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Free standing centimeter-long one-dimensional (1D) nanostructures are highly attractive for 

electronic and optoelectronic devices due to their unique photophysical and electrical properties. 

Here we report on a simple, large-scale synthesis of centimeter-long 1D carbon nitride (CN) 

needles with tunable photophysical, electric and catalytic properties. Successful growth of ultra-

long needles is acquired by the utilization of 1D organic crystal precursors comprised of CN 

monomers as reactants. Upon calcination at high temperatures, the shape of the starting crystal 

is fully preserved while the CN composition and porosity as well as optical and electrical 

properties can be easily tuned by tailoring the starting elements ratio and final calcination 

temperature. The facile manipulation and visualization of the CN needles endow their direct 

electrical measurements by placing them between two conductive probes. Moreover, the CN 
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needles exhibit good photocatalytic activity for hydrogen production owing to their improved 

light harvesting properties, high surface area and advantageous energy bands position. The new 

growth strategy developed here may open opportunities for a rational design of CN and other 

metal-free materials with controllable directionality and tunable photophysical and electronic 

properties, toward their utilization in (photo)electronic devices. 

 

1. Introduction 

The fabrication of free-standing centimeter-long one dimensional (1D) nanostructures as 

carbon nanotubes [1-3] and other semiconductors [4] has attracted a lot of attention in recent years 

due to the introduction of new feasible applications owing to the combination of the unique 

properties and macroscopic scale of these nanostructures. Their intriguing mechanical, 

electronic and optical properties, [5] as well as their processability, have allowed their 

exploitation in many fields such as photocatalysis, [6] electronic devices, [7] sensors [8] and solar 

cells. [9] Moreover, the ultra-long size of the self-standing 1D materials permit their 

straightforward utilization in (photo)electronic devices [10, 11] due to their easy visualization and 

manipulation. For example, the electronic properties (i.e. conductivity) can be easily extracted 

by a direct electrical measurement. The exceptional properties of 1D semiconductors-based 

photocatalysts were proven as highly beneficial due to the facile charge carrier separation and 

transport which leads to low charge recombination thanks to reduced grain boundaries and 

charge directionality.[12, 13] Polymeric graphitic carbon nitride (CN) has emerged as a highly 

promising low cost metal free material [14-18] due to its outstanding electronic properties, which 

have been exploited in various applications – including in photo- and electro-catalysis, [19-22] 

heterogeneous catalysis, [23] CO2 reduction, [24] water splitting, [25-27] light-emitting diodes [28], 

and PV cells [29, 30]. CN comprises only carbon and nitrogen, and it can be synthesized by several 

routes. The traditional CN synthesis entails the solid-state condensation of C/N monomers 

(dicyanamide, melamine and urea to name a few) at high temperatures. The solid-state reaction 
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often results in rather unordered materials with large grain boundaries and low photoactivity. 

To circumvent the abovementioned limitations, a great progress was acquired by introducing 

heteroatoms and molecules within CN structure [31-34] developing new exfoliation techniques 

[25, 26] and by utilizing hard and soft templating methods [37, 38]. Recently, our group and others 

showed that by the rational design of CN monomers a great control of their chemical, 

photophysical and catalytic properties can be achieved [39-45]. Several successful approaches 

were suggested for 1D CN growth. However, these methods lie on the use of templating agent, 

metal as co-catalyst and are limited to the growth of CN with maximum micron size [46-49].  

Here we report on the large-scale and facile synthesis of self-standing centimeter-long carbon 

nitride needles with controllable optical properties, porosity and composition by utilizing 1D 

organic crystals as precursor. The single crystals were prepared by using melamine, 

benzoguanamine and hydrochloride acid. Upon calcination, the macrostructure was precisely 

preserved and parameters as porosity, photophysical and catalytic activity can be tuned by 

calcination temperature and the elements ratio within starting crystal. The advantages of the 

centimeter-long needles are exemplified here by direct conductivity measurements of CN for 

the first time and by a great enhancement of their photoactivity.   

