hyperphosphorylated state, due to the deregulation of PP2A-B55 

complexes (Figure 33). Then, they might be the responsible of Ki-67 dephosphorylation 

at the end of mitosis. This fits with the fact that this perichromosomal protein is in part 

active by CDK1 as we have just  mentioned (Takagi et al., 2014) and with the reported 
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evidence of PP2A-B55 complexes as the responsible of CDK-substrates 

dephosphorylation, including Ki-67 (Cundell et al., 2016). The data showing that 

depletion of Ki-67 rescues the clustering defect of PP2A-B55 deficient cells suggest 

that the Ki-67 role in chromosome clustering could be directly dependent on PP2A-B55 

phosphatase (Figure 35).  

Based on this data and the previously described Ki-67 role in mitotic chromosomes, we 

propose a model in which Ki-67 and PP2A-B55 levels need to be balanced or in some 

manner regulated in order to allow proper chromosome clustering during mitosis 

(Figure 37). 

 

Figure 37. Model of chromosome 

clustering regulation during mitosis. 

In mitotic-arrested cells, B55-deficient 

cells show chromosome scattering in 

contrast to high clustering in Ki-67-

null cells. The higher level of Ki-67 in 

B55-deficient cells suggests that Ki67 

might be mediating the role of PP2A-

B55 in chromosome clustering. 

 

 

5.4. Function of PP2A-B55 in cell cycle progression: Therapeutic 

implications in cancer  

PP2A is considered a tumour suppressor gene, which appears frequently inactivated in 

different tumour types, by reduced expression or loss of function (Ruvolo, 2016). 

However, the specific mechanisms that explain its tumour suppressor function are not 

fully understood, probably due to the wide variety of processes in which this 

phosphatase is involved. In our work, the absence of PP2A-B55α/δ isoforms favoured 

the appearance of segregation defects in mitosis, which could be one of the mechanisms 

why inactivation of these tumour suppressors could contribute to cancer that is by 

increasing chromosome instability or chromosome aberrations. Recently, some specific 

mutants in twins, the B55 subunit in Drosophila, have been reported as the responsible 

of increased chromosome aberrations as a consequence of its function in the DNA 
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damage response, suggesting additional mechanisms of tumour suppression for these 

PP2A complexes (Merigliano et al, 2017).   

In our studies, we have found that depletion of B55 affects the response to microtubule 

poisons. These agents are regularly used in the clinics as therapeutic agents for cancer. 

Their mode of action relies on perturbing microtubule dynamics, disrupting the 

formation of a proper and functional mitotic bipolar spindle. This circumstance is 

controlled by the SAC, which delays mitosis giving more time to cells to resolve errors 

in microtubule-kinetochore attachments (Musacchio, 2015). This mitotic delay 

increases the predisposition of cells to die, fact that might partially explain the 

therapeutic effect of the microtubule poisons in cancer. One limitation for the efficiency 

of these drugs is a process known as mitotic slippage, in which prolonged mitotic-

arrested cells exit mitosis, in the absence of chromosome segregation, progressing 

through cell division but in a tetraploid state. Due to this fact, strategies to enhance the 

potential of these antimitotic treatments towards a fully mitotic death by preventing 

mitotic slippage have been suggested (Topham and Taylor, 2013, Doménech and 

Malumbres, 2013).  

In this work, using the microtubule poison nocodazole, we show that the presence of 

this drug in B55-deficient cells provokes a huge chromosome scattering effect (Figure 

27) that in many cases lead to death in mitosis (Figure 28), especially when both 

isoforms (B55α and δ) are co-depleted. This effect seems to be nocodazole-dependent, 

as in the presence of taxol there are no major differences in the behaviour of B55-

deficient cells compared to the wt. Therefore, inhibiting PP2A-B55 could improve the 

efficacy of these treatments by preventing slippage. The direct application of this 

strategy to the clinics is limited by the difficulty to target specifically phosphatase 

complexes, since all current PP2A inhibitors target the catalytic activity and therefore 

are not selective for PP2A specific complexes (Kalev and Sablina, 2011, Kiely and 

Kiely, 2015).  

 However, this new role of PP2A-B55 could be relevant in the up-to-date treatment of 

certain cancers that present genetic mutations or aberrations and deregulation in gene 

expression of PP2A subunits or some of their regulatory partners (Seshacharyulu et al., 

2013; Perotti and Neviani, 2013). It is well known that PP2A-B55 function is impaired 

in a huge variety of cancer, reported in some cases as an haploinsuficient tumour 
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suppressor (Mao et al., 2011; Cheng et al., 2011, Curtis et al., 2012; Mosca et al.,2013), 

increasing genetic risk. Using PP2A-B55 levels as predictors of response to microtubule 

poisons could contribute to the therapeutic benefit of these treatments. The knowledge 

of PP2A-B55 patient status and its use as biomarker of response to this type of 

treatments could suppose an advantage in order to increase the success of these 

therapies.  
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CONCLUSIONS 
 

1. The phosphatase PP2A-B55α is essential for late stages of mouse embryonic 

development. 

 

2. PP2A-B55δ is dispensable for mouse embryonic development and its 

constitutive depletion does not compromise mouse survival. Elimination of 

PP2A-B55δ does not cause any obvious phenotype, neither in young or adult 

mice.  

 

3. Single depletion of B55α or B55δ does not affect proliferation in mouse cells. 

However, combined elimination of B55α and B55δ leads to prolonged mitosis 

with severe segregation defects and reduced proliferation. 

