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Resumen

Con el descubrimiento del bosón de Higgs la última, y posiblemente más importante,
pieza del modelo estándar (SM) puede haber sido encontrada. La existencia del bosón de
Higgs es un requisito esencial del mecanismo de Brout-Englert-Higgs. Sin este mecanismo
el SM no puede explicar el origen de las masas de todas las partículas fundamentales,
de forma que los átomos no podrían formarse y la materia ordinaria no existiría. El SM
predice con exactitud casi todos los fenómenos observados en experimentos a escalas de
energía muy distintas y con una precisión destacable.

Sin embargo, el SM no predice todas las observaciones experimentales. El SM no
explica la asimetría bariónica del universo. En el SM los neutrinos no tienen masa por
construcción, así que no hay un mecanismo que dé lugar a las pequeñas masas de los
neutrinos. El SM no contiene un candidato que pudiese contribuir a la abundancia de
materia oscura fría. Además, existe el llamado problema de la jerarquía, que consiste
en que la masa del bosón de Higgs parece estar ajustada muy finamente, si no hay
un mecanismo que la proteja contra las correcciones cuánticas. Todos los problemas
mencionados llevan a la conclusión de que el SM está incompleto y tiene que ser extendido
para incorporar nueva física más allá del SM (BSM). Los modelos propuestos para llevar
a cabo esa tarea se centran en determinados fenómenos BSM.

Durante la elaboración de esta tesis hemos investigado la fenomenología de dos teorías
BSM distintas. Las dos tienen en común que cuentan con un sector de Higgs extendido
respecto al del SM. La primera parte de la tesis trata sobre una extensión supersimétrica
del SM, llamada en inglés µ-from-ν Supersymmetric Standard Model (µνSSM). Por
medio de supersimetría, se resuelve el problema de la jerarquía y la unificación de los
acoplamientos gauge se logra a una escala de alta energía. Además, en este modelo se
añaden neutrinos right-handed al contenido de partículas del SM, de tal forma que las
masas pequeñas de los neutrinos se originan a traves de un mecanismo de seesaw a la
escala electrodébil. El gravitino, que tiene una vida media más grande que la edad del
universo, representa un candidato para matería oscura. En el µνSSM tanto la escala de
ruptura de supersimetría como la escala del mecanismo de seesaw están relacionadas con
la escala electrodébil. Por eso, el espacio de parametros del µνSSM podría ser explorado
con el Gran Colisionador de Hadrones (LHC) o con otros futuros colisionadores.

En extensiones supersimétricas del SM hay compañeros supersimétricos escalares para
los fermiones del SM. Por lo tanto, en el µνSSM también los neutrinos right-handed
tienen como compañeros sus escalares correspondientes. En el caso de una generación,
es decir el µνSSM con un neutrino right-handed, el sector escalar neutro consiste en un
número total de seis campos complejos, que son los dos campos dobletes de Higgs, los
tres campos de neutrinos escalares left-handed, y el campo de neutrino escalar right-
handed. En el caso de tres generaciones están presentes tres neutrinos right-handed. Los
campos escalares correspondientes dan lugar a una extensión del sector escalar con un
total de ocho campos complejos. Durante la ruptura de la simetría electrodébil todos
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estos campos obtienen un valor esperado en el vacío. Asumiendo la conservación de CP,
las componentes reales e imaginarias producen un total de 6(8) partículas escalares pares
bajo CP y 5(7) impares bajo CP en el caso de una(tres) generación(es).

Las masas de los escalares neutros de los modelos supersimétricos se pueden obtener
a partir de los parámetros del modelo investigado. Sin embargo, las relaciones entre
los parámetros y las masas físicas de los escalares dependen fuertemente de las correc-
ciones cuánticas, que hay que considerar mediante el cálculo de correcciones de órdenes
superiores en la teoría de perturbaciones. Todos los cálculos que incorporan órdenes
superiores en teorías de campos cuánticos sufren la aparición de divergencias. Las di-
vergencias tienen que ser eliminadas consistentemente por un procedimiento llamado
renormalización. Durante el desarrollo de la tesis establecimos una prescripción de renor-
malización para el potencial escalar neutro del µνSSM que, a diferencia de cálculos au-
tomatizados, se aprovecha de unas condiciones de renormalización denominadas on-shell.
De este modo, las relaciones entre ciertos parámetros y los observables físicos apropiados
se mantienen al mismo orden de la teoría de perturbaciones estudiado.

Nuestro trabajo en el µνSSM se centró en predecir con precisión las masas de los
escalares neutros a partir de las contribuciones renormalizadas a órdenes superiores.
Utilizamos diagramas de Feynman, de forma que a orden n en teoría de perturbaciones
se consideran los diagramas con n loops. Evaluamos las correcciones a un loop incluyendo
el conjunto entero de parámetros del modelo, pero para una predicción con exactitud de
la masa del bosón de Higgs del SM el resultado de un loop no es suficiente. Por ello,
también consideramos correcciones parciales de ordenes superiores que están disponibles
en la literatura. En nuestro análisis numérico obtuvimos una masa del bosón de Higgs del
SM consistente con el valor experimental. Ilustramos lo especial que es la fenomenología
del sector escalar del µνSSM estudiando escenarios representativos en los que aparecen
otros escalares ligeros. Para el caso de tres generaciones pudimos presentar escenarios
de referencia que concuerdan con las propiedades del bosón de Higgs del SM medido
por el LHC, mientras reprodujimos al mismo tiempo los valores experimentales de las
diferencias de masa de los neutrinos y los ángulos de mezcla.

En la segunda fase de la tesis investigamos una extensión no-supersimetrica del SM
llamada en inglés Next-to 2 Higgs Doublet Model (N2HDM). El N2HDM extiende el
sector de Higgs del SM con otro campo de Higgs doblete y un campo escalar real sin
ninguna carga. Tales adiciones al sector de Higgs mínimo del SM son comunes en una gran
cantidad de teorías BSM. Investigar la fenomenología del N2HDM cubre ampliamente
la fenomenología de esas teorías relacionadas con el sector de Higgs. El sector de Higgs
del N2HDM consiste de un total de cuatro bosones de Higgs neutros y dos cargados.
Las predicciones teóricas del N2HDM se diferencian de las del SM por la presencia de
los bosones de Higgs adicionales. Los resultados experimentales de las búsquedas en
colisionadores, de la física de sabores o de los observables electrodébiles imponen límites
sobre las posibles configuraciones de parámetros del N2HDM.

Nuestro análisis numérico del N2HDM buscaba explicar dos excesos experimentales,
medidos con el Large Electron-Positron collider (LEP) y el Large Hadron Collider (LHC),
que apuntan a la existencia de un segundo bosón de Higgs con una masa de ∼ 96 GeV.
Investigando el µνSSM descubrimos que los excesos pueden ser explicados con una fia-
bilidad de ∼ 1σ, identificando así el posible bośon de Higgs nuevo como un sneutrino
right-handed. Sin embargo, ciertas relaciones supersimétricas que deben ser cumplidas
por el potencial escalar restringen esta explicación. Mediante un escaneo exhaustivo
demostramos que los excesos pueden ser reproducidos en ciertos tipos de N2HDM, en
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perfecta concordancia con los valores medidos experimentalmente. En el N2HDM un
bosón de Higgs con una componente singlete dominante puede jugar el papel de la pre-
sunta partícula con masa igual a ∼ 96 GeV. Verificamos que nuestra solución respeta
todas las restricciones teóricas y experimentales. Por último, demostramos que nuestra
solución puede ser comprobada con los colisionadores actuales o con los que se construirán
en el futuro.



Summary

With the discovery of the Higgs boson the last missing, and arguably most important,
piece of the Standard Model (SM) may have been found. The existence of the Higgs
boson is an essential requirement of the Brout-Englert-Higgs mechanism. Without this
mechanism the SM cannot account for the masses of all fundamental particles, such that
no atoms would form and ordinary matter could not exist. The SM accurately predicts
most of the phenomena observed at experiments at vastly different energy scales and at
remarkable precision.

However, the SM is not able to predict all experimental observations. The baryon
asymmetry of the universe is not explained. In the SM neutrinos are massless by con-
struction, so that the origin of tiny neutrino masses is not accounted for. The SM contains
no particle that contributes to the relic abundance of cold dark matter. The so-called
hierarchy problem states that the Higgs-boson mass appears to be extremely fine-tuned
without any mechanism protecting it from quantum corrections. All the aforementioned
flaws lead to the conclusion that the SM is incomplete. It has to be extended to in-
corporate new physics, referred to as physics beyond the SM (BSM). Each BSM theory
addresses a different set of BSM phenomena.

In this thesis the phenomenology of two BSM theories was investigated. Both models
have in common that they feature an extended Higgs sector compared to the SM. The
first part of the thesis deals with a supersymmetric extension of the SM, called µ-from-ν
Supersymmetric SM (µνSSM). By means of supersymmetry, the hierarchy problem is
not present and gauge coupling unification at very high energies is possible. Furthermore,
in this model right-handed neutrinos are added to the SM particle content in order to
explain the origin of neutrino masses, via a seesaw mechanism at the electroweak scale.
A dark matter candidate is present with a gravitino having a lifetime longer than the
age of the universe. In the µνSSM both the supersymmetry-breaking scale and the scale
of the seesaw mechanism are related to the electroweak symmetry-breaking scale. Thus,
the parameter space of the µνSSM is testable at the Large Hadron Collider (LHC) or
future collider experiments.

In supersymmetric extensions of the SM there are scalar supersymmetry partners
present for each SM fermion. Consequently, in the µνSSM also the right-handed neutrinos
are accompanied by corresponding scalar particles. In the one-generation case, i.e., the
µνSSM with one right-handed neutrino, the neutral scalar sector consists of a total of
six complex fields, which are two Higgs-doublet fields, three left-handed scalar neutrinos
fields, and one right-handed scalar neutrino field. In the three generation case, three
right-handed neutrinos are present. The corresponding scalar supersymmetry partners
yield a further extension of the scalar sector to a total of eight complex scalar fields.
During electroweak symmetry breaking, all these fields acquire a vacuum expectation
value. Assuming CP-conservation, the real and imaginary components lead to a total of
6(8) CP-even and 5(7) CP-odd neutral scalar particles in the one(three)-generation case.
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The physical masses of the scalars present in a supersymmetric model can be derived
from the model parameters. However, the relations between the parameters and the
masses strongly depend on quantum corrections which have to be incorporated by taking
into account higher-order corrections in perturbation theory. Higher-order calculations
in quantum field theories are plagued by the appearance of divergences. The divergences
have to be consistently removed by a procedure called renormalization. In this work,
we established a renormalization prescription for the neutral scalar sector of the µνSSM
which, in contrast to automated calculations, makes use of so-called on-shell renormal-
ization condition. In this way, the relations between certain parameters and appropriate
physical observables are maintained at the order of perturbation theory explored.

Our work in the µνSSM was aimed to precisely predict the masses of the neutral
scalars including the renormalized higher-order contributions. We employ the Feynman-
diagrammatic approach in which at nth order in perturbation theory diagrams containing
n closed loops have to be considered. We evaluated the corrections at the one-loop level,
including the full set of model parameters. For an accurate prediction of the SM-like
Higgs-boson mass, the one-loop result is not sufficient. Therefore, we supplemented the
one-loop corrections by partial higher-order contributions available in the literature. In
our numerical analysis, we obtained a SM-like Higgs-boson mass consistent with the
experimental value. We illustrated the unique phenomenlogy of the scalar sector of the
µνSSM in representative scenarios that incorporate additional light scalars. In the three-
generation case, we were able to present benchmark scenarios that are in agreement with
the measurements of the properties of the SM-like Higgs boson and of the neutrino mass
differences and mixing angles.

In the second part of the thesis, a non-supersymmetric extension of the SM called
Next-to 2 Higgs Doublet Model (N2HDM) was studied. In the N2HDM the Higgs sector
of the SM is enhanced by a second Higgs doublet field and a real scalar singlet field.
Such additions to the minimal Higgs sector of the SM are common in a vast amount
of BSM theories. To a large extend, the phenomenology related to the Higgs sector of
these theories can be covered by investigating the phenomenology of the N2HDM. The
Higgs sector of the N2HDM consists of a total of four neutral and two charged Higgs
bosons. Theory predictions of the N2HDM are modified compared to the SM, because
of the presence of the additional Higgs bosons. Combining experimental constraints
from different areas, such as collider searches, flavor physics or electroweak precision
observables, yields limitations on the possible parameter configurations of the N2HDM.

Our numerical analysis in the N2HDM was aimed to explain simultaneously two
experimental excesses measured at the Large Electron-Positron collider (LEP) and the
LHC that hint to the existence of a second Higgs boson with a mass of ∼ 96 GeV. In-
vestigating the µνSSM, we discovered that the excesses can be explained at the level
of ∼ 1σ by identifying the potentially new Higgs boson with a right-handed sneutrino.
The explanation was limited due to supersymmetric relations the scalar potential of the
µνSSM has to obey. With an extensive analysis we showed that the excesses can be
reproduced in certain types of the N2HDM in perfect agreement with the experimen-
tally measured signal strengths. Here, a dominantly singlet-like Higgs boson acts as the
potential ∼ 96 GeV particle state. We verified that our solution respects all relevant
theoretical and experimental constraints. We finally showed that our solution in the
N2HDM is testable at current and future collider experiments.



Contents

1 Introduction 1

2 Supersymmetry 7
2.1 Motivations for Supersymmetry . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 The Coleman-Mandula theorem . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Hierarchy problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Gauge coupling unification . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.4 Supergravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Supersymmetry algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Supersymmetric Lagrangians . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Supersymmetry breaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 The MSSM and simple extenstions . . . . . . . . . . . . . . . . . . . . . . 18

3 The µ-from-ν Supersymmetric Standard Model 25
3.1 Superpotential and soft terms . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 The spectrum and phenomenology . . . . . . . . . . . . . . . . . . . . . . 31

3.3.1 Neutral scalar potential . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.2 Charged scalars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.3 Neutral fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.4 Charged fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.5 Quarks and squarks . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.6 Gravitino . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Current status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.5 Aim of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Ultraviolet divergences and renormalization 51
4.1 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Renormalized Green’s functions . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3 Renormalization scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.1 DR conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.2 On-shell conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 The SM-like Higgs-boson mass in Susy . . . . . . . . . . . . . . . . . . . . 61

5 Higgs potential of the µνSSM with one right-handed neutrino 69
5.1 Renormalization at the one-loop level . . . . . . . . . . . . . . . . . . . . . 71
5.2 Loop-corrected Higgs-boson masses . . . . . . . . . . . . . . . . . . . . . . 82
5.3 Numerical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.1 NMSSM-like crossing point scenario . . . . . . . . . . . . . . . . . 84

xi



xii CONTENTS

5.3.2 Light left-handed τ -sneutrino scenario . . . . . . . . . . . . . . . . 86

6 Higgs potential of the µνSSM with three right-handed neutrinos 95
6.1 Renormalization at the one-loop level . . . . . . . . . . . . . . . . . . . . . 95
6.2 Loop-corrected Higgs-boson masses . . . . . . . . . . . . . . . . . . . . . . 105
6.3 Numerical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3.1 Light right-handed µ-sneutrino scenario . . . . . . . . . . . . . . . 107
6.3.2 Three right-handed sneutrinos below 125 GeV . . . . . . . . . . . . 111
6.3.3 Scan over λi while λ2 = λiλi = const. . . . . . . . . . . . . . . . . 114

7 The Next-to 2 Higgs doublet model 121
7.1 Higgs potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.2 Yukawa structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.3 Phenomenological aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.4 Aim of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8 Explanation for the LEP and CMS excesses at ∼ 96 GeV 137
8.1 Right-handed sneutrino in the µνSSM . . . . . . . . . . . . . . . . . . . . 139

8.1.1 One family of right-handed neutrinos . . . . . . . . . . . . . . . . . 139
8.1.2 Three families of right-handed neutrinos . . . . . . . . . . . . . . . 143

8.2 Singlet-like scalar in the N2HDM . . . . . . . . . . . . . . . . . . . . . . . 148
8.2.1 Theoretical constraints . . . . . . . . . . . . . . . . . . . . . . . . . 150
8.2.2 Type II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
8.2.3 Type IV - flipped . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
8.2.4 Prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

9 Conclusions 179



Chapter 1

Introduction

Modern high-energy particle physics finds itself in a peculiar situation. The Standard
Model (SM) of particle physics, established in the 70th of the past century [1–4], accu-
rately predicts most of the phenomena measured at experiments over a vast range of
energy scales. The SM is a renormalizable and anomaly-free gauge theory. It describes
the most fundamental particles we know of and how they interact. The last missing piece
of the SM, the Higgs boson predicted by the Brout-Englert-Higgs mechanism [5, 6], was
finally detected at the Large Hadron Collider (LHC) [7, 8]. The measurements of the
Higgs-boson mass already reached an astonishingly precise value of [9–12],

mhSM = 125.09± 0.24 GeV . (1.1)

So far, all measurements of the Higgs-boson properties are in perfect agreement with the
SM predictions [13–15], having in mind the theoretical and experimental uncertainties.
This should not surprise too much, as the SM established itself via a lengthy historical
curriculum of successful particle predictions.

In 1970 the Glashow–Iliopoulos–Maiani mechanism [16] demanded the existence of
a fourth quark, referred to as charme quark, which was found just four years later at
the Stanford Linear Accelerator Laboratory [17] and the Brookhaven National Labora-
tory [18]. The measurement of CP-violation [19] and the detection of a third generation
lepton [20] motivated the existence of a third generation of quarks [21]. The bottom
quark was discovered soon after at Fermilab [22], while it took over 20 years and the
Tevatron collider to find the top quark [23, 24]. The W and the Z boson, the gauge
bosons theorized to be the mediators of the electroweak interaction, were detected at
Cern with the help of the Super Proton Synchrotron in 1983 [25–27]. The ratio of their
masses was in remarkable agreement with the theoretical predictions. And of course
the particularly important discovery of the Higgs boson. Without the Higgs field all
fundamental particles of the SM would be massless.

Nevertheless, there is absolute certainty that the SM is not a complete theory de-
scribing all aspects of nature. The SM does not contain gravity at all. Until today, it is
unclear how to combine the general theory of relativity [28], a theory formulated with-
out quantum effects, with the SM being a quantum field theory. Related to this is the
origin of dark energy. In principle, the effects attributed to the existence of dark energy
can be accommodated by a finite cosmological constant [29]. The SM expectation for
this constant, however, disagrees with the experimental value by more than 100 orders
of magnitude [30]. The light Higgs-boson mass demands an enormous amount of fine-
tuning. The Higgs potential of the SM seems to be independent of any physics at larger
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2 CHAPTER 1. INTRODUCTION

energy scales, even though a large sensitivity should be present (see also Sect. 2.1.2).
The Higgs boson is the only fundamental scalar of the SM, while there are three differ-
ent copies of the fermionic matter fields. The appearance of different copies of fermions
lead to a certain arbitrariness in the Yukawa sector of the SM. In particular, there is no
mechanism present in the SM to explain the large hierarchy between the fermion masses.
This problem became even more severe after the detection of tiny neutrino masses [31]
which in the SM are strictly massless. The SM cannot naturally account for an infla-
tionary epoch of the universe to explain the observed homogeneity and isotropy of the
universe [32]. Based on purely theoretical reasons, the SM will become inconsistent at
the energy scale of the Landau pole of the hypercharge gauge group. Admittedly, the
Landau pole lies far beyond the Planck scale. One of the most concrete evidences for
new physics is the relic abundance of cold dark matter [33, 34] for which the SM does
not provide an elementary candidate whatsoever.

Considering all these experimental and theoretical problems of the SM, there is a
desperate need for theories beyond the Standard Model (BSM) that provide solutions
to the above mentioned flaws by incorporating new physics. This thesis contains phe-
nomenological investigations of two such models; the µ-from-ν Supersymmetric Standard
Model (µνSSM) and the Next-to 2 Higgs Doublet Model (N2HDM). The µνSSM solves
several issues of the SM by means of Supersymmetry (Susy). Among other things, Susy
solves the so-called hierarchy problem related to the fine-tuning in the SM Higgs sector.
In addition, the µνSSM addresses the origin of neutrino masses. The main motivations
for Susy in general and for the µνSSM in particular will be discussed in Ch. 2 and Ch. 3,
respectively. The N2HDM is a non-superysymmetric extension of the SM featuring a sec-
ond Higgs doublet field and a real scalar singlet field. Motivations for considering models
with more than one Higgs doublets will be given in Ch. 7. One of them, also in relation
to the presence of a singlet scalar, can be attributed to Susy. Several Susy models con-
tain such particles. In the limit of large Susy-breaking scales, they can be mapped onto
models like the N2HDM at energies far below the breaking scale. In any case, there is no
reason to believe that there is only one fundamental scalar in nature. The mere discovery
of the SM Higgs boson encourages to investigate models with additional scalars.

One exceptional reason to investigate the N2HDM in the scope of this thesis was the
occurrence of two experimental excesses. Considering the experimental uncertainties,
the excesses appear at an identical mass of ∼ 96 GeV. As we will see, they hint to the
presence of an additional Higgs boson with this mass. We were able to accommodate
these excesses in the µνSSM with a particle called the right-handed sneutrino, the scalar
partner of a right-handed neutrino. However, the potential signals could only be repro-
duced at the 1σ level, because of tight constraints on the form of the scalar potential
that has to obey Susy relations. Thus, the interest arose to investigate to what extent
the explanation of the excesses improves in non-Susy models containing similar Higgs
sectors. We demonstrated that perfect agreement with the experimental data can be
reached in the N2HDM [35, 36].

In our work in the µνSSM we elaborated a renormalization prescription for the neutral
scalar potential of the µνSSMwhich is a prerequisite to calculate quantum corrections.
This rather technical task will be explained in Chs. 5 and 6 for the µνSSM with one and
three right-handed neutrino superfields, respectively. Therein, we give details about the
precise definition of the renormalization scheme and the resulting radiative corrections
to the physical scalar mass eigenstates. The renormalization was preformed by making
use of the Feynman-diagrammatic approach at the one-loop level. We took into account
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the full set of free parameters in a mixed on-shell/DR scheme. Thus, our calculation
goes beyond already existing calculations of radiative corrections in the µνSSM [37].
At first, we considered the simpler version of the µνSSM with just one family of right-
handed neutrinos [38]. Afterwards, we completed our aspirations by considering the full
µνSSM with three families of right-handed neutrinos [39]. The latter three-generation
case permitted a deeper understanding of the relations of fermionic and scalar sector,
because neutrino masses can be incorporated accurately already at tree level. We propose
representative benchmark scenarios which, in addition to accommodate a SM-like Higgs
boson and neutrino states in agreement with experimental constraints, feature further
light Higgs bosons.

The thesis is organized as follows. In Ch. 2 we introduce Susy. We give reasons
why Susy-extensions of the SM are well motivated, and we explain the construction of
supersymmetric Lagrangians. Exact Susy predicts new particles with masses equal to
the ones of their SM partners. Thus, Susy cannot be an exact symmetry of nature,
but has to be spontaneously broken at some scale. The phenomenological footprints of
Susy breaking will be clarified. The final section introduces the minimal version of a
supersymmetric SM, as well as general remarks about further extensions. A comprehen-
sive study of the µνSSM can be found in Ch. 3. There we introduce the superpotential
and the corresponding soft Lagrangian of the model. We point out the importance of
the exact and spontaneously broken symmetries. This is followed by a summary of the
particle spectrum. Also details about the electroweak seesaw mechanism from which the
tiny neutrino masses originate will be given. In Ch. 4 we briefly describe the relevant
ingredients required for the renormalization of general gauge theories. They are applied
to the scalar potential of the µνSSM with one and three right-handed neutrinos in Ch. 5
and Ch. 6, respectively. Afterwards, we present a summary of the N2HDM in Ch. 7. The
numerical analysis in the N2HDM which is dedicated to the explanation of experimental
excesses is reported in Ch. 8, There we also reveal our earlier attempts in the µνSSM.
We conclude in Ch. 9.
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Chapter 2

Supersymmetry

Supersymmetry (Susy) [1–3] is one of the most attractive frameworks for BSM theories.
It combines fermionic and bosonic degrees of freedom in a unified superspace formalism.
Unification has proven to be a good guiding principle in the past. The unification of
electromagnetism led to the discovery of Maxwell’s equations. Later on, the electroweak
theory unified electromagnetism and the weak interaction. Special relativity treats space
and time as a unified object. There are good reasons to believe that a future Grand
Unified Theory (GUT) in some way or the other relies on Susy. In particular, first
attempts to unify the SM gauge forces into a single gauge group predicted the weak
mixing angle and the proton lifetimes in agreement with experimental data only when
Susy is incorporated [4, 5]. The only ways in which a unified framework for the SM
gauge interactions and gravity was achieved were based on Supergravity (Sugra), where
gravity automatically emerges from local Susy transformations (see Sect. 2.1.4).

An extensive literature can be found introducing the topic of Susy (see Refs. [6–9] for
reviews). We briefly summarize only the most important general aspects of Susy, focus-
ing on phenomenological implications of models with spontaneously broken Susy. One
of these implications is the presence of Susy partners for the SM particles. For each SM
fermion there are two corresponding scalars (called sfermions) in the particle spectrum.
For each SM gauge boson there is an additional fermion (called gaugino) present. Also
the bosonic degrees of freedom in the Higgs sector are mirrored into fermionic degrees of
freedom. However, due to other reasons the resulting spectrum is more complicated and
will be discussed later (see Sect. 2.5). If Susy would be an exact symmetry, the Susy
partners would have exactly the same mass as their SM ally. This is obviously not the
case in nature. Thus, Susy must be spontaneously broken. The mechanism behind the
Susy breaking is unclear, but relevant Susy-breaking operators present at energy scales
below the Susy-breaking scale can be parametrized by adding a so-called soft Lagrangian
to the Susy-conserving piece. The form of these additional operators will be specified in
Sect. 2.4.

The outline of this chapter is as follows. Firstly, we illustrate in Sect. 2.1 four of the
main motivations to consider Susy models. Of particular importance is the hierarchy
problem formulated in Sect. 2.1.2. It provides a compelling argument that the relevant
scales of Susy breaking are in the vicinity of the electroweak symmetry breaking (EWSB)
scale. Therefore, signals at colliders and other experiments are expected. Afterwards,
we introduce in Sect. 2.2 the Susy algebra and the two fundamental building blocks of
the superpotential, i.e., the chiral and the vector superfield. Based on this formalism, we
explain the construction of Susy Lagrangians and the Susy-breaking part in Sect. 2.3

7
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and Sect. 2.4, respectively. The final section is dedicated to the simplest Susy extensions
of the SM. Their open problems motivate to go beyond the simplest models, as was done
in the scope of this thesis by considering the µνSSM.

2.1 Motivations for Supersymmetry

There are several reasons to incorporate Susy in BSM theories. We point out four of
them which are valid for all Susy models, and so do not rely on further model-specific
assumptions.

2.1.1 The Coleman-Mandula theorem

We already argued that symmetries have shown to be a good guiding principle in the
pursuit for new physics. However, the SM symmetry cannot be extended arbitrarily. In
fact, the Coleman-Mandula theorem states that combining the internal symmetry groups
and the spacetime symmetry group of the SM can only be done in a trivial way, i.e., by
Lorentz scalars [10]. The spacetime symmetry of the SM is the Poincaré group [11], which
consists of the generator of translations Pµ, and the antisymmetric tensorMµν generating
Lorentz transformations. Adding additional charges transforming non-trivially under the
Poincaré group, in other words, carrying a Lorentz index, would overconstrain possible
interactions. For example, assuming a further conserved symmetric tensorial charge Qµν
would lead to the unreasonable conclusion that two particles could only scatter in forward
or backward direction [8, 12].

It turns that a certain kind of symmetry can circumvent the no-go theorem of
Coleman-Mandula, namely Susy. As already mentioned, Susy relates bosonic and
fermionic degrees of freedom. Thus, it is natural to assume that the generators of
Susy will carry a spinor index. Therefore, they cannot transform trivially under the
Lorentz symmetry, and should be in contradiction with the Coleman-Mandula therom.
However, the theorem only considers bosonic spacetime charges. Spinor charges fulfill
anti-commutation relations, instead of commutation relations like the familiar genera-
tors of internal gauge groups and Poincaré spacetime symmetry of the SM. The Haag-
Lopuszanki-Sohnius theorem states that an extension of the spacetime symmetry of an
interactive quantum field theory is possible as long as the additional generators anti-
commute with each other [13], forming a so-called graded Lie algebra or superalgebra.
Assuming Qa to be the generators of such transformations, with a being a spinor index,
and letting this act on a state with spin J , the resulting state will have a different spin,
so that [8]

Qa |J〉 =
∣∣J ′
〉

with J 6= J ′ . (2.1)

The action of Qa on the S-matrix of the underlying quantum field theory does not
overconstrain scattering processes and the Coleman-Mandula does not apply. In the
following discussion, we will deal with two-component Weyl spinor charges Qa, so that
the spins of particles states will transform by half a unit, i.e., J ′ = J ± 1/2. A symmetry
having such generators leads to N = 1 supersymmetry. It is precisely the one relevant for
Susy extensions of the SM. The exact definition of the algebra will be given in Sect. 2.2.

At this point, the relevant message is that Susy is the only possible way to extend the
spacetime symmetry of the SM. Thus, Susy is well motivated based purely on theoretical
arguments. Unfortunately, one cannot deduce the energy scales at which the phenomeno-
logical impact of Susy become important from the arguments presented here. In the
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Figure 2.1: One-loop diagrams contributing to the radiative corrections to the mass of
the scalar φ in the presence of a Dirac fermion f (left) and a sfermion f̃ (right).

following section, we give a compelling argument why low-scale Susy, not too far from
the EWSB scale, might be realized in nature.

2.1.2 Hierarchy problem

Following the discussion in Ch. 1, where we emphasized the necessity of BSM theories
accommodating new physics, we have to assume that the SM is an effective field theory
valid at the electroweak scale and below. However, the form of the complete high-energy
theory in the ultraviolet (UV) from which the SM should be deducible is unknown. The
Higgs-boson mass is regarded as a fundamental scalar in the SM. It is naively expected to
be extremely sensitive to any large energy scale that might be present in the UV theory.
See, for instance, the Feynman diagram on the left-hand side of Fig. 2.1. The diagram
contributes to the radiative corrections to the mass mφ of fundamental complex scalar φ
coupled to a Dirac fermion f , via a Yukawa coupling of the form −Y fφψ̄fψf [7].1 This
diagram introduces a quadratic dependence

∆m2
φ ∝ −

|Y f |2
8π2

Λ2
UV , (2.2)

of the loop-corrected scalar mass on the UV cutoff ΛUV. The SM is renormalizable. The
limit ΛUV → ∞ can be taken, and the appearing UV divergences can be consistently
canceled by introducing counterdivergences in the bare parameters of the Lagrangian,
like in this case the bare mass parameter mφ. However, a big problem arises as soon as
new physics enters the theory. The scale of this new physics ΛNP will be the momentum
cutoff from where the SM is not anymore valid without taking into account new physics
effects. The Higgs-boson mass would depend quadratically on this cutoff. Imagine, for
instance, a mechanism that incorporates a quantized gravitational interaction. The scale
at which this will be necessary is expected to be of the order of the Planck mass

ΛNP ∼MP ∼ 1019 GeV , (2.3)

yielding exorbitant radiative corrections to the scalar mass, tenth of orders of magnitudes
larger than its actual value

O(
(
1019 GeV

)2
)� O(

(
102 GeV

)2
) . (2.4)

The question is then why in the SM the Higgs-boson mass is so small, if there is such a
large sensitivity to the UV physics. Somehow, a cancellation of the UV dependence must
be present. Another way of stating this circumstance is to ask why gravity is so weak.
The natural value for the SM Higgs-boson mass is of the order of the Planck mass. The
vacuum expectation value (vev) of the Higgs boson is also most naturally of the same
order. It enters linearly in the masses of all SM particles. Hence, the SM particles are

1All Feynman diagram shown in this thesis were produced with JaxoDraw [14].
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naively expected to have masses of the order of the Planck scale, so that gravity should
be many times stronger compared to the other forces.

Most probably, there will be new physics already at lower scales than the Planck
mass. Even then the quadratic dependency induces a problematic sensitivity to the scale
of new physics. Consider, a heavy neutral Dirac fermion with a mass Mf of several TeV
which could be a dark matter candidate, for instance. Integrating out the new Dirac
fermion and matching the theory to the SM at lower energy introduces a dependence of
the bilinear term in the Higgs sector on M2

f . Thus, the scalar potential would receive
corrections many orders of magnitude larger then the desired values of the parameters.
The SM Higgs-boson mass would be much below its natural scale. If we imagine that
there is new physics in the UV at several different scales, these would all leave footprints
like the one stated above. This makes a low value of the SM Higgs-boson mass, as we
observe it, highly fine-tuned and unnatural. It is important to note that the new physics
does not even have to be coupled directly to the Higgs boson [7]. When higher-orders
beyond the one-loop level are considered, large corrections can be induced via mediators
that couple both to the scalar and the new fields. The graviton, for instance, couples to
energy. As soon as gravity is considered, a mediator field between the new physics and
the Higgs boson is automatically present.

The issues explained above are referred to as the hierarchy problem. It deals with
the question why the SM works so astonishingly well as an effective theory without the
need to know anything about the UV completion. The physics in the UV does not leave
a trace in the Higgs sector, even though it naturally should, and the SM Higgs-boson
mass somehow remains light.

What could be the mechanism behind this cancellation? One way to answer this
question is by understanding why there is no hierarchy problem in the other sectors
of the SM. This will emphasize the importance of symmetries. The SM is a chiral
theory. Left-handed and right-handed fermions are differently charged under the SU(2)
gauge group. Writing down explicit Dirac mass terms for the leptons and quarks is
forbidden, because such terms mix both left- and right-handed fields. Consequently, a
chiral symmetry is present. The chiral symmetry is broken during the electroweak phase
transition, when effective Dirac masses for the fermions are generated via the Brout-
Englert-Higgs mechanism. Quantum corrections to the masses of the SM fermions mf

exist. However, they are proportional to the fermion masses themselves [8],

δmf ∝ mf log
ΛUV

mf
, (2.5)

since their own Dirac mass terms are the ones breaking the chiral symmetry in the
first place. The logarithmic dependence on ΛUV is harmless. Consequently, the fermion
masses in the SM are natural, because they are protected by a symmetry. Similarly,
the massive SM gauge bosons obtain their masses dynamically after EWSB, when the
Goldstone bosons of the broken SU(2)×U(1) gauge symmetry are gauged away into the
longitudinal degrees of freedoms of the W± and the Z bosons. Hence, their masses are
naturally of the order of the EWSB scale, protected by the SM gauge symmetry.

Can there be a symmetry protecting the Higgs-boson mass against large radiative
corrections? The answer is yes, and the most elegant solution is Susy. Consider the
diagram on the right-hand side of Fig. 2.1, depicting the one-loop contribution stemming
from two complex scalar fields ϕf̃1,2, coupled to the scalar φ with a quartic coupling of
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the form −λf̃ |φ|2|ϕf̃1,2|2 [7]. The diagram yields contributions given by

∆m2
φ ∝

λf̃

16π2

(
2Λ2

UV −m2
f̃1

log
ΛUV

m
f̃1

−m2
f̃2

log
ΛUV

m
f̃2

)
. (2.6)

In Susy bosonic and fermionic degrees of freedom are related to each other. A SM Dirac
fermion f will have two complex scalar superpartners, one for the left- and one for the
right-handed component, respectively. Assuming that f̃1 and f̃2 are these superpartners
of f , then (as we will see below) the quartic couplings of the sfermions will be related to
the Yukawa coupling of the corresponding fermions, such that

λf̃ = |Y f |2 . (2.7)

The minus sign in Eq. (2.2) stems from the Dirac statistic for fermions. The quadratic
cutoff dependence from the fermion loop will cancel against the term from the scalar loop
diagrams proportional to Λ2

UV. In addition, when Susy is an exact symmetry, one finds

mf = m
f̃1

= m
f̃2
, (2.8)

so that the terms logarithmically dependent on the cutoff are comparable in size to the
Higgs-boson mass. Then the hierarchy problem is solved.

However, we know that the Susy partners of the SM particles must be heavier than
the SM particles. Susy must be spontaneously broken. The breaking leads to mass
difference between SM particles and their Susy partners which will be of the order of the
Susy-breaking scale ΛSusy. If this scale is very large, the sfermion masses are very large,
and the hierarchy problem is reintroduced through the logarithmic terms in Eq. (2.6).
Thus, for Susy to solve the hierarchy problem, one has to demand

ΛSusy & ΛEWSB . (2.9)

This is a crucial point, because low-scale Susy then also allows for several other issues of
the SM to be solved simultaneously. Furthermore, it means that the Susy partners can
be in reach of collider experiments like the Large Hadron Colliders (LHC). It is therefore
a testable theory. Possible particle discoveries can provide information on the type of
Susy model realized in nature.

2.1.3 Gauge coupling unification

The parameters of a quantum field theory depend on the energy scale Q at which a
certain observable is calculated. The running can be computed in perturbation theory. It
is formulated in terms of differential equations called Running Group Equations (RGEs).
The RGEs depend on the particles that contribute to the higher-order vertex corrections.
In the SM, the coupling g1 of the abelian hypercharge U(1) gauge interaction grows with
the energy scale, while the couplings g2 and g3 of the non-abelian SU(2) and SU(3) gauge
groups become smaller when Q increases. The three values come closest to each other
at roughly Q ∼ 1015 GeV. However, they do not intersect in a single point. This is a
problem, because the notion of Grand Unified Theories (GUT), i.e., a unification of all
forces of nature, predict a point in which the SM gauge couplings have equal values [15].

In Susy the additional particles start contributing to the running beyond the Susy-
breaking scale. This modifies the energy dependence of the gauge couplings. Almost
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miraculously, one finds that in the minimal Susy extension of the SM (see Sect. 2.5) all
three gauge couplings do intersect in a single point [15–18]. The necessary conditions
for this to happen are that the Susy-breaking scale is not too far beyond the TeV scale
and that the normalization of g1 is adequate to allow for a unification of the SM gauge
groups into SU(5) or SO(10). We consider this as a strong motivation for Susy, even
though it could be just an unfortunate coincidence.

2.1.4 Supergravity

Another motivation for Susy arises from the apparent segregation of gravity from the
electroweak and the strong interaction [19]. The SM is a quantum field theory. The
electroweak and the strong forces arise from gauge symmetries, defined by the groups
SU(3)×SU(2)×U(1). On the other hand, the gravitational force is described by general
relativity which is a classical theory. A naive attempt to formulate a quantum theory
of gravity, treating the metric as a dynamical field, and in which gravitational interac-
tions arise from gauging global spacetime transformations, leads to the appearance of
an infinite number of UV divergences. The resulting quantum field theory is not renor-
malizable, because the gravitational coupling constant has negative mass dimensions. In
Sect. 2.1.2 we already saw that Susy can help in this regard. In particular, the presence
of a fermionic superpartner of the graviton, called gravitino, yields a partial cancellation
of the UV divergences.

Apart from that, there is a connection between Susy and gravity stemming from the
Susy algebra. Just by matching degrees of freedom, one can derive that the form of the
anti-commutation relation of two spinor charges Qa must be [8]

{Qa, Qb} = AµabPµ , (2.10)

where Pµ is the spacetime translation operator, and A for now some unknown object
(we give the precise form of the Susy algebra in Sect. 2.2). The localized version of this
anti-commutation relation automatically implies gravity which, as stated before, arises
as gauge interaction from local spacetime transformations Pµ(x). This is why the local
version of Susy is called Supergravity (Sugra). The distinct frameworks of general
relativity and the SM can be linked by Susy.

However, even a quantum field theory incorporating Sugra cannot be renormalized.
The only known way to obtain a renormalizable Sugra theory is to consider funda-
mental particles as higher-dimensional extended objects. These so-called strings live in
a higher-dimensional spacetime and only appear to be point-like at energies below a
certain scale [19]. Sugra in four-dimensional spacetime can then be realized as a low-
energy effective theory from so-called superstring theories. The important point though
is that even in such superstring theories Susy is mandatory, because the presence of both
fermions and bosons, as in the SM, requires Susy [20]. In conclusion, Susy might be
the crucial ingredient to combine the SM and general relativity. Only this circumstance
on its own is an outstanding motivation to study possible realizations of Susy.

2.2 Supersymmetry algebra

In this section we will give the precise formulation of a Susy field theory. We closely
follow the introduction of Ref. [7]. We focus on the details with phenomenological impli-
cations. In Susy the fundamental pieces of the theory are superfields S(x, θ, θ†) which
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are functions of the superspace coordinates

xµ , θα , θ†α̇ , (2.11)

where xµ is the usual four-component spacetime coordinate. θα and θ†α̇ are Grassman
variables, i.e., anti-commuting complex two-component spinors with negative mass di-
mension of 1/2. α and α̇ are the undotted and dotted indices from the Van der Waerden
notation [21]. The most general form of a superfield is

S(x, θ, θ†) = a(x) + θ ξ(x) + θ† χ†(x) + θθ b(x) + θ†θ† c(x) + θ†σ̄µθ vµ(x)

+θ†θ†θ η(x) + θθθ† ζ(x) + θθθ†θ† d(x) , (2.12)

where we assume that S is commuting and does not have spinor or Lorentz indices. The
Susy transformations given by the anti-commuting spinor charges Q and Q† act on a
superfield.2 The Susy algebra is given by

{Qα, Q†β̇} = −2σµ
αβ̇
Pµ , (2.13)

{Qα, Qβ̇} = 0 , (2.14)

{Q†α, Q†β̇} = 0 , (2.15)

[Pµ, Qα] = 0 , (2.16)
[Pµ, Pν ] = 0 , (2.17)

where σ1,2,3 are the Pauli matrices and σ0 is the identity matrix. A supermultiplet is a
vector transforming in the irreducible representation of the Susy algebra. A supermulti-
plet combines the bosonic and fermionic superpartners into a single object. The operator
−P 2 commutes with Q and Q†, so that particles within a supermultiplet must have the
same mass. Q and Q† commute with the generators of gauge transformations, so that
particles within a supermultiplet also carry the same gauge charges. Each supermultiplet
contains the same number of bosonic and fermionic degrees of freedom. Relevant for the
studies in this thesis are the three simplest representation of a supermultiplet. The SM
fermions and their superpartners are arranged into chiral supermultiplets containing a
Weyl fermion and a complex scalar. The SM gauge bosons and their superpartners con-
stitute a vector supermultiplet consisting of a vector boson and a Weyl fermion. Finally,
for gravity, the spin-2 graviton can form a supermultiplet with the help of a spin-3/2
gravitino fermion field.

The Susy generators can be expressed as differential operators in superspace (denoted
by a hat),

Q̂α = i
∂

∂θα
− (σµθ†)α∂µ , Q̂α = −i ∂

∂θα
+ (θ†σ̄µ)α∂µ , (2.18)

Q̂†α̇ = i
∂

∂θ†α̇
− (σ̄µθ)α̇∂µ , Q̂†α̇ = −i ∂

∂θ†α̇
+ (θσµ)α̇∂µ , (2.19)

such that P̂µ = −i∂µ is identified with the usual spacetime translation operator. These
operators define a translation in superspace. They are linear operators, so that a linear
combination of superfields is a superfield transforming in the same way.

2We only consider N = 1 Susy with a single generator Qα. It is the one with phenomenological
relevance given the chiral structure of the SM [8].
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It is obvious from Eq. (2.12) that the general form of a superfield has too many
degrees of freedom to represent a chiral or vector supermultiplet. Therefore, one defines
the chiral covariant derivatives

Dα =
∂

∂θα
− 2i(σµθ†)α

∂

∂yµ
, Dα = − ∂

∂θα
+ 2i(θ†σ̄µ)α

∂

∂yµ
, (2.20)

and accordingly the anti-chiral covariant derivatives

D̄α̇ =
∂

∂θ†α̇
, D̄α̇ = − ∂

∂θ†α̇
, (2.21)

where it is made use of the coordinates

yµ = xµ + iθ†σ̄µθ , θα , θ†α̇ . (2.22)

The covariant derivatives anti-commute with the differential Susy operators, such that
DαS and D̄α̇S are superfields when S is a superfield. With the help of the covariant
derivatives one defines the left-chiral superfield Φ by imposing

D̄α̇Φ = 0 , (2.23)

and the right-chiral superfield Φ∗ by imposing

DαΦ∗ = 0 . (2.24)

Chiral fields can be constructed from a general superfield by applying

Φ = D̄α̇D̄
α̇S , Φ∗ = DαDαS

∗ . (2.25)

Expressed by the component fields they read

Φ =φ(y) +
√

2θψ(y) + θθF (y) ,

Φ∗ =φ∗(y∗) +
√

2θ†ψ†(y) + θ†θ†F ∗(y∗) , (2.26)

where φ is the scalar and ψ the fermionic component of the chiral superfield. F is an
auxiliary function. A product or linear combination of chiral fields gives a chiral field.
Hence, holomorphic functions W (Φi) or W (Φ∗i ) will themselves be left-chiral or right-
chiral, respectively.