2. Results and discussion 

The molecular structure of the melamine needle-shaped crystals (M-nsc) was determined by 

single crystal X-ray diffraction analysis (SC-XRD). The unit cell parameters are provided in 

Figure S1-S2, revealing a melaminium chloride hemihydrate structure, [50] where the protonated 

melaminium cations lie on a twofold axis and the chloride anions and water molecule lie on the 

m plane. The melaminium residues are interconnected by N-H…N hydrogen bonds, forming 

chains parallel to the (001) plane. A three-dimensional network is formed through hydrogen-

bond interactions with chloride anions and water molecules. Further evidence for the formation 

of an organic single crystal is given by FT-IR spectroscopy, XRD measurements and XPS 
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analysis (Figure S3 - S4). The new interaction within the crystal leads to the disappearance of 

the stretching bands of the amine groups (νNH2) at 3463 and 3419 cm-1 and to a general shift 

to lower wavenumbers of the main melamine vibrations due to intramolecular interactions; 

carbon-nitrogen stretching mode (νCN) from 1527-1426 to 1490-1342 cm-1, ring deformation 

bands from 1192-1020 to 1158-1000 cm-1 and the breathing ring vibration from 807 to 773 cm-

1. [51] Powder X-ray diffraction (PXRD) measurements show a well-resolved peak at 10.5o 

which indicates the formation of an ordered material with a consistence repeating unit in plane 

(Figure S3b). As well another strong evidence for the new arrangement is provided by the 

enhancement of the absorption optical density of the crystal compared to melamine powder, 

owing to better pi-pi interactions (Figure S3c) [52]. XPS analysis further confirmed the strong 

reorganization of melamine molecules in the presence of Cl anions (Figure S4, further 

discussion is given in the SI). SEM images of the crystals show up to couple millimeters long 

needle with several tens of microns' width and a flat surface (Figure 1).  

Photoactive CN materials were obtained by the calcination of the needle-shaped crystals at 

different temperatures (500, 600 and 650 ºC) for 4h under a nitrogen atmosphere. It is necessary 

to highlight the fact that the needle shape of the melamine crystal along with its size was 

preserved upon heating to 650 ºC as shown later in this paper. The condensation progress of the 

crystals into CN materials can be followed by TGA (Figure S5). The hydrogen-halogen 

interaction in the single crystal strongly quenched the known degradation and sublimation of 

melamine at high temperatures. The condensation of melamine occurs in one pronounced step 

with a significant weight loss of 85% at around 400 ºC while the melamine crystal condensate 

in several steps, resulting in high reaction yield. The first weight loss (4%) takes place at ~120 

ºC owing to the release of H2O. Subsequently, at higher temperature (from ~250 to 450 ºC) the 

crystal turns into CN and around 40% of the material remains at 600 ºC.  
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FT-IR and XRD (Figure S6) measurements prove the formation of CN materials after 

calcination. The analysis shows the typical stretching modes of CN heterocycles from 1200 to 

1600 cm-1 and the breathing mode of triazine units at 800 cm-1 in all of the materials. The general 

reduced peaks intensity of the specie calcined at 650 ºC indicates a weakened vibration of the 

tri-s-triazine due to the partial loss of N atoms from CN structure. The typical (100) and (002) 

crystal planes of CN at 13.6 and 27.3º can be observed from the XRD patterns of the materials 

calcined at 500 and 600 ºC. At 650 ºC the intensity was significantly quenched due to partial 

degradation of the tri-s-triazine units. The structural cleavage occurs mainly by the removal of 

N atoms, mainly from the surface as shown by Elemental Analysis, Table S1.  

SEM images of CN materials after calcination (Figure 2) at different temperatures unveiled that 

the needle-shape of the starting crystals was preserved upon heating and centimeter long porous 

needles can be obtained (Figure S7). All the materials demonstrate an ordered layered structure 

and the morphology changes from porous framework along the needle at 500 ºC to hollow 

cavities at 600 and 650 ºC.  