 

4. B55-depletion in combination with nocodazole favours chromosome scattering 

during prometaphase arrest promoting an increase in multinucleation in mitotic 

exit or cell death in mitosis.  

 

5. PP2A-B55 regulates the perichromosomal protein Ki-67 to maintain 

chromosome clustering in prometaphase during mitosis.  
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CONCLUSIONES 

 

1. La fosfatasa PP2A-B55α es esencial en los últimos estadios del desarrollo 

embrionario de ratón. 

 

2.  PP2A-B55δ  es dispensable en el desarrollo embrionario de ratón y su deleción 

constitutiva no compromete la supervivencia de estos animales. La eliminación 

de PP2A-B55δ  no causa ningún fenotipo destablabe en ratones jóvenes ni en 

adultos.   

 

3. La depleción individual de las isoformas B55α o B55δ no afecta la proliferación 

en células de ratón. Sin embargo, la depleción combinada de ambas isoformas, 

B55α y B55δ, provoca un retraso en la salida de mitosis acompañada de graves 

defectos en segregación cromosómica y reduce la proliferación.   

 

4. La ausencia de B55 en combinación con nocodazol favorece dispersión 

cromosómica durante el arresto en prometafase promoviendo un incremento de 

multinucleación en salida de mitosis o la muerte celular en mitosis. 

 

5. PP2A-B55 regula la proteína pericromosómica  Ki-67 para mantener la 

estructura cromosomal en prometafase, durante mitosis.  

 

 

 

 



 

105 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

BIBLIOGRAPHY 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Bibliography 

107 
 

BIBLIOGRAPHY 

 

Adams, D. G., Coffee, R. L., Zhang, H., Pelech, S., Strack, S. & Wadzinski, 
B. E. 2005. Positive regulation of Raf1-MEK1/2-ERK1/2 signaling 
by protein serine/threonine phosphatase 2A holoenzymes. The 
Journal of Biologicla Chemistry, 280, 42644-42654. 

Adams, R. R., Eckley, D. M., Vagnarelli, P., Wheatley, S. P., Gerloff, D. L., 
Mackay, A. M., Svingen, P. A., Kaufmann, S. H. & Earnshaw, W. C. 
2001. Human INCENP colocalizes with the Aurora-B/AIRK2 
kinase on chromosomes and is overexpressed in tumour cells. 
Chromosoma, 110, 65-74. 

Álvarez-Fernández, M. & Malumbres, M. 2014. Preparing a cell for 
nuclear envelope breakdown: Spatio-temporal control of 
phosphorylation during mitotic entry. Bioessays, 36, 757-765. 

Álvarez-Fernández, M., Sánchez-Martínez, R., Sanz-Castillo, B., Gan, P. 
P., Sanz-Flores, M., Trakala, M., Ruiz-Torres, M., Lorca, T., Castro, 
A. & Malumbres, M. 2013. Greatwall is essential to prevent 
mitotic collapse after nuclear envelope breakdown in mammals. 
Proc Natl Acad Sci U S A, 110, 17374-9. 

Barr, R. A. & Gerlegy, F. 2007. Aurora-A: the maker and breaker of 
spindle poles. Journal of Cell Science, 120, 2987-96. 

Beca, F., Pereira, M., Cameselle-Teijeiro, J. F., Martins, D. & Schmitt, F. 
2015. Altered PPP2R2A and Cyclin D1 expression defines a 
subgroup of aggressive luminal-like breast cancer. BMC Cancer, 
15, 285. 

Berdougo, E., Nachury, M. V., Jackson, P. K. & Jallepalli, P. V. 2008. The 
nucleolar phosphatase Cdc14B is dispensable for chromosome 
segregation and mitotic exit in human cells. Cell Cycle, 7, 1184-
90. 

Bialojan, C. & Takai, A. 1988. Inhibitory effect of a marine-sponge toxin, 
okadaic acid, on photein phosphatases. Biochem. J., 256. 

Bollen, M., Gerlich, D. W. & Lesage, B. 2009. Mitotic phosphatases: from 
entry guards to exit guides. Trends Cell Biol, 19, 531-41. 

Booth, D. G., Beckett, A. J., Molina, O., Samejima, I., Masumoto, H., 
Kouprina, N., Larionov, V., Prior, I. A. & Earnshaw, W. C. 2016. 
3D-CLEM Reveals that a Major Portion of Mitotic Chromosomes 
Is Not Chromatin. Mol Cell, 64, 790-802. 

Booth, D. G., Takagi, M., Sanchez-Pulido, L., Petfalski, E., Vargiu, G., 
Samejima, K., Imamoto, N., Ponting, C. P., Tollervey, D., Earnshaw, 
W. C. & Vagnarelli, P. 2014. Ki-67 is a PP1-interacting protein 
that organises the mitotic chromosome periphery. eLife, 5. 



Bibliography 

108 
 

Brennan, I. M., Peters, U., Kapoor, T. M. & Straight, A. F. 2007. Polo-Like 
Kinase Controls Vertebrate Spindle Elongation and Cytokinesis. 
PLoS ONE, 2, e409. 

Brownlee, C. W., Klebba, J. E., Buster, D. W. & Rogers, G. C. 2011. The 
Protein Phosphatase 2A regulatory subunit Twins stabilizes Plk4 
to induce centriole amplification. J Cell Biol, 195, 231-43. 

Burgess, A. E. A. 2010. Loss of human Greatwall results in G2 arrest and 
multiple mitotic defects due to deregulation of the cyclin B-Cdc2-
PP2A balance. . Proc Natl Acad Sci U S A, 107, 12564-12569. 

