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Abstract

Emotions and the brain activity behind them is a subject extensively addressed
in recent years, whereas is related to more physiological fields or therapeutic ones.
Emotions can be elicited by many things: pictures, memories, words or sounds, to
name a few. The latter, in the form of music, are one of the most engaging ones.

Music as stimuli for emotion recognition is challenging and provocative, not only
because of its complexity as a signal, but for its many applications related to mental
therapies and its relation to memory brain process.

In the present study, we analyse and characterise different biological signals, mostly
EEG signals, in an attempt to classify emotions triggered by music stimuli. We
implement different feature selection methods, based on grid search with cross-
validation, and machine learning algorithms, both supervised and unsupervised
learning, to address the effect of musical emotion. Moreover, we try different sets
of characteristics and sampling rates to validate how explanatory are the selected
features.

Additionally, we analyse the stimuli for the purpose of unveiling how musical features
are related to certain emotions in terms of valence and arousal.
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Resumen

Las emociones y la actividad cerebral detrás de éstas es un tema que ha sido amp-
liamente estudiado en los últimos años, ya sea relacionado con campos de estudios
fisiólogico o terapeúticos. Las emociones pueden ser suscitadas por muchas cosas:
imágenes, recuerdos, palabras o sonidos por mencionar algunos. Éstos últimos, en
forma de música, son uno de los más interesantes.

La música como estímulo para el reconocimiento de emociones es exigente y desafi-
ante, no sólo por su complejidad como señal, sino por sus múltiples aplicaciones
relacionadas con salud mental y su relación con procesos cerebrales de la memoria.

En este proyecto, analizamos y caracterizamos distintas señales biológicas, princip-
almente señales EEG, en un intento de clasificar emotiones provocadas por estímulos
musicales. Se implementan diferentes métodos de selección de características, basa-
dos en búsqueda grid con validación cruzada, y algorimos de aprendizaje autómatico,
tanto de aprendizaje supervisado como no supervisado, para estudiar el efecto de
las emociones provocadas por la música. Además, se emplean diferentes conjuntos
de características y frecuencias de muestreo para validar cómo de explicativas son
las características seleccionadas.

Adicionalmente, se analiza el estímulo con el propósito de desvelar cómo las cara-
cterísticas musicales se relacionan con ciertas emociones en términos de valencia y
estimulación.
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1. Introduction and State of the
Art
This chapter present the motivation, the objectives and the structure of this thesis.
It is further structured as follows: Section 1.1 presents the motivation of this work,
Section 1.2 states the objectives of this thesis and Section 1.3 outlines the structure
of this thesis by presenting an overview of the chapters.

1.1. Motivation
The study of emotions and their relationship with brain activity is a subject widely
studied with many possible applications: from a better understanding of the brain
and its functioning, to the creation of various therapies and treatments for mental
diseases. For the latter, emotion classification or emotion recognition is an emerging
topic, especially in the biomedical context.

There are several studies which present various classification models for emotion
recognition, using biological signals data as input, usually EEG signals, e.g. see
[Jenke et al., 2014, Jirayucharoensak et al., 2014, Zheng and Lu, 2015, Jatupaiboon
et al., 2013]. EEG signals allow us to see the brain activity as time series and identify
certain events.

However, the analysis of multivariate biological signals is very challenging due to its
noisy nature, temporal heterogeneity, drift, etc. which require taking into account
the specific characteristics of these time series [Pourahmadi and Noorbaloochi, 2016,
Rozado et al., 2010, Rozado et al., 2012b, Rozado et al., 2012a, Baydogan and
Runger, 2015]. In particular, EEG signals have a lot of noise and artefacts, that are
hard to remove without loosing information. Moreover, these signals vary from one
individual to another, which means there is not a proper “general shape” to describe
them.

One of the most interesting studied topics related to emotion recognition is with
musical stimuli, which as it is exposed in [Jäncke, 2008] seems to be also related to
memory functions.
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Music has a prominent role in the everyday life of many people. Whether it is for
recreation, distraction or mood enhancement, people are constantly exposed to this
stimuli. Music has several similarities to speech, mainly structural ones since we can
define music as a language on its own. However, music is a far more complex signal
to process than speech. In the context of emotion recognition from biological signals,
music is an adequate stimulus due to its temporal structure and the emotional charge
that we can attribute to it.

One of the main goals in this project is to characterise music evoked EEG signals,
along others biological signals (temperature and breathing rhythm), and find any
relevant feature which lead us to identify certain emotions.

Besides that, there is not too much research about how musical stimuli relates
to emotions from neural recordings, although some experimental and theoretical
studies have addressed this topic (e.g., see [Purwins et al., 2008b, Purwins et al.,
2008a, Song et al., 2012, Salimpoor et al., 2015, Varona and Rabinovich, 2016]).
This could be helpful in terms of identifying certain music features that lead us to
feel certain emotions, which can be applied in certain biomedical fields, like music
therapy.

1.2. Objectives
Based on the motivation given above, this project have two main objectives:

• Analysis and classification of emotions using biological signals: char-
acterise and extract features from this signals in order to implement a model
for emotion recognition or emotion classification. The signals that we will
be using for this purpose will be EEG recordings, temperature an breathing
rhythm.

• Analysis and feature extraction of the stimuli: analyse the stimuli in
order to find any relevant feature or features that can be related to the feeling
of any specific emotion. For this purpose, we will analyse the stimuli in terms
of music features like tone, mode or tempo among others.
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1.3. Report structure
This report contains four chapters detailed below:

• Chapter 1 (Introduction) presents the motivation, objectives and structure of
this project.

• Chapter 2 (Design and Development) presents the data acquisition process and
the methodology applied in both emotion classification and stimuli analysis.

• Chapter 3 (Results) presents the results obtained with the feature extraction
and classification models presented in chapter 2.

• Chapter 4 (Conclusions) presents the discussion of the results shown in chapter
3, final conclusions and future work.
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2. Design and Development

2.1. Data acquisition and dataset
Taking into account the goals described in the previous chapter, we searched several
EEG databases focused on emotion classification finding the DEAP dataset [Koelstra
et al., 2012] the most relevant one for our analysis purposes.

This multivariate dataset contains EEG data and other biological data like eye-
tracking, temperature and breathing rhythm under musical and visual stimulation.
To access to this dataset we contacted the administrator.