Nitrogen-sorption measurements indicated that the porosity increased at higher calcination 

temperatures (Figure S8) and the surface areas inclined from 15 m2 g-1 to 99 and 185 m2 g-1 for 

the CN500, CN600 and CN650, respectively. We note that these values are impressive considering 

that no template or harsh chemical treatment were used. The layered structure of the materials 

is also evident by TEM images (Figure S9) where micrometer length sheets were observed. In 

order to elucidate the chemical and electronic properties of the CN materials, we performed 

XPS measurements (Figure 3). For CN500 and CN600 no big difference can be noticed. The C1s 

binding energies show a main carbon specie at 288.2 eV corresponding to a C-N-C coordination 

and two smaller contributions at 286.2 and 284.8 that belong to adventitious C-O-C and C-C 

species, respectively. In the N1s spectrum, several binding energies corresponding to C-N=C 

groups (398.7 eV), N-(C)3 (399.9 eV), C-N-H groups (401.3 eV) and to charging effects (404.2 

eV) were detected. For CN650, the C1s spectra revealed that the weight percentage of the C-N-
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C specie (287.8 eV) decreased compared to the contribution of C-C bond (284.7 eV), 

confirming the slight degradation of the tri-s-triazine structure. As well, a new peak appears at 

285.6 eV, which belongs to the formation of a new C=C π bond. [53] The N1s spectra revealed 

that the atomic weight percentage of the C-N=C species (398.5 eV) was considerably decreased 

compared to N-(C)3, suggesting that the loss of nitrogen atoms occurs at the two-coordinated 

lattice sites. [54-56] The chemical species that belong to N-H groups (400.9 eV) and charging 

effects in heptazine rings (403.5 eV) can also be found. These results strongly support the 

formation of N vacancies in the CN650.  

The optical properties of the CN materials were evaluated by photo-physical measurements 

(Figure 4a, b). The absorption spectra of CN600 and CN650 were red-shifted compared to CN500. 

The latter can be attributed to the creation of two different semiconducting domains or to 

enhanced amount of surface defects. [57] We assume that due to the large surface to bulk ratio 

the outer part of the needles reacts differently from the inner part leading to two different 

domains, where the outer shell is composed from slightly degraded tri-s-triazine units with N 

vacancies and the inner by intact tri-s-triazine units as confirmed by XPS measurements (Figure 

4d). Photoluminescence (PL) spectroscopy is a very useful and sensitive technique for detecting 

electronic changes such as surface states in semiconductors. We observed that at high 

calcination temperatures the emission of the material was quenched, further supporting the two 

domains formation. Tauc Plot and Mott Schottky measurements disclosed that the conduction 

and valence band edges are suitable for water splitting reaction (Figure S10). We note that due 

to the formation of different semiconducting domains in the CN650 we couldn't obtained a 

reliable value. 

In order to evaluate the photoactivity of the CN materials, we measured the hydrogen evolution 

in a water/triethanolamine (TEOA) solution (Figure 5a), with Pt as the cocatalyst, under a 

white-light illumination. CN650 demonstrated the highest catalytic activity (23 µmol H2/h). Due 
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to the creation of two different semiconducting domains with different amount of N vacancies, 

and the appearance of a new adsorption band at 500 nm, we measured the quantum yield (QY) 

of CN650 under 420 and 490 nm illumination.  The QY was found to be 1.0 and 0.5% at 420 and 

490 nm, respectively. These values are relatively high considering that melamine was the only 

monomer used in the synthesis and that usually C/N materials are not active under illumination 

at 490 nm. The photoactivity of the CN materials was further tested by measuring the RhB dye 

degradation as a function of time under white light illumination. Amid the materials calcined at 

different temperatures, the CN650 showed superior photodegradation performance and the dye 

was fully degraded after 20 min. (Figure 5b). To elucidate the mechanism of RhB degradation, 

we measured the CN650 photodegradation in the presence of a hole scavenger and electron 

acceptor (TEOA and AgNO3, respectively) and under N2 or O2 environment (Figure S11). The 

TEOA addition and N2 purging resulted in a decline of the photodegradation process whilst 

flushing with O2 or adding Ag+ improved the photodegradation rates. These results strongly 

suggest that the photodegradation process occurs via photogenerated holes. 

An enhanced photocatalytic activity could be due to several factors: better light harvesting 

(more charge carriers), better charge separation and larger surface area providing more amount 

of catalytic sites. Having all data in hand, we can conclude that all the three options are 

synergistically contributed to the photoactivity. The CN650 exhibits very high surface area and 

good light harvesting properties and the unique 1D structure allows better charge separation 

and transport. Upon calcination, in situ heterojunction can be formed, comprising of two 

semiconductors as discussed before. Besides the enhanced photocatalysis, the projection of the 

1D crystal morphology and macrostructure into the final CN material opens the possibility to 

measure directly the conductivity of the needle-shape materials by contacting them between 

two graphite electrodes (Scheme S1) and recording the electrical current while applying a 

voltage from -10 to 10V. Due to the formation of many defects at high calcination temperatures 
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alongside the high surface area obtained in the materials, here we measured only CN500.  