A vector superfield V is defined by imposing

V = V ∗ . (2.27)

It can be constructed out of chiral and anti-chiral superfields by combinations like

Φ + Φ∗ , i(Φ− Φ∗) , ΦΦ∗ . (2.28)

After gauging away some auxiliary components by a supergauge transformation

V → V + i(Ω∗ − Ω) , (2.29)

with Ω being a chiral superfield, the vector superfield is given in the Wess-Zumino gauge
by

VWZ = θ†σ̄µθAµ(x) + θ†θ†θλ(x) + θθθ†λ†(x) + θθθ†θ†D(x) . (2.30)
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Here, Aµ is the vector field component and λ the corresponding Weyl fermion, while D
is an auxiliary field. The field strength is given by

Wα = −1

4
D̄α̇D̄

α̇
(
e−VDαeV

)
. (2.31)

It is a chiral superfield and transforms under the supergauge transformation shown in
Eq. (2.28) as

Wα → eiΩWαe−iΩ . (2.32)

We now have defined all the ingredients to write down an action which is invariant under
global Susy and supergauge transformations.

2.3 Supersymmetric Lagrangians

In usual quantum field theories the action is defined as the spacetime integral over the
Lagrangian density. If the integration is extended to superspace, an action A invari-
ant under global Susy transformation can be constructed by integrating over a general
superfield S, such that

A =

∫
d4x

∫
d2θd2θ† S(x, θ, θ†) . (2.33)

The transformations defined in Eqs. (2.18) and (2.19) acting on a superfield S generate
a translation in superspace. Therefore, the spacetime integral A is invariant under such
transformations. The superfield Lagrangian S must be a real superfield to ensure that
the action A is real. S is constructed out of chiral and vector superfields Φ and V ,
respectively. The change of the F -term component of a chiral superfield and the D-term
component of a vector superfield under Susy transformation is a total derivative. These
components can be projected out via an integration over the fermionic coordinates,

[Φ]F =

∫
d2θd2θ† δ(2)(θ†)Φ , (2.34)

[V ]D =

∫
d2θd2θ† V , (2.35)

where δ(2) is the anti-commuting Dirac delta function

δ(2)(θ − θ′) =
(
θ − θ′

) (
θ − θ′

)
. (2.36)

Hence, a Lagrangian L invariant under Susy transformations should have the form

L(x) =

∫
d2θd2θ†

{
[vector superfield]D +

(
δ(2)(θ†)[chiral superfield]F + c.c.

)}
,

(2.37)
where the complex conjugate term of the chiral component ensures that the action is
real. For general gauge theories the action is demanded to be invariant under supergauge
transformations under which chiral and vector superfields transform as

Φi →
(
e2igaΩaTa

) j
i

Φj , Φ∗i → Φ∗j
(
e−2igaΩaTa

) i
j
, (2.38)

e2ga(Ta) ji V
a → ei(2ga(Ta) ji Ωa)†e2ga(Ta) ji V

a
e−i(2ga(Ta) ji Ωa) . (2.39)
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Here, ga are the gauge couplings, T a are the generators of the Lie algebra, and Ωa are
the gauge parameter superfields. The renormalizable Lagrangian invariant under these
transformations can be written as

L(x) =
1

4

([
WaαWa

α

]
F

+ c.c
)

+
[
Φ∗i

(
e2gaTaV a

) j
i

Φj

]
D

+
([
W (Φi)

]
F

+ c.c.
)
, (2.40)

where we neglected possible CP-violating Θa-parameters, because they are not relevant
in the scope of this thesis. W is a holomorphic function of chiral superfields called
superpotential. It contains possible interactions of the chiral superfields allowed by the
gauge symmetries. The most general form of W in renormalizable theories is

W = LiΦi +
1

2
M ijΦiΦj +

1

6
yijkΦiΦjΦk . (2.41)

The terms stemming from the superpotential are given in scalar and fermionic compo-
nents of the chiral superfields by

[
W (Φi) + c.c

]
F

= W iFi +W ∗i F
∗i − 1

2

(
W ijψiψj +W ∗ijψ

†iψ†j
)
, (2.42)

where

W i =
δW

δΦi

∣∣∣∣
Φi→φi

, and W ij =
δ2W

δΦiΦj

∣∣∣∣
Φi→φi

, (2.43)

with φi and ψi being the scalar and fermionic component of the chiral superfields, respec-
tively (see Eq. (2.26)). The second term on the right-hand side of Eq. (2.40) provides
the terms[

Φ∗i
(
e2gaTaV a

) j
i

Φj

]
D

= F ∗iFi −∆µφ
∗i∆µφi + iψ†iσ̄µ∆µψi −

√
2ga (φ∗T aψ)λa

−
√

2gaλ
†
(
ψ†T aφ

)
+ ga (φ∗T aφ)Da . (2.44)

with the gauge-covariant derivatives

∆µφi = ∂φi − igAaµ (T aφ)i , (2.45)

∆µφ
∗i = ∂φ∗i + igAaµ (φ∗T a)i , (2.46)

∆µψi = ∂µψi − igAaµ (T aψ)i . (2.47)

The first term on the right-hand side of Eq. (2.40) reads in component form
[
WaαWa

α

]
F

= DaDa + 2iλaσµ∆muλ
†a − 1

2
F a µνF aµν +

i
4
εµνρσF aµνF

a
ρσ . (2.48)

The terms containing the auxiliary fields Fi and Da in Eqs. (2.43), (2.44) and (2.48)
contribute to the scalar potential. By making use of the equations of motions

Fi = −W ∗i and Da = ga (φ∗T aφ) , (2.49)

they form the F -terms and D-terms of the scalar potential

V (φi, φ
∗
i ) = F ∗iFi +

1

2

∑

a

DaDa = W ∗i W
i +

1

2

∑

a

g2
a (φ∗T aφ)2 . (2.50)

This relation illustrates two important features of scalar potentials in Susy models.
Firstly, the scalar potential is a sum of squares, so it is non-negative. Secondly, the quartic
couplings are determined by the gauge couplings and the superpotential couplings. This
is the reason why it is possible to predict the SM-like Higgs-boson mass in Susy models,
while in the SM the quartic coupling of the Higgs boson, and consequently its mass, are
free parameters.
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2.4 Supersymmetry breaking

The Lagrangian derived in the previous section (see Eq. (2.40)) is invariant under global
supergauge transformation. We argued that particles within the same supermultiplet
have the same mass and the same quantum numbers. Since this is not observed in nature,
the global Susy has to be broken to obtain a phenomenologically viable theory. The
precise mechanism for this breaking is unknown. Nevertheless, the low-energy operators,
effectively generated through the Susy breaking, can be parametrized and added to the
Susy-conserving Lagrangian. An important constraint for these additional operators is
that they do not reintroduce quadratic divergences, thus spoiling the solution of the
hierarchy problem. This implies that their coefficients have positive mass dimension.
Such operators are called soft. The most general form of a soft Lagrangian that can arise
from spontaneous Susy breaking is given by [7, 22]

Lsoft =−
(

1

2
Maλ

aλa +
1

6
T ijkφiφjφk +

1

2
bijφiφj + tiφi −Ma

Diracλ
aψa + c.c.

)

−
(
m2
)i
j
φ∗jφi . (2.51)

Each term explicitly breaks Susy. The first term provides Majorana masses Ma for the
gauginos λa, the superpartners of the gauge bosons. The third and the last term provide
additional mass parameters bij and (m2)ij for the scalar components φi of the chiral
superfields. The Dirac mass terms proportional toMa

Dirac can only be present when there
is a chiral supermultiplet transforming in the adjoint representation of the corresponding
gauge group. In Susy-extensions of the SM that is usually (and in particular in the
models treated here) not the case. The soft tadpole terms proportional to ti can only
be present if there is chiral superfield not charged under the gauge groups. Mass terms
for the fermionic components of chiral fields ψi are redundant, because they can be
eliminated by a redefinition of superpotential terms.

As already mentioned, the parameters within Lsoft parametrize our ignorance about
the precise mechanism behind Susy breaking. However, some general aspects can be
derived from the form of the potential in Susy theories [9]. From the anti-commutation
relation of the generators of Q and Q† (see Eq. (2.13)) one can show that a Susy-
conserving vacuum has zero energy. As was explained in the previous discussion, the
Susy potential cannot be negative. Thus, for Susy to be spontaneously broken, the
Susy-conserving states must have positive non-zero energies, so that a deeper Susy-
breaking vacuum can exist. Apart from that, Susy-breaking vacua have non-zero positive
energy, since the generators do not annihilate such vacuum states. From Eq. (2.50) we
see that there are only two possibilities for this to happen. Either terms terms in a chiral
supermultiplet break Susy, leading to so-called F -type Susy breaking, so that

〈0|Fi |0〉 > 0 , (2.52)

where |0〉 is the vacuum state, or terms in a vector multiplet break Susy, yielding D-type
Susy breaking, so that

〈0|Da |0〉 > 0 . (2.53)

The latter type of Susy breaking usually implies unacceptable breaking of the gauge
symmetries in Susy extensions of the SM. Consequently, F -type Susy breaking is fa-
vored [8].

In any case, purely spontaneous Susy breaking evokes certain sum rules for the
component fields of chiral supermultiplets [23] which are incompatible with observations,
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Superfield scalar comp. fermionic comp. SU(3)c SU(2)L U(1)y

Q̂i = (Q̂iu, Q̂id) (ũiL, d̃iL) (uiL, diL) 3 2 1/3

ûci ũciR uciR 3̄ 1 -4/3

d̂ci d̃ciR dciR 3̄ 1 2/3

L̂i = (L̂iν , L̂ie) (ν̃iL, ẽiL) (νiL, eiL) 1 2 -1

êci ẽciR eciR 1 1 2

Ĥu = (Ĥ+
u , Ĥ

0
u) (H+

u , H
0
u) (H̃+

u , H̃
0
u) 1 2 1

Ĥd = (Ĥ0
d , Ĥ

−
d ) (H0

d , H
−
d ) (H̃0

d , H̃
−
d ) 1 2 -1

Table 2.1: Chiral superfields of the MSSM and how they transform under the SM gauge
groups. i = 1, 2, 3 is the family index.

when only SM gauge interactions are considered. To avoid these constraints, one has
to assume additional explicit Susy breaking that originates from spontaneous Susy
breaking in a so-called hidden sector at much higher energies. The hidden sector must be
decoupled from SM interactions. The breaking in the SM sector arises through mediators
interacting in the hidden sector and the SM. Several possibilities for this were considered
in the the past, such as gravity-mediated or gauge-mediated Susy breaking, which yield
different conditions on the parameters in the soft Lagrangian (see Ref. [24] for a review).
In the scope of this thesis no particular Susy-breaking mechanism will be assumed, so
that we will not go into further details here.

Finally, we remark that the spontaneous breaking of Susy in the context of Sugra
is related to the appearance of a massless field. The Susy generators are fermionic.
Consequently, in contrast to Goldstone bosons present in broken gauge theories, the
massless field will be a fermion called goldstino [25]. In the SM, the goldstone bosons are
gauged away into the vector bosons of the broken SU(2), which then acquire masses. The
goldstino can be gauged away into the longitudinal degrees of freedom of the gravitino
which then becomes massive. This is called the Super-Higgs mechanism [26–29].

2.5 The MSSM and simple extenstions

In this section we will introduce the Minimal Supersymmetric Standard Model
(MSSM) [30, 31]. It is minimal in the sense that it incorporates the most minimal
particle content necessary to obtain a Susy version of the SM. The MSSM has several
shortcomings so that popular extensions of the MSSM exist. One of these non-minimal
models is the µνSSM which is the one studied in this thesis (see Ch. 3). Nevertheless,
since various different comparisons between the MSSM and the µνSSM will be drawn, it
is worthwhile to introduce the MSSM. Afterwards, we use it as a starting point for more
realistic models.

In analogy to the SM, the MSSM is constructed demanding invariance under the
gauge groups SU(3)c×SU(2)L×U(1)y. The MSSM matter fields are the chiral superfields
summarized in Tab. 2.1. The chiral superfields are denoted with a hat. The superfields
in the first five rows represent the left- and right-handed SM quarks and leptons. The
scalar components of these superfields are denoted with a tilde. The charges of the
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Superfield vector comp. fermionic comp. SU(3)c SU(2)L U(1)y

ĝ g g̃ 8 1 0

Ŵ W±,W 0 W̃±, W̃ 0 1 3 0

B̂ B B̃ 1 1 0

Table 2.2: Vector superfields of the MSSM and how they transform under the SM gauge
groups.

chiral fields are chosen to coincide with the charges of the SM fermions. The right-
handed fermions have to be put into left-chiral superfields to be able to construct a
holomorphic superpotential (see Sect. 2.2). Thus, they are given as charge-conjugate
left-chiral antiparticle superfields. For the same reason, there have to be two Higgs-
doublet superfields present. During EWSB up-type fermions will acquire masses via
couplins to Ĥu and down-type fermions via the coupling to Ĥd, shown in the last two
rows of Tab. 2.1. One Higgs-doublet field, as in the SM, is not sufficient. A field and its
charge conjugate cannot be used simultaneously in the superpotential.3 Consequently,
in the CP-conserving case the Higgs sector of the MSSM consists of two CP-even Higgs
bosons h and H, one CP-odd Higgs boson A, and two charged Higgs bosons H±. The SM
gauge bosons are included as the bosonic part of vector superfields, which are depicted
in Tab. 2.2. After EWSB the vector components B and W 0 will mix into the Z boson
and the photon, in total analogy to the SM. However, in the MSSM also the fermionic
components of the vector superfields will mix to give rise to the so-called zino and photino.

The superpotenital of the MSSM is chosen to be renormalizable, invariant under the
SM gauge groups, and conserving a discrete symmetry called R-parity, yielding

WMSSM = εab

(
Y e
ij Ĥ

a
d L̂

b
i ê
c
j + Y d

ij Ĥ
a
d Q̂

b
i d̂

c
j + Y u

ij Ĥ
b
u Q̂

a
i û

c
j + µ Ĥa

d Ĥ
b
u

)
, (2.54)

where εab is the fully antisymmetric tensor with ε12 = 1. Color indices are undisplayed.
Under R-parity the components of the supermultiplets transform as

R = (−1)3B+L+2s , (2.55)

where B is the baryon number, L the lepton number, and s the spin. For SM fields
one finds R = 1 and for their Susy partners R = −1. Enforcing this symmetry has the
purpose of forbidding dangerous tree-level operators enabling fast proton decay. Addi-
tionally, the lightest supersymmetric particle (LSP) will be stable, such that it can be a
dark matter candidate. According to Eq. (2.51), the general form of the Susy-breaking
Lagrangian is given by

−LMSSM
soft = εab

(
T eij H

a
d L̃

b
iL ẽ
∗
jR + T dij H

a
d Q̃

b
iL d̃
∗
jR + T uij H

b
uQ̃

a
iLũ
∗
jR + bµH

a
dH

b
u + h.c.

)

+
(
m2
Q̃

)
ij
Q̃a∗iLQ̃

a
jL +

(
m2
ũ

)
ij
ũ∗iRũjR +

(
m2
d̃

)
ij
d̃∗iRd̃jR +

(
m2
L̃

)
ij
L̃a∗iLL̃

a
jL

+
(
m2
ẽ

)
ij
ẽ∗iRẽjR +m2

Hd
Ha
d
∗Ha

d +m2
HuH

a
u
∗Ha

u

+
1

2

(
M3 g̃ g̃ +M2 W̃ W̃ +M1 B̃

0 B̃0 + h.c.
)
. (2.56)

3Another reason is that two Higgs doublet fields ensure anomaly cancellation regarding the gauge
groups.
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In the first row we find the scalar operator corresponding to the superpotential couplings.
In the second and the third row we find soft scalar masses for the scalar components of
the chiral superfields. In the last row the fermionic parts of the vector fields, transforming
in the adjoint representation of the gauge groups, receive soft masses. The scale of the
Susy breaking defines the mass scale of the Susy partners of the SM particles.

The MSSM has been the most popular Susy extension of the SM in the past. If the
Susy-breaking scale is not far above the TeV scale, the hierarchy problem is solved and
the SM gauge couplings unification can be achieved. The neutralino LSP, a stable weakly
interacting massive particle (Wimp), can naturally serve as a dark matter candidate [32,
33]. Because of the conservation of R-parity, any Susy particle possibly produced at
colliders would decay into final states containing the stable LSP escaping the detector.
Thus, the particle spectrum of the MSSM was expected to be measurable at the LHC
making use of signals with missing energy or monojets. The predictions for the top quark
mass assuming unification of the SM forces into SU(5) or SO(10) were in remarkable
agreement with the measured value soon after [34, 35]. The measured SM-like Higgs-
boson mass is not above the mass range that can be accommodated [36, 37]. Furthermore,
the EWSB arises naturally, because the relevant scalar soft mass parameter becomes
negative while running from the GUT scale to the electroweak scale [38, 39].

However, recent observation (or the lack of them) tightly constrain the parameter
space of the MSSM for Susy scales providing a solution to the hierarchy problem, or are
in complete disagreement with the MSSM prediction. Firstly, direct searches for Susy
particles at the LHC found no evidence whatsoever of the presence of a particle spectrum
predicted by the MSSM. In particular the scalar Susy partner of the quarks were expected
to be produced at the LHC, since they are charged under the SU(3)c. The Wimp dark
matter explanation via a neutralino LSP is challenged by the absence of signals in direct
detection experiments and LHC searches [40, 41]. Most importantly, neutrino-oscillation
data demand the presence of (at least two) finite neutrino masses [42, 43]. The MSSM
does not address the origin of neutrino masses and mixings at all.

There are also theoretical problems related to the form of the MSSM superpotential
shown in Eq. (2.54). It contains a parameter µ with mass dimension two. The term is
part of the Susy-preserving sector, such that it should be of the order of the UV scale
(for instance the Planck mass) where the operator is generated. For phenomenological
reasons, however, it must be of the order of the electroweak scale. This is called the
µ-problem [44] (see Ref. [45] for a recent review). Another theoretical problem in the
MSSM is that the tree-level mass of the lightest Higgs boson is bounded from above by
the Z-boson mass [36, 46, 47]. Even though a particle taking the role of the SM-like
Higgs boson can be accommodated, large quantum corrections to its mass are required
to obtain a value of ∼ 125 GeV (see Ref. [48] for a recent review). The largest radiative
corrections arise from the interaction with the scalar top quark partners (stops). Hence,
the Higgs sector and the stop sector of the MSSM are tightly linked. The non-observation
of stops at the LHC leads to constraints in both sectors.

Both the experimental and theoretical problems motivate Susy extensions of the SM
beyond the MSSM. We mention extensions addressing either the µ-problem or the origin
of neutrino masses here, because they are the ones relevant in the scope of this thesis.
Solutions to the µ-problem usually consist of forbidding the term in the superpotential,
for instance by a symmetry, and then generating it effectively at the electroweak scale. In
the Next-to MSSM (NMSSM) a gauge-singlet chiral superfield ŝ is added to the particle
content [49–51] (see Refs. [52, 53] for reviews). Forbidding the explicit µ-term by a Z3
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symmetry under which the Higgs doublet fields are charged, and introducing the term

WNMSSM ∼ −εab λ ŝ Ĥb
uĤ

a
d , (2.57)

an effective µ-term is generated when the scalar component s̃ acquires a vev. A simliar
solution is found in the nearly-MSSM in which also a gauge-singlet chiral superfield is
added. There, the explicit µ-term is forbidden by demanding a discrete R-symmetry [54,
55]. R-symmetries do not commute with the Susy generators, so that they act non-
trivially on the bosonic and fermionic components of superfields. Several other models
consider an additional chiral superfield exclusively charged under an extra U(1)′ gauge
group that forbids certain terms with mass dimensions in the superpotential (see Ref. [44]
for an overview).

To explain the origin of neutrino masses there are two generic possibilities. Several
Susy models feature at least one of them [56]. First of all, right-handed chiral super-
fields can be added to the particle spectrum of the MSSM. These are gauge singlets.
Thus, anomaly cancellation stays intact. Then, a seesaw mechanism with large Majo-
rana masses for the right-handed neutrinos can be implemented. Such a solution works
just as well in the SM [57] so that this mechanism is not necessarily related to Susy.
Other solution to generate neutrino masses more related to Susy depend on the intro-
duction of lepton-number violating operators. In the MSSM these are forbidden due to
the conservation of R-parity. This condition can be relaxed to only assume conservation
of baryon number, since it is enough to prevent fast proton decay. Then the MSSM
superpotential can be expanded to contain lepton-number violating operators. Neutrino
masses are produced radiatively without the need to extend the particle content of the
MSSM.

This thesis deals with a Susy model capable of solving both the µ-problem and
the generation of neutrino masses simultaneously by relating both issues to the EWSB
scale. This is done by interpreting the gauge-singlet chiral superfield ŝ used to solve the
µ-problem in models like the NMSSM as right-handed neutrino superfields;

ŝ↔ ν̂R . (2.58)

The precise mechanism behind this will be explained in the following chapter in which
we give a brief summary of this model.
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Chapter 3

The µ-from-ν Supersymmetric
Standard Model

The µ-from-ν Supersymmetric Standard Model (µνSSM) [1, 2] is a Susy extension of the
SM that can accommodate neutrino masses and mixings in agreement with experimental
data by augmenting the particle content with right-handed neutrino superfields. The
astonishing property of the µνSSM is that this is set to happen via a seesaw mechanism
at the electroweak scale. Therefore, no new energy scale has to be introduced. In fact,
the superpotential of the µνSSM does not contain dimensionful parameters at all. The
only BSM energy scale is the Susy-breaking scale. The importance of this cannot be
overestimated, since a priori one might think that, due to the tiny neutrino masses, their
origin is related to physics either at very low or very high energy scales, far from the
electroweak scale.

Consider the ratio of the electron mass, the lightest massive fermion in the SM spec-
trum, and the neutrino masses. The precise values of the neutrino masses are unknown,
but an upper value to the sum of neutrino masses can be obtained from cosmology [3] or
the tail of the electron spectrum in β-decay experiments [4, 5];

me

mν
. 106 . (3.1)

In the SM, fermion masses are generated via an effective Dirac mass term which is
proportional to the Higgs-boson vev. In principle, the same can be applied to neutrinos,
when the presence of right-handed neutrinos is assumed. However, the smallness of the
neutrino masses would yield a tiny Yukawa coupling of the order of

Y ν ∼ 10−13 . (3.2)

The usual hierarchy in the fermionic mass spectrum of the SM can already be considered
unnatural, as one sees a span of six orders of magnitude in the sizes of the different Yukawa
couplings. Surely, considering that small neutrino Yukawa couplings is an extremely
unsatisfactory proposal at least. Apart from that, it is not even possible to realize that
small Yukawa couplings in certain string constructions in which the Yukawa couplings
arise geometrically and can be calculated [6]. Thus, it is tempting to consider a BSM
mechanism that can explain the origin of the tiny neutrino masses. If new physics coupled
to neutrinos is assumed to be present in a UV completion of the SM, it could manifest
itself at lower energies in the form of effective operators. Considering the SM particle
content and gauge symmetries, the only allowed five-dimensional operator (not counting
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flavor indices) is the Weinberg operator [7]

(Y ν
ij )

2

Λν

(
L̄iφ̃

∗
)(

φ̃†Lj

)
+ h.c. . (3.3)

Here, Li = (νi, li) are the left-handed lepton doublets, φ = (φ+, φ0) is the SM Higgs
doublet, and φ̃ = iσH∗. Λν is the energy scale of new physics at which this operator is
generated. It can arise when an SU(2)-singlet or -triplet fermion or an SU(2)-singlet
fermion mediator is heavy and can be integrated out. In the µνSSM the mediator
particles are, for instance, the right-handed neutrinos. After EWSB this term would
lead to Majorana masses for the neutrinos of the form

∼
(Y ν
ij )

2v2

Λν
, (3.4)

where v ∼ 246 GeV is the SM vev. In these kind of scenario, the smallness of the neutrino
masses is induced by the size of the energy scale Λν . It is inversely proportional to the
effectively generated neutrino masses. If we assume Yukawa couplings of order one, the
new energy scale will be

Λν & 1013 GeV . (3.5)

Nothing really can be said against this option theoretically, and nature might very well
have chosen this possibility. Considering the current and future reach of particle colliders,
this is however the most unfortunate one. Also, since the hierarchy problem demands
new physics at much lower scales, it is certainly more exciting to explore ways to obtain
massive neutrinos at the electroweak scale.

In the µνSSM this is made possible by compromising. If the new physics responsible
for the neutrino masses is related to EWSB and Susy breaking,

O(Λν) ∼ O(ΛSusy) & O(ΛEWSB) ∼ O(100 GeV) , (3.6)

one can get away with values for the neutrino Yukawa couplings close to the value of the
electron Yukawa coupling,

Y ν . Y e ∼ 10−6 . (3.7)

Obviously, this is still a small value, but it is not orders of magnitudes smaller than the
ones we are familiar with from the SM. Thus, no harm is done in terms of naturalness.
In fact, it is rather surprising that, assuming the energy scale Λν to be of the order of
the Susy-breaking scale ΛSusy, yields the approximate relation in Eq. (3.7).

Besides solving the ν-problem, i.e., the appearance of neutrino masses, there is a
second task assigned to the right-handed superfields in the µνSSM. Since they are gauge-
singlets, the µ-problem (see Sect. 2.5) can be solved in total analogy to the NMSSM (see
Eq. (2.57)). An effective µ-term is automatically present at the correct scale, when the
scalar components of the right-handed neutrino superfields obtain a vev. Hence, the
µ-problem is solved simultaneously with the ν-problem. This feature also explains the
name of the model. The Z3 symmetry is theoretically justified in the context of string
theory, in which in the low energy limit only trilinear terms arise in the superpotential,
while parameters with energy dimensions are suppressed [1].

We will describe the details of the µνSSM in the following subsections, including the
concrete realization of the electroweak seesaw mechanism. The most important ingredient
for the construction of the superpotential, introduced in Sect. 3.1, are the symmetries
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applied, to which we dedicate Sect. 3.2. A side effect of associating the scale Λν with
the dynamics of Susy is that the lepton-number violation, naturally present in seesaw
scenarios, also induces the breaking of R-parity. We discuss the consequences of R-parity
breaking regarding the spectrum of the model, in particular the more complicated particle
mixings and other phenomenological issues in Sect. 3.3. Finally, we give a brief overview
of the work that has already been done in the context of the µνSSM, and summarize a
few further extensions that can be applied to the µνSSM in Sect. 3.4.

3.1 Superpotential and soft terms

Based on the flavor structure of the SM, the most natural assumptions is to add three
families of right-handed neutrino superfields to the particle content. The superpoten-
tial and the corresponding soft Susy-breaking Lagrangian of this full µνSSM will be
introduced in this section. A simpler version of the µνSSM only considers one family
of right-handed neutrinos. This is still enough to accommodate neutrino masses, but
only one neutrino mass is present at tree-level, while the remaining masses have to arise
from radiative corrections. Both versions of the µνSSM were studied in the literature
(see Sect. 3.4). Accordingly, during the work of this thesis, both the one-generation [8]
and the three-generation case [9] were considered. We present here the full model from
which the one-generation case is simply obtained by removing the generation index of
the right-handed neutrino superfields.

The superpotential of the µνSSM with three generations of right-handed neutrinos is
written as [1, 9]

W = εab

(
Y e
ij Ĥ

a
d L̂

b
i ê
c
j + Y d

ij Ĥ
a
d Q̂

b
i d̂

c
j + Y u

ij Ĥ
b
u Q̂

a
i û

c
j

)

+ εab

(
Y ν
ij Ĥ

b
u L̂

a
i ν̂

c
j − λi ν̂ci Ĥb

uĤ
a
d

)
+

1

3
κijkν̂

c
i ν̂
c
j ν̂
c
k , (3.8)

where ĤT
d = (Ĥ0

d , Ĥ
−
d ) and ĤT

u = (Ĥ+
u , Ĥ

0
u) are the MSSM-like doublet Higgs super-

fields, Q̂Ti = (ûi, d̂i) and L̂Ti = (ν̂i, êi) are the left-chiral quark and lepton superfield
doublets, and ûcj , d̂

c
j , ê

c
j and ν̂c are the right-chiral quark and lepton superfields. i and

j are family indices running from one to three, and a, b = 1, 2 are indices of the funda-
mental representation of SU(2) with εab the totally antisymmetric tensor and ε12 = 1.
The color indices are not written out. The first row in Eq. (3.8) is nothing else than the
familiar superpotential of the MSSM, except that the bilinear µ-term is dropped. In the
second row one sees the additional terms genuine to the µνSSM that can be constructed
in the presence of the fields ν̂c. Therein, the second and the third term are analogues
to the couplings of the singlet of the Z3-symmetric NMSSM, besides that in the µνSSM
several gauge-singlet fields are present. The λi parameter carries one and the κijk param-
eter carries three indices, with κijk being symmetric under permutation of the indices.
The remarkable difference to the NMSSM is the additional Yukawa coupling Y ν

ij which
induces explicit breaking of lepton-number conservation and R-parity through the λi-
and κijk-terms. The presence of the Y ν

ij -terms justifies the interpretation of the singlet
superfields as right-handed neutrino superfields. We will discuss in detail the preserved
and broken symmetries of the superpotential in Sect. 3.2. There, we also give reasons
for not considering further terms in the superpotential thar are in principle allowed once
R-parity is broken.

For now we will go on with establishing the form of the broken sector. Working in
the framework of low-energy SUSY the corresponding soft SUSY-breaking Lagrangian is
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given by [10]

−Lsoft = εab

(
T eij H

a
d L̃

b
iL ẽ
∗
jR + T dij H

a
d Q̃

b
iL d̃
∗
jR + T uij H

b
uQ̃

a
iLũ
∗
jR + h.c.

)

+ εab

(
T νij H

b
u L̃

a
iLν̃
∗
jR − T λi ν̃∗iRHa

dH
b
u +

1

3
T κijk ν̃

∗
iRν̃
∗
jRν̃
∗
kR + h.c.

)

+
(
m2
Q̃

)
ij
Q̃a∗iLQ̃

a
jL +

(
m2
ũ

)
ij
ũ∗iRũjR +

(
m2
d̃

)
ij
d̃∗iRd̃jR +

(
m2
L̃

)
ij
L̃a∗iLL̃

a
jL

+
(
m2
ν̃

)
ij
ν̃∗iRν̃jR +

(
m2
ẽ
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ij
ẽ∗iRẽjR +m2

Hd
Ha
d
∗Ha

d +m2
HuH

a
u
∗Ha

u +
(
m2
HdL̃

)
i
Ha∗
d L̃

a
iL

+
1

2

(
M3 g̃ g̃ +M2 W̃ W̃ +M1 B̃

0 B̃0 + h.c.
)
. (3.9)

In the first four lines the fields denote the scalar component of the corresponding super-
fields. In the last line the fields denote the fermionic superpartners of the gauge bosons,
with M1,2,3 being the gaugino masses for the corresponding gauge group. The scalar
trilinear parameters T e,ν,d,u,λ,κ correspond to the trilinear couplings in the superpoten-
tial. The soft mass parameters m2

Q̃,ũ,d̃,L̃,ν̃,ẽ
are hermitian 3× 3 matrices in family space.

m2
Hd,Hu

are the soft masses of the doublet Higgs fields. m2
HdL̃

is a 3-dimensional vector
in family space, which is always regarded to be absent in the tree-level Lagrangian of
the µνSSM, because it spoils the electroweak seesaw mechanism (see Sect. 3.3.1). We
include it here, because the operator is allowed by gauge symmetries since Ĥd and L̂i
share exactly the same quantum numbers. Tiny contributions to m2

HdL̃
are generated via

quantum corrections. Consequently, the parameters m2
HdL̃

are required to renormalize
the scalar potential, and we include them here. Theoretically, the absence of soft mass
parameters mixing different fields at tree level, (m2

HdL̃
)i, (m2

L̃
)i 6=j , (m2

Q̃
)i 6=j , etc., can be

justified by the diagonal structure of the Kähler metric in certain supergravity models, or
when the dilaton field is the source of Susy breaking in string constructions [11]. Notice
also that when the down-type Higgs doublet superfield is interpreted as a fourth family
of leptons, the parameters m2

HdL̃
can be seen as non-diagonal elements of m2

L̃
[12].

Throughout this thesis, we will make use of these assumptions. We will neglect flavor
mixing at tree-level in the squark and the quark sector, so that the soft masses are
diagonal. We write m2

Q̃i
, m2

ũi
and m2

d̃i
, as well as for the soft trilinears T ui = Aui Y

u
i ,

T di = Adi Y
d
i , where the summation convention on repeated indices is not implied. The

quark Yukawas Y u
ii = Y u

i and Y d
ii = Y d

i are assumed to be diagonal as well. For the
sleptons we define T eij = AeijY

e
ij and T

ν
ij = AνijY

ν
ij , again without summation over repeated

indices. The latter condition is vital for the electroweak seesaw mechanism, as will be
shown in Sect. 3.3.1. Without the proportionality

T νij ∝ Y ν
ij (3.10)

the correct hierarchy between vevs of the scalar fields is not guaranteed (see Sect. 3.3.1).

3.2 Symmetries

The construction of the Lagrangian of the µνSSM, like in any other Susy model, is based
on symmetries and how they are broken. Firstly, there is Susy itself, whose breaking is
parametrized by the soft terms in Eq. (3.9). Besides assumptions on the flavor structure of
the soft terms, we do not make explicit assumptions on the mechanism of Susy-breaking.
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The soft terms rather reflect a parametrization of our inability to capture the underlying
mechanism. Therefore, all soft coefficients are free parameters. The important point to
note is that no quadratic divergences arise at any order in perturbation theory from the
terms in Eq. (3.9), even though the terms break Susy [13]. Due to the gaugino mass
terms no continuous R-symmetry can be present [14].

During EWSB, when the real scalar components will acquire a vev (see below), not
only the local gauge group U(1)Y × SU(2)L will be broken, but also the global Z3 sym-
metry, under which any chiral superfields transform as

Φ→ e
2πi
3 Φ , (3.11)

and vector superfields are invariant. This symmetry makes the superpotential scale
invariant. In particular, as explained in the introduction, it enables a solution to the
µ-problem. Furthermore, it forbids dangerous bilinear terms

W ∼ εab
(
µiLĤ

b
uL̂

a
i

)
, (3.12)

that would introduce arbitrary large sources of lepton-number violation. Also, since
the right-handed neutrinos are gauge-singlets, linear tadpole terms and explicit bilinear
Majorana mass terms of the form

W ∼ Liν̂ci +MM
ij ν̂

c
i ν̂
c
j , (3.13)

would be allowed without the Z3 symmetry. The latter Majorana mass terms are un-
wanted, because they should arise dynamically during EWSB via the κijk-terms, such
that no additional scale has to be put into the model by hand for the electroweak seesaw
mechanism to be successful. The former tadpole term is better avoided, because it can
reintroduce quadratic divergences in the framework of supergravity [15].

For cosmological reasons global symmetries are problematic due to the appearance of
degenerate vacua. They are associated with the so-called domain wall problem [16]; topo-
logical defects during the electroweak phase transition in which the Z3 symmetry is broken
spontaneously. Their energy can grow very large, so that they would contribute unac-
ceptably to the cosmological evolution of the universe. The usual solution to this problem
can be applied, as in the trilinear NMSSM, also to the µνSSM [1]. Non-renormalizable
operators, small enough to not be important for the low-energy phenomenology, and
which do not reintroduce the hierarchy problem, break the global symmetry, such that
the degeneracy of the vacuum is broken [17, 18].

By writing down the term proportional to the neutrino Yukawa couplings Y ν
ij , the sin-

glet fields are identified as lepton fields. Lepton-number conservation is then is explicitly
broken by the λi- and κijk-terms. Thus, even though lepton-number violating Majorana
mass terms are spontaneously generated during EWSB, no massless Goldstone boson
called Majoron appears, because lepton-number conservation is not a good symmetry of
the superpotential anyway [1]. On top of that, the κijk-terms are essential to break a
global U(1) symmetry, under which the singlet and doublet fields transform as [19]

ν̂i → e2iΘ , Ĥd → e−iΘ , Ĥu → e−iΘ , (3.14)

leaving the λi-terms invariant. This symmetry can trivially be extended to the Yukawa
terms of the superpotential by assigning the proper charges to the lepton and quark
fields. In the absence of the κijk-terms, it would be broken only spontaneously during
EWSB, leading to the presence of an unwanted Peccei-Quinn axion [1].
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We complete this section by discussing the non-existence of R-parity, in contrast to
models like the (N)MSSM. Similar to lepton-number conservation, R-parity cannot be
conserved once the neutrino Yukawa terms and either the λi-terms or the κijk-terms are
present. Only in the limit

Y ν
ij → 0 or (λi → 0 , κijk → 0) , (3.15)

R-parity is restored. Following the reasoning above, both limits are phenomenologically
uninteresting. However, we argued in the introduction that the values of Y ν

ij have to
be small (see Eq. (3.7)). Therefore, dangerous R-parity breaking phenomena are always
suppressed, i.e., they are relevant when they do not have to compete against R-parity con-
serving processes. The only exceptions arise from the right-handed (s)neutrinos, whose
couplings to the doublet-like Higgs bosons and their Susy partners are not suppressed
by Y ν

ij .
Despite the suppression caused by the smallness of Y ν

ij , the phenomenology of the
µνSSM is conceptually changed compared to R-parity conserving models. Firstly, there
are several additional terms that could in principle be included to the superpotential, as
soon as R-parity is broken [11]. Notice that the left-handed lepton superfields L̂i and
the down-type Higgs superfield Ĥd share the same quantum numbers, since also lepton-
number is not conserved anymore. Hence, each term in the superpotential containing L̂i
can also be written down with the field Ĥd instead, and vice versa. For instance, from
the terms proportional to Y e

ij and Y
d
ij one can deduce the terms

εab

(
λijkL̂

a
i L̂

b
j ê
c
k + λ′ijkL̂

a
i Q̂

b
j d̂
c
k

)
, (3.16)

which are lepton-number violating. The second term can lead to fast proton decay, if it
appears together with the baryon-number violating term

εαβγ
(
λ′′ijkd̂

c
iαd̂

c
jβû

c
kγ

)
, (3.17)

where εαβγ is totally antisymmetric and ε123 = 1. To save the proton, one forbids the
term in Eq. (3.17), for instance, by demanding conservation of baryon triality, such
that operators inducing proton decay of dimension five or lower are forbidden. The two
terms in Eq. (3.16), however, cannot be forbidden by symmetries. Still, there are two
reasons to not consider them. Firstly, while the terms included in the superpotential
genuine to the µνSSM (see second row in Eq. (3.8)) solve certain phenomenological or
theoretical problems, the terms shown in Eq. (3.16) are not particularly motivated by new
physics, nor do they play a role in the origin of EWSB. Secondly, there are very strong
constraints on the products λijkλlmn, λijkλ′lmn and λ′ijkλ

′
lmn [20, 21], for instance, from µ-

e conversion experiments [22, 23], and searches for lepton-flavor violating decays [24, 25].
Consequently, the terms written in Eq. (3.16) are considered to be negligible in what
follows.

Since any Susy particle is allowed to decay to SM particles, there is no stable lightest
supersymmetric particle (LSP). Nevertheless, the µνSSM can still offer a dark matter
candidate. A gravitino LSP, whose decay is suppressed by the inverse of the Planck mass
squared and the smallness of Y ν

ij can have a lifetime longer than the age of the universe,
thus contributing to the relic abundance of dark matter [26, 27]. Apart from that, the
LSP of the µνSSM can carry electric or color charge, because it is not stable.
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3.3 The spectrum and phenomenology

The breaking of R-parity also has a profound impact on the spectrum of the µνSSM. All
SM particles, except the quarks and squarks which are protected by baryon triality, mix
with the Susy particles with equal quantum numbers. Due to the smallness of the pa-
rameters Y ν

ij , the mixing of the SM fermions with Susy particles is always suppressed, so
that the SM is recovered as the low-energy effective field theory. In the following sections
we will give details about the particle mixings in each sector of the µνSSM separately.
Again, we give the relevant expressions for the more general case of the µνSSM with three
families of right-handed neutrino superfields here [9]. The corresponding expressions for
the one-generation case can be found in Ref. [8].

3.3.1 Neutral scalar potential

The neutral scalar potential of the µνSSM is given at tree-level and assuming CP-
conservation, as we will do throughout this thesis, by the soft terms and the F - and
D-term contributions of the superpotential. One finds

V (0) = Vsoft + VF + VD , (3.18)

with

Vsoft =

(
T νij H

0
u ν̃iL ν̃

∗
jR − T λi ν̃∗iRH0

dH
0
u +

1

3
T κijk ν̃

∗
iRν̃
∗
jRν̃
∗
kR + h.c.

)

+
(
m2
L̃

)
ij
ν̃∗iLν̃jL +

(
m2
ν̃

)
ij
ν̃∗iRν̃jR +m2

Hd
H0
d
∗
H0
d +m2

HuH
0
u
∗
H0
u , (3.19)

VF = λjλjH
0
dH

0
d

∗
H0
uH

0
u

∗
+ λiλj ν̃

∗
iRν̃jRH

0
dH

0
d
∗ + λiλj ν̃

∗
iRν̃jRH

0
uH

0
u
∗

+ κijkκljmν̃
∗
iRν̃lRν̃

∗
kRν̃mR −

(
κijkλj ν̃

∗
iRν̃
∗
kRH

0∗
d H

0∗
u − Y ν

ijκljkν̃iLν̃lRν̃kRH
0
u

+ Y ν
ijλj ν̃iLH

0∗
d H

0∗
u H

0
u + Y ν

ijλkν̃
∗
iLν̃jRν̃

∗
kRH

0
d + h.c.

)

+ Y ν
ijY

ν
ikν̃
∗
jRν̃kRH

0
uH

0
u
∗ + Y ν

ijY
ν
lkν̃iLν̃

∗
lLν̃
∗
jRν̃kR + Y ν

jiY
ν
kiν̃jLν̃

∗
kLH

0
uH

0∗
u , (3.20)

VD =
1

8

(
g2

1 + g2
2

) (
ν̃iLν̃

∗
iL +H0

dH
0
d
∗ −H0

uH
0
u
∗
)2

. (3.21)

After the EWSB the neutral scalar fields will acquire a vev. This includes the left- and
right-handed sneutrino fields, because they are not protected by lepton-number conser-
vation, as is the case in the MSSM and the NMSSM. We define the decomposition

H0
d =

1√
2

(
HRd + vd + iHId

)
, (3.22)

H0
u =

1√
2

(
HRu + vu + iHIu

)
, (3.23)

ν̃iR =
1√
2

(
ν̃RiR + viR + i ν̃IiR

)
, (3.24)

ν̃iL =
1√
2

(
ν̃RiL + viL + i ν̃IiL

)
, (3.25)
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in such a way that after the EWSB they develop the real vevs

〈H0
d〉 =

vd√
2
, 〈H0

u〉 =
vu√

2
, 〈ν̃iR〉 =

viR√
2
, 〈ν̃iL〉 =

viL√
2
. (3.26)

The subscripts R and I denote CP-even and -odd components of each scalar field, re-
spectively.1

Using the decomposition from Eqs. (3.23) - (3.25), the linear and bilinear terms in the
fields define the tadpoles Tϕ and the scalar CP-even and CP-odd neutral mass matrices
m2
ϕ and m2

σ,

VH = · · · − Tϕiϕi +
1

2
ϕTi
(
m2
ϕ

)
ij
ϕj +

1

2
σTi
(
m2
σ

)
ij
σj + · · · . (3.27)

where we collectively denote with ϕT = (HRd , H
R
u , ν̃

R
1R, ν̃

R
2R, ν̃

R
3R, ν̃

R
1L, ν̃

R
2L, ν̃

R
3L) and σT =

(HId , H
I
u , ν̃

I
1R, ν̃

I
2R, ν̃

I
3R, ν̃

I
1L, ν̃

I
2L, ν̃

I
3L) the CP-even and CP-odd scalar fields, respectively.

The linear terms are only allowed for CP-even fields and given by

THRd
=−m2

Hd
vd −

(
m2
HdL̃

)
i
viL −

1

8

(
g2

1 + g2
2

)
vd
(
v2
d + viLviL − v2

u

)

− 1

2
vdv

2
uλiλi +

1√
2
vuviRT

λ
i +

1

2
v2
uY

ν
jiλivjL −

1

2
vdviRλivjRλj

+
1

2
vuκikjλivjRvkR +

1

2
viRλivjLY

ν
jkvkR , (3.28)

THRu =−m2
Huvu +

1

8

(
g2

1 + g2
2

)
vu
(
v2
d + viLviL − v2

u

)

− 1

2
v2
dvuλiλi +

1√
2
vdviRT

λ
i + vdvuY

ν
jiλivjL −

1√
2
viLT

ν
ijvjR −

1

2
vuviRλivjRλj

− 1

2
vuY

ν
jiY

ν
kivjLvkL −

1

2
vuY

ν
ijY

ν
ikvjRvkR +

1

2
vdκijkλivjRvkR −

1

2
Y ν
li κikjvjRvkRvlL ,

(3.29)

Tν̃RiR
=−

(
m2
ν̃

)
ij
vjR −

1√
2
vuvjLT

ν
ji −

1

2
v2
uY

ν
jiY

ν
jkvkR + vdvuκijkλjvkR −

1√
2
T κijkvjRvkR

+
1

2
vdvjLY

ν
jivkRλk − vuY ν

ljκijkvkRvlL −
1

2
vjLY

ν
jivkLY

ν
klvlR − κijmκjlkvkRvlRvmR

− 1

2

(
v2
d + v2

u

)
λiλjvjR +

1

2
vdvjLY

ν
jkvkRλi +

1√
2
vdvuT

λ
i , (3.30)

Tν̃RiL
=−

(
m2
L̃

)
ij
vjL −

(
m2
HdL̃

)
i
vd −

1

8

(
g2

1 + g2
2

)
viL
(
v2
d + vjLvjL − v2

u

)

+
1

2
vdv

2
uY

ν
ijλj −

1√
2
vuvjRT

ν
ij −

1

2
v2
uY

ν
ijY

ν
kjvkL +

1

2
vdvjRY

ν
ijvkRλk

− 1

2
vuY

ν
ijκjklvkRvlR −

1

2
vjRY

ν
ijvkLY

ν
klvlR . (3.31)

The tadpoles are the first derivative of the scalar potential, meaning that in the true
vacuum of the model they have to vanish. A crucial property of the µνSSM is that
this implies a hierarchy between the vevs of the left-handed sneutrinos viL and the vevs
of the right-handed sneutrinos viR and the doublet Higgses vd and vu. To see this we
recall that the neutrino Yukawa couplings must have small values of the order of the

1Spontaneous CP-violation is possible in the µνSSM [28], but not considered during this thesis.
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electron Yukawa coupling. In very good approximation we can take the limit Y ν
ij → 0 in

Eq. (3.31),

Tν̃RiL
∼ −

(
m2
L̃

)
ij
vjL −

(
m2
HdL̃

)
i
vd −

1

8

(
g2

1 + g2
2

)
viL
(
v2
d + vjLvjL − v2

u

)
, (3.32)

making use of the fact that the soft parameter T νij are taken to be proportional to Y ν
ij .

