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Abstract 

This work studies the influence of the operating conditions used in the pyrolysis of 

grape seeds on the morphology and textural properties of the chars resulting. Flash and 

conventional (283 Kmin-1 heating rate) pyrolysis have been used within a wide range of 

temperature (300-1000 ºC). The effect of a pretreatment for oil extraction has also been 

studied. The porous structure of the chars was characterized by adsorption of N2 at 77 K, 

Ar at 77 K and 87 K, and CO2 at 273 K and mercury intrusion porosimetry. The 

morphology was analyzed by scanning electron microscopy. All the materials prepared 

revealed an essentially microporous structure, with a poor or even negligible 

contribution of mesopores. Increasing pyrolysis temperature led to higher specific 

surface areas and lower pore size. The highest specific surface area values occurred 

within 700-800 ºC, reaching up to 500 m2g-1 with pore sizes in the 0.4-1.1 nm range. No 

significant morphological changes were observed upon carbonization so that the 

resulting chars were granular materials of similar size than the starting grape seeds. The 

hollow core structure of the chars, with most of the material allocated at the periphery of 
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the granules can help to overcome the mass transfer limitations of most common (solid 

or massive) granular activated carbons. The chars showed a good mechanical strength 

during attrition tests. These chars can be potential candidates for the preparation of 

granular carbons molecular sieve or activated carbons raw materials. 

Keywords: Biomass; Pyrolysis; Microporous carbon; Char; Vitis vinifera. 

1. Introduction

Agriculture, forestry and, in generally, biomass residues, are being increasingly 

considered as alternative resources for energy, chemicals and materials such as activated 

carbon. These by-products have proved to be promising raw materials for the 

production of activated carbons because of their availability at a low price [1]. 

The two main types of conversion processes used to obtain value-added products from 

biomass are thermochemical and biochemical. Thermochemical conversion of biomass 

includes gasification, pyrolysis, hydrothermal upgrading and combustion. Pyrolysis 

provides a solid carbon residue (char) with remarkable differences from starting 

biomass in composition, porosity, specific surface area, pore structure and 

physicochemical properties. The textural properties and ash mass fraction of grape seeds 

provide a useful basis for the preparation of activated carbons by different so-called 

physical and chemical activation methods, like partial gasification and catalyzed 

pyrolysis. Chars and activated carbons have been obtained from agricultural and fruit 

processing residues such as fruit stones, seeds and shells [2 - 4] widely available at low 

cost. It has been shown that not only the precursor but also the pyrolysis conditions 

have an important effect on the characteristics of the resulting chars [5, 6], which 
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significantly affect to the quality of the subsequent activated carbons. Thus, starting 

materials with inadequate ash and/or carbon mass fraction or morphology are not 

recommended for the preparation of activated carbons. On the other hand operating 

conditions such as excessive temperature can lead to the collapse of the porous structure 

by thermal stress [7]. 

There are a variety of seed-containing fruits that have been considered for the 

preparation of activated carbons. However, little attention has been paid to grape seeds, 

even though they represent up to 15 % of the solid residues from the wine industry. 

Grape seeds are mostly burnt as fuel and in some extent used for cattle feed, despite of 

the fact that they are the source of oil for human consumption [8, 9], this application 

being so far minority. 

Grape seed is an inexpensive and abundant starting material that has received little  

attention in spite of the fact that its valorization by pyrolysis can be an interesting 

source of gas and liquid fuels and carbon materials. The aim and significance of this 

research is to assess the potential of the carbon materials obtained, stressing the unique 

morphology of the char and its very narrow micropore size distribution. The granular 

morphology and this pore size distribution are a much demanded characteristic with the 

view in applications as activated carbon precursors for molecular sieves with potential 

use for gas separation [5], CO2 capture [10] or energy storage [11] since it provides easy 

handling and low head loss when used in fixed beds. 

