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La vida de un gran científico en el laboratorio no es 

idílica, como se suele creer, sino que acostumbra a ser 

una lucha obstinada contra las cosas, contra el entorno 

y, ante todo, contra sí mismo.   Marie Curie
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 INTRODUCTION 

Water is a scarce resource, essential for life, but it can be endangered by the 

anthropogenic activity. According to the United Nations (UN), approximately 

70% of water usage goes for agricultural purposes, 20% for domestic use and 

10% for industrial applications [1]. Nonetheless, this distribution varies 

depending on the economic development of the countries. Figure 1.1 shows the 

latest available water distribution data for Spain, provided by the National 

Institute of Statistics [2]. As may be seen, the industrial sector gets around 20% 

of the total water consumption.  

 

Figure 1.1. Water usage in Spain, 2016 [2] 

Whilst each of these activities results in a deterioration of water quality, 

industrial effluents carry the most concentrated and toxic pollution. Hence, in 

order to fulfill target 6.3 of the UN Water Agenda for Sustainable Development, 

which aims to improve water quality by reducing pollution, eliminating waste 

discharges and minimizing the release of hazardous chemicals and materials, 

efficient water treatments must be implemented [3].  

Industrial water treatments can be classified in two main groups: non-

transformative and transformative methods, as listed in Table 1.1. The first one 

implies the concentration or transference of the pollutant into another phase, 

without changes in its chemical structure. Thus, they are usually employed as a 

pretreatment prior to chemical depollution. On the other hand, the 

transformative methods aim for the partial or total degradation of the 

contaminants towards CO2 and water or non-toxic compounds. The selection of 

an adequate technology relies on economic and environmental factors, as well 

as the pollutant nature.  
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Table 1.1. Industrial wastewater treatments classification. 

Non-Transformative  Transformative  

Adsorption 

Filtration 

Stripping 

Reduction 

Biological oxidation 

Chemical 

oxidation 

Supercritical wet oxidation 

Wet air oxidation 

Advanced oxidation processes 

 

 NON-TRANSFORMATIVE METHODS 

Amongst the non-transformative processes, adsorption is one of the most 

commonly employed. It consists on the retention of soluble or suspended 

species on the surface of solid adsorbents. The most common adsorbents are 

activated carbon [4, 5], zeolites [6, 7], clays [8, 9], etc. These are typically 

employed as tertiary treatment in wastewater treatment plants to retain 

organic compounds in relatively diluted streams. However, the spent 

adsorbents must be efficiently regenerated in order to avoid hazardous waste 

generation.  

Filtration processes are based on the use of membranes as semipermeable 

physical barriers, which allow pollutant separation from a water stream. As a 

result, two effluents are generated, a clean permeate and a concentrated 

polluted stream. Depending on the membrane pore diameter the filtration 

processes are classified as: microfiltration (MF, 10 μm-100 nm) [10], 

ultrafiltration (UF, 100-10 nm) [11, 12], nanofiltration (NF, 10-1 nm) [13, 14] 

and reverse osmosis (RO, <1 nm) [15, 16]. The main drawback of these 

technologies relies on the energy requirements, as pressure may rise to 70 bar. 

Also, membrane deterioration and fouling may pose a threat in the application 

of membrane filtration systems. 

Stripping or desorption processes use an air flow to sweep volatile compounds 

from an aqueous influent. This technology has been widely applied at industrial 

scale for the removal of diverse contaminants such as ammonia, benzene, 

toluene, mercaptans, etc. [17, 18], but is also used in potable and groundwater 
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 INTRODUCTION 

treatment [19, 20]. As for the previous processes, the stripping results in a 

contaminated gaseous stream, which must be treated.  

 TRANSFORMATIVE METHODS 

The application of transformative processes depends on the nature of the 

contaminants and the amount of wastewater to treat. Figure 1.2 outlines the 

usual criteria as a function of the effluent flow and the organic content expressed 

as total organic carbon.  

 

Figure 1.2. Traditional application criteria for transformative methods in wastewater 
treatment [21] . 

Reduction treatments have been widely employed for water decontamination. 

Catalytic hydrotreatments have been successfully applied for dehalogenation, 

reducing the toxicity of the effluent [22, 23]. Nevertheless, this technology does 

not eliminate organic matter and is usually applied as a pre-treatment, to reduce 

the toxicity of the pollutants or to transform the molecule into a more reactive 

one in an oxidation process. The direct oxidation of halogenated compounds can 

give rise to the formation of non-biodegradable and highly toxic pollutants such 

as biphenyls, chlorofuranes or chlorodioxines.  

Biological aerobic oxidation is vastly extended due to its reduced operating 

costs. These processes employ microorganisms that can transform or even 

eliminate the biodegradable organic matter in presence of oxygen. Their 

versatility relies on the wide range of flow and organic matter that may be 
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treated with these methods. They include activated sludge, sequential batch 

reactors (SBR), membrane biological reactors (MBR) and rotating biological 

contactors (RBC), amongst others [24-26]. Despite their several applications, 

these systems are not always effective, especially when facing non-

biodegradable toxic or recalcitrant pollutants.  

Supercritical Wet Oxidation (SWO) is based in the oxidation at water 

supercritical conditions (T: 374oC, P: 221 bar), or above them, commonly 650oC 

and 250 bar [27-29]. This technique is only economically competitive for 

wastewater with an elevated organic load, when it is possible the autothermic 

sustainability of the process. This technology achieves high conversion rates 

with >99.9% of organic carbon transformed to CO2, nitrogen to N2 and halogens 

to their corresponding acids in a very short time reaction (30-60 s). On the other 

hand, inorganic salts deposition poses a major threat towards its application as 

it causes reactor corrosion. Altogether, this is a rather expensive treatment 

considering both the equipment and the operative costs, which are very 

elevated due to the pressure and temperature requirements.  

Wet Air Oxidation (WAO) aims to oxidize organic matter in presence of O2 as 

oxidant. In order to maximize the dissolved O2 concentration and generate free 

radicals for pollutant depletion, high temperature and pression are required (T: 

200-350oC, P: 5-200 bar) [30, 31]. This process is applied to high organic load 

wastewaters (TOC: 5-500 g·L-1) in order to generate autothermic conditions and 

it is currently used by the petrochemical, chemical and pharmaceutical 

industries [32]. WAO has been intensified using solid catalysts, typically with 

noble or transition metals as active phase, such as Pd, Pt, Ru, Fe, Co or Ni, in the 

so called Catalytic Wet Air Oxidation (CWAO) [33-35]. These allow working 

at lower pressure and temperature, reducing significantly the costs for its 

application. The main drawback for WAO is, as for SWO, the high economic 

expense due to the operating conditions, whereas for CWAO the low catalyst 

stability, along with their cost compromises the feasibility of the process.  
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Due to the limited applications of the aforementioned, advanced oxidation 

processes arise as a reasonable alternative for industrial wastewater 

treatment.  

1.1. Advanced Oxidation Processes 

Advanced oxidation processes (AOPs) are based on the generation of strong 

oxidizing radicals able to oxidize a wide variety of pollutants [36]. At the 

beginning, this definition for AOPs only considered hydroxyl (HO•) radicals and 

mild operating conditions (T: 25oC). Nowadays, this classification has been 

expanded and it includes a wide variety of oxidants, such as hydroperoxyl 

(HOO•), sulfate (SO42-•) and chlorine-based radicals (Cl2-•, Cl•). These are very 

reactive and non-selective species, able to deplete organic matter at higher 

reaction rates than classical oxidants, such as Cl2, H2O2, O2, or even O3. Table 1.2 

collects the standard oxidation potential for all these oxidants.  

Table 1.2. Standard electrode oxidation potentials [37-39] 

Oxidant E0 (V) 

F2 + 3.03 

HO• + 2.74 

SO42-• + 2.44 

Cl• + 2.43 

O + 2.42 

Cl2-• + 2.13 

O3 + 2.08 

H2O2 + 1.76 

HOO• + 1.70 

HClO + 1.49 

Cl2 + 1.36 

O2 + 1.23 

Despite the increasing interest in the action of sulfate and chlorine radicals [40-

42], the salinity introduced to the bulk reaction by these AOPs may suppose an 

additional water pollution. Contrarily, the use of H2O2 as a HOX• promoter is 

more environmentally sustainable, as it decomposes towards H2O and O2. 

Hence, for the sake of concision, we will focus our attention in H2O2-based AOPs.  
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 FENTON PROCESS 

One of the most employed AOPs, due to the ease of operation and high catalyst 

availability is the Fenton process [43]. This redox reaction consists on the H2O2 

decomposition towards hydroxyl and hydroperoxyl radicals (HOX•) using iron 

salts in acidic media, as depicted in Figure 1.3 [44]. The key of this mechanism 

is the dual character of H2O2 as oxidant and reducer, which allows to regenerate 

the catalyst giving rise to hydroperoxyl radicals.  

 

Figure 1.3. Fenton redox mechanism. 

Besides iron, other metals, such as Ni, Cu, Au, Cr, etc., can also act as Fenton-like 

catalysts, carrying out the H2O2 reduction, as shown in Table 1.3, and have been 

successfully applied for water treatment [45]. However, these catalysts present 

either a higher price or toxicity than Fe. Therefore, their use is very limited.  

Table 1.3. Standard reduction potentials for Fenton-like catalysts. 

Redox pair Semi-reaction E0 (V) 

Cr3+/Cr Cr3+ + 3e- ⇄ Cr - 0.74 

Ni2+/Ni Ni2+ + 2e- ⇄ Ni - 0.25 

Cu2+/Cu Cu2+ + 2e- ⇄ Cu + 0.34 

Hg2+/Hg Hg2+ + 2e- ⇄ Hg + 0.79 

Ag+/Ag Ag+ + e- ⇄ Ag + 0.80 

Au3+/Au+ Au3+ + 3e- ⇄ Au + 1.50 

 

Fenton oxidation is usually carried out at ambient conditions (T: 25-40oC and 

atmospheric pressure) and pH around 3, being especially sensitive to this 

parameter. At pH below 2.5, the efficiency of the treatment decreases due to a 

significant increase of the scavenging effect of HO• radicals by H+ [46]. This effect 

has been also observed at basic pH, in which the HO• interact with hydroxyl ions 

giving rise to oxygen and water [47]. 
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The main drawback presented by this homogeneous process is the catalyst loss 

as Fe(OH)3 sludge, generated in the neutralization stage prior to the effluent 

discharge. This implies that the catalyst cannot be reused, with a continuous 

need of raw material, but also an extra charge associated to the sludge 

management and disposal. In order to overcome this issue, heterogeneous 

catalysts have been developed for heterogeneous Fenton or Catalytic Wet 

Peroxide Oxidation.  

 

 CATALYTIC WET PEROXIDE OXIDATION (CWPO) 

The main challenge of heterogeneous catalysis is to obtain highly active and 

stable materials. Traditionally, CWPO catalysts have been synthesized placing a 

metallic active phase (Fe, Cu, Ni, Au, etc.) on the surface of a porous support, 

being the most employed carbon materials, clays, zeolites, alumina and silica 

[48-52]. These tailor-made catalysts have shown a great activity towards H2O2 

decomposition and organic matter depletion. Still, most of them have very 

sophisticated synthesis procedures which increase their cost and limit their 

industrial application. On the search of inexpensive catalysts, there is an 

uprising trend on the use of iron bearing minerals as magnetite or hematite [53-

55], or even iron mining residues [56, 57]. The main advantage of these 

materials is that, given their wide availability and low cost, their stability is not 

as decisive as for the traditional catalysts.   

However, in the usual operating conditions at acidic pH, metal leaching can 

occur. Thus, the effluents are contaminated, and the catalyst activity is 

compromised. This drawback can be prevented employing metal-free catalysts. 

Carbon materials like activated carbon, graphite, carbon black and graphene, 

amongst others, have been widely studied for CWPO [58-61]. Despite presenting 

a lower activity in relation to traditional catalysts, their great stability makes 

them an interesting alternative. In order to boost the activity of these catalysts, 

AOP intensification has gained a great attention over the past decades. 
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1.1.1. Advanced Oxidation Processes intensification 

Process intensification is defined as any chemical engineering development that 

leads to a substantially smaller, cleaner, safer, and more energy efficient 

technology [62]. Referred to AOP, intensification strategies are applied to either 

enhance the activity and overall performance of the process, or to enlarge the 

catalyst lifetime. Furthermore, it allows to expand the operating range, working 

at higher organic loads than those outlined in Figure 1.2. These technologies, 

depicted in Figure 1.4, can be classified in three main groups: electro-assisted, 

high-temperature and radiation-mediated processes.  

 

Figure 1.4. H2O2 AOP intensification strategies. 

 ELECTRO-ASSISTED PROCESSES 

Electro-assisted processes can achieve pollutant oxidation by means of: 

• Direct anodic oxidation, which implies pollutant degradation on the 

anode surface either by direct electron transfer or by chemical reaction 

with electrogenerated reactive oxygen species (ROS) produced as 

intermediates of oxidation of water to oxygen (physisorbed HO•) [63]. 

• Indirect oxidation, when strong oxidants are generated during the 

electro-treatment. For instance, chloride anodic oxidation gives rise to 

free chlorine and chlorine/oxygen species that can interact with the 

pollutants in the bulk reaction, giving rise to their partial or total 

oxidation [63, 64].  
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The efficiency of anodic electro-oxidation is highly dependent on the mass 

transfer of pollutants from the bulk to the anode surface or its vicinity. For these 

processes, the most common anodes are boron doped diamond (BDD), SnO2 or 

PbO2 [65-67]. 

The main disadvantage of these materials is their high cost in the case of BDD 

and the polluting potential for Pb and Sn anodes. 

Electro-Fenton (EF) is an example of indirect oxidation in which HO• radicals 

are formed by electro-generated H2O2 decomposition in presence of Fe2+ salts 

[68]. In this case, iron can be regenerated by cathodic reduction of Fe3+. H2O2 is 

produced by the two-electron reduction of injected O2(g) (pure or from air) using 

a carbonaceous cathode with high surface area like carbon felt, reticulated 

vitreous carbon (RVC), carbon-polytetrafluoroethylene (PTFE) or even BDD, 

according to the following reaction (E° = 0.68 V): 

𝑂2 (𝑔) + 2𝐻
+ + 2𝑒− → 𝐻2𝑂2     Eq. 1 

This technology, compared to the traditional Fenton, presents several 

advantages such as easy regulation of the on-site H2O2 production, higher 

degradation rate of pollutants due to the quicker regeneration of Fe2+ at the 

cathode and lower operating cost if experimental variables are optimized [63]. 

Nonetheless, iron sludge production is still present in EF.  

 HIGH TEMPERATURE PROCESSES 

Against the general believe that high temperature processes would promote an 

inefficient H2O2 decomposition towards H2O and O2, several studies have 

successfully applied high temperature Fenton and CWPO processes for organic 

pollution removal. By increasing the temperature, H2O2 decomposition rate 

towards HOX• is greatly enhanced. Furthermore, these radicals react with the 

pollutants, rather than between themselves, avoiding the auto-scavenging 

reactions. Besides, some species, like oxalic acid, which can form iron complexes 

reducing the catalyst availability, are further oxidized when increasing the 

temperature over 90oC. 
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High temperature Fenton (HTF) has been applied in the range of 50-130oC to 

different industrial effluents, including cosmetic, inks, sulfonation plant and 

power plant wastewaters [69-71]. In all cases, a high mineralization degree was 

reached (XTOC>70%) with a high H2O2 consumption efficiency.  

Ever since the development of HTF, process temperature in both Fenton and 

CWPO has been studied to enhance the mineralization rate and degree, 

especially when using non-traditional catalysts (minerals, iron tailings or metal-

free catalysts) in order to boost their activity.  

In this sense, Dominguez et al. have studied the application of activated carbon, 

graphite and carbon black in CWPO working at 80oC for phenol degradation [60, 

61]. Furthermore, they treated a high organic load wastewater from the winery 

industry using graphite as catalyst at 125oC, achieving outstanding results with 

80% TOC removal after 4h [72].  

 RADIATION-MEDIATED PROCESSES 

Microwave-assisted processes fall between the high temperature and the 

radiation-mediated intensification strategies, as the bulk reaction is heated by 

means of microwave (MW) radiation. These technologies will be further 

discussed in Section 1.2. 

UV-visible radiation has been widely applied for water treatment. Coupled to 

the Fenton process, UV radiation can enhance Fe2+ regeneration and carry on 

the photodecomposition of iron complexes formed on the oxidation processes, 

increasing the mineralization rate and degree [73].  

Photocatalytic processes have also been widely developed during the past two 

decades. They are based on the use of a solid semiconductor or photocatalyst 

that, when irradiated with enough energy to overcome the bandgap, 

experiments an electron excitation from the valence band to the conduction 

band, generating an electron-hole pair. These species can migrate to the catalyst 

surface and take an active part in the redox cycle for radical generation and 

pollutant degradation, as depicted in Figure 1.5. The most popular photocatalyst 
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is TiO2, which can be employed in a wide range of pH [74]. However, 

photocatalysis is a rather slow process and high intensity radiation is needed 

(UV-C) to activate TiO2. To overcome this issue, UV-CWPO arises as a feasible 

technique, with higher mineralization rate and degree and lower electron-hole 

pair recombination. For this purpose, Fe-activated carbon and natural ilmenite 

have been successfully applied for water treatment under UV-A radiation [75, 

76].  

 

Figure 1.5. Photocatalysis and UV-CWPO mechanisms. 

Ultrasound-assisted processes are based on the bulk sonication, which produces 

cavitation bubbles that generate local heating when collapsing. During acoustic 

cavitation, highly reactive hydrogen atoms (H•) and HO• radicals are generated 

[77]. When coupling US to the Fenton process, the overall pollutant degradation 

is increased due to the combined effects of contaminant sonolysis, Fenton 

reaction and HO• sono-generation [78].  

1.2. Microwave-assisted processes 

1.2.1. Microwave fundamentals 

MW radiation lies between radio frequencies (RF) and infrared radiation (IR), 

at frequencies between 0.3-300 GHz. Nonetheless, commercial MW ovens 

usually operate at 2.45 GHz in order to avoid interferences with radar and 

telecommunication frequencies. The corresponding wavelength for these 

conventional devices, 12 cm, is not energetic enough to cause an interaction 

between MW and matter at either the atomic or molecular levels. [79, 80]. MW 
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heating has been widely extended since the invention of the domestic MW oven 

in 1950 [81]. Ever since, thanks to its quick heating, improved reaction rates, 

enhanced energy efficiency and reduced equipment size, this technology has 

been employed for a wide variety of applications in chemistry. These include 

sample pretreatments by means of MW digestion or ashing [82-84], 

polymerization [85, 86] and for both organic and inorganic synthesis [87-89], 

amongst others. 

The main difference between conventional and MW heating is that the latter 

relies on the ability of the different substances to absorb MW energy, resulting 

in two basic mechanisms, dipole polarization and ionic conduction. In contrast, 

traditional heating depends on the thermal conductivity of a vessel with a higher 

temperature than its content. In consequence, the temperature profile is 

inverted with MW, as the increase of temperature builds up in the bulk, as 

shown in Figure 1.6.  

 

Figure 1.6. Heating mechanisms and temperature profiles in conventional and MW devices 
[79]. 

MW heating works at a molecular level, where the interaction of a certain 

material with an alternating electromagnetic field leads to its polarization. 

These interactions, which include electronic, dipolar, ionic and interfacial 

polarizations are dissipative, resulting in heat generation [90-92]. Figure 1.7 

illustrates these polarization mechanisms.  
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• Electronic polarization takes place when the electrons are shifted 

under an electric field with respect to the positive nuclei, generating a 

nonzero dipole moment. In covalent solids, the electrons are easily 

moved and may follow the alternating field up to the frequencies of 

visible light. 

• Ionic polarization occurs when there is a relative change of the 

barycenter of anions and cations from their equilibrium position in the 

lattice, for instance, in alkali halides. The ionic vibration depends on the 

thermal energy. Thus, their polarization is in phase with the alternating 

field and does not affect MW heating.  

• Dipolar polarization results from intermolecular inertia, where the 

already existing dipoles tend to align towards the alternating electric 

field. In MW, the dipole rotation cannot adequately follow the rate of 

change in direction of the electric field. This leads to a phase difference, 

which is translated in dissipative interactions and, hence, in heat 

generation.  

• Interfacial polarization occurs when free charges accumulate at the 

interfaces within a material. In this case, the applied electric field 

displaces mobile charges, which are accumulated in the discontinuous 

region, that is, the phase boundaries. This movement and charges occur 

at low frequencies, under the RF and MW region of the electromagnetic 

spectrum.  