Calin, G. A., Di Iasio, M. G., Caprini, E., Vorechovsky, I., Natali, P. G., Sozzi, 
G., Croce, C. M., Barbanti-Brodano, G., Russo, G. & Negrini, M. 
2000. Low frequency of alterations of the alpha (PPP2R1A) and 
beta (PPP2R1B) isoforms of the subunit A of the serine-
threonine phosphatase 2A in human neoplasms. Oncogene, 19, 
1191-5. 

Castilho, P. V., Williams, B. C., Mochida, S., Zhao, Y. & Goldberg, M. L. 
2009. The M phase kinase Greatwall (Gwl) promotes inactivation 
of PP2A/B55delta, a phosphatase directed against CDK 
phosphosites. Mol Biol Cell, 29, 4777-89. 

Cohen, R. L. & Margolis, R. L. 2016. Spinocerebellar ataxia type 12: 
clues to pathogenesis. Curr Opin Neurol, 29, 735-742. 

Cowley, D. O., Rivera-Perez, J. A., Schliekelman, M., He, Y. J., Oliver, T. G., 
Lu, L., O'quinn, R., Salmon, E. D., Magnuson, T. & Van Dyke, T. 
2009. Aurora-A kinase is essential for bipolar spindle formation 
and early development. Mol Cell Biol, 29, 1059-71. 

Cristobal, I., Madoz-Gurpide, J., Manso, R., González-Alonso, P., Rojo, F. 
& García-Foncillas, J. 2016. Potential anti-tumor effects of 
FTY720 associated with PP2A activation: a brief review. Current 
Medical Research and Opinio, 32, 1137-1141. 

Cundell, M. J., Hutter, L. H., Nunes Bastos, R., Poser, E., Holder, J., 
Mohammed, S., Novak, B. & Barr, F. A. 2016. A PP2A-B55 
recognition signal controls substrate dephosphorylation kinetics 
during mitotic exit. The Journal of Cell Biology. 

Curtis, C., Shah, S. P., Chin, S. F., Turashvili, G., Rueda, O. M., Dunning, M. 
J., Speed, D., Lynch, A. G., Samarajiwa, S., Yuan, Y., Graf, S., Ha, G., 
Haffari, G., Bashashati, A., Russell, R., Mckinney, S., Langerod, A., 
Green, A., Provenzano, E., Wishart, G., Pinder, S., Watson, P., 
Markowetz, F., Murphy, L., Ellis, I., Purushotham, A., Borresen-
Dale, A. L., Brenton, J. D., Tavare, S., Caldas, C. & Aparicio, S. 2012. 
The genomic and transcriptomic architecture of 2,000 breast 
tumours reveals novel subgroups. Nature, 486, 346-52. 



Bibliography 

109 
 

Cuylen, S., Blaukopf, C., Politi, A. Z., Muller-Reichert, T., Neumann, B., 
Poser, I., Ellenberg, J., Hyman, A. A. & Gerlich, D. W. 2016. Ki-67 
acts as a biological surfactant to disperse mitotic chromosomes. 
Nature, 535, 308-12. 

Chen, M. J., Dixon, J. E. & Manning, G. 2017. Genomics and evolution of 
protein phosphatase. Science Signaling, 10. 

Cheng, Y., Liu, W., Kim, S. T., Sun, J., Lu, L., Zheng, S. L., Isaacs, W. B. & 
Xu, J. 2011. Evaluation of PPP2R2A as a prostate cancer 
susceptibility gene: a comprehensive germline and somatic 
study. Cancer Genet, 204, 375-81. 

Doménech, E. & Malumbres, M. 2013. Mitosis-targeting therapies: a 
troubleshooting guide. Curr Opin Pharmacol, 13, 519-28. 

Eichhorn, P. J., Creyghton, M. P. & Bernards, R. 2009. Protein 
phosphatase 2A regulatory subunits and cancer. Biochim Biophys 
Acta, 1795, 1-15. 

Everett, A. D., Kamibayashi, C. & Brautigan, D. L. 2002. Transgenic 
expression of protein phosphatase 2A regulatory subunit B56d 
disrupts distal lung differentiation. Am J Physio Lung Cell  Mol 
Physiol, 282, 1266-1271. 

Fan, Y. L., Chen, L., Wang, J., Yao, Q. & Wan, J. Q. 2013. Over expression 
of PPP2R2C inhibits human glioma cells growth through the 
suppression of mTOR pathway. FEBS Lett, 587, 3892-7. 

Fang, C., Li, L. & Li, J. 2016. Conditional Knockout in Mice Reveals the 
Critical Roles of Ppp2ca in Epidermis Development. Int J Mol Sci, 
17. 

Funabiki, H. & Wynne, D. J. 2013. Making an effective switch at the 
kinetochore by phosphorylation and dephosphorylation. 
Chromosoma, 122, 135-58. 

Gerdes, J., Dallenbach, F., Lennert, K., Lemke, H. & Stein, H. 1984. 
Growth fractions in malignant non-Hodgkin's lymphomas (NHL) 
as determined in situ with the monoclonal antibody Ki-67. 
Hematol Oncol, 2, 365-71. 

Gharbi-Ayachi, A., Labbe, J. C., Burgess, A., Vigneron, S., Strub, J. M., 
Brioudes, E., Van-Dorsselaer, A., Castro, A. & Lorca, T. 2010. The 
substrate of Greatwall kinase, Arpp19, controls mitosis by 
inhibiting protein phosphatase 2A. Science, 330, 1673-7. 