To achieve a correct and complete characterization of chars and activated carbons with 

respect to porous structure, N2 adsorption-desorption at 77K has been widely used for 

the determination of the main textural parameters such as specific surface area or pore 
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volume by the BET method [12]. However, the low temperature together with the size 

of N2 molecule can lead to erroneous determination of the adsorption isotherm in 

samples with narrow micropores [13]. Ar adsorption at 77 and 87K has been used as an 

alternative for a better determination of textural properties since the Ar molecule has a 

higher mobility than N2 [14]. Still, for samples with narrow microporosity, this 

characterization is insufficient. For this reason, CO2 adsorption isotherms at a higher 

temperature of 273K [15, 16], are used generally as a complement to nitrogen because 

that higher temperature facilitates the entry of CO2 into the narrow micropores, even 

lower than 1nm, allowing a more complete characterization of porosity. 

Pore sizes are classified in this study according to the International Union of Pure and 

Applied Chemistry (IUPAC), that is, micropore (width < 2 nm), mesopore (2 nm < 

width < 50 nm) and macropore (width > 50 nm). In turn, micropores have been 

classified in two subgroups, namely ultramicropores (width < 0.7 nm) and 

supermicropores (0.7 nm < width < 2 nm) [17]. 

The objective of this work is to study the preparation of granular porous materials from 

grape seeds by a single pyrolysis step. The influence of seeds pretreatment, pyrolysis 

temperature and heating rate (flash and conventional pyrolysis) on the porous structure 

and composition of the chars was evaluated. 

2. Materials and methods

The seeds used in this study were collected from grapes of the red variety “Tinta de 

Toro” harvested for red wine manufacture in Toro (Zamora, Spain). The seeds were 

separated just after the fermentation of the must (grape juice), and were not treated with 
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any chemical additive. The seeds were washed with distilled water repeatedly until no 

turbidity was observed, dried at 105 ºC for 1 day and stored at room temperature until 

use. The sizes of the raw seeds is between 2-3mm. 

2.1. Pretreatment 

The seeds were separated in two fractions. The first of them was pyrolyzed just after the 

preparation described above. These seeds were designated as NEX (non-extracted). The 

other fraction was subjected to n-hexane extraction for 24 h in a Soxhlet apparatus to 

remove oil [8]. After extraction the seeds were washed with water and dried at 105 ºC 

for 1 day. These seeds were designated as EX (extracted). 

Oil mass fraction of grape seeds depends on grape variety, though the usual range is a 

mass fraction of 10-16 % of the dry seed [8], though in this instance it is less than 9 %. 

2.2. Pyrolysis 

Figure 1 shows a schematic diagram of the pyrolysis unit. Pyrolysis was carried out in a 

vertical quartz tube (68 cm length and 4.8 cm i.d.) placed in a sandwich-type electrical 

furnace. A 100 mL min-1 nitrogen flow (all flows were referred to normal condition) 

was continuously passed downward. Two K-type thermocouples placed on the furnace 

wall and at the central part of the reactor (hot zone) were used to control the pyrolysis 

temperature. A quartz basket with 7-8 g of grape seeds was maintained in the cold zone 

of the furnace for air removal from where it was displaced to the hot zone by means of a 

rod. After the heat treatment the basket was cooled in the cold zone and finally the char 
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was recovered and weighted to determine burnoff [18]. The operating variables tested 

were the heating rate (slow heating (SH): 283 Kmin-1 and FH: flash heating) and 

temperature (300 to 1000 ºC). For the slow-heating samples, the basket was placed in 

the central part of the reactor, air was purged and then heating of the system was started. 

For the flash-heating samples, the basket with the grape seeds was kept in the cold zone 

of the reactor until the central part reached the desired pyrolysis temperature; then the 

basket was moved into the hot zone and the sample reaches the operating temperature in 

few seconds after its sudden displacement into the hot zone of the reactor. Flash 

pyrolysis has been defined as a process characterized by rapid devolatilization in an 

inert atmosphere, at high heating rate and reaction temperatures between 450 and 

1000ºC [19]. 