 

Figure 1.7. Polarization mechanisms [79]. 
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In dielectric heat applications, the degree of interaction can be macroscopically 

described with the complex relative permittivity [93]. This is a measure of how 

an electric field affects a dielectric medium. It can be expressed as: 

𝜀𝑑
∗ = 𝜀′ − 𝑗𝜀𝑑

′′ = 𝜀0(𝜀𝑟
′ − 𝑗𝜀𝑑

′′)     Eq. 2 

Where: 

𝑗 =  √−1 ; 

ε0 = 8.86·10-12 F·m-1, empty space permittivity; 

𝜀𝑟
′ : relative dielectric constant; 

𝜀𝑑
′′: loss factor for dipolar loss mechanism. 

When measuring the permittivity of a certain load is not practical, the effective 

loss factor, 𝜀𝑒𝑓𝑓
′′ , is introduced: 

𝜀∗ = 𝜀′ − 𝑗𝜀𝑒𝑓𝑓
′′ = 𝜀′ − 𝑗 (𝜀𝑑

′′ +
𝜎

𝜔𝜀0
)    Eq. 3 

Where: 

σ: electrical conductivity 

ω = 2πf, and f is the frequency of the electromagnetic field.  

Also, the dielectric properties of matter can be expressed in terms of the 

dielectric constant and another parameter, tan δ, the loss tangent, which is the 

ratio of the imaginary to the real part of the complex dielectric constant: 

tan 𝛿 =  𝜀𝑒𝑓𝑓
′′ /𝜀′       Eq. 4 

This loss tangent allows to classify materials in relation to their behavior against 

MW, as depicted in Figure 1.8. Metals are opaque or MW reflectors, high tan δ 

are characteristic of MW absorbing materials, like distilled water (tan δ = 0.12) 

[94], whereas low values for tan δ correspond to transparent materials, as PTFE 

(tan δ = 2.48·10-4) [95].  
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Figure 1.8. Material classification in relation to MW [96]. 

In general, when coupling MW to catalytic processes, the selectivity, conversion 

and reaction rate are greatly enhanced, shortening the reaction time and 

therefore, the operating costs. This improvement is mainly due to the selective 

heating and the non-thermal effects of MW heating, also known as hot spots. 

In heterogeneous systems, when using materials with different dielectric 

properties, especially when heating MW absorbers, an uneven heating can 

occur, giving rise to hot spots [97]. These are micro plasma regions where the 

local temperature can rise above 1200oC.  

In heterogeneous catalytic reactions, if the support is a MW absorber, it will gain 

a higher temperature than the metallic phase, but due to heat transmission 

phenomena, the active phase will be heated, augmenting the reaction rate [98]. 

Hot spot formation can also take place when using metallic unsupported 

catalysts, but only if the particle diameter is in the nanometric range. When the 

reagents reach the hot spot, they react. Afterwards, they immediately migrate to 

a lower temperature region in the bulk reaction, avoiding secondary parasitic 

reactions. Thus, even though hot spots are undesired in fine chemicals synthesis, 

if controlled, they can be an interesting feature for certain MW applications.
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1.2.2. Microwave assisted Advanced Oxidation Processes 

Since 2000, there is an increasing scientific interest on MW-assisted processes 

for wastewater treatment, as may be seen in Figure 1.9. Various processes have 

been reported in literature, including induced-MW degradation, MW-H2O2, MW-

Fenton and MW-CWPO.  

 

Figure1.9. Publication evolution on MW-assisted wastewater treatments. Source: Web of 
Knowledge. 

 INDUCED MW DEGRADATION 

Induced-MW degradation of organic pollutants without oxidant addition 

employs solid metal oxides or metals supported on activated carbon, as 

collected in Table 1.4. The key to pollutant degradation in this kind of processes 

relies on hot spot formation, which can be produced on MW absorbers, but also 

in the surface of metallic nanoparticles. Shen et al. [99] described the 

degradation mechanism through HO• generation from H2O on the hot spots, in a 

similar way to that of photocatalysis.  

Despite the high pollutant removal, there is not relevant information about 

catalyst stability. Furthermore, these studies lack of catalyst characterization 

after reaction to evaluate metal leaching and adsorption contribution to the 

overall contaminant depletion, which could be especially high when using AC as 

support.  
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Table 1.4. MW-induced degradation applications. 

Catalyst Pollutant Operating conditions Results Remarks Ref. 

NiFeO4/clay Azo Fuchsine (AF) 
CAF,0: 10 mg·L-1, Ccat: 3.2 g·L-1 

t: 5 min, pH0: 6 
T: not reported, P: 750 W 

XAF: 98% 
 

HO• generation upon 
hot spots 

[99] 

NiO2 Crystal violet (CV) 
CCV,0: 100 mg·L-1, Ccat: 0.8 g·L-1 

t: 30 min, pH0: 9 
T: not reported, P: 750 W 

XCV: 97% 
XTOC: 90% 

Catalyst stability not 
tested 

[100] 

NiOx 4-Nitrophenol (4-NP) 
C4-NP,0: 300 mg·L-1, Ccat: 2 g·L-1 

t: 10 min, pH0:not reported  
T: 70oC, P: 7 W 

X4-NP: 92% 
 

Catalyst stability is 
maintained over 5 

cycles 
[101] 

CoFe2O4 Brilliant Green (BG) 
CBG,0: 20 mg·L-1, Ccat: 1 g·L-1 

t: 10 min, pH0: 9 
T: not reported, P: 900 W 

XBG: 95% 
 

Second cycle XBG: 20% 
Third cycle XBG: 5% 

[102] 

Pt/AC 
Pentachlorophenol 

(PCP) 

CPCP,0: 1,450 mg·L-1, Ccat: 3 g  

t: 240 min, pH0: not reported 
T: not reported, P: 400 W 

XPCP: 90% 
XTOC: 71% 

Fixed bed reactor 
Catalyst stability not 

tested 
[103] 

Cu/AC p-nitrophenol (PNP) 
CPNP,0: 1,150 mg·L-1, Ccat: 3 g 

t: 300 min, pH0: not reported 
T: 150oC, P: 400 W 

XPNP: 92% 
XTOC: 88% 

Fixed bed reactor 
Catalyst stability not 

tested 
[104] 

Fe@Fe2O3/AC 
Dimethyl phthalate 

(DMP) 

CDMP,0: 12 mg·L-1, Ccat: 20 g·L-1 

t: 8 min, pH0: not reported 
T: 100oC, PMAX: 400 W 

XDMP: 96% 
XTOC: 91% 

Catalyst stability not 
tested 

[105] 
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 MW-H2O2 

MW radiation can generate HO• radicals by H2O2 homolytic rupture: 

 𝐻2𝑂2
𝑀𝑊
→  2 𝐻𝑂•      Eq. 5 

Nonetheless, there is a series of parasitic reactions (Eqs 6-8) which diminish the 

process efficiency. 

𝐻𝑂• + 𝐻2𝑂2 → 𝐻𝑂𝑂
• +𝐻2𝑂     Eq. 6 

2 𝐻𝑂𝑂• → 𝐻2𝑂2 + 𝑂2      Eq. 7 

𝐻2𝑂2
↑ 𝑇
→  𝐻2𝑂 +

1

2
𝑂2      Eq. 8 

Given the inefficient thermal decomposition of H2O2 in absence of a catalyst 

(Eq.8), high oxidant doses are required to achieve an almost complete pollutant 

removal, as seen in Table 1.5. It should be noted that despite the great amount 

of H2O2 employed, the reported mineralization degrees are very low. Thus, given 

the high expense in reagents and low efficiency, the MW-H2O2 process cannot be 

implemented for wastewater treatment.  

Table 1.5. MW-H2O2 applications. 

Pollutant Operating conditions Results Ref. 

Rhodamine B 
(RhB) 

CRhB,0: 300 mg·L-1, CH2O2: 16.6 g·L-1 

t: 14 min, pH0: 12 
T: 100oC, P: not reported 

XRhB: 98% 
XCOD: 43% 

[106] 

Malachite green 
(MG) 

CMG,0: 100mg·L-1, CH2O2: 10.2 g·L-1 

t: 5 min, pH0: not reported  
T: 100oC, P: 900 W 

XMG: 95% [107] 

4-chlorophenol 
(4-CP) 

C4-CP,0: 1000 mg·L-1, CH2O2: 11 g·L-1 

t: 10 min, pH0: 6 
T: 180oC, P: 400 W 

X4-CP: 64% 
XCOD: 26% 

[108] 

Nitrobenzene 
(NB) 

CNB,0: 0.3 mg·L-1, CH2O2: 20 mg·L-1 

t: 35 min, pH0: not reported 
T: 50oC, P: 300 W  

XNB: 90% [109] 
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 MW-FENTON 

In order to enhance HO• generation upon H2O2 decomposition, iron and other 

metallic cations have been employed in the MW-Fenton process (Table 1.6). 

Sanz et al. [110] performed the first experiments comparing high-temperature 

Fenton (HTF) and MW-Fenton simulating the temperature profile obtained in 

the MW. Results showed a 40% greater phenol degradation in the MW system. 

Nonetheless, H2O2 evolution, TOC and intermediates were not followed during 

reaction. Hence, despite having an evident enhancement on pollutant removal, 

there is no explanation to how MW radiation boosts the process.  

Wang et al. [113] developed a pilot scale system using a 5.5 L PTFE tubular 

reactor in a custom-made MW furnace. A PID controlled the MW radiation to 

avoid ΔT>20oC in the reactor. Under the selected conditions, with 12 min 

hydraulic retention time, 93.2% p-nitrophenol was eliminated. However, total 

Fe precipitation after 10 min reaction lead to an incomplete H2O2 decomposition 

(XH2O2: 70%). Furthermore, there is no data on the mineralization degree.  

There is a general lack of information on TOC or COD removal, except for the 

work of Li et al. [112], which compared the performance of Fe2+ and Mn2+ as 

catalysts in the MW-Fenton degradation of bisphenol A (BPA). Nonetheless, it 

should be noted that the reported mineralization achieved is way higher than 

that expected when using a 13% of the theoretical stoichiometric amount of 

H2O2 for complete BPA mineralization.  

There are significant differences on the operating mode. Those whose 

temperature rose up to 100oC [110, 111] work at fixed MW power using a 

condenser coupled to the reaction flask to avoid evaporation. On the other hand, 

experiments at fixed temperature [113, 114] usually work with intermittent 

MW radiation and air flow to chill the reaction vessel. Also, some authors do not 

specify the operating temperature of the system. Thus, it is really complicated 

to compare the results obtained by different research groups.  
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Table 1.6. MW-Fenton applications. 

Catalyst Pollutant Operating conditions Results Remarks Ref. 

Fe2+ Phenol (Ph) 
CPh,0: 100 mg·L-1, Ccat: 10 mg·L-1,  

CH2O2: 290 mg·L-1, t: 60 min, pH0: 3 
TMAX: 100oC, P: 250 W 

XPh: 99% 
Comparison between 
HTF and MW-Fenton 

HTF, XPh:60% 
[110] 

Fe2+ Amoxicillin (AMX) 
CAMX,0: 0.45 mg·L-1, Ccat: 0.095 mg·L-1,  
CH2O2: 2.35 mg·L-1, t: 5 min, pH0: 3.5 

TMAX: 100oC, P: 427 W 
XAMX: 100% 

MW-Fenton is proposed 
to reduce Fe2+ in 

relation to UV-Fenton 
[111] 

Fe2+ Methylene blue (MB) 
CMB,0: 50 mg·L-1, Ccat: 20 mg·L-1,  

CH2O2: 200 mg·L-1, t: 6 min, pH0: 3 
T: not reported, P: 700 W 

XMB: 95% 
Ambient T Fenton, same 

conditions, t:70 min: 
XMB: 92% 

[112] 

Fe2+ p-nitrophenol (PNP) 
CPNP,0: 100 mg·L-1, Ccat: 6.9 mg·L-1,  

CH2O2: 340 mg·L-1, t: 15 min, pH0: 3.3 
T: 30oC, P: 2000 W 

XPNP: 93.2% 
XH2O2: 70% 

Pilot scale 5.5 L PTFE 
reactor. Total Fe 

precipitation after 10 
min.  

[113] 

Fe2+ + Cu2+ 
3-nitroaniline  

(3NA) 

C3NA,0: 100 mg·L-1, CFe2+: 11.3 mg·L-1, 
CCu2+: 0.5 mg·L-1, 

CH2O2: 440 mg·L-1, t: 8.5 min, pH0: 5.3 
T: 84oC, P: 200 W 

X3NA: 92% 
Temperature control 
with intermittent MW 

and air flow to chill 
[114] 

Fe2+ / Mn2+ 
Bisphenol A 

(BPA) 

CBPA,0: 100 mg·L-1, Ccat: 5.6 mg·L-1,  
CH2O2: 68 mg·L-1, t: 6 min, pH0: 4 

T: not reported, P: 300 W 

Mn2+: 

XBPA: 99% 
XTOC: 53% 

Fe2+: 

XBPA: 59% 
XTOC: 50% 

Mn2+ showed a better 
performance than Fe2+. 
XTOC too high in relation 

to H2O2 

[115] 
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 MW-CWPO 

A wide variety of catalysts have been used in MW-CWPO, including metal oxides, 

metal organic frameworks (MOF), supported metals and AC (Table 1.7).  

In relation to the MW-induced process, Ahmed et al.[116] reported an increased 

oxidation rate of phenol when adding H2O2 to the system. Nevertheless, metal 

leaching was also enhanced, being this a key issue in MW-CWPO. Li et al. found 

a serious activity loss with Fe and Bi leaching up to 60 and 40 mg·L-1, 

respectively, when using BiFeO3 nanoparticles in the MW-CWPO degradation of 

Rhodamine B [117]. These values are way above the discharge limit and 

compromise the feasibility of the process. To overcome this issue, they 

supported their metallic nanoparticles on reduced graphene oxide (rGO), which 

augmented notoriously their stability, with less than 0.1 mg·L-1 dissolved metal 

in the effluent [124].  

Regarding the use of metal-free catalysts in MW-CWPO, there are few works in 

literature, and the existing ones do not consider the adsorption capacity of AC, 

which seems to be responsible for a great part of the pollutant removal [129, 

130]. This happens as well for the traditional catalysts supported onto AC. 

Most of the studies gathered in Table 1.7 attribute the high degradation rates to 

hot spot formation on the catalyst surface. Still, despite the numerous catalysts 

employed, there is no comparison between MW absorbers and transparent 

materials or between CWPO and MW-CWPO to measure the effect of hot spots 

on the depollution efficiency. Besides, there is little information on H2O2 

decomposition and carbon balance along the reaction.  

Similarly to MW-Fenton, the diverse operating conditions applied in each work 

makes difficult to compare the existing research and understand the intrinsic 

mechanisms of MW-CWPO. Thus, this thesis aims to gain depth into the MW hot 

spot effect in order to develop an efficient process. Furthermore, we seek for an 

active and stable metal-free catalyst. 
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Table 1.7. MW-CWPO applications. 

Catalyst Pollutant Operating conditions Results Remarks Ref. 

BiFeO3 
Rhodamine B  

(RhB) 

CRhB: 30 mg·L-1, Ccat: 1 g·L-1, 
CH2O2: 44 mg·L-1, t: 6 min, pH0: 4 

TMAX: 170-190oC, P: 300 W 
XRhB: 94.8% 

Fe leaching: 60 mg·L-1 
Bi leaching: 40 mg·L-1 

[117] 

NiFeMnO4 
Methyl Orange 

(MO) 

CMO,0: 30 mg·L-1, Ccat: 1 g·L-1,  
CH2O2: 30 mg·L-1, t: 6 min, pH0: 2.5 

T: 50oC, P: 750 W 
XMO: 99% 

Adsorption contribution 
XMO:43% 

[118] 

Fe3O4 
nanoparticles 

Rhodamine B 
(RhB) 

CRhB,0: 100 mg·L-1, Ccat: 1.25 g·L-1,  
CH2O2: 1650 mg·L-1, t: 5 min, pH0: 4 

T: 80oC, P: 300 W 
XRhB: 100% 

Catalyst stability is 
maintained over 6 cycles 

[119] 

Fe ore tailings 
(66% Fe2O3) 

Tri(2-chloroethyl) 
phosphate 

(TCEP) 

CTCEP,0: 10 mg·L-1, Ccat: 0.25 g·L-1,  
CH2O2: 67 mg·L-1, t: 35 min, pH0: 3 

T: not reported, P: 800 W 

XTCEP: 100% 
XTOC: 98.8% 

Catalyst stability is 
maintained over 8 cycles 
Adsorption contribution 

not reported 

[120] 

Fe3O4  
(MOF) 

Methyl Orange 
(MO) 

CMO,0: 100 mg·L-1, Ccat: 0.4 g·L-1,  
CH2O2: 40 mg·L-1, t: 6 min, pH0: 3 

T: not reported, P: 500 W 
XMO: 90% 

Catalyst stability is 
maintained over 10 

cycles  
[121] 

CuNi/Al2O3/TiO2 
Quinoline 

(Qui) 

CQui,0: 100 mg·L-1, Ccat: 4 g·L-1 

CH2O2: 775 mg·L-1, t: 20 min, pH0: 7 
T: 60oC, P: 500 W 

XQuin: 100% 
XTOC: 81% 
XH2O2: 70%  

Cu leaching: 71 μg·L-1 

Ni leaching: 23 μg·L-1 
[122] 

CuO/Al2O3 
p-nitrophenol 

(PNP) 

CPNP,0: 50 mg·L-1, Ccat: 40 g·L-1, 
CH2O2: 850 mg·L-1, t: 6 min, pH0: 6 

T: 70oC, P: 100 W 
XPNP: 100% 

Stability test: activity loss 
due to intermediates 

chemisorption 
[123] 
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Table 1.7, continuation. 

Catalyst Pollutant Operating conditions Results Remarks Ref. 

Pb-BiFeO3/rGO 
Perfluoroctanoic acid 

(PFOA) 

CPFOA,0: 50 mg·L-1, Ccat: 1 g·L-1,  
CH2O2: 44 mg·L-1, t: 5 min, pH0: 5 

T: not reported, P: 500 W 

XPFOA: 87% 
XTOC: 52% 

Metal leaching <0.1 mg·L-1 
Adsorption 

contribution not 
reported 

[124] 

CuO-Co3O4/AC 
Humic Acids 

(HA) 

CHA,0: 100 mg·L-1, Ccat: 0.5 g·L-1,  
CH2O2: 315 mg·L-1, t: 60 min, pH0: 47 

T: 80oC, P: 800 W 
XHA: 90% 

HCO3- and Cl- ↓efficiency 
Ccat>0.5 g·L-1, ↓efficiency 

Low HA adsorption 
[125] 

CuOX/AC 
Phenol 

(Ph) 

CPh,0: 100 mg·L-1, Ccat: 3 g·L-1,  
CH2O2: 600 mg·L-1, t: 5 min, pH0: 4 

T: not reported, P: 400 W 

XPh: 100% 
XCOD:90% 

Cu leaching: 21 mg·L-1 

Adsorption, XCOD:21% 
[126] 

CuO/CeO/AC 
Pharmaceutical 

wastewater 

CTOC,0: 155.9 mg·L-1, Ccat: 40 g·L-1,  
CH2O2: 9900 mg·L-1, t: 6 min, pH0: 6.54 

T: not reported, P: 400 W 
XTOC: 65% 

↑Ccat, ↑XTOC, adsorption.  
After 5th cycle ↓XTOC 

[127] 

CuFe2O4/AC 
Reactive yellow 3 

(RY3) 

CRY3,0: 200 mg·L-1, Ccat: 1 g·L-1 

CH2O2: 285 mg·L-1, t: 5 min, pH0: 6.5 
T: not reported, P: 800 W 

XRY3: 75% 
XTOC: 49% 

Adsorption 
contribution XRY3:30% 

[128] 

AC Methyl Orange (MO) 
CMO,0: 50 mg·L-1, Ccat: 0.2 g·L-1,  

CH2O2: 68 mg·L-1, t: 10 min, pH0: 2.5 
T: 100oC, P: 750 W 

XMO: 92% 
Similar results with and 
without MW due to MO 

adsorption onto AC. 
[129] 

AC 
Nitrobenzene  

(NB) 

CNB,0: 0.2 mg·L-1, Ccat: 4 g·L-1,  
CH2O2: 10 mg·L-1, t: 21 min, pH0: 6.85 

T: 60oC, P: 300 W 
XNB: 72% 

MW-AC system, in 
absence of H2O2 

achieves XNB:66%.  
Large adsorption 

contribution. 

[130] 
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 AIM AND SCOPUS 

The main objective of this Thesis is the study and development of an active 

and cost-efficient microwave-assisted advanced oxidation process for 

wastewater treatment.  

