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Abstract: We propose a scan test for the presence of spatial groupwise heteroskedasticity in
cross-sectional data. The scan approach has been used in different fields before, including
spatial econometric models, to detect instability in mean values of variables or regression
residuals. In this paper, we extend its use to second order moments. Using large Monte Carlo
simulations, we check the reliability of the proposed scan procedure to detect instabilities in the

variance, the size and power of the test and its accuracy to find spatial clusters of observations
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with similar variances. Finally, we illustrate the usefulness of this test to improve the
specification search in a spatial hedonic model, with an empirical application on housing prices

in Madrid.
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1. Introduction

When analyzing spatial data, one has to deal with its two main specificities, namely
spatial autocorrelation and spatial heterogeneity. Spatial autocorrelation, or the
coincidence between value similarity and locational (Anselin and Bera, 1998), is now
largely documented with multiple possible specifications for cross-sectional, qualitative,
spatio-temporal and panel data and extensive testing procedures (see Arbia 2014, 2016;
Dubé and Legros 2014; Elhorst 2014; LeSage and Pace 2009 for recent textbooks on the
topic). On the other hand, spatial heterogeneity means that the spatial process is not
uniform over space. Frequent causes of heterogeneity are instability in (i) the mean, (i1)
the variance or (iii) both.

Mean instability implies local clustering of the values of a spatial variable. For
instance, in the case of parameter instability in a regression, regression coefficients may
follow a number of distinct spatial regimes such as North-South or Center-Periphery
patterns, or they can evolve continuously over space (Brunsdon et al. 1999; Paez et al.
2002). In other cases, the variance, which varies over space, is the source of instability
in the model. This phenomenon is known as spatial heteroskedasticity. The variance can
vary continuously over space or it can take different values between separate parts of
the area. It is then called spatial groupwise heteroskedasticity (SGWH from now one).

The consequences of wrongly omitting spatial effects are well known (Anselin,
1988; LeSage and Pace, 2009; Le Gallo, 2014). Omitted spatial autocorrelation in the
mean equation or the wrong assumption of a common vector of parameters for the
whole sample both leads to biased and inconsistent Ordinary Least Squares (OLS)
estimators. Omitted spatial error dependence and/or heteroscedasticity leads to biased
inference.

From an empirical point of view, spatial autocorrelation and spatial
heterogeneity are often both present. These two effects entertain complex links. First,
there may be observational equivalence between these two effects in a cross-section
(Anselin and Bera, 1998). Secondly, heteroskedasticity and structural instability tests
are not reliable in the presence of spatial autocorrelation (Anselin and Griffith, 1988).
Conversely, spatial autocorrelation tests are affected by heteroscedasticity (Kelejian and
Robinson, 2004; Zhang and Lin, 2016). Thirdly, spatial autocorrelation is sometimes
the result of unmodelled parameter instability (Brunsdon et al., 1999). To tackle these
issues, joint tests for spatial error autocorrelation and heteroscedasticity have been

proposed by Anselin (1988) and Kelejian and Robinson (1998). Conditional tests of



heteroscedasticity or instability in the regression coefficients, under the presence of
spatial autocorrelation, can be found in Anselin (1988, 1990) and Péez et al. (2001),
who introduce a Chow test for spatially switching regressions in a spatial lag model (see
also Lopez et al., 2009). Models allowing for both spatial autocorrelation and spatial
heterogeneity in the coefficients have been suggested (see Geniaux and Martinetti, 2017
for a review of these models and a proposal of a new class of models where both the
regression parameters and spatial autocorrelation coefficients vary over space).

All these possibilities are based on some parametrization of spatial error
dependence and heteroscedasticity. Another possibility is to leave spatial error
dependence and heteroscedasticity unmodelled using HAC methods, which allow
performing robust inference in the mean equation for different departures of the iid
clause. For instance, Kelejian and Prucha (2007) suggest a non-parametric
heteroscedasticity and autocorrelation consistent (HAC) estimator of the variance-
covariance matrix within a spatial context. This route has been followed by Kim and
Sun (2011), who generalize the spatial HAC estimator for nonlinear spatial models, and
Dorn and Egger (2014), who analyze the small sample performance of the spatial HAC
estimators. On their side, Kelejian and Prucha (2010) and Lin and Lee (2010) keep
spatial autocorrelation parametrized and discuss the instrumental variables and
generalized method of moment approaches to estimate spatial autoregressive models
with unknown heteroskedasticity in the disturbances.

In this paper, we depart from these approaches by arguing that looking for
specific spatial patterns in heteroscedasticity can be a useful help in specification search
in empirical analysis. Note that hetereroskedasticity in spatial models that do not follow
a spatial pattern is not of interest in this paper as it can be treated as usual, using the
classical White (1980), the Breusch-Pagan (Breusch and Pagan, 1980) or Koenker and
Basset (Koenker and Basset, 1982) tests. Instead, we consider the perspective initiated
by Ord and Getis (2012). They study the problem of local instability in the variance
introducing the so-called LOSH (Local spatial heteroscedasticity) statistic, whose aim is
to identify the limits of the area where the variance changes. The authors draw the
attention to the lack of papers directed at examining the spatial structure of the variance
(p. 530): “Spatial statistics’ cluster identification is now common to many fields.
(...however) these studies have focused attention upon local means, to the extent that

variability is considered at all it is typically assumed that the process has a constant



variance (i.e., that it is homoscedastic). A moment’s thought indicates that such an
assumption could overlook important information’.

This paper aims at filling such a gap. Indeed, we introduce a formal test for
SGWH for the residuals of a multiple regression analysis with a null hypothesis of
constant variance in the residuals. Then, when the null is rejected, the procedure is able
to detect the locations of the clusters of observations, for which the residual variance is
significantly high or low. In order to implement such a test, we follow the approach
originally suggested by Openshaw et al. (1987) in the so-called Geographical Analysis
Machine, GAM, and later improved by Kulldorff et al. (1995, 2009) in the nowadays
popular scan algorithms. This paper therefore complements that of Lopez et al. (2015)
who explore scan methods to test for spatial structure in mean values. Cucala (2016) has
also suggested a scan statistic to detect high-variance clusters. We extend his work by
providing a formal proof of the consistency of the test, detailing its relations with spatial
autocorrelation, performing an extensive Monte-Carlo simulations to assess its small-
sample properties in various configurations and presenting a detailed empirical analysis.