Figure 1. 

2.3. Samples characterization 

Prior to pyrolysis runs, the specimens were characterized by TGA. This technique 

measures the weight change of a sample with temperature and/or time in a controlled 

atmosphere, providing characterization of materials that lose o gain weight due to 

decomposition, oxidation or dehydration. TGA of the seeds was obtained in a Mettler 

SDTA851e thermobalance in order to learn on the thermal decomposition of this 

material. A seeds sample weight of about 400 mg was used in TGA runs with a heating 

rate of 283 Kmin-1 under 100mLmin-1 N2 flow. The elemental composition of chars (C, 

N, H and S) was analyzed by a LECO CHNS-932 apparatus. Specific surface area and 
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pore volume of the chars were measured by adsorption of N2 at 77 K, Ar at 77 K and 87 

K, and CO2 at 273 K in an automated volumetric gas adsorption Micromeritics Tristar 

3020 with a VacPrep 061 degas system. The samples were previously outgassed for 7 h 

at 150 ºC to an atmospheric pressure. The surface area of the samples was calculated 

from N2 isotherms using Brunauer-Emmett-Teller equation (SBET) [12] and the t-method 

for the micropore volume, whereas Dubinin-Astakhov (DA) model was applied to the 

CO2 isotherms to determine the DA surface area (SDA) and micropore volume [20] and 

the Density Functional Theory (DFT method) was used to calculate the micropore size 

distribution [21]. A Quantachrome Poremaster 33 mercury porosimeter was used to 

characterize the meso and macroporous structure of the chars. 

The morphology of the grape seeds and the chars was evaluated by Scanning Electron 

Microscopy (SEM) with a Hitachi S-3000N apparatus. The specimens for SEM 

observation were metalized with gold to prevent electrical charging during examination 

using a Sputter Coater SC502. Imaging was done in the high vacuum mode under an 

accelerating voltage of 20 kV, using secondary electrons. The ash mass fraction of the 

raw material was determined by calcinations at 800 ºC in a crucible for 2 h. 

To obtain samples of the outer layer of chars, the char was subjected to attrition on a 

sieve (1mm opening) in an Orto Alresa vibrating sifter operating at a frequency of 42s-1. 

3. Results

Figure 2 shows the TG curve of EX sample at 283 Kmin-1 heating rate until 900 ºC in 

N2 atmosphere during 200 min. This curve is representative of all samples showing a 

greatest weight loss occurs between 300 and 500 ºC. These results indicate that at 
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temperatures below 500 ºC pyrolysis can be considered incomplete. A pyrolysis time of 

2 h was considered acceptable for the rest of the study. 

Figure 2. 

3.1. Influence of pyrolysis variables 

Table 1 summarizes the pyrolysis yields (dry oil-free basis). In the 300 to 1000 ºC 

thermal range, the yield values obtained are from 70 to 30 %. The pyrolysis yield 

showed as a general trend to decrease when the temperature was increased. Previous 

studies on biomass pyrolysis show the same trend [22 - 34], showing a high yield of 

biochar at low pyrolysis temperatures as a results of incomplete pyrolysis [23, 24]. No 

significant differences were observed between SH and FH samples, although, in general 173 

FH provided slightly lower yields. This observation suggests that sudden devolatization 

gives rise to lower residence time of volatile products within the seeds somewhat 

diminishing the amount of carbonaceous solid formed upon condensation of pyrolysis 

products [32, 33]. 

Table 1. 

The elemental composition of the char samples is summarized in Table 2. Consistently 

with the TG curve (Figure 2) and yield (Table 1), the C percentage of the chars 
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undergoes a significant increase within the 300-500 ºC range up to around 80 % and 

then a progressively slower thermal decomposition allows approaching to 90 % as a 

final charring level. Moreover the trend to increase slightly with the pyrolysis 

temperature is clearly shown even taking into account the results dispersion (around 1-2 

%) that is typical of usual heterogeneity of biomass materials. And while carbon 

percentage increases, hydrogen mass fraction decreased from 6 to less than 1%. 