DEAP is a multimodal dataset for the analysis of human affective states. It con-
tains EEG and peripheral physiological signals (eye-tracking, temperature, breath-
ing rhythm, ...) of 32 participants recorded while watching music videos. Parti-
cipants watched a total of 40 music videos for one minute each and rated them in
terms of levels of arousal, valence, liking, dominance and familiarity.

Trials were realised with 40 videos playing in a different order for each participant.
However, the authors kept the data organised in the dataset to avoid mistakes while
using it for research purposes.

The emotional rating of the videos was made using self- assessment manikins (SAM)
graphics [Bradley and Lang, 1994], which are showed in figure 2.1.1. They were rated
by selecting the most suitable graphic for each trial in a continuous scale from 1 to
9.
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Figure 2.1.1: SAM graphics used for selfassessment rating. Image from [Koelstra
et al., 2012].

The figure below shows the files of the dataset:

Figure 2.1.2: Dataset files.

For our project we have used the data from the following files:

• Video_list.xls: this file lists all the videos used in the experiment and their
related information: experiment id, artist, title and average values of valence,
arousal and dominance.

• Data preprocessed: these files contain all EEG and physiological data record-
ings from the experiment preprocessed. To obtain these preprocessed data,
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authors downsampled the original data to 128Hz, removed EOG artefacts, ap-
plied a band-pass frequency filter from 4.0Hz to 45.0Hz, averaged the data to
the common reference and segmented it into 60 second trials.

Each file contains 32 .dat files, one per participant, with two arrays:

– data: which contains a 40x40x8064 (trial x channel x data) array with
the data of each trial and EEG channel.

– labels: which contains a 40x4 (trial x label) array with the values of
valence, arousal, dominance and liking rated by the participant for each
video.

The channels layout are organised as described below:

• Channels 1 to 32: EEG channels.

• Channels 33 to 37: EOG channels, which track the eye-movements by means
of electrooculography.

• Channels 38 to 40: respiration belt, plethysmograph and temperature.

For this project, we used the information provided by EEG, respiration and tem-
perature channels.

2.1.1. EEG

Electroencephalography or EEG is an electrophysiological monitoring method to
record electrical activity of the brain. This method is typically noninvasive, with
electrodes placed along the scalp. Each electrode is connected to one input of an
amplifier, which records the activity of huge populations of brain cells.

Electrodes locations are specified by the International 10-20 system 2.1.3. This sys-
tem ensures that the naming of electrodes is consistent across laboratories. In most
clinical applications, 19 recording electrodes (plus ground and system reference) are
used. However, additional electrodes can be added to the standard set-up.
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Figure 2.1.3: International 10-20 system.

EEG refers to the recording of the brain’s spontaneous electrical activity over a
period of time, which means that EEG data is composed of multiple time series,
one per electrode. For the analysis, EEG rhythmic activity is typically divided into
bands by frequency. These frequency bands are a matter of nomenclature which
have a certain distribution over the scalp or a certain biological significance [Jenke
et al., 2014]. The typical frequency bands used in EEG studies are listed below:

• Delta: its frequency range is up to 4Hz. It is seen normally in adults in
slow-wave sleep and babies.

Figure 2.1.4: Delta wave.

• Theta: its frequency range is from 4Hz to 7Hz. It is seen normally in young
children and may be seen in drowsiness or arousal in adults and also in med-
itation. This range is associated with relaxes, meditative and creative states.
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Figure 2.1.5: Theta wave.

• Alpha: its frequency range is from 7Hz to 13Hz. It is seen in the posterior
regions of the head on both sides. It emerges with closing of the eyes and with
relaxation, and attenuates with eye opening or mental exertion.

Figure 2.1.6: Alpha wave.

• Beta: its frequency range is from 14Hz to 30Hz. It is seen usually on both
sides in symmetrical distributions and is mos evident frontally. It is closely
linked to motor behaviour.

Figure 2.1.7: Beta wave.

• Gamma: its frequency range is from 30Hz to 100Hz approximately. Gamma
rhythms are though to represent binding of different populations of neurons
together into a network for the purpose of carrying out a certain cognitive or
motor function.
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Figure 2.1.8: Gamma wave.

2.1.2. Circumplex Model of Emotion

We have explained the nature of our data, yet we need to answer one question: how
are we going to label it? In other words, how are we going to define emotions. Since
we have valence and arousal values in our dataset, we will be using the circumplex
model of emotion.

The circumplex model of emotion was developed by James Russell [Posner et al.,
2005]. This model suggest that emotions are distributed in a two-dimensional circu-
lar space, containing arousal and valence dimensions. Arousal is represented in the
vertical axis and valence is represented in the horizontal axis, while the centre of
the circle represents a neutral valence and a medium level of arousal. In this model,
emotional states can be represented at any level of valence and arousal. According to
this model, all affective states are the product of two independent neurophysiological
systems: valence-neural circuitry and arousal-neural circuitry.

The valence-neural circuitry relates to the mesolimbic system, which have long been
associated with pleasure. Therefore, the valence dimension represents the level of
liking or disliking.

The arousal-neural circuitry relates to the limbic system, the thalamus and the
amygdala, where it have been suggested that the neural representations of the emo-
tional significance reside. The arousal dimension represents how a stimuli affects
these systems in terms of activation: active or passive responses.

As it is shown in figure 2.1.9, our representation space is divide in four main sections
according to valence-arousal values, which represents four main emotions: excite-
ment, distress, calm and sorrow.
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Figure 2.1.9: Graphical representation of the Circumplex model of affect. Image
from [Posner et al., 2005].

We can describe these four sections or quadrants as below:

• Right upper quadrant: HVHA section (high valence and arousal values). Ex-
citement related emotions locate in this quadrant like happiness or elation.

• Left upper quadrant: LVHA section (low valence and high arousal values).
Distress related emotions locate in this quadrant like stress or nervousness.

• Right lower quadrant: HVLA section (high valence and low arousal values).
Calm related emotions locate in this quadrant like serenity or content.

• Left lower quadrant: LVLA section (low valence and low arousal values). Sor-
row related emotions locate in this quadrant like sadness or boredom.