With respect with the latter aspect, we show that the detection of spatial clusters
of observations with similar, high or low, variance of residuals is a useful guide to
specification search in applied econometrics. Consider for instance hedonic models for
house prices. The empirical challenge with these models is important as the estimation
of hedonic prices should tackle, inter alia, spatial autocorrelation due to shared local
amenities and disamenities, spatial heterogeneity stemming from the existence of
housing submarkets and omitted variables, as house prices usually depend on
unobserved microgeographic characteristics. All these problems interact in a complex
way, as mentioned above, so that there is a need to provide the applied econometrician
with procedures helping to deal with them. In the application, we show that by
determining the location of clusters of high and low variance, the SGWH test is a step in
that direction. In addition, we show that after having removed the effects of conditional
heteroscedasticity and spatial autocorrelation, clusters of high and low variance of
residuals persist, that correspond to areas with particular characteristics of the housing
market that would have been difficult to identify without the proposed test.

The paper is organized as follows. Section 2 introduces some basic results from
the scan methodology, including our proposal to detect SGWH. The design of a Monte
Carlo experiment is presented in Section 3, together with the main results related to

estimated size and power. Section 4 presents a discussion about the links between



spatial dependence and SGWH. Section 5 illustrates the use of this methodology with
an empirical application on housing prices in Madrid and shows the SGWH scan test
can help with the search for the best empirical specification. Main conclusions appear in

Section 6.

2. A scan test for spatial groupwise heteroskedasticity
Spatial scan statistics are widely used in epidemiology, criminology or ecology. Their
purpose is to analyze the spatial distribution of points or geographical regions by testing
the hypothesis of spatial randomness of this distribution on the basis of different
distributions (e.g. Bernoulli, Poisson or Normal distributions). Using the popular scan
methodology, we introduce a test aimed at detecting the presence of SGWH in the
residuals of a regression model. Our proposal has two objectives: (i) check for the null
of homoskedasticity and, in case of rejection of the null, (ii) identify the points, spatially
linked, for which the residuals share the same variance. We first present the test for a
variable with a Gaussian distribution, then show how it can be used to detect secondary
clusters and finally, establish its consistency.
2.1 Presentation of the Scan test

Formally, suppose that {x;} is a spatial process with i = 1,.., n being set of spatial
coordinates. We are interested in testing the null hypothesis that all the variances of this
variable are equal (note that the null also implicitly assumes normality and spatial
independence):

H : x ~iid. N(u;0) (1

The alternative hypothesis states that there is a single group of spatially
connected observations, Z, for which the variance is different than that for the rest of the
observations:

xi~11.d.N(w o, ) forieZ )
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In order to proceed with the scan methodology, it is necessary to derive the
likelihood function under the null and alternative hypotheses, respectively. The log-
likelihood function under the null hypothesis is:
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The maximum likelihood estimates of the mean and variance are:
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which produce a value in the corresponding concentrated log-likelihood function of:

I(Ho) = -%{ln(2px§2HO)+l} (5)

Under the alternative hypothesis, the log-likelihood is:

I[(Hp) = ln(LA(x,u,GZ,cz)) =
1 2 1 2 (6)
=-nin\2n-ny o, —(n —nz)ln 077> 2 (Xi—M) - X (Xi—u)
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where nz is the number of observations in set Z. The maximum likelihood estimates of

the mean and variance for this case are:
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The value of the log-likelihood function in this point is:
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2

Consequently, the scan statistic for the assumption of equal variances can be

n n _
Iy, )= -5[ln2p+l]—721n§iIA(Z)— Zlnéil,fz) (8)

written as:
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where O is a set of connected regions Z, called windows, for which the Scan,; statistic is
computed. The size and shape of the windows must be defined a priori by the
researcher with the aim of getting a good balance between cost and effectiveness. For
example, the evaluation of elliptical windows is more time consuming but it provides
greater flexibility than circular windows. The window Z moves across the entire map,
changing its size and possibly shape while looking for the maximum likelihood ratio. It
is usually recommended that the maximum number of cases entering any given window
does not exceed 50 per cent of all available cases. Once the window with maximum

differential is detected, it is evaluated with the test to check whether the difference is



statistically significant. The set Z where the scan test attains its maximum value is
usually called the Most Likelihood Cluster, MLC.

Inference for the Scan, test is based on a permutational framework, which is
more robust —since it avoids data mining and the assumption of normality— but also
more computationally demanding. More precisely, a p-value is obtained through a
Monte Carlo testing procedure, by comparing the value of the scan statistics for the real
data set with a large sequence of values corresponding to purely random data sets,

according to the null hypothesis of the test. The procedure is as follows:

1. Compute the Scan, statistic for the original sample {Xi} where S is a set

ifs’
of spatial coordinates, S = {cxi;cyi} ;1=1,2,...n.
2. Relabel the set of locations by randomly drawing, without replacement, the

spatial coordinates; {Xf} _1s the new, permuted, series, where r is the
ilS

permutation index.

3. Compute the Scan, statistic for each permuted sample {xlr} .
1€

4. Repeat steps 2 and 3 (B-1) times to obtain B-1 realizations of the

{Scanr} . permuted statistic.

5. Compute the pseudo-probability as:

B-1

pp—value = ﬁ a {(Scan’ - Scan ) (10)

r=1

where 1(0) is an indicator function which assigns a value of 1 to a true

statement and 0 otherwise.
6. Reject the null hypothesis if py,-value<a for a nominal size o
The MLC is the window Z where the difference in likelihood is the maximum. In
case of this difference is greater than percentile (1-a)% of the empirical distribution

obtained by permutation bootstrap the MCL will be significant at a% level.

2.2 Secondary clusters
The Scan, is a maximum likelihood ratio statistic that under the alternative hypothesis,
establishes that there is a single cluster of unknown localization, shape and size. If the

Scan test identifies a cluster (the MLC), a natural question arises: do there additional



clusters, which do not overlap with the MLC, have significantly large likelihood ratio?
If yes, these are the so-called secondary clusters. There are different possibilities to
assign p-values to secondary clusters in order to evaluate the significance of those
clusters (Zhang et al., 2010). The standard approach for assigning p-values is to
compare the likelihood ratio of secondary clusters with the empirical distribution of the
statistic obtained by permutational bootstrapping. Then, the first secondary cluster is
considered as significant (e.g. p-values<a) if the likelihood ratio of this cluster is over
(1-a0)% of the values of the empirical distribution obtained under the null provided that
it is non-overlapping with the MLC. The second secondary cluster is significant (p-
values<a) if the likelihood ratio of this cluster is over (1-a)% of the values of the
empirical distribution obtained under the null provided that it is non-overlapping with
the MLC and the first secondary cluster. The procedure continues until no clusters have
a likelihood ratio over (1-a)% of values in the empirical distribution. This method gives
conservative p-values (Kulldorff, 1997) since they are calculated ignoring the existence
of the MLC. Some authors (Zhang et al., 2010) have suggested the use of an iterative
method by deleting from the data the observations included in the MLC (getting a ‘hole’
in the sample). The standard scan statistic is then newly computed for the reduced
dataset. The procedure continues until no significant clusters are found. This process
proposed by Zhang et al. (2010) shows higher power for secondary clusters that the

standard one. For this reason, we will use this approach in this paper.