High-temperature AOPs have shown to be effective in wastewater treatment, 

with enhanced reaction rates and higher removal of recalcitrant species. 

Besides, as described in literature, the use of MW radiation as heating source 

seems to enhance these processes by the unique feature of MW non-thermal 

effects, or hot spots, which are punctual zones of high temperature generated 

due to MW selective absorption phenomena. Thus, different iron catalysts and 

metal-free materials will be evaluated in the microwave-assisted catalytic wet 

peroxide oxidation (MW-CWPO) of synthetic wastewaters containing as target 

pollutants phenol, benzene, toluene, xylene and naphthalene, as representative 

and widely studied pollutants present in chemical industry wastewaters. 

Iron and other transition metals are commonly used as catalytic active phase in 

this kind of technologies. Nonetheless, the usual operating conditions, which 

imply an acidic pH, lead to metal lixiviation resulting in activity loss, low stability 

and additional water pollution. In order to overcome these problems, different 

carbonaceous materials will be used as a metal-free, non-expensive and efficient 

alternative to the traditional catalysts. 

In the first stages of investigation, MW-CWPO will be studied at constant 

temperature to compare its effect in relation to the non-assisted process and to 

evaluate the contribution of the non-thermal effects. Furthermore, two different 

materials will be used as catalytic support for iron oxides, a transparent material 

(γ-Al2O3) and a MW-absorbing material (activated carbon). Both supported 

catalysts have been widely employed for CWPO. Afterwards, different materials 

without metals, as carbon materials, will be employed. Attending to the results, 

once selected an optimum reactive catalyst, the process will be optimized in 

terms of efficiency and energy consumption.  
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In order to determine which catalyst is the most suitable for this process, we 

will focus our attention in the following issues: 

i. Catalytic activity in terms of H2O2 consumption and pollutant depletion, 

considering both pollutant adsorption and the oxidation reactions until 

complete mineralization.  

ii. H2O2 efficiency, measured as the ratio between the depleted organic 

matter (TOC) and the amount of employed H2O2.  

iii. Oxidation pathway, paying special attention to the reaction byproducts, 

in particular condensed oligomers which are known to interfere with 

the catalytic activity and stability in traditional CWPO. 

iv. Catalyst stability and reusability. 

For the consecution of the main objective, the Thesis has been divided in four 

different tasks, which have led to the publication of four articles which analyze: 

1. Influence of the non-thermal effects and dielectric properties of 

catalytic supports on MW-CWPO.  

2. Use of activated carbon as metal-free catalyst in the MW-CWPO 

degradation of petrochemical pollutants.  

3. Activity and stability of commercial carbon materials in MW-CWPO of 

phenol.  

4. Energy optimization. 
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ABSTRACT 

Catalytic decomposition of hydrogen peroxide to generate hydroxyl (HO•) and 

hydroperoxyl (HOO•) radicals is a well-known process (CWPO) for wastewater 

treatment. Nowadays, the research is focused on the intensification of this 

technology, aiming to reach higher reaction rates and efficiencies to treat 

polluted effluents. Against the general belief that H2O2 thermal decomposition 

towards water and oxygen prevails over the catalytic redox cycle of CWPO, 

previous research within our group demonstrated that increasing the 

temperature (T: 90-130oC), the HOX• generation rate was greatly enhanced. 

Moreover, these radicals were efficiently employed, reacting at a higher rate 

with the pollutants than between themselves. Hence, the auto-scavenging 

reactions were minimized, favoring the oxidation process with high Total 

Organic Carbon (TOC) and H2O2 conversions. 

Based in these results, this doctoral Thesis explores the use of various heating 

techniques, comparing the traditional conduction/convection mechanism with 

a different heating system based in the dipolar rotation caused by microwaves 

(MW). Besides a quick and homogeneous heating, MW can generate local 

overheated regions, also known as hot spots, that may favor the H2O2 

decomposition and pollutant degradation, achieving a further intensification of 

CWPO.  

The first work of this Thesis, published in Applied Catalysis B, explores the 

application of microwaves with a double aim, to intensify the CWPO process by 

increasing the temperature but also to analyze the interaction of MW with Fe 

catalysts supported onto alumina (Fe/Al2O3) and activated carbon (Fe/AC). 

CWPO runs at 120oC were performed with and without MW to study the heating 

rate and oxidation mechanism. We found significant differences in the H2O2 

decomposition rate and mineralization degree between the traditional and MW-

assisted systems, as may be seen in Figure 3.1. 
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Figure 3.1. Comparison between Fe/AC and Fe/Al2O3 in CWPO and MW-CWPO of phenol. 
CPhenol,0: 100 mg·L-1, CCatalyst: 100 mg·L-1, CH2O2,0: 500 mg·L-1, T: 120oC, pH0:3, t:60 min 

H2O2 decomposition rate increased for both MW systems due to the MW-

mediated H2O2 homolytic rupture in conjunction with the H2O2 redox catalytic 

decomposition. In these conditions, a very high TOC conversion was observed, 

faster than conventional thermal CWPO. This effect depends strongly on the 

type of catalyst employed. When using Al2O3 as support, there was a minimal 

difference between the CWPO and the MW-CWPO processes. On the other hand, 

MW radiation greatly boosted the Fe/AC activity, increasing TOC removal 

around 25% in relation to the non-assisted process. This was ascribed to the 

action of hot spots generated on the surface of AC, which is a MW absorber. The 

mechanisms for H2O2 decomposition are outlined in Figure 3.2, in which the 

green arrows correspond to the CWPO redox cycle and the pink arrows to the 

MW-mediated reactions. 

 

Figure 3.2. H2O2 decomposition over Fe/AC and Fe/Al2O3 catalysts in MW-CWPO. 
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Based on these results, the degradation pathway for phenol was also analyzed, 

also finding a great impact of MW radiation. In the MW-Fe/AC process, the 

aromatic ring opening was very fast. This favored a lower generation of 

condensation byproducts (CBP) and their complete elimination from the 

aqueous phase. These CBP are unidentified oligomeric compounds, reported by 

several authors in phenol and other aromatics oxidation. The results for 

Fe/Al2O3 were very different. In this case, we observed a very high formation of 

condensed byproducts, along with a change in the catalyst color. Thus, hot spot 

formation on the catalyst surface seems to have an important contribution to 

CBP breakdown, resulting in two degradation pathways depending on the 

catalytic support, as shown in Figure 3.3. 

 

 

Figure 3.3. Phenol degradation pathway for MW-Fe/Al2O3 and MW-Fe/AC 

In order to obtain more information on hot spot formation, we performed new 

MW experiments, comparing the previous results with a no-catalyst run (MW-

H2O2) and the bare supports as catalysts (Figure 3.4). We could observe that 

there is practically no difference between the MW-H2O2 and MW-Al2O3 

experiments. This seemed logical, as alumina is a MW transparent material. 

Furthermore, AC presented a similar activity to Fe/AC under MW radiation, with 

complete H2O2 decomposition and a superior TOC conversion than Fe/Al2O3.  
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Figure 3.4. MW-CWPO in absence of catalyst (MW-H2O2), with bare supports and Fe 
catalysts. 

As main conclusion, we observed that the dielectric properties of the catalyst 

play a key role in the MW-CWPO process, presenting MW absorbers a greater 

activity towards phenol mineralization. The full published article is included in 

Appendix 5.1. 

After studying the hot spot generation on the AC surface and its effect on H2O2 

decomposition and degradation pathway of aromatic compounds, we realized 

that this MW-assisted technology was the perfect set-up to work on metal-free 

catalysis using carbon materials. Therefore, we optimized the operating 

conditions of the MW-AC process (pH, temperature, catalyst load and reaction 

time) and started a new work using synthetic wastewaters containing benzene 

(B), toluene (T), o-xylene (X) or naphthalene (N) as representative pollutants 

from the petrochemical industry. This led to the second article of this Thesis, 

published in the Environmental Science and Pollution Research as part of a 

special issue from the 2nd Summer School of the European PhD School on AOPs. 

In the selected operating conditions, complete pollutant removal was achieved 

in 15 minutes. Nonetheless, the quick BTXN and TOC initial decay signaled the 

presence of two steps in the reaction. First, there is a rapid pollutant adsorption 

onto AC followed by its oxidation by MW-CWPO. H2O2 evolution followed a 

similar trend, with a noticeable decomposition slowdown after 3 min. However, 

TOC removal was significantly faster than the H2O2 consumption, as may be seen 
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in Figure 3.5. Working at the stoichiometric dose of H2O2, the ideal behavior of 

the system would follow the diagonal, in which each fraction of decomposed 

H2O2 would efficiently mineralize the same fraction of TOC. Our experiments 

were way above this situation, confirming the high contribution of contaminant 

or intermediates adsorption onto the catalyst.  

 

Figure 3.5. H2O2 efficiency in MW-CWPO of BTNX. CB, T, X, 0: 100 mg·L-1, CN,0: 30 mg·L-1, 
CAC: 1 g·L-1, CH2O2,0: stoichiometric, pH0: 3, tr: 15 min. 

Intermediates analyses only showed short chain acids and traces of phenol in 

the case of benzene oxidation, but no other aromatic intermediates or CBP were 

detected in the aqueous phase. Thus, we believe that these species may remain 

adsorbed onto the AC and were not be fully oxidized in the selected operating 

conditions.  

TGA analyses of the AC after reaction confirmed our theory and allowed us to 

perform an estimation on the carbon balance, as depicted in Figure 3.6. This 

carbon balance has been performed assuming a similar carbon content in the 

adsorbed species (aromatics and CBP) in relation to the starting pollutants. The 

results are given as C in gas phase (CO2), C adsorbed on AC and C in the liquid 

phase (TOC). The mineralization degree of the starting pollutant varies from 

70% in the case of B to only 30% for N.  
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Figure 3.6. Carbon balance after 15 min. 

To sum things up, the results showed that despite having a total benzene, 

toluene, xylene and naphthalene removal from the aqueous phase, an important 

fraction of the pollutants and reaction intermediates remained adsorbed onto 

the AC, following the reaction a two-step mechanism with an initial adsorption 

followed by H2O2 catalyzed oxidation, as shown in Figure 3.7. This article on 

aromatic hydrocarbons oxidation can be found in Appendix 5.2. 

 

Figure 3.7. MW-CWPO reaction mechanism for BTXN working at: CB,T,X, 0: 100 mg·L-1,  
CN,0: 30 mg·L-1, CAC: 1 g·L-1, CH2O2,0: stoichiometric, pH0: 3, tr: 15 min. 

In the third work, we focused our attention on the effect of the carbon nature in 

the catalytic process. For this purpose, different carbon materials were selected: 

activated carbons (AC), graphites (G), carbon blacks (CB) and silicon carbide 

(SiC). All of them were tested in phenol degradation. Mineralization degree and 

H2O2 decomposition for these materials can be found in Figure 3.8. Analyzing 

the results, we could corroborate that carbon materials are active in MW-CWPO, 
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thanks to both their MW-absorbing and redox properties, generating HOX• at a 

high rate. Nonetheless, the activity of carbon blacks was very limited in relation 

to other materials. Moreover, we observed that the surface chemistry plays an 

essential role in phenol degradation, especially for graphite, augmenting the 

mineralization and H2O2 decomposition twofold when using a graphite (G-S), 

which presents an acid behavior.  

 

Figure 3.8. Activity of carbon materials in MW-CWPO of phenol.  
CPhenol,0: 100 mg·L-1, CCatalyst: 500 mg·L-1, CH2O2,0: 500 mg·L-1, T: 120oC, pH0:3, t:60 min 

The most active materials (AC-M and G-S) were used in 5 consecutive cycles in 

order to test their stability. TOC removal results are shown in Figure 3.9. As may 

be seen, G-S maintained its activity, with TOC removal above 90% for all runs. 

On the contrary, AC-M suffered a progressive deactivation due to the loss of its 

textural properties.  

 

Figure 3.9. G-S and AC-M stability upon 5 cycles of MW-CWPO. 

AC-M AC-C G-F G-S CB-A CB-V SiC
0

20

40

60

80

100

X
T

O
C

,H
2O

2 
(%

)

 

 TOC    H
2
O

2

1 2 3 4 5
0

20

40

60

80

100

 

Cycles

 

X
T

O
C
 (

%
)

  G-S    AC-M



52 

 

This different behavior between catalysts was related to their structure and, 

especially to the effect of hot spots. AC is a porous material, when hot spots are 

generated inside the micropores, confined vapor is generated. Pression builds 

up in these points and the catalysts crumbles in the so-called popcorn effect. 

This micro-explosion collapses the catalyst structure and results in a 

progressive catalyst deactivation, transforming AC into a very fine powder, 

difficult to separate from the treated effluent. On the other hand, graphite, which 

is a layered ordered material, can dissipate the heat generated in the hot spots 

more easily, maintaining its structure and catalytic activity intact. These 

phenomena are outlined in Figure 3.10.  

 

Figure 3.10. Hot-spot formation and catalysts structure. 

Results for activity and stability of carbon materials in MW-CWPO were 

published in the Separation and Purification Technology journal, as the third 

work of this Thesis, which can be found in Appendix 5.3. 

Once obtained an active and stable catalyst, we could propose a MW-intensified 

CWPO process, but first we had to launch an economical study in order to 

optimize the MW radiation usage. This was the aim of the fourth work included 

in this doctoral Thesis, in which we compared the usual operating modes found 

in literature, fixed MW power and fixed temperature. The latter, which was the 

one employed in our previous studies, means that we set the MW to heat our 

samples from room temperature to 120oC in 90 seconds, concentrating the MW 

radiation at 1800 W in that short period of time. Afterwards the reactor is 

radiated to maintain the temperature, but at a much lower power. The MW-

CWPO process is efficient because of hot spot formation and hot spots are 
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related to MW radiation. Thus, it seemed we were not taking full advantage of 

MW radiation working at controlled temperature. In order to test this theory 

and aiming to optimize the energy consumption, we set up different runs 

working at fixed temperature, fixed continuous MW power and fixed pulsated 

MW power. Results are collected in Figure 3.11.  

 
Figure 3.11. Radiation influence on MW-CWPO. 

CPhenol,0: 100 mg·L-1, CG-S: 500 mg·L-1, CH2O2,0: 500 mg·L-1, pH0:3. 

We could observe that the radiation mode also plays a key role in MW-CWPO. 

MW pulsation reached a higher mineralization degree and better H2O2 

exploitation than the continuous MW thanks to the relaxation periods, where 

the heat generated by the hot spots could be dissipated.  

Analyzing the system’s requirements, energy consumption was reduced to one 

third in relation to the controlled-temperature run. Additionally, the energy 

consumption per TOC mass at the end of reaction (ECTOC) was significantly lower 

compared to other intensified AOPs, as depicted in Figure 3.12. Thus, MW-

CWPO is a feasible cost-efficient alternative.  

In this work we also studied the kinetic model, fining that it follows a pseudo-

second order for TOC and a pseudo-first order in the case of H2O2. Activation 

energy for both reactions, H2O2 decomposition and TOC removal, were 

calculated. EA, TOC was significantly lower than that reported in literature for 

phenol degradation by CWPO. On the other hand, EA, H2O2 presented similar 

values than those previously reported. Thus, hot spot formation has a greater 
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influence on organic pollutants depletion rather than H2O2 decomposition. The 

full article, published in the Separation and Purification Technology journal, is 

included in Appendix 5.4. 

 

Figure 3.12. Cost-efficiency relation for different intensified AOPs. 

In short, this dissertation shows that the use of MW substantially improves the 

well-known CWPO process in which H2O2 is used as HOX• promoter. MW-

absorption can generate hot spots on the surface of carbon materials. When 

these are of graphitic nature, the heat excess produced in these areas can be 

dissipated without losing their mechanical properties. Furthermore, the nature 

of its surface plays an important role, similar to that of hot spots formation. 

Finally, the operation mode concerning MW-radiation has also a major impact 

on the promotion of hot spots and, therefore, on the catalytic activity.  
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RESUMEN  

La descomposición catalítica de peróxido de hidrógeno para generar radicales 

hidroxilo (HO•) e hidroperoxilo (HOO•) es un proceso conocido (CWPO) para el 

tratamiento de aguas residuales. Actualmente la investigación se centra en la 

intensificación de esta tecnología, con el fin de alcanzar un aumento en la 

velocidad de reacción y en su rendimiento para tratar efluentes contaminados. 

Tradicionalmente se ha venido pensando que el aumento de la temperatura en 

este tipo de procesos favorece la descomposición térmica del H2O2 en agua y 

oxígeno. Sin embargo, trabajos previos del grupo de investigación han 

demostrado que el aumento de la temperatura entre 90-130oC conlleva un 

aumento en la velocidad de producción de radicales HOX•. Se puso de manifiesto 

la eficiencia de este tipo de intensificación, ya que los radicales reaccionan más 

rápido con los contaminantes que entre ellos, minimizando las reacciones de 

autosecuestro, favoreciendo el proceso de oxidación y, por lo tanto, el 

tratamiento del agua.  

En base a estos resultados, la presente Tesis doctoral estudia el uso de 

diferentes técnicas de calentamiento, comparando el sistema tradicional basado 

en mecanismos de conducción/convección con un nuevo sistema basado en la 

rotación de dipolos por acción de microondas (MW). Además de un 

calentamiento rápido y homogéneo, los MW pueden dar lugar a regiones 

localizadas de sobrecalentamiento, también conocidas como puntos calientes, 

que pueden favorecer la descomposición del peróxido y la degradación de 

contaminantes, logrando una intensificación adicional del proceso CWPO.  

El primer trabajo de esta Tesis, publicado en Applied Catalysis B, estudia la 

aplicación de microondas con un doble propósito, intensificar el proceso CWPO 

mediante el aumento de la temperatura y analizar la interacción de las MW con 

catalizadores de Fe soportados en alúmina (Fe/Al2O3) y sobre carbón activado 

(Fe/CA). Estos experimentos se hicieron a temperatura constante (120oC) con y 

sin microondas (MW), para estudiar la velocidad de calentamiento y el 

mecanismo de oxidación. Encontramos diferencias significativas en el consumo 
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de H2O2 y el grado de mineralización entre el proceso tradicional y el asistido 

por MW, como se puede observar en la Figura 3.1.  

 

Figura 3.1. Comparativa entre Fe/CA y Fe/Al2O3 en CWPO y MW-CWPO de fenol. 
CFenol,0: 100 mg·L-1, CCatalizador: 100 mg·L-1, CH2O2,0: 500 mg·L-1, T: 120oC, pH0:3, t:60 min 

 

La velocidad de descomposición de H2O2 aumentó significativamente en ambos 

sistemas. Esto se debe a que, además del ciclo redox de descomposición de 

peróxido del CWPO, se produce la ruptura homolítica del H2O2 por acción de las 

microondas. En estas condiciones se alcanzó una alta conversión del Carbono 

Orgánico Total (COT), más rápida que la del proceso CWPO convencional. Este 

efecto se ve fuertemente influenciado por el tipo de catalizador utilizado. 

Cuando se empleó Al2O3 como soporte, la diferencia entre los procesos CWPO y 

MW-CWPO fue mínima. Sin embargo, la radiación MW potenció notablemente la 

actividad del Fe/AC, aumentando el grado de mineralización en torno a un 25% 

en relación al proceso no irradiado. Esto se debe al efecto de los puntos calientes 

generados en la superficie del CA, que es un material absorbedor de MW. Los 

mecanismos descritos para descomposición de H2O2 con ambos catalizadores 

está esquematizado en la Figura 3.2, en la que las flechas verdes corresponden 

al ciclo redox del CWPO y las flechas rosas a las reacciones mediadas por MW. 
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Figura 3.2. Descomposición de H2O2 sobre catalizadores Fe/CA y Fe/Al2O3 en MW-CWPO. 

En base a estos resultados, también se analizó la ruta de degradación del fenol, 

encontrando una gran influencia de la radiación MW. En el proceso MW-Fe/CA, 

la apertura del anillo aromático fue muy rápida. Esto favorece una menor 

generación de subproductos de condensación (CBP) y su completa eliminación 

en fase acuosa. Estos CBP son oligómeros no identificados, descritos en 

bibliografía en la oxidación de fenol y otros compuestos aromáticos. Los 

resultados con Fe/Al2O3 fueron muy diferentes. En este caso se observó una 

producción muy alta de CBP, además del cambio de color en el catalizador. Por 

tanto, la formación de puntos calientes en la superficie del catalizador parece 

tener una contribución importante en la degradación de los CBP. De esta forma, 

se describieron dos rutas de degradación en base al catalizador empleado, como 

se muestra en la Figura 3.3. 