Gillies, R. J., Verduzco, D. & Gatenby, R. A. 2012. Evolutionary dynamics 
of carcinogenesis and why targeted therapy does not work. Nat 
Rev Cancer, 12, 487-93. 

Glover, D. M. 2012. The overlooked greatwall: a new perspective on 
mitotic control. Open Biol, 2, 120023. 



Bibliography 

110 
 

Gomes, R., Karess, R. E., Ohkura, H., Glover, D. M. & Sunkerl, C. E. 1993. 
Abnormal anaphase resolution (aar): a locus required for 
progression through mitosis in Drosophila. Journal of Cell Science, 
104, 583-593. 

Goto, H., Yasui, Y., Nigg, E. A. & Inagaki, M. 2002. Aurora-B 
phosphorylates Histone H3 at serine28 with regard to the 
mitotic chromosome condensation. Genes to Cells, 7, 11-17. 

Gotz, J., Probst, A., Ehler, E., Hemmings, B. & Kues, W. 1998. Delayed 
embryonic lethality in mice lacking protein phosphatase 2A 
catalytic subunit Ca. PNAS, 95, 12370-12375. 

Grallert, A., Boke, E., Hagting, A., Hodgson, B., Connolly, Y., Griffiths, J. R., 
Smith, D. L., Pines, J. & Hagan, I. M. 2015. A PP1-PP2A 
phosphatase relay controls mitotic progression. Nature, 517, 94-
8. 

Gu, P., Qi, X., Zhou, Y., Wang, Y. & Gao, X. 2012. Generation of Ppp2Ca 
and Ppp2Cb conditional null alleles in mouse. Genesis, 50, 429-
36. 

Guillamot, M., Manchado, E., Chiesa, M., Gomez-Lopez, G., Pisano, D. G., 
Sacristan, M. P. & Malumbres, M. 2011. Cdc14b regulates 
mammalian RNA polymerase II and represses cell cycle 
transcription. Sci Rep, 1, 189. 

Hanahan, D. & Weinberg, R. A. 2011. Hallmarks of cancer: the next 
generation. Cell, 144, 646-74. 

Hernandez-Verdun, D. & Gautier, T. 1994. The chromosome periphery 
during mitosis. Bioessays, 16, 179-85. 

Jayadeva, G., Kurimchak, A., Garriga, J., Sotillo, E., Davis, A. J., Haines, D. 
S., Mumby, M. & Grana, X. 2010. B55alpha PP2A holoenzymes 
modulate the phosphorylation status of the retinoblastoma-
related protein p107 and its activation. J Biol Chem, 285, 29863-
73. 

Junttila, M. R., Puustinen, P., Niemela, M., Ahola, R., Arnold, H., 
Bottzauw, T., Ala-Aho, R., Nielsen, C., Ivaska, J., Taya, Y., Lu, S. L., 
Lin, S., Chan, E. K., Wang, X. J., Grenman, R., Kast, J., Kallunki, T., 
Sears, R., Kahari, V. M. & Westermarck, J. 2007. CIP2A inhibits 
PP2A in human malignancies. Cell, 130, 51-62. 

Kalev, P. & Sablina, A. A. 2011. Protein phosphatase 2A as a potential 
target for anticancer therapy. Anti-Cancer Agents in Medical 
Chemistry, 11, 38-46. 

Kametaka, A., Takagi, M., Hayakawa, T., Haraguchi, T., Hiraoka, Y. & 
Yoneda, Y. 2002. Interaction of the chromatin compaction-
inducing domain (LR domain) of Ki-67 antigen with HP1 
proteins. Genes to Cells, 7, 1231-1242. 



Bibliography 

111 
 

Kiely, M. & Kiely, P. A. 2015. PP2A: The Wolf in Sheep's Clothing? 
Cancers (Basel), 7, 648-69. 

Kumar, S. G., Gokhan, E., De Munter, S., Bollen, M., Vagnarelli, P., Peti, W. 
& Page, R. 2016. The Ki-67 and RepoMan mitotic phosphatases 
assemble via an identical, yet novel mechanism. eLife. 

Kuo, Y. C., Huang, K. Y., Yang, C. H., Yang, Y. S., Lee, W. Y. & Chiang, C. W. 
2008. Regulation of phosphorylation of Thr-308 of Akt, cell 
proliferation, and survival by the B55alpha regulatory subunit 
targeting of the protein phosphatase 2A holoenzyme to Akt. J Biol 
Chem, 283, 1882-92. 

Kurimchak, A., Haines, D. S., Garriga, J., Wu, S., De Luca, F., Sweredoski, 
M. J., Deshaies, R. J., Hess, S. & Grana, X. 2013. Activation of p107 
by fibroblast growth factor, which is essential for chondrocyte 
cell cycle exit, is mediated by the protein phosphatase 
2A/B55alpha holoenzyme. Mol Cell Biol, 33, 3330-42. 

Lee, K. W., Chen, W., Junn, E., Im, J. Y., Grosso, H., Sonsalla, P. K., Feng, X., 
Ray, N., Fernandez, J. R., Chao, Y., Masliah, E., Voronkov, M., 
Braithwaite, S. P., Stock, J. B. & Mouradian, M. M. 2011. Enhanced 
phosphatase activity attenuates alpha-synucleinopathy in a 
mouse model. J Neurosci, 31, 6963-71. 

Lens, S. M., Voest, E. E. & Medema, R. H. 2010. Shared and separate 
functions of polo-like kinases and aurora kinases in cancer. Nat 
Rev Cancer, 10, 825-41. 