2.3 Consistency of the Scan test

To the best of our knowledge, only few results on the asymptotic properties of scan tests
are available in the literature. Cressie (1980) derives the asymptotic distribution of the
one-dimensional scan statistic for testing uniformity on [0,1] against a clustering
alternative. More recently, Zhang and Lin (2017) provide the non-trivial asymptotic
behaviour (consistency and local efficiency) of two-dimensional scan test in case of a
Bernoulli distribution. In this subsection, we derive the consistency of the Scan, test.

The main results of this subsection are synthesized in the following theorem:

Theorem 1. Let a Spatial Gaussian process of i.i.d. {X.}i1 with finite E[x;]=p

and assume that there is a subset Ze® where the variance of x; is different if i€Z that

the variance of x; if i€Z. Then,
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lim Pr(Scan_> C) =1 for all real number C>0.

n—oo

n,_—eo
A

if 1/n is an infinitesimal of higher order than 1/nz. The proof is in Appendix 1.
A consequence of this result is that the power of Scan, test is directly related to
the size of true cluster (n,) and the ratio between inside and outside Z variance (0) under

the specific alternative Hx.

3. Evaluating Size and Power of Scan, test
In this section, we evaluate the performance of the permuted scan test introduced in
Section 2, applied on the least square residuals of a linear model without spatial effects.
The set-up of our Monte-Carlo study is as follows:
1. A linear equation is specified, including one regressor (#=U(0,1)) plus a constant
term as:
y; =a+bu, +e (11)
The values of the parameters guarantee an expected R*=b*/(b*+12) coefficient close to
0.4.
il. Regarding the error term, we consider seven different situations to evaluate the
impact of a departure from non-normality:
e DGPI: the error terms are distributed as a N(0,1);
e DGP2: the error terms are distributed as a y*(2);
e DGP3: the error terms are distributed as a Beta(0.5,0.5);
e DGP4: the error terms are distributed as a Lognormal(0,1);
e DGPS5: the error terms are distributed as a Binomial distribution, B(n,0.1);
e DGP6a: the error terms are distributed as a weighted average of a y*(2) and a
Student’s ¢ distribution with 2 degrees of freedom, #(2); the unit weights are obtained
randomly in the interval (0; )
e DGP6b: the error terms are distributed as a weighted average of three distributions
(' (2); 12); U0, 1));
e DGP7: the error terms are heteroskedastic, with a random spatial structure in the

variance.

2 Results for the case a = 2 and b = 7, which guarantees an expected R*=b*/(b*+12) coefficient of close to
0.8 available on request present similar results.

3 The resulting variable is a stochastic mixture of two non-normal distributions, which generates a random
variable with an unknown distribution. We call it a “mixture error structure” (see Lin et al., 2010).
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iii. Hexagonal regular lattices of orders (6x6), (7x7), (10x10), (15x15) and (20x20)
have been used as the spatial support for the data, implying sample sizes (n) of 36,
49, 100, 225 and 400 observations, respectively;

iv. Irregular lattices with the same sample size n=36, 49, 100, 225 and 400. The
coordinates of each observation (cx;j,cy;) were obtained from a uniform distribution
u(0,1);

v. Q is the set of all possible elliptical windows whose center corresponds to the
centroid (cx;j,cy;) of each observation and have different parameters: an eccentricity
of e =1, 2, 3, 4 and a rotation angle of 0=n(2k+1)/18; k=0,1,...,8. Moreover, the
number of location entering in any given window should not exceed 50% of all
locations;

vi. Each combination has been repeated 1,000 times. The number of permutations for

each simulated dataset, in order to compute the pp-values, has been 999, so that

B=1,000.

3.1. Size of the Scan test

Table 1 shows the estimated size for the Scan, test under the 8 DGPs. The results show
that under DGP1 (e~1idN(0,1)) and DGP7 (random heteroscedasticity), the estimated
size for the Scan, tests is very close to the nominal value of 0.05, even for very small
sample sizes. For the other DGPs, the Scan, test is a bit oversized for small samples but
for larger sample sizes, it behaves properly. The test is then quite robust to departures of

normality.

3.2. Power of the Scan; test

Two types of spatially varying variances may be considered: discrete or continuous. The
first situation means that there are blocks of locations that share the same variance,
which differs from block to block. This corresponds to the traditional interpretation of
SGWH (see Ertur et al., 2006 or Ramajo et al., 2008 for examples). The second
situation is continuous instability that should be interpreted in analogy with the concept
of ‘parameter surface’ in Geographically Weighted Regression models, where the
parameters associated to each location is space are the image of the corresponding

location in the surface (Fotheringham et al., 1999). Yan (2007) introduces the term of
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Spatial Stochastic Volatility in reference to a process, i.e. {{;i=1,...,n}, whose

variance is changing smoothly over space:

V(C,) = h(ex ,cy,) (12)
where (cx;,cy;) are the spatial coordinates of location 1.

In what follows, we investigate the behavior of the Scan, test for these two
categories of variance instability.

For the case of SGWH, we consider six different patterns. In the first two cases,
the heteroskedastic cluster is formed by 7 locations and has a circular shape (SGWHI1
and SGWH2 in Figure 1 below). The number of locations included in this
heteroskedastic cluster (that is, the size of the cluster) remains the same for the different
sample sizes used in the experiment; this means that the symptoms of instability are
weaker as sample size increases. Two other cases exhibit a North-South dichotomy with
different values of variances in each regime (SGWH3, SGWH4 in Figure 1). The size of
the cluster in the last two cases is proportional to the size of the sample. For the
SGWHS5 and SGWH6 the heteroskedastic cluster and has an elliptic form with growing
number of localizations for different sample sizes (SGWHS, SGWH6 in Figure 1).

For continuous spatial patterns in the variance, three cases have been considered.
The first, SGWH?7, is inspired by Casetti and Can (1999) where the variance of the error
terms is expanded into a monotonic function of the distance of each location to the
geographical central point of the system. The second case, SGWHS, reflects a
continuous North-South variation while the third, SGWH9, extends the Casetti and Can

(1999) example by considering two central foci.