In the DEAP dataset, valence and arousal values are represented in the range [1-9].

2.2. Methodology
This section presents in detail the applied methodology in order to achieve the main
objectives of this project in two distinct sections:
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• Emotion classification: Feature extraction and emotion classification of
biological signals of the DEAP dataset.

• Stimuli analysis: Characterisation and analysis of the stimuli used for emo-
tion recognition.

2.2.1. Emotion classification

As it is explained in the preceding section, the DEAP dataset provides various
biological signals: EEG, EOG, breathing rhythm, plethysmograph and temperature.
We decided to use EEG, breathing rhythm and temperature out of all the signals
in the dataset to perform our feature extraction and classification models. Since we
wanted to focus on the listening part of the stimuli we discarded the EOG data,
which is more related to the visual aspects of the music videos.

2.2.1.1 Feature extraction

Firstly, a good significant representation of the data was needed in order to improve
the performance of the classification models. For that purpose, we extracted various
features from the data and created feature vectors.

This feature extraction was performanced in various domains since we were working
with time series data.

Time domain

As it refers, time domain features are related to the analysis of the signal data with
respect to time. The time domain features we used are:

• Signal mean value: the average value of the signal.

• Signal kurtosis value: a descriptor of the shape of a probability distribution.
It is a measure of whether the data are heavy-tailed or light-tailed relative to
a normal distribution. Datasets with high kurtosis tend to have heavy tails, or
outliers. Datasets with low kurtosis tend to have light tails, or lack of outliers.
We can express it as

k =

∑
(X − µ)4

nσ4
− 3 (2.2.1)
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where X denotes the sequence of inputs, µ represents the mean value of X, σ
is referred to the variance of X and n the length of input sequence X.

• Hjorth features: indicators of statistical properties used in signal processing
in the time domain. These parameters are normalised slope descriptors (NSDs)
used in EEG.

– Activity: represents the signal power, the variance of a time function.
This can indicate the surface of power spectrum in the frequency domain.

Activity = var(y(t)) (2.2.2)

– Mobility: represents the mean frequency of the proportion of standard
deviation of the power spectrum.

Mobility =

√
var(dy(t)

dt
)

var(y(t))
(2.2.3)

– Complexity: represent the change in frequency. The parameter compares
the signal’s similarity to a pure sine wave, where the value converges to
1 if the signal is more similar.

Complexity =
Mobility(dy(t)

dt
)

Mobility(y(t))
(2.2.4)

Frequency domain

In section 2.1.1, it is explained how EEG signals can be divided into bands by
frequency. By its definition, the most interesting bands for our study are the beta
and gamma frequency bands. These band are related to wakings consciousness and
complex cognitive processes, which appear when an individual is awake and exposed
to several stimuli. This is the case of the participants of the DEAP dataset.

We compute the average power of the signal in those specific frequency range (12.5
to 30 Hz for β band and 30 to 100Hz for γ band) using Welch’s method.

If a signal x(t) has a Fourier transform X(f), its power spectral density is
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|X(f)|2 = SX(f) (2.2.5)

where we defined SX(f) as ŜW
x (ωk) by the definition of Welch’s method explained

in [Smith, 2011]:

ŜW
x (ωk) ≜

1

K

K−1∑
m=0

Pxm,M(ωk) (2.2.6)

We calculate both absolute power and relative power as features of the signal defined
by:

Absolute Spectral Power in Band =

∫ −min

−max

ŜW
x (ωk)dωk+

∫ max

min

ŜW
x (ωk)dωk (2.2.7)

Relative Spectral Power in Band =

∫ −min

−max
ŜW
x (ωk)dωk +

∫ max

min
ŜW
x (ωk)dωk∫ inf

− inf Ŝ
W
x (ωk)dωk

(2.2.8)

where min and max are the min and max values of the frequency intervals for each
band ([12.5, 30] for β band and [30, 100] for γ band).

2.2.1.2. Feature selection

In the previous section, we presented the feature extraction process in different
domains to build derived values intended to be informative and non-redundant.

However, since biological signals (especially EEG signals) are extremely complex
and noisy, we need feature selection to create a subset of the most relevant fea-
tures for their use in the model construction. This allows us to simplify models, to
shorter training times and to enhance generalisation by reducing overfitting risks.
We performed this technique using grid search.

Grid search is the process of performing hyper parameter turning in order to determ-
ine the optimal values for a given model. This method provided us the best estimator
along with features importance, which allowed us to perform feature selection.

14



Furthermore, we create several sets with selected points of our EEG signals. Since
the data sampling rate is 128Hz, we have data records every 0.008 seconds. This
is a very small time interval which may not be informative because musical stimuli
do not have relevant emotion changes in such a short period of time. In order to
test how the sampling rate affected signal information we created subsets of EEG
signals selecting one of every 2 to 64 points, changing sampling rates from 128Hz
(0.008 seconds) to 2Hz (0.5 seconds).

Lastly, we also reduced the electrodes number. As it is explained in [Valenzi et al.,
2014], electrode set reduction facilitates data evaluation. We used the same pool
electrodes they proposed, reducing from 32 to 8 electrodes: AF3, AF4, F3, F4, F7,
F8, T7 and T8, as these electrodes may capture better emotion states.

2.2.1.3 Emotion measurement: valence and arousal

As presented in the previous chapter, valence and arousal values are represented in
the range [1-9]. From this range we can differentiate three sections:

• Low values: range 1 to 3.

• Neutral values: range 4 to 6.

• High values: range 7 to 9.

In order to this, we divided the representation state in nine different sections, ob-
taining nine different classes:

• Happy: high valence and high arousal (HVHA).

• Pleased: high valence and neutral arousal (HVNA).

• Relaxed: high valence and low arousal (HVLA).

• Excited: neutral valence and high arousal (NVHA).

• Neutral: neutral valence and neutral arousal (NVNA).

• Calm: neutral valence and low arousal (NVLA).

• Distressed: low valence and high arousal (LVHA).

• Miserable: low valence and neutral arousal (LVNA).

• Depressed: low valence and low arousal (LVLA).
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Figure 2.2.1: Graphical representation of the classification space.

Since valence and arousal values are part of the DEAP dataset, we did not have to
calculate them.