 

Figura 3.3. Ruta de degradación del fenol en los sistemas MW-Fe/Al2O3 y MW-Fe/AC. 
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Para obtener más información sobre la generación de puntos calientes, 

realizamos nuevos experimentos, comparando los resultados obtenidos con un 

ensayo en ausencia de catalizador (MW-H2O2) y los soportes por sí mismos, 

como se recoge en la Figura 3.4. Pudimos observar que prácticamente no había 

diferencia entre los procesos MW-H2O2 y MW-Al2O3. Esto parece lógico, ya que 

la alúmina es un material transparente a las microondas. Por otra parte, el CA 

presentó una actividad catalítica similar al Fe/CA bajo radiación MW, con una 

completa descomposición de H2O2 y una mineralización superior a la alcanzada 

con el catalizador Fe/Al2O3. 

 

Figura 3.4. Proceso MW-CWPO en ausencia de catalizador (MW-H2O2) y con catalizadores 
con y sin Fe. 

Como conclusión principal, observamos que las propiedades dieléctricas del 

catalizador tienen un rol clave en el proceso MW-CWPO, presentando los 

materiales absorbedores de MW una actividad significativamente mayor en la 

mineralización de fenol. El artículo completo se encuentra en el Apéndice 5.1. 

del presente documento.  

Después de estudiar la generación de puntos calientes en la superficie del CA y 

su efecto en la descomposición de H2O2 y ruta de degradación de compuestos 

aromáticos, vimos la oportunidad de aplicar la tecnología MW con catalizadores 

libres de metales. Para ello optimizamos las condiciones de operación del 

proceso MW-CA (pH, temperatura, carga de catalizador y tiempo de reacción) y 

empezamos un nuevo trabajo utilizando aguas sintéticas con benceno (B), 
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tolueno (T), o-xyleno (X) y naftaleno (N), como contaminantes representativos 

de la industria petroquímica. Esto llevó a la publicación del segundo artículo de 

la Tesis, publicado en la revista Environmental Science and Pollution Research 

como parte de un número especial derivado de la 2ª escuela de verano de la 

Escuela Europea de doctorado en AOPs. 

En las condiciones de operación ensayadas, se alcanzó la completa eliminación 

de los contaminantes en 15 minutos. No obstante, la rápida caída inicial de BTXN 

y COT indicaba la presencia de dos etapas en la reacción. Primero se da una 

rápida adsorción de los contaminantes en la superficie del CA, seguida por su 

oxidación mediante MW-CWPO. La descomposición de H2O2 siguió una 

tendencia similar, con un descenso notable en la velocidad de reacción tras los 

primeros 3 minutos. No obstante, la eliminación de COT fue significativamente 

más rápida que el consumo de peróxido, como se puede apreciar en la Figura 

3.5. Trabajando con la dosis estequiométrica de H2O2 para cada contaminante, 

el comportamiento ideal del sistema sería el marcado por la diagonal, en la que 

cada fracción de H2O2 consumido es empleada en la mineralización de la misma 

cantidad de COT. Nuestros experimentos se sitúan muy por encima de esta 

diagonal, confirmando una alta contribución de la adsorción del contaminante 

sobre el catalizador.  

 

Figura 3.5. Eficiencia de consumo de H2O2 en MW-CWPO de BTNX. CB, T, X, 0: 100 mg·L-1, 
CN,0: 30 mg·L-1, CCA: 1 g·L-1, CH2O2,0: estequiométrica, pH0: 3, tr: 15 min. 
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En el análisis de intermedios solo se detectaron ácidos de cadena corta y trazas 

de fenol en el caso de la oxidación de benceno. Sin embargo, no se detectaron 

otros compuestos aromáticos ni CBP en la fase acuosa. Por tanto, pensamos que 

estas especies quedaron retenidas sobre el catalizador y no fueron 

completamente oxidadas en las condiciones de operación ensayadas.  

Análisis termogravimétricos (TGA) del catalizador después de reacción 

confirmaron esta teoría y nos permitieron estimar el balance de carbono, como 

se muestra en la Figura 3.6. Este balance de carbono se realizó asumiendo un 

contenido en C similar en las especies adsorbidas en relación con los 

contaminantes de partida. Los resultados se muestran como C en la fase gas 

(CO2), C adsorbido en el CA y C en fase acuosa (COT). Se puede observar que el 

grado de mineralización varía en función del contaminante, desde el 70% para 

benceno, hasta tan solo un 30% en el caso del naftaleno.  

 

Figura 3.6. Balance de C tras 15 min. 

En resumen, los resultados mostraron que, pese a lograr una completa 

eliminación de BTXN en la fase acuosa, una fracción importante de los mismos 

permanece adsorbida en el CA. La reacción sigue un mecanismo en dos etapas 

con una rápida adsorción inicial, seguida por la oxidación catalítica, tal y como 

se muestra de forma esquematizada en la Figura 3.7. El artículo completo sobre 

oxidación de hidrocarburos aromáticos mediante MW-CWPO se encuentra en el 

Apéndice 5.2 de la presente Tesis doctoral. 
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Figura 3.7. Mecanismo de reacción en MW-CWPO de BTXN a: CB,T,X, 0: 100 mg·L-1,  
CN,0: 30 mg·L-1, CCA: 1 g·L-1, CH2O2,0: estequiométrica, pH0: 3, tr: 15 min. 

En el tercer trabajo, centramos nuestra atención en el efecto de la naturaleza de 

los materiales carbonosos en el proceso catalítico. Para ello, seleccionamos 

diferentes materiales: carbones activados (CA), grafitos (G), negros de humo 

(NH) y carburo de silicio (SiC). Todos ellos fueron probados en la degradación 

de fenol. La Figura 3.8. recoge los resultados de COT y H2O2, que confirman que 

los materiales carbonosos son activos en MW-CWPO, gracias a la combinación 

de sus propiedades de absorción de MW y sus propiedades redox, que permiten 

la generación de HOX• a gran velocidad. No obstante, la actividad de los NH es 

muy limitada en comparación con el resto de materiales. Además, observamos 

que la química superficial tiene un papel muy importante el proceso, 

especialmente en el caso del grafito, aumentando la actividad el doble cuando 

se emplea un grafito de carácter ácido, el G-S.  

 

Figura 3.8. Actividad de materiales carbonosos en MW-CWPO de fenol.  
CFenol,0: 100 mg·L-1, CCatalizador: 500 mg·L-1, CH2O2,0: 500 mg·L-1, T: 120oC, pH0:3, t:60 min 
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Los materiales más activos (CA-M y G-S) fueron sometidos a 5 ciclos 

consecutivos de reacción para probar su estabilidad. La conversión de COT se 

muestra en la Figura 3.9. Como se puede observar, el G-S mantuvo su actividad, 

con una mineralización superior al 90% en todos los ensayos. Por el contrario, 

el CA-M sufrió una desactivación progresiva debido a la pérdida de sus 

propiedades texturales.  

 

Figura 3.9. Estabilidad de G-S y CA-M en 5 ciclos consecutivos de MW-CWPO. 

Este comportamiento tan dispar entre catalizadores fue relacionado con su 

estructura y, en especial, al efecto de los puntos calientes. El carbón activado es 

un material poroso. De esta forma, cuando se producen los puntos calientes en 

el interior de los microporos, se genera vapor confinado. En esos puntos la 

presión aumenta de forma local y el catalizador acaba desmoronándose en lo 

que hemos denominado efecto palomita de maíz. Estas micro explosiones 

colapsan la estructura del catalizador, lo que conlleva su desactivación 

progresiva, transformando el catalizador en un polvo difícil de separar del 

efluente tratado.  

Por otra parte, el grafito es un material laminar y ordenado. Esta estructura 

permite disipar el calor generado en los puntos calientes con mayor facilidad, 

manteniendo el grafito su estructura y su actividad catalítica intactas. Estos 

fenómenos están detallados en la Figura 3.10.  
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Figura 3.10. Formación de puntos calientes y estructura de los catalizadores. 

Los resultados del estudio de actividad y estabilidad de materiales carbonosos 

en MW-CWPO fueron publicados en la revista Separation and Purification 

Technology, como el tercer trabajo de esta Tesis, recogido en el Apéndice 5.3. 

Tras obtener un catalizador activo y estable, ya podíamos proponer un proceso 

CWPO intensificado mediante microondas, pero antes teníamos que realizar un 

estudio económico con tal de optimizar el uso de las microondas. Este es el 

objetivo del cuarto trabajo de esta Tesis doctoral, en la que se comparan los 

diferentes métodos de operación posibles y descritos en bibliografía, potencia 

MW fija y temperatura fija. Este último, que es el empleado en los trabajos 

previos, implica programar el microondas para calentar las muestras desde 

temperatura ambiente hasta 120oC en 90 segundos, concentrando la radiación 

MW a 1800W en ese corto período de tiempo. Después los reactores son 

irradiados para mantener la temperatura, pero a una potencia mucho menor. El 

proceso MW-CWPO es eficiente debido a la formación de puntos calientes y 

estos están relacionados con la radiación MW. Por tanto, parecía que no 

estábamos aprovechando al máximo el potencial de esta tecnología trabajando 

a temperatura fija. Para probar esta teoría y optimizar el consumo energético en 

el sistema, se llevaron a cabo diferentes experimentos trabajando a temperatura 

fija, potencia MW fija con radiación en continuo y potencia MW fija con radiación 

a pulsos. Los resultados se recogen en la Figura 3.11.  

Pudimos observar que el modo de radiación también tiene un papel importante 

en el proceso MW-CWPO. Los pulsos de MW lograron una mayor 

mineralización y una mejor utilización del H2O2 que el uso de MW continuas. 
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Esto se atribuye a la disipación del calor generado en los puntos calientes en los 

periodos de relajación del material.  

 

Figura 3.11. Influencia del modo de radiación en MW-CWPO. 
CFenol,0: 100 mg·L-1, CG-S: 500 mg·L-1, CH2O2,0: 500 mg·L-1, pH0:3. 

Analizando los requisitos del sistema, el consumo energético se redujo a un 

tercio con relación al experimento a temperatura controlada. Además, el 

consumo energético por masa de COT eliminada al final de la reacción (ECCOT) 

fue significativamente menor en comparación con otros procesos de oxidación 

avanzada intensificados, como se muestra en la Figura 3.12. Por tanto, el 

proceso MW-CWPO se presenta como una alternativa competitiva desde el 

punto de vista económico.  

 
Figura 3.12. Relación coste-eficiencia de diversos AOP intensificados. 
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En este trabajo también se estudió el modelo cinético, encontrando que sigue un 

pseudo-segundo orden para el COT y un pseudo-primer orden en el caso del 

peróxido. También se calcularon las energías de activación EA para ambas 

reacciones. La EA, COT fue significativamente menor que las reportadas en 

bilbiografía para la oxidación de fenol. Sin embargo, la EA, H2O2 presentaba 

valores similares a los previamente encontrados. Por tanto, la formación de 

puntos calientes tiene un impacto mayor en la degradación de contaminantes 

orgánicos que en la descomposición del H2O2. El artículo completo, publicado en 

la revista Separation and Purufication Technology, está recogido en el Apéndice 

5.4. 

En resumen, esta Tesis doctoral muestra que el uso de radiación microondas 

mejora substancialmente el conocido proceso CWPO, en el que se emplea H2O2 

como promotor de HOX•. La absorción de MW puede generar puntos calientes 

en la superficie de materiales carbonosos. Cuando estos son de naturaleza 

grafítica, el calor generado en estas áreas puede ser disipado, manteniendo el 

catalizador sus propiedades. Además, la química superficial tiene un rol 

importante, tanto como la formación de puntos calientes. Finalmente, el modo 

de operación, en lo que concierne al procedimiento de irradiación también tiene 

un impacto importante en la formación de puntos calientes y, por tanto, en la 

actividad catalítica.  
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CONCLUSIONS 

The main conclusions obtained throughout this dissertation, in which the 

Catalytic Wet Peroxide Oxidation process has been intensified by means of 

microwave radiation are: 

• Hydrogen peroxide decomposition is sensitive to MW radiation. Due to 

its high loss factor, which is higher than that of water, H2O2 is affected by 

the electromagnetic field induced by microwaves. This produces its 

homolytic rupture, giving rise to free radicals which are able to oxidize 

the pollutants.  

 

• H2O2 decomposition process is also favored by the presence of redox 

catalysts, which increase considerably the HOX• radicals generation rate 

and, therefore, the efficiency of the oxidation process.  

 

• Dielectric properties of the catalyst play a key role in MW-CWPO, due to 

hot-spot formation on their structure. Hence, MW-absorbing materials, 

such as carbon materials, accelerate the HOX• production rate and 

minimize the generation of intermediates, especially oligomers, common 

in CWPO processes. Thus, a higher mineralization degree is reached at 

higher rate.  

 

• In conventional CWPO processes, carbon materials have shown a 

moderate activity. Nonetheless, in MW-CWPO their activity is noticeably 

enhanced due to hot spot formation. It should be noted that:  

o Carbon blacks present a relatively low activity in relation to other 

carbon materials. 

o Silicon carbide presents a high initial activity, followed by a quick 

deactivation caused by a loss of its crystalline structure. 

o Activated carbons present a high activity with a low H2O2 

consumption efficiency in relation to other materials. 
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o Activity in graphites is high, but it can be conditioned by their 

superficial chemistry. In this sense, G-S, which has an acidic 

character, is more active in terms of mineralization and H2O2 

decomposition tan G-F, which has a basic pHSlurry. 

 

• The MW-CWPO process follows a pseudo-second order kinetic for TOC 

and pseudo-first order in relation to H2O2, with a lower activation energy 

tan the non-assisted process due to the contribution of hot spots. 

 

• Stability in carbon materials is related to their structure. All these 

materials absorb MW radiation and generate hot spots, although the heat 

dissipation is different, which affects their stability. In this sense, AC 

presents a quick deactivation due to collapse upon the so-called popcorn 

effect. On the other hand, the laminar structure of G-S eases the heat 

dissipation, enhancing its stability. 

 

• Radiation mode in terms of intensity and MW duration has an important 

role in the MW-CWPO process. MW application by pulses results in a high 

mineralization degree with an efficient H2O2 consumption, minimizing 

the energy requirements per unit of eliminated TOC and turning MW into 

a competitive option in relation to other intensification techniques.  

 

• Pulsated MW-CWPO presents a lower energy consumption by unit of 

removed TOC in relation to other assisted AOP, making this process a 

competitive alternative. 
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CONCLUSIONES  

Las principales conclusiones obtenidas durante el desarrollo de la presente 

Tesis Doctoral, en la que se ha intensificado el proceso CWPO mediante 

radiación microondas son: 

• La descomposición del peróxido de hidrógeno es sensible a la radiación 

microondas. Debido a su alto factor de pérdida, que dobla al del agua, el 

H2O2 se ve afectado por el campo electromagnético inducido por las MW, 

dando lugar a su ruptura homolítica para generar radicales libres, que 

son capaces de oxidar los compuestos presentes en disolución.  

 

• Este proceso de descomposición de H2O2 se encuentra igualmente 

favorecido por la presencia de catalizadores redox, aumentando 

significativamente la velocidad de producción de radicales HOX• y, por 

tanto, la eficiencia global del proceso de oxidación. 

 

• Las propiedades dieléctricas del catalizador presentan un papel 

importante en el proceso MW-CWPO, debido a la generación de puntos 

calientes en su estructura. Así, los materiales absorbedores de 

microondas, como son los materiales carbonosos, aceleran la generación 

de radicales HOX• y minimizan la formación de intermedios, 

especialmente oligómeros frecuentes en procesos CWPO, alcanzando un 

mayor grado de mineralización a una mayor velocidad. 

 

• La actividad catalítica de los materiales carbonosos en el proceso MW-

CWPO está íntimamente relacionada con sus propiedades superficiales. 

Cabe destacar que: 

o Los negros de humo presentan una actividad relativamente baja 

en comparación con el resto de materiales carbonosos empleados. 

o El carburo de silicio presenta una alta actividad inicial, aunque una 

muy baja estabilidad. 
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o Los carbones activos presentan una alta actividad, con un consumo 

de H2O2 menos eficiente que otros materiales. 

o La actividad de los grafitos es alta, aunque puede estar muy 

condicionada por su química superficial. Así, el G-S, de carácter 

ácido, es más activo en la oxidación y descomposición de H2O2 que 

el G-F, con un pHSlurry de carácter básico. 

 

• El proceso MW-CWPO sigue una cinética de pseudo-segundo orden 

respecto al COT y pseudo-primer orden con relación al H2O2, presentando 

una energía de activación inferior al proceso no asistido debido a la 

contribución de los puntos calientes.  

 

• La estabilidad de los materiales carbonosos en MW-CWPO está 

relacionada con su estructura tridimensional. Todos ellos adsorben las 

microondas y generan puntos calientes, aunque la disipación del calor es 

diferente, lo que afecta a su estabilidad. Así, el CA se desactiva 

rápidamente al desmoronarse mediante el mecanismo al que hemos 

denominado como efecto palomita de maíz. La estructura laminar del G-

S permite una mayor disipación del calor generado en los puntos 

calientes, mejorando su estabilidad.  

 

• El modo de irradiación en cuanto a intensidad y duración de las 

microondas tiene un papel clave en el proceso MW-CWPO. La irradiación 

por pulsos permite alcanzar un alto grado de mineralización con un 

consumo eficiente de H2O2, minimizando las necesidades energéticas por 

unidad de COT eliminado y convirtiéndolo en una opción competitiva 

frente a otras alternativas de intensificación. 
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5.1. Microwave-assisted Catalytic Wet Peroxide 

Oxidation. Comparison of Fe catalysts supported 

on activated carbon and γ-alumina 

 

 

 

 

 



Applied Catalysis B: Environmental 218 (2017) 637–642

Contents lists available at ScienceDirect

Applied  Catalysis B: Environmental

j ourna l  h om epage: www.elsev ier .com/ locate /apcatb

Microwave-assisted  catalytic  wet peroxide  oxidation.  Comparison  of

Fe  catalysts  supported  on  activated  carbon  and  �-alumina

Alicia  L.  Garcia-Costa ∗,  Juan  A.  Zazo,  Juan J. Rodriguez,  Jose  A. Casas

Chemical Engineering, Faculty of  Science, Universidad Autonoma de Madrid, Ctra. Colmenar Viejo km. 15, 28049, Madrid, Spain

a  r  t  i  c  l  e  i  n  f  o

Article history:
Received 7 April 2017

Received in revised form 15 June 2017

Accepted 20 June 2017

Available online 8 July 2017

Keywords:
CWPO

Microwave

Fe/AC

Fe/�-Al2O3

Hot spot

a  b  s  t r a c  t

This paper  studies the  role  of the  catalytic support  on  microwave-assisted  catalytic wet peroxide  oxida-

tion  (MW-CWPO) with Fe  as active  phase. Experiments  were  carried  out with and without MW using

catalysts  of Fe  on  activated  carbon  (Fe/AC) and gamma  alumina  (Fe/�-Al2O3).  Phenol (100  mg·L−1) was

used  as  target pollutant, operating at pH 3, 120 ◦C, 100  mg·L−1 catalyst  concentration  and  the  theoretical

stoichiometric  amount  of H2O2 (500  mg·L−1). MW radiation promotes hot spot formation on the  sur-

face  of AC,  enhancing  HOX
• generation,  so  that  the  rate of mineralization  is significantly increased  with

respect  to  non-assisted CWPO.  Under these  conditions, phenol  oxidation proceeded  essentially through

direct  aromatic ring  breakdown, yielding carboxylic acids, while  the  formation  of the  highly  toxic inter-

mediates  hydroquinone  and  p-benzoquinone  were  barely detected. The Fe/AC catalyst  showed a better

performance  than  the  Fe/�-Al2O3 one,  which can be  explained by the  much  higher MW absorption  on

AC,  which,  in  fact,  showed  to be a good  MW-CWPO  catalyst  by  itself.  Meanwhile,  the  results  proved that

�-Al2O3 was basically  transparent  to MW, and deposition  of  condensation  byproducts  on the surface

hindered  the  activity of the  Fe/�-Al2O3 catalyst.

©  2017  Elsevier  B.V. All rights reserved.

1. Introduction

Environmental policies, with increasingly stringent discharge

limits, demand new or enhanced technologies for wastewater

treatment, capable to  deal with bio-refractory pollutants. Advanced

Oxidation Processes (AOPs) have been widely used for  this pur-

pose. Among them, Catalytic Wet  Peroxide Oxidation (CWPO) is

one of the most investigated in the last decade. This AOP uses H2O2

as a source of HOX
• radicals (HO• and HOO•) for the abatement

of pollutants in water at mild or moderate working conditions (T:

25–120 ◦C; P: 1–5 bar) [1].