As was explained in Sect. 3.1, the tree-level values of the parameters m2
HdL̃i

are taken

to be zero, i.e., they are absent at tree level.2 The remaining terms in Eq. (3.32) are
proportional to viL. For the tadpole coefficient Tν̃RiL to vanish, viL has to go to zero as
well. This correlation is broken by the small terms containing Y ν

ij that we neglected.
Hence, the vevs viL will acquire a finite value which is, however, orders of magnitude
smaller than the values of the other vevs [29],

viL ∼ 10−4 GeV� vd, vu, viR ∼ 102–103 GeV . (3.33)

This hierarchy is reflecting the fact that all lepton-number violating phenomena related
to SM fermions are suppressed by the smallness of Y ν

ij . It not only guarantees the viability
of the model in terms of constraints regarding lepton-number violating observables, but
is also crucial for the electroweak seesaw mechanism to work out, as will be shown in
detail in Sect. 3.3.3.

The bilinear terms of the scalar potential in Eq. (3.27) define the mass matrices in
the interaction basis for the CP-even scalar ϕi,

m2
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

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, (3.34)

and the CP-odd scalars σi,
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. (3.35)

These are 8× 8-dimensional matrices in family space. A genuine feature of the µνSSM,
in contrast to more familiar models like the MSSM and the NMSSM, becomes visible.
Since R-parity and lepton-number conservation are broken, the mixing between particles
is much more complicated. In this case, the CP-even and -odd sneutrinos will mix with
the doublet Higgs bosons and the pseudoscalar. The CP-even scalar mass matrix elements
are given by

m2
HRd H

R
d

= m2
Hd

+
1

8

(
g2

1 + g2
2

) (
3v2
d + viLviL − v2

u

)
+

1

2

(
v2
uλiλi + (viRλi)

2
)
, (3.36)

m2
HRu HRu

= m2
Hu +

1

8

(
g2

1 + g2
2

) (
3v2
u − v2

d − viLviL
)

+
1

2
λiλiv

2
d − vdY ν

jiλivjL

2We will argue in Ch. 5 that radiative corrections will only induce negligible contributions to this
operator, so that the absence of m2

HdL̃i
is stable and practically scale-invariant.



34 CHAPTER 3. THE µνSSM

+
1

2
(viRλi)

2 +
1

2
Y ν
jiY

ν
kivjLvkL +

1

2
Y ν
ijY

ν
ikvjRvkR , (3.37)

m2
HRu H
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1 + g2
2

)
vdvu + vdvuλiλi −

1√
2
T λi viR − vuY ν
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(3.38)
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i ,

(3.39)
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The transformation to the mass eigenstate basis of the CP-even scalars is given by a
unitary transformation defined by the matrix UHij that diagonalizes the mass matrix
(m2

ϕ)ij ,

UHik (m2
ϕ)kl U

H
jl = (m2

h)ij , (3.46)

with
ϕi = UHji hj , (3.47)

where the hi are the CP-even scalar fields in the mass eigenstate basis. Without CP-
violation in the scalar sector the matrix UH is real. The lengthy expression for the mass
matrix elements are not very intuitive. However, one can easily verify that the mixing
between left-handed sneutrinos and the doublet fields and the right-handed sneutrinos
is suppressed by the smallness of viL and Y ν

ij (see Eqs. (3.42)-(3.44)). Therefore, it is
possible to find approximate formulas for the masses of the three left-handed sneutrinos
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ν̃RiL. The dominant terms of the submatrix m2
ν̃RiLν̃

R
jL

are proportional to the inverse of
the vevs viL. One finds for the diagonal entries after replacing the soft mass parameters
(m2

L̃
)ii via the tadpole Eqs. (3.31)

m2
ν̃RiLν̃

R
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∼ Y ν

ii

2viL

(
vdv

2
uλi +

√
2vdviRµ− vuviR

(√
2Aνii + κiiiviR

))
, (3.48)

where we defined the effective µ-term as

µ =
1√
2

(v1Rλ1 + v2Rλ2 + v3Rλ3) . (3.49)

This is the obvious generalization of the effective µ-term of the NMSSM when three
instead of one gauge-singlet are present. For the right-handed sneutrinos ν̃iR approximate
tree-level formulas for their masses can be obtained under the assumption that there is no
substantial missing with the doublet Higgs fields Hd and Hu. We find for the submatrix
m2
ν̃RiRν̃

R
jR
, under the assumptions that non-diagonal elements of κijk and (m2

ν̃)ij vanish,

and after eliminating the diagonal elements (m2
ν̃)ii via the tadpole Eqs. (3.30),

m2
ν̃RiRν̃

R
jR
∼ 1

2
v2λiλj + δij

[
1√
2
viRκiiiA

κ
iii + 2κ2

iiiv
2
iR −

λi√
2viR

(
µv2 − vdvuAλi

)]
. (3.50)

In this approximation the submatrix has the form

m2
ν̃RiRν̃

R
jR

=



a b b
b a b
b b a


 . (3.51)

The eigenvalues of this matrix are a − b, a − b and a + 2b. In this limit only the mass
eigenstate corresponding to the latter eigenvalue potentially mixes with the SM-like Higgs
boson [30]. If it does, the corresponding tree-level mass squared will be substantially
different from the eigenvalue obtained under the approximation used here. Since the other
two mass eigenstates do not mix with the doublet Higgs fields, they will be decoupled
from the remaining scalars. Being gauge-singlets, they interact very weakly with SM
particles. In extensions of the NMSSM with several gauge singlets, this decoupling can
lead to stable particles. In the µνSSM this is not possible, because the decoupling cannot
be exact, even when κijk and (m2

ν̃)ij are diagonal. Terms suppressed by factors of Y ν
ij

and viL will always induce a remnant coupling to the SM particle spectrum. Usually the
right-handed vevs viR are somewhat larger than the doublet vevs vd and vu, whose scale
is fixed by the SM vev

v2 = v2
u + v2

d + v2
1L + v2

2L + v2
3L ∼ v2

u + v2
d . (3.52)

Hence, Eq. (3.50) further simplifies to

m2
ν̃RiRν̃

R
iR
∼ 1√

2
viRκiiiA

κ
iii + 2κ2

iiiv
2
iR , (3.53)

As in the NMSSM [31], the upper bound on the lowest Higgs mass squared at tree-level
m

(0)
h1

is relaxed through additional contributions from the right-handed sneutrinos [29];

(
m

(0)
h1

)2
≤M2

Z

(
cos2 2β +

2λλλ2

g2
1 + g2

2

sin2 2β

)
, with λλλ2 := λ2

1 + λ2
2 + λ2

3 , (3.54)
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where β is defined in accordance to the definition in the MSSM by the ratio of doublet
vevs, such that

tanβ =
vu
vd

. (3.55)

This means that, depending on the value of the λi, it is easier to obtain a SM-like Higgs
boson mass compared to the MSSM, because less quantum corrections are required.

For the CP-odd scalar sector, the mass matrix elements are given by

m2
HIdH

I
d

= m2
Hd

+
1

8

(
g2

1 + g2
2

) (
v2
d + viLviL − v2

u

)
+

1

2

(
v2
uλiλi + (viRλi)

2
)
, (3.56)

m2
HIuHIu

= m2
Hu +

1

8

(
g2

1 + g2
2

) (
v2
u − v2

d − viLviL
)

+
1

2
v2
dλiλi − vdY ν

jiλivjL

+
1

2
(viRλi)

2 +
1

2
Y ν
jiY

ν
kivjLvkL +

1

2
Y ν
ijY

ν
ikvjRvkR , (3.57)

m2
HIuH

I
d

=
1

2
κijkλivjRvkR +

1√
2
viRT

λ
i , (3.58)

m2
ν̃IiRH

I
d

= vuκijkλjvkR +
1

2
vjRλjvkLY

ν
ki −

1

2
vjLY

ν
jkvkRλi −

1√
2
vuT

λ
i , (3.59)

m2
ν̃IiRH

I
u

=
1√
2
vjLT

ν
ji + vdκijkλjvkR − Y ν

ljκijkvkRvlL −
1√
2
vdT

λ
i , (3.60)

m2
ν̃IiRν̃

I
jR

=
(
m2
ν̃

)
ij

+
1

2
v2
uY

ν
kiY

ν
kj + vdvuκijkλk −

√
2vkRT

κ
ijk − vuY ν

lkκijkvlL

+
1

2
vkLY

ν
kivlLY

ν
lj + κikmκjklvlRvmR − κijkκklmvlRvmR −

1

2
vdvkLY

ν
kjλi

− 1

2
vdvkLY

ν
kiλj +

1

2

(
v2
d + v2

u

)
λiλj , (3.61)

m2
ν̃IiLH

I
d

=
(
m2
HdL̃

)
i
− 1

2
v2
uY

ν
ijλj −

1

2
vjRλjvkRY

ν
ik , (3.62)

m2
ν̃IiLH

I
u

= − 1√
2
vjRT

ν
ij −

1

2
Y ν
ijκjklvkRvlR , (3.63)

m2
ν̃IiRν̃

I
jL

= −vuY ν
jkκiklvlR −

1

2
vkLY

ν
kivlRY

ν
jl −

1

2
vdvkRλkY

ν
ji +

1

2
vkLY

ν
klvlRY

ν
ji

+
1

2
vdvkRY

ν
jkλi +

1√
2
vuT

ν
ji , (3.64)

m2
ν̃IiLν̃

I
jL

=
(
m2
L̃

)
ij

+
1

8
δij
(
g2

1 + g2
2

) (
v2
d + vkLvkL − v2

u

)
+

1

2
v2
uY

ν
ikY

ν
jk +

1

2
vkRY

ν
ikvlRY

ν
jl .

(3.65)

We define the rotation matrix UAij , that diagonalizes the mass matrix (m2
σ)ij ,

UAik(m
2
σ)klU

A
jl = (m2

A)ij , with σi = UAjiAj . (3.66)

One of the mass eigenstates constitutes the unphyiscal neutral Goldstone boson A1 = G0.
Under the same approximations as for the CP-even scalars, we can find approximate an-
alytical results for the pseudoscalar mass spectrum. Each CP-odd left-handed sneutrino
is nearly degenerate with the corresponding CP-even one, though they are slightly lighter
due to different D-term contributions proportional to the gauge couplings,

m2
ν̃IiLν̃

I
iL
−m2

ν̃RiLν̃
R
iL

= −1

4

(
g2

1 + g2
2

)
v2
iL . (3.67)
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For the right-handed CP-odd sneutrinos we find

m2
ν̃RiRν̃

R
iR
∼ − 3√

2
AκiiiκiiiviR . (3.68)

Thus, to avoid tachyons in the CP-odd scalar spectrum, we adopt the sign convention

Aκiii < 0 . (3.69)

Consequently, comparing to Eq. (3.53), one has to chose

κiii > 0 and viR > 0 , (3.70)

to prevent tachyons in the CP-even scalar spectrum. For both the scalar and pseudoscalar
left-handed sneutrinos, as can be seen from Eqs. (3.48) and (3.67), the parameters Aνii
enter with a minus sign, so that under the sign convention above it is appropriate to
chose

Aνii < 0 . (3.71)

We conclude the discussion of the neutral scalar potential at tree level by emphasizing
that the analytical expressions stated above will, in many cases, not be accurate enough.
The scalar spectrum is strongly dependent on quantum corrections. In Ch. 5 and Ch. 6
we demonstrate this fact in scenarios in which these corrections can be of the same order
or even larger than the tree-level masses. Surely, for the SM like Higgs-boson mass this is
a well known fact from studying the Higgs sector of the MSSM, see e.g. Refs. [32–34] for
reviews. However, during the work of this thesis we showed that in the framework of the
µνSSM also the higher-order contributions to the mass eigenstates corresponding to the
sneutrinos can be of the same order as the tree-level masses [8, 9]. Still, the approximate
formulas are a useful tool to get an idea of the rough structure of the scalar masses.

3.3.2 Charged scalars

Since R-parity and lepton-number are not conserved, the six charged left- and right-
handed sleptons ẽiL and ẽjR mix with the two charged scalars H−d and H+

u from the
Higgs doublets fields. Also, lepton-flavor universality is necessarily broken once the left-
handed sneutrinos obtain a vev. Thus, the sleptons of different flavor have a non-zero
admixture with each other. In the basis CT = (H−d

∗
, H+

u , ẽ
∗
iL, ẽ

∗
jR) we can express the

mass terms in the Lagrangian as

LC = −C∗Tm2
C+ C , (3.72)

where, assuming CP-conservation, m2
C+ is a symmetric matrix of dimension 8,

m2
C+ =




m2
H−d H

−
d

∗ m2
H−d H

+
u

m2
H−d ẽ

∗
jL

m2
H−d ẽ

∗
jR

m2
H+
u
∗
H−d
∗ m2

H+
u
∗
H+
u

m2
H+
u
∗
ẽ∗jL

m2
H+
u
∗
ẽ∗jR

m2
ẽiLH

−
d

∗ m2
ẽiLH

+
u

m2
ẽiLẽ

∗
jL

m2
ẽiLẽ

∗
jR

m2
ẽiRH

−
d

∗ m2
ẽiRH

+
u

m2
ẽiRẽ

∗
jL

m2
ẽiRẽ

∗
jR




. (3.73)

The entries are given by

m2
H−d H

−
d

∗ = m2
Hd

+
1

8
g2

1

(
v2
d + viLviL − v2

u

)
+

1

8
g2

2

(
v2
d − viLviL + v2

u

)
+

1

2
(viRλi)

2
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+
1

2
Y e
ijY

e
ikvjLvkL , (3.74)

m2
H+
u
∗
H+
u

= m2
Hu +

1

8
g2

1

(
v2
u − v2

d − viLviL
)

+
1

8
g2

2

(
v2
u + v2

d + viLviL
)

+
1

2
(viRλi)

2

+
1

2
Y ν
ijY

ν
ikvjRvkL , (3.75)

m2
H−d H

+
u

=
1

4
g2

2vdvu −
1

2
vdvuλiλi +

1√
2
viRT

λ
i +

1

2
vuY

ν
jiλivjL +

1

2
κijkλivjRvkR , (3.76)

m2
H−d ẽ

∗
iL

=
(
m2
HdL̃

)
i
+

1

4
g2

2vdviL −
1

2
vdY

e
jiY

e
jkvkL −

1

2
vjRY

ν
ijvkRλk , (3.77)

m2
H+
u
∗
ẽ∗iL

=
1

4
g2

2vuviL +
1

2
vdvuY

ν
ijλj −

1√
2
vjRT

ν
ij −

1

2
vuY

ν
ijY

ν
kjvkL −

1

2
Y ν
ijκjklvkRvlR ,

(3.78)

m2
H−d ẽ

∗
iR

= − 1√
2
vjLT

e
ij −

1

2
vuY

e
ijY

ν
jkvjR , (3.79)

m2
H+
u
∗
ẽ∗iR

= −1

2
vdY

e
ijY

ν
jkvkR −

1

2
vjRλjvkLY

e
ik , (3.80)

m2
ẽiLẽ

∗
jL

=
(
m2
L̃

)
ij

+
1

8
δij
(
g2

1 − g2
2

) (
v2
d − v2

u + vkLvkL
)

+
1

4
g2

2viLvjL +
1

2
v2
dY

e
kiY

e
kj

+
1

2
vkRY

ν
jkvlRY

ν
il , (3.81)

m2
ẽiRẽ

∗
jR

=
(
m2
ẽ

)
ij

+
1

4
δijg

2
1

(
v2
u − v2

d − vkLvkL
)

+
1

2
v2
dY

e
ikY

e
jk +

1

2
vkLY

e
ikvlLY

e
jl , (3.82)

m2
ẽiLẽ

∗
jR

=
1√
2
vdT

e
ij −

1

2
vuvkRλkY

e
ij . (3.83)

As can be seen in Eqs. (3.77) - (3.80), elements mixing the scalar Susy partners of the
SM fermions and the Higgs-doublet fields are suppressed by factors of Y ν

ij and viL. The
mass matrix is diagonalized by an orthogonal matrix U+

ij :

U+
ik(m2

C+)klU
+
jl = (m2

H+)ij , (3.84)

where the elements of the diagonal matrix (m2
H+)ij are the squared masses of the mass

eigenstates
H+
i = U+

ijCj , (3.85)

which include the unphysical charged Goldstone boson H+
1 = G±. For the left-handed

sleptons, the mass differences to the corresponding sneutrinos is approximately given by

m2
ẽiLẽ

∗
iL
−m2

ν̃RiLν̃
R
iL
∼ −M2

W cos 2β +m2
l , (3.86)

where ml is the lepton mass of the same family. Hence, the left-handed slepton mass
will always be slightly larger than the left-handed sneutrino masses of that family at
tree level. This circumstance is especially important in scenarios in which a left-handed
sneutrino is the LSP. Usually, then the next-to LSP is the corresponding slepton which
decays to the LSP, because decays directly to SM particles are suppressed by factors of
Y ν
ij . Then the slepton decay is an important production channel of the sneutrino LSPs

at colliders [11].
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3.3.3 Neutral fermions

The neutral fermion sector consists of a total of 10 massive Majorana fermions. The three
left-handed neutrinos and the right-handed neutrinos mix with the neutral Higgsinos and
gauginos. Following Ref. [11] we write the relevant part of the Lagrangian in terms of
two-component spinors (χ0)T =

(
(νiL)c

∗
, B̃0, W̃ 0, H̃0

d , H̃
0
u, ν
∗
jR

)
as

Lχ0 = −1

2
(χ0)Tmχ0χ0 + h.c. , (3.87)

where mχ0 is the 10 × 10 symmetric mass matrix. The neutral fermion mass matrix is
given by

mχ0 =




0 0 0 −g1v1L
2

g2v1L
2 0

viRY
ν
1i√

2

0 0 0 −g1v2L
2

g2v2L
2 0

viRY
ν
2i√

2

0 0 0 −g1v3L
2

g2v3L
2 0

viRY
ν
3i√

2

−g1v1L
2 −g1v2L

2 −g1v3L
2 M1 0 −g1vd

2
g1vu

2
g2v1L

2
g2v2L

2
g2v3L

2 0 M2
g2vd

2 −g2vu
2

0 0 0 −g1vd
2

g2vd
2 0 −µ

viRY
ν
1i√

2

viRY
ν
2i√

2

viRY
ν
3i√

2

g1vu
2 −g2vu

2 −µ 0
vuY ν11√

2

vuY ν21√
2

vuY ν31√
2

0 0 −vuλ1√
2

−vdλ1+viLY
ν
i1√

2
vuY ν12√

2

vuY ν22√
2

vuY ν32√
2

0 0 −vuλ2√
2

−vdλ2+viLY
ν
i2√

2
vuY ν13√

2

vuY ν23√
2

vuY ν33√
2

0 0 −vuλ3√
2

−vdλ3+viLY
ν
i3√

2

· · ·

· · ·

vuY ν11√
2

vuY ν12√
2

vuY ν13√
2

vuY ν21√
2

vuY ν22√
2

vuY ν23√
2

vuY ν31√
2

vuY ν32√
2

vuY ν33√
2

0 0 0
0 0 0

−vuλ1√
2

−vuλ2√
2

−vuλ3√
2

−vdλ1+viLY
ν
i1√

2

−vdλ2+viLY
ν
i2√

2

−vdλ3+viLY
ν
i3√

2√
2viRκ11i

√
2viRκ12i

√
2viRκ13i√

2viRκ12i

√
2viRκ22i

√
2viRκ23i√

2viRκ13i

√
2viRκ23i

√
2viRκ33i




(3.88)

Because of the Majorana nature of the neutral fermions, we can diagonalize mχ0 with
the help of just a single - but complex - unitary matrix UVij ,

UVik
∗
(mχ0)klU

V
jl

∗
= (mν)ij , (3.89)

with
χ0
i = UVji

∗
λ0
j , (3.90)

where λ0
i are the two-component spinors in the mass eigenstate basis. The eigenvalues

of the diagonalized mass matrix mν are the masses of the neutral fermions. The mass
matrix has a seesaw structure,

mχ0 =

(
03×3 m3×7

mT
7×3 M7×7

)
with (m3×7)ij � (M7×7)kl for all i, j, k, l . (3.91)
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The scale of the elements ofm3×7, mixing left- and right-handed neutrinos, is determined
by the smallness of Y ν

ij and viL. The scale of the elements of M7×7 are determined by
the soft gaugino masses M1 and M2 and the vevs vd, vu and viR. The large hierarchy
between the vevs, as shown in Eq. (3.33), assures that the three lightest eigenvalues will
be very small, so that the mass eigenstates λ0

1,2,3 can be identified with the SM left-
handed neutrinos. Admixtures from the MSSM-like neutralinos and the right-handed
neutrinos are negligible for the three lightest states due to the suppression by factors
of Y ν

ij and vil. Thus, the left-handed neutrino mixing can for all practical purposes be
expressed in the usual PMNS formalism [35, 36] by the three mixing angles θ12, θ13 and
θ23,



λ0
1

λ0
2

λ0
3


 =




c12c13 −s12c23 − c12s23s13 s12s23 − c12c23s13

s12c13 c12c23 − s12s23s13 −c12s23 − s12c23s13

s13 s23c13 c23c13






χ0
1

χ0
2

χ0
3


 (3.92)

= UVij




χ0
1

χ0
2

χ0
3


 , (3.93)

with i, j = {1, 2, 3}, and we used the short-hand notation cx = cos θx and sx = sin θx.
Interestingly, non-diagonal Y ν

ij are not necessary to generate a mixing of the three neu-
trino flavor state, because it is automatically present after the diagonalization of mχ0 .
It is induced by the mixing terms of the left-handed neutrino states with the gauginos,
Higgsinos and right-handed neutrinos. This can be seen most easily in the simplified
limit of universal parameters λ := λi, vR := viR, κ := κiii, Y ν

i := Y ν
ii and κijk = 0,

Y ν
ij = 0 otherwise, in which an analytical expression for the neutrino submatrix can be

written as [28]

(meff
ν )ij '

Y ν
i Y

ν
j v

2
u

6
√

2κvR
(1− 3δij)−

viLvjL
4M eff −

1

4M eff



vd

(
Y ν
i vjL + Y ν

j viL

)

3λ
+
Y ν
i Y

ν
j v

2
d

9λ2


 ,

(3.94)

with

M eff ≡ M1M2

g2
1M2 + g2

2M1
− v2

2
√

2
(
κv2

R + λvuvd
)

3λvR

(
2κv2

R

vuvd
v2

+
λv2

2

)
. (3.95)

This formula demonstrates that substantial neutrino flavor mixing is practically unavoid-
able in the µνSSM. For moderate values of tanβ and not to small values of λ, the first
two terms in Eq. (3.94) are the dominant ones. They contain diagonal and non-diagonal
contributions. The first term can be attributed to the mixing with the right-handed neu-
trinos and higgsinos, while the remaining terms also include the gaugino mixing. Note
that the first term is exactly of the form of the Majorana masses arising from the effec-
tive Weinberg operator as shown in Eq. (3.4). In the denominator appears the Majorana
mass term for the heavy right-handed neutrinos,

MM
νR
∼
√

2κvR , (3.96)

which corresponds to the energy scale Λν in Eq. (3.3), and which automatically is of the
desired order (see Eq. (3.6)). The size of the nominator is determined by the neutrino
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Yukawa couplings Y ν
ij squared, such that the terms will be of the sub-eV size required to

accommodate accurate neutrino masses. The second term stems from the mixing with
the gauginos. The scale of new-physics Λν consequently corresponds to the mass scale
of the gauginos, defined by the soft gaugino masses M1 and M2. The smallness of the
vevs viL provide contributions of the order of the measured neutrino mass differences.
At the end of the day, the order of magnitudes of viR, M1 and M2 are fixed by the scale
of EWSB and Susy breaking. This proves the claim, made in the introduction of this
chapter, that neutrino masses of the desired order of magnitude are evoked without the
need to introduce further artificial energy scales. Surely, in scenarios in which the above
simplifications of universal parameters are not satisfied, the precise values of the neutrino
mixing angles can only be determined numerically. Nevertheless, the general statement
above holds for all parameter configurations, granted that the neutrino Yukawa couplings
are of the correct size, as shown in Eq. (3.7).

3.3.4 Charged fermions

The charged SM leptons, i.e., the electron, muon and tauon, form the charged fermion
sector of the µνSSM together with the charged gauginos and the charged higgsinos.
However, the mixing between the leptons and the MSSM-like charginos is suppressed, so
that the leptons decouple. Following the notation of Ref. [11], we write the relevant part
of the Lagrangian in terms of two-component spinors (χ−)T =

(
(eiL)c

∗
, W̃−, H̃−d

)
and

(χ+)T =
(

(ejR)c, W̃+, H̃+
u

)
, such that

Lχ± = −(χ−)Tmχ±χ
+ + h.c. . (3.97)

The 5× 5 tree-level mass matrix mχ± is defined by

mχ± =




vdY
e
11√
2

vdY
e
12√
2

vdY
e
13√
2

g2v1L√
2
−viRY

ν
i1√

2
vdY

e
21√
2

vdY
e
22√
2

vdY
e
23√
2

g2v2L√
2
−viRY

ν
i2√

2
vdY

e
31√
2

vdY
e
32√
2

vdY
e
33√
2

g2v3L√
2
−viRY

ν
i3√

2

0 0 0 M2
g2vu√

2

−viLY
e
1i√

2
−viLY

e
2i√

2
−viLY

e
3i√

2

g2vd√
2

µ




. (3.98)

The mass matrix is diagonalized by two unitary matrices ULij and URij ,

URik
∗
(mχ±)klU

L
jl

∗
= (me)ij , (3.99)

where (me)ii give the masses of the charged fermions in the mass eigenstate basis

χ+
i = ULji

∗
λ+
j , (3.100)

χ−i = URji
∗
λ−j . (3.101)

The decoupling of the leptons from the charged gaugino is assured by the smallness
of viL in the non-diagonal elements of the fourth column of me. The decoupling from
the charged Higgsino follows from the smallness of viL in the non-diagonal elements of
the fifth row and the smallness of Y ν

ij in the non-diagonal elements of the fifth column.
Written in terms of the effective µ-term, the 2 × 2 submatrix of gaugino and Higgsino
resembles the chargino mixing matrix of the MSSM.
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3.3.5 Quarks and squarks

The work in the scope of this thesis deals with the calculation of radiative corrections
to the neutral scalar potential. The numerically most important one-loop corrections
to the scalar potential are expected to arise from the stop/top-sector, analogous to the
(N)MSSM [37–42] due to the huge Yukawa coupling of the (scalar) top. Thus, the quark
and the squark sector are particularly important.

The quark sector is unchanged w.r.t. the MSSM at tree level. Neglecting flavor mixing
of quarks, as we will do throughout this thesis, the up- and down-type quark masses mu

i

and md
i are given by

mu
i =

vuY
u
i√
2

and md
i =

vdY
d
i√
2

. (3.102)

The squark sector, on the other hand, is modified compared to the MSSM. F-term contri-
butions of the squark potential arise through the quartic coupling of up-type quarks and
one left-handed and the right-handed sneutrinos after EWSB. Neglecting flavor mixing
in the squark sector, one finds for the up-type squark mass matrix M ũ

i of generation i,

(
M ũ
i

)
11

=
(
m2
Q̃

)
i
+

1

24
(3g2

2 − g2
1)(v2

d + vjLvjL − v2
u) +

1

2
v2
uY

u
i

2 , (3.103)
(
M ũ
i

)
12

=
1

2

(√
2vuA

u
i + vjLY

ν
jkvkR − vdvjRλj

)
Y u
i , (3.104)

(
M ũ
i
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Note that neutrino Yukawa couplings Y ν
ij explicitly appear the in the non-diagonal ele-

ment. For numerical results, these contributions will have a negligible effect. However,
if one wishes to calculate loop-corrections to the neutral scalar potential stemming from
up-type squarks in the loops, these terms have to be properly taken into account for
successfully renormalizing the potential. The mass eigenstates ũi1 and ũi2 are obtained
by the unitary transformation

(
ũi1
ũi2

)
= U ũi

(
ũiL
ũiR

)
, U ũi U

ũ
i
†

= 1 . (3.106)

For the down-type squarks the tree-level mass matrix M d̃
i is given by

(
M d̃
i

)
11

=
(
m2
Q̃

)
i
− 1

24
(3g2

2 + g2
1)(v2

d + vjLvjL − v2
u) +

1

2
v2
dY

d
i

2
, (3.107)

(
M d̃
i

)
12

=
1

2

(√
2vdA

d
i − vuλjvjR

)
Y d
i , (3.108)

(
M d̃
i

)
22

=
(
m2
d̃

)
i
− 1

12
g2

1(v2
d + vjLvjL − v2

u) +
1

2
v2
dY

d
i

2
. (3.109)

The mass matrices M d̃
i do not depend on Y ν

ij explicitly. Neglecting terms proportional
to viL and replacing λiviR by the effective µ-term defined in Eq. (3.49), the mass matrix
M d̃
i is unchanged w.r.t. the MSSM. The mass eigenstates d̃i1 and d̃i2 are obtained by the

unitary transformation
(
d̃i1
d̃i2

)
= U d̃i

(
d̃iL
d̃iR

)
, U d̃i U

d̃
i

†
= 1 . (3.110)
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3.3.6 Gravitino

Even though the µνSSM is an R-parity violating Susy model, thus not featuring a stable
LSP, it can still offer a dark matter candidate with a gravitino LSP having a lifetime
longer than the age of the universe. Assuming that the gravitinos were produced during
the reheating phase after inflation via the elastic scattering of particles in the thermal
bath, the gravitino abundance can be estimated to be [43]

Ω3/2h
2 ∼ 0.2

(
TR

1010 GeV

)(
100 GeV

m3/2

)( mg̃

1 TeV

)
, (3.111)

where Ω3/2 is the energy density of gravitino matter, h is the scale factor for the Hubble
expansion rate, TR is the reheating temperature, mg̃ the gluino mass and m3/2 the
gravitino mass. No direct information about the gravitino mass can be extracted from
this relation, because there is a degeneracy due to the dependence on the reheating
temperature.

The long lifetime of the gravitino LSP results from the suppression of its decays by
the inverse of the Planck mass and by factors of Y ν

ij . Nevertheless, the decays of the
gravitinos lead to interesting experimental signatures. Depending on how much fraction
of dark matter one assumes to be present in the form of gravitinos, bounds on the allowed
mass window can be extracted. The most prominent decay channel of the gravitino is
the two-body decay into a photon and a neutrino.3 In the context of Sugra the lifetime
of the gravitino can be written as [26]

τ3/2 ∼ 3.8 · 1027 s

(
10−16

|Uγ̃ν |2
)(

10 GeV

m3/2

)3

, (3.112)

where the suppression by Y ν
ij is contained in the photino content of the neutrinos, given

by

|Uγ̃ν |2 =

3∑

i=1

|UVi4cw + UVi5sw|2 . (3.113)

Here cw and sw are the cosine and sin of the weak mixing angle, and UVi4 and UVi5 are the
bino and the wino components of the neutrino νiL, respectively. This parameter takes
on values of the order of [26]

|Uγ̃ν |2 ∼ 10−16–10−12 , (3.114)

so that the lifetime naturally is larger than the age of the universe of about 1017 s. This
decay produces gamma rays that can be looked for by the Fermi satellite [44]. The
resulting mass limits are briefly discussed in Sect. 3.4.

Regarding collider physics, the gravitino is only relevant for masses smaller than
∼ 10 keV [45]. Otherwise, for larger gravitino masses, R-parity violating decays of Susy
particles directly into SM particles are much larger than decays into final states containing
a gravitino. Thus, in the context of this thesis, the conclusions are independent of the
presence of the gravitino. If we refer to a particle other than the gravitino as the LSP,
it is implied that it actually might be the next-to LSP, because an even lighter, but for
the Higgs sector irrelevant, gravitino can be present.

3Also three-body decays can be relevant for certain ranges of m3/2 (see Sect. 3.4).
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3.4 Current status

In this section we give a brief overview of the work that has already been done in the
µνSSM. Some of the publications mentioned in this section were treating the simpler
case of the µνSSM with one family of right-handed neutrinos. Nevertheless, general
conclusions also valid for the full µνSSM can always be drawn.

The foundations of the model can be found in Ref. [1]. Therein the superpotential
of the µνSSM was motivated and the idea of the electroweak seesaw mechanism in a
Susy context was formulated. Also, the gravitino as a dark matter candidate is already
mentioned. The first discussions of the parameter space and general phenomenological
conclusions can be found in Refs. [2, 29].

Several studies concentrated on the generation of appropriate neutrino masses and
mixing angles. The neutrino Yukawa couplings act as Dirac mass parameters and, at the
same time, are the parameters controlling the amount of R-parity violation in decays of
LSPs other than the right-handed sneutrinos. Therefore, interesting correlations between
the neutrino sector and the decay R-parity violating decays of the LSP were found [46].
Also the relations between the neutrino sector and the scalar sector in the context of
spontaneous CP-violation was investigated [28]. It was shown that at tree level the
neutrino masses and mixing angles can be reproduced in agreement with experimental
results [27, 28, 46]. Radiative corrections to the neutrino masses were determined in
Refs. [47–49]. Corrections of the same order as the tree-level masses were found in the
case of inverted mass ordering in which the overall mass scale of the neutrinos is smaller.

The collider phenomenology, in particular at the LHC, is probably the most studied
topic in the context of the µνSSM. R-parity violating decays produce various distinct
signals, in particular compared to the SM and other Susy extensions of it [45, 47].
One immediate consequence of the smallness of Y ν

ij is the possibility of displaced R-
parity violating decays. Before the discovery of the SM-like Higgs boson, searches for
unusual Higgs-boson decays containing displaced vertices were proposed [50]. Also after
the discovery of the SM-like Higgs boson, the possibility of exotic Higgs-boson decays
with [51] or without [30] displaced vertices was emphasized. Collider signals genuine
to the µνSSM are also possible in processes unrelated to the SM-like Higgs boson. In
Ref. [52] searches for novel prompt and displaced gauge-boson decays were proposed. The
possibility of excluding parameter space containing gauge-singlet like scalars or fermions
with masses below MW with LHC data was discussed. Observable signatures of the
prompt or displaced decay of a left-handed τ -sneutrino LSP were studied in Refs. [11,
53, 54]. Furthermore, electroweak fermions as the LSP were shown to be able to produce
exotic multilepton signals together with missing energy from neutrinos [54, 55]. So far
no direct evidence for Susy particles that could be interpreted as a particle state of the
µνSSM has been found.

Regarding cosmology, it was shown in Ref. [56] that the electroweak phase transition
can be of first order, and that electroweak baryogenesis can be realized in the µνSSM.
Further studies in the context of cosmology and astrophysics were treating the detection
of gravitinos which were assumed to constitute the relic abundance of dark matter [57].
The gravitino decay into two-particle final states produces monochromatic γ-ray lines.
The frequency of the γ-rays could provide direct information about the gravitino mass.
So far, no experimental evidence for such γ-rays exists. Exclusion limits within the
context of the µνSSM were extracted using data from the Fermi satellite [26, 58, 59].
In addition, broad regions of gravitino masses could be excluded by combining these
results with exclusions from smooth spectral photon signatures stemming from three-
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body decays of the gravitino [27]. Combining all these results, gravitino masses of a few
GeV or larger are excluded assuming the gravitinos make up the total amount of dark
matter in the universe.

Although already being a complicated model with a large amount of free parameter,
even further extensions of the µνSSM were considered. In Ref. [60] the µνSSM was
augmented with an extra U(1) gauge symmetry, where the charges of the fields are
assigned to forbid baryon-number violating operators and therefore stabilize the proton.
Also the domain wall problem can be avoided in this scenario, although exotic matter
fields have to be introduced to obtain anomaly cancellation. In Ref. [61] a U(1) extension
of the µνSSM was considered in order to restore an effective R-parity. In Ref. [12] the two
Higgs fields were interpreted as a fourth family of leptons. In contrast to the three families
of SM leptons, it is vector-like, since both Higgs fields are SU(2) doublets. In analogy, a
fourth family of vector-like quarks was introduced to match the family structure in the
lepton sector.

3.5 Aim of this work

The aim of the work done in the scope of this thesis in the framework of the µνSSM was
to be able to make precise predictions for the Higgs-boson masses, with similar accuracy
as already existing calculation for simpler Susy models. This involves the calculation
of radiative corrections to the propagators of the scalars. To incorporate the complete
contributions at the one-loop level, which is necessary for Susy-scalesMSusy of the order
of ∼ 1 TeV [62], the calculation was carried out in the Feynman-diagrammatic approach.
This approach captures not only the leading logarithmic contributions, but also the
subleading terms at each loop-order in perturbation theory being of

O(
v2

M2
Susy

) . (3.115)

Since bounds on the particle masses are usually way below the ones from the MSSM
due to R-parity violation, the Susy particles of the µνSSM can still be relatively light.
Thus, it is crucial to take into account the subleading terms. In contrast to the effective
potential approach, the diagrammatic method also includes the momentum-dependent
contributions.

To obtain the radiative corrections to the scalar masses, we carried out the renor-
malization of the neutral scalar potential at the full one-loop level, at first in the µνSSM
with one family of right-handed neutrinos [8], and afterwards in the µνSSM with three
families of right-handed neutrinos [9]. The resulting mass corrections were numerically
evaluated and the importance of different contributions were compared. Since a pure
one-loop calculation contains a very large theory uncertainty regarding the prediction for
the SM-like Higgs-boson mass, we supplemented the full one-loop corrections by available
higher-order corrections from the MSSM. We explicitly checked that genuine one-loop
corrections to the SM-like Higgs-boson mass from the µνSSM are subleading compared
to the MSSM-like corrections. Hence, the higher-order contributions from the MSSM can
be expected to cover the dominant fraction of missing higher-order contributions. The
same was demonstrated for the genuine NMSSM-like contribution in Ref. [63]. We found
numerical results for the SM-like Higgs-boson mass in agreement with the experiment
value. The genuine µνSSM-like corrections compared to the ones from (N)MSSM-like
couplings were found to be negligible concerning the SM-like Higgs-boson mass. This
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indicates that the theory uncertainty of our Higgs-boson mass calculation is of the same
level of accuracy as the one of the NMSSM [64].

To be able to match the one-loop corrections from the µνSSM with the higher-
order corrections from the MSSM, it was essential to define a renormalization scheme
as close as possible to the one used in the MSSM calculation. We therefore adopted a
mixed on-shell-DR renormalization scheme in which some of the input parameters are
directly identified with physical observables. Since on-shell conditions were used, the
renormalization procedure adopted goes beyond automated calculations of fixed-order
corrections available for a broad spectrum of Susy models [65–67] using a pure DR
scheme. Thus, they have the disadvantage that parameters cannot be directly related to
observables.4

Consequently, the work of this thesis extends other, in principle automated, calcula-
tions of higher-order corrections in the µνSSM in a twofold way. Firstly, we included the
full one-loop corrections, and not only leading terms that can be captured by effective
field theory methods. Secondly, we adopted on-shell conditions, thus facilitating the in-
terpretation of parameters. We will describe in detail the renormalization of the scalar
potential for both versions of the µνSSM in Ch. 5 and Ch. 6. There also the numerical
analysis can be found. Before that, we give a brief summary of technical details relevant
for the renormalization of gauge theories in Ch. 4. We restrain ourselves to the relevant
details needed to follow the discussion of the renormalization procedure adopted.
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Chapter 4

Ultraviolet divergences and
renormalization

In Ch. 3 we introduced the neutral scalar potential of the µνSSM. However, the discussion
was restricted to the tree level, meaning the lowest order of perturbation theory. In the
context of Susy the radiative corrections to the scalar potential are sizable (see the
discussion in Sect. 4.4). In perturbation theory, these corrections are given by higher-
order Feynman diagrams containing closed loops. The Higgs-boson masses, for instance,
at leading order given by the squares of the eigenvalues of the tree-level mass matrix (see
Eq. (3.34)), will receive quantum corrections by self-energy diagrams as the ones shown
in Fig. 2.1. Regarding the amplitude of these kind of diagrams, each loop is associated
with an integral ∫

d4q , (4.1)

where q is the four-momentum of the particles running in the loop. In the limit of
large momentum, these kind of integrals can diverge, so that so-called ultraviolet (UV)
divergence arise. The S-matrix of a given quantum field theory (QFTs) would be ill
defined without removing the UV divergences. With each order higher in perturbation
theory, extra loops are present in the diagrams, leading to further UV divergences.

Fortunately, certain types of local QFTs can be cured from the appearance of UV
divergences by a suitable subtraction procedure [1]. Such QFTs are referred to as (pertur-
batively) renormalizable. The basic idea consists of canceling the UV divergences stem-
ming from closed loops within Feynman diagrams by introducing the same “amount” of
divergence into the bare parameters of the Lagrangian, i.e., renormalizing them by multi-
plying an infinite renormalization constant Z. The bare parameters are then split into a
renormalized parameter and a parameter counterterm by expanding the renormalization
constant around one. We can write for the bare parameters of the Lagrangian, such
as masses m0, couplings g0 and the fields φ0 (neglecting spinor and Lorentz indices for
fermions and vector bosons for the moment),

m0 → Zmm = m+ δm , (4.2)
g0 → Zgg = g + δg , (4.3)

φ0i → Z
1/2
φiφj

φj = (δij +
1

2
δZφiφj )φj . (4.4)

Then the Lagrangian can be expressed in terms of the renormalized parameters m, g and

51
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φ, and the counterterm Lagrangian δL,

L(m0, g0, φ0)→ L(m, g, φ) + δL(m, g, φ, δm, δg, δZφ) . (4.5)

If the QFT is renormalizable the counterterm Lagrangian provides so-called counterdia-
grams which cancel all UV divergences order by order in perturbation theory. This is
the same as stating that all UV divergences can be absorbed into a finite number of
parameters, namely the bare parameters appearing in L. In Ref. [1] it was proven that
the renormalizabilty of a local QFT is given by the absence of parameters with negative
mass dimensions. This is true in spontaneously broken gauge theories like the SM. It
follows that a Susy model is renormalizable when the superpotential does not contain
couplings with negative mass dimensions. Also models with softly broken Susy, contain-
ing operators as shown in Eq. (2.51), were proven to be renormalizable [2]. Even though
further operators not contained in Lsoft are generated at loop-level, they are irrelevant
for vertex-corrections, and can safely be neglected.

In principle, the subtraction of divergent contribution leads to an arbitrariness, as
the results can yield an arbitrary finite number. To eliminate this degeneracy, the renor-
malization procedure has to be done following a proper definition of what one divergence
is, and how it is extracted from loop integrals. This process is called regularization.
There are several ways of doing this, but in the context of Susy regularization by di-
mensional reduction is the most appropriate one. It conserves Susy up to at least the
three-loop level [3, 4]. We will explain dimensional reduction and how it relates to other
regularization procedures in Sect. 4.1.

After having properly regularized the UV divergences, the Green’s functions of the
underlying QFT can be split into divergent and finite pieces. The divergent piece is
canceled by the divergent pieces of the counterterm contributions by definition. The
finite pieces of the counterterms, however, must be chosen, since adding or subtracting
finite terms to the counterterms does not spoil the finiteness of the Green’s function. One
has to choose a so-called renormalization condition for each parameter counterterm, thus
defining the meaning of the parameter. The compound of renormalization conditions
is referred to as the renormalization scheme. In our case, the renormalization scheme
applied to the Higgs potential of the µνSSM is a mixed one. Parameters that can
directly be related to physical observables are renormalized by deploying on-shell (OS)
conditions. They are defined in such a way that tree-level relations are not altered
by radiative corrections. For parameters that cannot directly be related to a physical
observable DR conditions are utilized. We will define the exact form of OS and DR
conditions in Sect. 4.3.