In our classification methods, we have used two different sets of valence and arousal
values: one with the rating values of the participants and another one with the
stimuli valence and arousal values.

2.2.1.4 Classification models

There are several emotion classification models, for different purposes and data
structures. Due to the nature of our data and how it is labelled we choose both
unsupervised machine learning and supervised machine learning models:

• K-Means: is a clustering algorithm based on vector quantization. This al-
gorithm aims to partition n observations into k clusters in which each obser-
vation belongs to the cluster with the nearest mean. The goal of using this
algorithm is to check whether the data is enough self-explanatory to form
different groups which represent our different emotions.

• Support-Vector Machines (SVM): is one of the most used supervised learn-
ing algorithms. A support-vector machine constructs a hyperplane or a set of
hyperplanes in a high-dimensional space, which can be used for classification,
regression or other machine learning tasks. A good separation is achieved by
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the hyperplane that has the largest distance to the nearest training-data point
of any class (called functional margin). SVMs use kernel functions k(x, y) to
ensure that mappings used by SVMs schemes can be easily computed in terms
of the variables in the original space.

• Random Forest: are an ensemble learning method for classification, regres-
sion and other tasks. It constructs a multitude of decision trees at training
time and outputs the class that is the mode of the classes (classification) or
mean prediction (regression) of the individual trees.

• Classification Trees: this method of machine learning uses a decision tree
(as a predictive model) to go from observations about an item (represented
int he branches) to conclusions about the item’s target value (represented in
the leaves). In these structures, leaves represent class labels and branches
represent conjunctions of features that lead to those class labels.

Figure 2.2.2 shows a representation of the input and output of our classifiers, being
the input a supervector with the EEG data signal along with the extracted features
described in section 2.2.1.1 and the output the emotion (represented as colours) for
each observation.

Figure 2.2.2: Classification process schema.

2.2.1.5 Data preprocessing

Although the data we are using is preprocessed, in order to implement the classifiers
presented in the previous section, we have to normalise our data and divide in train
and test sets.
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We normalise the data using MinMaxScaler, which essentially shrinks the range to
[0,1]:

xnorm =
xi −min(x)

max(x)−min(x)
(2.2.9)

Train and test sets are built in a 80-20 proportion using the functions of sklearn
library.

2.2.2. Stimuli analysis

This section presents the analysis and feature extraction of the musical stimuli used
for the experiments in the DEAP dataset. The goal of this study is try to find any
relation between musical features and emotions.

We have analysed a total of 40 songs, which are listed in appendix A.

2.2.2.1 Feature extraction

The feature extraction process aims to calculate a numerical representation of music.
Music signals are time-varying signals with wider bands of frequency than human
vocal sound and many elements. Therefore, we extract features using time-frequency
analysis and basic elements related to rhythm and harmony.

To facilitate the analysis, and since that was the length of the stimuli used in the
DEAP dataset, we only used the first minute of the songs.

Basic theoretical musical features

These added features are related to the fundamental elements of music: rhythm,
dynamics, melody, harmony, tone colour, texture and form. In order to simplify the
analysis, and since our set of songs are from different styles and genres, we chose
three basic characteristics:

• Tempo: related to rhythm. The tempo is the speed of the beat, which can
be described by the number of beats per second.
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• Key: related to harmony. The key of a piece is the group of pitches, or
scale, that forms the basis of a music composition. The group features a
tonic note and its corresponding chords, also called tonic, which provides a
subjective sense of arrival and rest. Notes and chords other than the tonic in a
piece create varying degrees of tension, resolved when the tonic note or chord
returns.

• Mode: the key may be in the major or minor mode. The hallmark that
distinguishes major keys from minor is whether the third scale degree is major
or minor. It changes the mood of the music.

Time-frequency features

Since music signals are represented as time series signals, we chose some of the most
used time-frequency features for music analysis:

• Statistics: maximum, minimum, mean and standard deviation values of the
musical signal.

• Zero crossing rate: is the rate of sign-changes along a signal. It usually has
higher values for highly percussive sounds like those in metal and rock. ZCR
is defined formally as:

zrc =
1

T − 1

T−1∑
t=1

1R<0(stst−1) (2.2.10)

where s is a signal of length T and 1R<0 is an indicator function.

• Mean and standard deviation of spectral centroid: the spectral centroid
is a measure used in digital signal processing to characterise a spectrum. It
indicates where the “centre of mass” of the spectrum is located. Perceptually,
it has a robust connection with the impression ob “brightness” of a sound. It
is calculated as the weighted mean of the frequencies present in the signal,
determined using a Fourier transform, with their magnitudes as the weights:

Centroid =

∑N−1
n=0 f(n)x(n)∑N−1

n=0 x(n)
(2.2.11)
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where x(n) represents the weighted frequency value, or magnitude, of bin
number n, and f(n) represents the centre frequency of that bin.

• Spectral flux: is a measure of how quickly the power spectrum of a signal is
changing, calculated by computed the power spectrum for one frame against
the power spectrum from the previous frame. It is usually calculated as the
2-norm between the two normalised spectra.

SF (n) =

∑N/2−1
k=−N/2H(|X(n, k)| − |X(n− 1, k)|∑N(2−1

k=−N/2 |X(n, k)|
(2.2.12)

It can be used to determine the timbre of an audio signal.

• Mean and standard deviation of Tonnetz: the Tonnetz is a concep-
tual lattice diagram representing tonal space. The Tonnetz organises equal-
tempered pitch on a conceptual planed according to intervallic relations, fa-
vouring perfect fifths, major thirds and minor thirds.

Figure 2.2.3: Triangle Tonnetz.

The nodes represents pitches (pitch classes) and the edges are the consonant
intervals (m3/M6, M3,m6, P4/P5) creating triangles that represents chords.
In figure 2.2.3, the highlighted triangle represents the chord of C minor (es-
tablished by the notes C, Eb and G).