The main points of concern in  CWPO are efficient H2O2 con-

sumption and catalyst stability. Metals supported on activated

carbon (AC) [2–7] or alumina (�-Al2O3)  [8–11], or even carbon

materials themselves [1,12–15], have been tested for  this process.

Activated carbon-based catalysts have shown higher activity but

lower stability than alumina catalysts, mainly due to active phase

leaching [9]. On the other hand, activated carbon by itself gives a

lower oxidation rate despite its  higher stability [15]. All these cat-

∗ Corresponding author.

E-mail address: alicial.garcia@uam.es (A.L. Garcia-Costa).

alysts have shown to be highly efficient when working well above

ambient-like temperature.

Microwave (MW)  radiation has been used for water treatment

intensification, since it provides rapid heating and improves energy

efficiency [16,17]. MW  heating depends on the electric loss tangent

(tan  �),  defined as the quotient between �”, the relative loss factor

(which represents the dissipation of the absorbed energy as heat)

and �’,  the relative dielectric constant (which is the relative mea-

sure of the MW energy density in a  given material). Thereby, a  lossy

material with a high �” is  easily heated by MW [17].

tanı = ε′′

ε′ (1)

Materials can be classified as opaque, transparent or absorbers,

depending on the penetration of MW.  Therefore, materials present-

ing high tan  �  values are considered MW absorbers, whereas lower

values correspond to transparent materials [18].

Table 1 lists those values for  different materials. According to

them, AC is  a MW absorber, whereas Al2O3 is transparent to MW.

When supporting iron  on these materials, tan  � increases, being

more noticeable this effect for Al2O3.

MW-  assisted CWPO has been used to treat different synthetic

and real wastewaters (Table 2).  However, so far there is  a lack of

reliable and conclusive studies. Even though CuFe2O4 and Fe3O4

have shown to be  effective for Rhodamine B removal in short reac-

http://dx.doi.org/10.1016/j.apcatb.2017.06.058

0926-3373/© 2017 Elsevier B.V. All rights reserved.
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Table  1
Dielectric properties of different materials at  25 ◦C.

Material tan � MW  interaction Reference

PTFEa 2.48·10−4 Transparent [19]

Distilled H2Oa 0.123 Absorber [20]

ACa 0.57–0.80 Absorber [21]

ACa 0.22–2.95 Absorber [22]

Carbon nanotubesb 1.06 Absorber [23]

Fe/carbon nanotubesb 2  Absorber [23]

Al2O3
c 3·10−5–4·10−2 Transparent [24]

Al2O3 (99,5%)d 8·10−5 Transparent [25]

Fe/Al2O3
d 8·10−4 Transparent [25]

tan � measured at a2,45 GHz, b8 GHz, c9  GHz, d1  GHz.

tion time [26,27], no specific data on mineralization were reported.

On the other hand, supported Cu leaches when working in  acidic

media [35] giving rise to rapid deactivation and turning these cata-

lysts into potential pollutants. Despite using the same active phase

[29–31], the role of the support has not yet been analyzed, while

it can be a key issue in MW-CWPO. Besides, no studies have been

conducted working at high temperature (above 100 ◦C). Therefore,

further research is needed to learn more on the potential applica-

tion of this technology.

Two well-known catalysts, already used in CWPO of  phenol as

target pollutant have been tested: (i) Fe on activated carbon (Fe/AC)

and (ii) Fe on �-Al2O3 (Fe/�-Al2O3)  [2,11]. The aim of  this research

is to learn on the potential advantage of  associating MW radiation

to CWPO and analyze the behavior of those two commonly used

different supports in the MW-CWPO approach investigated.

2. Materials and methods

2.1. Reagents and materials

Phenol was supplied by Sigma-Aldrich and H2O2 (30% w/v)

by Panreac. The respective aqueous solutions were prepared at

pH 3 using HCl (Panreac). The catalysts were synthesized with

Fe(NO3)3·9H2O (98 wt.%) purchased from Sigma-Aldrich and �-

Al2O3 and AC supplied by  Merck. Working standard solutions

of phenol, catechol, resorcinol, hydroquinone, p-benzoquinone,

and organic acids (fumaric, malonic, maleic, acetic and formic

from Sigma-Aldrich and oxalic from Panreac) were prepared for

equipment calibration. H2SO4 (96 wt.%; Panreac), NaHCO3 (Merck),

Na2CO3 (Panreac) and H3PO4 (85 wt.%; Sigma-Aldrich) were also

used for the analysis. All reagents were of analytical grade and were

used as received without further purification. Milli-Q water was

always used.

2.2. Catalysts preparation

The preparation of Fe/AC and Fe/�-Al2O3 catalysts was

described elsewhere [2,8,11,36].  Briefly, they were prepared by

incipient wetness impregnation of AC or �-Al2O3 with an aqueous

solution of Fe(NO3)3·9H2O in order to obtain a 4% Fe wt.% nominal

Table 3
Porous texture and  Fe content of the supports and catalysts.

SBET (m2/g) Aext (m2/g) Fe (%)

AC  1018 175 0.04

Fe/AC  951 73 4.2

�-Al2O3 142 140 –

Fe/�-Al2O3 133 120 4.1

load. Afterwards, the AC-supported catalyst was  calcined at  200 ◦C

for 2 h,  while for  the �-Al2O3 300 ◦C  and 4 h were used. Under those

conditions, Fe2O3 was the main iron species in both catalysts.

2.3.  Catalyst characterization

The porous texture of  the supports and catalysts was charac-

terized by 77 K N2 adsorption/desorption using a Micromeritics

Tristar apparatus. The specific surface area (SBET)  and the external

or non-microporous area (Aext)  were calculated by the BET method

and t-method, respectively. The  total iron content of  the catalyst

was determined by inductively coupled plasma mass spectrometry

(ICP-MS) using an ICP-MS Elan 6000 Perkin-Elmer Sciex instru-

ment. Additional characterization of  these catalysts can be found

elsewhere [2,9].

2.4. CWPO and  MW-CWPO experiments

All  the experiments were carried out at 120 ◦C  and pH0 = 3

with 100 mg·L−1 of aqueous phenol solution and 100 mg·L−1 of

catalyst (particle size < 100 �m).  H2O2 was  added at  500 mg·L−1,

corresponding to the theoretical stoichiometric amount for com-

plete mineralization of phenol. Stirring was fixed at 400 rpm, which

allowed maintaining the catalyst in suspension and avoiding mass-

transfer limitations. All the experiments were done by triplicate,

being the standard deviation always less than 5%.

CWPO tests were carried out for 1 h in a batch stainless

steel pressurized reactor (BR-300, Berghof) with a 500 mL  PTFE

insert reaction vessel equipped with backpressure and tempera-

ture controllers. When the temperature was equilibrated at 120 ◦C,

hydrogen peroxide solution was injected.

MW-CWPO runs were performed in high pressure 100 mL PTFE

reaction vessels in  a microwave oven (FlexiWAVE, Milestone)

equipped with temperature controller. The reactors were initially

loaded with phenol, H2O2 and the catalyst and the heating rate was

set at 80 ◦C/min (Pmax: 1800 W)  to reach the reaction temperature

(120 ◦C), which was maintained for 1 h. During reaction, the system

pressure rose up to 2.4 bar.

2.5.  Analytical methods

Samples were periodically withdrawn from the reactors and

immediately analyzed after filtration through fiber glass filters

(Albet FV-C). Phenol and aromatic intermediates were identified

and quantified by means of an Ultra HPLC (Thermo Scientific Ulti-

Table 2
Application of MW-assisted CWPO.

Catalyst Pollutant Operating conditions Results Ref

Metals CuFe2O4 Rhodamine B (RhB) T = 80 ◦C, [RhB] = 100 mg·L−1, t  = 5  min, P  = 300  W XRhB = 100% [26]

Fe3O4 Rhodamine B T = 80 ◦C, [RhB] = 100 mg·L−1, t  = 2  min, P  = 300  W XRhB = 99% [27]

Iron tailings Landfill leachate T = 25 ◦C, [COD] = 12 g·L−1,  t  = 3  min, P = 480 W XCOD = 45.1% [28]

Al2O3 CuO/Al2O3 P-Nitrophenol (NP) T = 70 ◦C, [2NP] = 50  mg·L−1,  t  = 6  min, P  = 100 W XPNP = 93% [29]

CuO/Al2O3 2-Nitrophenol T = 60 ◦C, [2NP] = 200  mg·L−1,  t  = 5  min, P = 300 W X2NP = 97%, XTOC = 79% [30]

AC CuO/AC P-Chlorophenol (PCP) T = 70 ◦C, [PCP] = 100 mg·L−1,  t  = 30 min, P  = 400  W XTOC = 90% [31]

Ferrihydrite/AC Methyl Orange (MO) [MO] = 20 mg·L−1, t  = 4  min, P  = 700  W XMO = 99.1% [32]

Cu-Ce/AC Pharmaceutical wastewater [TOC] = 158 mg·L−1,  t  = 6 min, P = 539 W XTOC = 65.9% [33]

Fe/AC Landfill leachate t  = 30  min, P = 720 W XCOD = 93% [34]
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Fig. 1. TOC and H2O2 evolution upon CWPO of phenol with and without MW  radiation with the catalysts tested. ([Ph]0: 100 mg·L−1; [H2O2]0:  500  mg·L−1;  [cat]: 100 mg·L−1;

T:  120 ◦C and pH0: 3).

mate 3000) with a Diode Array detector (Dionex Ultimate 3000).

A C18 column (ZORBAX Eclipse Plus C18, 100 mm,  1.8 �m)  was

used as stationary phase and a 4 mM  H2SO4 aqueous solution

at 1 mL/min as mobile phase. UV detector at 210 nm wavelength

was used for phenol, resorcinol, catechol and hydroquinone and

at 246 nm for p-benzoquinone. Short-chain organic acids were

analyzed in an ion chromatograph with chemical suppression

(Metrohm 790 IC) using a conductivity detector. A Metrosep A supp

5–250 column (25 cm long, 4 mm  diameter) was used as station-

ary phase and 0.7 mL/min of a 3.2 mM/1  mM aqueous solution of

Na2CO3 and NaHCO3, respectively, as mobile phase. Total Organic

Carbon was measured using a TOC analyzer (Shimadzu TOC-VSCH).

Residual H2O2 in the liquid phase was determined by colorimet-

ric titration with an Agilent spectrophotometer using the TiOSO4

method [37].

3. Results and discussion

Table 3 summarizes the BET and external area of the supports

and catalysts. AC and Fe/AC have a high developed porosity, corre-

sponding mainly to microporosity, whereas fresh alumina and its

catalyst are essentially mesoporous solids with much lower values

of surface area. AC has a high adsorption capacity, related to the

surface area. Thus, phenol adsorption should be considered. In  this

terms, previous to the oxidation runs, blank runs were carried out

with the catalysts and phenol (no H2O2 added to the solution). TOC

did not vary when using either Fe/AC or Fe/�-Al2O3 at 120 ◦C, thus,

phenol adsorption is  unlikely to occur in the tested conditions. The

iron content was around 4 wt.% for the home-made catalysts.

A set of  experiments were carried out with and without MW

to learn on the effect of this energy source on CWPO. The results

are shown in  Fig. 1, where it  can be  seen that MW affects quite

differently to the activity of  the catalysts tested. In the case of Fe/AC,

mineralization was significantly improved, consistently with the

enhanced H2O2 decomposition rate. This effect is attributed to hot

spot formation on the surface of  AC. Meanwhile, when using Fe/�-

Al2O3, the rate of  H2O2 decomposition was  also increased but in

a lower extent and the effect of MW  on the CWPO process was

irrelevant in terms of mineralization.

The  normalized H2O2 yield �,  defined as the amount of TOC

removed per unit weight of  H2O2 fed in  relation to the maximum

theoretical TOC removal at that H2O2 dosage, has been used to

evaluate the efficiency of H2O2 [38]. MW heating allowed increas-

ing this value from 0.77 to 0.88 after 60 min  with Fe/AC, whereas

with Fe/�-Al2O3,  �  remained practically unchanged (� ≈ 0.82).

Therefore, H2O2 was  somewhat more efficient in CWPO with the

Fe/�-Al2O3 catalyst, whereas in the MW-assisted process, the AC-

supported catalyst showed a significantly improved behavior.

Table 4
Byproducts distribution from MW-assisted and non-assisted CWPO of phenol with the catalyst tested.

Time CWPO Fe/AC MW-CWPO Fe/AC CWPO Fe/�-Al2O3 MW-CWPO Fe/�-Al2O3

(min) Acids Arom Acids Arom Acids Arom Acids Arom

% % %  % %  % % %

5 86.6 13.4 99.5 0.5 63.6 36.4 42.2 57.8

15  98.6 1.4 99.8 0.2 74.6 25.4 63.4 36.6

30  98.5 1.5 100  0 78.3 21.7 77.2 22.8

45  98.4 1.6 100  0 91.3 8.7 89.7 10.3

60  98.2 1.8 100  0 97.2 2.7 94.8 5.2
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Fig. 2. TOC and H2O2 evolution in MW-CWPO of phenol with the bare sup-

ports  tested and blank experiment with no catalyst. Operating conditions: [Ph]0:

100  mg·L−1; [H2O2]0:500 mg·L−1; [cat]: 100 mg·L−1; T: 120 ◦C and pH0: 3.

Table  5
Byproducts distribution from MW-CWPO of phenol with the bare supports.

Time MW AC MW �-Al2O3

(min) Acids Arom Acids Arom

% % % %

5 70.5 29.5 29.8 70.2

15  90.6 9.4 23.7 76.3

30  100 0 54.5 45.5

45  100 0 82.6 17.4

60  100 0 91.1 8.9

The distribution of intermediates was followed by means of

Ion Chromatography to quantify short chain organic acids, such

as acetic, formic, malonic, maleic and oxalic and Ultra HPLC to

analyze aromatic compounds, being only detected catechol and p-

benzoquinone. Byproducts distribution as short chain organic acids

and aromatic compounds is shown in Table 4. These results corre-

spond in all cases to complete conversion of phenol, since it  was

always achieved in less than 5 min.

Under MW-CWPO with the Fe/AC catalyst, phenol disappear-

ance proceeded at a high rate and after 15 min  only organic acids

were detected, while in the non-assisted process some remain-

ing amounts of aromatic byproducts were still detected even after

1 h reaction time. The highly toxic benzoquinone is  of particular

concern and in that respect the beneficial effect of MW  was  very

important. With the Fe/�-Al2O3 catalyst, the residual amounts of

aromatic byproducts after 1 h reaction time were still quite signifi-

cant, being that even more pronounced in  the MW-assisted CWPO.

To learn more on the specific effect of the support, MW-CWPO

experiments with the bare AC  and �-Al2O3 were carried out under

the same conditions than the previous ones performed with the

Fe catalysts. The results are depicted in Fig. 2 in terms of mineral-

ization and H2O2 conversion. The  evolution of reaction byproducts

is given in Table 5, where it can be  seen the dramatically differ-

ent behavior of both supports. The lossy character of  AC  allows a

high MW absorption giving rise to the formation of hot spots on

its surface [17,39,40], enhancing wet peroxide oxidation. This phe-

nomenon does not take place, or represents a much less significant

contribution, in the case of Fe/�-Al2O3 since it  is  a MW insulator,

Fig.  3. Condensation byproducts (CBP) upon CWPO with and without MW  with the

catalysts  tested.

Fig.  4.  Condensation byproducts (CBP) upon MW-CWPO with the bare supports.

essentially transparent to MW radiation. Fig. 2 includes the results

of a blank experiment performed under MW radiation and the same

amount of H2O2, but without any catalyst or support. As can  be seen,

the �-Al2O3 support does not provoke any significant enhancement

on the MW-assisted wet peroxide oxidation. Comparing Fig. 1 and

Fig. 2, it can be observed that the dielectric properties of the support

play a key role  on MW-CWPO. When working with AC as support

under MW,  iron has a minor contribution in the reaction, since hot

spot formation upon the AC surface greatly enhances HOX
• gener-

ation. On the other hand, when working with a MW-transparent

support such as Al2O3, the activity of Fe/Al2O3 relies exclusively on

the active phase.

It  was observed a more or less pronounced difference between

the measured TOC and the amount of C associated to the identi-

fied species, as can be seen in  Figs. 3 and 4 for  the catalysts and

bare supports, respectively. That difference has been ascribed to

oligomeric condensation byproducts (CBP), whose formation has

been reported in homogeneous Fenton [41] as well as in  CWPO of

phenol [1,2,15,42,43]. This refers to CBP in the liquid phase, but

those species can be also deposited on the surface of  the catalysts.

In the case of  �-Al2O3 this was confirmed by the dark brown color

observed in the solid after use (Fig. 1. of  Supporting Information).

This darkening of the catalyst was  evidenced since the earlier stages

of reaction. As can be  seen in  Fig. 3, the amount of unidentified

organic carbon in the liquid phase was  significantly higher with

the Fe/�-Al2O3 catalyst and became almost negligible in  the MW-

assisted CWPO with the Fe/AC catalyst after 30 min  reaction time.

Fig. 3 also reveals the influence of  MW  on CBP stability. Hot spot

formation on the surface of Fe/AC lead to a complete CBP removal,

whereas for Fe/Al2O3, MW radiation had no effect on the fate of

CBP, which are adsorbed on its surface. The results with the bare

supports (Fig. 4), show the significantly better performance of AC

in that respect.
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Fig. 5. Reaction pathway of MW-CWPO of phenol with the tested catalysts.

Fig. 6. Stability of a) Fe/AC and b) Fe/Al2O3 in MW-CWPO through three reaction

cycles.  ([Ph]0: 100 mg·L−1;  [H2O2]0: 500  mg·L−1;  [cat]: 100 mg·L−1; T: 120 ◦C  and

pH0: 3).

With the results obtained so far, the oxidation route depicted

in Fig. 5 is proposed for  MW-CWPO of  phenol. Starting with phe-

nol, the reaction byproducts are divided in three blocks: aromatic

intermediates, short chain organic acids and condensation byprod-

ucts. This scheme is consistent with the well-known breakdown

routes proposed for Fenton-like oxidation of  phenol in the litera-

ture [2,41]. As indicated before, with MW-Fe/AC there is a much less

formation of CBP, whereas with Fe/�-Al2O3 those species appear in

significant amounts since the earlier stages of the process.

Stability of Fe/AC and Fe/Al2O3 under MW-CWPO was tested in

3 consecutive cycles. Results are shown in  Fig. 6. Fe/AC remained

active under the selected operating conditions, since it allowed

complete H2O2 decomposition in all runs and mineralization

degree was always above 80%. Iron leaching was measured after

each run. There was a progressive iron leaching ascribed to the

action of oxalic acid. Nevertheless, this active phase loss was  always

below 10%, being this amount negligible regarding homogeneous

Fenton contribution. On  the other hand, Fe/Al2O3 presented a

deeply pronounced deactivation due to CBP deposition on the sur-

face of the catalyst, which lead to active sites blockage, hindering

the efficiency of the process for the decomposition of H2O2 as well

as for  TOC removal.

4. Conclusions

The  dielectric properties of the catalyst support play a crucial

role on MW-assisted CWPO. With a  MW absorber such as AC, for-

mation of hot spots on the surface of  the catalyst enhances the

oxidative breakdown of  the target pollutants. In this particular case,

phenol mineralization upon CWPO was significantly improved

under MW-radiation with the Fe/AC catalyst. The efficiency of  H2O2

consumption was  also improved and the highly toxic aromatic

intermediates were barely detected and completely removed at

around 15 min  reaction time, working at  120 ◦C  with 100 mg·L−1

catalyst and the stoichiometric dose of  H2O2 (500 mg·L−1 for

the 100 mg·L−1 phenol solution). The formation of oligomeric

condensation byproducts was  also reduced with respect to the non-

assisted process, and their presence in the liquid phase became

almost negligible after 30 min reaction time.

In  contrast, �-Al2O3, being essentially transparent to MW

radiation, did not show any significant enhancing effect in the

MW-assisted process and even a lower efficiency of the Fe/�-Al2O3

catalyst was observed compared to the non-assisted CWPO.  This

can be due to a higher formation of  CBP covering active Fe sites.
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Abstract
This paper addresses the removal of four aromatic hydrocarbons typically found in petrochemical wastewater: benzene (B),
toluene (T), o-xylene (X), and naphthalene (N), by microwave-assisted catalytic wet peroxide oxidation (MW-CWPO) using
activated carbon (AC) as catalyst. Under the studied conditions, complete pollutant elimination (B, 1.28 mM; T, 1.09 mM; X,
0.94mM; andN, 0.78 mM)was achieved, with more than 90% TOC removal after only 15-min reaction time, working at 120 °C,
pH0 = 3, AC at 1 g L−1, and H2O2 at the stoichiometric dose. Furthermore, in the case of toluene, naphthalene, and xylene, the
hydroxylation and breakdown of the ring is very rapid and toxic intermediates were not detected. The process follows two steps:
(i) pollutant adsorption onto AC followed by (ii) adsorbed compounds oxidation. Thus, MW-CWPOwith AC as catalyst appears
a promising way for a fast and effective process for B, T, X, and N removal in aqueous phase.