However, the large band gap resulted in a low conductivity (7.8 10-9 S cm-1, Figure S12). In 

order to further increase the conductivity while preserving a flat and dense structure we doped 

the melamine needles with a carbon-rich molecule, namely BGA (2, 4-diamino-6-phenyl-1, 3, 

5-triazine). The higher carbon amount in the precursor leads to enhanced carbon amount in the 

final CN already after calcination at 500 ºC. FT-IR and XRD characterization of the needle-

shaped crystals doped with BGA after their calcination at 500 ºC (CN-BGAx) confirmed the 

formation of modified-CN materials (Figure S13). Optical characterization indicated the 

narrowing of the materials band gap with increasing amount of dopant, ranging from 2.68 eV 

(pristine CN500) to 2.45 eV for the CN-BGA0.2 (Figure S14). SEM images of CN-BGAx prove 

that the insertion of BGA within the CN reduced the voids throughout the 1D structure (Figure 

S15). The conductivity values (σ) of CN-BGAx are enhanced compared to CN500; from 7.8 10-

9 S cm-1 to 2.5 10-7 S cm-1 for CN-BGA0.2 (Figure 5c). Those values are in good agreement with 

the semiconductor behavior of CN materials and confirm that their charge carrier transport can 

be modulated by tailored design of the molecular crystal.   

3. Conclusions 

In summary, we demonstrated an efficient, scalable and straightforward method to synthesize 

centimeter-long carbon nitride 1D materials with a controllable photophysical, electronic and 

catalytic properties. The growth was acquired by the rational design of 1D organic crystal 

comprised of carbon nitride monomers. Upon condensation at high temperatures, the organic 

crystals shape can be fully preserved while the porosity as well as the optical and conductivity 

properties can be easily tuned by the calcination temperature and starting elements composition. 

The centimeter-long CN needles exhibit good photoactivity for hydrogen production owing to 

the enhanced light harvesting properties, high surface area, improved charge transport 

properties and favorable energy bands structure. We demonstrate that the use of centimeter-
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long CN endows their direct electrical measurements, as well, a tailored design of the organic 

single crystal allows the modification of the electronic properties of the final CN materials by 

insertion of carbon-rich monomers leading to narrower band gaps and improved conductivity. 

We believe that this simple growth strategy of centimeter-long carbon nitride needles could be 

easily extended to grow other metal-free materials with controllable directionality and tunable 

photophysical and electronic properties. Moreover, the simplicity, scalability and the good 

control of the final CN composition will open many opportunities for the utilization of CN in 

(photo)electronic devices. 

 

4. Experimental section 

4.1 Synthesis of catalysts. Melamine needle-shaped crystals (M-nsc) were prepared by 

dissolving 150 mg of melamine in 50 ml of a water/HCl 37% (2% v/v) solution. As a result of 

the slow evaporation of the solvent, transparent needle-shaped crystals were obtained. In order 

to achieve CN materials, crystals were calcined at different temperatures (500, 600 and 650oC) 

for 4h under an inert nitrogen atmosphere. Carbon doped crystals where synthetized by mixing 

150 mg of melamine with 11.2 (5%), 22.5 (10%) and 45 mg (20%) of Benzoguanamine (2, 4-

diamino-6-phenyl-1, 3, 5-triazine), BGA, in 50 ml of an aqueous solution acidified with HCl 

37% (2% v/v). Transparent needle-shaped crystals were obtained by slow evaporation of the 

solvent and then calcined at 500 oC for 4h under an inert nitrogen atmosphere (M-BGA). 