Mathematically, we express this multi-level pitch configuration (represented
in the Tonal Interval Space by TIVs T (k)) as explained in [Bernades et al.,
2016]:
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T (k) = w(k)
N−1∑
n=0

c̄(n)e
−jπkn

N , k ∈ Z (2.2.13)

with
c̄(n) =

c(n)∑N−1
n=0 c(n)

(2.2.14)

• Chromagram: chroma features are an interesting and powerful representa-
tion for music audio in which the entire spectrum is projected onto 12 bins rep-
resenting the 12 distinct semitones (or chroma) of the musical octave. Since,
in music, notes exactly one octave apart are perceived as particularly similar,
knowing the distribution of chroma even without the absolute frequency can
give useful musical information about the audio, and may even reveal perceived
musical similarity that is not apparent in the original spectra. As explained
in [Müller and Balke, 2015], given a pitch-based log-frequency spectrogram

γLF : Z× [0 : 127] → R≥0 (2.2.15)

defined by

γLF (m, p) :=
∑

k∈P (p)

|X (m, k)|2 (2.2.16)

where we define for each pitch p ∈ [0 : 127] the set

P (p) := {k ∈ [0 : K] : Fpitch(p− 0.5) ≤ Fcoef (k) < Fpitch(p+ 0.5)} (2.2.17)

the chroma representation is derived by summing up all pitch coefficients which
belong to the same chroma:

C(m, c) :=
∑

p∈[0:127]|pmod12=c

γLF (m, p) (2.2.18)

for c ∈ [0 : 11].
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2.2.2.2 Feature analysis

In order to find some relation between the features outlined in the previous section
and the emotion associated with the songs, we will compare these features for each
class.

As described in the analysis provided by several other studies in this domain [Eerola,
2012, Jaquet et al., 2012, Le Groux and Verschure, 2010], we can relate sets of
features for particular emotions:

• Tempo: fast tempo is usually associated with high arousal, while a slower
tempo is related to low arousal values.

• Key mode: major mode is associated with high valence values and minor
mode is associated with low valence values.

• Spectral centroid deviation: a higher deviation is related to higher arousal
values.

• Pitch level variation: its effects are more ”ambiguous” and ”complex”. How-
ever, it seems that increasing pitch levels are related to faster tempos, which
lead us to higher arousal values.

• Zero crossing rate: as explained in the previous section, zero crossing rate
is related to the pitch. Higher values mean more strident sounds (the ones we
can find in rock or metal music which shows usually high arousal values and
neutral to low valence values) while lower values are associated with “rounder”
sounds (the ones we can find in jazz music which shows lower arousal values
and neutral to high valence values).

Furthermore, we will use the chromagrams of each song to check and verify the
similarity between songs with the same emotion label.

2.3. Software libraries
All the methods and algorithms described in this chapter where performed using
Python 3 and specific libraries for signal and time-series data analysis:
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• Pandas: data manipulation as DataFrames.

• Scipy and Numpy: statistics.

• Sklearn: machine learning algorithms.

• cPickle: DEAP dataset files reading.

• Librosa: time-frequency music analysis.
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3. Results
This chapter contains the results obtained with all the developed experiments and
analysis, both for emotion classification and stimuli analysis.

We need to consider and emphasise that we are using nine different classes in order
to correctly interpret and understand the results.

3.1. Emotion classification
We carried out two different classification studies:

• Participant emotion recognition: we use the valence and arousal values
provided by the participants during the experiments. Since we are using the
labels given by the participants, we try to recognise the emotion that the
participants are feeling using biosignals data, without taking account of the
stimuli they are being exposed to.

• Video emotion recognition: we use the valence and arousal mean values
registered in the file Videos.csv. In this case, we try to correctly classify the
emotion associated with the stimuli.

For both recognition process we implemented all the algorithms explained in the
previous chapter, along with additional experiments:

• Feature selection via grid search with Decision Tree: due to the results
obtained with the Decision Tree algorithm we decided to perform the feature
selection using this method too and compare the results.

• Comparison between classification using EEG data alone and using
extracted features alone: in order to see how explanatory our extracted
features can be for emotion recognition.
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3.1.1. Participant emotion recognition

3.1.1.1 Feature selection

As explained in the previous chapter, we perform feature selection using a Grid
Search Cross-Validation method with Random Forest as estimator. We select a
total of 7692 features out of 8080, discarding only around 200 features which are
points from the EEG data signal.

Furthermore, we use Decision Tree as estimator too, getting a different and smaller
set of selected features. Using Grid Search Cross-Validation with Decision Tree as
estimator we select 315 features out of 8080. We select only 300 points from the
EEG data signal and discard EEG mean and complexity values from the extracted
features.

3.1.1.2 Algorithm parameters

The parameters for the different implemented algorithms are listed below:

• Support Vector Classification (SVC):

– C = 1000

– cache_size = 200

– decision_function_shape = ovo

– gamma = 0.5

– kernel = rbf

– tol = 0.001

• Random Forest (RF):

– n_estimators = 601

– random_state = 123456

• Decision Tree (DT):

– criterion = entropy

– random_state = 0

– presort = True
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These values were estimated running a few test, both manual and hyper parameter
tuning.

3.1.1.3 Classification Results

Tables 3.1.1 and 3.1.2 show the results obtained with the set of selected features
using Random Forest and Decision Tree as estimators respectively.

We can see that the selected feature set via Decision Tree performs better than the
Random Forest one, except for SVC. This might be due to the need of more data
for SVC to classify properly with many classes.

In both cases, K-Means does not obtain good results (below 10%). This was some-
how expected since it is an unsupervised learning method.

Classification Tree seems to be the best classifier in both sets.

Algorithm Accuracy
K-Means 9.131%
SVC 59.765%
RF 52.197%
DT 82.666%

Table 3.1.1: Participants emotion classification results with Random Forest feature
selection.

Algorithm Accuracy
K-Means 11.132%
SVC 46.484%
RF 65.381%
DT 85.937%

Table 3.1.2: Participants emotion classification results with Decision Tree feature
selection.

Graph results are shown in appendix B.
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3.1.1.4 Dependence on the sampling rate

As explained in section 2.2.1.2, we create another set of features changing the
sampling rate of the EEG signal, selecting one out of n points. In our case, we
select from 1 out of 2 to 1 out of 64, which would correspond to a 2Hz frequency.

Table 3.1.3 shows the results for the different classifiers with the selected point sets.

Points (1 out of n) SVC Accuracy RF Accuracy DT Accuracy
2 58.105% 53.906% 82.129%
8 48.975% 58.691% 86.963%
16 48.829% 62.061% 88.672%
32 47.705% 65.967% 89.941%
64 42.089% 71.875% 91.259%

Table 3.1.3: Sampling rate experiments participant emotion classification results
selecting 1 point out of n.