Table 2 shows the results obtained for the Scan, tests. We also include the
results obtained for well-known classical test of Breusch-Pagan test of
heteroskedasticity, computed with the explanatory variable of the model (Breusch and
Pagan, 1979). Additionally, we include the BP test using the coordinates of localization
(latitude, longitude) of each observation as heteroskedasticity source, namely BP.. It is
worth reminding that, in all the cases, these tests have been applied to the least square

residuals of an estimated equation, similar to that of (11). We also include the Moran’s /
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statistic (MI) to obtain information about the sensibility of this test of spatial

dependence to the presence of SGWH®.

The results highlight the following results:

(1) Overall, the estimated power for the Scan, test is higher than that obtained for the
classical heteroskedasticity tests.

(i1)) The BP, test shows similar power to that of the Scan, for some DGPs although it
cannot give information about the spatial structure of heteroskedasticity.

(ii1) The power of the Scan, test improves as the sample size increases, also when there
is a great difference between the variances of the two regimes.

(iv) The power of the BP test is very poor independently of the heteroskedastic pattern
and/or sample size. It is not designed to deal with the spatial nature of the data and,
consequently, they have low power.

(v) In case of complex pattern of SGWH (continuous heteroscedastic pattern SGWH?7-
SGWHO9 and elliptic cluster of high variance SGWHS5-SGWHG6) the Scan, test has
the highest power in almost all cases.

(vi) The MI test is sensitive to SGWH with sample size over 400 observations. Kelejian

and Robinson (2004) provide a theoretical explication for this result.

3.3. Spatial precision in cluster identification
Subsection 3.2 on the estimated size and power of the Scan, test under different
heteroskedasticity patterns lead to encouraging results. However, in case of rejecting the
null hypothesis of homoskedasticity, another important question emerges: the necessity
of identifying, as accurately as possible, the heteroskedasticity pattern present in the
data. It is clear that, in order to improve the specification, the researcher needs to know
where and how are produced the clusters in the variance. Hence, we evaluate in this
section the ability of the Scan, to precisely identify the location of these spatial clusters
of observations with similar variances.

To that purpose, we define Local Sensibility (LS) as the percentage of times, in
the Monte Carlo simulation, that each cell is selected as a member of the significant

cluster (MLC) over the times that the test rejects the null, that is:

4 The results for the White test and the Lagrange multiplier LM-err test are available upon request from
the authors. The performances of these tests are similar than those of BP test and MI respectively.
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Number of times that localization i is assign to the MLC

LS(i) = (13)

Number of times that the test rejects the null hypothesis

Indeed, the maximum number of times that a location can be selected as
pertaining to the MLC is the number of times that the test rejects the null. A procedure
such as the scan technique will be useful for the researcher if its LS is close to 1 for the
cells that really pertain to the true variance cluster, and 0 for the cells that do not belong
to the cluster.

Figure 2 shows the estimated LS corresponding to the six discrete SGWH
introduced in Subsection 3.2 (SGWHI1 to 6) using the Scan, test. This figure displays

the percentiles of the decisions taken with respect to each cell in the spatial lattice.

Figure 2 demonstrates the utility of Scan, test to identify the area with a
different variance when the null is rejected. In particular, it shows that (i) the size of the
windows with different variance is not important. The precision needed to identify the
windows with 7 observations is similar for n=100 and n=225; (ii) in case of low
differences in variance inside and outside of windows (SGWH2, SGWH4, SGWH6) the
ability to identify the true area is low but still provides an acceptable information about
the localization of the cluster. This information is vital to improve the model

specification in a regression exercise as we show in the next section.

4. Spatial dependence and spatial groupwise heteroscedasticity
As underlined in the introduction, spatial dependence and SGWH entertain complex
links. To shed more light on this issue, we analyze in this section the size of the Scan,
test in presence of spatial patterns in the mean of the process.

It is well-known that the diagonal elements of the variance-covariance matrix of
a spatial autoregressive (SAR) model or a spatial error model (SEM) are not equal, i.e.,
that SAR or SEM processes imply a specific pattern of heteroscedasticity. However,
given our objective to evaluate the size of the Scan, test only in presence of spatial

autocorrelation but not of SGWH, we need to define a homoscedastic spatial process.

Definition 1. We say that a spatial process {X.} ., where § is the set of spatial

coordinates, is homoscedastic if the covariance matrix of {X.} ; is diagonal constant.

It 1s simple to prove that any spatial process can be transformed into a homoscedastic

spatial process. For instance, in the case of a SAR model, we have the next results:
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Theorem 2. If the SAR process y is defined by y=(I - rW) ' (Xb+e); e=N(0,s’W)

where W=(Wij)=(I- rW)'(I-rW""', then the spatial process H defined as

H=j "y with j =diag(w,,,..,W_) is a homoscedastic SAR process (HSAR) and

.

H=NXB,6*(I-pW) o' (I-pW" ") with X =¢"*X and W = ¢ "*We"?* (proof in

Appendix 2). This result can be extended to the other well-known usual spatial

processes.

To obtain the empirical performance of Scan, test in presence of a spatial pattern in
the mean we develop a Monte Carlo exercise with the following characteristics, which
depends of the type of spatial autocorrelation:

. DGPS: a SAR process (DGP8a) or a HSAR process (DGP8b), with coefficients of
p=0.2; 0.5; 0.8.

« DGP9: a SEM process (DGP9a) or a HSEM process (DGP9b), with coefficients of
A=0.2; 0.5; 0.8.

Secondly, we also specify instability in the trend of the spatial process. The DGP is
then defined as:

yi=2+biuitg

where ui=U(0,1) and we consider two (DGP10a) or four (DGP10b) spatial regimes:

« DGP10a Low: b=2.5 if cy; < Mey and bi=3.5 if cy;> Me,, where Me, is the median
of the latitude coordinates.

« DGP10a High: b=2 if cy;< Mey and b=4 if cy;> Me,

« DGPI10b Low: bi=1.5if cy; < P’33 and cx; < P'33; bi=5 if cy; < PY33 and cx; > P'33;
b=2.5 if cy; > P33 and cx; < P*33; b=3 if cy; > P¥33 and cx; > P*3;3, where P*33 is the
33-percentile of {cx }", and P’33 is the 33-percentile of {cy}" .