4.2 Characterization. X-ray diffraction patterns were measured on a Bruker D8 advance 

instrument using Cu Kα radiation. Single Crystal XRD analysis was performed in a Bruker 

kappa APEXII Diffractometer. Nitrogen sorption measurements were taken with N2 at 77 K 

after the samples had been degassed at 150 °C in vacuum for 20 h, using a Quantachrome 

Quadrasorb SI porosimeter. The apparent surface area of the final CN products was calculated 
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by applying the Brunauer-Emmett-Teller (BET) model to the isotherm data points of the 

adsorption branch. Elemental analysis was accomplished as combustion analysis using a Vario 

Micro device. HRSEM and TEM images were recorded on a JSM-7400F (JEOL) and Tecnai 

12 TWIN instruments respectively. FT-IR spectra were recorded on a FTIR Spectrometer 6700. 

Optical absorbance spectra were measured using a Varian Spectrophotometer equipped with an 

integrating sphere, fluorescence measurements were performed using a FLS920P 

Spectrofluorimeter. Mass-loss data were obtained in a Thermogravimetric Analyzer Q500. The 

XPS data were collected by using an X-ray photoelectron spectrometer ESCALAB 250 

ultrahigh vacuum (1×10-9 bar) apparatus with an AlKα X-ray source and a monochromator. 

The X-ray beam size was 500 μm and survey spectra was recorded with a pass energy (PE) of 

150 eV and high energy resolution spectra were recorded with a PE of 20 eV. To correct for 

charging effects, all spectra were calibrated relative to a carbon C 1s peak, positioned at 284.8 

eV. The XPS results were processed by using the AVANTGE software.. The apparent quantum 

yield (AQY) for H2 evolution was determined by LEDs equipped with 420 and 490 nm band-

pass filter. The irradiation area was 9 cm2, and the irradiation intensity was measured by 

averaging 10 points in the irradiation area. The average intensity of 420 nm monochromatic 

light was 9.1 mW cm-2 and of 490 nm was 14 mW cm-2 (Newport 2936-R). The AQY was 

calculated as follows: AQY = Ne/Np × 100% = 2M/ Np × 100%, where Ne is the amount of 

reaction electrons, Np is the incident photons, and M is the amount of H2 molecules. The 

photocatalytic activity was further evaluated by the degradation of Rhodamine B (RhB) under 

white light irradiation. In a typical photocatalytic degradation experiment, RhB solution (20 ml, 

20 mgL-1) and carbon nitride (20 mg) were mixed in a glass vial in darkness with continuous 

stirring until the adsorption-desorption equilibrium between the dye and the catalyst was 

obtained. After turning on the light, aliquots were withdrawn from the suspension at given time 

intervals. The concentration of remaining RhB in solution was spectrophotometrically 

monitored by optical absorption values (at 554 nm of UV-vis absorption) on an ultraviolet-
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visible spectrophotometer during the photodegradation process. Electrochemical measurements 

were recorded using a three-electrode system on an Autolab potentiostat 

(Metrohm, PGSTAT 101). A Pt foil electrode and an Ag/AgCl (3M KCl) electrode were used 

as the counter and reference electrode, respectively. Mott-Schottky (1/C2 vs V) measurements 

were carried out in 1 M Na2SO4 aqueous solution as the electrolyte at a frequency of 2.48 kHz. 

Conductivity measurements of the CN materials were performed by the two contacts method 

(Scheme S1). CN is contacted with graphite ink between two Tungsten tips and a voltage 

between -10V and +10V is applied at room temperature. Electric current values are collected 

and a curve I/V is obtained, along the physical parameters of the CN needles and Ohms Law (V 

= IR), where I (A) is intensity and R (Ω) is resistance, we can calculate the value of the electric 

conductivity. The resistance (R = (I/V) –1 Ω) depends on geometric parameters of the sample, 

then the value is expressed as resistivity ρ = R(S/L), where S is the transversal section of the 

sample and L is the distance between the two contact points, due to the cylindrical shape of the 

CN materials and in order to simplify the measurement, both contributions of the transversal 

section (A, E, Scheme S1) share the same value. S and L values were obtained by comparison 

with an Atomic Force Microscopy cantilever of 200 µm long. Conductivity measurements (σ 

= ρ -1 (S cm-1)) where performed by measuring several needles of the same sample and obtaining 

an average value. 
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Figure 1. SEM Images of Melamine needle-shaped single crystal before calcination. 

 

 

Figure 2. SEM images melamine needle-shaped crystal calcined at (a) 500 ºC, (b) 600 ºC and 

(c) 650 ºC. 
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Figure 3. C1s and N1s XPS Spectra of CN500 (a, d), CN600 (b, e) and CN650 (c, f).  