Again, the best classifier is Decision Tree. However, the accuracy of Random Forest
seems to improve as the EEG data signal get reduced, obtaining an almost 20%
accuracy enhancement.

On the other side, SVC get worse as the set get reduced. It shows a similar behaviour
to the results with the selected features sets of Random Forest and Decision Tree
estimators, where the smaller the set is, the worse it performs).

3.1.1.5 EEG vs Extracted features

For the purpose of assessing how explanatory are the extracted features, we tried to
classify the data using EEG data signals alone and extracted features alone. This
would allow us to know if the extracted features are adding valuable information to
the classifier or, on the contrary, adding noise and useless data.

The extracted features used are mean and kurtosis EEG signal values, Hjorth fea-
tures, absolute and relative spectral power values in β and γ bands and respiration
and temperature statistical values (maximum, minimum, mean and standard devi-
ation VALUES).

The results are shown in table 3.1.4.
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SVC Accuracy RF Accuracy DT Accuracy
EEG alone 56.054% 50.049% 25.732%

Extracted features 29.345% 98.779% 95.459%

Table 3.1.4: Emotion classification results for EEG data alone and extracted features
data alone.

EEG data signal alone seems to provide similar results for SVC and Random Forest
classifiers with feature selection via Random Forest estimator. However, the results
of Decision Tree classifier are far worse.

On the other side, extracted features set shows a very nice performance for both
Random Forest and Decision Tree classifiers, in contrast to SVC results.

We can observe that the results using only the extracted features are better than use
EEG alone as input for the classifiers. This suggest that the extracted feature set
is quite informative. Moreover, these results are consistent with the ones obtained
in the previous section, where the more reduced the input set was, the better the
classifier performed. This might be due to the EEG signal nature, which is a very
noisy and complex signal.

3.1.2. Video emotion recognition

3.1.2.1 Feature selection

Like the previous classification problem, we performed feature selection using a
Grid Search Cross-Validation method with Random Forest and Decision Tree as
estimators. We selected a total of 510 features out of 8080 with Random Forest
estimator and 315 with Decision Tree. In both cases, the selected feature sets
included a few points with some of the added features like Gamma bandpower,
respiration data or temperature data.

3.1.2.2 Algorithm parameters

The parameters for the different implemented algorithms are listed below:

• SVC:

– C = 1000
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– cache_size = 200

– decision_function_shape = ovo

– gamma = 0.9

– kernel = rbf

– tol = 0.001

• RF:

– n_estimators = 606

– random_state = 123456

• DT:

– criterion = entropy

– random_state = 0

– presort = True

These values were estimated running a few test, both manual and hyper parameter
tuning.

3.1.2.3 Classification Results

Tables 3.1.5 and 3.1.6 show the results obtained with the set of selected features
using Random Forest and Decision Tree as estimators, respectively.

We obtained very similar results to the ones for the participants emotion recognition,
being the main difference that Decision Tree does not perform well with the Random
Forest feature selected set. Again, the selected feature set via Decision Tree performs
better than the Random Forest one, except for SVC and K-Means, which get slightly
worse in this case.

In both cases, K-Means still does not obtain good results.

Another difference between the results of the participants emotions classification
and video emotion classification is with the Random Forest classifier, which is quite
better with the Decision Tree feature selected set in the last one. This indicates,
once again, that the Decision Tree feature set is better than the Random Forest one.
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Lastly, as expected, Classification Tree gets the best result.

Algorithm Accuracy
K-Means 11.377

SVM 53.515%
RF 53.027%
DT 30.322%

Table 3.1.5: Video emotion classification results with Random Forest feature selec-
tion.

Algorithm Accuracy
K-Means 11.230

SVM 36.377%
RF 79.882%
DT 95.703%

Table 3.1.6: Video emotion classification results with Decision Tree feature selection.

Graph results are shown in appendix B.

3.1.2.4 Dependence on the sampling rate

Table 3.1.7 shows the results for the different classifiers with the selected point sets.

Points (1 out of n) SVC Accuracy RF Accuracy DT Accuracy
2 60.009% 56.933% 87.060%
8 51.367% 57.812% 85.302%
16 55.371% 58.251% 91.406%
32 51.806% 60.644% 92.382%
64 44.580% 64.794% 94.531%

Table 3.1.7: Sampling rate experiments video emotion classification results selecting
1 point out of n

We observe the same performance as the participants emotion classification, getting
slightly worse results for Random Forest classifier and better for both SVC and
Decision Tree classifiers.
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3.1.1.5 EEG vs Extracted features

Regarding how explanatory our selected features can be for video emotion classific-
ation, the results are shown in table 3.1.8.

Again, we obtain similar results and the same behaviour as the participants emotion
classification, being these ones slightly worse than the obtained with video emotion.

SVC Accuracy RF Accuracy DT Accuracy
EEG 60.644% 56.835% 31.933%

Extracted features 32.812% 99.804% 96.728%

Table 3.1.8: Emotion classification results for EEG data alone and extracted features
data alone.

3.2. Stimuli analysis
First, we grouped the songs by classes having the following sets of songs:

• Class 1 (Happy): one song (experiment 5).

• Class 2 (Pleased): eleven songs (experiments 1, 3, 4, 7, 8, 9, 11, 13, 14, 18 and
19).

• Class 3 (Relaxed): none.

• Class 4 (Excited): three songs (experiments 2, 10 and 36).

• Class 5 (Neutral): twelve songs (experiments 6, 15, 20, 21, 22, 25, 31, 32, 33,
34, 35 and 40).

• Class 6 (Calm): five songs (experiments 12, 16, 17, 26 and 27).

• Class 7 (Distressed): none.

• Class 8 (Miserable): six songs (experiments 23, 29, 30, 37, 38 and 39).

• Class 9 (Depressed): two songs (experiments 24 and 28).