« DGPI10b High: b=1 if cy; < P33 and cx; < P*33; b=6 if cy; < P”33 and cx; > P*33; bi=2
if cy; > P¥33 and cx; < P*33; b=3 if cy; > PY33 and ¢x; > P33

In all cases, the model is estimated with constant coefficients. Table 3 summarizes the

results.

The Scan test is clearly affected by the presence of a spatial pattern in the mean.
The Scan, test is oversized for cases where the error terms exhibit strong patterns of
spatial autocorrelation. In case of homoscedastic spatial processes, the test also shows

high rates of rejection of the null hypothesis, though they are lower than for SAR or
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SEM processes. The over-reaction of the test increases with sample size reflecting the
well-known problem of observational equivalence between spatial autocorrelation and
spatial heterogeneity in cross-section models. Table 3 also indicates that if the model is
misspecified, in the sense that the spatial trend is not stable over space, the OLS
residuals will produce symptoms of both spatial dependence (Lopez et al., 2015) and
spatial clustering in the variance. Overall, these results confirm the difficulty of
isolating the symptoms of spatial dependence and heteroskedasticity, as shown

previously by Kelejian and Robinson (1995) and Mur and Angulo (2009).

5. Application on housing prices

In this section, the behavior of the Scan, test as a useful guide to specification search is
illustrated with an application on a hedonic model for house prices in the city of
Madrid. Our study focuses on downtown Madrid, ‘Central Almond’, which is an area
administratively formed by seven districts, these being subdivided into 43
neighborhoods. Our records refer to January 2015 and were drawn from an on-line real
estate database, ‘idealista.com’ since, due to confidentiality constraints, it is almost
impossible to obtain housing prices microdata from Spanish official institutions. The
asking price has then been used as a proxy for the selling price as usual in many other
cases (Cheshire and Sheppard 1998, Orford 2000, Chasco and Le Gallo, 2013). In total,
5,541 housing prices were finally recorded after the corresponding consolidation and
geocoding processes.

As a benchmark model, we first specify a standard hedonic house price model with a
broad set of explanatory variables: twenty-two are attribute variables and fourteen are
accessibility measures, since they are frequently advertised by real estate agents and
often capitalized in housing prices. Additionally, in order to proxy all the micro-
geographic determinants that buyers and sellers can observe, but are hidden for the
econometricians, we also include the Earth coordinates of latitude and longitude plus
fifty dummy variables corresponding to the seven central districts and forty-three
neighborhoods, which can be considered as contextual variables (e.g. Anselin and
Lozano-Gracia 2008).” Table 4 contains a listing of all variables together with their

definitions.

> Districts are official administrative units defined by the Spanish National Statistics Office (INE) and
neighborhoods, which are nested in the districts, are officious divisions recognized by the city council
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The standard hedonic house models are expressed in semi-log form:

5 5 S 14
lpri=b+aax,+agx,+adx, +u, (14)
g=1

s=1 c=1

where Ipri; 1s the log of price of transaction i; S is the number of property structural
attributes, x;; C is the number of accessibility variables x.; G is the number of

geographic contextual variables x,; and u; is a well-behaved error term.

In the benchmark Model 1, we retain 33 significant regressors: 17 structural
characteristics, 12 accessibility indicators and 4 geographical variables, 14 of which are
expressed as orthogonal splines to capture their nonlinear impact on house price. An
ordinary least squares (OLS) estimation of this first model captures almost 90% of
housing price variance (adjusted R*=0.8653), as shown in Table 5.° Table 5 also
contains several diagnostics and specification tests. It appears that model (1) is affected
by multicollinearity problems, as shown by the high value of the condition number test
(4,753), above the acceptable limit of 30-40 (Belsley 1991). The Jarque-Bera statistic,
which takes on a very significant value (27.43), is an indicator of clear non-normality in
the error terms. The Lagrange Multiplier (LM) for spatial autocorrelation have been
computed for an inverse squared distance matrix for a radius of 375 meters, which is the
minimum distance for which every dwelling has at least one neighbor, and different sets
of (2, 5, 6 and 30) nearest neighbor matrices’. In every case, either the robust LM test
against a spatial error model or its counterpart against a spatial lag model, are very
significant, though the first is always higher. However, because of non-normality, these

LM results must be taken with caution.

Finally, we test the homoskedasticity assumption considering different forms of
variability in the error terms. A significant Koenker-Basset test® (212.04) shows the
existence of heteroskedasticity as a linear function of the independent variables

(conditional heteroskedasticity). In order to investigate the existence of a SGWH form

(http://www.munimadrid.es). Neighborhoods are characterized by certain homogeneity in terms of
population density, infrastructure, historical and socioeconomic features.

® The complete results for the six models are available upon request from the authors.

" The 2 and 30 nearest neighbor matrices represent very narrow and sparser neighborhood specifications,
respectively. As for 5 and 6 nearest neighbor matrices, they are the commonest connectivity structure
after creating Voronoi or Thiessen polygons from the point-data set of dwellings in downtown Madrid.

¥ The Koenker-Basset test is a Breusch and Pagan (1979)’s studentized version suggested by Koenker and
Bassett (1982), which is reported when the errors are non-normal.
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in the errors, we have also computed the Scan, test,” which is quite robust to departures
of normality (section 3.1). This test is significant at 5% for six clusters. Particularly,
they are low-variance residual clusters, one of which is the MLC with 1,324
observations (Figure 3).

At this point, we do not have enough information to identify the causes for which the
LM and Scan, tests reject the null: spatial dependence, SGWH or instability in the trend
of the spatial process or combination of all these issues. We first deal with instability of
spatial trend and conditional heteroscedasticity. In Model 2, dummies for districts and
neighborhoods have been included in order to check whether the existence of spatial
real-estate submarkets. However, as Table 5 shows, misspecification problems are still
present with all LM tests remaining high values. The Scan, test identifies 5 low-
variance significant spatial clusters broadly extended across the eastern side of
downtown Madrid (Figure 3). Model 3 operates a change of strategy focused on
reducing conditional heteroscedasticity with a more parsimonious model. Interaction
variables are also allowed, heteroskedasticity is carefully evaluated with the Koenker-
Basset test so that the significant —but heteroskedastic— regressors are excluded (column
1, Table 6). This model captures practically the same housing price variance than the
previous ones (adjusted R’=0.8491). Though still high, the condition number test

reveals a significant reduction in multicollinearity (64).