Li, L., Fang, C., Xu, D., Xu, Y., Fu, H. & Li, J. 2016. Cardiomyocyte specific 
deletion of PP2A causes cardiac hypertrophy. Am J Transl Res. 

Lindqvist, A., Rodriguez-Bravo, V. & Medema, R. H. 2009. The decision 
to enter mitosis: feedback and redundancy in the mitotic entry 
network. J Cell Biol, 185, 193-202. 

Litter, S. C., Curran, J., Makara, M. A., Kline, C. F., Ho, H., Xu, Z., Wu, X., 
Polina, I., Musa, H., Meadows, A. M., Carnes, C. A., Biesiadecki, B. J., 
Davis, J. P., Weisleder, N., Györke, S., Wehrens, X. H., Hund, T. J. & 
Mohler, P. J. 2015. Protein phosphatases 2A regulatory subunit 
B56a limits phosphatase activity in the heart. Science Signaling, 
8. 

Lorca, T. & Castro, A. 2013. The Greatwall kinase: a new pathway in the 
control of the cell cycle. Oncogene, 32, 537-43. 

Louis, J. V., Martens, E., Borghgraef, P., Lambrecht, C., Sents, W., Longin, 
S., Zwaenepoel, K., Pijnenborg, R., Landrieu, I., Lippens, G., 
Ledermann, B., Götz, J., Van Leuven, F., Goris, J. & Janssens, V. 
2011. Mice lacking phosphatase PP2A subunit PR61/B'd 
(Ppp2r5d) develop spatially restricted tauopathy by 
deregulation of CDK5 and GSK3B. PNAS, 108, 6957-6962. 



Bibliography 

112 
 

Lu, N., Liu, Y., Tang, A., Chen, L., Miao, D. & Yuan, X. 2015. Hepatocyte-
specific ablation of PP2A catalytic subunit alpha attenuates liver 
fibrosis progression via TGF-beta1/Smad signaling. Biomed Res 
Int, 2015, 794862. 

Majchrzak-Celinska, A., Slocinska, M., Barciszewska, A. M., Nowak, S. & 
Baer-Dubowska, W. 2016. Wnt pathway antagonists, SFRP1, 
SFRP2, SOX17, and PPP2R2B, are methylated in gliomas and 
SFRP1 methylation predicts shorter survival. J Appl Genet, 57, 
189-97. 

Malumbres, M. 2011. Physiological relevance of cell cycle kinases. 
Physiol Rev, 91, 973-1007. 

Manchado, E., Guillamot, M., De Carcer, G., Eguren, M., Trickey, M., 
Garcia-Higuera, I., Moreno, S., Yamano, H., Canamero, M. & 
Malumbres, M. 2010. Targeting mitotic exit leads to tumor 
regression in vivo: Modulation by Cdk1, Mastl, and the 
PP2A/B55alpha,delta phosphatase. Cancer Cell, 18, 641-54. 

Mao, X., Boyd, L. K., Yáñez-Muñoz, R. J., Chaplin, T., Xue, L., Lin, D., Shan, 
L., Berney, D. M., Young, B. D. & Lu, Y. J. 2011. Chromosome 
rearrangement associated inactivation of tumour suppressor 
genes in prostate cancer. Am J Cancer Res, 1, 604-17. 

Matheson, T. D. & Kaufman, P. D. 2017. The p150N domain of 
chromatin assembly factor-1 regulates Ki-67 accumulation on 
the mitotic perichromosomal layer. Mol Biol Cell, 28, 21-29. 

Mayer-Jaekel, R. E., Ohkura, H., Ferrigno, P., Andjelkovic, N., Shiomi, K., 
Uemura, T., Glover, D. M. & Hemmings, B. 1994. Drosophila 
mutants in the 55 kDa regulatory subunit of protein phosphatase 
2A show strongly reduced ability to dephosphoryate substrates 
of p34cdc2. Journal of Cell Science, 107, 2809-2616. 

Mayer-Jaekel, R. E., Ohkura, H., Gomes, R., Sunkel, C. E., Baumgartner, S., 
Hemmings, B. A. & Glover, D. M. 1993. The 55 kd regulatory 
subunit of Drosophila protein phosphatase 2A is required for 
anaphase. Cell, 72, 621-33. 

Medema, R. H. & Lindqvist, A. 2011. Boosting and suppressing mitotic 
phosphorylation. Trends Biochem Sci, 36, 578-84. 

Mochida, S., Ikeo, S., Gannon, J. & Hunt, T. 2009. Regulated activity of 
PP2A-B55 delta is crucial for controlling entry into and exit from 
mitosis in Xenopus egg extracts. EMBO J, 28, 2777-85. 

Mochida, S., Maslen, S. L., Skehel, M. & Hunt, T. 2010. Greatwall 
phosphorylates an inhibitor of protein phosphatase 2A that is 
essential for mitosis. Science, 330, 1670-3. 

Morgan, D. O. 2007. The Cell Cycle: Principles of control. 



Bibliography 

113 
 

Mosca, L., Musto, P., Todoerti, K., Barbieri, M., Agnelli, L., Fabris, S., 
Tuana, G., Lionetti, M., Bonaparte, E., Sirchia, S. M., Grieco, V., 
Bianchino, G., D'auria, F., Statuto, T., Mazzoccoli, C., De Luca, L., 
Petrucci, M. T., Morabito, F., Offidani, M., Di Raimondo, F., 
Falcone, A., Caravita, T., Omede, P., Boccadoro, M., Palumbo, A. & 
Neri, A. 2013. Genome-wide analysis of primary plasma cell 
leukemia identifies recurrent imbalances associated with 
changes in transcriptional profiles. Am J Hematol, 88, 16-23. 