As we can see, we cannot characterise some of the classes due to the lack of examples
in them, having none (classes 3 and 7) or just a few (classes 1 and 9).
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Table 3.2.1 shows the mean results for each class:

Class Max T Min T Mean T Major Minor ZCR SCD
Happy 130 130 130 1 0 162404 749.861
Pleased 176 77 121 7 4 139825 915.298
Excited 174 118 148 3 0 146324 865.815
Neutral 171 63 105 7 6 143070 736.459
Calm 130 80 111 3 2 88587 837.152
Miserable 185 74 140 3 3 135505 668.011
Depressed 120 90 105 2 0 77150 903.357

Table 3.2.1: Features mean values for each class: max tempo, min tempo, mean
tempo, major modes count, minor modes count, zero crossing rate and spectral
centroid deviation.

We can observe several outstanding features:

• The max tempo value is related to the Miserable class, which is a class of low
valence and neutral arousal. Usually, this values are associated with lower
tempo values. Although it could be an outlier, the mean tempo value is the
second faster mean tempo of the results, which is very interesting.

• In relation to major and minor modes, we observe that Neutral has even num-
ber of both modes, same as Miserable. Major modes are associated with high
valence values, so the results for Depressed and Miserable are also interesting.

ZRC and SCD values are close to what we expected:

• Higher ZRC for classes with higher arousal.

• Higher SCD for classes with higher arousal.

Regarding the chromagrams, whose graphs are in appendix C, we find the following
characteristics:

• Class Please chromagrams usually start with a few seconds of silence.
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Figure 3.2.1: Songs number 3 (right), 4 (centre) and 8 (left) starts, where we appre-
ciate silence at the begining of the songs.

• Class Calm have three songs (numbers 16, 17 and 26) with similar patterns,
having two main lines.

Figure 3.2.2: Songs number 16 and 17. We can observe two main lines which match
tones with fundamental-fifth relation (Eb-Bb and C-G respectively).

• Classes Depressed and Excited have patterns that resembles “arpeggios” or
“scales”, with different grade of density due to the tempo.
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Figure 3.2.3: Arpeggios sections from songs 28 (right) and 36 (left), classes Depressed
and Excited respectively.

Classification results

We tried to classify the songs according to their classes using the features that we
extracted for each song. Again, we performed feature selection via Decision Tree
estimator and K-Means and Random Forest as classifiers. The results are shown in
the table 3.2.2.

Algorithm Accuracy
K-Means 12.5%
RF 37.5%

Table 3.2.2: Songs emotion classification results with Decision Tree feature selection.

As we expected, the classification results are not good. Graphs results are in ap-
pendix C.
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4. Conclusions

4.1. Discussion
This project had two main objectives:

• The analysis and classification of emotions using biological signals and musical
stimuli.

• The analysis of the relation between the musical stimuli and the emotions.

Results regarding the first goal are very satisfactory, as we have achieved above 90%
accuracy with the Decision Tree classifier, reaching the following conclusions:

• Due to the representation of our data in a bi-dimensional space, Random
Forest and Decision Tree are the best classifiers for our problems (participant
emotion classification and video emotion classification).

• Regarding the results changing sample rate (shown in tables 3.1.3 and 3.1.7),
apparently a high time resolution in EEG it is not necessary to classify emotion
via musical stimuli. This may have sense since noticeable or relevant changes
in music do not need to happen in small short time periods (e.g. milliseconds),
but in larger ones (half a second or even several seconds).

• The results shown in tables 3.1.4 and 3.1.8 suggest that the extracted features
from the biological signals seem to be very self-explanatory and informative
of the data in relation to emotions. This suggest that our set of extracted
features defines properly the nature of the data.

• Although our set of features is very informative, unsupervised learning does
not perform well. This suggests that the data is still very complex, heterogen-
eous and disperse, not having clear “centroids” or a clear distribution.

As for the stimuli analysis, there are some interesting outputs, regarding tempo and
key mode features.

As explained in section 2.2.2, tempo is a feature associated to arousal while key mode
is associated to valence. However, in table 3.2.1, classes Miserable and Depressed,
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which have low valence values and neutral-low arousal valence, do not show that
relation. The same effect happens to class Pleased, with neutral arousal values and
high valence values.

This suggest that, as we mention in the introduction, music is a very complex signal
and we cannot infer what kind of emotion it recreates only taking into account two
factors (valence and arousal). This conclusion is supported by the results we obtain
in table 3.2.2 and the different chromagrams in C, which are very different even
having the same class. That it because different music genres and styles can cause
the same emotion. However, we cannot generalise any results since our dataset is
very small.

As is mention in other studies [Jaquet et al., 2012], maybe we need to focus on study
the inter-relation between several factors in order to established a proper relation
between musical features and emotion recognition.

In conclusion, with this project we achieved our goal of characterise biological signals
for emotion recognition with musical stimuli and find interesting outcomes regarding
music features and emotions.

4.2. Future work
• Future work could address the analysis of the resting state dynamics before

and after the stimuli. This could provide very interesting information about
how the singularity of the individual EEG signal can affect emotions.

• It would be highly informative to perform the stimuli analysis using a large
dataset with more songs and music examples in order to obtain more general
results and being able to draw conclusions more accurately.

• EEG sonification tools [Sanyal et al., 2019] may contribute to establish further
links between EEG and music stimuli with regard to emotion classification.
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A. List of songs
• Jungle Drum by Emiliana Torrini

• Scotty Doesn’t know by Lustra

• Blame It On The Boogie by Jackson 5

• Love Shack by The B52’s

• Song 2 by Blur

• First Date by Blink182

• Satisfaction by Benny Benassi

• Fuck you by Lily Allen

• I Want To Break Free by Queen

• Bombtrack by Rage Against The Machine

• Say Hey (I Love You) by Michael Franti and Spearhead

• Miniature Birds by Bright Eyes

• I’m Yours by Jason Mraz

• Butterfly Nets by Bishop Allen

• Darkest Things bu The Submarines

• Moon Safari by Air

• What A Wonderful World bu Louis Armstrong

• Me gustas tú by Manu Chao

• Love Story by Taylor Swift

• Gloomy Sunday by Diamanda Galas

• Normal by Porcupine Tree

• How To Fight Loneliness by Wilco

• Goodbye My Lover by James Blunt

• Goodbye My Almost Lover by A Fine Frenzy

• The Weight Of My Words by Kings Of Convenience
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• Rain by Madonna

• Breathe Me by Sia

• Hurt by Christina Aguilera

• May It Be by Enya

• The One I Once Was by Mortemia

• The Beautiful People by Marilyn Manson

• Bastard Set Of Dreams by Dead To Fall

• Hardcore State of Mind by DJ Paul Elstak

• Procrastination On The Empty Vessel by Napalm Death

• Refuse Resist by Sepultura

• Scorched Earth Erotica by Cradle Of Filth

• Carving A Giant by Gorgoroth

• My Funeral by Dark Funeral

• My Apocalypse by Arch Enemy
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B. Classification results graphs
This appendix contains the graphical results of the classification algorithms.