Although Model 3 eradicates conditional heteroskedasticity, the Scan, test still
rejects the null assumption of a common variance. It identifies three significant low-
variance spatial clusters and two high-variance ones, though they are smaller in size.
Therefore, while this strategy allows considerably better results than the previous
specifications, the model residuals are still affected by spatial autocorrelation and/or
groupwise heteroskedasticity, which could be interacting with each other and it is not
possible to know the source of instability. Thus, in order to avoid possible oversizing of
the Scan, test in presence of spatial autocorrelation (section 4), we propose to remove
this effect first and isolate SGWH in the residuals.

Due to the presence of splines and interaction variables, it is not meaningful to
estimate a spatial Durbin model. We therefore estimate firstly a SEM (Model 4) and
secondly the SAR model (Model 5), both with a 5-nearest neighbor spatial weight

? Running on a desktop with Inter(R) Core i7 with 2.93 GHz, and 12Gb of Ram, the elapsed CPU times
for performing the Scan, test -in this case, for 5,541 observations- was 1,373 seconds.
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matrix, which represents the most common connectivity structure of this sample (see
Table 6, columns 2 and 3)."° Since ML is not appropriate when the error terms are not
normally distributed, we use general method of moments (GMM) and spatial two-stage
least squares (STSLS), respectively. Either the Anselin-Kelejian or the Moran’s 7 test on
the errors do not allow to accept the null of no spatial autocorrelation, and the Scan, test
detects error variance clusters, particularly for the SEM.'" Consequently, we estimate a
SARAR model (Model 6) with a spatial lag dependent variable and a spatial
autoregressive process in the error terms. The SARAR model is estimated by a three-
step procedure (see Table 6, column 4), which combines spatially weighted least
squares with GMM (Anselin and Rey 2014). This is the only model capable of
absorbing spatial autocorrelation in the residuals whatever spatial weights matrix is

being used (in Table 6, column 4, we have shown the results of the Moran’s / test).

Nevertheless, the Scan, test cannot accept the null, since there are still three
significant spatial clusters. Therefore, once conditional heteroskedasticity and spatial
autocorrelation are controlled, a certain degree of spatial groupwise heteroskedasticity
persists. There is a persistent big cluster with 816 observations located in the eastern
side of Central Almond, which contains residuals with a lower inside dispersion and
higher outside dispersion. That is, in this area the model fits significantly well house
prices, compared to the rest of the sample, probably because it is located in a compact
cohesive zone, the ‘Retiro’ district, which is one of the last urban developments of
downtown Madrid built in the middle of the last century (Martinez 2014). Conversely,
there are two smaller high-variance clusters at the northwestern neighborhood of
‘Valdeacederas’ (182 observations) and part of the central neighborhoods of
‘Embajadores’, ‘Cortes’ and ‘Universidad’ (23 observations), where the model tends to
both overestimate and underestimate the observed prices due to the existence of
unobserved local variables and housing micro-markets. In effect, these are older city
developments placed in well-communicated quarters close to cultural amenities, in
which modern and degraded buildings coexist, leading to gentrification processes and

some kind of property speculation (Lekovi¢ 2013, Garcia 2014, Muiioz 2014, Camacho

' In fact, the most significant specifications of the spatial weights matrix are achieved by sparser
neighborhood structures (2, 5 and 6-nearest neighbors), with respect to broader ones (30-nearest
neighbors and inverse squared distance). Consequently, house price spatial spillovers in downtown
Madrid are operating —ceteris paribus— at a reduced scale.

11 The scan, test has a similar performance when computed for GMM estimations than in ML. Complete
results are available from the authors under request.
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et al. 2015, von Breymann 2017). These effects would have been very difficult to
identify without the Scan, test.

Because we do not have additional variables able to control for this remaining
heteroscedasticity, we perform the KP-HET inference of the coefficient covariance
matrix, proposed by Kelejian and Prucha (2010), which is robust to the presence of

spatial heteroskedasticity in the error terms.

6. Conclusion

As pointed by Anselin and Bera (1998, p. 238), spatial autocorrelation and
heteroskedasticity may be observationally equivalent in cross-sections: ‘For example, a
spatial cluster (...) of extreme residuals may be interpreted as due to spatial
heterogeneity (e.g., groupwise heteroskedasticity) or to spatial autocorrelation’. In the
same vein, Mur and Angulo (2009) show that most patterns of SGWH are
indistinguishable from the cases of spatial dependence or heterogeneous mean values.
Hence, there is a high risk of misinterpreting the symptoms, especially if the variance
follows some regular spatial pattern. Obviously, if the symptoms are misinterpreted,
decisions will be erroneous and the inference probably wrong. Therefore, it is of great
practical importance to develop tests capable of detecting different forms of spatially
structured heteroskedasticity. Our impression is that the Scan test is a first step towards
tackling this problem.

In this paper, we have shown that the Scan test is a simple and powerful method
to identify SGWH in the residuals of a regression model. The principal advantage of
this test is that it is not necessary to provide information about the pattern of instability
in the variance. Moreover, an output of this test is to indicate the localizations of the
spatial clusters of observations with higher (or lower) variances. This information
supplied by the test is vital information to improve the model specification. We think
that both tests (spatial dependence and SGWH) must be used in a correct exercise of
specification for spatial regression model. The way these tests can be combined in a

specification search is left for future research.
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TABLES

Table 1: Estimated size for the Scan test. Percentage py-value <0.05
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n DGP1 DGP2 DGP3 DGP4 DGP5 DGP6a DGP6b DGP7

36 0062 0051 0077 0073 0062 0052  0.047  0.053

89 49 0053 0050 0069 0063 0055 0055 0.051 0.046

gn £ 100 0056 0051 0054 0049 0054 0046 0052  0.066
20 225 0043 0065 0046 0042 0050 0.064 0050  0.055
—§ 400 0.045  0.057  0.050  0.055  0.050  0.050 0.049 0.043
'§ DGP1 DGP2 DGP3 DGP4 DGP5 DGP6a DGP6b DGP7
Q 36 0054 0054 0064 0081 0056  0.045 0.047  0.051
§ S%, 49 0054 0057 0067 0062 0050  0.058  0.055  0.041
& §o§ 100 0.054  0.043  0.046  0.051 0053 0048 0060  0.058
E S 225 0057 0044 0059 0057 0067 0039  0.051 0.056
400  0.051  0.048 0052 0055  0.054  0.048  0.053  0.055