Keywords Microwave . CWPO . Activated carbon . BTXN .Mineralization . AOP

Introduction

Nowadays, there is an increasing concern on water quality due
to the scarcity of this resource. Aromatic hydrocarbons such as
benzene (B), toluene (T), o-xylene (X), and naphthalene (N)
are potential water pollutants from the petrochemical industry.
These species imply a high risk for human health and the
environment due to their highly toxic and non-readily biode-
gradable character (Kang et al. 2014).

Their removal from water has been studied by physical or
physicochemical methods including coagulation (Steliga et al.
2015), electrocoagulation (Gong et al. 2017), adsorption
(Lutynski and Suponik 2014; Qi et al. 2017; Valderrama et
al. 2008), and filtration (Smol et al. 2017). Nonetheless, this
kind of treatments only transfers the pollutants into another

phase. In the past few years, surfactant-enhanced biological
remediation of these contaminants has gained attention. This
technique consists in the addition of surfactants to increase the
solubility of these compounds making them bioavailable
(Lamichhane et al. 2017; Wei et al. 2016). Nevertheless, sur-
factants can inhibit microbial activity besides introducing ad-
ditional contamination.

In this scenario, advanced oxidation processes (AOP) can
provide a feasible solution (Mota 2008). These are based on
the generation of strong oxidizing agents, mainly hydroxyl
radicals (HO·), highly reactive species. Among the AOPs,
catalytic wet peroxide oxidation (CWPO) has gained attention
in the past two decades. This process is based in the redox
decomposition of H2O2 under mild or moderate working con-
ditions (T, 25–120 °C; P, 1–5 bar) with a solid catalyst giving
rise to both hydroxyl and hydroperoxyl (HOO·) radicals
(Dominguez et al. 2013; Zazo et al. 2006). A current trend
in AOPs is the intensification of the existing techniques
(Pliego et al. 2015). This intensification can be accomplished
by rising the temperature (Zazo et al. 2011), with electrochem-
ical methods (Yavuz et al. 2010) or applying different kinds of
energy sources: UV-light (Mascolo et al. 2008; Zazo et al.
2016), ultrasound (Psillakis et al. 2004; Ramteke and Gogate
2015), or microwaves (Atta et al. 2012; Nascimento and
Azevedo 2013; Pan et al. 2015). Microwave (MW)-assisted
AOPs represent a rising and promising technology. MW
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provides higher heating rates and thus, higher reaction rates,
resulting in an improved energy efficiency (Wang and Wang
2016).

Table 1 summarizes previous intensified oxidation process-
es used in the treatment of B, T, X, and N and petrochemical
wastewater containing these compounds. Abussaud et al.
(2008) studied the wet air oxidation (WAO) of benzene.
Although this is an effective technique, it requires high tem-
perature and pressure in order to solubilize and activate O2. To
decrease the operating costs, different AOP have been devel-
oped as cost-efficient alternatives. In this sense, Ramteke and
Gogate (2015) studied both Fenton and US/H2O2 processes
for the removal of B, T, X, and N in aqueous phase. Fenton
process reached almost complete pollutant removal in all
cases but no TOC or COD removal data were provided. On
the other hand, US/H2O2 presented a very poor performance
in the removal of these compounds. Furthermore, the
experimental section is not clear with respect to the
composition of the treated influents. Those are referred in

terms of COD which correspond to concentrations of B, T,
X, and N, shown in Table 1 that are impossible to be
solubilized in water. Tiburtius et al. (2005) achieved complete
pollutant removal in UV/Fenton after 90 min. Nonetheless,
the mineralization degree was very low. Furthermore, no data
on the oxidation by-products was reported. Thus, there could
be remaining recalcitrant toxic compounds such as quinones.

Previous work showed that the dielectric properties of the
catalyst or support play a crucial role onMW-CWPO (Garcia-
Costa 2017). The rapid pollutant degradation in the MW sys-
tem with an MW-adsorbent, like activated carbon, is mainly
due to the hot-spot formation on its surface, which is a unique
mechanism for MW. This is essential to speed-up reactions in
many processes. Generally, the delocalized π-electrons in the
surface of the AC are free to move. During the MW irradia-
tion, the kinetic energy of electrons on the surface of the AC
increases, which enables the electrons to jump out of the ma-
terial resulting in the formation of hot spots by ionizing the
surrounding atmosphere (Menéndez et al. 2010). These hot

Table 1 Oxidation processes used for B, T, X, N depletion

AOP Pollutant Operating conditions Pollutant removal TOC/COD removal Reference

WAO B B, 5.63 mM 100% XTOC, 87% (Abussaud et al. 2008)
Temp, 300 °C

P, 1.72 MPa

t, 30 min

Fenton B, T, X, N B, 28.7 mM B, 97.6% (Ramteke and Gogate 2015)
T, 11.8 mM T, 97.5%

X, 8.3 mM X, 98.3%

N, 6.7 mM N, 93.9%

Fe2+ 3 g/L

H2O2, 58.82 mM

t, 40 min

US/H2O2 B, T, X, N B, 28.7 mM B, 34% (Ramteke and Gogate 2015)
T, 11.8 mM T, 35%

X, 8.3 mM X, 28%

N, 6.7 mM N,24%

US, 22 kHz

H2O2, 58.82 mM

t, 40 min

UV/Fenton B, T, X B, 0.26 mM 100% XTOC, 30% (Tiburtius et al. 2005)
T, 0.22 mM

X, 0.19 mM

TiO2, 50 mg/L

Fe2+ 10 mg/L

H2O2, 2.95 mM

t, 90 min

UV/TiO2 Petrochem. wastewater COD, 175 mg/L – XCOD, 90% (Saien and Nejati 2007)
TiO2, 100 mg/L

T, 45 °C

t, 240 min
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spots, which may reach 1200 °C (Remya and Lin 2011), en-
hance the oxidation processes boosting both HOX· generation
and oxidation rate and degrading the condensed by-products
typically found in the oxidation of aromatic compounds
(Garcia-Costa 2017). Thus, in this work, we address the deg-
radation of B, T, X, and N by MW-CWPO using bare AC as
catalyst.

Material and methods

Reactants

Synthetic waters containing known amounts of the contami-
nants were prepared with benzene (99%, Sigma-Aldrich), tol-
uene (99,99%, Sigma-Aldrich), o-xylene (98%, Sigma-
Aldrich) naphthalene (99%, Sigma-Aldrich), and H2O2

(30% w/v; Panreac), respectively, at pH 3 using HCl (37%
w/v; Panreac).

Commercial activated carbon was supplied byMerck (AC-
M, ref. 102514, granular). Complete analysis of this AC can
be found elsewhere (Dominguez et al. 2013). In brief, this
material contains 4% ashes in dry basis, 89.3% C, 0.9% H,
0.5% N, 0.6% S, with traces of Cl, Fe, Zn, Pb, and As. It has
991 m2/g BET surface area, corresponding 17% to external or
non-microporous area.

H2SO4 (96 wt.%; Panreac), acetonitrile (Sigma-Aldrich),
and H3PO4 (85 wt.%; Sigma-Aldrich) were used in the ana-
lytic procedure. Working standard solutions of phenol, cate-
chol, resorcinol, hydroquinone, p-benzoquinone, and organic
acids (fumaric, malonic, maleic, acetic, and formic from
Sigma-Aldrich and oxalic from Panreac) were prepared for
equipment calibration. All reagents are analytical grade and
they were used as received without further purification. Milli-
Q water was used throughout the work.

MW-CWPO experiments

MW-CWPO runs were performed in high pressure PTFE re-
action vessels located in a microwave furnace (FlexiWAVE,

Milestone). The experiments were conducted in batch using
100-mL stoppered PTFE reactors which were initially loaded
with aqueous pollutant solution (B, 1.28 mM, T, 1.09 mM, X,
0.94 mM, and N, 0.78 mM), activated carbon at 1 g L−1 and
H2O2 (theoretical stoichiometric dose for each pollutant, that
is 17.82 mM for B, 17.83 mM for T, 19.93 mM for X, and
7.03 mM for N). Right after the H2O2 addition, reactors were
tightly sealed and placed in the microwave oven. Heating rate
was set at 80 °C/min to reach the reaction temperature 120 °C,
which was maintained for 15 min. Catalyst is kept in suspen-
sion by magnetic stirring at 400 rpm. During reaction pressure
rose up to 2.4 bar.

Analytical methods

Samples were periodically withdrawn and placed in an ice
bath to reduce the temperature and quench the reaction.
Afterwards samples were immediately analyzed after filtration
through fiber glass filters (Albet FV-C). B, T, X, N and aro-
matic intermediates were identified and quantified by means
of an Ultra HPLC (Thermo Scientific Ultimate 3000) with a
diode array detector (Dionex Ultimate 3000). An ion-
exclusion column (ZORBAX Eclipse Plus C18, 100 mm,
1.8 μm) was used as stationary phase. As mobile phases, a
mix of 50% acetonitrile and 50% 4 mM H2SO4 aqueous so-
lution at 1 mL/min was used for B, T, X, and N and only
H2SO4 aqueous solution at 1 mL/min as mobile phase for
aromatic intermediates. UV detector at 210 nm wavelength
was used for B, T, X, N, phenol, resorcinol, catechol, and
hydroquinone and at 246 nm for p-benzoquinone. Short-
chain organic acids were analyzed in an ion chromatograph
with chemical suppression (Metrohm 790 IC) using a conduc-
tivity detector. AMetrosep A supp 5-250 column (25 cm long,
4 mm diameter) was used as stationary phase and 0.7 mL/min
of a 3.2 mM/1 mM aqueous solution of Na2CO3 and
NaHCO3, respectively, as mobile phase. Total organic carbon
was measured using a TOC analyzer (Shimadzu TOC-
VSCH). Residual H2O2 in the liquid phase was determined
by colorimetric titration with an Agilent spectrophotometer
using the TiOSO4 method (Eisenberg 1943).

Fig. 1 a Pollutant and b H2O2

evolution uponMW-CWPO of B,
T, X and N; CB,0, 1.28 mM; CT,0,
1.09 mM; CX,0, 0.94 mM; CN,0,
0.78 mM; CH2O2,0 stoichiometric;
CAC, 1 g L−1; T, 120 °C; pH,3
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Thermogravimetric analyses (TGA) of the fresh, used, and
pollutant saturated AC were performed in a thermoscale TGA
Q500 (TA Instruments). Runs were conducted under N2 flow
at 800 °C, reached at 10 °C/min heating rate.

Results and discussion

The MW/AC/H2O2 system is active and capable of eliminat-
ing the aromatic species tested in aqueous phase after 15 min
of reaction time under the operating conditions described be-
fore. All these compounds exhibited a similar behavior,
disappearing quite rapidly within 3 min. That covers most of
the conversion percentage and then complete disappearance
was reached at slower rate but always in less than 15min. This
seems to be related to the adsorption of the target pollutants or
a rapid formation of aromatic intermediates including conden-
sation by-products (Dominguez et al. 2014; Garcia-Costa
2017; Suarez-Ojeda et al. 2005; Zazo et al. 2005) which can
be adsorbed onto the active centers of the carbon and, there-
fore, disappear from the medium.

The evolution of H2O2 follows a similar trend to that of the
pollutants. At the beginning, H2O2 is transformed to HOX·
radicals, although their production rate decreases with oligo-
meric formation and sorption over activated carbon. Its de-
composition seems to follow a first order kinetics as H2O2

conversion is independent of its initial concentration, as can
be seen in Fig. 1b. After the initial stages, H2O2 decomposi-
tion rate depends on the number of active centers that are
covered by the oligomer formed in the initial stages. On the
other hand, this oligomer is oxidized and removed from the
surface of the catalyst as the time evolves. Almost complete
H2O2 conversion was achieved at 15 min in all cases. Hence,
MW greatly enhances the rate of decomposition compared to
traditional CWPO (Garcia-Costa 2017).

Figure 2 shows the evolution of total organic carbon
(TOC). It follows a fairly similar pattern to that observed in
Fig. 1 for the pollutants conversion. Thus, the disappearance
of the target compound seems to be accompanied in all cases
by both adsorption and a rapid breakdown towards complete
oxidation. The remaining TOC in solution after the initial
stage corresponds to short organic acids, more resistant to
mineralization. Nevertheless, TOC decay during the first mi-
nutes of reaction is not consistent with the H2O2 decomposi-
tion, which is slower. For the sake of comparison, blank ex-
periments in absence of H2O2 were performed. Results,
shown in Fig. S1 of the supporting information, reveal an
adsorption around 70% of the target pollutants. These results
would be in agreement to the combined adsorption-oxidation
mechanism proposed in which the pollutants and oligomeric
by-products are initially adsorbed onto AC, as previously de-
scribed by Dominguez et al. (2013). Consequently, there is a
higher TOC decrease than the one expected in relation to the
oxidant consumption. Therefore, with these active centers oc-
cupied, the H2O2 decomposition is slowed down. The
adsorbed by-products are later mineralized, being the catalyst
partially regenerated. The availability of the active sites could
explain the different slopes observed in Figs. 1 and 2. It is
important to remark the high TOC removal achieved in short
term, most in particular of naphthalene, a representative PAH.
In this regard, the combined use of AC as adsorbent and MW-
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Fig. 2 TOC evolution upon MW-CWPO of CB,0, 1.28 mM; CT,0,
1.09 mM; CX,0, 0.94 mM; CN,0, 0.78 mM; CH2O2,0, stoichiometric;
CAC, 1 g L−1; T, 120 °C; pH 3

Fig. 3 Initial reaction rates of
TOC and H2O2 disappearance
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CWPO catalyst presents a low-cost feasible alternative in re-
lation to the previous AOP studied for B, T, X, and N removal.

The TOC and H2O2 initial reaction rates were calculated.
As can be seen in Fig. 3, there is a relationship between these
initial rates and the starting concentration used in each exper-
iment. That confirms an apparent first-order kinetics for both,
TOC and H2O2.

This model has been used to fit the experimental data and
the values of the apparent kinetic constant are collected in
Table 1. The corresponding plots can be found in Figs. S2
and S3 of the supporting information. Xylene yielded the
slowest mineralization rate, related to its methyl group.
These are hydroxylated by HOX· radicals giving rise to formic
and acetic acids, which are highly resistant to further oxida-
tion. On the other hand, the mechanism of H2O2

decomposition is the same in all cases, resulting in similar rate
constants (Table 2).

Oxidation pathway

The evolution of the reaction by-products identified from
MW-CWPO of B, T, X, and N is depicted in Fig. 4. The results
suggest a similar route than the one previously reported for
conventional CWPO of phenol (Dominguez et al. 2013). The
starting pollutants and aromatic intermediates can follow two
different paths. In the first one, there is rapid hydroxylation,
which leads to the opening of the aromatic ring, thus no aro-
matic intermediates such as catechol, benzoquinone, hydro-
quinone, or resorcinol were detected in solution. On the other
hand, the hydroxylation process can produce aromatic radicals
which can give rise to condensation oligomeric species (Zazo
et al. 2005). These condensation by-products (CBP), along
with the target pollutants, can be quickly adsorbed by the
activated carbon and removed from water. Once adsorbed,
they are oxidized by HOX· yielding organic acids that are
released to the aqueous medium. Malonic, maleic, oxalic,
acetic, and formic acids were detected. Higher acids are oxi-
dized to acetic and formic, which are more resistant to CWPO.
The proposed oxidation pathway is illustrated in Fig. 5.

The oxidation by-products identified in solution accounted
for more than 98% of the measured TOC, indicating no sig-
nificant amounts of condensation by-products (CBP) were in
the aqueous phase.

Table 2 Kinetic parameters for TOC and H2O2 fromminutes 3 to 12 of
reaction

Compound kApp (min
−1) R2

TOC Benzene 5.1 × 10−2 0.965

Toluene 5.7 × 10−2 0.998

Naphthalene 9.7 × 10−2 0.959

Xylene 3.2 × 10−2 0.952

H2O2 Benzene 1.36 × 10−1 0.963

Toluene 1.01 × 10−1 0.979

Naphthalene 1.43 × 10−1 0.957

Xylene 1.22 × 10−1 0.989

Fig. 4 Time course of
intermediates upon MW-CWPO
of a benzene, b toluene, c xylene,
and d naphthalene
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Thermogravimetric analyses (TGA) in inert N2 atmosphere
of the fresh AC, AC after pollutant adsorption inMW-AC and
AC after MW-CWPO were carried out. The results are shown
in Fig. 6. In all cases adsorbed matter is remaining on the AC
after reaction. Starting pollutants and oligomeric by-products
remain partially adsorbed onto AC and are not totally oxidized
in the studied conditions. Regardless of the target compounds

which are desorbed around 300–450 °C, the oligomeric by-
products are highly stable, starting its decomposition at
700 °C. It should be remarked that MW-CWPO achieves the
degradation of above 50% of the initial adsorbed compounds.
Taking into account the adsorbed species and TOC, an esti-
mation of the mineralized carbon has been calculated, as
shown in Fig. S4 of the supporting information. In brief,

Fig. 5 Reaction pathway

Fig. 6 TGA-N2 profiles for fresh
AC, MW-AC, and used AC in
MW-CWPO of a benzene, b
toluene, c xylene, and d
naphthalene
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TGA analyses confirm the proposed adsorption-oxidation
mechanism in which AC acts as both pollutant adsorbent
and MW-CWPO catalyst, reaching complete B, T, X, and N
removal from water.

Conclusions

MW-CWPO with AC has proven to be effective for the re-
moval of B, T, X, and N in aqueous phase. AC acts as both
adsorbent and catalyst in a complex mechanism implying the
adsorption of the target pollutants or oligomeric by-products.
Then, HOX· achieve both pollutant oxidation and catalyst par-
tial regeneration, upon MW-assisted CWPO. Complete pol-
lutant elimination from the aqueous phase and up to 97%TOC
removal was achieved in fairly short time (15 min) under the
testing conditions (120 °C, pH0 = 3, H2O2 at the stoichiomet-
ric dose, and AC at 1 g L−1). The evolution of the reaction by-
products suggests a fast oxidation towards non-toxic carbox-
ylic acids with no aromatic intermediates detected in the aque-
ous phase.
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Figure S1. B, T, X and N removal in MW-AC and MW-CWPO for CB,0: 1.28 

mM, CT,0: 1.09 mM, CX,0: 0.94 mM, CN,0: 0.78 mM, CH2O2,0: MW-AC: 0, MW-CWPO: 

stoichiometric, CAC: 1 g·L-1, t: 15 min, T: 120oC, pH0:3 

  

Figure S2. Pseudo-first order plot for TOC in MW-CWPO for CB,0: 1.28 mM, 

CT,0: 1.09 mM, CX,0: 0.94 mM, CN,0: 0.78 mM, CH2O2,0: stoichiometric, CAC: 1 g·L-1, 

T: 120oC, pH0:3 
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Figure S3. Pseudo-first order plot for H2O2 in MW-CWPO for CB,0: 1.28 mM, 

CT,0: 1.09 mM, CX,0: 0.94 mM, CN,0: 0.78 mM, CH2O2,0: stoichiometric, CAC: 1 g·L-1, 

T: 120oC, pH0:3 
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A B S T R A C T

Several commercial carbon materials have been tested as catalysts in the Microwave-assisted Catalytic Wet
Peroxide Oxidation process (MW-CWPO). Two graphites (G-F and G-S), two activated carbons (AC-M and AC-C),
two carbon blacks (CB-V and CB-A) and silicon carbide (SiC) were selected due to their MW-absorbing prop-
erties. Phenol (100mg L−1) was used as target pollutant, operating in batch at pH0 3, 120 °C, 500mg L−1 cat-
alyst load and the theoretical stoichiometric amount of H2O2 (500mg L−1). All carbon materials showed to be
active in terms of H2O2 decomposition and phenol oxidation. Nonetheless, G-S and AC-M stood out as the most
active materials in terms of TOC removal, with values of 94 and 93% TOC elimination, respectively. On the other
hand, both carbon blacks and G-F yielded a significantly lower TOC degradation. Surface chemistry seems to rule
the activity of graphites, in particular the pH slurry (4.5 for G-S and 8.4 for G-F). The most active catalysts, G-S
and AC-M were used in 5 consecutive cycles in order to study their stability. While G-S remained active, AC-M.