Previous studies on pyrolysis of different types of biomass show the same trend in the 

evolution of C and H relative mass fractions [24 - 28, 35, 36]. 

The C mass fraction of the EX chars are somewhat higher than those of NEX suggesting 

that the pyrolysis of the oil fraction generates a carbon residue with lower carbon mass 

fraction than the oil-free matter of the seeds. No clear influence of the heating rate on 

the elemental composition of the chars can be concluded in spite of the results in Table 

1, where flash pyrolysis (FH) seems to provoke a somewhat more intense thermal 

decomposition leading to lower yield values. It is important to remark the almost 

negligible sulphur mass fraction of the starting grape seeds, which even diminishes in 

the chars. With regard to N mass fraction, a significant reduction is observed upon 

pyrolysis and the chars show in general percentages lower than 2 %. 

The ash mass fraction of the raw material of the NEX and EX seeds are 2 % and 8 % 

respectively. 

Table 2. 
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3.2. Specific surface area 

Figure 3 shows the 77 K N2 adsorption isotherms of the chars obtained at different 

temperatures. 

Figure 3. 

The BET surface areas calculated by N2 adsorption of the chars are summarized in 

Table 3. Most temperatures tested show that chars of FH series lead to higher specific 

surface area than SH series, particularly for the EX series. The highest adsorption values 

correspond to the chars obtained by flash pyrolysis at an intermediate temperature of 

600-700 ºC. Below that temperature a very poorly developed specific surface area can

be observed in spite of the fact that devolatilization occurs mostly at lower temperature. 

The extraction of oil from the grape seeds does not show a clear effect in the 

development of SBET. The porous structure is dominated by microporosity according to 

the shape of the isotherms with a sharp increase of N2 adsorption at low relative 

pressures followed by a quasi-horizontal branch up to P/Po ≈ 0.95 (Figure 3). 

Table 3. 

To complete the characterization of mesoporous range the char samples was also carried 

out by Ar isotherms at 77 and 87 K. As can be read in Table 3 the results of specific 
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surface area of the isotherms of Ar at 87 K are slightly higher than at 77 K due to the 

increased mobility of Ar molecules. The low values of specific surface area measured 

by Ar adsorption reveals the low contribution of mesopores to the surface area and 

corroborate the results obtained with N2. 

To learn more on the microporous structure of the chars, the CO2 adsorption isotherms 

were obtained at 273 K. As an example, Figure 4 shows the CO2 isotherms of the chars 

obtained at 800 ºC. 

Figure 4. 

 The Dubinin-Radushkevich and Dubinin-Astakhov equations have been used to 

describe micropores filling and the energetic heterogeneity of porous solids [37]. But 

while several studies [38, 39] postulated that the Dubinin-Radushkevich equation 

applies only to solids with a uniform structure of micropores, others [37, 40 - 43] 

proposed a modification of this equation when a microporous solid possesses 

micropores of the same shape but of different sizes. One of them is the well-known 

Dubinin-Astakhov (DA) equation, which can be applied to the description of the 

adsorption on structurally heterogeneous solids [20, 44]. In this work the Dubinin-

Astakhov method is used because of the heterogeneous structure of the samples and the 

better regression coefficient obtained in all cases. 

The values of surface area obtained from the DA method are summarized in Table 4. 

These values are significantly higher than those reported in Table 3 from N2 adsorption, 
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which indicates the existence of a narrow microporosity that become more important as 

the pyrolysis temperature increases. Temperatures below 500 ºC yielded low values of 

surface area which is another evidence of the incomplete pyrolysis at those temperatures 

[23, 24]; understanding this as the incomplete removal of volatile matter from the 

samples, which affects negatively the development of porosity. The surface area 

increased with temperature markedly from 400-500 ºC, peaking around 800 ºC for both 

NEX and EX samples. From 900 ºC the microporous structure seems to collapse during 

pyrolysis, as evidenced by the dramatic loss of specific surface area. Similarly to the 

results observed for the BET (N2) surface area [7, 31, 45]. Flash pyrolysis of the 

extracted grape seeds yielded the highest values of the CO2-DA surface area. 