Muggerud, A. A., Ronnegerg, J. A., Wärnberg, F., Botling, J., Busato, F., 
Jovanovic, J., Solvang, H., Bukholm, I., Borresen-Dale, A. L., 
Kristensen, V. N., Sorlie, T. & Tost, J. 2010. Research article 
Frequent aberrant DNA methylation of ABCB1, FOXC1, PPP2R2B 
and PTEN in ductal carcinoma in situ and early invasive breast 
cancer. Breast Cancer Research, 12. 

Musacchio, A. 2015. The molecular biology of spindle assembly 
checkpoint signaling dynamics. Current Biology, 25, 1002-1018. 

Nagasaka, K., Hossain, M. J., Roberti, M. J., Ellenberg, J. & Hirota, T. 2016. 
Sister chromatid resolution is an intrinsic part of chromosome 
organization in prophase. Nat Cell Biol, 18, 692-9. 

Nam, H. J., Naylor, R. M. & Van Deursen, J. M. 2015. Centrosome 
dynamics as a source of chromosomal instability. Trends Cell Biol, 
25, 65-73. 

Nematullah, M., Hoda, M. N. & Khan, F. 2017. Protein phosphatase 2A: a 
double-faced phosphatase of cellular system and its role in 
neurodegenerative disorders. Mol Neurobiol. 

Neviani, P. & Perrotti, D. 2014. SETting OP449 into the PP2A-activating 
drug family. Clin Cancer Res, 20, 2026-8. 

Neviani, P., Santhanam, R., Trotta, R., Notari, M., Blaser, B. W., Liu, S., 
Mao, H., Chang, J. S., Galietta, A., Uttam, A., Roy, D. C., Valtieri, M., 
Bruner-Klisovic, R., Caligiuri, M. A., Bloomfield, C. D., Marcucci, G. 
& Perrotti, D. 2005. The tumor suppressor PP2A is functionally 
inactivated in blast crisis CML through the inhibitory activity of 
the BCR/ABL-regulated SET protein. Cancer Cell, 8, 355-68. 

Nobumori, Y., Shouse, G. P., Wu, Y., Lee, K. J., Shen, B. & Liu, X. 2013. 
B56γ tumor-associated mutations provide new mechanisms for 
B56γ-PP2A tumor suppressor activity. Mol Cancer Res, 11, 995-
1003. 

Ohta, S., Bukowski-Wills, J. C., Sanchez-Pulido, L., Alves Fde, L., Wood, 
L., Chen, Z. A., Platani, M., Fischer, L., Hudson, D. F., Ponting, C. P., 
Fukagawa, T., Earnshaw, W. C. & Rappsilber, J. 2010. The protein 
composition of mitotic chromosomes determined using 
multiclassifier combinatorial proteomics. Cell, 142, 810-21. 



Bibliography 

114 
 

Ohta, S., Kimura, M., Takagi, S., Toramoto, I. & Ishihama, Y. 2016. 
Identification of Mitosis-Specific Phosphorylation in Mitotic 
Chromosome-Associated Proteins. J Proteome Res, 15, 3331-41. 

Ory, S., Zhou, M., Conrads, T. P., Veenstra, T. D. & Morrison, D. K. 2003. 
Protein Phosphatase 2A Positively Regulates Ras Signaling by 
Dephosphorylating KSR1 and Raf-1 on Critical 14-3-3 Binding 
Sites. Current Biology, 13, 1356-1364. 

Pallas, D. C., Shahrik, L. K., Martin, B. L., Jaspers, S., Miller, T. B., 
Brautigan, D. L. & Roberts, T. M. 1990. Polyoma small and middle 
T antigens and SV40 small t antigen form stable complexes with 
protein phosphatase 2A. Cell 60, 167-76. 

Pan, X., Chen, X., Tong, X., Tang, C. & Li, J. 2015. Ppp2ca knockout in 
mice spermatogenesis. Reproduction, 149, 385-91. 

Qian, J., Lesage, B., Beullens, M., Van Eynde, A. & Bollen, M. 2011. 
PP1/Repo-Man Dephosphorylates Mitotic Histone H3 at T3 and 
Regulates Chromosomal Aurora B Targeting. Curr Biol 21, 766-
773. 

Queralt, E. & Uhlmann, F. 2008. Cdk-counteracting phosphatases 
unlock mitotic exit. Curr Opin Cell Biol, 20, 661-8. 

Ruediger, R., Ruiz, J. & Walter, G. 2011. Human cancer-associated 
mutations in the Aalpha subunit of protein phosphatase 2A 
increase lung cancer incidence in Aalpha knock-in and knockout 
mice. Mol Cell Biol, 31, 3832-44. 

Ruvolo, P. P. 2016. The broken "Off" switch in cancer signaling: PP2A 
as a regulator of tumorigenesis, drug resistance, and immune 
surveillance. BBA Clin, 6, 87-99. 

Ruvolo, P. P., Qui, Y. H., Coombes, K. R., Zhang, N., Ruvolo, V. R., 
Borthakur, G., Konopleva, M., Andreeff, M. & Kornblau, S. M. 
2011. Low expression of PP2A regulatory subunit B55alpha is 
associated with T308 phosphorylation of AKT and shorter 
complete remission duration in acute myeloid leukemia patients. 
Leukemia, 25, 1711-7. 