 

Figure 4. (a) UV-vis diffuse reflectance spectra and (b) emission spectra of the materials after 

calcination, (c) pictures of M-nsc, CN500, CN600 and CN650 and (d) proposed structure of the 

materials before and after calcination at different temperatures. 
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Figure 5. a) H2 production values from water splitting of CN materials. b) Photochemical 

degradation curves of RhB dye with CN materials synthetized at different temperatures. c) Plot 

of I/V for CN500 and CN-BGAx materials. d) Optical microscope image of a contacted needle 

corresponding to CN-BGA0.2 along its dimensions. 
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Centimeter-long polymeric carbon nitride needles with tunable optical, electric and catalytic 
properties are synthesized by employing organic crystals as precursor. The ultralong CN 
needles allow the facile and direct measurements of their electronic conductivity while 
exhibiting good photocatalytic properties. The new growth strategy provides new opportunity 
for CN and other metal-free materials design toward their utilization in photoelectronic related 
devices.    
 
Keywords: one-dimensional (1D) nanostructures, polymeric carbon nitride, direct electric 
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Figure S1. Crystal data obtained by SC-XRD analysis. 
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Figure S2. Molecular arrangement in the unit cell. 

 

Figure S3. Melamine and melamine needle shaped crystal FT-IR Spectra (a), XRD patterns (b) 

and UV-vis spectra.  
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Figure S4. XPS analysis for melamine (a, b) and M-nsc (c-e). 

The Cl 2p3, 2p1 XPS patterns reveal the presence of two different chemical states in the material 

at 197.27 Cl 2p3 – 198.89 Cl 2p1 and 197.76 Cl 2p3 – 199.38 Cl 2p1corresponding to a NH-Cl 

coordination and HCl.H2O. The formation of an arrangement is strongly reflected also in the 

N1s spectrum, shown in the presence of three different chemical states; C-N heterocycle (398.8 

eV), amine type N (399.5 eV) and one more contribution at 400.6 eV which belongs to the NH-

Cl coordination, meanwhile in melamine just two peaks are observed at 398.5 and 399.4 eV; 

C-N heterocycle and amine type N respectively. At C1s spectra, the contributions shown belong 

to C-C and C-O adventitious bonds (284.8-286.4 eV, respectively) and the C-N specie 

corresponding the Melamine heterocycle at 288.6 eV. For melamine, just C-N from the 

heterocycle and adventitious C-C are observed at 284.9 and 288.0 respectively. 
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Figure S5. Thermal gravimetric analysis of melamine and M-nsc. 

 

Figure S6. FT-IR Spectra (a) and XRD patterns (b) of CN500, CN500 and CN650. 

 

Table S1. Elemental analysis data of CN materials calcined at different temperatures. 
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Figure S7. Pictures of M-nsc and CN materials  

 

Figure S8. Nitrogen-sorption measurements of CN materials. 
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Figure S9. TEM images of exfoliated CN500, CN600 and CN650. For this experiment, a suspension 

of 0.3 mg/ml of the catalysts in water was exfoliated by simple ultrasonication for 10 hours in 

a water bath, followed by centrifugation to remove residual big aggregates resulting in colloidal 

suspensions with high transparency. 

 

Figure S10. Mott-Schottky plots for CN500 and CN600 (a, b), (c) Tauc Plot of CN materials and (d) 

conduction and valence bands positions for CN500 and CN600. 
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Figure S11. Comparison of RhB degradation with CN650 and different additives. 

 

 

Scheme S1. Representation of electrical conductivity measurements methodology (a), 

calculations required in order to obtain conductivity values (σ = ρ -1 (S cm-1)) of given samples 

(b) and optical pictures of the CN500 sample and a CN500 needle contacted with graphite ink and 

a Tungsten tips (c). 
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Figure S12. a) Plot of I/V and conductivity calculations for CN500. 

 

Figure S13. FTIR spectra (a) and XRD patterns (b) of C doped CN materials. 
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Figure S14. UV-Vis spectra (a) and Tau Plot (b) of C doped CN materials. 

 

Figure S15. SEM pictures of (a) CN-BGA0.05, (b) CN-BGA0.1 and CN-BGA0.2. 
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