Table 4. 

3.3. Pore volume 

Figure 5 shows the micropore volume (calculated with the t-plot method from N2

isotherms and with the DA method from CO2 isotherms) of the chars obtained under 

different conditions plotted versus pyrolysis temperature. As can be seen no significant 

development of porosity occurs below 600 ºC. The mesopore volumes were always 

negligible with adsorbed volumes lower than 0.01 cm3g-1 for all the temperature range. 

Figure 5. 
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The micropore volume from CO2 isotherms increases with temperature peaking around 

800 ºC for both NEX and EX samples. From 900 ºC the microporous structure seems to 

collapse during pyrolysis, as evidenced by the dramatic loss of porosity [7, 31, 45]. The 

comparison between N2 and CO2 micropore volume indicates that pyrolysis 

temperatures of 800-900 ºC maximize the contribution of narrow microporosity 

(microporosity below 1nm width). No significant influence of heating rate and seeds 

pretreatment was observed in the micropore volume obtained from CO2 isotherms 

(Figure 5b). 

3.4. Pore size distribution 

The pore size distribution (PSD) is a key element in the characterization of porous 

carbons and a number of methods were developed for the PSD analysis. The density 

functional theory (DFT) is widely used for the characterization of pore structure of 

activated carbons and other porous materials [21]. 

The micropore size distributions calculated from CO2 isotherms by the DFT method are 

shown in Figure 6. For simplicity only the range from 600 to 900 ºC of pyrolysis 

temperature is evaluated since this is the temperature range the relevant porosity 

development was achieved. 

Figure 6. 
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No significant differences were found in the PSD profiles with heating rate within the 

NEX or EX series. On the contrary a sharp difference can be seen between the EX and 

NEX samples in terms of differential pore volume, which is much higher for the EX 

series. This behavior may indicate that the residue of pyrolyzed oil present in the NEX 

samples blocks some pores leading to lower development of microporosity in the 

micropore lower than 1nm. Although Figure 6 shows different PSD profiles depending 

on the pyrolysis temperature, it can be seen that the micropores show widths falling 

mainly within the 0.40 to 0.95 nm range for all series. Furthermore these PSD profiles 

can be considered as bimodal due to the maxima of the adsorbed volume curves 

observed around 0.55 and 0.9 nm pore width. 

Figure 7 shows the mercury intrusion porosimetry characterization of the samples 

obtained for a pyrolysis temperature of 800 ºC. The plotted data correspond to the 

volume of intruded mercury in the 0.01 – 2.50 µm pore size range. As can be observed 

all the samples showed an important contribution of macropores and negligible volume 

of narrow mesopores. The higher volume was obtained for the samples from flash 

pyrolysis reaching values above 0.5 cm3g-1 and showing profiles centered around 0.4 

µm, while samples obtained by slow heating showed values of adsorbed volume much 

lower, particularly in the narrow mesopore range, and with a pore diameter centered 

around 0.2-0.3 µm. The higher porosity of the samples obtained by flash heating can be 

attributed to sudden release of pyrolysis gases that leads to channeling [46]. 

Figure 7. 
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Figure 8 shows the macropore volume determined by mercury porosimetry for the chars 

prepared by flash pyrolysis at different temperatures. A gradual increase can be 

observed with pyrolysis temperature peaking around 800 ºC. The porosity is, in general, 

higher for the chars prepared from extracted seeds. 

Figure 8. 

3.5. Morphological analysis 

The grape seeds were examined by scanning electron microscopy to study their 

morphology and surface structure. Figure 9 shows the char produced by flash pyrolysis 

at 800 ºC of extracted seeds. For all the specimens examined the char maintained the 

granular morphology of the raw seed with no significant changes in size, even upon the 

most severe pyrolysis conditions, although some of the specimens showed opening of 

the coat (Figure 9), presumably due to internal overpressure during pyrolysis. 