Samejima, K., Samejima, I., Vagnarelli, P., Ogawa, H., Vargiu, G., Kelly, D. 
A., De Lima Alves, F., Kerr, A., Green, L. C., Hudson, D. F., Ohta, S., 
Cooke, C. A., Farr, C. J., Rappsilber, J. & Earnshaw, W. C. 2012. 
Mitotic chromosomes are compacted laterally by KIF4 and 
condensin and axially by topoisomerase IIalpha. J Cell Biol, 199, 
755-70. 

Samuel Rogers, R. M., D.Neil Watkins and Andrew Burgess 2015. 
Mechanisms regulating phosphatase specificity and the removal 
of individual phosphorylation sites during mitotic exit. Bioessays, 
38, S24-S32. 



Bibliography 

115 
 

Santamaria, D., Barriere, C., Cerqueira, A., Hunt, S., Tardy, C., Newton, 
K., Caceres, J. F., Dubus, P., Malumbres, M. & Barbacid, M. 2007. 
Cdk1 is sufficient to drive the mammalian cell cycle. Nature, 448, 
811-5. 

Schmidt, K., Kins, S., Schild, A., Nitsch, R. M., Hemmings, B. & Götz, J. 
2002. Diversity, developmental regulation and distribution of 
murine PR55/B subunits of protein phosphatase 2A. European 
Journal of Neuroscience, 16, 2039-2048. 

Schmitz, M. H., Held, M., Janssens, V., Hutchins, J. R., Hudecz, O., Ivanova, 
E., Goris, J., Trinkle-Mulcahy, L., Lamond, A. I., Poser, I., Hyman, A. 
A., Mechtler, K., Peters, J. M. & Gerlich, D. W. 2010. Live-cell 
imaging RNAi screen identifies PP2A-B55alpha and importin-
beta1 as key mitotic exit regulators in human cells. Nat Cell Biol, 
12, 886-93. 

Scholzen, T., Endl, E., Wohlenberg, C., Van Der Sar, S., Cowell, I. G., 
Gerdes, J. & Singh, P. B. 2002. The Ki-67 protein interacts with 
members of the heterochromatin protein 1 (HP1) family: a 
potential role in the regulation of higher-order chromatin 
structure. J Pathol, 196, 135-44. 

Seki, A., Coppinger, J. A., Jang, C., Yates, J. R. & Fang, G. 2008. Bora and 
the Kinase Aurora A Cooperatively Activate the Kinase Plk1 and 
Control Mitotic Entry. Science, 320. 

Seong, Y., Kamijo, K., Lee, J., Fernandez, E., Kuriyama, R., Miki, T. & Lee, 
K. S. 2002. A spindle checkpoint arrest and a cytokinesis failure 
by the dominant-negative Polo-box domain in Plk1 in U2OS cells. 
The Journal of Biological Chemistry, 277, 32282-32293. 

Seshacharyulu, P., Pandey, P., Datta, K. & Batra, S. K. 2013. 
Phosphatase: PP2A structural importance, regulation and its 
aberrant expression in cancer. Cancer Lett, 335, 9-18. 

Sobecki, M., Mrouj, K., Camasses, A., Parisis, N., Nicolas, E., Llères, D., 
Gerbe, F., Prieto, S., Krasinska, L., David, A., Eguren, M., Birling, 
M., Urbach, S., Hern, S., Déjardin, J., Malumbres, M., Jay, P., Dulic, 
V., Lafontain, D. L. J., Feil, R. & Fisher, D. 2016. The cell 
proliferation antigen Ki-67 organises heterochromatin 

eLife. 
Song, M. H., Liu, Y., Anderson, D. E., Jahng, W. J. & O'connell, K. F. 2011. 

Protein phosphatase 2A-SUR-6/B55 regulates centriole 
duplication in C. elegans by controlling the levels of centriole 
assembly factors. Dev Cell, 20, 563-71. 

Sontag, E., Luangpirom, A., Hladik, C., Mudrak, I., Ogris, E., Speciale, S. & 
White, C. L. 2004. Altered expression levels of the protein 
phosphatase 2A ABalphaC enzyme are associated with 



Bibliography 

116 
 

Alzheimer disease pathology. J Neuropathol Exp Neurol, 63, 287-
301. 

Starborg, M., Gell, K., Brundell, E. & Höög, C. 1996. The murine Ki-67 
cell proliferation antigen accumulates in the nucleolar and 
heterochromatic regions of interphase cells and at the periphery 
of the mitotic chromosomes in a process essential for cell cycle 
progression. Journal of Cell Science, 109, 143-153. 

Strack, S., Chang, D., Zaucha, J. A., Colbran, R. J. & Wadzinski, B. E. 1999. 
Cloning and characterization of B, a novel regulatory subunit of 
protein phosphatase 2A. FEBS Letters, 460, 462-466. 

Strack, S., Zaucha, J. A., Colbran, R. J. & Wadzinski, B. E. 1998. Brain 
Protein Phosphatase 2A: Developmental Regulation and Distinct 
Cellular and Subcellular Localization by B Subunits. The journal 
of comparative neurology, 392, 515-527. 

Sudakin, V., Chan, G. K. & Yen, T. J. 2001. Checkpoint inhibition of the 
APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, 
CDC20, and MAD2. J Cell Biol, 154, 925-36. 

Takagi, M., Natsume, T., Kanemaki, M. T. & Imamoto, N. 2016. 
Perichromosomal protein Ki67 supports mitotic chromosome 
architecture. Genes Cells, 21, 1113-1124. 