1000 iterations with 999 boots

" Hexagonal lattice

™ Coordinates X, Y=U(0,1)
™" Q is a set of elliptic windows with eccentricity of ¢ = 1, 2, 3 and 4 and rotation angles 6=m(2k+1)/18; k=0,1,...,8
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Table 2: Power of the Scan, tests with elliptic windows . Percentage p-value < 0.05
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Table 3: Performance Scan, test in presence of spatial pattern in mean (elliptic

windows). Percentage pp-value<0.05

DGPRa: SAR

DGP9a: SEM

DGP8b:
HSAR

DGPO9b:
HSEM

DGP10a

DGP10b

n

p=0 p=0
2 5 8

A=0 A=0 2A=0
2 5 8

p=0
5

A=0
2

A=0
5

Lo
W

Stro
ng

Lo Stro

w ng

36

49

10
0
22
5
40
0

Regular lattice

0.05 0.20
4 4 5
0.05 0.25
1 3 8
0.04 0.40
0 0 5
0.05 0.62
3 4 9
0.06 0.78
1 1 9

0.06 0.07 0.15
2 1 2
0.05 0.07 0.17
0 9 0
0.05 0.09 0.35
1 5 7
0.04 0.10 0.62
9 3 4
0.04 0.12 0.74
6 1 0

0.05
0
0.07
0
0.08
6
0.10
4
0.12
0

0.05
6
0.04
0
0.05
4
0.05
4
0.06
6

0.04
8
0.07
8
0.08
8
0.10
8
0.11
2

0.0
53
0.0
52
0.0
45
0.0
48
0.0
52

0.11
4
0.09
2
0.17
6
0.42
1
0.57
2

0.0 0.07
64 1
0.0 0.10
49 2
0.0 0.59
44 0
0.0 0.96
41 5
0.0 1.00
48 0

36

49

10
0
22
5
40
0

Irregular lattice

0.05 0.35
3 6 6
0.05 0.58
8 7 4
0.06 0.74
3 9 0
0.05 0.91
2 9 8
0.06 0.96
8 6 4

0.05 0.07 0.33
5 3 2
0.05 0.10 0.49
0 3 3
0.05 0.11 0.71
5 8 4
0.06 0.16 0.89
0 P 6
0.06 0.17 0.96
0 8 4

0.08
4
0.08
6
0.11
4
0.14
8
0.20
0

0.06
6
0.07
2
0.06
4
0.05
0
0.07
4

0.06
8
0.06
8
0.09
6
0.13
2
0.16
2

0.0
60
0.0
59
0.0
59
0.0
53
0.0
52

0.06
1
0.09
8
0.12
6
0.59
9
0.63
5

0.0 0.11
47 4
0.0 022
54 7
0.0 0.36
49 1
0.0 0.99
40 5
0.0 1.00
48 0




Table 4: Variables used in the model
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Var.  Description Source  Units  Var. Description Source  Units

Ipri Sale price Idealista log €

Structural characteristics: Variables of accessibility, distance to:

flol Third and higher Idealista 0-1 dcbd  The business center (CBD) Self- Km.
floors plus houses elabor.,

flbs Basement and semi-basement 0-1 dsol Historical center C. Km.

f1b0 Basement, semi-basement and 0-1 dm30  M-30 road-belt Madrid, Km.
ground floor SABI

atti Attic 0-1 dm40  M-40 road-belt Km.

hous  House (detached, semi-detached, 0-1 dmet  Closest metro station Km.
Tow)

deta  Detached house 0-1 dtra Closest train station Km.

sdet  Semi-detached house 0-1 dhub  Intermodal transport hubs Km.

hflo House floors numb. dair International airport Km.

hplo  House on a plot 0-1 dpar  Closest green area (over 1 Ha) Km.

dupl  Duplex 0-1 dhip Closest hypermarket Km.

beds  Bedsit 0-1 dsho  Closest shopping centers Km.

Isgqm  Surface logm®  dkil Closest ‘category killer’ Km.

center' >
bedr  Bedrooms numb. dser Service providers’ outlets: Km.
retailing, hotels and restaurants

refb  Refurbished 0-1 hot5 Closest 5-star hotel Km.

refo  Needs renovation 0-1 Geographical characteristics:

new  New 0-1 D District 1 to 7 Self- Km.

nele  Building without elevator 0-1 N Neighborhood 1 to 43 elabor., Km.

inne  All the rooms are facing an inner 0-1 xcoo  Longitude coordinate GIS, Km.
courtyard C.

outd  All the rooms are facing outdoor 0-1 ycoo  Latitude coordinate Madrid Km.
public areas

gara  Garage space - xyco  Longitude x Latitude Km.

0-1
terr Dwelling with terrace 0-1
view  Nice views 0-1

12 A “category killer’ is marketing industry jargon for big-box retail chains, such as Leroy Merlin that has
such an advantage over other firms in its market that competing firms find it almost impossible to operate
profitably and have to leave the industry, thereby increasing the dominant firm's concentration ratio.
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Table 5: Regression diagnostics for Models 1 and 2

Model Model 1 Model 2 Model Model 1 Model 2
Basic model  Spatial submarkets Basic model Spatial submarkets

Estimation OLS OLS Estimation OLS OLS

Adjusted R* 0.8653 0.8669

Condition # 4753 22829

Jarque-Bera 27437 34,127

Koenker-B. 212.04™ 240.35"

RLMe, 2nn 107.90°" 76.437 MLC, cases  Low, 1324 Low, 727

RLM], 2nn 79.41°" 67.81°" SCl, cases Low, 145 Low, 126

RLMe, 5nn 240.73" 141.10"" SC2, cases Low, 95 Low, 65

RLMI, 5nn 113.96™" 99.49" SC3,cases  Low, 1048 Low, 1791

RLMe, 6nn 198.08"" 107.49™" SC4, cases Low, 72 Low, 190

RLMI, 6nn 118.64™" 89.90"" SC3, cases Low, 120

RLMe, 30nn 538.00"" 196.46""

RLMI, 30nn 118.64™" 98.88"""

RLMe, dinv 154.38" 94.39"

RLM], dinv 88.817" 88.38"""

Note: *** significant at 1%, ** significant at 5%, * significant at 10%, Koenker-B is Koenker-Basset test, RLMe and
RLMI are the robust LM tests for spatial error and spatial lag models, respectively, 2nn, Snn, 6nn, 30nn are the 2, 5,
6, 30 nearest neighbor W matrix, respectively, dinv is an inverse distance W matrix for a distance band of 375 meters,
MLC is most likely cluster, SC is secondary cluster.