1. Introduction

Public and governmental concern on water quality challenges en-
gineers to find new or enhanced technologies for wastewater treatment,
particularly when facing bio-refractory pollutants. Catalytic Wet
Peroxidation (CWPO) appears to be a potential solution. This Advanced
Oxidation Process (AOP) consists a heterogeneous version of the Fenton
process, based on the redox decomposition of H2O2 into hydroxyl (HO%)
and hydroperoxyl radicals (HOO%). These species present high oxida-
tion potentials, high reactivity and low selectivity, allowing the
breakdown of organic recalcitrant pollutants. Furthermore, this is an
environmentally friendly technology, since H2O2 decomposition yields
non-toxic byproducts. CWPO catalysts frequently consist on a metallic
phase (Fe, Cu) supported on activated carbon, alumina or other porous
materials [1–5]. Nonetheless, catalyst deactivation due to metal
leaching is usual, generating a new environmental problem. To over-
come this issue, several authors have successfully employed bare
carbon materials such as activated carbon, graphite or carbon black as
CWPO catalysts [6–10].

CWPO intensification has been studied in the past decades, ad-
dressed to improve both the overall efficiency of the process and the
catalyst stability [11]. In this sense, several strategies have been
checked, like working at higher temperature [10,12], or applying dif-
ferent radiations, such as UV–vis [13,14], ultrasounds [15] and

microwaves (MW) [16–22]. Within these new processes, microwave-
assisted CWPO (MW-CWPO) offers a promising way allowing to work at
higher temperature with a more efficient heating. Besides, when using
MW absorbers, such as carbon materials, hot spot formation on their
surface can occur. Delocalized π-electrons in the surface of carbon
materials are free to move. The kinetic energy of these electrons in-
creases upon MW irradiation, generating micro-plasmas, or hot spots,
and ionizing the surrounding atmosphere These hot spots may reach up
to 1200 °C and have a synergistic effect on CWPO, boosting HOX

%

generation [22–25].
Table 1 summarizes the most recent applications of MW-CWPO for

wastewater treatment. Research efforts are being addressed on the de-
velopment of complex nanocomposites and their applications in MW-
CWPO, with some outstanding results [26–29]. Nonetheless, a better
knowledge is needed on key issues such as H2O2 decomposition, pol-
lutants mineralization, degradation pathways and catalysts stability.
Furthermore, even the reported operating conditions need to be clar-
ified in some cases. Thus, additional systematic research is required to
better understand the MW-CWPO process.

Previous work has shown that bare activated carbon (AC) yielded
practically the same activity than Fe/AC catalysts (Fe: 4 wt% as Fe2O3)
in MW-CWPO process, due to its MW absorbing properties, [30]. Hence,
the use of carbon materials can offer a low-cost and feasible alternative
to tailor-made traditional CWPO catalysts.
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Phenol is one of the most characteristic pollutants in industrial
wastewater and its degradation has been widely studied [29–32].
Therefore, it represents an interesting pollutant when comparing the
performance of different catalysts in new processes, such as MW-CWPO.
In this work, the activity of activated carbon, graphite, carbon black
and silicon carbide as MW-CWPO catalysts for phenol oxidation has
been tested. The stability of the most active materials upon consecutive
runs has also been checked.

2. Materials and methods

2.1. Reactants

Phenol was supplied by Sigma-Aldrich and H2O2 (30% w/v) by
Panreac. The respective aqueous solutions were prepared at pH0 3 using
HCl (37% w/v; Panreac).

Activated carbons were supplied by Merck (AC-M, ref.: 102514) and
Chemviron (AC-C), carbon blacks by Alfa-Aesar (CB-A, ref.: 1333-86-4)
and Vulcan (CB-V, ref.: CC72R), Graphite from Fluka (G-F, ref.:
1249167) and Sigma-Aldrich (G-S, ref.: 282863) and silicon carbide by
Goodfellow (SiC). All these materials were used as received. All samples
were supplied in powder, except for ACs, which were grounded and
sieved to achieve a particle size < 150 μm.

H2SO4 (96 wt%), H3PO4 (85 wt%) acetonitrile, TiOSO4, Na2CO3 and
NaHCO3, supplied by Sigma-Aldrich, were used in the analytic proce-
dure. All reagents are analytical grade and they were used as received
without further purification. Working standard solutions of phenol,
catechol, resorcinol, hydroquinone, p-benzoquinone, and organic acids
(fumaric, malonic, maleic, acetic and formic from Sigma-Aldrich and
oxalic from Panreac) were prepared for calibration. Ultrapure water
was used throughout the work.

2.2. MW-CWPO experiments

MW-CWPO runs were performed in high pressure PTFE reaction
vessels located in a microwave furnace (flexiWAVE, Milestone). The
experiments were conducted in batch using 100mL stoppered PTFE
reactors which were initially loaded with aqueous phenol solution
(100mg L−1) at pH0=3 and 500mg L−1 of catalyst H2O2 was added at
500mg L−1, corresponding to the theoretical stoichiometric amount for
complete mineralization of phenol. Stirring was fixed at 400 rpm, which
allowed maintaining the catalyst in suspension and avoiding external
mass-transfer limitation. Heating rate was set at 80 °C/min to reach the
reaction temperature 120 °C, which was maintained for 15min. During
reaction, the pressure rose up above 2 bar. All the experiments were
done by triplicate, being the standard deviation always< 5%.

2.3. Catalyst characterization

The porous texture of the supports and catalysts was characterized
by 77 K N2 adsorption/desorption using a Micromeritics Tristar appa-
ratus. The specific surface area (SBET) and the external or non-micro-
porous area (Aext) were calculated by the BET and t-method, respec-
tively. X-Ray Diffraction (XRD) patterns were obtained in a D5000 X-

Table 1
Recent works on MW-CWPO.

Pollutant Catalyst Operating
conditions

Results Ref.

Methyl orange (MO) NiFeMnO4 CMO: 30mg L−1

Ccat: 1 g L−1

CH2O2: 30mg L−1

t: 60 min
pH0: 2–3
T: 50 °C
P: 750W

XMO: 97% [26]

Orange G (OG) rGO-TiO2 CMO: 4.5mg L−1

Ccat, CH2O2, t and
pH0: unknown
T: 30–120 °C
P: 300W

XOG: 90% [27]

Perfluorooctanoic acid
(PFOA)

Pb-BiFeO3/
rGO

CPFOA: 50mg L−1

Ccat: 1 g L−1

CH2O2: 44mg L−1

t: 5 min
pH0: 5
T: unknown
P: 500W

XPFOA: 87%
XTOC: 52%

[28]

Phenol CuOX/GAC CPhenol:
100mg L−1

Ccat: 3 g L−1

CH2O2:
600mg L−1

t: 5 min
pH0: 4
T: unknown
P: 400W

XPhenol: 100%
XCOD: 90%

[29]

Phenol Fe/AC CPhenol:
100mg L−1

Ccat: 0.1 g L−1

CH2O2:
500mg L−1

t: 60 min
pH0: 3
T: 120 °C
P: variable
PMAX: 1800W

XPhenol: 100%
XH2O2: 100%
XTOC: 87%

[30]

Phenol AC CPhenol:
100mg L−1

Ccat: 0.1 g L−1

CH2O2:
500mg L−1

t: 60 min
pH0: 3
T: 120 °C
P: variable
PMAX: 1800W

XPhenol: 100%
XH2O2:100%
XTOC: 80%

[30]

Table 2
Porous texture and pH slurry of the carbon materials.

Material SBET (m2 g−1) Aext (m2 g−1) pH slurry

G-F 7 7 8.4
G-S 12 12 4.5
CB-A 74 74 6.7
CB-V 238 152 6.6
AC-C 872 73 6.8
AC-M 991 169 6.5
SiC < 2 <2 7
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Fig. 1. XRD patterns of the carbon materials.
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ray diffractometer (Siemens), using Cu Kα (8.04 keV) radiation and a
step of 0.02°/s for 2ϴ=5–100°. The pH slurry of the carbon materials
was determined following the ASTM D3838 – 05 method.
Thermogravimetric analysis (TGA) of the fresh and used catalysts were
performed in a thermoscale TGA Q500 (TA Instruments). Runs were
conducted under N2 flow up to 1000 °C, reached at 10 °C/min heating
rate.

2.4. Analytical methods

Samples were periodically withdrawn from the reactors and im-
mediately analyzed after filtration through fiber glass filters (Albet FV-
C). Phenol and aromatic intermediates were identified and quantified
by means of an Ultra HPLC (Thermo Scientific Ultimate 3000) with a
Diode Array detector (Dionex Ultimate 3000). An ion-exclusion column
(ZORBAX Eclipse Plus C18, 100mm, 1.8 μm) was used as stationary

phase and 4mM H2SO4 aqueous solution at 1mL/min as mobile phase.
UV detector at 210 nm wavelength was used for phenol, resorcinol,
catechol and hydroquinone and at 246 nm for p-benzoquinone. Short-
chain organic acids were analyzed in an ion chromatograph with che-
mical suppression (Metrohm 790 IC) using a conductivity detector. A
Metrosep A supp 5-250 column (25 cm long, 4mm diameter) was used
as stationary phase and 0.7 mL/min of a 3.2mM/1mM aqueous solu-
tion of Na2CO3 and NaHCO3, respectively, as mobile phase. Total
Organic Carbon was measured using a TOC analyzer (Shimadzu TOC-
VSCH). Residual H2O2 in the liquid phase was determined by colori-
metric titration with an Agilent spectrophotometer using the TiOSO4

method [33].

3. Results and discussion

3.1. Materials characterization

Porous texture and pH slurry of the selected carbon materials are
shown in Table 2. Textural properties vary significantly depending on
the type of material. Activated carbons present a high surface area,
corresponding mostly to microporosity, opposite to the graphites and
SiC, which are essentially non-porous materials. The two carbon blacks
differ significantly in their porous texture, showing CB-V a more de-
veloped porosity with both micro and mesopores. All families presented
similar pH slurry values, close to 7, except for the graphites, being G-F a
basic material in contrast to G-S, with acidic pH slurry value.

XRD patterns are collected in Fig. 1. SiC is a crystalline material,
different to the rest of carbon materials selected. Graphites show the
characteristic 0 0 2 diffraction peak at 2ϴ=26°, while carbon blacks
and activated carbons are amorphous materials, with larger turbostratic
domains in the case of the former.

3.2. Activity in MW-CWPO process

As indicated before, all these materials were tested as catalysts in
the MW-CWPO degradation of phenol. Phenol concentration, Total
Organic Carbon (TOC) and H2O2 evolution are shown in Fig. 2. Only G-
S, AC-M and SiC, allowed complete conversion of phenol, being the two
former highly efficient in terms of mineralization in a relatively short
time. Regarding H2O2 decomposition, AC-C showed the highest ac-
tivity, although with much lower efficiency towards phenol breakdown
and mineralization. HOX

% radicals auto scavenging reactions can occur

Fig. 2. Phenol, TOC and H2O2 evolution upon MW-CWPO. CPhenol,0:
100mg L−1, Ccat: 500mg L−1, CH2O2,0: 500mg L−1, T: 120 °C, pH0: 3.
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on the surface of AC-C, giving rise to H2O and O2 in a higher extent.
Both carbon blacks (CB-A and CB-V) and the graphite G-F showed a
very low activity in MW-CWPO.

In the case of graphites, the surface chemistry seems to play a key
role in the process. G-S is the most acidic and active material of this
family, whereas G-F has a basic character with pHslurry: 8.4, leading to a
much lower activity for H2O2 decomposition.

One of the critical issues in CWPO is to find catalysts that maximize
the H2O2 consumption efficiency. Fig. 3 shows the relation between
H2O2 consumption and TOC removal. All the runs employed the stoi-
chiometric amount needed for complete phenol mineralization. Hence,

data on the diagonal would indicate a 100% effectiveness in H2O2

consumption. Data above the diagonal indicates phenol or inter-
mediates adsorption on the catalyst, whereas data below that line
would imply an inefficient H2O2 use. As pointed out from Fig. 2, AC-C is
very active for H2O2 decomposition but radicals can recombine leading
to a low TOC removal. AC-M and CB-V, with the highest specific within
their respective families provide a higher contribution of adsorption.
Despite G-S shows a lower H2O2 efficiency than G-F or CB-A, its higher
activity results promising for MW-CWPO.

Fig. 4 shows the evolution of detected byproducts, aromatic and
short-chain acids. In all runs, catechol was the only aromatic

Fig. 4. Time-course of reaction byproducts upon MW-CWPO of phenol. CPhenol,0: 100mg L−1, Ccat: 500mg L−1, CH2O2,0: 500mg L−1, T: 120 °C, pH0: 3.
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intermediate detected, always in very low concentrations
(< 4mg L−1). With G-S aromatic intermediates were not detected
throughout the reaction. Thus, phenol breakdown in MW-CWPO goes
through a very rapid ring opening, as was described in a previous work
[30]. Regarding the short chain acids, oxalic and formic are known to
be highly resistant to CWPO. Hence, it should be remarked that G-S is
able to oxidize these two acids after their formation, opposite to the rest
of materials tested.

Besides aromatic and short-chain acids, condensation byproducts
may arise in the oxidation of phenol [7,32,34]. These compounds have

not been yet identified. Nonetheless, they can be assessed in the liquid
phase as the difference between the measured TOC and that calculated
identified species, as depicted in Fig. 5. Under the working conditions,
the C balance closed for G-S and AC-M. Thus, no oligomeric byproducts
were remaining in the effluent. These byproducts can lead to catalyst
deactivation due to fouling, as it seems to happen with G-F. Therefore,
based in their high activity and complete removal of aromatic inter-
mediates and condensation byproducts, G-S and AC-M were selected for
further stability tests.

3.3. G-S and AC-M stability in MW-CWPO process

The stability of G-S and AC-M was tested in 5 consecutive cycles.
The results are shown in Fig. 6. G-S remained active under the selected
operating conditions, since mineralization degree was always above
85%. In contrast AC-M suffered a progressive loss of activity in each
cycle. This can be ascribed to the catalyst structure and porous texture.
AC-M is mostly a microporous solid, with only 17% of its high BET
surface area corresponding to external or non-microporous area,
whereas G-S can be considered a non-porous carbon of fairly small
surface area. When hot spot are formed inside these microspores,
confined vapor is generated. The pressure increases until the AC
crumbles in the so called popcorn effect. These changes in the material
seem to affect its stability favoring deactivation by fouling. On the other
hand, graphite is a highly ordered and layered material. Hot spot for-
mation on the surface of those layers is followed by a rapid energy
dissipation. Thus, the structure of the material remains intact, as does
the activity.

To learn on the catalyst fouling, termogravimetric analyses (TGA)
under N2 were performed for the fresh and used materials after 1 and 5
cycles Fig. 7. Results are shown in Fig. 6. G-S showed a weight loss
below 2%, while this was much higher for AC-M, increasing upon the
successive cycles. This proves that the active sites on AC-M are pro-
gressively covered, hindering its activity by fouling.

4. Conclusions

Carbon materials of different nature have been tested in MW-CWPO
using phenol as target pollutant. Carbon blacks showed a very low
activity in this process. SiC exhibited a high initial activity but a rapid
deactivation. Activated carbons yielded a good activity but an in-
efficient H2O2 consumption. AC-C allowed complete H2O2 decomposi-
tion in 15min, hindering the reaction due to a lack of oxidant and rapid
radical recombination. On the other hand, when using AC-M, 93%
mineralization was achieved. The activity of graphite relies on its sur-
face chemistry. G-F, with basic pHslurry, showed low activity for both
H2O2 conversion and TOC removal, yielding a relatively high amount of
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condensation byproducts, favoring its deactivation by fouling. In con-
trast, G-S, with acid pHslurry, allowed complete phenol conversion and
94% mineralization. Intermediates analyses reveal a very quick ring
opening with no aromatic intermediates or condensation byproducts in
aqueous phase after 60min reaction with G-S and AC-M. These two
materials were subjected to stability tests, finding that AC-M crumbled
and lost its activity in consecutive runs due to the popcorn effect.
Contrarily, the ordered laminar structure of graphite allows energy
dissipation when hot spots are formed, being G-S stable upon 5 con-
secutive runs.
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A B S T R A C T

Over the past few years, microwave technology (MW) has been successfully coupled to different advanced
oxidation processes for wastewater treatment. This intensification method provides a rapid and homogeneous
heating and, in presence of microwave absorbing materials, hot spots can be generated. These have shown a
significant contribution on the overall efficiency of the process. Up to the date, there is no information on the
influence of the radiation mode on the system. To gain knowledge on this issue, three different operation modes
were studied in the MW-assisted catalytic wet peroxide oxidation of phenol: (i) controlled temperature (120 °C),
(ii) controlled continuous MW and (iii) controlled pulsated MW. Other experimental conditions were [Phenol]0:
100mg·L−1, [H2O2]0: 500mg·L−1, [graphite]: 500mg·L−1, pH0:3. The pulsated method reached 90% miner-
alization degree and complete H2O2 decomposition using 240 kJ, three times less energy than the controlled
temperature run. Continuous MW showed a slightly inferior performance (XTOC: 82%), ascribed to a worse
energy dissipation from the hot spots on the material. After reaction, only biodegradable short chain carboxylic
acids remain in the effluent and there are no significant modifications on the catalyst crystallinity, despite the
extreme conditions produced by hot spot formation. Under these conditions TOC abatement follows a pseudo-
second kinetic order (EA,TOC≈ 30–40 kJ·mol−1), whereas H2O2 decomposition fits by a pseudo-first order
(EA,H2O2≈ 33–52 kJ·mol−1). Additionally, the specific energy consumption (ECTOC) for the controlled power
runs was lower than that of other intensified AOP, making MW-CWPO a competitive technology for wastewater
treatment.

1. Introduction

Advanced Oxidation Processes (AOP) have arisen as promising
techniques for wastewater detoxification, especially when facing
acutely toxic and/or recalcitrant contaminants. These methods are
based on the generation of strongly oxidizing agents such as hydroxyl
and hydroperoxyl radicals (HOX

·). Among the existing AOP, Fenton is
the most commonly used. This process uses iron salts in the catalytic
decomposition of H2O2, giving rise to HOX

·. Despite its ease of operation
and high efficiency, this treatment generates additional waste, as dis-
solved iron needs to be recovered as Fe(OH)3 sludge prior to the ef-
fluent discharge [1,2].

In order to overcome this drawback, Catalytic Wet Peroxide
Oxidation (CWPO) emerges as a feasible alternative, supporting the
metal (typically iron or copper) onto a porous solid such as alumina,
activated carbon, etc. [3–5]. Nonetheless, at the usual operating pH,
active phase leaching may occur, causing additional water pollution
and catalyst deactivation. In this scenario, free-metal catalysis arises,
typically using carbonaceous materials such as activated carbon, gra-
phite, carbon black, etc. These have been successfully applied in CWPO,

with a sensibly lower activity but greater stability than the metal doped
catalysts [6–8].

The current trend in AOP goes through process intensification to
boost either the activity or the stability of the catalysts. This enhance-
ment can be achieved by increasing the temperature [9], with elec-
trochemical methods [10] or applying different kinds of radiation such
as ultrasounds [11,12], UV–vis light [13,14] or microwaves (MW)
[15–17]. MW-assisted AOPs present a promising technology, as they
combine homogeneous heating of the bulk reaction by dipole polar-
ization, as well as other MW non-thermal effects, related to the MW
absorbing properties of the materials. Materials with high loss factor
(tan δ), can absorb a great amount of radiation, releasing the energy as
hot spots on their surface. These hot spots are micro-plasma regions in
which temperature rises up to 1200 °C [18]. A previous work revealed a
higher activity when using carbon based catalysts, which are MW ab-
sorbers, in comparison to alumina, transparent to this kind of radiation
[19]. Furthermore, in that work we observed that the non-thermal ef-
fects had a significant contribution on phenol degradation, presenting
activated carbon (AC) practically the same activity as a Fe/AC catalyst.
Further research revealed the importance of the catalyst structure [20],
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where highly ordered materials such as graphite present a higher sta-
bility than AC. Hot spot formation inside the AC micropores leads to
material crumbling and catalyst deactivation by fouling. Both works
were performed heating the solution at PMAX: 1800W until the working
temperature was reached (120 °C). Afterwards the MW-furnace modu-
lated the radiation to keep that temperature, working in average at
around P: 215W throughout the process. This strategy allows to com-
pare our results to those obtained in absence of MW. Nonetheless, hot
spot formation is intrinsically related to the radiation. Thus, the current
operating mode may imply an inefficient energy consumption.