Finally, when the divergent pieces of the Green’s functions are canceled accurately,
the finite Green’s functions can be used to construct UV finite S-matrix elements.1 We
stress that renormalization at the level of Green’s functions is not always necessary to
obtain finite predictions for physical observables [5]. Even with UV divergent Green’s
functions finite S-matrix elements can be found following the LSZ reduction formula [6].
However, when the prime interests are the radiative corrections to the mass spectrum of
a model, as in the case of this thesis, it is much more practical to work with properly
renormalized Green’s function. For instance, the mass corrections to the neutral scalars
are given by the renormalized two-point Green’s functions, i.e., the renormalized self-
energies. We will state the general formula for renormalized one-, two- and three-point

1The problem of infrared divergences possibly present in S-matrix elements are not tackled by renor-
malization and do not play a role in the scope of this thesis.
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Green’s functions relevant for the discussions in Chs. 5 and 6 in Sect. 4.2. We will also
show the relevant Feynman diagrams contributing to the radiative corrections of these
quantities.

4.1 Regularization

A very naive regularization of UV divergences is achieved by introducing a momentum
cutoff Λ on the momentum integrals, such that the divergences turn out to be of the
form

lim
Λ→∞

Λ2 =∞ , and lim
Λ→∞

log Λ =∞ . (4.6)

However, this approach has the disadvantage that it not only breaks Lorentz invariance,
but also the gauge symmetries, thus violating the Ward identities [7]. A regularization
prescription that maintains both Lorentz and gauge invariance is dimensional regular-
ization (DREG) [1, 8, 9]. In DREG amplitudes are calculated in general D-dimensional
spacetime, with

D = 4− 2ε . (4.7)

The loop integrals are then converted to
∫
d4q → 1

(2πµ)D−4

∫
dDq , (4.8)

such that for ε > 0 the integrals are rendered finite in the UV. The divergences for D = 4
will appear as poles in ε. Also the γµ-matrices and the metric tensor gµν are treated
as D-dimensional objects, and the vector fields are treated as fields in D dimensions.
The parameter µ is by definition of mass dimension one. Then, the mass dimensions
of the integrals, and thus of the coupling parameters of the underlying field theory, are
preserved in D dimensions.

DREG is the most popular regularization prescription for SM calculations. However,
it is not suitable for Susy models, because it explicitly breaks Susy by creating a mis-
match between fermionic and bosonic degrees of freedom. In Susy, it is more convenient
to work with regularization by dimensional reduction (DRED). In DRED the integrals
are again evaluated in D dimensions. However, in contrast to DREG, the trace algebra of
Lorentz and Dirac indices is done in four dimensions. Since the integrals are evaluated in
D dimensions, the poles in ε will at the one-loop level be the same in DREG and DRED.
The finite pieces, on the other hand, are potentially different already at the one-loop
level, when diagrams contain non-scalar fields. In our case, the difference practically
boils down to additional terms proportional to ε in DREG, stemming from traces like

gµνg
µν =

{
D = 4− 2ε , in DREG
4 , in DRED

. (4.9)

When this trace appears in coefficients of UV divergent terms, there will be an additional
finite piece in DREG compared to DRED, since

gµνg
µν · 1

ε
=

{
4
ε − 2 , in DREG
4
ε , in DRED

. (4.10)

In our calculation the finite differences are of minor numerical impact, since they arise
from diagrams with gauge bosons in the loops, and are of O(αem). This yields only
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φi φi φi φi

f φ V u

Figure 4.1: Generic one-loop diagrams contributing to to the tadpole coefficient Ti in the
presence of fermions f , scalars φ, vector bosons V and ghosts u.

minor corrections to the scalar masses. Beyond the one-loop level, the differences de-
scribed above can lead to contributions that are divergent in DREG, but finite in DRED
calculations.

4.2 Renormalized Green’s functions

For any process with n external particles, the higher-order corrections to the n-point
Green’s function Γn are obtained in perturbation theory by calculating the amplitudes
of the one-particle irreducible Feynman-diagrams at a certain loop-order. To obtain the
relevant parameter counterterms and field renormalization constants at the one-loop level,
it is necessary to compute one-loop vertex-corrected Green’s functions Γ̂

(1)
n (we denote

renormalized quantities with a hat in the following). The unrenormalized quantities Γ
(1)
n

are defined by the Feynman diagrams constructed from the Feynman rules based on
the initial Lagrangian expressed in terms of the renormalized parameters L(m, g, φ) (see
Eq. (4.5)). The renormalized Green’s functions Γ̂

(1)
n are then obtained by subtracting the

contributions from the counterdiagrams δΓ̂(1)
n , derived from the counterterm Lagrangian

δL. As already explained, the divergent parts of the parameter counterterms and the field
renormalization counterterms can be determined by demanding that Γ̂

(1)
n is UV finite.

The general formula for Γ̂
(1)
n depends on the number of external legs n and on the type

of external fields. The counterterm δΓ̂
(1)
n is a function of the parameter counterterms δm

and δg (see Eqs. (4.2) and (4.3)), whose form is defined by the tree-level expression Γ
(0)
n .

All counterterms required to renormalize the scalar potential of the µνSSM can be
extracted by calculating renormalized one-, two- and three-point functions. This is re-
lated to the fact that in Susy the quartic interactions are functions of the fundamental
parameters of the theory, thus not containing further free parameters with independent
counterterms. We will shortly summarize the general formulas for the renormalized
Green’s functions relevant for the discussion in Sect. 5.1 and Sect. 6.1. We also show
the topologies of one-particle irreducibel Feynman diagrams contributing to the one-loop
corrections. In some cases, we were only interested in the divergent parts of the one-loop
amplitudes. Then, it can be more convenient to calculate the diagrams in the interaction
basis instead of the mass eigenstate basis. We will show also the contributing topologies
in the interaction basis for these cases.

Scalar 1-point functions: Tadpoles

A necessary conditions that the values used for the free parameters correspond to a
minimum of the scalar potential is that the first derivatives of the Lagrangian w.r.t.
fields vanish. At lowest order, this means that the tree-level tadpole coefficients defined
by

T
(0)
i =

∂L
∂φi

∣∣∣∣
φj→0 , j=1,2,...

, (4.11)
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Figure 4.2: As in Fig. 4.1 for the scalar self-energies Σφiφj .

have to vanish. In principle, there will be a tree-level tadpole equation

T
(0)
i = 0 , (4.12)

for each scalar field φi of the model. However, fields charged under an unbroken symmetry
cannot have a linear term in L, such that the total number of tadpole equations is given
by the number of scalar fields that acquire a vev, or twice this number when CP-violation
is considered.

At the one-loop level, radiative corrections T (1)
i to the tadpole coefficients Ti are

produced via tadpole diagrams as shown in Fig. 4.1. Since φi cannot be charged under
an unbroken gauge group, only diagrams with gauge bosons and Faddeev-Popov ghosts
belonging to spontaneously broken gauge groups in the loop can contribute to T (1)

i . The
renormalized tadpole coefficients T̂ (1)

i are then given by

T̂
(1)
i = T

(0)
i + T

(1)
i + δT

(1)
i = T

(1)
i + δT

(1)
i . (4.13)

Scalar 2-point functions: Self-energies

The inverse propagator matrix of mixing scalar fields φi is given at tree level by

Γ
(0)
φiφj

(p2) = iδij
(
p2 −m2

φiφj

)
− i (1− δij)m2

φiφj
, (4.14)

where p2 is the momentum squared and m2
φiφj

is the tree-level mass matrix of the scalars
φi, defined by

m2
φiφj

= − ∂2L
∂φi∂φ∗j

∣∣∣∣∣
φk→0 , k=1,2,...

. (4.15)

In the mass eigenstate basis, i.e., the basis in which m2
φiφj

is diagonal, the second term
in Eq. (4.14) vanishes and the diagonal elements are the scalar masses squared.

Radiative corrections are usually incorporated in terms of the renormalized self-
energies Σ̂φiφj , such that

Γ̂
(1)
φiφj

(p2) = Γ
(0)
φiφj

(p2) + iΣ̂(1)
φiφj

(p2) ,

Σ̂
(1)
φiφj

(p2) = Σ
(1)
φiφj

(p2) +
1

2
p2
(
δZφjφi + δZφiφj

)

− 1

2

(
m2
φkφj

δZφkφi +m2
φiφk

δZφkφj

)
− δm2

φiφj
, (4.16)

where in the second line the summation over the repeated index k is implied. We assumed
that there is no CP-violation, so that the mass matrix is real. The precise form of the
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Figure 4.3: As in Fig. 4.1 for the divergent part of the scalar 3-point function Γφiφjφk in
the interaction basis. The diagrams with a mass insertion (first row) are relevant in the
interaction basis.

field renormalization counterterms δZφiφj and the mass counterterms δm2
φiφj

depends
on the renormalization scheme applied. At the one-loop level, the radiative corrections
Σ

(1)
φiφj

arise from self-energy diagrams shown in Fig. 4.2.

Scalar 3-point functions

The counterterms for some of the parameters of the Higgs potential of the µνSSM were
extracted from radiative corrections to the scalar 3-point Green’s functions Γφiφjφk . At
tree-level the vertices are simply given by

Γ
(0)
φiφjφk

=
∂3L

∂φi∂φj∂φk

∣∣∣∣
φl→0 , l=1,2,...

. (4.17)

The general formula for the renormalized Green’s function at the one-loop level is reads

Γ̂
(1)
φiφjφk

= Γ
(0)
φiφjφk

+ Γ
(1)
φiφjφk

− 1

2

(
Γ

(0)
φlφjφk

δZφlφi + Γ
(0)
φiφlφk

δZφlφj

+Γ
(0)
φiφjφl

δZφlφk

)
− δΓ(1)

φiφjφk
. (4.18)

The contribution in the bracket are the counterterms from the scalar field renormal-
ization. It was assumed that Γ

(0)
φiφjφk

does not depend on the momentum. The vertex
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Figure 4.4: As in Fig. 4.1 for the divergent part of the fermionic self-energy Σψiψj . The
diagrams with a mass insertion are relevant in the interaction basis.

counterterm δΓ
(1)
φiφjφk

is a function of the counterterms of the fundamental parameters.
In our calculation, all parameters extracted from the radiative corrections to scalar

3-point functions were defined as DR parameters (see Sect. 4.3). Then, it is sufficient
to compute only the divergent part Γ

(1)
φiφjφk

|div. This can be done in the interaction
basis, where diagrams with two-point vertices stemming from the non-diagonal elements
of the mass matrices have to be included. While for the finite pieces one would have to
calculate an infinite number of such diagrams with mass insertions, only a small amount
contain UV divergences. Each mass insertion splits an internal line, so that an additional
propagator is present in the amplitude. Each propagator contains inverse powers of the
loop-momentum and the degree of divergence becomes smaller. It turns out that for
scalar 3-point functions only diagrams with a mass insertion on an internal fermion line
can potentially be UV divergent. In Fig. 4.3 we show the general form of all possibly
UV divergent diagrams. The total number of diagrams that have to be calculated is
usually much smaller in the interaction basis. Also, the corresponding amplitudes are
much smaller, because the unrotated vertices can be used. Finally, the calculation of
amplitudes in the interaction basis can be done purely analytically, because the vertices
do not contain elements of mixing matrices of dimensions bigger than two, which have
to be calculated numerically. Thus, it is possible to find compact analytical expressions
for the parameter counterterms renormalized in the DR scheme.

Fermionic 2-point functions: Self-energies

As we saw in Ch. 3, the neutral scalar potential and the neutral fermion sector are highly
connected in the µνSSM. A lot of parameters appear both in the scalar and the fermion
mass matrices. We exploited this circumstance by extracting some of the DR parameters
in the neutral fermion sector, where the number of potentially divergent diagrams in the
interaction basis is drastically reduced. Apart from that, it is a good consistency check
to apply the parameter counterterms to scalar and fermion self-energies, and check that
the UV divergences cancel in both sectors.

At tree level the fermionic 2-point function reads

Γ
(0)
ψiψj

(p) = iδij
(
/p−mψiψj

)
− i(1− δij)mψiψj , (4.19)

where the mass matrix for the mixing fermions ψi is given at tree level by

mψiψj = − ∂2L
∂ψ̄i∂ψj

∣∣∣∣
ψk→0 , k=1,2,...

, (4.20)

and the second term is only present if one is not working in the mass eigenstate basis.
At the one-loop level, the renormalized 2-point function can be written as

Γ̂
(1)
ψiψj

(p) =Γ
(0)
ψiψj

(p) + iΣ̂(1)
ψiψj

(p) ,

Σ̂
(1)
ψiψj

(p) = /p
(
PLΣ

FL(1)
ψiψj

(p2) + PRΣ
FR(1)
ψiψj

(p2)
)

+ PLΣ
SL(1)
ψiψj

(p2) + PRΣ
SR(1)
ψiψj

(p2)
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Figure 4.5: As in Fig. 4.1 for the vector boson self-energies ΣV V .

+ /p
(
PLδZ

L
ψiψj

+ PRδZ
R
ψiψj

)
− 1

2
PL

(
mψkψjδZ

L
ψkψj

+mψiψkδZ
L
ψkψi

)

− 1

2
PR

(
mψkψjδZ

R
ψkψj

+mψiψkδZ
R
ψkψi

)
− δmψiψj . (4.21)

Here PL and PR are the left- and right-handed projectors, and Σ
F (1)
ψiψj

and Σ
S(1)
ψiψj

are
the fermionic and scalar components of the self-energies, respectively. δZL and δZR

are the field renormalization counterterms for the left- and right-handed components of
the fermions. The mass counterterm δmψiψj is a function of the counterterms of the
fundamental parameters. It renormalizes the scalar part of the self-energies. In the
case of Majorana fermions, the self-energies are equal for left-handed and right-handed
component, such that counterterms of fundamental parameters can be extracted from
the scalar part of the self-energies at zero momentum,

Σ̂
S(1)
ψiψj

(0) = Σ
S(1)
ψiψj

(0)− 1

2

(
mψkψjδZψkψj +mψiψkδZψkψi

)
− δmψiψj , (4.22)

with δZψiψj = δZLψiψj = δZRψiψj , (4.23)

once the divergent parts of Σ
S(1)
ψiψj

have been calculated. We show in Fig. 4.4 the po-
tentially divergent generic diagrams in the interaction basis contributing to the fermion
self-energies at the one-loop level.

Vector 2-point functions: Self-energies

In Chs. 5 and 6 we will make use of the masses MW and MZ of the SM gauge bosons as
input parameters, because they are precisely measured observables. To renormalize the
masses of vector fields, one needs to extract their counterterms from the 2-point Green’s
function which at the one-loop level can be written as

Γ̂
µν(1)
V V (p) = −igµνδij

(
p2 −M2

V

)
− iΣ̂µν(1)

V V (p) , V = Z,W ,

Σ̂
µν(1)
V V (p) =

(
gµν − pµpν

p2

)
Σ̂
T (1)
V V (p2) +

pµpν

p2
Σ̂
L(1)
V V (p2) . (4.24)

Σ̂T
V V and Σ̂L

V V are the transverse and longitudinal parts of the renormalized self-energies,
and we neglected effects from the mixing of the Z boson and the photon which has a
numerically negligible impact on the scalar potential. Shifts to the pole of the vector
bosons arise from the transverse part which appears with the coefficient gµν in the 2-
point function. It reads at the one-loop level

Σ̂
T (1)
V V (p2) = Σ

T (1)
V V (p2) + δZV

(
p2 −M2

V

)
− δM2

V . (4.25)



4.3. RENORMALIZATION SCHEME 59

φi

f

f ′
φ

ψj

ψk

φi

f
ψj

f ′
ψk

V

Figure 4.6: As in Fig. 4.1 for the divergent part of the fermion-scalar 3-point function
Γφiψjψk .

The diagrams contributing in the mass eigenstate basis to the self-energies Σ
µν(1)
V V are

shown in Fig. 4.5.

Fermion-scalar 3-point functions

The last renormalized Green’s function that will be used is the 3-point function of a
scalar coupled to a pair of Majorana fermions. In that case, the left- and right-handed
projectors drop out and the relevant expression reduces to the same form as the ones for
the trilinear scalar coupling shown in Eq. (4.18), except that the field renormalization
constants of the fermion fields have to replace the ones of the scalar fields on the external
legs. In the interaction basis, there is only one possibly divergent topology. We show the
corresponding generic diagrams in Fig. 4.6.

4.3 Renormalization scheme

In the previous section, we stated the previous form of renormalized Green’s functions
from which counterterms of the fundamental parameters in the Lagrangian can be ex-
tracted. The divergent part of these counterterms is automatically fixed by demanding
the finiteness of the renormalized Green’s functions. The finite part, on the other hand,
has to be fixed by renormalization conditions. Here we will explain the precise renor-
malization conditions used for the parameters appearing in the neutral scalar potential
of the µνSSM.

4.3.1 DR conditions

Several parameters of the scalar potential cannot be directly related to a physical observ-
able, such as a particle mass or a coupling strength. For practical purposes, we decided
to renormalize these parameters using DR conditions. In the DR scheme a counterterm
δX of a parameter X is defined by

δX = ∆ · const. , (4.26)

where ∆ is defined by the UV poles expressed using DRED,

∆ =
1

ε
− γE + ln 4π . (4.27)

Here, the finite terms including the Euler-Mascharoni constant γE = 0.5772 . . . are in-
cluded by definition, because they always accompany the poles in ε when a loop integral
is solved in D dimensions.

DR counterterms can thus be obtained by calculating just the divergent parts of
unrenormalized n-point functions and extracting the component that has to be canceled
by a certain parameter countertem. This is most easily done in the interaction basis.
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Other advantages of DR conditions are that they can be given in compact analytical
form, and that they are by definition process independent. At the one-loop level, a simple
relation between a DR counterterm and the β-function of the corresponding parameter
exists, because each pole in ε appears with a logarithm of the renormalization scale µ.
We explicitly checked that our counterterms defined in the DR scheme fulfill the relation

δX =
β

(1)
X ∆

32π2
. (4.28)

General formulas for β(1)
X , i.e., the one-loop β-functions of the parameters X of local

and renormalizable QFTs, exist in the literature [10–14]. In principle, these formulas
could have been used directly to obtain counterterms of free parameters in the DR
scheme. However, we decided to extract them independently from the renormalized
Green’s functions. By doing so, we perform an independent cross check of our results for
the counterterms. Even more important, verifying the relation shown in Eq. (4.28) is an
excellent test of the correct implementation of the mass matrices and tree-level couplings
of the µνSSM which are huge expressions due to the complex particle mixings.

Furthermore, we will adopt DR conditions for the field renormalization constants Zij .
The analog relation regarding the field renormalization counterterms is given by

δZij =
γ

(1)
ij ∆

16π2

∣∣∣∣∣

g1,g2→0

, (4.29)

where γ(1)
ij are the one-loop anomalous dimensions of the corresponding superfields. They

are known at the one-loop level, also for theories with kinetic mixing [15, 16].

4.3.2 On-shell conditions

For a few parameters we will adopt so-called on-shell (OS) conditions. To be concrete,
this will be the case for the tadpole coefficients and the SM gauge boson masses MW

and MZ which are used as input parameters instead of the SM gauge couplings g1 and
g2. OS conditions are defined in such a way, that the renormalized parameters have the
same values as the parameters of the classical Lagrangian. Then, tree-level relations just
involving parameters renormalized OS remain valid even at loop level.

For the renormalized tadpole coefficients T̂i it is crucial to be still vanishing at loop
level, since otherwise the values of the independent parameters in a certain benchmark
point would not correspond anymore to a minimum of the scalar potential. Thus, the
tadpole coefficients will be used as independent parameters. The OS renormalization
conditions read

T̂
(1)
i = 0 . (4.30)

From Eq. (4.13) it then follows that the tadpole counterterms are given by

δTi = −T (1)
i . (4.31)

For the gauge boson masses, the OS conditions are defined such that the radiative cor-
rections to the poles of the propagators are absorbed into the mass counterterms δM2

W

and δM2
Z . From Eq. (4.24) and Eq. (4.25) the counterterms are then given by

δM2
Z = Re

[
Σ
T (1)
ZZ

(
M2
Z

)]
and δM2

W = Re
[
Σ
T (1)
WW

(
M2
W

)]
. (4.32)
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4.4 The SM-like Higgs-boson mass in Susy

The discovery of the SM-like Higgs boson [17, 18] is of profound importance for extensions
of the SM. Any BSM model has to accommodate a particle behaving according to the
measured properties of the Higgs boson. In particular, its mass is already a precision
observable, with an experimental uncertainty at the per-mille level [19–21].

Susy relates the quartic scalar couplings to the gauge couplings and the superpo-
tential parameters of the underlying theory. Therefore, within Susy it is possible to
make predictions for the scalar masses in terms of these model parameters. The predic-
tion for the SM-like Higgs-boson mass in Susy models is highly sensitive to radiative
corrections [22, 23] which naturally implicates a theoretical uncertainty from missing
higher-order contributions. Currently, the theory uncertainty of the SM-like Higgs-boson
mass predictions are, depending on the parameter point considered, still an order of
magnitude above the experimental uncertainty [24–26]. This is why a lot of effort goes
towards a more precise Higgs-boson mass prediction [27].

If the Susy-breaking scale is close to the electroweak scale, and thus Susy particles
are present with masses of the same order as the SM-like Higgs-boson mass, the complete
radiative corrections at a certain order of perturbation theory can be computed by means
of the Feynman-diagrammatic approach. If the Susy-breaking scale is well above the
TeV scale, effective field theory approaches yield more precise predictions [25, 28] by
resumming the dominant logarithmic contributions to all orders of perturbation theory.
In this thesis, the scalar masses of the µνSSM with one and three right-handed neutrinos
were calculated at the full one-loop level (see Sect. 3.5), supplemented by dominant
higher-order corrections taken over from the MSSM [29, 30]. Since our calculation is
based on the previous work that was done in simpler Susy models like the MSSM and the
NMSSM, we give a brief summary of the status of calculation of the radiative corrections
to the Higgs-boson masses in the MSSM and beyond.

In the MSSM the tree-level mass can be predicted by just two Susy parameters, for
instance, the ratio of the vevs of the Higgs doublets,

tanβ =
vu
vd

, (4.33)

and either the mass of the CP-odd Higgs bosonMA or the mass of the charged Higgs boson
MH± . The tree-level mass is bounded from above by the Z-boson mass (see Sect. 2.5).
Large loop corrections are required to achieve a Higgs-boson mass of ∼ 125 GeV, where
at the one-loop level the corrections of O(αt) (here we use αf = (Y f )2/(4π), with Y f

denoting the fermion Yukawa coupling) are the largest contribution due to the huge
top-Yukawa coupling. Beyond the one-loop level, the dominant two-loop corrections of
O(αtαs) [31–36], O(α2

t ) [37, 38], O(αbαs) [39, 40] and O(αtαb) [39] are known. These
corrections, together with a resummation of leading and subleading logarithms from
the top/stop sector [41] (see also [28, 42] for more details on this type of approach),
a resummation of leading contributions from the bottom/sbottom sector [39, 40, 43–46]
(see also [47, 48]) and momentum-dependent two-loop contributions [49, 50] (see also [51])
are included in the public code FeynHiggs [33, 41, 52–59]. The most recent version of
FeynHiggs contains an improved effective field theory calculation relevant for large SUSY
scales [58]. The complete two-loop QCD contributions in the CP-violating MSSM were
calculated in Ref. [60], but not yet included in FeynHiggs. A (nearly) full two-loop
effective potential (EP) calculation, including even the leading three-loop corrections,
has also been published [61, 62]. However, it is not publicly available as a computer
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code. Furthermore, another leading three-loop calculation of O(αtα
2
s), depending on the

various SUSY mass hierarchies, has been performed [63, 64], resulting in the code H3m
and is now available as a stand-alone code [65]. It was proven that regularization by
dimensional reduction preserves supersymmetry at the required three-loop order [4]. A
new calculation of the three-loop contributions of the O(αtα

2
s) extends the validity of

these corrections to the whole parameter space of the CP-conserving MSSM [66]. Most
recently, the leading terms of the O(αtα

3
s) have been obtained by a resummation of terms

at fourth logarithmic order. They are available through an updated version of the public
code Himalaya [67]. The theoretical uncertainty on the lightest CP-even Higgs-boson
mass within the MSSM from unknown higher-order contributions is still at the level of
about 2 − 3 GeV for scalar top masses at the TeV-scale, where the actual uncertainty
depends on the considered parameter region [24, 25, 54, 68, 69].

In the NMSSM the full one-loop calculation including the momentum dependence has
been performed in the DR renormalization scheme in Ref. [70, 71], or in a mixed OS-DR
scheme in Ref. [72–74]. Dominant two-loop contributions of O(αtαs, α

2
t ) have been calcu-

lated in the leading logarithmic approximation [75, 76], and of O(αtαs, αbαs) in the DR
scheme in the EP approach [70]. The two-loop corrections involving only superpotential
couplings were given in Ref. [77]. A two-loop calculation of the O(αtαs) corrections with
the top/stop sector renormalized in the OS scheme or in the DR scheme was provided
in Ref. [78], while the two-loop corrections of O(α2

t ) in the CP-violating NMSSM were
calculated in a mixed OS-DR scheme [26]. These contributions are implemented in the
public code NMSSMCalc. A consistent combination of a full one-loop calculation with all
corrections beyond the one-loop level in the MSSM approximation was given in Ref. [74].
According to a comparison of the various two-loop contributions, at present the theoret-
ical uncertainties from unknown higher-order corrections in the NMSSM are expected to
be still larger than for the MSSM [26, 79, 80].

Beyond the MSSM and the NMSSM, only generic DR calculations of Higgs-boson
mass corrections exist publicly available. An automated calculation of the full one-
loop corrections, supplemented by partial two-loop corrections to neutral scalars [77] is
implemented in the Mathematica package SARAH [81, 82]. It can be used to produce a
spectrum generator based on the public code SPheno [83]. A hybrid Higgs-boson mass
calculation combining effective field theory and fixed-order calculations for a generic
class of Susy models is publicly available in the code FlexibleSUSY [84], also using the
expression for the renormalization group equations and fixed-order self-energies as they
are calculated by SARAH.
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Chapter 5

Higgs potential of the µνSSM with
one right-handed neutrino

In this chapter we present the renormalization of the neutral scalar potential of the
µνSSM with one right-handed neutrino superfield at the full one-loop level [1]. This
model is already capable of reproducing the measured values for the neutrino masses and
mixing angles. Due to the presence of the right-handed neutrino, one light left-handed
neutrino masses is accounted for at tree level. Two more neutrino masses are generated by
means of quantum corrections, which however lies beyond the scope of this thesis. From
the renormalized scalar potential we derive the radiative corrections to the neutral scalar
Higgs bosons, and supplement these corrections with higher-order contributions from the
MSSM. In the numerical analyses we show benchmark points (BPs) with additional light
scalars with masses close to the SM-like Higgs-boson mass. In such BPs the corrections
are of particular importance. Afterwards, we extended our renormalization procedure to
the µνSSM with three right-handed neutrino superfields [2]. The results for this more
complete version of the µνSSM are presented in Ch. 6.

When one instead of three right-handed superfields are considered to be present in
the µνSSM, the neutral scalar potential simplifies because of the smaller number of
parameters. The parameters of the general superpotential and soft Lagrangian shown in
Eq. (3.8) and Eq. (3.9) reduce to

Y ν
ij → Y ν

i , λi → λ , κijk → κ , (5.1)

T νij → T νi , T λi → T λ , T κijk → T κ ,
(
m2
ν̃

)
ij
→ mν̃ , (5.2)

and there will only be a single right-handed sneutrino vev vR. The neutral scalar potential
at tree-level reads in the one-generation case

V (0) = Vsoft + VF + VD , (5.3)

with

Vsoft =

(
T νi H

0
u ν̃iL ν̃

∗
R − T λ ν̃∗RH0

dH
0
u +

1

3
T κ ν̃∗Rν̃

∗
Rν̃
∗
R + h.c.

)
(5.4)

+
(
m2
L̃

)
ij
ν̃∗iLν̃jL +

(
m2
HdL̃

)
i
H0∗
d ν̃iL +m2

ν̃ ν̃
∗
Rν̃R +m2

Hd
H0
d
∗
H0
d +m2

HuH
0
u
∗
H0
u ,

VF = λ2H0
dH

0
d

∗
H0
uH

0
u

∗
+ λ2ν̃∗Rν̃RH

0
dH

0
d
∗ + λ2ν̃∗Rν̃RH

0
uH

0
u
∗

+ κ2 (ν̃∗R)2 (ν̃R)2 −
(
κλ (ν̃∗R)2H0∗

d H
0∗
u − Y ν

i κν̃iL (ν̃R)2H0
u
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+ Y ν
i λν̃iLH

0∗
d H

0∗
u H

0
u + Y ν

i λν̃
∗
iLν̃Rν̃

∗
RH

0
d + h.c.

)

+ Y ν
i Y

ν
i ν̃
∗
Rν̃RH

0
uH

0
u
∗ + Y ν

i Y
ν
j ν̃iLν̃

∗
jLν̃
∗
Rν̃R + Y ν

i Y
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j ν̃iν̃

∗
jH

0
uH

0∗
u , (5.5)

VD =
1

8

(
g2

1 + g2
2

) (
ν̃iLν̃

∗
iL +H0

dH
0
d
∗ −H0

uH
0
u
∗
)2

. (5.6)

We also explicitly state the tadpole equations for the one-generation case, because the
tadpole coefficients will be used as independent parameters,

THRd
=−m2

Hd
vd −

(
m2
HdL̃

)
i
viL −

1

8

(
g2

1 + g2
2

)
vd
(
v2
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u

)

− 1

2
λ
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u

)
(λvd − viLY ν

i ) +
1√
2
T λvRvu +

1

2
κλv2

Rvu , (5.7)
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Huvu +

1
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The mass matrices for the neutral scalars in the one-generation case can be found in
Ref. [1]. Therein, we also give the precise form of the mass matrices of the other sectors
of the model. Since they are trivial simplifications of the general formulas given in
Sects. 3.3.2–3.3.6, we do not state them explicitly here.

One conceptual difference to the complete µνSSM with three right-handed neutrino
superfields is that only one light neutrino mass is generated at tree level via the elec-
troweak seesaw mechanism. Two more light neutrino masses are radiatively generated
via loop-corrections to the fermion propagators (see Eq. (4.21)). Calculating these loop-
corrections is beyond the scope of this thesis, as we are primarily interested in the cor-
rections to the scalar sector. Also, the presence of tiny neutrino masses has a negligible
impact on the SM-like Higgs-boson mass. Therefore, a precise discussion of BPs in
agreement with neutrino oscillation data was left for the three generation case [2]. Nev-
ertheless, the values we picked for the free parameters here provide realistic scenarios, i.e.,
neutrino Yukawas Y ν

i have values between 10−7 and 10−6, to generate neutrino masses
of the order less than 1 eV. For the left-handed sneutrino vevs, which are used as input
parameters (see below) this directly implies viL � vd, vu so that the tadpole coefficients
shown in Eq. (3.31) vanish.
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5.1 Renormalization at the one-loop level

The first step in renormalizing the neutral scalar potential is to choose the set of in-
dependent parameters. The coefficients of the Lagrangian are functions of the this set
of parameters. When the parameters are renormalized, their counterterms are defined
in such a way that all UV divergences appearing in higher-order Green’s functions are
canceled by the them.

Our final aim is to obtain the quantum corrections to the pole masses of the neu-
tral CP-even scalars. The relevant part of the Higgs potential is given by the linear
tadpole coefficients and the CP-even and CP-odd mass matrix elements. The following
parameters appear in the Higgs potential:

– Scalar soft masses: m2
Hd

, m2
Hu

, m2
ν̃ ,
(
m2
L̃

)
ij
,
(
m2
HdL̃

)
i

(12 parameters)

– Vacuum expectation values: vd, vu, vR, viL (6 parameters)

– Gauge couplings: g1, g2 (2 parameters)

– Superpotential parameters: λ, κ, Y ν
i (5 parameters)

– Soft trilinear couplings: T λ, T κ, T νi (5 parameters)

The complexity of the µνSSM scalar sector becomes evident when one compares the
numbers of free parameters (30) with the one in the real MSSM (7) [3] and the NMSSM
(12) [4]. Non of the initial parameters stated above can be directly related to a physical
observable.

Hence, we replace the soft masses m2
Hd

, m2
Hu

, m2
ν̃ , and the diagonal elements of

the matrix m2
L̃

by the tadpole coefficients shown in Eqs. (3.28)–(3.31), for which OS
conditioned can be conveniently applied (see Sect. 4.3.2), such that

δTϕRi
= −T (1)

ϕRi
with ϕT = (HRd , H

R
u , ν̃

R
R , ν̃

R
1L, ν̃

R
2L, ν̃

R
3L) . (5.11)

By doing so we guarantee that the true vacuum of the theory is not spoiled by the higher-
order corrections. The tadpole diagrams contributing to T (1)

ϕRi
are calculated in the mass

eigenstate basis hi. The one-loop tadpole contributions in the interaction basis ϕi are
then obtained by the rotation

T
(1)

ϕRi
= UHji T

(1)
hi

. (5.12)

Note that, alternatively, the tadpole coefficients could have been introduced as indepen-
dent parameters by replacing the vevs of the scalar fields, and keeping the soft mass
parameters written above as input parameters. However, solving the tadpole equations
for the soft masses, given the vevs as input, is computationally much more eligible. Solv-
ing the tadpole equations for the vevs, given the soft mass parameters, yields a system
of polynomial equations that can only be solved numerically, and the solutions are not
unique.

In addition, we replace the Higgs doublet vevs vd and vu by the MSSM-like parameters
tanβ and v according to

tanβ =
vu
vd

and v2 = v2
d + v2

u + viLviL . (5.13)

The definition of v2 differs from the one in the MSSM by the term viLviL. This allows to
maintain the relations between v2 and the gauge boson masses as they are in the SM and
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Soft masses vevs Gauge cpls. Superpot. Soft trilinears

m2
Hd

, m2
Hu

, m2
ν̃ , vd, vu, vR, viL g1, g2 λ, κ, Y ν

i T λ, T κ, T νi
m2
L̃ij

, m2
HdL̃i

↓ ↓ ↓ ↓ ↓
THRd

, THRu , Tν̃RR , Tν̃RiL , tanβ, v, µ, viL MW , MZ λ, κ, Y ν
i Aλ, Aκ, Aνi

m2
L̃i 6=j

, m2
HdL̃i

Table 5.1: Set of independent parameters initially entering the tree-level Higgs potential
of the µνSSM in the first row, and final choice of free parameters after the substitutions
mentioned in the text.

the MSSM. Numerically, the difference in the definition of v2 is negligible, since the viL
are of the order of 10−4 GeV in realistic scenarios. Analytically, however, maintaining
the functional form of tanβ as it is in the (N)MSSM is convenient to facilitate the
comparison of the quantum corrections in the µνSSM and the NMSSM. In particular, we
can still express the one-loop counterterm of tanβ (see below) without having to include
the counterterms for the left-handed sneutrino vevs.

When the right-handed sneutrino obtains a vev, the µ-term of the MSSM is dynam-
ically generated. We substitute the vev by the effective µ-parameter, such that

µ =
vRλ√

2
, (5.14)

again facilitating the comparison between the µνSSM and the (N)MSSM in which the
µ-parameter appears as well.

The gauge couplings g1 and g2 will be replaced by the gauge boson masses MW and
MZ , given by

M2
W =

1

4
g2

2v
2 and M2

Z =
1

4

(
g2

1 + g2
2

)
v2 . (5.15)

By employing OS conditions for MW and MZ (see Sect. 4.3.2), so that

δM2
Z = Re

[
ΣT
ZZ

(
M2
Z

)]
and δM2

W = Re
[
ΣT
WW

(
M2
W

)]
. (5.16)

we make sure that the renormalized gauge boson masses can be set to the experimentally
measured values. Radiative corrections are absorbed into the counterterms and the pole
mass predictions will not be modified.

Finally, the soft trilinear couplings are set to be proportional to the corresponding
superpotential couplings,

T λ = Aλλ , T κ = Aκκ , T νi = Aνi Y
ν
i , (5.17)

and the parameters Aλ,κ,ν are used as input parameters. The reparametrization from
the initial to the physical set of independent parameters is summarized in Tab. 5.1.

The entries of the neutral scalar mass matrices are functions of the final set of pa-
rameters,

m2
ϕ = m2

ϕ

(
M2
Z , v

2, tanβ, λ, . . .
)
, (5.18)

m2
σ = m2

σ

(
M2
Z , v

2, tanβ, λ, . . .
)
, (5.19)
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and we define their renormalization as

m2
ϕ → m2

ϕ + δm2
ϕ , (5.20)

m2
σ → m2

σ + δm2
σ . (5.21)

The mass counterterms δm2
ϕ and δm2

σ enter the renormalized one-loop scalar self-energies.
We define the one-loop renormalization of the independent parameters by

THRd
→ THRd

+ δTHRd
,

THRu → THRu + δTHRu ,

Tν̃RR
→ Tν̃RR

+ δTν̃RR
,

Tν̃RiL
→ Tν̃RiL

+ δTν̃RiL
,

m2
L̃i 6=j

→ m2
L̃i 6=j

+ δm2
L̃i 6=j

,

m2
HdL̃i

→ m2
HdL̃i

+ δm2
HdL̃i

,

tanβ → tanβ + δ tanβ ,

v2 → v2 + δv2 ,

µ→ µ+ δµ ,

v2
iL → v2

iL + δv2
iL ,

M2
W →M2

W + δM2
W ,

M2
Z →M2

Z + δM2
Z ,

λ→ λ+ δλ ,

κ→ κ+ δκ ,

Y ν
i → Y ν

i + δY ν
i ,

Aλ → Aλ + δAλ ,

Aκ → Aκ + δAκ ,

Aνi → Aνi + δAνi .

(5.22)

Apart from the tadpole coefficients and the gauge boson masses, the remaining param-
eters lack a direct relation to a physical observable. Thus, they will be renormalized
as DR parameters. The precise definition of the renormalization conditions, from which
the counterterms were extracted, will be given in the following. The dependence of the
mass counterterms δm2

ϕ and δm2
σ on the counterterms of the free parameters is given at

one-loop level by

(δm2
ϕ)ij =

∑

X∈Free param.

(
∂

∂X
(m2

ϕ)ij

)
δX , (δm2

σ)ij =
∑

X∈Free param.

(
∂

∂X
(m2

σ)ij

)
δX .

(5.23)
The mixing matrices UH and UA (see Eqs. (3.46) and (3.66)) diagonalize the renormal-
ized mass matrices, so they do not have to be renormalized, because they are defined
exclusively by renormalized quantities. The counterterms of the scalar mass matrices in
the mass eigenstate basis then read

(δm2
h)ij = UHik (δm2

ϕ)klU
H
jl , (δm2

A)ij = UAik(δm
2
σ)klU

A
jl . (5.24)

We stress that this rotation does not leave the mass counterterms in the mass eigenstate
basis δm2

h and δm2
A diagonal, as they would be in a purely OS renormalization proce-

dure which is often used in theories with flavor mixing [5]. This approach, however, is
not possible in Susy models, where there are not enough independent parameters to
renormalize each particle OS.

As can be seen in Eq. (4.16), the momentum-dependent self-energy contributions
of renormalized scalar Green’s functions are renormalized by the field renormalization
counterterms. We write the renormalization of the scalar components of the neutral
chiral superfields φ = (Hd, Hu, ν̃R, ν̃1L, ν̃2L, ν̃3L) as

φi → Z
1/2
φiφj

φj =

(
1 +

1

2
δZφiφj

)
φj , (5.25)

where Z1/2
φiφj

and δZφiφj are 6× 6 dimensional matrices and the equal sign is valid at the
one-loop level. For the field renormalization in the mass eigenstate basis,

hi →
(
1 +

1

2
δZhihj

)
hj , Ai →

(
1 +

1

2
δZAiAj

)
Aj , (5.26)
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we then find

δZhihj = UHik δZφkφl U
H
jl and δZAiAj = UAik δZφkφl U

A
jl . (5.27)

We adopted DR conditions for the field renormalization counterterms. We calculate the
UV-divergent part of the derivative of the scalar CP-even self-energies in the interaction
basis and extract the field renormalization counterterms from demanding finiteness of the
renormalized scalar 2-point function given in Eq. (4.16). Thus, the DR renormalization
condition read

δZφiφj = − d

dp2
Σ(1)
ϕiϕj

∣∣∣∣
div

, (5.28)

where ϕT = (HRd , H
R
u , ν̃

R
R , ν̃

R
1L, ν̃

R
2L, ν̃

R
3L) are the CP-even neutral scalar fields. We find

the following field renormalization counterterms:

δZHdHd = − ∆

16π2

(
λ2 + Y e

ijY
e
ij + 3

(
Y d
i Y

d
i

))
, (5.29)

δZHdν̃iL =
∆

16π2
λY ν

i , (5.30)

δZHuHu = − ∆

16π2

(
λ2 + Y ν

i Y
ν
i + 3 (Y u

i Y
u
i )
)
, (5.31)

δZν̃Rν̃R = − ∆

16π2

(
λ2 + κ2 + Y ν

i Y
ν
i

)
, (5.32)

δZν̃iLν̃jL = − ∆

16π2

(
Y e
kiY

e
kj + Y ν

i Y
ν
j

)
. (5.33)

In contrast to the (N)MSSM, the DR field renormalization in the Higgs sector of the
µνSSM contains off-diagonal counterterms in the interaction basis, induced by the neu-
trino Yukawa couplings Y ν

i (see Eq. (5.30)). The off-diagonal contributions appear re-
lating the down-type Higgs field Hd and the left-handed sneutrino fields ν̃iL which have
exactly the same quantum numbers due to the breaking of R-parity and lepton-number
conservation, so that mixed kinetic terms are allowed by the symmetries.1 In the limit
Y ν
i → 0 we find the field renormalization constants of the NMSSM.
Having found the field renormalization counterterms, and applying OS conditions to

the tadpole coefficients and the gauge-boson masses, the remaining problem in renor-
malizing the Higgs potential consists of extracting the counterterms for the parameters
renormalized using DR conditions. In the following paragraphs, we state the precise
renormalization condition applied to each parameter and the exact form of the resulting
counterterm. They were obtained by calculating the divergent parts of one-loop cor-
rections to different scalar and fermionic two- and three-point functions. We state the
determination of the counterterms in the (possible) order in which they can be succes-
sively derived. We start with the counterterms that were obtained by renormalizing
certain neutral fermion self-energies.

Renormalization of µ

The µ-parameter appears isolated in the Majorana-type mass matrix of the neutral
fermions (

mχ0

)
H̃0
dH̃

0
u

= −λvR√
2

= −µ . (5.34)

1As was argued in Ref. [6], non-diagonal field renormalization constants are not necessary if one only
demands physical quantities to be UV finite, permitting UV divergences in non-diagonal 2-point Green’s
functions to remain. These would then be canceled by the additional mixing effects on the outer legs of
S-matrix elements following the LSZ theorem.
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It is the element mixing the down-type and the up-type Higgsinos H̃0
d and H̃0

u. Hence,
the mass counterterm simply reads

δ
(
mχ0

)
H̃0
dH̃

0
u

= −δµ . (5.35)

We extract δµ following the general formula given in Eq. (4.22) by substituting the
explicit mass-matrix elements into the renormalized scalar part of the self-energy Σ

H̃0
dH̃

0
u

and demanding that Σ̂S
H̃0
dH̃

0
u

is finite. This yields

δµ =
1

2
µ

(
−
(
δZ

H̃0
dH̃

0
d

+ δZ
H̃0
uH̃

0
u

)
+

1

λ
δZ

νiLH̃
0
d
Y ν
i

)
− Σ

S(1)

H̃0
dH̃

0
u

∣∣∣∣
div

, (5.36)

where δZχ0
iχ

0
j
are the field renormalization counterterms for the neutral fermions. In

the DR scheme they can be obtained from the fermionic part of the self-energies (see
Eq. (4.21)), such that for Majorana fermions we find

δZχ0
iχ

0
j

= − Σ
FL(1)

χ0
iχ

0
j

∣∣∣∣
div

= − Σ
FR(1)

χ0
iχ

0
j

∣∣∣∣
div

= − Σ
F (1)

χ0
iχ

0
j

∣∣∣∣
div

. (5.37)

In Eq. (5.36) we already made us of the fact that the counterterms δZχ0
iχ

0
j
are real and

symmetric in i and j, and that components mixing left-handed neutrinos νiL and the
down-type Higgsino H̃0

d are the only non-diagonal elements contributing. After calculat-
ing the UV divergent parts of the neutral fermion self-energies by means of the one-loop
diagrams in the interaction basis (see Fig. 4.4), the explicit expression for δµ in the DR
scheme is found to be

δµ =
∆

32π2
µ

(
−4πα

(
s2

w + 3c2
w

)

s2
wc

2
w

+ 2λ2 + 3
(
Y u
i Y

u
i + Y d

i Y
d
i

)
+ Y e

ijY
e
ij + 2Y ν

i Y
ν
i

)
,

(5.38)
where sw is the sine of the weak mixing angle given by sw =

√
1− c2

w with cw = MW /MZ ,
and α = e/(4π) with e = g1cw is the electromagnetic coupling constant.