In this graphics the space is divided in nine sections, which represent each emotion
“space” in terms of valence and arousal values. The emotions are represented using
a specific colour for each one:

• Happy: yellow.

• Pleased: orange.

• Relaxed: red.

• Excited: green.

• Neutral: grey.

• Calm: purple.

• Distressed: aquamarine.

• Miserable: olive.

• Depressed: blue.

Each point represent the valence and arousal values of each observation and the
colour assigned to them the class associated according to the classifier.

The next figures show the perfect classification results, the original labels, for each
recognition task:
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Figure B.0.1: Participants emotion recognition perfect classification (using original
assigned labels).

Figure B.0.2: Video emotion recognition perfect classification (using original as-
signed labels).

Figure B.0.3: Stimuli recognition perfect classification (using original assigned la-
bels).

We observe that points in the same section have the same colour, since each section
is related to one emotion.
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B.1. Participants emotion recognition
The graphs are consistent with the results shown in tables 3.1.1 and 3.1.2, where
RF and DR performed the best and K-Means the worst. We can highlight a few
aspects of these graphs:

• RF seems to classify several observations as Neutral in terms of emotion, both
with RF and DT feature selection.

• K-Means with RF feature selection only use three classes (Happy, Calm and
Depressed).

• K-Means with DT feature selection tends to classify as Distressed and Excited.

B.1.1. Random Forest estimator

Figure B.1.1: Participants emotion classification K-Means graph results with Ran-
dom Forest feature selection.
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Figure B.1.2: Participants emotion classification with SVC graph results with Ran-
dom Forest feature selection.

Figure B.1.3: Participants emotion classification with RF graph results with Ran-
dom Forest feature selection.
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Figure B.1.4: Participants emotion classification with CT graph results with Ran-
dom Forest feature selection.

B.1.2. Decision Tree estimator

Figure B.1.5: Participants emotion classification K-Means graph results with De-
cision Tree feature selection.
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Figure B.1.6: Participants emotion classification with SVC graph results with De-
cision Tree feature selection.

Figure B.1.7: Participants emotion classification with RF graph results with De-
cision Tree feature selection.
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Figure B.1.8: Participants emotion classification with CT graph results with De-
cision Tree feature selection.

B.2. Video emotion recognition
The graphs are consistent with the results shown in tables 3.1.5 and 3.1.6. In this
case, SVC seems to have a tendency to classify several observations as Neutral when
using DT estimator.

B.2.1. Random Forest estimator

Figure B.2.1: Video emotion classification K-Means graph results with Random
Forest feature selection.
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Figure B.2.2: Video emotion classification with SVC graph results with Random
Forest feature selection.

Figure B.2.3: Video emotion classification with RF graph results with Random
Forest feature selection.

Figure B.2.4: Video emotion classification with CT graph results with Random
Forest feature selection.
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B.2.2. Decision Tree estimator

Figure B.2.5: Video emotion classification K-Means graph results with Decision Tree
feature selection.

Figure B.2.6: Video emotion classification with SVC graph results with Decision
Tree feature selection.
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Figure B.2.7: Video emotion classification with RF graph results with Decision Tree
feature selection.

Figure B.2.8: Video emotion classification with CT graph results with Decision Tree
feature selection.
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B.3. Stimuli classification

Figure B.3.1: Stimuli emotion classification with KM classifier.

Figure B.3.2: Stimuli emotion classification with RF graph results.

55





C. Chromagrams
As explained in section 2.2.2, chromagrams are a representation for music audio
where we can see the distribution of each note. This allow us to find similarities
between different songs with the same label and established possible “features” or
“schemes”.

C.1. Class happy

Figure C.1.1: Chromagram song 5.
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C.2. Class pleased

Figure C.2.1: Chromagram song 1.

Figure C.2.2: Chromagram song 3.
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Figure C.2.3: Chromagram song 4.

Figure C.2.4: Chromagram song 7.

Figure C.2.5: Chromagram song 8.
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Figure C.2.6: Chromagram song 9.

Figure C.2.7: Chromagram song 11.

Figure C.2.8: Chromagram song 13.
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Figure C.2.9: Chromagram song 14.

Figure C.2.10: Chromagram song 18.

Figure C.2.11: Chromagram song 19.
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C.3. Excited

Figure C.3.1: Chromagram song 2.

Figure C.3.2: Chromagram song 10.

62



Figure C.3.3: Chromagram song 36.

C.4. Class neutral

Figure C.4.1: Chromagram song 6.
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Figure C.4.2: Chromagram song 15.

Figure C.4.3: Chromagram song 20.

Figure C.4.4: Chromagram song 21.
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Figure C.4.5: Chromagram song 22.

Figure C.4.6: Chromagram song 25.

Figure C.4.7: Chromagram song 31.
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Figure C.4.8: Chromagram song 32.

Figure C.4.9: Chromagram song 33.

Figure C.4.10: Chromagram song 34.
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Figure C.4.11: Chromagram song 35.

Figure C.4.12: Chromagram song 40.
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C.5. Class calm

Figure C.5.1: Chromagram song 12.

Figure C.5.2: Chromagram song 16.
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Figure C.5.3: Chromagram song 17.

Figure C.5.4: Chromagram song 26.

Figure C.5.5: Chromagram song 27.
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C.6. Class miserable

Figure C.6.1: Chromagram song 23.

Figure C.6.2: Chromagram song 29.
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Figure C.6.3: Chromagram song 30.

Figure C.6.4: Chromagram song 37.

Figure C.6.5: Chromagram song 38.
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Figure C.6.6: Chromagram song 39.

C.7. Class depressed

Figure C.7.1: Chromagram song 24.
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Figure C.7.2: Chromagram song 28.
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