Takagi, M., Nishiyama, Y., Taguchi, A. & Imamoto, N. 2014. Ki67 antigen 
contributes to the timely accumulation of protein phosphatase 
1gamma on anaphase chromosomes. J Biol Chem, 289, 22877-87. 

Tan, J., Lee, P. L., Li, Z., Jiang, X., Lim, Y. C., Hooi, S. C. & Yu, Q. 2010. 
B55beta-associated PP2A complex controls PDK1-directed myc 
signaling and modulates rapamycin sensitivity in colorectal 
cancer. Cancer Cell, 18, 459-71. 

Tang, Z., Shu, H., Qi, W., Mahmood, N. A., Mumby, M. C. & Yu, H. 2006. 
PP2A is required for centromeric localization of Sgo1 and proper 
chromosome segregation. Dev Cell, 10, 575-85. 

Topham, C. H. & Taylor, S. S. 2013. Mitosis and apoptosis: how is the 
balance set? Curr Opin Cell Biol, 25, 780-5. 

Toyoshima-Morimoto, F., Taniguchi, E., Shinya, N., Iwamatsu, A. & 
Nishida, E. 2001. Polo-like kinase 1 phosphorylates cyclin B1 and 
targets it to the nucleus during prophase. Nature, 410, 215-20. 

Traut, W., Endl, E., Garagna, S., Scholzen, T., Schwinger, E., Gerdes, J. & 
Winking, H. 2002. Chromatin preferences of the 
perichromosomal layer constituent pKi-67. Chromosome Res, 10, 
985-94. 

Vagnarelli, P., Ribeiro, S., Sennels, L., Sanchez-Pulido, L., De Lima Alves, 
F., Verheyen, T., Kelly, D. A., Ponting, C. P., Rappsilber, J. & 
Earnshaw, W. C. 2011. Repo-Man coordinates chromosomal 



Bibliography 

117 
 

reorganization with nuclear envelope reassemby during mitotic 
exit. Dev Cell, 21, 328-342. 

Van Hooser, A. A., Yuh, P. & Heald, R. 2005. The perichromosomal layer. 
Chromosoma, 114, 377-88. 

Varadkar, P., Daryl, D., Kraman, M., Lozier, J., Phadke, A., Nagaraju, K. & 
Mccright, B. 2014. The protein phosphatase 2A B56c regulatory 
subunit is required for heart development. Developmental 
Dynamics, 243. 

Vazquez-Novelle, M. D., Esteban, V., Bueno, A. & Sacristan, M. P. 2005. 
Functional homology among human and fission yeast Cdc14 
phosphatases. J Biol Chem, 280, 29144-50. 

Vigneron, S., Brioudes, E., Burgess, A., Labbé, J. C., Lorca, T. & Castro, A. 
2009. Greatwall maintains mitosis through regulation of PP2A. 
EMBO J, 28, 2786-93. 

Voets, E. & Wolthuis, R. M. 2010. MASTL is the human orthologue of 
Greatwall kinase that facilitates mitotic entry, anaphase and 
cytokinesis. Cell Cycle, 9, 3591-601. 

Wachowicz, P., Fernández-Miranda, G., Marugán, C., Escobar, B. & De 
Cárcer, G. 2016. Genetic depletion of Polo-like kinase 1 leads to 
embryonic lethality due to mitotic aberrancies. Inside the Cell, 1, 
59-69. 

Walter, G. & Ruediger, R. 2012. Mouse model for probing tumor 
suppressor activity of protein phosphatase 2A in diverse 
signaling pathways. Cell Cycle, 11, 451-9. 

Whitfield, M. L., George, L. K., Grant, G. D. & Perou, C. M. 2006. Common 
markers of proliferation. Nat Rev Cancer, 6, 99-106. 

Wu, J. Q., Guo, J. Y., Tang, W., Yang, C. S., Freel, C. D., Chen, C., Nairn, A. C. 
& Kornbluth, S. 2009. PP1-mediated dephosphorylation of 
phosphoproteins at mitotic exit is controlled by inhibitor-1 and 
PP1 phosphorylation. Nat Cell Biol, 11, 644-51. 

Wurzenberger, C. & Gerlich, D. W. 2011. Phosphatases: providing safe 
passage through mitotic exit. Nat Rev Mol Cell Biol, 12, 469-82. 

Xian, L., Hou, S., Huang, Z., Tang, A., Shi, P., Wang, Q., Song, A., Jiang, S., 
Lin, Z., Guo, S. & Gao, X. 2015. Liver-specific deletion of Ppp2ca 
enhances glucose metabolism and insulin sensitivity. Aging, 7. 

Yu, J., Fleming, S. L., Williams, B., Williams, E. V., Li, Z., Somma, P., 
Rieder, C. L. & Goldberg, M. L. 2004. Greatwall kinase: a nuclear 
protein required for proper chromosome condensation and 
mitotic progression in Drosophila. J Cell Biol, 164, 487-92. 

Zhang, W., Yang, J., Liu, Y., Chen, X., Yu, T., Jia, J. & Liu, C. 2009. PR55 
alpha, a regulatory subunit of PP2A, specifically regulates PP2A-



Bibliography 

118 
 

mediated beta-catenin dephosphorylation. J Biol Chem, 284, 
22649-56. 

 

 


	Portada
	RESUMEN
	SUMMARY
	INDEX
	ABBREVIATIONS
	1. INTRODUCTION
	2. OBJECTIVES
	3. MATERIALS AND METHODS
	4. RESULTS
	5. DISCUSSION
	CONCLUSIONS
	CONCLUSIONES
	BIBLIOGRAPHY