Renormalization of κ

The parameter κ appears isolated at tree level in the three-point vertex that couples the
right-handed neutrino to the right-handed CP-even sneutrino,

Γ
(0)

νRνRν̃
R
R

= −
√

2κ . (5.39)

The UV divergences induced to this coupling at the one-loop level have to be absorbed by
the field renormalization of the right-handed neutrino and sneutrino and the counterterm
for κ. From the form of the general renormalized 3-point function shown in Eq. (4.18)
we therefore find the renormalization condition

δκ =
1√
2

Γ
(1)

νRνRν̃
R
R

∣∣∣
div
− 1

2
κ
(
δZν̃Rν̃R + 2 δZνRνR

)
. (5.40)

It turns out that the one-loop vertex corrections are finite, so that δκ is given by the
field renormalization counterterms. Using the DR conditions Eq. (5.28) and Eq. (5.37),
one finds

δκ =
3∆

16π2
κ
(
κ2 + λ2 + Y ν

i Y
ν
i

)
. (5.41)
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Renormalization of λ

Having calculated δµ and δκ, we can extract the counterterm for λ in the neutral fermion
sector given the mass matrix element

(
mχ0

)
νRνR

=
√

2κvR =
2κµ

λ
. (5.42)

Expanding the mass counterterm δ
(
mχ0

)
νRνR

in terms of δλ, δκ and δµ and again using
Eq. (4.22), the renormalization condition for λ reads

δλ = λ

(
δZνRνR +

δκ

κ
+
δµ

µ

)
− λ2

2µκ
ΣS(1)
νRνR

∣∣∣
div

. (5.43)

This yields the expression

δλ =
∆

32π2
λ

(
− 4πα

(
s2

w + 3c2
w

)

s2
wc

2
w

+ 4λ2 + 2κ2 + 3
(
Y u
i Y

u
i + Y d

i Y
d
i

)

+ Y e
ijY

e
ij + 4Y ν

i Y
ν
i

)
. (5.44)

Renormalization of Aκ

Now that δκ, δλ and δµ are fixed, the counterterm for Aκ can be extracted from the one-
loop corrections to the scalar 3-point vertex of CP-even right-handed sneutrinos. The
tree-level vertex is given by

Γ
(0)

ν̃RR ν̃
R
R ν̃
R
R

= −
√

2κ

(
Aκ +

6κµ

λ

)
. (5.45)

Demanding that the renormalized 3-point Green’s function is finite provides the renor-
malization condition

δAκ =
1√
2κ

(
Γ

(1)

ν̃RR ν̃
R
R ν̃
R
R

∣∣∣
div

+
3

2
δZν̃Rν̃RΓ

(0)

ν̃RR ν̃
R
R ν̃
R
R

)
−Aκ δκ

κ
− 6κµ

λ

(
2
δκ

κ
+

1

2
δZν̃Rν̃R

)
,

(5.46)
where δµ and δλ were eliminated using the relation

[
δµ

µ
− δλ

λ

]div

=
1

2
δZν̃Rν̃R

∣∣∣∣
div

. (5.47)

We find the counterterm

δAκ =
3∆

8π2

(
Aκκ2 +Aλλ2 +Aνi Y

ν
i

2
)
. (5.48)

Note that, in contrast to the superpotential parameters, the counterterms for soft pa-
rameters are not proportional to the parameter itself. This is related to the fact that
they break Susy, such that the non-renormalization theorems do not apply [7–9].
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Renormalization of Aλ

Similarly, the counterterm for Aλ can be fixed by renormalizing the scalar 3-point vertex

Γ
(0)

HRd H
R
u ν̃
R
R

=
Aλλ√

2
+
√

2κµ , (5.49)

such that the renormalization condition reads

δAλ = −
√

2

λ
Γ

(1)

HRd H
R
u ν̃
R
R

∣∣∣
div
− 1√

2λ

(
δZHdHdΓ

(0)

HRd H
R
u ν̃
R
R

+ δZHdν̃1LΓ
(0)

ν̃R1LH
R
u ν̃
R
R

+δZHdν̃2LΓ
(0)

ν̃R2LH
R
u ν̃
R
R

+ δZHdν̃3LΓ
(0)

ν̃R3LH
R
u ν̃
R
R

+ δZHuHuΓ
(0)

HRd H
R
u ν̃
R
R

+ δZν̃Rν̃RΓ
(0)

HRd H
R
u ν̃
R
R

)

−A
λ

λ
δλ− 2κ

λ
δµ− 2µ

λ
δκ , (5.50)

with

Γ
(0)

ν̃RiLH
R
u ν̃
R
R

=
−Y ν

i

(
Aνi + 2κµ

λ

)

√
2

. (5.51)

The condition for δAλ is more complicated due to the contributions arising from the off-
diagonal field renormalization constants. After calculating Γ

(1)

HRd H
R
u ν̃
R
R

|div and inserting
the field renormalization constants and the tree-level expression from Eq. (5.51), we find

δAλ =
∆

32π2

(
8πα

(
3c2

wM2 + s2
wM1

)

c2
ws

2
w

+ 4Aκκ2 +Aλ
(
8λ2 + Y ν

i Y
ν
i

)

+ 6
(
Aui Y

u
i

2 +Adi Y
d
i

2
)

+ 7Aνi Y
ν
i

2 + 2AeijY
e
ij

2

)
, (5.52)

where the soft gaugino mass parameterM1 andM2 appear in the term proportional to α.

Renormalization of v2

The counterterm for the SM vev v is expressed in terms of the OS counterterms of
the gauge boson masses δM2

W and δM2
Z and the counterterm δZe that renormalizes the

electromagnetic coupling, such that

e→ e (1 + δZe) . (5.53)

δZe can be calculated via [10]

δZe =
1

2

(
∂Σ

T (1)
γγ

∂p2
(0)

)
+

sw

cwM2
Z

Σ
T (1)
γZ (0) , (5.54)

where Σ
T (1)
γγ (0) is the transverse part of the one-loop photon self-energy and Σ

T (1)
γZ is the

transverse part of the mixed one-loop γ-Z boson self-energy. Making use of the fact that
v2 and e are related by

v2 =
2s2

wM
2
W

e2
. (5.55)
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the counterterm δv2 can be obtained through

δv2 =
4s2

wM
2
W

e2

(
δs2

w

s2
w

+
δM2

W

M2
W

− 2δZe

)∣∣∣∣
div

, (5.56)

where

s2
w → s2

w + δs2
w , with δs2

w = −c2
w

(
δM2

W

M2
W

− δM2
Z

M2
Z

)
. (5.57)

We stress that taking only the divergent part in Eq. (5.56) explicitly defines v2 as DR pa-
rameter, such that δZe is not an independent counterterm anymore. It was just calculated
as such to obtain the UV divergences that contribute to δv2 in Eq. (5.56). Extracting
the divergent parts from δM2

W , δM2
Z and δZe, the counterterm for v2 can be written as

δv2 =
∆

32π2

(
4παv2

(
s2

w + 3c2
w

)

s2
wc

2
w

− 2
(
v2
d

(
3Y d

i Y
d
i + Y e

ijY
e
ij

)
+ v2

u (3Y u
i Y

u
i + Y ν

i Y
ν
i )

+ Y e
ijY

e
ikvjLvkL

)
+ 2viLY

ν
i

(
2λvd − vjLY ν

j

)
)
. (5.58)

Renormalization of v2iL
The counterterms δv2

iL can be extracted from the divergent part of the one-loop self-
energies Σ

(1)

B̃νiL
between the bino and each left-handed neutrino. The tree-level mass

matrix entries mixing both fields are given by
(
mχ0

)
B̃νiL

= −g1viL
2

. (5.59)

The counterterm of the gauge coupling g1, whose renormalization we define as g1 →
g1 + δg1, can be obtained from δM2

W , δM2
Z and δv2 through the definitions of the gauge

boson masses in Eq. (5.15), so that

δg1 =
2

g1v2

(
δM2

Z − δM2
W

)
− g1

2

δv2

v2
. (5.60)

Renormalizing the self-energies Σ
S(1)

B̃νiL
using Eq. (4.22), we find the renormalization con-

dition

δv2
iL =

4viL
g1

Σ
S(1)

B̃νiL

∣∣∣
div
− viL

(
δZ

B̃B̃
viL + δZνiLνiLvjL + δZ

νiLH̃
0
d
vd

)
− 2v2

iL

δg1

g1

∣∣∣∣
div

,

(5.61)
which yields

δv2
iL =

∆

32π2
viL

(
4παviL

(
s2

w + 3c2
w

)

s2
wc

2
w

+ 2
(
vdλY

ν
i − vkLY e

jiY
e
jk − vjLY ν

i Y
ν
j

)
)
. (5.62)

Renormalization of Y ν
i

We decide to use the renormalization of the element

(
mχ0

)
νiLH̃0

u
=
µY ν

i

λ
, (5.63)
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of the neutral fermion mass matrix, mixing the left-handed neutrinos and the up-type
Higgsino, to extract the counterterms δY ν

i . From the expression for the renormalized
scalar part of the self-energies Σ

S(1)

νiLH̃u
, we find the renormalization conditions

δY ν
i =

1

2

(
δZ

νiLH̃
0
d
λ− δZ

H̃0
uH̃

0
u
Y ν
i − δZνiLνiLY ν

j

)
−
(
δµ

µ
− δλ

λ

)
+
λ

µ
Σ
S(1)

νiLH̃u

∣∣∣
div

, (5.64)

from which we obtain

δY ν
i =

∆

32π2

(
− 4παY ν

i

(
s2

w + 3c2
w

)

s2
wc

2
w

+ Y ν
i

(
3Y u

i Y
u
i + 2κ2 + 4λ2 + 4Y ν

j Y
ν
j

)

+Y e
jiY

e
jkY

ν
k

)
. (5.65)

Renormalization of tanβ

We adopted the usual definition for tanβ as in the MSSM (see Eq. (5.13)). If we define
the renormalization for the vevs of the doublet fields as

v2
d → v2

d + δv2
d , v2

u → v2
u + δv2

u , (5.66)

the counterterm for tanβ can be written at the one-loop level as a linear combination of
the counterterms for the vevs of the doublet Higgses,

δ tanβ =
1

2
tanβ

(
δv2
u

v2
u

− δv2
d

v2
d

)
. (5.67)

Note that our renormalization of v2
u and v2

d in Eq. (5.66) includes the contributions from
the field renormalization constants inside the counterterms δv2

u and δv2
d. This approach

is equivalent to defining

vd → Z
1/2
HdHd

(vd + δv̂d) , vu → Z
1/2
HuHu

(vu + δv̂u) , (5.68)

and writing the counterterm of tanβ as

δ tanβ =
1

2
tanβ (δZHuHu − δZHdHd) + tanβ

(
δv̂u
vu
− δv̂d

vd

)
. (5.69)

This notation was convenient in the MSSM and the NMSSM, because the second bracket
in Eq. (5.69) is finite at the one-loop level [4, 11–13], and can be neglected in the DR
scheme. Then, δ tanβ is expressed exclusively by the field renormalization constants. In
contrast, in the µνSSM we find

(
δv̂u
vu
− δv̂d

vd

)∣∣∣∣
div

= −∆λviLY
ν
i

32π2vd
. (5.70)

There are several possibilities to extract the counterterms δv2
d and δv2

u. A convenient
choice is to extract δv2

d from the renormalization of the entry of the neutral fermion mass
matrix mixing the up-type Higgsino and the right-handed neutrino,

(
mχ0

)
H̃0
uνR

=
1√
2

(−λvd + viLY
ν
i ) , (5.71)
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because in this case no off-diagonal field renormalization counterterms appear. The
renormalization condition for v2

d then reads

δv2
d =− 2

√
2vd
λ

Σ
S(1)

H̃0
uvR

∣∣∣
div

+
vd
λ

(
δZ

H̃0
uH̃

0
u

+ δZνRνR

)
(−vdλ+ viLY

ν
i )− 2v2

d

δλ

λ

+
vd
λ
Y ν
i δij

δv2
iL

vjL
+

2vd
λ
viLδY

ν
i . (5.72)

There are now two ways to determine δv2
u. Firstly, we could similarly to δv2

d extract
the counterterm δv2

u by renormalizing the scalar part of the up-type Higgsino self-energy
Σ
S(1)

H̃uH̃u
. Alternatively, we can deduce δv2

u from the definition of v2 in Eq. (5.13) and
simply write

δv2
u = δv2 − δv2

d − δv2
1L − δv2

2L − δv2
3L . (5.73)

We verified that both options yield the same result, which constitutes a consistency test
for the counterterms δv2

iL being unique for the µνSSM. Inserting δv2
d from Eq. (5.72)

and δv2
u from Eq. (5.73) into Eq. (5.67) finally gives

δ tanβ =
∆

32π2
tanβ

(
3
(
Y d
i Y

d
i − Y u

i Y
u
i

)
+ Y e

ijY
e
ij − Y ν

i Y
ν
i −

viL
vd
λY ν

i

)
. (5.74)

The renormalization of tanβ in the DR scheme is manifestly process-independent and
has shown to give stable numerical results in the MSSM [14, 15] and the NMSSM [4, 13].

Renormalization of Aν
i

The tree-level expression for the interaction between the up-type Higgs, one left-handed
sneutrinos and the right-handed sneutrino is given by

Γ
(0)

HRu ν̃
R
R ν̃
R
iL

= −
(
Aνi√

2
+

√
2κµ

λ

)
Y ν
i . (5.75)

In this expression the parameters Aνi are the only ones whose counterterms are not yet
fixed. Applying the general formula for the renormalized scalar 3-point functions shown
in Eq. (4.18) to Γ

(1)

HRu ν̃
R
R ν̃
R
iL

, the renormalization condition for the Aνi read

δAνi =

√
2

Y ν
i

Γ
(1)

HRu ν̃
R
R ν̃
R
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∣∣∣
div

+
1√
2Y ν
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((
δZHuHu + δZν̃Rν̃R

)
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R
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R
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+ δZHdν̃iLΓ
(0)
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R
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R
d

+δZν̃jLν̃iLΓ
(0)
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R
R ν̃
R
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)
− Aνi
Y ν
i

δY ν
i −

2µ

λ
δκ− 2κ

λ
δµ− 2κµ

λY ν
i

δY ν
i +

2κµ

λ2
δλ , (5.76)

with

Γ
(0)

HRu ν̃
R
RH

R
d

=
λAλ√

2
+
√

2κµ . (5.77)

As in the case of the renormalization of Aλ, the non-diagonal field renormalization coun-
terterms lead to additional terms, in this case proportional to the tree-level vertices
Γ

(0)

HRu ν̃
R
RH

R
d

that compared to the original vertex in Eq. (5.75) have HRd instead of ν̃RiL on
an external leg. Putting everything together we find

δAνi =
∆

32π2Y ν
i

(
8παY ν

i

(
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2
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2
w

)
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2
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e
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k + 2T ejiY

e
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ν
k + Y ν

i

(
7Y ν

j T
ν
j
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+ 6Y u
ijT

u
ij + 4κ2Aκ + 7λ2Aλ

)
+Aνi

((
λ2 + Y ν

j Y
ν
j

)
Y ν
i − Y e

jiY
e
jkY

ν
k

)
)
. (5.78)

Renormalization of m2
HdL̃i

The soft scalar masses appear in the bilinear terms of the Higgs potential. Their counter-
terms can be found by calculating radiative corrections to scalar self-energies. However,
calculating scalar self-energy diagrams in the interaction basis is particularly difficult,
because also diagrams with more than one mass insertion are potentially UV divergent.
To extract δm2

HdL̃i
we therefore calculate the CP-odd scalar self-energies in the mass

eigenstate basis, and then rotate the self-energies back to the interaction basis. From
the form of the renormalized self-energies shown in Eq. (4.16) we can obtain the mass
counterterm corresponding to a particular self-energy Σ

(1)
AiAj

in the mass eigenstate basis
from

δ
(
m2
A

)
ij

∣∣∣
div

= Σ
(1)
AiAj

(0)
∣∣∣
div
− 1

2

(
δZAiAjm

2
Aj +m2

AiδZAiAj

)
, (5.79)

where the field counterterms in the mass eigenstate basis ZAiAj were defined in Eq. (5.27),
and m2

Ai
are the masses squared of the CP-odd scalars. Now inverting the rotation in

Eq. (5.24) we can get the mass counterterms for the CP-odd self-energies in the interaction
basis via

δ(m2
σ)ij
∣∣div

= UAki δ(m
2
A)kl

∣∣div
UAlj , (5.80)

In particular, we recognize that the mass counterterm for the self-energy Σ
(1)

ν̃IiLH
I
d

is defined
by the counterterm of the corresponding mass matrix element

(
δm2

σ

)
ν̃IiLH

I
d

= δm2
ν̃IiLH

I
d
, (5.81)

where m2
ν̃IiLH

I
d
is given by

m2
ν̃IiLH

I
d

=
(
m2
HdL̃

)
i
− 1

2
v2
RλY

ν
i −

1

2
v2
uλY

ν
i , (5.82)

Thus, we find for the parameters (m2
HdL̃

)i the renormalization conditions

δ
(
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)
i

=
(
δm2
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)
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I
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∣∣∣
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i
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u

)
Y ν
i cos3 β sinβ δ tanβ
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2
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2
λ sin2 βY ν
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)

+
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λ
+
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2
λ
(
v2
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u

)
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)
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i

−
(
µ2Y ν

i

λ2
− 1

2

(
v2
d + v2

u

)
Y ν
i sin2 β

)
δλ . (5.83)

The disadvantage of this approach is that we cannot obtain a compact analytical ex-
pression for the counterterms δm2

HdL̃i
, because the couplings in the mass eigenstate, and

therefore the self-energies, depend on the mixing matrix elements of all fields that can
only be calculated numerically. Also, we are forced to calculate the complete set of
self-energies for the CP-odd sector to be able to make the rotation in Eq. (5.80).
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Renormalization of m2
L̃i 6=j

Since we neglect CP-violation the hermitian matrix m2
L̃
is symmetric, and there are only

three independent off-diagional elements. We can extract the counterterms for them in
the same way as the ones for m2

HdL̃i
in the CP-odd scalar sector. They appear in the

tree-level mass matrix in

m2
ν̃IiLν̃

I
jL

=
(
m2
L̃

)
ij

+
1

2

(
v2
R + v2

u

)
Y ν
i Y

ν
j for i 6= j . (5.84)

Hence, the renormalization conditions for the counterterms δ(m2
L̃

)ij for i 6= j can be
written in terms of the other independent parameter counterterms as

δ
(
m2
L̃L

)
ij

=
(
δm2

σ

)
ν̃IiLν̃

I
jL

∣∣∣∣
div

− 1

2

(
v2
R + v2

u

) (
Y ν
i δY

ν
j − Y ν

j δY
ν
i

)
(5.85)

−
2µY ν

i Y
ν
j

λ2

(
δµ

µ
− δλ

λ

)
− 1

2
Y ν
i Y

ν
j sin2 β δv2

−
(
v2
d + v2

u

)
Y ν
i Y

ν
j cos3 β sinβ δ tanβ +

1

2
Y ν
i Y

ν
j sin2 β

(
δv2

1L + δv2
3L + δv2

3L

)
.

FeynArts modelfile

The diagrams and their amplitudes that had to be calculated to obtain the counterterms
(as described for each parameter above) were generated using the Mathematica package
FeynArts [16] and further evaluated with the package FormCalc [17] and LoopTools [17,
18]. The FeynArts model file for the µνSSM was initially created with the Mathematica
program SARAH [19]. We modified the model file to neglect CP-violation by choosing all
relevant parameters to be real. We also neglected flavor mixing in the squark and the
quark sector in this work. Certain expressions for the tree-level vertices were modified
by hand to improve the numerical performance, and to avoid memory problems caused
by too large expressions when using FormCalc. The FeynArts model file can be provided
by the authors upon request. It contains the counterterms as they are defined in the
scope of this thesis. The calculation of renormalized two- and three-point functions of
the neutral scalars of the µνSSM at one-loop accuracy is thereby fully automated (as it
is in the MSSM [20]).

In the following, we will present our predictions for the Higgs-boson masses in the
µνSSM. We compared our results to the ones of the NMSSM. To be able to make
this comparison, we calculated the NMSSM predictions in the same renormalization
scheme and using the same conventions as were used in the µνSSM. This is why we
calculated the one-loop self-energies in the NMSSM with our own NMSSM model file for
FeynArts/FormCalc created with SARAH, using the same procedure as for the µνSSM.
We verified that the results calculated in the NMSSM with our model file are equal to
the results calculated with the model file presented in Ref. [21], which was a good check
that the generation of the model files for the NMSSM and the µνSSM was correct.

5.2 Loop-corrected Higgs-boson masses

In the previous section we have derived an OS-DR renormalization scheme for the µνSSM
Higgs sector. It can be applied (via the FeynArts model file) to any higher-order correc-
tion in the µνSSM. As a first application, we evaluate the full one-loop corrections to
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the CP-even scalar sector in the µνSSM. The corrections to the scalar pole masses are
given by the renormalized self-energies in the mass eigenstate basis,

Σ̂
(1)
hihj

(
p2
)

= Σ
(1)
hihj

(
p2
)

+ δZhihj

(
p2 − 1

2

(
m2
hi

+m2
hj

))
−
(
δm2

h

)
ij
, (5.86)

where δZhihj are the field renormalization counterterms in the mass eigenstate basis (see
Eq. (5.27)), and (δm2

h)ij are the mass counterterms defined in Eq. (5.24). The tree-
level masses squared m2

hi
are the eigenvalues of the CP-even scalar mass matrix, i.e,

the diagonal elements of m2
h. The self-energy diagrams were calculated in the ’t Hooft-

Feynman gauge in which the Goldstone bosons G0 and G± and the ghost fields uW±

and uZ have the same masses as the corresponding gauge bosons. In this gauge the
gauge-fixing terms do not yield counterterm contributions in the Higgs sector at the
one-loop level. The loop integrals were regularized using DRED [22, 23] and numerically
evaluated for arbitrary real momentum using LoopTools [17]. The contributions from
complex values of p2 were approximated using a Taylor expansion with respect to the
imaginary part of p2 up to first order.

The self-energies enter the inverse propagator matrix

Γ̂h = i
[
p2

1−
(
m2
h − Σ̂h

(
p2
))]

, with
(

Σ̂h

)
ij

= Σ̂hihj . (5.87)

The loop-corrected scalar masses squared are the zeroes of the determinant of the inverse
propagator matrix. The determination of corrected masses has to be done numerically
when one wants to account for the momentum-dependence of the renormalized self-
energies. This is done by an iterative method that has to be carried out for each of the
six loop-corrected eigenvalues [24].

In Eq. (5.87) we did not include the superscript (1) for the self-energies. Restricting
the numerical evaluation to a pure one-loop calculation would lead to very large theo-
retical uncertainties. We therefore supplement the full one-loop corrections by partial
contribtuins beyond the one-loop level. Here, we follow the approach of Ref. [25] and
supplement the µνSSM one-loop results by higher-order corrections in the MSSM limit as
provided by FeynHiggs (version 2.13.0) [3, 26–32]. In this way the leading and sublead-
ing two-loop corrections (2) are included, as well as a resummation of large logarithmic
terms resum (see the discussion in Sect. 4.4),

Σ̂hihj

(
p2
)

= Σ̂
(1)
hihj

(
p2
)

+ Σ̂
(2)
hihj

+ Σ̂resum
hihj

. (5.88)

In the partial two-loop contributions Σ̂
(2)
h we take over the corrections of

O(αsαt, αsαb, α
2
t , αtαb), assuming that the MSSM-like corrections are also valid in the

µνSSM. This assumption is reasonable, since the only difference between the squark
sector of the µνSSM in comparison to the MSSM are the terms proportional to Y ν

i viL in
the non-diagonal element of the up-type squark mass matrices (see Eq. (3.104)) and the
terms proportional to viLviL in the diagonal elements of the up- and down-type squark
mass matrices (see Eq. (3.103), Eq. (3.105), Eq. (3.107) and Eq. (3.109)). These terms
are negligible in realistic scenarios, since viL � vd, vu, vR. Furthermore, in Ref. [4] the
quality of the MSSM approximation was tested in the NMSSM, showing that the genuine
NMSSM contributions are in most cases sub-leading. Due to the sizes of the neutrino
Yukawa couplings Y ν

i in the µνSSM, also genuine µνSSM contributions are subleading.
The same is expected for the contributions stemming from the resummation of large
logarithmic terms given by Σ̂resum

h .
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viL/
√

2 Y ν
i Aνi λ tanβ µ Aλ κ Aκ

10−4 10−6 −1000 [0.026; 0.3] 8 125 897.61 0.2 −300

M1 M2 M3 m2
Q̃iL,ũiR,d̃iR

Au3 Au1,2 Ad1,2,3 (m2
ẽ)ii Ae33 Ae11,22

143 300 1500 15002 −2000 −1500 −1500 2002 −1500 −100

Table 5.2: Input parameters for the NMSSM-like crossing point scenario. Dimensionful
parameters are given in GeV.

5.3 Numerical analysis

In the following we present the full one-loop corrections to the scalar masses in the µνSSM
with one generation of right-handed neutrinos, obtained in the Feynman-diagrammtic ap-
proach in a mixed OS-DR renormalization scheme. We take into account all parameters
of the model and the dependence on the external momentum. Our results extend the
calculations in the MSSM and the NMSSM to a model which has a rich and unique phe-
nomenology through explicit R-parity breaking. The one-loop results are supplemented
by known higher-loop results from the MSSM (see the previous section) to reproduce the
Higgs-boson mass value of ∼ 125 GeV [33]. Here, the theory uncertainty must be kept
in mind. In the MSSM it is estimated to be at the level of ∼ 2 to 3 GeV [34, 35], and in
extended models it is naturally slightly larger [36, 37].

We will present results in several different scenarios, in all of which one scalar with the
correct SM-like Higgs-boson mass is reproduced. To get an estimation of the significance
of quantum corrections to the SM-like Higgs-boson mass that are unique for the µνSSM,
we compare the results to the corresponding ones in the NMSSM. Due to the smallness
of Y ν

i we only find negligible differences. For the left-handed sneutrinos, however, we
will see that loop corrections can be become very large, so that it is crucial to control
the full set of µνSSM parameters.

The BPs used in the following were not tested in detail against experimental bounds
including the R-parity violating effects of the µνSSM. They have been chosen to ex-
emplify the potential magnitude of unique µνSSM-like corrections. Nevertheless, the
values we picked for the free parameters should be close to realistic and experimentally
allowed scenarios. The parameters in the scalar sector are taken over from calculations
in the NMSSM [4] (see Sect. 5.3.1), or from previous studies in the µνSSM with one
right-handed neutrino [38] (see Sect. 5.3.2). Unique µνSSM parameters are chosen in a
range to reproduce neutrino masses of the correct order of magnitude. That means that
for the neutrino Yukawas we chose values of Y ν

i . 10−6 and also viL . 10−4 to generate
neutrino masses smaller than 1 eV.

5.3.1 NMSSM-like crossing point scenario

The first scenario we analyze is a BP already studied in the NMSSM taken from Ref. [4].
This scenario was tested therein against the experimental limits from direct searches for
BSM Higgs bosons implemented in HiggsBounds 4.1.3 [39–43]. The scenario features a
crossing point in the neutral CP-even scalar sector when λ ≈ κ in which the masses of
the singlet (or right-handed sneutrino in our case) and the SM-like Higgs boson become
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mMS
t mb mc ms mu md

167.48 4.2 1.286 0.095 0.003 0.006

mτ mµ me MW MZ v

1.7792 0.105 658 5.109 98 · 10−4 80.385 91.1875 246.2196

Table 5.3: Values for the SM parameters, i.e., fermion and gauge boson masses and the
vev, in GeV.

degenerate, and loop corrections beyond the MSSM become sizable.
In Tab. 5.2 we list the values chosen for the parameters. The SM parameters from

the electroweak sector and the lepton and quark masses are given in Tab. 5.3. The
parameters present in the µνSSM and the NMSSM, that is all parameters except viL,
Y ν
i and Aνi , are chosen as in the NMSSM calculation [4]. The value for Aλ corresponds

to a mass of mH± = 1000 GeV for the charged Higgs boson in the NMSSM with mH±

renormalized OS, which was the renormalization condition applied in Ref. [4] instead of
a DR condition for Aλ. Aκ is chosen to be negative and κ positive to avoid tachyons in
the pseudoscalar sector (see Eq. (3.68) and the discussion below).

It should be kept in mind that the diagonal soft scalar masses in the neutral sector
are extracted from the values for viL, tanβ and µ via the tadpole equations. This is
of crucial importance for the comparison of the scalar masses in the µνSSM and the
NMSSM, since in the NMSSM the soft slepton masses m2

L̃
are independent parameters,

while in the µνSSM the diagonal elements are dependent parameters fixed by the tadpole
equations in Eqs. (3.31), when the vevs are used as input. Consequently, for an accurate
comparison, for each BP calculated in the µνSSM, the corresponding values for m2

L̃
in

the NMSSM have to be adjusted accordingly to the same value.
In Fig. 5.1 we show the resulting spectrum of the CP-even scalars at tree level and

including the full one-loop and two-loop contributions as a function of λ.2 The region
λ < 0.026 is excluded because the left-handed sneutrinos become tachyonic at tree-level.
The SM-like Higgs-boson mass is reproduced accurately when the quantum corrections
are included. The heavy MSSM-like Higgs H and the left-handed sneutrinos ν̃RiL are at
the TeV-scale due to the values chosen for Aνi and Aλ. The three ν̃RiL are degenerate
because the µνSSM-like parameters are set equal for all flavors. Their mixings with the
doublet Higgs fields HRd,u and the CP-even right-handed sneutrino ν̃RR are suppressed by
the size of Y ν

i , such that they do not play a role in the discussion of this BP.
The mass of ν̃RR strongly depends on λ, because when µ is fixed, increasing λ leads

to a smaller value for vR (see Eq. (5.14)). As was observed in Ref. [4], the loop-corrected
mass of the singlet becomes smaller than the SM-like Higgs boson mass at about λ ≈ κ.
We observe large loop corrections to ν̃RR in the region of λ where the singlet is the lightest
neutral scalar.

Due to the similarity of the Higgs sectors of the NMSSM and the µνSSM, the masses
of the doublet-like Higgs bosons and the right-handed sneutrino will be of comparable
size as the masses predicted for the doublet-like Higgses and the singlet in the NMSSM.
We explicitly checked that genuine µνSSM-like corrections stemming from the additional
neutrino Yukawa term and its soft counterpart do have a negligible effect on the Higgs-

2Here and in the following we denote with “two-loop” result the one-loop plus partial two-loop plus
resummation corrected masses, as described in Sect. 5.3.
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Figure 5.1: Spectrum of CP-even scalar masses in NMSSM-like crossing point scenario.
The three left-handed sneutrinos ν̃iL are degenerate. The colors indicate the main com-
position of the mass eigenstates at tree level (dashed) and at two-loop level (solid).3

boson masses and the mass of ν̃RR . This is expected, because the values of Y ν
i are six

orders of magnitude smaller than the top Yukawa coupling, and also much smaller than
the values for the NMSSM parameters λ and κ. However, in Sect. 5.3.2 we will encounter
that the additional parameters of the µνSSM do have a sizable impact on the radiative
corrections to the CP-even left-handed sneutrinos.

In Fig. 5.2 we show the tree-level and the one- and two-loop corrected mass of the
SM-like Higgs boson in the crossing-point scenario. One can see that the two-loop cor-
rections are crucial to predict a SM-like Higgs-boson mass of 125 GeV. We confirmed
that differences between µνSSM and NMSSM predictions of the SM-like Higgs-boson
mass are negligible compared to the current experimental uncertainty [33] and the antic-
ipated experimental accuracy of the ILC of about <∼ 50 MeV [44]. Apart from that, they
are clearly exceeded by the (future) parametric uncertainties in the Higgs-boson mass
calculations, for instance, arising from the uncertainty of the mass of the top quark. Con-
sequently, the Higgs sector alone will not be sufficient to distinguish the µνSSM from the
NMSSM. On the other hand, we can regard the theoretical uncertainties in the NMSSM
and the µνSSM to be at the same level of accuracy.

5.3.2 Light left-handed τ -sneutrino scenario

In the previous scenario, we observed that in a scenario where the left-handed sneutrinos
ν̃RiL were much heavier than the SM-like Higgs boson, the unique µνSSM-like corrections
do not account for a substantial deviation of the SM-like Higgs-boson mass prediction
compared to the NMSSM. In this section, we investigate a scenario in which one of the
ν̃RiL has a small mass close to SM Higgs-boson mass. The phenomenology of such a

3All plots in this chapter have been produced using ggplot2 [45] and tikzDevice [46] in R [47].
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Figure 5.2: Tree-level, one-loop and two-loop corrected masses of the SM-like Higgs boson
in the µνSSM in the NMSSM-like crossing point scenario.

spectrum was studied in detail, including a comparison of its predictions with the LHC
searches [38, 48]. It was found that a light left-handed sneutrino as the LSP can give rise
to distinct signals for the µνSSM (for instance, final states with diphoton plus missing
energy, diphoton plus leptons and multileptons).4

In Tab. 5.4 we list the relevant parameters that were chosen such that a light CP-even
left-handed τ -sneutrino ν̃RτL is present. The parameters not shown are chosen to be the
same as in the previous BP, shown in Tab. 5.2. The vev v3L (corresponding to ν̃RτL) was
increased w.r.t. the NMSSM-like scenario, leading to a reduced tree-level mass of ν̃RτL,
scaling with the inverse of v3L, as can be seen from the approximate formula

m2
ν̃RiLν̃

R
iL
≈ Y ν

i vRvu
2viL

(
−
√

2Aνi − κvR +

√
2µ

tanβ

)
, (5.89)

which follows from the general expression shown in Eq. (3.48) when only one right-
handed neutrino superfield is considered. We also decreased the absolute value of Aν3 in
comparison to the previous BP, keeping it negative, so that it is of order κvR and the
the sum in the brackets of Eq. (5.89) becomes small.

In Fig. 5.3 we show the tree-level and loop-corrected spectrum of the scalars in the
region of λ, where there are no tachyons at tree level. For too small λ the tree-level mass
of ν̃RτL becomes tachyonic, because, for fixed µ, vR has to grow when λ becomes smaller.
At some point the second term in the bracket of Eq. (5.89) will grow larger than the
sum of the first and the third term. For too large λ, i.e., when vR becomes small, the
tree-level mass of the right-handed CP-even sneutrino becomes tachyonic, because the
first term in Eq. (3.53) is negative when Aκ < 0.

The value of ∼ 125 GeV for the SM-like Higgs-boson mass is reproduced in this BP
up to values of λ ≤ 0.22. However, considering the theoretical uncertainty, even higher

4Due to the R-parity breaking it is a slight abuse of terminology to refer to the left-handed sneutrino
as the LSP. However, the R-parity violating decays and the mixing of the ν̃RiL with SM particles are
suppressed by the smallness of Y νi , so that they can practically be identified as Susy particles.
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v1,2L/
√

2 v3L/
√

2 Y ν
i Aνi tanβ µ λ Aλ κ Aκ

10−5 4 · 10−4 5 · 10−7 −400 10 270 [0.19; 0.3] 1000 0.3 −1000

Table 5.4: Input parameters for the light τ -sneutrino scenario. Dimensionful parameters
are given in GeV.

values of λ can be viable. For λ = 0.236 the prediction for the SM-like Higgs-boson mass
decreases below m

(2)
h1
≈ 122 GeV. As discussed in the introduction, we assume a theory

uncertainty of ∼ 3 GeV on the mass evaluation, so we consider in this scenario the region
λ ≤ 0.236 to be valid regarding the SM-like Higgs-boson mass.

An interesting observation is that the mass of ν̃RτL is mainly induced via quantum
corrections, while the tree-level mass approaches zero for small values of λ. Since the
partial two-loop corrections are purely MSSM-like contributions, and since the ν̃RiL do
not mix significantly with the Higgs doublet fields HRd,u, the loop-corrections to ν̃RτL can
be entirely attributed to the one-loop corrections from the µνSSM. They increase the
mass of ν̃RτL roughly by a factor of two over the whole region of λ. In other words, for
light left-handed sneutrinos the radiative corrections at the one-loop level can be of the
same size as the tree-level masses themselves. This indicates that a consistent treatment
of quantum corrections to light left-handed sneutrino masses is of crucial importance in
the µνSSM.

The large upward shift of the mass of ν̃RτL through the one-loop corrections is due
to the fact that in the µνSSM the sneutrino fields are part of the Higgs potential, each
with an associated tadpole coefficient Tν̃RiL (see Eq. (5.10)). To ensure the stability of the
vacuum w.r.t. quantum corrections, the tadpoles are renormalized OS, absorbing all finite
corrections into the counterterms δTν̃RiL . In the mass counterterms for the left-handed
sneutrinos the finite parts δT fin

ν̃RiL
introduce a contribution of the form

δm2 fin
ν̃RiLν̃

R
iL

= −
δT fin

ν̃RiL
viL

+ · · · , (5.90)

which is enhanced by the inverse of the vev of νiL. Precisely these terms inside the
counterterms of the renormalized self-energies Σ̂

(1)

ν̃RiLν̃
R
iL

shift the poles of the propagator
matrix and increase the masses of the left-handed sneutrinos, especially in cases where
the tree-level masses are small.

This behavior is a peculiarity of the µνSSM in which the leptonic sector and the Higgs
sector are mixed due the breaking of R-parity. The relations between the vevs viL and
the soft masses m2

L̃
via the tadpole equations automatically lead to dependences between

the sneutrino masses and, for instance, the neutrino or the Higgs sector. In the NMSSM,
on the other hand, the sneutrinos are not part of the Higgs potential, since the fields
are protected by lepton-number conservation. Hence, the soft masses m2

L̃
are, without

further assumptions, free parameters that can be chosen without taking into account any
leptonic observable (such as neutrino masses and mixings). In principle, the additional
dependences of the µνSSM scalar masses on parameters related to the neutrino sector,
such as Y ν

i and viL, could be used (e.g. when all neutrino masses and mixing angles will
be known with sufficient experimental accuracy) to restrict the possible range of m2

L̃
,

and thus the possible values for the left-handed sneutrino masses. However, with our
current experimental knowledge on the neutrino masses, the possible values for the vevs
viL, and hence the possible range of left-handed sneutrino masses, are effectively not yet
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Figure 5.3: CP-even scalar mass spectrum of the µνSSM in the light τ -sneutrino scenario
at tree level (dashed) and at two-loop level (solid). On the right side we state the domi-
nant composition of the mass eigenstates. The lines corresponding to ν̃RτL are highlighted
in green.

constrained. Apart from that, the soft trilinears Aνi constitute a further independent
parameter to adjust the masses of the ν̃RiL, which is not directly related to the fermion
sector.

It should be noted as well, that the soft masses m2
L̃
also appear in the mass matrix

of the charged scalars and the pseudoscalars. In many cases, they are the dominant
term in the tree-level masses of the left-handed sleptons and sneutrinos, so the values
of the masses of charged sleptons and sneutrino of the same family will be close (see
also Eq. (3.86)). Thus, a precise treatment of quantum corrections of the size observed
in Fig. 5.3 is extremely important, since they might easily change the relative sign of
the mass differences of left-handed sleptons and sneutrinos of the same family. This can
result in a complete change of the phenomenology of the corresponding BP, for instance,
when the neutral (pseudo)scalar is the LSP [38, 48].

In Fig. 5.4 we compare the light CP-even scalar spectrum of the µνSSM to the cor-
responding Higgs sector in the NMSSM. We show the tree-level and one-loop corrected
masses of the light CP-even scalars in the µνSSM, and the masses of the SM-like Higgs
boson and the singlet-like Higgs boson in the NMSSM on the right, with parameters set
accordingly. We shade in gray the region of λ in which the prediction for the SM-like
Higgs-boson mass is below 122 GeV at the two-loop level. As expected, the SM-like
Higgs-boson mass and the mass of the singlet-like states turn out to be equal in both
models. Even where the SM-like Higgs boson is degenerate with the left-handed sneutri-
nos, such that a mixing of both states theoretically can become sizable, the differences
between the predictions for the SM-like Higgs-boson mass in both models are not larger
than a few keV.

It is rather surprising that the predictions for the SM-like Higgs-boson mass coincide
this precisely in both models, considering the fact that in the µνSSM a substantial
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Figure 5.4: Comparison of Higgs-boson masses in the light τ -sneutrino scenario. In the
shaded region the prediction for the SM-like Higgs-boson mass is below 122 GeV at the
two-loop level. Left: Masses of the SM-like Higgs-boson, the left-handed τ -sneutrino
(green) and the right-handed sneutrino in the µνSSM at tree level (dotted) and one-loop
level (dashed). Right: Masses of the SM-like Higgs-boson and the singlet-like Higgs boson
in the NMSSM at tree-level and one-loop level.

Figure 5.5: Absolute values of the mixing matrix elements at tree level |UH(0)
1i | (left)

and |UH(0)
2i | (right), whose squared values define the admixture of the two-lightest CP-

even scalar mass eigenstate h1,2 with the fields ϕi = (HRd , H
R
u , ν̃

R
R , ν̃

R
1L, ν̃

R
2L, ν̃

R
3L) in the

interaction basis. A substantial admixture of ν̃RτL (pink) with the SM-like Higgs boson
h125 and with the singlet ν̃R is present in the narrow region where the corresponding
tree-level masses are degenerate, i.e., at λ ∼ 0.20237 and λ ∼ 0.29692.
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mixing with the left-handed sneutrino is possible at tree level, as we show in Fig. 5.5.
We individually plot the elements of the first two rows of the tree-level mixing matrix
UH(0), whose squared values define the composition of the two lightest CP-even mass
eigenstate h(0)

1 and h(0)
2 at tree level. In the left plot we see that in the cross-over point

in which the masses of the τ -sneutrino and the SM-like Higgs boson become degenerate,
the lightest scalar results to be a mixture of ν̃RτL and the doublet-components HRu and
HRd . For example, if we fine-tune λ = 0.20237 we find that the lightest Higgs boson is
composed of approximately

Hd → |UH(0)
11 |2 ∼ 1% , (5.91)

Hu → |UH(0)
12 |2 ∼ 80% , (5.92)

ν̃3L → |UH(0)
16 |2 ∼ 19% . (5.93)

Nevertheless, due to the upward shift of the mass of ν̃RτL caused by the finite loop correc-
tions, as explained before, the one-loop corrections break the degeneracy and no trace on
the SM-like Higgs-boson mass remains which would deviate its prediction from the one
in the NMSSM.
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Chapter 6

Higgs potential of the µνSSM with
three right-handed neutrinos

In this chapter we apply our renormalization procedure to the µνSSM with three right-
handed neutrino superfields [1], instead of just one as in Ch. 5. Since three right-handed
neutrinos are present, a total number of three neutrino masses are generated already
at tree level via the electroweak seesaw mechanism. The scalar Susy partners of the
additional right-handed neutrinos extend the CP-even and CP-odd neutral scalar sector
by two additional particles, respectively. Consequently, the renormalization at the one-
loop level will be more complicated. Also the numbers of free parameters in the scalar
potential increases dramatically. For instance, there will be three different λi-terms, and
a total of ten κijk-terms (see Eq. (3.8)), considering that κijk must be symmetric under
the exchange of indices. The complete set of independent parameters utilized to define
the renormalization scheme is stated in Sect. 6.1. In analogy to the previous discussion
for the one-generation case, we give the precise form of the renormalization condition
for each parameter, again deploying OS conditions when this is eligible. Conceptual
differences to the discussion in Sect. 5.1 are emphasized. Afterwards, we describe the
incorporation of the loop corrections to the neutral scalar masses in Sect. 6.2. Because
neutrino masses and mixings can be accounted for at tree level in the three-generation
case, we are able to present BPs in the numerical discussion in Sect. 6.3 in which, in
addition to the properties of the SM-like Higgs boson, the neutrino sector is described in
agreement with experimental results. We focus in particular on scenarios incorporating
light right-handed neutrinos with masses close to the SM-like Higgs-boson mass.

6.1 Renormalization at the one-loop level

We already described the neutral scalar potential for the µνSSM with three right-handed
neutrino superfields in Sect. 3.3.1. The relevant part for the radiative corrections to the
masses of the neutral scalars is given by the tadpole equations shown in Eqs. (3.28)-(3.31),
and by the CP-even and CP-odd scalar mass matrices in Eq. (3.34) and Eq. (3.35), where
the vevs of the scalar components are defined via the decomposition in Eqs. (3.23)-(3.25).

As in the one-generation case, we substitute some of the parameters of the scalar
potential. To facilitate the comparison to calculations in the (N)MSSM, we again use
the parameters

tanβ =
vu
vd

and v2 = v2
d + v2

u + viLviL , (6.1)
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Soft masses vevs Gauge cpl. Superpot. Soft trilinears

m2
Hd

, m2
Hu

, m2
ν̃R ij

vd, vu, viR, viL g1, g2 λi, κijk, Y ν
ij T λi , T

κ
ijk, T

ν
ij

m2
L̃ij

, m2
HdL̃i

↓ ↓ ↓
THRd

, THRu , Tν̃RiR , Tν̃RiL , tanβ, v, viR, viL MW , MZ

m2
ν̃ i 6=j , m

2
L̃i 6=j

, m2
HdL̃i

Table 6.1: Set of independent parameters initially entering the tree-level Higgs potential
of the µνSSM on top, and final choice of free parameters after the substitutions defined
in the text.

instead of the vevs vd and vu as input parameters. v corresponds to the SM vev, such
that the SM gauge boson masses are given by

M2
W =

1

4
g2

2v
2 and M2

Z =
1

4

(
g2

1 + g2
2

)
v2 . (6.2)

We eliminate the gauge couplings g1 and g2 using the above formulas and instead use the
SM gauge boson masses as independent parameters. Hence, we can define OS conditions
forM2

W andM2
Z , in total analogy to the was already explained in Sect. 5.1. Furthermore,

the scalar soft masses m2
Hd

and m2
Hu

and the diagonal elements of the soft slepton mass
matrices (m2

L̃
)ii and (m2

ν̃)ii are replaced by the tadpole coefficient in which they appear.
Again, this is the same approach as was used in the one-generation case. The only
difference is that due to the presence of three CP-even right-handed sneutrinos, the soft
massm2

ν̃ becomes a 3×3 dimensional matrix. There are a total of eight tadpole equations.
The three coefficients Tν̃RiL shown in Eq. (3.30) are used to replace the elements (m2

ν̃)ii.
As explained before, the tadpole coefficients will be treated as OS parameters to ensure
the stability of the vacuum of the scalar potential at the one-loop level.