Table 6: Main regression results for Models 3, 4, 5 and 6

Models Model 3 Model 4 Model 5 Model 6
Submarkets & SEM model SAR model SARAR model

interactions (W =5 nn) (W =5nn) (W =5nn)
Estimation OLS GMM S2SLS GMM-KPHET
Spatial variable coefficients:
Rho - - 0.1652"" 0.1618""
Lambda - 0.4056""" - 0.2684""
Goodness-of-fit and diagnostics:
Adjusted -R* 0.8491 - - -
Jarque-Bera 38.66 - - -
Koenker-B. 12.108 - - -
Quasi-White ; 59.047" 59.180" 48.302"
RLMe, 5nn 357.56"" - - -
RLMI, 5nn 202.10™ - - -
Moran’s I - 0.2612"" 0.1236 -0.0043
Anselin-Kel. - - 158281 -
MLC, cases Low, 1253 Low, 27 Low, 1231 Low, 816
SCl1, cases Low, 19 Low, 1307 High, 182 High, 182
SC2, cases Low, 541 High, 53 Low, 19 High, 122
SC3, cases High, 65 Low, 19 High, 163 -
SC4, cases High, 57 Low, 541 - -
SCS5, cases High, 31

High, 389

Note: *** significant at 1%, ** significant at 5%, * significant at 10%, Koenker-B is Koenker-Basset test, RLMe and
RLMI are the robust LM tests for spatial error and spatial lag models, respectively, Anselin-Kel. is the Anselin-
Kelejian spatial test on the STSLS residuals, W is spatial weight matrix, Snn is the 5 nearest neighbor W, MLC is
most likely cluster, SC is secondary cluster.
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Figure 1: Spatial heteroskedastic patterns: discrete and continuous processes (n=100).

SGWHI1 — SGWH2

SGWH3 — SGWH4

a if (cx,cy)eZ'

h(ex,,cy,) = (exi.cy,)
b if (cx,,cy,)eZ'

in SGWHI a=0.9;b=0.1

in SGWH2 a=0.7b=0.3

a if cy,<Me,
h(expey)=1

b if cy,>2Me,
in SGWH3 a=0.9;b=0.1
in SGWH4 a=0.7,b=0.3

SGWHS5 — SGWH6

b e

a if (cx,cy)eZ?
h(cx,,cy,) = (exi.cy,)

b if (ex,cy,) eZt
in SGWHS a=0.9;b=0.1
in SGWH6 a=0.7,b=0.3

SGWH7

SGWHS

SGWH9

= exp[-O‘OS(cxl - Me, )’ +(cy, - McY)z]

y¢
max(yc,)

h(ex,,cy,) =

h(cx;,cy,)=0.5]cy, - Me, |
><exp|:-0.05(cxi - Me, )’ +(cy, - Mey)z]

Me, is the median of the cx coordinates. Me, is the median of the cy coordinates.

+

i the size of the ellipse Z is variable: [n/10] cells

the circle Z has the same size, 7 cells, for all the cases
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SGWH5

1P<005  005<LP,s025  025<Lp,<0.50 ] 0.50<tp,s0.75 ] 075<tp <095 [ P> 0.95

* Border in red for the true cluster
Results for n=36, 49 and 400 non report to save space (avalaible under request).
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ACCEPTED MANUSCRIPT

Figure 3: Significant spatial groupwise heteroskedasticity clusters of the error terms

= -

—_— B

Model 1: Basic (OLS) Model 2: Submarkets (OLS) Model 3: Submark. & interact. (OLS)

MM), kn5

Note: Brown and orange: high-variance clusters significant at 5% and 10%, respectively; dark and light blue: low-
variance clusters significant at 5% and 10%, respectively; white: rest of the observations.
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APPENDICES:
Appendix 1
Proof Theorem 1.
Let Z1Q
(& n, §h (Z) )

Scans(Z):nZlgan[l(HA) - l(Ho)]:rgfg( 2nLln(§2 z )+—ln(%)J
Note that
2 1 g ORI W N =
Sy, = a(x, -x) = nZSHA(Z)+(n - nZ)SHA(Z)

i=1
therefore

§2 ) (nzféi @ ) ) n (8, @ ) ol8@ )
LAZ O_JZIHL_L”A - -IJHJ@_L”A — -1J if —LAZA - -lJzO
sHA(Z) n SHA(Z) n SHA(Z) n SHA(Z)

and here

Scan _(Z) @ max 2n

where we note:
1_ a2 A2 (7
d= SHA(Z)/SHA (Z)
Now, consider the case of the alternative hypothesis Ha: {x;} 1.i.d. normal processes

with E[x;]=u, with a set Ze® where Sé =d S%with 0#1 (note that if 5>1 the alternative

hypothesis would indicate a high variance cluster (and if 0<6< 1, a low variance cluster
would be indicated). We prove the consistence of the Scan test.

Let 0<C<+o0 with CER. By definition, the Scan, is consistent if:
lim P(Scan_(Z)>C|, )=1; "C>0

Using the previous result:

lim P(Scan, (2) > C|, ) =lim P(max2n, (d - In(d) - 1) >Cl, )=lim P((d - In(d) - 1) > )

Note thatf (8) =(8 - ln(a) - 1) is a positive function and reaches a minimum for d=1

(/(1)=0). Therefore, it is necessary to have n, — 400 and 1/n an infinitesimal of high
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order than 1/nz for the Scans test to be consistent. In this case, as §’, (Z) and §7 (2)

n,—+00, N—>+00

are consistent d >d and therefore

n—oo
HZ—)d)

lim p((a ~In(d) - 1) > % ) =P((d - In(d) -1)>0)=1

Appendix 2

Theorem 2. If the SAR process y is defined by y = (I - rW)_l(Xb+ e); e=N(0,5°W),
where W=(w,)=(1-rW)'(I- rW)", then the spatial process H defined as

H=j "y, with j=diag(w,,,..,W_), is a homoscedastic SAR process (HSAR) and

e

H=N(XB,o>(I-pW) ¢ ' (I-pW" ") with X =¢"*X and W = "*W¢".

Proof.
The

E[H]=E[o"y]=¢ "XB=XB
and
Var(H)=s?] "(I- rW)"' - rw)'j " =
=s?j -1/2(j (1= PW )| -1/2)"(j (- PW ) 1/2)'1 j =
— S2(I _ rJ —1/2WJ' 1/2)-1(I > rJ 1/2W|j —1/2)—1 —

=o’(1-pW) ' (I=pW""
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Highlights

We propose a test for the presence of spatial groupwise heteroskedasticity

The test output show spatial clusters of observations with higher/lower variances
The test output is vital to improve the spatial regression model specification
Spatial dependence and spatial groupwise heteroskedasticity tests can be used
jointly

An application on houses prices in Madrid shows the usefulness of this test