Figure 9. 

The outer surface exhibits smooth and homogeneous texture (Figure 10a) resulting from 

the carbonization of the cuticle tissue of the coat, with no relevant presence of cracks 

and large macropores, that show that the structure of the outer surface was preserved in 
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the char after pyrolysis [34]. Depending on the applications of the char, the outer layer 

can be an undesirable resistance for the diffusion of molecules, or can be potentially a 

barrier for separation. On the contrary, the inner layers exposed by the opening of the 

outer layers of the coat (Figure 10b) showed a well-developed network of channels and 

macropores that can provide favorable conditions for diffusion [47]. 

Figure 10. 

The material allocated inside the coat, i.e. albumen and embryo, is mostly removed 

during pyrolysis due to the high content in volatile components, resulting in a low 

density or carbon foam-like material, as can be seen in Figure 11a. A closer view of the 

carbonized coat (Figure 11b) shows that it has an average thickness of around 500 µm, 

and it is composed of three layers of differentiated structure, all of them with an 

important presence of channels and macropores. Therefore, the char has a hollow core 

structure, which together with the macroporous structure can favor the diffusion of 

molecules in adsorption or catalysis applications [47]. 

Figure 11. 

To study the pore structure of the different layers of the char particles EX800FH sample 

was subjected to attrition in a vibrating sifter. The samples have a suitable balance 
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between surface area and burn-off, so that the integrity and strength of the particles can 

be preserved. During the attrition tests three fractions of the powder passing through the 

sieve openings (<1 mm) were collected at regular intervals of 2 h. The results in Table 5 

show a rather homogeneous development of surface area throughout the particle wall. 

The most noticeable differences can be found for SBET, the outer layers showing 

significantly lower values of SBET, which suggest the prevailing generation of narrow 

porosity in the inner layers. In the case of SDA a similar behavior was observed. 

It is also remarkable that the char particles have a good resistance to attrition, since only 

7.5 % of the initial mass was lost in the first 2 h of the test. This resistance increase in 

the inner layers. The strength of the particles is of great importance for the sake of 

handling and performance in potential applications. 

Table 5. 

4. Conclusions

The influence of operating conditions on the pyrolysis of grape seeds was investigated 

in order to obtain a granular char with potential application as molecular sieve or 

precursor of activated carbon. This agricultural by-product appears to be suitable for 

activated carbons because of their preparation its low sulfur (less than 0.15 %) and ash 

mass fraction. 

The results obtained in this research show that interesting carbonaceous materials can be 

prepared from grape seeds in a single pyrolysis stage. The resulting chars show a 



18 

bimodal pore size distribution (micro and macropores). In the optimum conditions, upon 

oil extraction pre-treatment of seeds followed by flash pyrolysis at 800 ºC, materials 

with specific surface area around 500 m2g-1, a micropore volume of 0.2 cm3g-1 and 

narrow distribution centred within 0.4-0.9 nm. Narrow mesopore volume was negligible 

and the contribution of macropores was very important (1.1 cm3g-1). In the case of the 

chars obtained from grape seeds a hollow core structure is obtained, with most of the 

adsorbent material allocated at the outer part of the particle thus minimizing the 

diffusion path. This structure combines the benefits of granular materials with diffusion 

rates comparable to those of powdered materials. 

The pyrolysis process showed a great effect on the final product, and careful selection 

of carbonization conditions significantly affect to the porous structure of the resulting 

carbons. 

So the results and significance of this research assess the potential of the carbon 

materials obtained, stressing the unique morphology of the char and its narrow 

micropore size distribution. It is relevant that the operating conditions that favor the 

production of the most interesting chars are compatible with the pre-extraction of 

valuable oil and with the pyrolysis of grape seed to promote gas or liquid products. 
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