The remaining parameter appearing in the potential will be kept as independent pa-
rameters. They cannot be directly related to any physical observable yielding appropri-
ate OS conditions. Thus, they all are renormalized using DR renormalization conditions.
The complete set of independent parameters is summarized in Tab. 6.1 Accordingly, we
define the renormalized parameters as

THRd
→ THRd

+ δTHRd
,

THRu → THRu + δTHRu ,

Tν̃RiR
→ Tν̃RiR

+ δTν̃RiR
,

Tν̃RiL
→ Tν̃RiL

+ δTν̃RiL
,

m2
ν̃ i 6=j → m2

ν̃ i 6=j + δm2
ν̃ i 6=j ,

m2
L̃i 6=j

→ m2
L̃i 6=j

+ δm2
L̃i 6=j

,

m2
HdL̃i

→ m2
HdL̃i

+ δm2
HdL̃i

,

tanβ → tanβ + δ tanβ ,

v2 → v2 + δv2 ,

v2
iR → v2

iR + δv2
iR ,

v2
iL → v2

iL + δv2
iL ,

M2
W →M2

W + δM2
W ,

M2
Z →M2

Z + δM2
Z ,

λi → λi + δλi ,

κijk → κijk + δκijk ,

Y ν
ij → Y ν

ij + δY ν
ij ,

T λi → T λi + δT λi ,

T κijk → T κijk + δT κijk ,

T νij → T νij + δT νij .

(6.3)

We give the precise renormalization conditions used to define the counterterms of the
DR parameters in the following subsections. Once they are extracted, all vertex counter-
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terms of n-point functions are given as a linear combination of the counterterms of the
independent parameter shown above.

Also the field renormalization of the scalar fields, required to renormalize the
momentum-dependent parts of the self-energies, is defined (as in the one-generation case)
by DR renormalization conditions. We write the field renormalization as

φi → Z
1/2
φiφj

φj =

(
1 +

1

2
δZφiφj

)
φj , (6.4)

with φ = (Hd, Hu, ν̃1R, ν̃3R, ν̃3R, ν̃1L, ν̃2L, ν̃3L). δZφiφj is now an 8×8 dimensional matrix.
The DR conditions is as shown in Eq. (5.27), and the rotation to obtain the field renor-
malization counterterms in the mass eigenstate basis δZhihj can be found in Eq. (5.26).
Calculating the one-loop self-energies for the CP-even fields Σ

(1)
ϕiϕj we find

δZHdHd = − ∆

16π2

(
λiλi + Y e

ijY
e
ij + 3

(
Y d
i Y

d
i

))
, (6.5)

δZHdν̃iL =
∆

16π2
λjY

ν
ij , (6.6)

δZHuHu = − ∆

16π2

(
λiλi + Y ν

ijY
ν
ij + 3 (Y u

i Y
u
i )
)
, (6.7)

δZν̃iRν̃jR = − ∆

8π2

(
λiλj + κiklκjkl + Y ν

kiY
ν
kj

)
, (6.8)

δZν̃iLν̃jL = − ∆

16π2

(
Y e
kiY

e
kj + Y ν

ikY
ν
jk

)
. (6.9)

We verified that the coefficients of the divergent part of the field renormalization counter-
terms are equal to the one-loop anomalous dimensions of the corresponding superfields
γ

(1)
ij , neglecting the terms proportional to the gauge couplings g1 and g2, i.e.,

δZφiφj =
γ

(1)
ij ∆

16π2

∣∣∣∣∣

g1,g2→0

, (6.10)

which is the same relation that holds in the (N)MSSM. Note that due to the presence of
three ν̃iR, all sharing the same quantum numbers, a second source of off-diagonal field
renormalization counterterms is present. Unfortunately, this complicates the expressions
for renormalized Green’s functions that contain a sum over one of the indices of the field
renormalization counterterms of each external field. Therefore, also the DR conditions
will be more complicated. We briefly summarize the renormalization of each parameter
in the following. Since the general strategy for finding the parameter counterterms is
the same as was used in Ch. 5, where we described more detailed how they can be
extracted from demanding the finiteness of renormalized 2- and 3-point Green’s functions,
we here only state the renormalization condition and the resulting counterterm in the
DR scheme for each parameter. The order in which the counterterms are extracted (and
given here) is relevant because some renormalization conditions contain counterterms of
other parameters that necessarily have to be extracted before. The general strategy is
illustrated in Fig. 6.1.
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δe

δv2 δM2
W δM2

Z

δg2

δg1 δv2u δv2d

δv2iL δλ δY νij δ tanβ

δv2iR

δκijk

(
δm2

HdL̃

)
i

δTλi δT νij δTκijk

(
δm2

ν̃

)
ij

(
δm2

L̃

)
ij

Figure 6.1: Strategy for extracting the counterterms required for renormalizing the neu-
tral scalar potential. The arrows indicate the order in which the counterterms were
obtained, while the colors stand for the sector that was used to extract the counterterms.
Red : Renormalization of electromagnetic coupling. Violet : Renormalization of CP-odd
self-energies. Yellow : Renormalization of gauge boson self-energies. Blue: Renormaliza-
tion of neutral fermion self-energies. Green: Renormalization of CP-even scalar trilinear
couplings. White: Completely fixed by the dependence on other counterterms. The
counterterms in the dashed boxes do not belong to the set of independent parameters,
but their counterterms were calculated as an intermediate step. The counterterms below
one of the horizontal dashed lines could be extracted only after the counterterms above
the same horizontal line were determined.
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Renormalization of tanβ

Using the renormalization shown in Eq. (5.66) for vd and vu, their counterterms can be
extracted in the neutral fermion sector, such that

δv2
d =

4vd
g2

(
Σ
S(1)

W̃ 0H̃0
d

∣∣∣∣
div

− g2

4

(
vd
(
δZ

W̃ 0W̃ 0 + δZ
H̃0
dH̃

0
d

)
+ viLδZνiLH̃0

d

)
− vd

2
δg2|div

)
,

(6.11)

δv2
u =

4vu
g2

(
− Σ

S(1)

W̃ 0H̃0
u

∣∣∣
div
− g2vu

4

(
δZ

W̃ 0W̃ 0 + δZ
H̃0
uH̃

0
u

)
− vu

2
δg2|div

)
, (6.12)

where the DR field renormalization constants for the neutral fermions were defined in
Eq. (5.37). The counterterms δg1 and δg2 are related to the OS counterterms δM2

W and
δM2

Z , and given by

δg2 =
g2

2

(
δM2

W

M2
W

− δv2

v2

)
, (6.13)

δg1 =
2

g1v2

(
δM2

Z − δM2
W

)
− g1

2

δv2

v2
. (6.14)

Here, the counterterm for the SM vev δv2 is defined as in the one-generation case (see
Eq. (5.56)). Then the counterterm δ tanβ follows from Eq. (5.67). We find

δ tanβ =
∆

32π2
tanβ

(
3
(
Y d
i Y

d
i − Y u

i Y
u
i

)
+ Y e

ijY
e
ij − Y ν

ijY
ν
ij −

1

vd
λiY

ν
jivjL

)
. (6.15)

Renormalization of Y ν
ij

Given δv2
u, the counterterms for the neutrino Yukawa couplings Y ν

ij can be extracted from

the renormalized self-energy Σ̂
(1)
νiLνiR . The renormalization condition reads

δY ν
ij =

√
2

vu
ΣS(1)
νiLνjR

∣∣∣
div
− 1

2

(
δZνiLνkLY

ν
kj − δZνiLH̃0

d
λj + δZνkRνjRY

ν
ik

)
−
Y ν
ij

2

δv2
u

v2
u

, (6.16)

and we find

δY ν
ij =

∆

32π2

((
−4παY ν

i

(
s2

w + 3c2
w

)

c2
ws

2
w

+ λkλk + 3Y u
k Y

u
k + Y ν

klY
ν
kl

)
Y ν
ij + Y e

kiY
e
klY

ν
lj

+ 3Y ν
ikY

ν
lkY

ν
lj + 2Y ν

ikκklmκjlm + 3Y ν
ikλkλj

)
. (6.17)

Renormalization of λi

Similarly, from the form of Σ̂
(1)

H̃0
dνiR

we can find the condition

δλi = −
√

2

vu
Σ
S(1)

H̃0
dνiR

∣∣∣∣
div

+
1

2

(
δZ

νjLH̃
0
d
Y ν
ji − δZH̃0

dH̃
0
d
λi − δZνiRνjRλj

)
− λi

2

δv2
u

v2
u

, (6.18)
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which yields

δλi =
∆

32π2

((
−4πα(s2

w + 3c2
w)

c2
ws

2
w

+ 4λjλj + 3(Y d
j Y

d
j + Y u

j Y
u
j ) + Y e

jkY
e
jk + Y ν

jkY
ν
jk

)
λi

+ 3Y ν
jiY

ν
jkλk + 2κijkκjklλl

)
. (6.19)

Renormalization of viL

Using the fact that δg1 is fixed by the relation shown in Eq. (6.14), we can define for
δv2
iL = 2viL δviL the renormalization condition

δviL = − 2

g1
Σ
S(1)

νiLB̃

∣∣∣
div
− 1

2

(
δZνiLνjLvjL + δZ

νiLH̃
0
d
vd + δZ

B̃B̃
viL

)
− viL

δg1

g1
, (6.20)

from which we obtain

δv2
iL =

∆

16π2
viLδij

(
2πα

(
s2

w + 3c2
w

)
vjL

s2
wc

2
w

+ vdY
ν
jkλk −

(
Y e
kjY

e
kl − Y ν

jkY
ν
lk

)
vlL

)
. (6.21)

Renormalization of viR

The last counterterms obtained in the neutral fermion sector are the ones for the vevs
of the right-handed sneutrinos δv2

iR = 2viR δviR. Their extraction was more complicated
due to the fact that there is no tree-level quantity in which only one of the three viR
appears separately. They always appear in sums over the family index. Therefore, we
calculated loop corrections to the three mass matrix elements

(
mχ0

)
νiLH̃0

u
= −

Y ν
ijvjR√

2
. (6.22)

This provides us with a linear system of three independent equations,

Y ν
ijδvjR =

√
2 Σ

S(1)

νiLH̃0
u

∣∣∣
div
− 1

2

(
δZνiLνjLvkRY

ν
jk − δZχi6vjRλj + δZχ77vjRY

ν
ij

)
− vjRδY ν

ij ,

(6.23)

that can be solved analytically for δvjR. This gives

δv2
iR = − ∆

8π2
viRδij

(
Y ν
kjY

ν
klvlR + κjkmκklmvlR + vkRλkλj

)
. (6.24)

Renormalization of κijk

The first counterterms extracted in the scalar sector are the counterterms for κijk (see
Fig. 6.1). Similarly to the vevs viR, they never appear isolated, except for the parameter
κ123. However, using the renormalized expression in Eq. (4.18) for the vertex

Γ
(0)

ν̃RiRν̃
R
kRν̃

R
jL

=
1

2
vdλkY

ν
ji +

1

2
vdλiY

ν
jk −

1

2
vlLY

ν
li Y

ν
jk −

1

2
vlLY

ν
lkY

ν
ji − vuκiklY ν

jl , (6.25)

we can extract the counterterms for the three subsets (δκ11j , δκ22j , δκ33j) by renormal-
izing the subset of vertices (Γν̃R1Rν̃R1Rν̃RjL , Γν̃R2Rν̃

R
2Rν̃
R
jL
, Γν̃R3Rν̃

R
3Rν̃
R
jL
). Thus, for each subset
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(κiij ; i = 1, 2, 3) we obtain a linear system of three (j = 1, 2, 3) equations to extract the
counterterms δκiij from the condition that the renormalized one-loop 3-point function is
finite. The renormalization conditions for the subsets κijj then read

−vuY ν
jkδκiij = Γ

(1)

ν̃RiRν̃
R
iRν̃
R
jL

∣∣∣∣
div

− 1

2

(
2δZν̃kRν̃iRΓ

(0)

ν̃RkRν̃
R
iRν̃
R
jL

+ δZHdν̃jLΓ
(0)

ν̃RiRν̃
R
iRH

R
d

+ δZν̃kLν̃jLΓ
(0)

ν̃RiRν̃
R
iRν̃
R
kL

)
−
(
λiY

ν
jiδvd + vdY

ν
jiδλi + vdλiδY

ν
32 − vuκiikδY ν

jk

− κiikY ν
jkδvu − vuY ν

jkδκiik − vkLY ν
kiδY

ν
ji − vkLY ν

jiδY
ν
ki − Y ν

jiY
ν
kiδvkL

)
,

(6.26)

where

Γ
(0)

ν̃RiRν̃
R
kRν̃

R
jL

=
1

2
vdλkY

ν
ji +

1

2
vdλiY

ν
jk −

1

2
vlLY

ν
li Y

ν
jk −

1

2
vlLY

ν
lkY

ν
ji − vuκiklY ν

jl , (6.27)

Γ
(0)

ν̃RiRν̃
R
jRH

R
d

= −vdλiλj + vuκijkλk +
1

2

(
Y ν
kiλjvkL + Y ν

kjλivkL
)
, (6.28)

When the counterterms δκiij are fixed by the above condition, the last missing countert-
erm δκ123 can be derived from the renormalization condition

δκ123 =

√
2

v1R
ΣS(1)
ν2Rν3R

∣∣∣
div
− 1

2v1R

(
δZν2RνiRvjRκi3j + vjRκi2jδZνiRν3R

)

− 1

v1R

(
v2Rδκ223 + v3Rδκ233 + κi23δviR

)
. (6.29)

Evaluating the above system of equations we find

δκijk =
∆

16π2

(
Y ν
lkY

ν
lmκijm + Y ν

ljY
ν
lmκikm + Y ν

li Y
ν
lmκjkm + κiklκlmnκjmn + κijlκlmnκkmn

+ κilmκlmnκjkn + κjklλlλi + κiklλlλj + κijlλlλk

)
. (6.30)

Renormalization of T λi
The counterterms for the soft trilinear parameters were most conveniently obtained by
renormalizing scalar 3-point functions. The parameters T λi are contained in the vertex

Γ
(0)

HRd H
R
u ν̃
R
iR

=
T λi√

2
+ κijkλjvkR , (6.31)

so that we can derive the renormalization condition

δT λi =
√

2 Γ
(1)

HRd H
R
u ν̃
R
iR

∣∣∣
div
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2
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R
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)
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√

2

(
κijkλjδvkR + κijkvkRδλj + λjvkRδκijk

)
, (6.32)

with

Γ
(0)

HRu ν̃
R
iLν̃
R
jR

= −
T νij√

2
− Y ν

ikκjklvlR . (6.33)
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This gives

δT λi =
∆

32π2
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. (6.34)

Renormalization of T νij
In the same way, the counterterms for T νij can be derived from the tree-level vertex shown
in Eq. (6.33), such that the renormalization conditions read

δT νij = −
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2 Γ
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∣∣∣∣
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yielding
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∆
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. (6.36)

Renormalization of T κijk
The most complicated renormalization condition results for the counterterms of T κijk. We
use that at tree-level the corresponding vertex is given by

Γ
(0)

ν̃RiRν̃
R
jRν̃
R
kR

= −
√

2T κijk − 2
(
κijlκklmvmR + κilmκjklvmR + κiklκjlmvmR

)
. (6.37)

The renormalization condition for the T κijk then read

δT κijk = − 1√
2

Γ
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R
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)
, (6.38)
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and we find for the counterterms

δT κijk =
∆

16π2
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. (6.39)

Renormalization of m2
HdL̃i

The remaining independent parameters that have to be renormalized are the soft scalar
mass parameters. As in the one-generation case, we decided to extract their counterterms
in the CP-odd scalar sector.

The parameters (m2
HdL̃

)i appear in the element m2
ν̃IiLH

I
d
shown in Eq. (3.62). From

the renormalization of this expression we obtain the renormalization condition

δ
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)
, (6.40)

The mass counterterm (δm2
σ)ν̃IiLH

I
d
renormalizes the scalar self-energy Σ

(1)

ν̃IiLH
I
d

. We al-
ready explained in Sect. 5.1 how these contributions can be obtained by calculating all
self-energy diagrams in the mass eigenstate basis, and rotating them back to the inter-
action basis (see Eq. (5.79) and Eq. (5.80)).

Renormalization of m2
L̃i 6=j

The three independent off-diagonal parameters ofm2
L̃
appear in the tree-level mass matrix

in m2
ν̃IiLν̃

I
jL

(see Eq. (3.65)). Hence, the renormalization conditions for the counterterms
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. (6.41)

Renormalization of m2
ν̃ i 6=j

The off-diagonal elements of (m2
ν̃)ij , not present in the one-generation case where m2

ν̃ is
just a single parameter, are contained in the mass matrix elements mixing the different
generations of right-handed sneutrinos. In the CP-odd sector we find from m2

ν̃IiRν̃
I
jR

given

in Eq. (3.61) the renormalization condition
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√
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FeynArts model file

The calculation of the one-loop n-point vertex corrections was done by using the same
tools as in the one-generation case. We generated the Feynman diagrams using our
FeynArts [2] model file. It was initially created with SARAH version 4.12.0 [3, 4].
We obtained the one-loop amplitudes regularized in DRED utilizing FormCalc [5] and
LoopTools [5, 6]. Because of the huge expressions for the tree-level couplings, we modi-
fied the FeynArts model file by substituting these expressions by generic functions. They
are only evaluated explicitly if the user decides to do so. The same was done for the coun-
terterms defined above, which are all included in our private model file. Therefore, the
calculation of the one-loop scalar self-energies is fully automated. Apart from that, also
the counterterm diagrams for the neutral fermion self-energies and the scalar trilinear
vertices with three CP-even Higgs bosons on the external legs can be generated in terms
of the counterterms shown above.

We used the FeynArts model file to do several consistency checks on the proper
renormalization of the scalar potential, i.e., that all UV divergences in one-loop Greens’s
functions are canceled by our counterterms:

- The field renormalization counterterms are related to the anomalous dimensions as
shown in Eq. (4.29)

- The parameter counterterms are related to the one-loop β-functions as shown in
Eq. (4.28).1

- All neutral scalar self-energies are finite.2

- All CP-even scalar 3-point functions are finite
- All neutral fermion self-energies are finite. For this check the two additional coun-
terterms δM1 and δM2 were extracted. However, they do not appear in the scalar

1The β-functions and anomalous dimensions γij at the one-loop level can be calculated with SARAH,
which evaluates the general expressions found in Refs. [7–12].

2To check the finiteness of a certain expression, LoopTools allows for calculating loop integrals for
arbitrary values of ∆ as defined in Eq. (4.27). If the one-loop amplitudes are properly renormalized, the
terms containing ∆ cancel each other, such that renormalized quantities should be independent of ∆.
This can be checked numerically by varying ∆ over several orders of magnitude and verifying that the
results are unchanged.
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potential, and thus are not relevant for the discussion here.
- In the limit Y ν

i1 = Y ν
i and vanishing otherwise the counterterms for the one-

generation case are recovered, which in turn reduce to the NMSSM counterterms
in the limit Y ν

i → 0.

6.2 Loop-corrected Higgs-boson masses

In analogy to the one-generation case, we applied our OS-DR renormalization prescription
to the neutral scalar spectrum. The radiative corrections to the pole masses are contained
in the renormalized self-energies

Σ̂hihj

(
p2
)

= Σ̂
(1)
hihj

(
p2
)

+ Σ̂
(2′)
hihj

+ Σ̂resum
hihj

, (6.43)

where we again supplemented our full one-loop corrections Σ̂
(1)
hihj

by higher-order correc-
tions from the MSSM (see Sect. 5.2 for details). Inserting these contributions into the
inverse propagator matrix as shown in Eq. (5.87) yields the radiatively corrected pole
masses and mixing matrices UH after diagonalizing Γ̂h.

Due to the presence of three scalar gauge-singlet fields ν̃iR, Γ̂h is a matrix of dimension
8, instead of 6 like in the one-generation case. Because we neglect CP-violation, Γ̂h
remains symmetric, so that a total number of 36 self-energies have to be calculated for
each BP. Each self-enregy is a very large function of the momentum. Therefore, the
numerical evaluation of the radiative corrections is rather time-consuming in the µνSSM
with three right-handed neutrino superfields, having in mind that the diagonalization of
Γ̂h is done iteratively, such that the self-energies have to be evaluated several times for
different momenta. Consequently, our numerical analysis is restricted to a set of BPs
illustrating the importance of accurately taking into account the radiative corrections,
particular when the mixing of the SM-like Higgs boson with the ν̃RiR is sizable.

6.3 Numerical analysis

As already emphasized in Sect. 6.2, in the numerical analysis we concentrate on BP in
which a right-handed sneutrino is substantially mixed with the SM-like Higgs boson. To
achieve that only a single right-handed sneutrino mixes with the SM-like Higgs boson,
we set κijk = κ δijδjk in the following (see Eq. (3.51)) [13]. Naturally, the mass scale
of the right-handed sneutrinos will be of the order of ∼ 125 GeV in BPs yielding large
mixing between ν̃RiR and the SM-like Higgs boson. However, scenarios in which the decay
of the SM-like Higgs boson into two right-handed sneutrinos is kinematically allowed are
experimentally very constrained [13].

In contrast to most of the previous studies of the µνSSM with three generations
of right-handed neutrinos [13–17], we do not make the simplifying assumption that all
genuine low-energy µνSSM-parameters have universal values independent of the family
index. In Sect. 6.3.3 we elaborate on the effect of non-universal λi on the SM-like Higgs-
boson mass, while keeping λλλ2 = λiλi constant. Since we know from Eq. (3.54) that the
tree-level mass of the SM-like Higgs boson primarily depends on λλλ2, it will be discussed
whether the loop corrections increase the dependence on the individual values λi.
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Experimental constraints

We use the public code HiggsBounds v.5.2.0 [18–22] to determine whether a BP has
been excluded by cross-section limits from Higgs searches at LEP, LHC or Tevatron.
These searches are mostly sensitive to the heavy Higgs and the right-handed sneutrinos,
if the latter are substantially mixed with the SM-like Higgs boson. The production of the
left-handed sneutrinos is much smaller at the LHC, and signals from their decay usually
demand dedicated searches [23], especially if the left-handed sneutrino is the LSP [24, 25].

The properties of the SM-like Higgs boson, i.e., its mass and signal rates at LHC
and Tevatron, are checked using the public code HiggsSignals v.2.2.1 [26–28]. Here,
we assume a theoretical mass uncertainty of 3 GeV. HiggsSignals provides us with
a χ2-analysis of nobs = 106 observables in the 7+8 TeV data package and nobs = 101
observables in the 13 TeV data package. In our plots we show the reduced χ2

red = χ2/nobs,
where a value of χ2

red = 1 means that, on average, the signal rates of the SM-like Higgs
boson are at the level of the ±1σ range of the measurements.

For the necessary input of HiggsBounds and HiggsSignals we compute the decay
widths of the scalars at leading order, but with the loop-corrected mixing matrix elements
inserted in the expressions of the scalar couplings. In the limit of vanishing external
momentum, which we used in the determination of the mixing matrix elements for the
couplings, this method corresponds to include the finite wave-function renormalization
factors (Z-factors) for each external scalar [29, 30]. For loop-induced decays and off-shell
decays to vector bosons we implemented analytic results from the MSSM well known
in the literature [31–35]. We scaled the expressions with effective couplings defined by
the mixing matrix elements and tanβ to obtain the result for the scalars in the µνSSM.
For the coupling to b-quarks we included the running bottom mass and for the decay to
gluons the running of αs from MZ to the mass of the decaying scalar, and finally add
leading higher-order QCD corrections [33, 36].

The properties of the neutrino sector were verified to be in agreement with the mea-
surements of the mass-squared differences and the mixing angles from the PMNS matrix
(see Eq. (3.92)), which are given in the µνSSM by

s2
13 = |UV31|2 , s2

12 =
|UV21|2
1− s2

13

, s2
23 =

|UV32|2
1− s2

13

, (6.44)

δm2
12 = m2

λ02
−m2

λ01
, ∆m2

13 ∼ ∆m2
23 = m2

λ03
−m2

λ01,2
(6.45)

These equations are valid as long as Y e
ij is chosen to be diagonal. We check that our

predictions are within the ±3σ bands published by the NuFit collaboration [37, 38],

6.80 eV2 ≤ δm2
12/10−5 ≤ 8.02 eV2 , 2.399 eV2 ≤ ∆m2

13/10−3 ≤ 2.593 eV2 , (6.46)

0.0198 ≤ s2
13 ≤ 0.0244 , 0.272 ≤ s2

12 ≤ 0.346 , 0.418 ≤ s2
23 ≤ 0.613 , (6.47)

where we considered the normal mass ordering which is now favored by experiments [39].
A genetic algorithm was used to find parameter points that minimize the sum of squared
deviations between theoretical prediction and experimental values specified above [40].
Even though the µνSSM allows for flavor-violating decays of leptons, the existing exper-
imental bounds (for instance on µ→ eγ) are automatically fulfilled when the constrains
on neutrino masses are taken into account [41].

We use the left-handed vevs viL, the soft gaugino massesM1 andM2, and the neutrino
Yukawa couplings Y ν

ij to fit the neutrino masses and mixings accurately, making use of
the fact that they can be modified without spoiling the properties of the SM-like Higgs
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tanβ λ κ v1,3R v2R Aλ Aκ Aν

5 [0.13, 0.18] 0.5 1000 765 1000 −1000 −1000

Au3 Au1,2 Ad,e m
Q̃,ũ,d̃

mẽ M3

−2000 −1500 −1500 1500 200 2700

v1L/10−4 v2L/10−4 v3L/10−4 Y ν
11/10−7 Y ν

22/10−7 Y ν
33/10−7 M1 M2

1.390 6.215 4.912 4.181 1.756 6.306 1228 2814

Table 6.2: Low-energy values for the parameters, as defined in the text, in the light ν̃RµR
scenario. Dimensionful parameters are given in GeV. The parameters in the last row are
fitted to neutrino oscillation data.

boson, whose dependence on these parameters is mild. In this chapter it will be sufficient
to just consider diagonal non-zero elements of Y ν

ij .
We concentrate here on the scalar sector of the µνSSM. Since the fitting to neutrino

data has to be done numerically, which takes a quit amount of time, we do the fitting
in our scans just in one particular point for each scenario. By varying a parameter, the
prediction for the neutrino properties can be outside the experimentally allowed range
in some points. We indicate in our plots when this is the case. Since the neutral fermion
mass matrix is of dimension 10, with large hierarchies between the neutrino sector and
the remaining part, including one-loop corrections is time-consuming and numerically
very challenging. Therefore, we stick to a tree-level analysis for the neutrinos. However,
we checked for several points that the one-loop corrections are sub-leading and can in
principle be compensated by a slight change of the parameters.3

6.3.1 Light right-handed µ-sneutrino scenario

The first scenario we present is one with a light right-handed µ-sneutrino that mixes
substantially with the SM-like Higgs boson. We show the chosen parameters in Tab. 6.2.
The values for SM parameters are chosen as in the one-generation case, as shown in
Tab. 5.3. To simplify the notation we define λ = λi, Aλ = Aλi , A

ν = Aνii, κ = κiii and
Aκ = Aκiii and vanishing otherwise. The soft parameters are given in terms of Ad = Adi ,
Ae = Aeii, mQ̃

= m
Q̃i
, mũ = mũi , md̃

= m
d̃i
, and mẽ = mẽii and vanishing otherwise.

We vary over a small range of the universal parameter λ, while keeping the remaining
parameters fixed. For the right-handed e- and τ -sneutrino vevs we chose v1,3R = 1 TeV,
but set a smaller value of v2R = 765 GeV for the µ-sneutrino vev to decrease the mass
of the CP-even µ-sneutrino to the range around the SM-like Higgs-boson mass. It is of
no relevance that ν̃RµR was picked as the light right-handed sneutrino. The large value
of κ = 0.5 assures that the other two right-handed sneutrinos will have masses between
300 and 400 GeV, well above 125 GeV. Because the SM-like Higgs-boson mass will get
additional contributions from the mixing with ν̃RµR, tanβ can be chosen rather low.

We fit the properties of the neutrinos in the BP with λ = 0.168, leading to the values
of viL, Y ν

ii , M1 and M2 shown in Tab. 6.2. We emphasize that this effectively leaves just
the trilinear parameters Aνii to adjust the masses of the left-handed sneutrinos. For the
prediction of the masses of the right-handed sneutrinos and the SM-like Higgs boson, the
fitted parameters only play a minor role.

3See also Ref. [17] for a detailed discussion of radiative corrections to the neutrino masses.
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Figure 6.2: CP-even scalar spectrum in the light ν̃RµR scenario at tree level, one-loop level
and partial two-loop level. We show in the brackets the dominant composition of the
tree-level, one-loop and two-loop mass eigenstates h(0), h(1) and h(2), in the experimen-
tally allowed region of the plot. The desired SM-like Higgs-boson mass is indicated with
the horizontal green band, assuming a theory uncertainty of 3 GeV. The red regions are
excluded by direct searches for additional scalars. In the yellow region the prediction for
the mixing angles of the neutrinos lies outside of the 3σ band of the experimental mea-
surement. On top we show χ2

red for various Higgs-boson signal-strength measurements
at LHC.
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Figure 6.3: Doublet components (HRd , HRu ) and the right-handed µ-sneutrino component
(ν̃RµR) of the lightest CP-even mass eigenstate h(2)

1 . The components are defined by

|UH(2)
1i |2 with i = 1, 2 and i = 4 respectively.

In Fig. 6.2 we show the resulting spectrum of the light CP-even scalars.4 The re-
maining CP-even scalars not shown in the plot have masses above 300 GeV and do not
play a role in the following discussion. The dotted lines represent the tree-level masses
m

(0)
hi

, the dashed lines the masses including the full one-loop corrections m(1)
hi

, and the

solid lines the one-loop + partial two-loop + resummed corrected masses m(2)
hi

(referred
to as two loop in the following, as was done in Ch. 5). We mark the regions in the
plot which are excluded experimentally, either by HiggsBounds (red), or by not being
in agreement with the neutrino oscillation data (yellow). We stress that region 2 is just
excluded for the precise choice of parameters shown in Tab. 6.2. A new fit of the neutrino
properties for each value of λ could accommodate predictions for the properties of the
neutrinos in agreement with experiments. However, since this would exclusively affect
the phenomenology of the heavier left-handed sneutrinos in the scalar sector, we do not
apply the fit for each value of λ.

The spectrum is characterized by the interplay between the light ν̃RµR and the SM-
like Higgs boson. For small λ the two lightest loop-corrected mass eigenstates h1 and h2

have roughly an equal amount of HRu - and ν̃RνR-admixture (see also Fig. 6.3). Region 1 is
excluded by direct searches at the LHC, because there both h1 and h2 share a substantial
Higgs-doublet admixture, such that via the diphoton signal strength of h1 this region is
excluded by LHC constraints [43]. At λ ∼ 0.14 the point is reached where the mass of
h1 drops well below 125 GeV. Thus, beyond that point h1 can be identified with ν̃RµR,
as the doublet-component of h1 shrinks to values of roughly ∼ 10%. h2, on the other
hand, sheds its sneutrino admixture, so that it can identified as the SM-like Higgs boson,
and the large quantum corrections from the top/stop sector dominantly contribute to

4Plots in this chapter have been produced using Matplotlib [42] in Python.
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Figure 6.4: Effective couplings of the two light CP-even scalar mass eigenstates h(2)
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2 (blue) to up-type quarks (solid) and down-type quarks (dashed), normalized to

the SM prediction.

the mass of h2. This yields an increase of the SM-like Higgs boson mass of several GeV,
so that beyond region 3 it agrees with the experimental value, assuming a theoretical
uncertainty of 3 GeV.

An interesting observation is that in the allowed region of λ the large one-loop cor-
rections change the order of ν̃RµR and the SM-like Higgs boson. While the large shift of
the SM-like Higgs-boson mass from ∼ 83 GeV at tree level to ∼ 125 GeV at two-loop
level are familiar from the MSSM, the large one-loop corrections to ν̃RµR, with a tree-level
mass of ∼ 147 GeV and a two-loop mass below 100 GeV, emphasize the importance of
accurately taking into account the radiative corrections to the Higgs-boson masses in the
µνSSM.

In the allowed region, the doublet component of ν̃RµR reaches values of approximately
10%, which can be seen in Fig. 6.3, where we plot the down- and up-type doublet compo-
nentHRd andHRu , and the ν̃RµR-component of the lightest CP-even scalar mass eigenstates

h
(2)
1 . Naturally, this mixing will also affect the SM-like Higgs-boson properties. In this

way, scenarios like the one shown here will be tested by experiments in two different and
complementary ways, both caused by the mixing of ν̃RµR and the SM-like Higgs boson.
Firstly, direct searches for additional Higgs bosons can look for ν̃RµR, because it is directly
coupled to SM particles. Secondly, precise measurements of the SM-like Higgs-boson
couplings can detect (or exclude) possible variations from SM predictions.

To illustrate the possible modifications, we show in Fig. 6.4 the effective couplings of
the two light CP-even scalar mass eigenstates to up- and down-type quarks normalized to
the SM-prediction which in good approximation can be expressed via the loop-corrected
mixing matrix elements UH(2)

ij and β;

chidd =
U
H(2)
i1

cosβ
, chiuu =

U
H(2)
i2

sinβ
. (6.48)
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tanβ λ κ vR Aλ Aκ Aν

9.0 0.08 0.3 [1210, 1270] 1000 −1000 −1000

Au,d,e m
Q̃,ũ,d̃

mẽ M3

−1000 1000 200 2700

v1L/10−5 v2L/10−5 v3L/10−4 Y ν
11/10−7 Y ν

22/10−7 Y ν
33/10−8 M1 M2

1.466 8.520 1.855 2.963 5.337 5.902 175.6 188.0

Table 6.3: Same as in Tab. 6.2 for the scenario with three light ν̃RiR.

In the experimentally allowed region the effective coupling of the SM-like Higgs boson
to up-type quarks shows deviations of roughly 10%. This is of the order of precision
expected by measurements of the SM Higgs-boson couplings at the High-Luminosity
LHC [44], and (depending on the center-of-mass energy deployed) an order of magnitude
larger than the uncertainty expected for these kind of measurements at a possible future
e+e− collider like the ILC [45–47]. Comparing to Fig. 6.2 (top) we can see that the region
where the effective couplings are closest to one, meaning equal to the SM prediction, does
not coincide with the region where the χ2

red from HiggsSignals is minimized. This is
because the mass of the SM-like Higgs boson is slightly too small in this range of λ, so
even including a theoretical uncertainty of 3 GeV some signal strength measurements
implemented in HiggsSignals are not accounted for by h(2)

2 , so that χ2
red is worse.

6.3.2 Three right-handed sneutrinos below 125 GeV

In Sect. 6.3.1 we demonstrated how BPs with light right-handed sneutrinos give rise to
interesting experimental signatures due to the mixing with the SM-like Higgs boson. Us-
ing data of direct searches for additional Higgs bosons and measurements of the couplings
of the SM-like Higgs boson, the parameter space of the µνSSM can be constrained effec-
tively. In this section we present a scenario in which all three of the CP-even right-handed
sneutrinos will have masses below 125 GeV. We choose the parameters appearing in the
mass terms of the ν̃RiR to be universal, i.e., λ := λi, vR := viR, κ := κiii, Aλ := Aλi ,
Aν := Aνii, A

κ := Aκiii, and vanishing otherwise. As explained in Sect. 3.3.1, this assures
that only one of the ν̃RiR mixes substantially with the SM-like Higgs boson, while the
other two are practically decoupled. This helps to control the total admixture of the
doublet components of the ν̃RiR. A parameter scan including scenarios with all three ν̃RiR
possibly mixed with the SM-like Higgs boson is left for a future work.

The complete set of free parameters is shown in Tab. 6.3. In this scenario we vary
vR, because the vevs appear linearly in the Majorana-like mass terms of the ν̃RiR. Thus,
they are convenient parameters to control the masses. By decreasing λ compared to the
BP in Sect. 6.3.1 the overall behavior of the SM-like Higgs boson is aligned more to the
SM predictions. Consequently, because at tree level the additional contribution to the
SM-like Higgs-boson mass proportional λλλ2 is smaller (see Eq. (3.54)), tanβ is larger to
increase the quantum corrections. Also the value for κ is decreased, so that the masses
of the ν̃RiR are smaller. As before, the parameters in the last row of Tab. 6.3 were fitted
to accurately predict the left-handed neutrino masses and mixings. The fit was done in
the point vR = 1226 GeV, but in this case the neutrino data is described in agreement
with experimental data over the whole range of vR at tree level.

We show the resulting light CP-even scalar spectrum in Fig. 6.5. In the experimen-
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tally allowed region (1213 GeV ≤ vR ≤ 1235 GeV) the lightest mass eigenstates h1,2

are two almost degenerate right-handed sneutrinos. The third right-handed sneutrino
corresponds to h3. It is is roughly 20 GeV heavier and acquires substantial mixing with
the SM-like Higgs boson h4. Naturally, the right-handed sneutrinos increase their masses
when vR becomes larger, but also the SM-like Higgs-boson mass increases, because the
mixing with the heavier ν̃RiR gives additional contributions.

The BP is excluded experimentally for small values of vR in region 1 by searches for
the decay of the SM-like Higgs boson into two lighter scalars, that subsequently decay into
two b-jets and a pair of µ-leptons [48]. There the two lightest mass eigenstates h1,2 become
lighter than half the mass of h4, so the decays h4 → h1,2h1,2 are kinematically allowed.
These additional decay channels are also the reason why the χ2

red from HiggsSignals
rapidly increases in region 1, because it suppresses ordinary SM-like decays of h4.

When vR increases above 1235 GeV further constrains from direct searches for addi-
tional Higgs bosons and measurement of the properties of the SM-like Higgs boson become
relevant. χ2

red quickly increases above 2 at vR ∼ 1237 GeV. Already at vR ∼ 1235 GeV
the scenario is excluded by LEP searches [49], yielding the red region 2. Here, the mixing
of h3 and h4 enlarges, while h3 is kinematically still in reach of being produced at LEP
via Higgsstrahlung production. At vR ∼ 1235 GeV the doublet admixture of h3 is so
large that the channel ee → (h3)Z → (bb̄)Z can exclude this interval. Interestingly, in
the experimentally allowed region, where the mass of h3 is even smaller, LEP data cannot
rule out this scenario. The reasons for this is not only the smaller mixing of h3 and the
SM-like Higgs boson h4, but also that in the mass range below 100 GeV LEP saw an
excess over the SM background in the decay channel written above (see Ch. 8) [49].

In region 3 the BP is excluded because the SM-like Higgs-boson mass is not predicted
accurately, even including a theoretical uncertainty of 3 GeV. Beyond that, the BP is
excluded by the LHC cross-section measurement of the process pp → h1 → γγ [50]. In
region 3 the cross-over point is reached in which the masses of the ν̃RiR become larger
than the SM-like Higgs-boson mass. Through the interference effects the SM-like Higgs-
boson mass is pushed to lower values beyond that point. In region 4 the mass eigenstate
corresponding to the SM-like Higgs boson is the lightest one at just about 118 GeV. Even
though there are two scalars in the mass range of the experimentally measured Higgs-
boson mass in region 4, there is no contribution to any signal-strength measurement at
the LHC, reflected by the fact that the χ2

red is huge there. The reason is that these two
mass-degenerate states correspond to the practically singlet-like right-handed sneutrino
states. The third right-handed sneutrino carrying the doublet admixture taken from the
SM-like Higgs boson has a mass of over 140 GeV. Hence, it also does not contribute to
signal-strength measurements of the SM-like Higgs boson.

On a side note we briefly discuss the remaining light scalar h5 in Fig. 6.5, correspond-
ing to the left-handed τ -sneutrino at roughly 235–240 GeV. This particular fit to the
neutrino oscillation data generated a hierarchy between the vevs of the left-handed sneu-
trinos, with v3L being the largest. Since dominant tree-level contributions to the masses
of the ν̃RiL scale with inverse of viL (see Eq. (3.48)), the ν̃RτL is the lightest CP-even left-
handed sneutrino. It is difficult to detect such a ν̃RτL by usual searches for additional
Higgs bosons at colliders. A dedicated analysis of LHC data was proposed to search for
light left-handed sneutrinos in the framework of the µνSSM [23]. However, that analy-
sis concentrated on τ -sneutrinos as the LSP, whereas here there are even lighter SUSY
particles in the spectrum. For a detailed discussion of distinct signatures at the LHC
related to left-handed sneutrinos within the µνSSM we refer to the literature [23–25].
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tanβ λλλ2 κ v1,3R v2R Aλ Aκiii Aνii

5 3 · 0.1682 0.5 1000 765 1000 −1000 −1000

Au3 Au1,2 A(d,e) m
Q̃,ũ,d̃

mẽ M3

−2000 −1500 −1500 1500 200 2700

v1L/10−4 v2L/10−4 v3L/10−4 Y ν
11/10−7 Y ν

22/10−7 Y ν
33/10−7 M1 M2

1.497 6.179 4.946 4.388 1.759 6.258 1228 2814

Table 6.4: Same as in Tab. 6.2 for the scan over λi while λλλ2 = const.

6.3.3 Scan over λi while λ2 = λiλi = const.

As already explained in Sect. 6.3, without further assumptions there is no theoretical
reason for the µνSSM-like parameters to be universal w.r.t. the family indices. In this
section we investigate if that can have consequences for the prediction of the SM-like
Higgs-boson mass. In particular, we try to estimate the significance of non-universal
values for the three parameters λi. At tree level (see Eq. (3.54)) the mass dominantly
depends on the term λλλ2 = λiλi, and not on the individual values for λi. However, as soon
as mixing effects between the CP-even right-handed sneutrinos and the SM-like Higgs
boson become sizable, this is not anymore the case. This effects can enter at tree level,
or via radiative corrections proportional to λi. These radiative corrections depend on the
masses and the mixing of each of the right-handed sneutrino. Since it is not the case that
all three ν̃iR are degenerate, the radiative corrections are expected to depend strongly
on the individual values of λi. Also, when λλλ2 is fixed, the µ-term which is dynamically
generated after EWSB and linearly dependent on λi cannot be constant when the λi are
varied. This can be another source of corrections to the SM-like Higgs-boson mass that
explicitly depend on the individual values of the λi.

Yet, in experimentally allowed BPs, the loop corrections proportional to λi are always
subleading regarding the corrections to the SM-like Higgs-boson mass, owing to the
limitation on the ν̃RiR-admixture it can possibly account for. We give here an idea of how
large the remnant effect of non-universal λi on the SM-like Higgs-boson mass can be by
varying the values for the three λi under the conditions that λλλ2 remains the same. We
performed a small scan over all possible values of the λi in a scenario in which ν̃RµR has
a mass between 92 and 115 GeV and mixes substantially with the SM-like Higgs boson.
The free parameters were set to the values shown in Tab. 6.4.

The scenario is very similar to the one in Sect. 6.3.1. When the λi are chosen uniformly
we recover the BP at λ = 0.168 in Fig. 6.2, which is in the middle of the experimentally
allowed parameter region. In Fig. 6.6 we illustrate the dependence of the SM-like Higgs-
boson mass on the individual values of λi. We show ternary plots [51] with the values of
λ2
i on the axes. The colors of the points encode the mass of the SM-like Higgs boson at

tree level (top left), at one-loop level (top right), the difference of the SM-like Higgs-boson
mass at tree level and one-loop level (bottom left), and the one-loop mass of the right-
handed µ-sneutrino (bottom right). We do not show the two-loop mass of the SM-like
Higgs boson, because the two-loop corrections supplemented from FeynHiggs are purely
MSSM-like corrections independent of λi, thus not playing a role here.

The one-loop mass of the SM-like Higgs boson is the largest in the central point
in which all λi are equal. The tree-level mass, on the other hand, shows the opposite
behavior. It has its maximum value in the corners of the plot in which one of the λi
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Figure 6.6: SM-like Higgs-boson mass at tree level m(0)
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h
(1)
2

(top right), and their difference ∆m
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hSM
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left), and the one-loop mass of ν̃µR (bottom right) for fixed λλλ2 but varying λi. Crossed
points are excluded by either HiggsBounds, HiggsSignals with χ2

red ≥ 150/101 = 1.485
for the 13 TeV data set, or because the SM-like Higgs boson mass including the two-loop
corrections is smaller than 123 GeV or larger than 127 GeV.
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is practically zero. The one-loop mass of the SM-like Higgs boson varies in the experi-
mentally allowed region by more than 1 GeV. This demonstrates that for an accurate
prediction it is crucial to include the independent contributions of all three λi to the
radiative corrections, when mixing effects between the right-handed sneutrinos and the
SM-like Higgs boson are sizable.

Note that the variation of the one-loop mass would be even larger if we neglect the
experimental constrains. In these BPs, the main exclusion limit is the requirement to
have the SM-like Higgs-boson mass above 123 GeV at two-loop. Thus, in other BPs in
which the experimental constraints are respected while potentially having an even larger
ν̃RiR-component in the SM-like Higgs boson, the dependence on the values of λi might be
even stronger. Regarding the constraints, the problem in the scenario shown here is that
in the corners of the plots the mass of ν̃RµR increases to values very close to ∼ 125 GeV.
This increases the mixing between both scalars, yielding a reduction of the radiative
corrections to the mass of the SM-like Higgs boson. Practically speaking, parts of the
loop corrections “are lost” to ν̃RµR. This is why the difference between the tree-level and
the one-loop mass of the SM-like Higgs boson is the smallest when the mass of ν̃RµR is
the largest.