So far, MW-CWPO has been widely studied in the degradation of a
large variety of contaminants with great results, as may be seen in
Table 1. Nonetheless, the metal leaching presented in some works
[29,30] cannot be neglected, as they exceed the environmental reg-
ulations for effluent disposal. Furthermore, some authors are obscure
about the operating conditions, reporting mysterious situations in
which, operating at a fixed power, temperature is allegedly kept con-
stant inside the microwave. In this sense, no studies have yet been
conducted to determine the optimal operating conditions in terms of
energy consumption. This paper aims to gain depth in this issue,
working in three different scenarios at: (i) fixed temperature, (ii) fixed
energy with continuous MW irradiation and (iii) fixed energy with MW
pulsation. In order to do so, graphite was selected as metal-free catalyst
and phenol as target compound. This aromatic pollutant has been
widely studied because of its presence in industrial effluents but still
nowadays, it remains an interesting contaminant when testing new
catalysts or processes [21–25].

2. Materials and methods

2.1. Reactants

Phenol was supplied by Sigma-Aldrich and H2O2 (30% w/v) by
Panreac. The respective aqueous solutions were prepared at pH0 3 using
HCl (37% w/v; Panreac). H2SO4 (96 wt%), H3PO4 (85 wt%) acetoni-
trile, TiOSO4, Na2CO3 and NaHCO3, supplied by Sigma-Aldrich, were
used in the analytic procedure. All reagents are analytical grade and
they were used as received without further purification. Working
standard solutions of phenol, catechol, resorcinol, hydroquinone, p-
benzoquinone, and organic acids (fumaric, malonic, maleic, acetic and

formic from Sigma-Aldrich and oxalic from Panreac) were prepared for
calibration. Ultrapure water was used throughout the work.

Commercial graphite provided by Sigma-Aldrich (ref.: 282863) was
used as catalyst as received. This material was characterized elsewhere
[6,20]. In brief, it presents SBET: 12m2/g, C: 97.3%, Ashes: 0.5%,
pHSLURRY: 4.5.

2.2. MW-CWPO experiments

MW-CWPO runs were performed in high pressure PTFE reaction
vessels located in a microwave furnace (flexiWAVE, Milestone). The
experiments were conducted in batch using 100mL stoppered PTFE
reactors which were initially loaded with aqueous phenol solution
(100mg·L−1) at pH0=3 and 500mg·L−1 of catalyst. H2O2 was added
at 500mg·L−1, corresponding to the theoretical stoichiometric amount
for complete mineralization of phenol. Stirring was fixed at 400 rpm,
which allowed maintaining the catalyst in suspension and avoiding
external mass-transfer limitation.

For the controlled temperature experiment, the heating rate was set
at 80 °C/min to reach the reaction temperature 120 °C, which was
maintained for 15min. In the fixed power experiments, two different
operation modes were selected, continuous and pulsed radiation. The
continuous runs were conducted fixing a given power (200W, 400W,
1800W) thus, temperature rose during the experiments. For the pulse
operation, the microwave radiation was applied at 800W and 1800W
in regular time periods. All the experiments were done by triplicate,
being the standard deviation always less than 5%.

2.3. Analytical methods

Samples were periodically withdrawn from the reactors and im-
mediately analyzed after filtration through fiber glass filters (Albet FV-
C). Phenol and aromatic intermediates were identified and quantified
by means of an Ultra HPLC (Thermo Scientific Ultimate 3000) with a
Diode Array detector (Dionex Ultimate 3000). An ion-exclusion column
(ZORBAX Eclipse Plus C18, 100mm, 1.8 μm) was used as stationary
phase. As mobile phase 4mM H2SO4 aqueous solution at 1mL·min−1.
UV detector at 210 nm wavelength was used for phenol, resorcinol,
catechol and hydroquinone and at 246 nm for p-benzoquinone. Short-
chain organic acids were analyzed in an ion chromatograph with

Table 1
Recent MW-CWPO applications.

Operation mode Pollutant Catalyst Operating conditions Results Ref.

Controlled temperature Phenol AC, Graphite CPhenol: 100mg·L−1, Ccat: 0.1 g·L−1, CH2O2:
500mg·L−1

t: 60min, pH0: 3 T: 120 °C, P: variable, PMAX: 1800W

XPhenol: 100%
XH2O2:100%
XTOC: 93–94%

[19,20]

Benzene, Toluene, Xylene, Naphthalene
(BTXN)

AC CBTX: 100mg·L−1, CN: 30mg·L−1, Ccat: 1 g·L−1, CH2O2:
stoichiometric
t: 60min, pH0: 3 T: 120 °C, P: variable, PMAX: 1800W

XBTXN: 100%
XH2O2:100%
XTOC: 90%

[26]

Humic acid CuO-Co3O4/AC CHumicAcid: 100 mg·L−1, Ccat: 0.5 g·L−1, CH2O2:
315mg·L−1

t: 60min, pH0: 7 T: 80 °C, PMAX: 800W

XHumicAcid: 90%
CuLeached: 0.3 mg·L−1

CoLeached: 0.1 mg·L−1

[27]

Orange G (OG) rGO-TiO2 CMO: 4.5 mg·L−1, Ccat, CH2O2, t and pH0: not reported
T: 30–120 °C, PMAX: 300W

XOG: 90% [28]

Fixed MW power Phenol CuOX/GAC CPhenol: 100mg·L−1, Ccat: 3 g·L−1, CH2O2: 600mg·L−1

t: 5min, pH0: 4 T: not reported, P: 400W
XPhenol: 100%
XCOD: 90%
CuLeached: 21mg·L−1

[29]

Rhodamine B (RhB) BiFeO3 CRhB: 30mg·L−1, Ccat: 1 g·L−1, CH2O2: 44mg·L−1

t: 6min, pH0: 4
TMAX: 170–190 °C, P: 300W

XRhB: 94.8%
FeLeached: 60mg·L−1

BiLeached: 40mg·L−1

[30]

Perfluorooctanoic acid (PFOA) Pb-BiFeO3/rGO CPFOA: 50mg·L−1, Ccat: 1 g·L−1, CH2O2: 44mg·L−1

t: 5min, pH0: 5 T: not reported, P: 500W
XPFOA: 87%
XTOC: 52%
FeLeached: 0.05 mg·L−1

BiLeached: 0.03 mg·L−1

PbLeached: 0.08mg·L−1

[31]

Methyl orange (MO) NiFeMnO4 CMO: 30mg·L−1, Ccat: 1 g·L−1, CH2O2: 30mg·L−1

t: 6min, pH0: 2–3 T: 50 °C, P: 750W
XMO: 97% [32]
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chemical suppression (Metrohm 790 IC) using a conductivity detector.
A Metrosep A supp 5-250 column (25 cm long, 4mm diameter) was
used as stationary phase and 0.7mL·min−1 of a 3.2mM/1mM aqueous
solution of Na2CO3 and NaHCO3, respectively, as mobile phase. Total
Organic Carbon was measured using a TOC analyzer (Shimadzu TOC-
VSCH). Residual H2O2 in the liquid phase was determined by colori-
metric titration with an Agilent spectrophotometer using the TiOSO4

method [33].
X-Ray Diffraction (XRD) patterns for the fresh and used catalyst

were collected in a Siemens Model D5000X-ray diffractometer, using Cu
Kα (8.04 keV) radiation and a step of 0.02°·s−1 for 2ϴ=20–90°.
Thermogravimetric analyses (TGA) were performed in a TGA Q500
thermoscale (TA Instruments) in air atmosphere from 25 to 950 °C,
reached at 10 °C/min heating rate.

3. Results and discussion

3.1. MW-CWPO Optimization

Various runs were carried out to determine the best operating
conditions in terms of MW-radiation mode. Table 2 summarizes the
experimental plan. For the controlled temperature run, the average
applied power was obtained by integration using the own Flexiwave
furnace software. Usually, the energy consumption in this MW-assisted
processes is very high and can compromise the economic feasibility of
these at larger scale. Therefore, to reduce the operating cost, the ap-
plied energy was reduced to one third, working at maximum 240 kJ.
Results for TOC removal, H2O2 consumption and temperature evolution
are collected in Fig. 1. An energy of 120 kJ was not enough to reach
total H2O2 consumption at 10min, mainly having a partial oxidation
reaction. Nonetheless, working at 240 kJ complete H2O2 decomposition
was achieved, with significant differences in the mineralization degree
depending on the irradiation mode. The continuous runs could only
achieve an 82% TOC removal, whereas the pulsated runs reached 90%
mineralization. The non-radiated periods in the MW-pulses-CWPO
allow the relaxation of graphite, with the consequent dissipation of the
heat generated at the hot spots and an enhanced overall efficiency.

It should be noticed that working at very short reaction time and
high power (C.1800) there was a great overheating, reaching 230 °C.
This supposes an increase of 60 °C above the maximum temperature
reached in the other runs with 240 kJ. This fact was ascribed to a
limited heat dissipation throughout the reactor vessel in relation to the
C.400 run, in which the same amount of energy was radiated in a more
prolonged time.

Working at the stoichiometric dose of H2O2 for complete phenol
mineralization, the oxidant consumption efficiency (ε) can be defined
as the ratio between TOC and H2O2 conversions (Eq. (1)). This is one of
the key parameters in AOPs, as this reagent usually is amongst the most
expensive operating costs. Also, to compare the MW-CWPO process
with other intensified AOP, the specific energy consumption per TOC
mass at the final point of reaction (ECTOC) was determined. This para-
meter has been estimated according to Eq. (2), where E is the applied
energy (kWh), ΔTOC is the experimental abated TOC and Vs is the
treated volume (0.30 L). The values for ε and ECTOC are collected in

Table 3.

=ε X
X
TOC

H O2 2 (1)

Table 2
Operating conditions. Applied energy.

Operation mode Run Label P (W) t (s) Energy (kJ)

Controlled temperature 120 °C T.120 ≈212 3600 ≈765

Controlled applied power Continuous – 200W C.200 200 600 120
Continuous – 400W C.400 400 600 240
Continuous – 1800W C.1800 1800 133 240
Pulses – 800W P.800 800 25×12 s 240
Pulses – 1800W P.1800 1800 10×6 s

15×5 s
240

Fig. 1. TOC, H2O2 and temperature evolution for the runs in Table 2. CPhenol,0:
100mg·L−1, Ccat: 500mg·L−1, CH2O2,0: 500mg·L−1, pH0: 3.
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Working at high power in continuous mode does not imply a great
improvement in terms of H2O2 efficiency. However, the pulse mode
achieves a 90% efficiency degree, regardless of the applied power. In
terms of energy consumption, ECTOC decreases drastically when
working at fixed power in relation to the temperature controlled run,
with a slight enhancement by MW pulsation. In relation to other in-
tensified AOP, as shown in Table 4, MW-CWPO presents a lower ECTOC

than UV-assisted CWPO or persulfate electro activation. This is an im-
mature technology, which needs to be further investigated, especially in
terms of reactor design in order to be competitive against other AOPs
such as the electro-oxidation processes. Nonetheless, these kind of
water treatments use either expensive (BDD) or potentially polluting
(PbO2) electrodes and require a rather high amount of salts in the
medium to ensure a good conductivity, limiting their real application.

Besides TOC and H2O2, the final products were also analyzed. In all
cases, phenol was completely eliminated. Fig. 2 shows the evolution of
the intermediates. The detected intermediates coincide with those re-
ported in literature for phenol AOPs by other authors [39–42]. Phenol is
rapidly converted into hydroxylated compounds (hydroquinone, ben-
zoquinone and catechol), which are further oxidized opening the aro-
matic ring and giving rise to short-chain acids, mainly oxalic, acetic and
formic acids. Comparing the different processes, aromatic intermediates
depletion rate is greatly enhanced when working in pulsated mode, as
depicted by the significantly lower concentration of hydroquinone seen
in P.800 in comparison with that of C.400. In relation to short-chain
acid formation it should be noted that, oxalic and formic, which are
usually refractory for the Fenton process [39], start degrading after
160 kJ and are almost completely eliminated in the 240 kJ runs.

Nevertheless, the carbon associated to the reaction by-products does

not add up in relation to the measured TOC. Several authors have de-
scribed the formation of condensed by-products (CBP), oligomers
formed by aromatic intermediates condensation in the very first stages
of the oxidation of phenol or other aromatic pollutants [39,43]. These
oligomers have not been yet identified, but they can be quantified as
the difference between the measured TOC by a TOC analyzer and the
calculated TOC, as the sum of carbon from the oxidation products,
which is typical in these kind of oxidation processes [42]. These data
are collected in Fig. 3. There is a great formation of CBP in all cases at
the beginning of the process. Above 80 kJ, these species start to
breakdown, due to the temperature increase. Still, for the continuous
mode treatments, some oligomers contribute to the residual TOC after
reaction. Thus, CBP are highly stable and cannot be fully eliminated
even at 230 °C when using H2O2 at the stoichiometric amount. A ra-
tional use of MW radiation is essential for their elimination, achieving
complete CBP destruction in the pulsated runs.

3.2. Catalyst characterization after reaction

Catalysts have been exposed to a highly aggressive environment in
MW-CWPO due to hot spot formation on their surface. To analyze their
impact on the catalyst, XRD patterns were recorded before and after
reaction, as shown in Fig. 4. Previous work reports a great stability of
graphite in MW-CWPO, ascribing it to its capability of dissipating the
heat generated by the hot spots thanks to its laminar structure [20].
This structure, which confers graphite a characteristic crystallinity at
2ϴ: 26–27, is maintained in all trials.

Also, thermogravimetric analyses (TGA) in air atmosphere of the
fresh and used catalysts were carried out to study whether the CBP are
completely removed or adsorbed onto the graphite surface. Results are
shown in Fig. 5. There is a similar weight loss profile in all cases,
consistent to that of the fresh graphite. Thus, despite CBP remain in the
aqueous media for C.200 according to Fig. 3, these are not adsorbed
onto the catalyst due to hot spot formation.

3.3. Kinetic model

In order to study the kinetics of the MW-CWPO process, temperature
must be taken into account as a variable using the Arrhenius equation,
due to the different temperature profiles obtained as seen in Fig. 1. This
was integrated into the kinetic model, which follows a pseudo-second
order for TOC (Eq. (3)) and pseudo-first order for H2O2 (Eq. (4)) [39].

Table 3
H2O2 consumption efficiency (ε) and specific energy consumption (ECTOC).

Run ε ECTOC (kWh·gTOC−1) XPHENOL (%) XTOC (%)

T.120 0.94 19.8 100 94
C.200 0.76 7.5 100 76
C.400 0.82 7.1 100 82
C.1800 0.82 7.1 100 82
P.800 0.91 6.4 100 91
P.1800 0.90 6.5 100 90

Table 4
Intensified AOP ECTOC.

Process/Pollutant Operating conditions Results ECTOC (kWh·gTOC−1) [Ref]

UV-TiO2/Valproic acid (VA) [VA]0= 50mg·L−1

[TiO2]= 0.1 g·L−1

Energy source: Xe lamp

XVA= 73%
XTOC= 1.6%

8.6 [34]

UV-CWPO/Phenol [Phenol]0= 100mg·L−1

[H2O2]0= 500mg·L−1

[FeTiO3]= 450mg·L−1

Energy source: solar lamp

XPhenol = 100%
XTOC= 95%

22.2 [35]

Thermal+ Electro persulfate/Phenol [Phenol]0= 100mg·L−1

[S2O8
2−]0= 2.85 g·L−1

Electrodes: sacrificial Fe
i= 1mA·cm−2

T: 90 °C

XPhenol = 98%
XTOC= 80%

9.3 [36]

Electro-oxidation/Phenol [Phenol]0= 50mg·L−1

Anode: PbO2

i= 50mA·cm−2

[Na2SO4]= 7.1 g·L−1 (electrolyte)

XPhenol = 100%
XTOC= 85%

3.8 [37]

Electro-oxidation/Phenol [Phenol]0= 1.82 g·L−1

Anode: BDD
i= 147mA·cm−2

[H2SO4]=9.8 g·L−1 (electrolyte)

XPhenol = 100%
XTOC= 80%

0.2 [38]

A.L. Garcia-Costa et al.



Experimental data were fitted by the proposed equations, as can be seen
in Fig. 6. There is a good reproduction with a slight deviation in P.1800
for both TOC and H2O2.
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Activation energies and pre-exponential factors obtained by fitting
are collected in Table 5. EA, TOC is lower than the one reported for non-
assisted CWPO of phenol (EA, TOC: 55–57 kJ·mol−1) [40,44]. However,
EA, H2O2 is similar to that reported by Diaz de Tuesta et al. [42] for
phenol CWPO using carbon black as catalyst (EA, H2O2: 43 kJ·mol−1).

Thus, MW non-thermal effects seem to have a greater influence on the
organic pollutants abatement, rather than on the H2O2 decomposition.

In order to compare the behavior of the system with the results
obtained at fixed temperature (T.120), the apparent kinetic constants at
120 °C have been calculated for C.400 and P.800 using Eqs. (3) and (4)
as well as the parameters collected in Table 5. These runs were chosen
because they both present a very similar temperature profile (Fig. 1).
The apparent kinetic constants (kapp) are collected in Table 6. For the
sake of comparison, the experimental data for these runs is collected in
Fig. 7, which shows the reaction efficiency in terms of H2O2 con-
sumption and TOC removal. Working at the stoichiometric amount of
H2O2 needed for complete phenol mineralization, the ideal situation
would be to work as close as possible to the diagonal, where each

Fig. 2. Phenol and intermediates evolution upon MW-CWPO. CPhenol,0: 100mg·L−1, Ccat: 500mg·L−1, CH2O2,0: 500mg·L−1, pH0: 3.
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fraction of decomposed H2O2 is efficiently employed for pollutant mi-
neralization. Towards the end of the reaction there is always a higher
deviation due to the presence of refractory byproducts (acetic acid).

As reflected in Table 6, in the same temperature conditions, for
continuous MW radiation there is a faster H2O2 decomposition, which is

not translated in a higher mineralization degree. This process is in-
efficient in terms of H2O2 efficiency, as revealed by the deviation from
the diagonal in Fig. 7. For the fixed temperature run (T.120), the H2O2

decomposition rate is relatively slow, although the effectiveness of the
process is higher, as revealed by the kapp,TOC and the greater approach
to the diagonal. Nonetheless, with MW pulses, an equilibrium between
H2O2 decomposition and HOX

· exploitation towards the pollutant mi-
neralization is reached. For this run, the experimental data are very
close to the ideal performance, with a high kapp,TOC and a medium
kapp,H2O2. Hence, the pulsated-MW process, which combines hot spot
formation and catalyst relaxation, gives rise to a moderate H2O2 de-
composition rate with a high efficiency towards TOC removal, as it has
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Fig. 6. Experimental (symbols) and estimated (curves) time-course of TOC and
H2O2.

Table 5
Activation energy and pre-exponential factors for TOC and H2O2.

Run TOC H2O2

EA,TOC
(kJ·mol−1)

k0,TOC
(L·mg−1·s−1)

r2 EA,H2O2
(kJ·mol−1)

k0,H2O2 (s−1) r2

C.200 29.7 0.23 0.984 52.1 2.81·105 0.997
C.400 40.9 11.68 0.991 37.4 4.96·102 0.998
P.800 32.9 1.91 0.999 46.5 4.22·103 0.996
P.1800 37.1 4.74 0.977 33.0 1.22·102 0.981

Table 6
Apparent kinetic constant for T= 120 °C.

Run TOC H2O2

kapp,TOC·105 (L·mg−1·s−1) kapp,H2O2·103 (s−1)

T.120 6.26 1.10
C.400 4.27 5.39
P.800 8.09 2.81
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been demonstrated both experimentally and with the simulation at
constant temperature.

4. Conclusions

The MW application mode plays a key role in the MW-CWPO pro-
cess. MW pulsation allows a faster and higher mineralization degree in
relation to the continuous MW radiation, with a better H2O2 con-
sumption efficiency (ε: 90%) at 240 kJ. This implies a high energy
saving with respect to the controlled temperature experience (120 °C),
which requires three times more energy to reach similar results. In this
sense, we have successfully developed a fast and efficient procedure for
phenolic wastewater treatment (t: 10min, XTOC: 90%) without com-
promising the effluent quality, as the only remaining products are
readily biodegradable short chain acids. The proposed MW-pulse-
CWPO is also competitive in terms of energy consumption against other
technologies such as UV-assisted CWPO and persulfate combined
thermal and electric activation. In regard with the catalyst, despite the
extreme conditions to which they are subjected, graphite maintains its
crystallinity and no organic deposits remain adsorbed after reaction.
The MW-CWPO follows a pseudo-second order kinetics for TOC
abatement and pseudo-first order for H2O2 decomposition with lower
EA,TOC than the non-assisted process due to the microwave non-thermal
effects.
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