We finally note that the variation of the difference between tree-level and one-loop
mass, as a measure for the size of genuine one-loop corrections, is more than twice as large
as the variation of the one-loop mass of the SM-like Higgs boson itself. This indicates
a cancellation of λi-dependence between tree-level mass and the radiative corrections,
owing to the fact that the mass eigenstates at tree-level corresponding to the SM-like
Higgs boson can have a larger ν̃RµR-component. The loop-corrected mass eigenstate, on
the other hand, cannot have an arbitrary large ν̃RµR-component, because it has to fulfill
the experimental constraints.
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Chapter 7

The Next-to 2 Higgs doublet model

Susy extensions of the SM necessarily need to be constructed with the help of a second
Higgs doublet. This is one reason why so-called 2 Higgs Doublet Models (2HDM) are
well established BSM scenarios. However, there are several other motivations to consider
extended scalar sectors. For instance, in an extended scalar sector with two scalar doublet
fields the hierarchy between fermion masses of up- and down-type can be attributed to
a hierarchy between the vevs of the different neutral components [1, 2]. The solution of
the strong CP-problem via a Peccei-Quinn symmetry requires additional scalar fields [3–
5]. These solutions predict a physical Goldstone boson called axion which until now
could not be detected experimentally. Further SU(2) singlet scalar fields can help to
relax experimental constraints [6]. Another motivation to consider models with more
than one Higgs doublet comes from the matter-antimatter asymmetry of the universe.
One solution to this problem, called baryogenesis [7], requires additional sources of CP-
violation that cannot be accounted for in the SM [8–10]. In models with two or more
Higgs doublets, additional explicit or spontaneous sources of CP-violation can be present.
However, the possible amount is constrained, because the breaking of CP-conservation
is strongly related to the appearance of flavor-changing neutral currents (FCNC) at tree
level [11]. The precisely measured value of the ρ-parameter [12],

ρ =
M2
W

M2
Zc

2
w

= 1.00039± 0.00019 , (7.1)

where cw is the weak mixing angle, being very close to the SM prediction ρ = 1 at tree
level, constrains the possible structure of weak isospin and hypercharge attributed to
additional scalar fields. Models in which additional Higgs bosons transform as SU(2)
doublets or gauge singlets do not modify the tree-level prediction of ρ, and are therefore
particularly motivated [11].

In the CP-conserving case the scalar sector of the 2HDM consists of two CP-even, one
CP-odd and two charged Higgs bosons. Both the lighter or the heavier CP-even Higgs
boson can be identified with the SM-like Higgs boson at ∼ 125 GeV. One refers to the
2HDM in which the particle content is further enhanced by a real scalar singlet as the
next-to 2 Higgs doublet model (N2HDM) [13]. There the physical spectrum additionally
incorporates a third CP-even Higgs boson that, being a gauge singlet, is characterized
by reduced couplings to SM particles. The addition of a singlet scalar to the spectrum
has several motivations depending on the global symmetries applied on the scalar sector.
We will briefly summarize a few of them in the following.

The NMSSM is a Susy model that, in addition to the field content of the MSSM,
features a gauge singlet superfield (see Sect. 2.5). Thus, as in the N2HDM, the scalar
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spectrum is enhanced by a third CP-even Higgs boson that mixes with the two doublet-
like Higgs bosons. The NMSSM further contains a second physical CP-odd Higgs boson
which, however, does not have a corresponding particle in the N2HDM. Certain types of
the N2HDM can be regarded as an effective theory of the NMSSM at low energies in case
the sparticles are heavy enough that they can be integrated out. In our case, however, a
Z2 symmetry, only softly broken in the scalar sector, forbids trilinear terms in the scalar
potential that are required to entirely map the NMSSM on the N2HDM.

Models with additional singlet scalars are also prominently studied in the context
of dark matter [14–20], and in some cases can be realized within the N2HDM. If one
scalar field, either the singlet or one of the doublet fields, is prevented from obtaining a
vev [21, 22], the field is stable and can contribute to the relic abundance of dark matter.
These kind of scenarios are in one of the so-called dark phases of the N2HDM. In our
case there is no exact Z2 symmetry to stabilize one of the scalar fields, and no scalar
particle is stable.

We study the case in which all three physical CP-even Higgs bosons acquire a vev
and mix with each other [23] which is called the broken phase of the N2HDM. The
broken phase is the one with the most general mixing in the CP-even sector, such that
couplings both to up- and down-type quarks can be realized for any mass eigenstate. In
Sect. 7.1 we describe in detail the scalar potential of the N2HDM in the broken phase.
Afterwards we introduce in Sect. 7.2 the different types of the N2HDM which differ in
the way the doublet Higgs fields couple to the SM fermions. Subsequently, we illustrate
general phenomenological considerations in Sect. 7.3, such as possible exotic signals and
experimental constraints. The numerical analysis done in the scope of this thesis was
aimed to explain two experimental excesses for which we give details in Ch. 8 [23].
Consequently, we postpone the discussion of our numerical results to the end of that
chapter.

7.1 Higgs potential

The scalar potential of the CP-conserving N2HDM is given by [24]

V = m2
11|Φ1|2 +m2

22|Φ2|2 −m2
12(Φ†1Φ2 + h.c.) +

λ1

2
(Φ†1Φ1)2 +

λ2

2
(Φ†2Φ2)2

+λ3(Φ†1Φ1)(Φ†2Φ2) + λ4(Φ†1Φ2)(Φ†2Φ1) +
λ5

2
[(Φ†1Φ2)2 + h.c.]

+
1

2
m2
SΦ2

S +
λ6

8
Φ4
S +

λ7

2
(Φ†1Φ1)Φ2

S +
λ8

2
(Φ†2Φ2)Φ2

S , (7.2)

where Φ1 and Φ2 are the two SU(2)L doublets and ΦS is a real scalar singlet. The
scalar potential is constructed respecting a global Z2 symmetry, under which the fields
transform as

Φ1 → Φ1 , Φ2 → −Φ2 , ΦS → ΦS , (7.3)

which is only softly broken by the bilinear term

m2
12(Φ†1Φ2 + h.c.) . (7.4)

The breaking of the global Z2 symmetry also allows for CP-violating phases in the scalar
potential which, however, are assumed to be absent in the following discussion. The
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extension of the Z2 symmetry to the Yukawa sector forbids FCNC at tree level. There
is no unique choice for the corresponding charges of the SM fermions under this symme-
try. Depending on this choice, one obtains four different types of the N2HDM, whose
differences will be explained in Sect. 7.2. They are analogues to the different types of
the 2HDM.

Assuming CP-conservation and that the global minimum of the scalar potential is
not electromagnetically charged, the scalar fields can be parametrized as

Φ1 =

(
φ+

1
1√
2
(v1 + ρ1 + iη1)

)
, Φ2 =

(
φ+

2
1√
2
(v2 + ρ2 + iη2)

)
, ΦS = vS + ρS . (7.5)

In contrast to Susy models, the doublet-fields Φ1 and Φ2 are defined as carrying the
same hypercharge. That is why for both fields the neutral component appears in the
bottom column. The neutral components obtain the vacuum expectation values

〈Φ1〉 =
1√
2

(
0
v1

)
, 〈Φ2〉 =

1√
2

(
0
v2

)
, 〈ΦS〉 = vS . (7.6)

In analogy to Susy models, one defines

tanβ =
v2

v1
, (7.7)

however, without implying that Φ1 and Φ2 can be interpreted as down- and up-type fields,
respectively. The singlet field ΦS is by definition real and has no imaginary component.
Therefore, the charged and the CP-odd scalar sector are unchanged compared to the
2HDM. On the contrary, the CP-even scalar sector features significant changes due to
the presence of the additional particle state, leading to a total of three CP-even Higgs
bosons that in general will be mixed states composed out of the real components ρ1, ρ2

and ρS . The rotation from the interaction basis to the physical mass basis can be written
as




h1

h2

h3


 = R




ρ1

ρ2

ρS


 , (7.8)

where R is an orthogonal three-dimensional rotation matrix, and we use the convention
mh1 < mh2 < mh3 . In principle, each of the three mass eigenstates hi can be identified
with the SM-like Higgs boson at 125 GeV. The rotation matrix can be expressed in
terms of the three mixing angles α1,2,3 as

R =




cα1cα2 sα1cα2 sα2

−(cα1sα2sα3 + sα1cα3) cα1cα3 − sα1sα2sα3 cα2sα3

−cα1sα2cα3 + sα1sα3 −(cα1sα3 + sα1sα2cα3) cα2cα3


 , (7.9)

where we used the short-hand notation sx = sinx, cx = cosx. The mixing angles can by
definition take values in the range

− π

2
≤ αi ≤

π

2
. (7.10)

An important quantity is the singlet admixture of each mass eigenstate hi that can be
computed by

Σhi = |Ri3|2 . (7.11)
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The larger the singlet admixture of the Higgs boson, the smaller are its couplings to SM
fermions and vector bosons.

The scalar potential given in Eq. (7.2) contains 12 independent parameters;

m2
11 , m2

22 , m2
12 , m2

S , λi=1,8 . (7.12)

The scalar potential of the N2HDM can be renormalized in an OS scheme. Therefore,
it is convenient to trade as much parameters of the Lagrangian as possible for physical
quantities, i.e., parameters that are directly related to physical observables. The quartic
couplings λi can be replaced by the physical scalar masses and mixing angles, via [24]

λ1 =
1

v2c2
β

(
−µ̃2s2

β +

3∑

i=1

m2
hi
R2
i1

)
, (7.13)

λ2 =
1

v2s2
β

(
−µ̃2c2

β +
3∑

i=1

m2
hi
R2
i2

)
, (7.14)

λ3 =
1

v2

(
−µ̃2 +

1

sβcβ

3∑

i=1

m2
hi
Ri1Ri2 + 2m2

H±

)
, (7.15)

λ4 =
1

v2

(
µ̃2 +m2

A − 2m2
H±
)
, (7.16)

λ5 =
1

v2

(
µ̃2 −m2

A

)
, (7.17)

λ6 =
1

v2
S

3∑

i=1

m2
hi
R2
i3 , (7.18)

λ7 =
1

vvScβ

3∑

i=1

m2
hi
Ri1Ri3 , (7.19)

λ8 =
1

vvSsβ

3∑

i=1

m2
hi
Ri2Ri3 , (7.20)

with µ̃2 =
m2

12

sβcβ
. (7.21)

mA and MH± denote the masses of the physical CP-odd and charged Higgs bosons,
respectively. Apart from that, one can use the three minimization conditions [24]

v2

v1
m2

12 −m2
11 =

1

2
(v2

1λ1 + v2
2 (λ3 + λ4 + λ5) + v2

Sλ7) (7.22)

v1

v2
m2

12 −m2
22 =

1

2
(v2

1 (λ3 + λ4 + λ5) + v2
2λ2 + v2

Sλ8) (7.23)

−m2
S =

1

2
(v2

1λ7 + v2
2λ8 + v2

Sλ6) , (7.24)

to substitute the bilinears m2
11, m2

22 and m2
S for the SM vev

v =
√
v2

1 + v2
2 , (7.25)

tanβ and the singlet vev vS [24]. This leads to the physical parameter set

α1,2,3 , tanβ , v , vS , mh1,2,3 , mA , MH± , m2
12 . (7.26)
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u-type d-type leptons
type I Φ2 Φ2 Φ2

type II Φ2 Φ1 Φ1

type III (lepton-specific) Φ2 Φ2 Φ1

type IV (flipped) Φ2 Φ1 Φ2

Table 7.1: Allowed fermion couplings in the four types of N2HDM.

7.2 Yukawa structures

The doublet fields Φ1 and Φ2 carry charges appropriate to write gauge-invariant Yukawa
couplings for the SM fermions. They are equal to the Yukawa terms of the 2HDM and
read

− LYuk =

2∑

i=1

[
Y u
i QLΦ̃iuR + Y d

i QLΦidR + Y e
i LLΦieR + h.c.

]
, (7.27)

where Φ̃i = iσ2Φi and Y f are the 3× 3 Yukawa matrices in flavor space for each fermion
type f = u, d, e and Higgs doublet Φi. The Yukawa matrices Yi can only be non-zero
for one Higgs field per fermion type due to the Z2 symmetry under which Φ1 and Φ2

carry opposite charge. Hence, only one of them can couple to each type of fermions, i.e,
up-type quarks, down-type qaurks and leptons. Depending on the charge assignment of
the Z2 symmetry to the SM fermions, there are four different variants of the N2HDM,
each of them different in the way which of the doublet field couples to which fermion
type. In Tab. 7.1 we show the resulting four types of the N2HDM.

The type II N2HDM resembles the familiar Yukawa pattern of Susy models. One field
couples to up-type quarks, and the other one to down-type quarks and charged leptons.
The type IV is referred to as the flipped scenario, because the leptons are coupled to the
same field as the up-type quarks instead of the down-type quarks. Type I and type III
are distinct, because only one scalar field is coupled to quarks. In the type I N2HDM
the second scalar field has no coupling to the fermions at all, while in the lepton-specific
it is at least allowed to couple to the leptons.

In principle, the different types of coupling patterns in the N2HDM are totally ana-
logues to the types of the 2HDM. However, in the N2HDM the Higgs-boson couplings
are further modified w.r.t. the SM predictions due to the more complex mixing in the
Higgs sector. It is convenient to express the couplings of the scalar mass eigenstates hi
normalized to the corresponding SM couplings, given by the coupling coefficients chiff̄ .
After rotating the terms in Eq. (7.27) to the mass eigenstate basis of the fermions and
the Higgs bosons, one can express the Yukawa Lagrangian as

− LYuk =

2∑

i=1

√
2mf

v
chiff̄ΨfΨfhi , (7.28)

with mf being the fermion mass, and Ψf the four-component Dirac spinor of each
fermion. Then, the couplings of the Higgs bosons to the SM fermions are given by

ghiff̄ =

√
2mf

v

(
chiff̄

)
, (7.29)

Similarly, we can express the couplings of the Higgs bosons to massive vector bosons in
terms of the coupling coefficient chiV V , such that

(ghiWW )µν = igµν (chiV V ) gMW and (ghiZZ)µν = igµν (chiV V )
gMZ

cw
. (7.30)
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u-type (chitt̄) d-type (chibb̄) leptons (chiτ τ̄ )
type I Ri2/sβ Ri2/sβ Ri2/sβ
type II Ri2/sβ Ri1/cβ Ri1/cβ
type III (lepton-specific) Ri2/sβ Ri2/sβ Ri1/cβ
type IV (flipped) Ri2/sβ Ri1/cβ Ri2/sβ

Table 7.2: Coupling factors of the Yukawa couplings of the N2HDM Higgs bosons hi
w.r.t. their SM values.

They are the same in all four types of N2HDM. In Tab. 7.2 we list the coupling coefficients
for the coupling of each CP-even Higgs boson to fermions. The same for the couplings
to the gauge bosons is shown in Tab. 7.3.

From the form of the mixing matrix R in Eq. (7.9) it becomes apparent that in the
limit

α2 → 0 and α3 → 0 , (7.31)

the singlet state decouples from the other two states. This limit corresponds to the 2HDM
with the mass eigenstates h and H and the decoupled singlet not interacting whatsoever
with the SM particles. Matching the the N2HDM and the 2HDM with mixing angle α
requires the shift

α1 → α+
π

2
, (7.32)

because of different conventions for the mixing angels.
Besides the interactions of each Higgs boson with SM particles, there are also vertices

with more than one Higgs boson present in the N2HDM. The expressions can be quite
lengthy due to the mixing of the scalar fields, and our numerical analysis aimed to
accommodate specific experimental anomalies primarily depends on the couplings to the
SM particles. We therefore do not list the expressions for the couplings involving multiple
scalars here, and instead refer to Ref. [24]. There, besides the trilinear self-couplings,
also the expressions for the couplings of the hi to the pseudoscalar A and a Z boson and
to the charged Higgs bosons H± and the W bosons are given.

Since the CP-odd and the charged scalar sector are unchanged compared to the
2HDM, the couplings of A and H± to the SM particles are identical to the ones in the
2HDM. They can be found in the literature as well [25, 26]. The complete Lagrangian
of the 2HDM and the Feynman rules incorporating the interactions of A and H± can be
found in Ref. [2].

7.3 Phenomenological aspects

In this section we present a few general phenomenological aspects that are valid for all
four types of the N2HDM.

One of the most important consequences of models containing more than one Higgs
doublet is that they necessarily predict a physical charged Higgs boson. The behavior of
the charged Higgs boson in the N2HDM is very similar to the one of the 2HDM, except
when couplings to the CP-even scalar sector are involved. There are two possibilities in
which the presence of the charged Higgs boson can be made manifest. Firstly, it can be
produced at colliders and searched for in various final states. Secondly, indirect effects
via quantum corrections to electroweak precision observables or flavor physics observables
can be sizable. A recent review on the status of the charged Higgs boson confronted with
collider constraints and flavor physics observables can be found in Ref. [26]. The charged
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chiV V = cβRi1 + sβRi2
h1 cα2cβ−α1

h2 −cβ−α1sα2sα3 + cα3sβ−α1

h3 −cα3cβ−α1sα2 − sα3sβ−α1

Table 7.3: Coupling factors of the neutral CP-even Higgs bosons hi to the massive gauge
bosons V = W,Z in the N2HDM.

scalar sector can be described at tree level by just two parameters, namely the charged
Higgs-boson mass MH± and tanβ.

Regarding collider searches, the charged Higgs boson can be produced at the LHC
via several different processes. If it is heavier than the top quark, the most important
production mode is usually

pp→ H±tb , (7.33)

with subsequent decay modes [27–32]

H± → tb and H± → τν . (7.34)

The hadronic decay is important for low values of tanβ, while the leptonic decay is
enhanced when tanβ is large. For MH± & 200 GeV the production in the vector-boson
fusion mode with subsequent decay

H± →W±Z , (7.35)

can become relevant [33, 34]. For very light charged Higgs bosons, exclusion limits from
LEP are important. At e+e− colliders the charged Higgs can be produced pairwise,

e+e− → Z/γ → H+H− . (7.36)

This process does not depend on the value of tanβ, so that a lower limit of MH± &
70 GeV could be obtained [35–41]. For type II and type IV, however, the reach of LEP
is ruled out anyway by constraints from flavor physics (see below).

Through loop effects the charged Higgs boson also has a crucial effect on electroweak
precision observables (EWPO). Constraints from EWPO can in a simple approximation
be expressed in terms of the oblique parameters S, T and U [42, 43]. Deviations to
these parameters are significant if new physics beyond the SM enters mainly through
gauge boson self-energies, as it is the case for the N2HDM. The corrections to the oblique
parameters are very sensitive to the relative mass squared differences of the scalars. They
become small when either the non SM-like doublet Higgs boson or the pseudoscalar A
has a mass close to the mass of the charged Higgs boson [44, 45].

Regarding flavor physics observables, the charged Higgs boson can induce sizable
deviations from the SM prediction, in some cases even at tree level. Constraints from
flavor physics observables can provide exclusion limits beyond the reach of colliders, but
they can also be compatible or even stronger for relatively low charged Higgs-boson
masses. Most of the observables, like rare B-meson decays, Z partial decay widths and
∆MBs from neutral B-meson mixing, only have a subleading dependence on the neutral
scalar sector. Thus, corresponding experimental bounds in the tanβ-MH± plane [26] can
be taken over directly from the 2HDM to a very good approximation. Since in the type I
and type III scenario only one Higgs doublet couples to quarks, while in the type II and
type IV scenario each doublet field couples to either up- or down-type quarks, constraints
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from flavor physics are conceptually different in both cases. In type II and type IV a
lower limit of

MH± & 600 GeV (7.37)

could be obtained from experimental limits on BR(B → Xsγ) [26]. For type I and
type III no such tanβ-independent limit exists. For tanβ . 1 also bounds from the
measurement of BR(Bs → µ+µ−) become important [26]. Unlike the above mentioned
observables, BR(Bs → µ+µ−) can get contributions from the neutral scalar sector of the
model as well [46, 47]. Thus, in principle the value of BR(Bs → µ+µ−) in the N2HDM
may differ from that of the 2HDM. However, genuine contributions from the N2HDM are
expected to be small, since the additional scalar field is a gauge singlet. Furthermore,
as mentioned before, the constraints from direct LHC searches for H± already provide
fairly strong exclusion limits. Also the constraint from ∆MBs covers the region of very
small tanβ and in the 2HDM is always stronger than the bound from BR(Bs → µ+µ−).
Keeping the above facts in mind, we assume that the bounds from BR(B → Xsγ) and
∆MBs as obtained in Ref. [26] still remain to be the dominant constraints in the N2HDM.

Finally, we shortly discuss the phenomenological impact of the additional neutral
Higgs bosons. Direct searches for additional neutral Higgs bosons can exclude param-
eter points, mainly when the second Higgs doublet-like CP-even Higgs boson H or the
CP-odd Higgs boson A are rather light. Depending on the type and the value of tanβ,
the resonant decay of extra scalars or the pseudoscalar to a pair of quarks [48–50, 50–52]
or leptons [53–61] can be searched for. Searches for diphoton resonances, the golden
channel proving the existence of the SM-like Higgs boson [62, 63], are used to constrain
the CP-even Higgs-boson sector [64–68]. For small values of tanβ also searches for addi-
tional Higgs bosons decaying into a pair of massive gauge bosons which then decay either
hadronically or leptonically, are relevant [69–77]. Very interesting experimental signa-
tures result from the decay of Higgs bosons into each other, even more so in the N2HDM,
where these kind of signals might help to distinguish the N2HDM from the 2HDM. For
instance, a heavy scalar was searched for via the decay into different pairings of a gauge-
boson and a SM-like Higgs boson [78–80], and additional Higgs bosons can contribute to
the pair production of the SM-like Higgs boson [81–87]. Heavy pseudoscalars can decay
into a gauge boson and a scalar, where the latter can be the SM-like Higgs boson [88–90]
or not [91]. Very light Higgs bosons might be detectable in exotic decays of the SM-like
Higgs boson [92–95].

7.4 Aim of this work

Our numerical analysis was aimed to accommodate two experimental excesses which
hint to the existence of a second Higgs boson lighter than the SM-like Higgs boson. In
the following chapter we give details about these two excesses, and explain the general
properties a Higgs boson possibly causing them should have. Subsequently, we give ex-
ample benchmark scenarios within the context of the µνSSM with one or three families of
right-handed neutrinos, that contain such a scalar particle, accommodating the excesses
at the 1σ level. Finally we show with the help of an extensive parameter scan that in
the N2HDM in which the scalar potential does not have to obey Susy relations a light
singlet-like Higgs boson can further improve the explication of both excesses, being in
perfect agreement with the experimental data. All the relevant details of the scans, i.e.,
the parameter ranges, the theoretical and experimental constraints, and the results are
depicted in Sect. 8.2. The numerical analysis is focused on the type II and type IV sce-
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narios in which both excesses could actually be explained simultaneously. We also give
experimental prospects on how our explanation of the excesses can (and will) be probed
by the LHC and future colliders.
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Chapter 8

Explanation for the LEP and CMS
excesses at ∼ 96 GeV

The discovery of the Higgs boson at ∼ 125 GeV is in agreement with the SM prediction
in which only a single physical Higgs boson is present. As already explained, many
well motivated BMS models, such as Susy models (see Sect. 2.5) or 2HDMs (see the
introduction of Ch. 7), predict the existence of additional Higgs bosons. These additional
particles might have escaped detection so far by either being too heavy, or by having
a reduced coupling to the SM particles compared to the SM-like Higgs boson. The
experimental searches for BSM Higgs bosons give crucial information about the allowed
parameter space of such BSM models.

Even though there is no conclusive experimental evidence for the presence of an
additional Higgs boson, there are two experimental excesses hinting to the existence of
a Higgs boson, owing to the fact that they both appear at a similar mass of about 95 to
98 GeV. We will briefly describe the origin of the excesses here, focusing on what they tell
us about the properties a Higgs boson with this mass should have to accommodate them
simultaneously. For a detailed review about possible interpretations of the excesses in
various different BSM models we refer to Refs. [1, 2]. A few of the possibilities considered
are type I 2HDMs [3, 4], a radion model [5], a minimal dilaton model [6], a pseudo-Nambu
Goldstone boson dark matter model [7], as well as supersymmetric models [8–12]. In the
following we present our solutions in the µνSSM in Sect. 8.1 [9, 13] and in the N2HDM
in Sect. 8.2 [14, 15].

LEP excess

The Large Electron-Positron (LEP) Collider measured an excess over the background in
searches for the SM Higgs boson in the channel

e+e− → Z(H → bb̄) , (8.1)

i.e., the Higgstrahlung production in association with a decay of the Higgs boson to a pair
of bottom quarks [16, 17]. A SM Higgs boson could be excluded up to masses of about
∼ 110 GeV by this search. Nevertheless, a 2.3σ local excess was observed at a mass of
roughly 98 GeV, where the mass resolution is rather bad due to the mass reconstruction
of the b-jets. This corresponds to a signal strength of

µLEP =
σ
(
e+e− → Zφ→ Zbb̄

)

σSM
(
e+e− → ZH → Zbb̄

) = 0.117± 0.057 , (8.2)
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where the excess is assumed to be caused by a new scalar particle φ, and µLEP measures
the cross section normalized to the SM cross section for a hypothetical Higgs boson H
with the same mass as φ. The value for µLEP was extracted in Ref. [8] using methods
described in Ref. [18].

Since µLEP ∼ 1/10, and since no excess showed up at this mass scale in other searches
at LEP, a possible candidate φ producing the signal necessarily has to have a reduced
coupling to vector bosons compared to a SM Higgs boson of the order of

c2
φV V =

|gBSM
φV V |2
|gSM
HV V |2

∼ 10%− 20% . (8.3)

Thus, extensions of the SM incorporating gauge-singlet scalars who are able to acquire
such an amount of coupling to the vector bosons via a substantial mixing with the SM-like
Higgs boson at ∼ 125 GeV are ideal BSM models to accommodate the LEP excess.

CMS excess

The Compact Muon Solenoid (CMS) experiment at the LHC saw local excess over the
SM background in Higgs-boson searches in the diphoton-decay channel in the Run I data
with ∼ 2σ local significance [19] and in the Run II data with ∼ 3σ local significance [20].
Remarkably, the mass scale of the CMS excesses being at about∼ 96 GeV are comparable
to the mass scale of the LEP excess, taking into account the coarse mass resolution at
LEP. Assuming a dominant production of the possibly new particle state via gluon-fusion
(ggH), the excess corresponds to a signal strength of

µCMS =
σ (gg → φ→ γγ)

σSM (gg → H → γγ)
= 0.6± 0.2 . (8.4)

First Atlas results in the Higgs-boson searches below 125 GeV in the diphoton channel
were published in Ref. [21]. No excess in the mass range of the LEP and CMS excesses
was observed. However, the upper limits on the cross section measured by Atlas is
above the upper limits from the CMS measurement, even where CMS sees the excesses.
Hence, the Atlas results neither confirm nor exclude the CMS excesses [1].

The CMS analyses was done assuming different production mechanism. The excess
clearly appears in the analysis assuming ggH production and production in association
with a pair of top quarks (ttH), whereas assuming vector-boson-fusion (VBF) production
or the production in association with a vector boson (VH) yields a significantly reduced
signal. Therefore, we demand that the new particle state φ is produced via ggH. This
is contrary to the approach discussed in Refs. [3, 4] in which the second CP-even Higgs
boson of the type I 2HDM is used to accommodate the excesses. However, it is unclear
if these solutions properly reproduce the peak in the ggF production channel, since they
rely either on VBF+VH production [3], or on exotic production mechanisms via the
decay of heavier BSM particles [4]. Then it is not obvious to what extend the signal will
appear in the CMS analysis assuming ggF+ttH production, and not (as much) in the
CMS analysis assuming VBF+VH production. Therefore, the explanation of the CMS
excess in the ggH channel while simultaneously accommodating the LEP excess in the
N2HDM, by using the additional gauge-singlet Higgs boson, is well motivated.

In contrast to µLEP, the signal strength corresponding to the CMS excess µCMS is
relatively close to the prediction for a SM Higgs boson at the same mass. If one thinks of
the new Higgs boson φ as gauge-singlet scalar that mixes with the SM-like Higgs boson,
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viL/
√

2 Y ν
i Aνi tanβ µ λ Aλ κ Aκ M1

10−5 10−7 −1000 2 [413; 418] 0.6 956 0.035 [−300;−318] 100

M2 M3 m2
Q̃iL

m2
ũiR

m2
d̃iR

Aui Adi (m2
ẽ)ii Ae33 Ae11,22

200 1500 8002 8002 8002 0 0 8002 0 0

Table 8.1: Low-energy parameters for the scenario accommodating the LEP and CMS
excesses in the µνSSM with one right-handed neutrino. Dimensionful parameters are
given in GeV.

providing (as we argued before) a good interpretation of the LEP excess, then one faces
the quest of reproducing the value µCMS ∼ 0.6 without finding too large values for µLEP.
The only possibility to do so is to enhance the branching fraction of the decay of φ into
a pair of photons, because the ggH production is suppressed by a similar amount as the
VH production at LEP. In Sect. 8.1 we will see that in the µνSSM this issue cannot be
resolved, such that the explication of both excesses can be accurate only up to the 1σ
level.1 In the N2HDM, on the other hand, no Susy relations have to be obeyed, and
a parameter space was found providing perfect agreement with µLEP and µCMS, while
obeying all relevant theoretical and experimental constraints. The results are portrayed
in Sect. 8.2.

8.1 Right-handed sneutrino in the µνSSM

In this section we will investigate if the gauge-singlet scalar fields in the µνSSM, i.e., the
CP-even right-handed sneutrinos, can reproduce both excesses simultaneously [9]. We
first describe a benchmark point (BP) in the µνSSM with one right-handed neutrino
in Sect. 8.1.1. Afterwards, we show a solution in the µνSSM with three right-handed
neutrinos in Sect. 8.1.2. In the latter case, we are able to accurately accommodate the
neutrino masses and mixings in agreement with experiment (see Sect. 6.3) on top of
explaining the LEP and CMS excesses.

8.1.1 One family of right-handed neutrinos

In Tab. 8.1 we list the values of the parameters we used to account for a CP-even right-
handed sneutrino h1(ν̃RR ) at ∼ 95–98 GeV and the SM-like Higgs boson h2 at ∼ 125 GeV.
The value for λ is large to account for a sizable Higgs-doublet component of h1. Due to
the contributions proportional to λ2 to the tree-level mass of the SM-like Higgs boson (see
Eq. (3.54)) no large quantum corrections are required to achieve a value of ∼ 125 GeV
at loop level. Hence, tanβ can be low and the soft trilinears Au,d,e are set to zero.
The values of Aλ and |Aν | are chosen to be around 1 TeV to get masses for the heavy
MSSM-like Higgs and the left-handed sneutrinos of this order, so they do not play an
important role in the following discussion. On the other hand, the value for κ is small to
obtain a mass for the right-handed sneutrino below the SM-like Higgs-boson mass. The
two parameters varied in this BP are µ and Aκ. By increasing µ the mixing of the right-
handed sneutrino h1(ν̃RR ) and the SM-like Higgs boson h2 is increased. However, different

1The same conclusion were drawn for NMSSM solutions of both excesses, in which the extra singlet
scalar takes on the role of φ [8, 10].
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values of µ also modify the masses of h1 and h2. Therefore, different values of Aκ are
used to keep the mass of the right-handed sneutrino in the correct range. Consequently,
the results in this section will be displayed in the Aκ-µ plane.

Predictions for µLEP and µCMS were calculated using the narrow-width approxima-
tion. The ratios of cross sections and branching ratios between µνSSM prediction and
SM prediction were approximated by effective coupling coefficients ch1... defined as the
coupling of h1 normalized to the coupling of a SM Higgs boson H at the same mass.
Neglecting the vevs viL, the coupling coefficients to the SM fermions and the massive
vector bosons are given at leading order by the admixture of the mass eigenstate hi with
the doublet-like Higgs fields Hd and Hu and β via

chidd̄ =
U
H(2)
i1

cosβ
, chiuū =

U
H(2)
i2

sinβ
, chiV V = U

H(2)
i1 cosβ + U

H(2)
i2 sinβ , (8.5)

where the partial two-loop plus resummation (called “two-loop” in the following, see
Sect. 5.2) corrected mixing matrix elements UH,(2)

ij were calculated in the approximation
of vanishing momentum.

We show in Fig. 8.1 the masses of h1 and h2 at the two-loop level m(2)
h1

and m
(2)
h2

(top row), and the normalized couplings |chidd̄| (second row), |chiub̄| (third row) and
|chiV V | (bottom row) of h1 and h2. The lower right corner (marked in gray) results in
the right-handed sneutrino becoming tachyonic (at tree level). The largest mixing of the
right-handed sneutrino and the SM-like Higgs boson is achieved where µ is largest and
|Aκ| is smallest. The mass of h2 is in the allowed region for a SM-like Higgs boson at
∼ 125 GeV assuming a theory uncertainty of 3 GeV. The coupling coefficients of the
SM-like Higgs boson h2 deviate from the SM prediction by approximately 10%. The LHC
measurements of the SM-like Higgs boson couplings to fermions and massive gauge bosons
are still not very precise [22], with uncertainties between 10 and 20% at the 1σ confidence
level (obtained with the assumption that no BSM decays modify the total width of the
SM-like Higgs boson). Therefore, considering current experimental uncertainties the BPs
shown here cannot be excluded by the LHC measurements. However, possible future
lepton colliders like the ILC could measure these couplings to a %-level [23, 24], which
could probe most of the parameter space presented here. Seen from a more optimistic
perspective, the precise measurement of the SM-like Higgs-boson couplings at future
colliders could be used to make predictions for the properties of the lighter right-handed
sneutrino in this scenario, whose coupling coefficients are directly related to the ones of
the SM-like Higgs boson.

With the coupling coefficients for h1 at hand, the singal strength for the LEP excess
can be obtained by

µµνLEP =
σµν (Z∗ → Zh1)

σSM (Z∗ → ZH)
× BRµν

(
h1 → bb̄

)

BRSM
(
H → bb̄

)

≈ |ch1V V |2 ×
Γµν
bb̄

ΓSM
bb̄

× ΓSM
tot

Γµνtot

≈ |ch1V V |2 ×
∣∣ch1dd̄

∣∣2
∣∣ch1dd̄

∣∣2 (BRSM
bb̄

+ BRSM
τ τ̄ ) + |ch1uū|2 (BRSM

gg + BRSM
cc̄ )

. (8.6)

Here BRµν... and BRSM... denote branching ratios of h1 and H in the µνSSM and the SM,
respectively. Accordingly, Γµν,SM

... are the decay widths, and Γµν,SM
tot are the total width
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Figure 8.1: Properties of the lightest (left) and next-to-lightest (right) CP-even scalar in
the µ–Aκ plane. The couplings are normalized to the SM-prediction of a Higgs particle
of the same mass. The gray area is excluded because the right-handed sneutrino becomes
tachyonic at tree level. First row: two-loop masses, second row: coupling to down-type
quarks, third row: coupling to up-type quarks, fourth row: coupling to massive gauge
bosons.
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of h1 and H. In the second line the cross-section ratio was approximated by the square
of the coupling coefficient ch1V V . Similarly, in the third line we used the approximation

Γµν
bb̄

ΓSM
bb̄

= |ch1dd̄|
2 , (8.7)

where ch1dd determines the coupling of h1 to down-type fermions. The expression in the
denominator in Eq. (8.6) arises from the ratio of the total decay widths, by making use
of the approximation

Γµνtot

ΓSM
tot

=
∣∣ch1dd̄

∣∣2 (BRSM
bb̄ + BRSM

τ τ̄ ) + |ch1uū|2 (BRSM
gg + BRSM

cc̄ ) . (8.8)

Here, it was used that the loop-induced decay of h1 into gluons is dominated by the
diagrams with top quarks in the loop, such that

Γµνgg = |ch1uū|2 ΓSM
gg . (8.9)

Apart from that, the two-body decays into off-shell vector bosons were neglected, because
the branching ratios are very small (BRSM

WW ∼ 0.5% and BRSM
ZZ ∼ 0.06% for a SM Higgs

boson at 95 GeV) [25, 26]). To finally calculate µLEP the SM branching ratios were taken
from Ref. [26].

For the CMS excess we find

µµνCMS =
σµν (gg → h1)

σSM (gg → H)
×

BRµνγγ
BRSM

γγ

≈ |ch1uū|2 ×
Γµνγγ
ΓSM
γγ

× ΓSM
tot

Γµνtot

≈
|ch1uū|2 ×

∣∣∣ceff
h1γγ

∣∣∣
2

∣∣ch1dd̄
∣∣2 (BRSM

bb̄
+ BRSM

τ τ̄ ) + |ch1uū|2 (BRSM
gg + BRSM

cc̄ )
. (8.10)

The expression in the denominator again comes from the ratio of the total decay widths.
In the second line the ggH production cross section ratio was approximated by

σµν (gg → h1)

σSM (gg → h)
= |ch1uū|2 , (8.11)

exploiting the fact that the dominant diagram is the one with top quarks in the loop.
The effective coupling coefficient of the hi to photons ceff

hiγγ
has to be calculated in terms

of the couplings to the W bosons and the up-type quarks, because both the diagram
with W bosons and with top quarks in the loop contribute to the diphoton decay width.
In the SM the decay of H to photons can be written as [27]

ΓSM
γγ =

Gµ α
2m3

h

128
√

2π3

∣∣∣∣
4

3
A1/2 (τt) +A1 (τW )

∣∣∣∣
2

, (8.12)

where Gµ is the Fermi-constant and the form factors A1/2 and A1 are given by

A1/2 (τ) = 2
(
τ + (τ − 1) arcsin2√τ

)
τ−2 , (8.13)

A1 (τ) = −
(
2τ2 + 3τ + 3 (2τ − 1) arcsin2√τ

)
τ−2 , (8.14)
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Figure 8.2: Signal strengths for the lightest ν̃R-like neutral scalar at CMS (pp → h1 →
γγ) (left) and LEP (e+e− → h1Z → bb̄Z) (right) in the µ-Aκ plane. The gray area is
excluded because the right-handed sneutrino becomes tachyonic at tree-level.

for τ ≤ 1, with τt = m2
H/(4m

2
t ) and τW = m2

H/(4M
2
W ). In our approximation the only

difference between the µνSSM and the SM is that the couplings of hi to the top quark
and the W boson is modified by the coefficients chitt̄ and chiV V , so the effective coupling
of the Higgses to photons in the µνSSM normalized to the SM predictions can be written
as ∣∣∣ceff

hiγγ

∣∣∣
2

=

∣∣4
3chitt̄A1/2 (τt) + chiV VA1 (τW )

∣∣2
∣∣4

3A1/2 (τt) +A1 (τW )
∣∣2 . (8.15)

Now, given the mass and the coupling coefficients of h1, the signal strength for the CMS
excess can be predicted by making use of Eq. (8.15) and Eq. (8.10).

We show the results for µLEP and µCMS in Fig. 8.2. While the LEP excess is easily
reproduced in the observed parameter space, we cannot achieve the central value for
µCMS, but only slightly smaller values. This is the result we expected from the reasoning
at the beginning of this chapter. As already observed in Ref. [8], to explain the LEP excess
a sizable coupling to bottom quarks is required. On the contrary, the only possibility
to enhance the diphoton branching ratio, as required to accommodate the CMS excess,
demands a small value for ch1dd̄ so that the denominator in Eq. (8.10) becomes small.
Nevertheless, considering the large experimental uncertainties in µCMS and µLEP, the
scenario presented in this section accommodates both excesses at approximately 1σ level,
and motivates to keep on searching for light Higgs bosons in the still allowed mass window
below ∼ 125 GeV.

8.1.2 Three families of right-handed neutrinos

In the previous section we showed that both excesses can be accommodated simultane-
ously at the 1σ level in the µνSSM with just one right-handed neutrino, by means of a
right-handed sneutrino at ∼ 96 GeV that acquires substantial couplings to SM particles
via its mixing with the SM-like Higgs boson. However, we did not include an accurate
prediction of the properties of the neutrinos, because in the one-generation case at least
one neutrino mass has to be generated via quantum corrections. On the contrary, in
the µνSSM with three right-handed neutrinos, one can describe the mass differences and
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tanβ λ1,2 λ3 κ111,222 κ333 v1,2R v3R Aλ1,2 Aλ3

1.945 0.01 [0.538, 0.542] 0.3 0.05 1200 [884, 888] 1000 [806, 814]

Aνii Aκ111,222 Aκ333 Au3 Au1,2 Ad,e m
Q̃,ũ,d̃,ẽ

M1 M2 M3

−1000 −300 [−124,−100] −650 0 0 1000 400 800 2700

Table 8.2: Same as in Tab. 8.1 for the µνSSM with three right-handed neutrinos

mixings of the neutrinos at tree level. As this is much more feasible, we present here BPs
in the three-generation case in which on top of an explanation for the LEP and CMS
excesses the neutrino sector is described in agreement with experimental data [13].

The values of the free parameters to fit the excesses are shown in Tab. 8.2. The CP-
even scalar h1(ν̃RτR) utilized to fit the excesses has dominant right-handed τ -sneutrino
component. This is assured by setting κ333 � κ111,222, so that h1(ν̃RτR) has a smaller
mass than the other two right-handed sneutrinos. v3R and Aκ333 are varied in a range
in which the mass of h1(ν̃RτR) is roughly ∼ 95–98 GeV. A sufficiently large mixing of
h1(ν̃RτR) with the SM-like Higgs boson h2(HRu ) at ∼ 125 GeV is achieved with a large
value of λ3 ∼ 0.54, while λ1,2 = 0.01 are very small to avoid a very large effective µ-
term. Alternatively, one could have used smaller values for v1,2R, but then the other two
CP-even right-handed sneutrinos ν̃Re,µ R would have been very light as well, potentially
carrying away some doublet component via mixing with the SM-like Higgs boson which
we here want to attribute to h1(ν̃RτR) at ∼ 96 GeV.2 Since λ3 is large, h2(HRu ) receives
additional contribution to the tree-level mass. This is why tanβ can be set to a small
value, and, besides Au3 = −650 GeV, the soft trilinear parameters Au,d,e are set to
zero. The signal strength µCMS effectively scales with ch1tt̄ to the power of four (see
Eqs. (8.10) and (8.15)). Hence, a small value for tanβ is eligible, because otherwise one
suppresses the coupling of h1(ν̃RτR) to top quarks which scales with the inverse of sinβ (see
Eq. (8.5)). The parameters Aλi enter in the CP-even scalar mass matrix elementsm2

ν̃RiRH
R
d,u

(see Eqs. (3.39) and (3.40)), so that they contribute to the mixing of the right-handed
sneutrinos and the SM-like Higgs boson. We varied Aλ3 in a range in which the mixing
between h1(ν̃RτR) and h2(HRu ) is of the size to appropriately reproduce µLEP. Certainly,
this is not an exhaustive parameter scan covering the complete parameter space, but the
scan gives an idea of how the excesses can be accommodated in the three-generation case,
and it resembles the solution we found in the µνSSM with one right-handed neutrino.

In Fig. 8.3 we show the results for the signal strength of the LEP excess µLEP (top)
and of the CMS excess µCMS (bottom). In both plots the colors of the points encode the
SM-like Higgs-boson mass mh2(HRu ), while the mass of h1(ν̃RτR) is shown on the horizontal
axis. The signal strengths were calculated using the same approach as explained in
Sect. 8.1. One can immediately see that it is rather easy to achieve a value of µLEP ∼
0.117, whereas the largest values for µCMS are roughly 1σ below the central value. Thus,
we find the same result as in the one-generation case. The signal strengths µLEP and
µCMS are fitted at the 1σ level. We verified that the BPs are in agreement with the
experimental constraints on the SM-like Higgs boson with HiggsSignals, assuming a
theoretical uncertainty of the SM-like Higgs-boson mass of 3 GeV.

In Fig. 8.4 we show the correlation of both signal strengths, with the colors indicating
2A scenario in which several right-handed sneutrinos give rise to the observed excesses is beyond the

scope of this discussion and left for future work.
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Figure 8.3: µLEP (top) and for µCMS (bottom) for each BP versus the mass of h1(ν̃RτR).
The colors indicate the mass of the SM-like Higgs boson h2(HRu ).
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Figure 8.4: Correlation of µLEP and µCMS, with the colors indicating the mass of h1(ν̃RτR).

the mass of h1(ν̃RτR). The strong correlation one can see has its origin in the fact that both
signal strengths increase with the amount of doublet-component of h1(ν̃RτR). Due to the
Susy relations in the scalar potential, the coupling coefficient ch1dd̄ cannot be suppressed
without suppressing ch1uū. Consequently, no large enhancement to the branching ratio
of h1(ν̃RτR) into a diphoton pair can be achieved. The dominant terms mixing the right-
handed sneutrinos ν̃RiR with the doublet fields HRd and HRu scale equally with λi, Aλi , κijk
and viR at tree level, as can be seen in Eqs. (3.39) and (3.40). The only difference are
the factors vd and vu in each equation. This difference cannot be exploited too much,
because, as mentioned before, tanβ should not be too far from one. This is why an
extensive scan of the vast parameter space of the µνSSM would be necessary to find
parameter points in which µCMS is further enhanced without increasing µLEP too much.
However, this lies beyond the scope of this thesis.

Instead, we will focus on the rest of the spectrum which heavily depends on the values
of the neutrino Yukawa couplings Y ν

ij and the vevs of the left-handed sneutrinos viL, once
the remaining parameters are fixed to the values listed in Tab. 8.2. We show in Tab. 8.3
two possible sets of parameters that accommodate accurate neutrino masses and mixings
in the BPs of this section. The phenomenology related to h1(ν̃RτR) and h2(HRu ) does
not depend on the values of Y ν

ij and viL. Its branching ratios are dominantly given by
the mixing-effects with the SM-like Higgs boson which is not suppressed by the small
neutrino Yukawa couplings Y ν

ij .
In contrast to the scenarios we presented in Ch. 6, we make use of non-zero values

of the off-diagonal elements of Y ν
ij in BP2. This simplifies the accommodation of neu-

trino properties in agreement with experimental data, because there are six more free
parameters that can be adjusted. The price to pay is that there is usually more than one



8.1. RIGHT-HANDED SNEUTRINO IN THE µνSSM 147

Y ν
11/10−8 Y ν

12/10−8 Y ν
13/10−8 Y ν

21/10−8 Y ν
22/10−8 Y ν

23/10−8

BP1 8.109 0 0 0 11.54 0

BP2 7.088 1.181 −0.3404 1.902 12.38 1.783

Y ν
31/10−8 Y ν

32/10−8 Y ν
33/10−8 v1L/10−4 v2L/10−4 v3L/10−4

BP1 0 0 88.55 0.1890 2.601 1.871

BP2 −0.2103 0.6923 1.383 0.0179 2.072 3.673

BP1
mλ4(ντR) mA1(ν̃IτR) mH+

1
(µ̃L) mA2(ν̃IµL) mh3(ν̃RµL) mλ5(H̃d,u)

78 97-109 283 285 285 323− 326

BP2
mλ4(ντR) mh1(ν̃τL) mA1(ν̃τL) mH+

1
(τ̃L) mA2(ν̃τR) mλ5(H̃d,u)

78 79 79 98 97-109 323− 326

Table 8.3: Parameter sets BP1 and BP2 used to fit the neutrino oscillation data accu-
rately. In the last four rows we list the masses of the six lightest non-SM particles (in
addition to ν̃RτR at ∼ 96 GeV) for each BP. Dimensionful parameters are given in GeV.

set of parameters of Y ν
ij and viL that give accurate predictions for the neutrino sector.

We show two distinct BPs, because in the µνSSM the scalar sector is deeply related to
the neutrino sector. Different sets of parameters predict fundamentally different scalar
spectra. Since there is no theoretical argument that the neutrino Yukawa couplings have
to be diagonal, we used the additional freedom to present a BP in which, on top of the
explanation of the LEP and the CMS excesses with h1(ν̃RτR) at ∼ 96 GeV, there are a
bunch of other light scalars possibly in reach of future colliders.

In both BP1 and BP2 the lightest BSM particle is the right-handed τ -neutrino ντR.
This is because a small value for κ333 is used decrease the mass of h1(ν̃RτR). Consequently,
also the mass of the corresponding neutrino mντR is small (see Eq. (3.88)). However,
mντR is above half the SM-like Higgs-boson mass, so the decay of h2(HRu ) into a pair
of ντR is kinematically impossible. The striking difference between BP1 and BP2 is the
mass scale of the left-handed CP-even and CP-odd τ -sneutrinos ν̃R,IτL and the slepton
τ̃L. In BP2 the Yukawa coupling Y ν

33 is the smallest diagonal element of Y ν
ij , and the

vev corresponding to the third family of left-handed sneutrinos v3L is the largest of the
three. This reduces the masses of ν̃R,IτL (see Eq. (3.48)) and τ̃L (see Eq. (3.86)) to values
below the SM-like Higgs-boson mass. In BP1, on the other hand, v2L is the largest of
the three left-handed vevs, and therefore the left-handed µ-sneutrinos and µ-slepton are
the lightest left-handed sfermions, although still more than twice as heavy as the SM-like
Higgs boson. This illustrates that the parameters relating the neutrino sector and the
scalar sector of the µνSSM have a profound impact on the phenomenology of a certain
BP.

BP2 can give rise to additional interesting signal at colliders. A dedicated analysis of
the collider phenomenology of light left-handed τ -sneutrinos/sleptons at the LHC can be
found in Refs. [28, 29]. In Ref. [29] it was also shown that there are no lower limits on the
sneutrino masses and slepton masses from LEP applicable to the µνSSM. An important
feature is that the decay of ν̃τL can be displaced, because its decays to SM particles are
suppressed by the small values for Y ν

ij . In Refs. [28, 29] it is assumed that the left-handed
sneutrino is the LSP. This is not the case here, since the right-handed τ -neutrino is even
lighter. Signals at colliders from ντR are not expected, because it is a gauge singlet, thus
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cannot be produced directly. In principle, it can be produced indirectly via the decay of
the sfermions. However, the spectrum is very compressed, such that a pair production
of ντR from the decays of ν̃τR at ∼ 96 GeV or the SM-like Higgs boson at ∼ 125 GeV
is kinematically forbidden, and the production of a pair of a right- and a left-handed
τ -neutrino is suppressed by the size of Y ν

33.

8.2 Singlet-like scalar in the N2HDM

Our investigations in the framework of the µνSSM show that it is possible to explain the
LEP and the CMS excesses at the 1σ level, where the limitations arise from the precise
form of the scalar potential that has to obey Susy relations. The same conclusions were
drawn in the NMSSM [8, 10]. This fact motivated to examine if an even better fit can be
achieved in a non-Susy model containing a gauge-singlet scalar field. Thus, we analyzed
in Refs. [14, 15] a possible explanation of the excesses in the N2HDM, by considering a
Higgs boson with a dominant singlet-component and a mass of ∼ 96 GeV. We briefly
explain in the following why only the type II and the type IV N2HDM (see Sect. 7.2)
can potentially accommodate both excesses simultaneously. Afterwards, we state the
relevant theoretical and experimental constraints that have to be taken into account.
From there we derive appropriate values for the input parameters (see Eq. (7.26)). In
Sect. 8.2.2 and Sect. 8.2.2 we show our results of the parameter scans in the type II
and the type IV N2HDM, respectively. Finally, we discuss the prospects for current and
future experiments to be able to test our scenario in Sect. 8.2.4.

Which type?

As already discussed in the introduction of this chapter, the LEP excess demands that
the Higgs boson at ∼ 96 GeV should have a squared coupling to massive vector bosons
of ∼ 0.1 times that of the SM Higgs boson of the same mass. For the CMS excess, on
the other hand, it appears to be difficult at first sight to accommodate the large signal
strength, because one expects a suppression of the loop-induced coupling to gluons and
photons. However, it turns out that it is possible to overcompensate this suppression
by decreasing the total width of the singlet-like scalar, leading to an enhancement of
the branching ratio of the new scalar to the γγ final state. The different types of the
N2HDM behave differently in this regard, based on how the doublet fields are coupled
to the quarks and leptons. We summarize the general idea of our solution in Tab. 8.4,
and argue that only the type II and type IV (flipped) N2HDM can accommodate both
excesses simultaneously with a dominantly singlet-like scalar h1 at ∼ 96 GeV.

The first condition is that the coupling of h1 to b-quarks has to be suppressed to
enhance the decay rate of the decay into γγ, as the total decay width at this mass is still
dominated by the decay to bb̄. The second condition is that one must not decrease the
coupling to t-quarks too much, because the decay width to photons strongly depends on
the t-quark loop contribution. Moreover, the ggH production cross section is dominated
at leading order by the diagram with t-quarks in the loop. Thus, a decreased coupling of
h1 to t-quarks implies a lower production cross section at the LHC. As one can deduce
from Tab. 8.4, in type I and the lepton-specific type III N2HDM the coupling coefficients
(see Sect. 7.2) are the same for up- and down-type quarks, because only one Higgs doublet
field is coupled to the quarks (see Tab. 7.1). Thus, it is impossible to satisfy both of the
above criteria simultaneously in these models, and they fail to accommodate both the
CMS and the LEP excesses.
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Decrease ch1bb̄ No decrease ch1tt̄ No enhancement ch1τ τ̄
type I 3 (R12/sβ) 7 (R12/sβ) 3 (R12/sβ)

type II 3 (R11/cβ) 3 (R12/sβ) 3 (R11/cβ)

lepton-specific 3 (R12/sβ) 7 (R12/sβ) 7 (R11/cβ)

flipped 3 (R11/cβ) 3 (R12/sβ) 7 (R12/sβ)

Table 8.4: Conditions that have to be satisfied to accommodate the LEP and CMS
excesses simultaneously with a light CP-even scalar h1 with dominant singlet component.
In brackets we state the relevant coupling coefficients ch1ff̄ for the conditions for each
type.

One could of course go to the 2HDM-limit of the N2HDM by taking the singlet
scalar to be decoupled, and reproduce the results observed previously in Refs. [3, 4].
Therein both excesses are accommodated placing the second CP-even Higgs boson in
the corresponding mass range. These solutions imply that the ggH production mode
no longer dominates the total production cross section and the CMS excess can only be
explained by considering the contributions from other modes of production like VBF and
associated production with vector bosons (VH) etc. As was explained in the introduction
of this chapter, we discard these solutions, as the excess clearly appears in the ggH
production mode.

Having discarded the type I and type III scenario, we now concentrate on the remain-
ing two possibilities. In type II and the flipped type IV scenario, each of the doublet
fields Φ1 and Φ2 couple to either up- or down-type quarks, and it is possible to control
the size of the coupling coefficients chitt̄ and chibb̄ independently. The singlet-like scalar
h1 acquires its couplings to fermions through the mixing with the doublet fields. This
effectively yields one more degree of freedom to adjust its couplings independently for
up- and down-type quarks. From the dependence of the mixing matrix elements R11 and
R12 on the mixings angles αi, as stated in Eq. (7.9), one can deduce that the relevant
parameter in this case is α1. For

|α1| → π/2 , (8.16)

the up-type doublet component of h1 is large and the down-type doublet component
goes to zero. Thus, large values of α1 will correspond to a suppression of the decay
width to bb̄, while simultaneously not suppressing the decay width to γγ. Consequently,
considering that the total decay width of h1 is dominated by the decay width to bb̄, the
limit shown in Eq. (8.16) corresponds to en enhancement of the branching ration of the
diphoton decay of h1.

A third condition is related to the coupling of h1 to leptons. If it is increased, the
decay to a pair of τ -leptons is enhanced. Similar to the decay to b-quarks, it would
compete with the diphoton decay and suppress the signal strength required for the CMS
excess. However, this condition is not as significant as the former two, owing to the
smaller τ -Yukawa coupling and the missing color factor, so that (Y e

3 )2 � 9(Y d
3 )2. Still,

as we will see in our numerical evaluation, it is the reason why it is easier to fit the
CMS excess in the type II model than in the flipped type IV scenario. In the latter the
coupling coefficient to leptons ch1ll̄ is equal to the one to up-type quarks ch1uū. Thus,
in the region where the diphoton branching ratio is enhanced, also decay width of the
decay into τ τ̄ is large, and both channels will compete. In the type II scenario, on the
other hand, ch1ll̄ is equal to the coupling to down-type quarks ch1dd̄, meaning that in



150 CHAPTER 8. LEP AND CMS EXCESSES AT ∼ 96 GEV

the relevant parameter region both the decay to b-quarks and the decay to τ -leptons are
suppressed.

8.2.1 Theoretical constraints

The N2HDM faces important constraints coming from tree-level perturbartive unitarity,
stability of the vacuum and the condition that the vacuum should be a global minimum of
the potential. We briefly describe these constraints below and how they were accounted
for in our scans.

- Tree-level perturbative unitarity conditions ensure that the potential remains per-
turbative up to very high energy scales. These conditions were calculated in
Ref. [30] by demanding that the amplitudes of the scalar quartic interactions lead-
ing to 2→ 2 scattering processes remain below the value of 8π at tree level.

- The values for the input parameters have to correspond to a true vacuum. In
particular, that means that the scalar potential (see Eq. (7.2)) must be bounded
from below, i.e., that it remains positive when the field values approach infinity.
The necessary and sufficient conditions for boundedness from below are given in
Ref. [31]. The same conditions can be found in Ref. [30] in the notation adopted
in this thesis.

- We impose the condition that the vacuum is a global minimum of the potential.
Although this condition can be avoided in the case of a metastable vacuum with
the tunneling time to the real minimum being larger than the age of the universe,
we do not explore this possibility in this analysis.3

All the theoretical constraints mentioned above were taken into account in our analysis
by scanning the scalar potential with the help of the public code ScannerS [33] in which
the conditions are implemented by default for the N2HDM [30].

Experimental constraints

In Sect. 7.3 we described already the phenomenological consequences related to the pres-
ence of the additional Higgs bosons in the broken phase of the N2HDM. Several exper-
imental constraints are implemented into ScannerS. Unfortunately, some of these were
outdated and did not include the most recent experimental data. Therefore, we supple-
mented the most recent ones by linking the parameter points from ScannerS to the more
recent versions of other public codes. Here, we list the relevant experimental constraints,
and give the tools other than ScannerS used to take them into account, if this was neces-
sary. The necessary input for these codes, such as branching ratios and effective coupling
coefficients (see Eqs. (7.29) and (7.30)), were obtained by using the Scanners interface
with the spectrum generator N2HDECAY [30, 34, 35].

- Direct searches at colliders: We used the public code HiggsBounds v.5.3.2 [36–
40] to check each BP against exclusion limits at the 95% confidence level from
Higgs-boson searches at LEP, Tevatron and LHC.

- Flavor physics: We took over the 2HDM exclusion regions in the tanβ-MH± from
Ref. [41]. The dominant constraints from BR(B → Xsγ) and ∆MBs depend in very
good approximation only on the charged Higgs boson sector which is unchanged

3Shortly after we published our results, an analysis of metastable parameter configurations of the
N2HDM potential was published [32]. However, the conditions for valid metastable points are not yet
available in a public computer code. Considering the possibility of metastability is left for future work.
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in the N2HDM, so that the same bounds can be applied (see Sect. 7.3 for more
details).

- SM-like Higgs boson: Constraints from SM-like Higgs-boson observables were taken
into account in a twofold way. Firstly, ScannerS checks the signal strengths

µF
µV

, µγγF , µZZF , µWW
F , µττF , µbbF , (8.17)

as they are quoted in Ref. [22], where an agreement within ±2σ is required. The
signal strengths are defined as

µxxF = µF
BRN2HDM(hi → xx)

BRSM(H → xx)
. (8.18)

Here, the production cross sections associated with couplings to fermions normal-
ized to the SM prediction are defined as

µF =
σN2HDM(ggH) + σN2HDM(bbH)

σSM(ggH)
. (8.19)

The production in association with a pair of b-quarks (bbH) is neglected in the SM.
In N2HDM it can be enhanced by tanβ, so that it has to be taken into account.
The VBF production cross section and the VH production cross section are given
by the coupling coefficient ch2V V ,

µV =
σN2HDM(VBF)

σSM(VBF)
=
σN2HDM(V H)

σSM(V H)
= c2

h2V V , (8.20)

using the fact that QCD corrections cancel in the ratio of the vector boson fusion
cross sections in the N2HDM and the SM [30]. The ggH and bbH cross sections are
provided by ScannerS with the help of data tables obtained using the public code
SusHi [42, 43]. Since this approach does not capture the most recent measurements
related to the SM-like Higgs boson, we verified in a second step the agreement of the
BPs with all currently available measurements using the public code HiggsSignals
v.2.2.3 [44–46]. The complete list of implemented experimental data can be found
on the HiggsSignals web page [47]. In our scans, we will show the reduced χ2,

χ2
red =

χ2

nobs
, (8.21)

where χ2 is provided by HiggsSignals and nobs = 101 is the number of experi-
mental observations considered.

- EWPO: ScannerS calculates the one-loop corrections to the oblique parameters for
models with an arbitrary number of Higgs doublets and singlets from Ref. [48].
This calculation is valid under the criteria that the gauge group is the SM SU(2)×
U(1), and that particles beyond the SM have suppressed couplings to light SM
fermions. Both conditions are fulfilled in the N2HDM. Under these assumptions,
the corrections are independent of the Yukawa sector of the N2HDM, and therefore
the same for all types. In 2HDMs there is a strong correlation between T and U , and
T is the most sensitive of the three oblique parameters. Thus, U is much smaller
in points not excluded by an extremely large value of T [49], and the contributions
to U can safely be dropped. Therefore, we require that the prediction for S and T
are within the 2σ ellipse, corresponding to χ2 = 5.99 for two degrees of freedom.
By default ScannerS verifies that the S, T and U parameters are within the 2σ
ellipsoid with three degrees of freedom, corresponding to χ2 = 7.81. Due to the
correlation of T and U our approach yields even stronger constraints.
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Details of the scans

In the following sections we present our analyses in the type II and type IV scenario
in which the excesses can be accounted for.4 We performed a scan over the relevant
parameters using the public code ScannerS. Following the discussion about the various
experimental and theoretical constrains, we chose to scan the following range of input
parameters:

95 GeV ≤mh1 ≤ 98 GeV , mh2 = 125.09 GeV , 400 GeV ≤ mh3 ≤ 1000 GeV ,

400 GeV ≤ mA ≤ 1000 GeV , 650 GeV ≤MH± ≤ 1000 GeV , (8.22)

0.5 ≤ tanβ ≤ 4 , 0 ≤ m2
12 ≤ 106 GeV2 , 100 GeV ≤ vS ≤ 1500 GeV .

The parameter ranges were scanned uniformly, i.e., a flat prior distribution is applied.
The lower limit of MH± ≥ 650 GeV arises from the flavor constraints (see Eq. (7.37)).
The lower limits on mh3 and mA avoid very strong bounds from collider searches [41],
while the upper bound of 1 TeV assures that the additional Higgs bosons will not have
masses far beyond the reach of the LHC.

We will make use of the possibility to set additional constraints on the singlet admix-
ture of each CP-even scalar particle which is provided by ScannerS. To enforce that the
lightest scalar has the dominant singlet admixture, we impose

65% ≤ Σh1 ≤ 90% , (8.23)

while for the SM-like Higgs boson we impose a lower limit on the singlet admixture of

Σh2 ≥ 10% . (8.24)

This assures that there is at least some doublet component in h1 in each BP which is
necessary to fit the excesses. We checked explicitly that BPs with Σh2 < 10% cannot
explain the excesses with an accuracy better than 1σ, because the doublet component of
h1 is too small.

Our aim is to increase the up-type component of h1 compared to its down-type
component, thus obtaining BPs with enhanced branching ratio of h1 into the γγ final
state, for which the limit shown in Eq. (8.16) is a necessary condition. In this limit the
coupling coefficients of the SM-like Higgs boson h2 to quarks can be approximated by

ch2tt̄ ∼ ∓
sα2sα3

sβ
and ch2bb̄ ∼ ∓

cα3

cβ
. (8.25)

Consequently, if α2 and α3 would have opposite signs, one would enter the wrong-sign
Yukawa coupling regime, in which it is harder to accommodate the SM-like Higgs-boson
properties, especially for low values of tanβ. Also the possible singlet-component of
h2 is more limited [30]. To avoid entering the wrong-sign Yukawa coupling regime, we
therefore impose an additional constraint on the mixing angles αi, i.e.,

α2 · α3 > 0 . (8.26)

This condition also removes uninteresting parameter regions with small values of |α1|.
Because of the global minimum conditions, |α1| can only be small when the condition in

4Similar scans have been performed also for the N2HDM type I and III (lepton specific). We confirmed
the negative result expected from the arguments given in Sect. 8.2. Consequently, we do not show any
of these results here.
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Figure 8.5: Type II: the signal strengths µCMS and µLEP are shown for each scan point
respecting the experimental and theoretical constrains. The 1σ region of both excesses is
shown by the red ellipse. The colors show the mass of the charged Higgs. The magenta
star is the best-fit point. The lowest (highest) value of MH± inside the 1σ ellipse is
650.03 (964.71) GeV.

Eq. (8.26) is not fulfilled. The quality of the fit to the excesses for each BP will be given
in terms of the χ2 defined by

χ2
CMS−LEP =

(µLEP − 0.117)2

0.0572
+

(µCMS − 0.6)2

0.22
, (8.27)

quantifying the quadratic deviation w.r.t. the measured values for the signal strengths,
assuming that there is no correlation between both signals. We refer to the BP with
smallest χ2

CMS−LEP in each scan as the “best-fit point”. In principle, we could have com-
bined the χ2 obtained from HiggsSignals regarding the SM-like Higgs-boson observables
with the χ2 defined above regarding the LEP and the CMS excesses. In that case, how-
ever, the total χ2 would be strongly dominated by the SM-like Higgs-boson contribution
from HiggsSignals due to the sheer amount of signal strength observables implemented.
Consequently, we refrain from performing such a combined χ2 analysis.

8.2.2 Type II

We show the result of our scan in the type II scenario in Figs. 8.5-8.7 in the plane of the
signal strengths µLEP and µCMS for each BP. The best-fit point w.r.t. the two excesses is
marked by a magenta star. The density of points has no physical meaning and is a pure
artifact of the “flat prior” in our parameter scan. The red dashed line corresponds to the
1σ ellipse, i.e., to χ2

CMS−LEP = 2.30 for two degrees of freedom. The left boundary of the
points arises from the condition written in Eq. (8.26). The lower bounds on µLEP and
µCMS follow from the upper limit on the singlet component of h2 shown in Eq. (8.23).
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Figure 8.6: Type II: as in Fig. 8.5, but here the colors indicate the χ2
red from HiggsSignals.

The best-fit point (magenta) has χ2
red = 1.237 with 101 observations considered. The

lowest (highest) value of χ2
red inside the 1σ ellipse is 0.9052 (1.3304).

Figure 8.7: Type II: as in Fig. 8.5, but here the colors indicate the value of tanβ. The
lowest (highest) value of tanβ inside the 1σ ellipse is 0.7970 (3.748).
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Figure 8.8: Type II: Allowed (green) and excluded (red) points considering direct searches
(top) and flavor physics (bottom) in the MH±-tanβ plane. The magenta star is the best-
fit point.
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mh1 mh2 mh3 mA MH±

96.5263 125.09 535.86 712.578 737.829

tanβ α1 α2 α3 m2
12 vS

1.26287 1.26878 −1.08484 −1.24108 80644.3 272.72

BRbbh1 BRggh1 BRcch1 BRττh1 BRγγh1 BRWW
h1

BRZZh1
0.5048 0.2682 0.1577 0.0509 2.582 · 10−3 0.0137 1.753 · 10−3

BRbbh2 BRggh2 BRcch2 BRττh2 BRγγh2 BRWW
h2

BRZZh2
0.5916 0.0771 0.0288 0.0636 2.153 · 10−3 0.2087 0.0261

BRtth3 BRggh3 BRh1h1h3
BRh1h2h3

BRh2h2h3
BRWW

h3
BRZZh3

0.8788 2.537 · 10−3 0.0241 0.0510 3.181 · 10−3 0.0261 0.0125

BRttA BRggA BRZh1A BRZh3A BRbbA
0.6987 1.771 · 10−3 0.1008 0.1981 5.36 · 10−4

BRtbH± BRWh3
H± BRWh1

H±

0.6000 0.3004 0.0984

Table 8.5: Parameters of the best-fit point and branching ratios of the Higgs bosons in
the type II scenario. Dimensionful parameters are given in GeV and the angles are given
in radian.

In Fig. 8.5 the colors of the points indicate the value of MH± . Lower values for MH±

are preferred to fit the diphoton signal µCMS. We emphasize that the dependence of the
branching ratio of h1 into diphotons, and therefore of µCMS, onMH± is due to the positive
correlation between MH± and the total decay width of h1. When MH± becomes larger
the constraints from the oblique parameters induce also larger masses of the heavy Higgs
boson mh3 and the CP-odd Higgs boson mA. These masses are related to the mixing
angles in the scalar sector via the tree-level perturbative unitarity and global minimum
conditions. A large suppression of the total decay width of h1, and thus an enhancement
of BRγγh1 , turns out to be more difficult to achieve for larger mh3 , MH± and MA. The
additional contributions to the diphoton decay width of diagrams with the charged Higgs
boson in the loop has a minor dependence on MH± for MH± > 650 GeV� mh1 .

In Fig. 8.6 the colors indicate the reduced χ2 (see Eq. (8.21)) from the test of the
SM-like Higgs-boson properties with HiggsSignals. Various points fit both excesses
simultaneously while also accommodating the properties of the SM-like Higgs boson h2

at 125 GeV. This is quite remarkable, considering the fact that h2 is contaminated
substantially with a singlet component (see Eq. (8.24)).

We show in Fig. 8.7 a plot with the colors indicating the value of tanβ. An overall
tendency can be observed that values of about tanβ ∼ 1 are preferred in our scan.
However, we find points covering the whole tanβ-range used in our scan within the 1σ
ellipse of the excesses. In combination, the preference for low values of MH± and tanβ
give rise to the fact that the scenario presented here will be in reach of direct searches for
charged Higgs bosons at the LHC. In addition, flavor physics observables provide strict
exclusion limits in this region of the parameter space (see the discussion in Sect. 7.3) [50].

This is illustrated in Fig. 8.8. In the previous plots we only showed BPs that passed
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Figure 8.9: Type II: Points generated by ScannerS that fulfill the constraints on the
STU parameters (green) in the mh3 − mA plane. The points in red do not fulfill the
constraints on ST with U assumed to be vanishing, which we imposed additionally in
our scans (see Sect. 8.2.1).

all experimental constraints. In Fig. 8.8 we show also the rejected BPs in the tanβ−MH±

plane. In the left plot the red points were discarded because of constraints from direct
searches using HiggsBounds, and in green the BPs that passed these constraints. In
the right plot the same is shown regarding flavor physics observables. For values of
tanβ < 1 direct searches are very constraining. The experimental analysis responsible
for this excluded region is the search for charged Higgs bosons produced in association
with a t- and a b-quark, and the subsequent decay of the charged Higgs boson to a tb-
pair, performed by ATLAS [50]. Comparing to the right plot, we see that in the region
of lower values of MH± , where the excesses are reproduced most “easily”, bounds from
flavor physics cover a similar parameter space than the direct searches for additional
Higgs bosons. Values of tanβ < 0.7 are ruled out for the whole range of MH± , because
of constraints from ∆MBs . For values of MH± larger than ∼ 750 GeV this constraint is
far more restrictive than the constraints from collider searches.

In Tab. 8.5 we show the values of the free parameters and the relevant branching ratios
of the singlet-like scaler h1, the SM-like Higgs boson h2 as well as all other (heavier) Higgs
bosons of the model for the best-fit point of our scan which is highlighted with a magenta
star in the plots. Remarkably, the branching ratio for the singlet-like scalar to photons is
larger than the one of the SM-like Higgs boson. As explained in Sect. 8.2, this is achieved
by a value of α1 = 1.268 ∼ π/2. The most important BRs for the heavy Higgs bosons
are those to the heaviest quarks, h3 → tt̄, A → tt̄ and H± → tb, offering interesting
prospects for future searches.

The presence of the extra singlet-like scalar h1 leads to one more decay channel of
H± into aW± boson and a CP-even Higgs boson hi compared to the 2HDM. Thus, these
decays might provide crucial information regarding the possibility of distinguishing the
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N2HDM from the 2HDM (see Sect. 8.2.4 for details). In almost the same manner, the
decay of the CP-odd Higgs boson A into the Zh1,3 final state, with branching ratios of
BRZh1A ∼ 10% and BRZh3A ∼ 20%, respectively, might be detectable at the LHC or future
colliders.

In the best-fit point, constraints from the oblique parameters lead to a CP-odd Higgs
boson mass mA close to the mass of the charged Higgs boson MH± . As was explained in
Sect. 7.3, the alternative criterion to be in agreement with EWPOs is that mh3 is close
to MH± , in which case mA is not constrained regarding the STU parameters. In our
scans, both possibilities occur, as can be seen in Fig. 8.9 in which we plot the BPs that
fulfill the condition on STU implemented in ScannerS, and in red the points that, on
top of that, fulfill the condition on ST , assuming U is vanishing (see Sect. 8.2.1). Note
that there are no BPs with both mA and mh3 below ∼ 650 GeV, because of the lower
limit of MH± ≥ 650 GeV.

The value of tanβ in Tab. 8.5 is close to one, meaning that the best-fit point might
be in range of future improved constraints both from direct searches at colliders as well
as from flavor physics (see Fig. 8.8). More optimistically speaking, deviations from the
SM predictions are expected in those observables if our explanation of the LEP and
CMS excesses are implemented by nature. From the values for the mixing angles αi we
derive a singlet component of h2 of Σh2 ∼ 19.5%. Therefore, deviations from the SM
predictions are present in observables related to the SM-like Higgs boson which might
be detectable at future collider experiments. We will discuss experimental prospects in
detail in Sect. 8.2.4.

8.2.3 Type IV - flipped

The second type of the N2HDM where we expect to be able to fit both excesses simulta-
neously is the type IV or flipped scenario. We performed a scan over the same parameter
ranges as stated in Eqs. (8.22), (8.23) and (8.24), and again imposing the condition shown
in Eq. (8.26). We show the results of this scan in Figs. 8.10-8.12. As before, the colors
indicate the charged Higgs-boson mass in Fig. 8.10, the reduced χ2 from HiggsSignals
in Fig. 8.11, and the value of tanβ in Fig. 8.12, and only BPs fulfilling all theoretical
and experimental constraints are depicted.

As in the type II scenario, a large number of BPs fit both the LEP and the CMS
excesses simultaneously, while being in agreement with the measurements of the SM-like
Higgs-boson properties (see Fig. 8.11). Various points inside the 1σ ellipse have a χ2

red

from HiggsSignals below one, indicating that the signal-strength predictions for the
SM-like Higgs boson are on average within the 1σ uncertainties of each measurement.
Similar to the type II analysis a clear preference of small values for MH± and tanβ is
visible, also for the points outside the 1σ ellipse.

The exclusion boundaries from direct searches and from flavor physics are practically
unchanged to the ones we found in the type II scenario. We show in Fig. 8.13 the allowed
and excluded points of our scan considering only the collider searches (top) and flavor-
physics observables (bottom) in the tanβ-MH± plane. The most sensitive direct search
is, as in type II, the production of H± in association with a tb-pair, and subsequent
decay of H± to a tb-pair. For values of tanβ < 1, points with a charged Higgs mass up
to 900 GeV can be excluded. The excluded region from flavor physics observable in the
bottom plot of Fig. 8.13 is derived from predictions to the meson mass difference ∆MBs ,
which is unchanged w.r.t. the one from the type II scenario. The ∆MBs constraint is
the dominant one regarding flavor observables for the range of MH± and tanβ scanned
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Figure 8.10: Type IV: the signal strengths µCMS and µLEP for each scan point respecting
the experimental and theoretical constrains. The 1σ region of both excesses is shown
by the red ellipse. The colors show the mass of the charged Higgs. The magenta star
indicates the best-fit point. The lowest (highest) value of MH± inside the 1σ ellipse is
650.01 (931.85) GeV.

Figure 8.11: Type IV: as in Fig. 8.10, but here the colors indicate the χ2
red from HiggsSig-

nals. The best-fit point (magenta) has χ2
red = 1.11286 with 101 observations considered.

The lowest (highest) value of χ2
red within the 1σ ellipse is 0.9073 (1.3435).
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Figure 8.12: Type IV: as in Fig. 8.5, but here the colors indicate the value of tanβ. The
lowest (highest) value of tanβ within the 1σ ellipse is 0.7935 (3.592).

mh1 mh2 mh3 mA MH±

97.8128 125.09 485.998 651.502 651.26

tanβ α1 α2 α3 m2
12 vS

1.3147 1.27039 −1.02829 −1.32496 41034.1 647.886

BRbbh1 BRggh1 BRcch1 BRττh1 BRγγh1 BRWW
h1

BRZZh1
0.4074 0.2071 0.1189 0.2483 2.139 · 10−3 0.0135 1.579 · 10−3

BRbbh2 BRggh2 BRcch2 BRττh2 BRγγh2 BRWW
h2

BRZZh2
0.5363 0.0939 0.0345 0.0758 2.247 · 10−3 0.2267 0.0284

BRtth3 BRggh3 BRh1h1h3
BRh1h2h3

BRh2h2h3
BRWW

h3
BRZZh3

0.8078 2.707 · 10−3 0.0124 2.111 · 10−3 0.0119 0.1085 0.0517

BRttA BRggA BRZh1A BRZh2A BRZh3A BRbbA
0.7090 1.940 · 10−3 0.1007 9.652 · 10−3 0.1780 6.49 · 10−4

BRtbH± BRWh3
H± BRWh1

H±

0.6820 0.2046 0.1024

Table 8.6: Parameters of the best-fit point and branching ratios of the Higgs bosons in
the type IV scenario. Dimensionful parameters are given in GeV and the angles are given
in radian.
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Figure 8.13: Allowed (green) and excluded (red) points considering direct searches (left)
and flavor physics (right) in theMH±-tanβ plane. The magenta star is the best-fit point.
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here, assuming that the exclusions from BR(Bs → µ+µ−) constraints in the 2HDM do
not change by more than 20% due to the presence of the additional real singlet in the
N2HDM [41].

The details of our best-fit point of the scan in the N2HDM type IV, indicated with
the magenta star in Figs. 8.10-8.13, are listed in Tab. 8.6. The value of the charged
Higgs-boson mass is just on the lower end of the scanned range. Comparing to the best-
fit point of our scan in the N2HDM type II, shown in Tab. 8.5, we observe that the
values for tanβ and the mixing angles in the CP-even scalar sector αi are very similar.
This is due to the fact that the effective coefficients of the couplings of the Higgs bosons
to quarks and gauge bosons are the same. The decays of the heavier Higgs bosons are
similar to the type II best-fit point. In particular, the decays of the heavy CP-even Higgs
boson h3 into a pair of lighter CP-even states h1,2 is not prominent in both the best-fit
points in type II and type IV. The range scanned for mh3 is well above the threshold
where the decay into a pair of top quarks becomes possible which is always dominant in
this regime. As in the best-fit point of the scan in the type II scenario, the decays of the
charged Higgs boson H± or the CP-odd Higgs boson A into a gauge boson plus a CP-even
Higgs boson h1 or h3 are more promising signals. For BPs, in which mh3 ∼ MH± and
mA smaller, the decay of h3 to the ZA final state is present instead. This decay can also
lead to interesting collider signatures.

The striking difference between the best-fit points in both types is that, even though
the suppression of the branching ratio of h1 to b-quarks is larger in type IV, the branching
ratio of the decay of h1 into photons remains smaller. As already discussed in Sect. 8.2,
in the parameter region in which the excesses can be accommodated, there is an en-
hancement of the decay width into τ -leptons in type IV, whereas in type II the decay
is suppressed in this regime. Hence, the value of BRττh1 in Tab. 8.6 is roughly five times
larger than the one in Tab. 8.5.

This circumstance is not a particular feature of the best-fit point, but a general differ-
ence between type II and type IV. To illustrate this, we show in Fig. 8.14 the branching
ratio for the decay of h1 into a diphoton pair for type II (top) and type IV (bottom) as a
function of the absolute value of the ratio of the effective coupling coefficients ch1bb̄ and
ch1tt̄. The blue and red points are the ones lying inside and outside the 1σ ellipse regard-
ing χ2

CMS−LEP, respectively. When |ch1bb̄/ch1tt̄| is small, BRγγh1 receives an enhancement
and it is possible to fit the CMS excess. This is why the blue points in Fig. 8.14 are
located below a certain value of the ratio of the couplings on the horizontal axis. On
average, the type II scenario features larger values of BRγγh1 . We can understand this
by comparing the branching ratios for the decay of h1 into a pair of τ -leptons which is
shown in Fig. 8.15. Here, the conceptual difference between the type II model and the
flipped scenario becomes visible. In the region, in which the excesses can be fitted, BRττh1
is suppressed in type II, but enhanced in type IV, owing to the fact that the coupling
to leptons scales with the same factor as ch1bb̄ in type II, but proportional to ch1tt̄ in
type IV.

In Fig. 8.16 we show the predicted signal strengths for both excesses, with colors
indicating the singlet component of h1. Comparing both plots, it becomes apparent that
the circumstance described above yields a substantial suppression of µCMS in the type IV
scenario compared to the type II scenario. For similar values of the singlet component
Σh1 , the type II scenario can reach larger µCMS, whereas the size of µLEP is very similar in
both scenarios. Remarkably, the type II scenario can reach values of µCMS ∼ 1, meaning
that the signal strength prediction for µCMS is as big as the one of a hypothetical SM-like
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Figure 8.14: Branching fraction of the decay of h1 into two photons for each BP respecting
the experimental and theoretical constrains in the type II (top) and the type IV scenario
(bottom), as a function of the ratio of the coupling of h1 to bottom and top quarks
normalized to the SM prediction. The blue points have χ2

CMS−LEP ≤ 2.30, while the red
points have χ2

CMS−LEP > 2.30.
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Figure 8.15: As in Fig. 8.14 for the branching fraction of the decay of h1 into two τ -
leptons.
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Figure 8.16: Signal strengths µCMS and µLEP for each parameter point respecting the
experimental and theoretical constrains in the type II (left) and the type IV scenario
(right). The 1σ region of both excesses is shown by the red ellipse. The colors show the
singlet component of h1. The magenta star is the best-fit point.

Higgs boson at the same mass, even though it is dominantly singlet-like. In the type IV
scenario, on the other hand, there is no point above the upper 1σ limit of µCMS = 0.8.

8.2.4 Prospects

Our explanation of the LEP and CMS excesses, making use of a singlet-like Higgs boson
that acquires substantial couplings to the SM particle sector via its mixing with the SM-
like Higgs boson leads to two distinct ways of testing the scenario at current and future
collider experiments. Firstly, the couplings of the SM-like Higgs boson are modified
w.r.t. SM prediction. Precise measurements of these couplings at the LHC, and perhaps
a future lepton collider like the ILC, will constrain these deviations to high precision.
Secondly, the additional Higgs bosons, such as the singlet-like scalar with a mass of
∼ 96 GeV, can be produced directly at particle colliders. Being close to the Z-boson
peak, a discovery of h1 at 5σ confidence level at the LHC is particularly challenging, since
a hadron collider generally suffers a huge amount of hadronic background activity. Thus,
at the LHC searches for the other Higgs bosons might be more promising. However, a
future lepton collider like the ILC could improve the prospects on the direct detection
of light Higgs boson significantly. We briefly discuss both possibilities of testing our
scenario experimentally, i.e., indirectly via the SM-like Higgs-boson couplings or directly
via searches for additional Higgs bosons, in the following.

Indirect searches

Currently, uncertainties on the measurement of the coupling strengths of the SM-like
Higgs boson at the LHC are still large. At the 1σ level, they are of the same order or larger
than the modifications of the couplings present in our analysis in the N2HDM [22, 51, 52].
Once the complete 300 fb−1 collected at the LHC are analyzed, the statistical uncertain-
ties will be drastically reduced, yielding tighter constraints on the coupling coefficients.
Even more improved constraints are expected from the LHC after the high-luminosity
upgrade (HL-LHC), when the planned amount of 3000 fb−1 integrated luminosity will
have been collected [23]. Furthermore, a future linear e+e− collider like the ILC could
improve the precision measurements of the Higgs-boson couplings, far beyond the preci-
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sion of the LHC [23, 53].5 A lepton collider not only has drastically reduced background
compared to a hadron collider, but is also capable of measuring the total width of the
SM-like Higgs boson (and thus also the coupling modifiers) without model assumptions,
by measuring the recoil energy in the Higgstrahlung production channel.

Starting from the assumptions that no deviations from the SM predictions will be
found, several studies have been performed to estimate the future constraints on the
coupling modifiers of the SM-like Higgs boson at the LHC [23, 54–57] and the ILC [23, 58–
63]. We compare here our BPs to the expected precisions of the LHC and the ILC as
they are reported in Refs. [62, 63], however neglecting possible correlations of the coupling
modifiers.

In Fig. 8.17 we show the effective coupling coefficient of the SM-like Higgs boson h2 to
τ -leptons on the horizontal axis against the coupling coefficient to b-quarks (top) and to
t-quarks (bottom) for type II (blue) and type IV (red), for the points that passed all the
experimental and theoretical constraints. In particular, we verified that the points are
in agreement with the LHC measurements of the SM-like Higgs-boson properties using
HiggsSignals. In the top plot the blue points lie on a diagonal line, because in type II the
couplings to leptons and to down-type quarks scale identically. Similarly, in the bottom
plot the red points lie on the diagonal, because in type IV the coupling to leptons scales
in the same way as the coupling to up-type quarks. The current measurements on the
coupling modifiers by ATLAS [51] and CMS [52] are shown as black ellipses, although
their uncertainties are still very large.

The magenta ellipses in each plot show the expected precision of the HL-LHC mea-
surements taken from from Ref. [63]. The current uncertainties and the HL-LHC analysis
are based on the coupling modifier, or κ-framework, in which the tree-level couplings of
the SM-like Higgs boson to vector bosons, the top quark, the bottom quark, the τ - and
the µ-lepton, and the three loop-induced couplings to γγ, gg and Zγ receive a factor κi
quantifying potential modifications from the SM predictions. These modifiers are then
constrained using a global fit to projected HL-LHC data assuming no deviation from the
SM prediction will be found. The uncertainties found for the κi can directly be applied
to the future precision of the coupling modifiers chi... we use here. We stress that the
κ-framework is not model-independent, and can potentially underestimate uncertainties
compared to an effective field theory approach. In Fig. 8.17 we depict the uncertainties
obtained under the assumptions that no decay of the SM-like Higgs boson to BSM par-
ticles is present (ΓBSM

h2
= 0), and that current systematic uncertainties will be reduced

in addition to the reduction of statistical uncertainties due to the increased statistics.
The green and the orange ellipses show the expected uncertainties when the HL-

LHC results are combined with projected data from the ILC after the 250 GeV phase
and the 500 GeV phase, respectively, taken from Ref. [62]. This analysis is based on a
pure effective field theory calculation. Thus, it can in principle capture modifications
of the SM-like Higgs-boson couplings that go beyond a simple rescaling, as is assumed
in the κ-framework. Therefore, to be able to combine both approaches, the effective
field theory calculation was done supplementing further assumptions. This concerns, in
particular, the couplings to vector bosons. Modifications that are impossible in the κ-
framework were excluded artificially in the effective field theory approach, by recasting
the fit setting two parameters related to the couplings to the Z boson and the W boson
to zero (for details we refer to Ref. [62]). This theory input required for the combined

5Similar results can be obtained for CLIC, FCC-ee and CEPC. We will focus on the ILC prospects
here using the results of Ref. [53].
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Figure 8.17: BPs of our analysis in the type II (blue) and type IV (red) scenario in the
|ch2τ τ̄ |-|ch2bb̄| plane (top) and the |ch2τ τ̄ |-|ch2tt̄| plane (bottom). In the upper plot we
highlight in yellow the points of the type II scenario that overlap with points from the
type IV scenario in the lower plot, i.e., points with |ch2tt̄| ∼ |ch2bb̄| ∼ |ch2τ τ̄ |. In the
lower plot we highlight in yellow the points of the type IV scenario that overlap with
points from the type II scenario in the upper plot. The dashed ellipses are the projected
uncertainties at the HL-LHC [63] (magenta) and the ILC [62] (green and orange) of
the measurements of the coupling modifiers at the 68% confidence level, assuming that
no deviation from the SM prediction will be found (more details in the text). We also
indicate with the dotted black lines the 1σ ellipses of the current measurements from
CMS [52] and ATLAS [51].
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Figure 8.18: As in Fig. 8.17, but with |ch2V V | on the vertical axis.

LHC+ILC analysis has to be kept in mind in the following, when we quote specific future
uncertainties.

While current constraints on the SM-like Higgs-boson properties allow for large de-
viations of the couplings of up to 40%, the allowed parameter space will be significantly
reduced by the expected constraints from the HL-LHC and the ILC. For instance, the
uncertainty of the coupling to b-quarks will shrink below 4% at the HL-LHC, and of the
coupling to τ -leptons it is expected to be at 2% at the HL-LHC. The ILC could reduce
these uncertainties further to the per-mille level. For the coupling to t-quarks, on the
other hand, the ILC cannot improve substantially the expected uncertainty of the HL-
LHC (but permit a model-independent analysis). Still, a reduction of the uncertainty by
roughly a factor of three is expected. The modifications of the SM-like Higgs-boson cou-
plings in our BPs are many times larger than the anticipated experimental uncertainties.
Thus, our explanation of the LEP and the CMS excesses within the N2HDM is testable
indirectly using future precision measurements of the SM-like Higgs-boson couplings.
This is especially important, since these measurement (at least at the HL-LHC) will
be carried out in the near future, so that our solution will be experimentally inspected
without demanding any experimental analysis specifically dedicated to our scenario.

Comparing both plots in Fig. 8.17, we see that there are no BPs coinciding with the
SM prediction regarding the three coupling coefficients shown. This implies that, once
these couplings are measured precisely by the HL-LHC and the ILC, a deviation of the
SM prediction has to arise in at least one of the couplings, if our explanation of the
excesses is correct. Accordingly, if no deviation from the SM prediction regarding these
couplings will be measured, our explanation would be ruled out entirely. Of course, as we
explicitly demanded a lower limit on the singlet component of the SM-like Higgs boson of
Σh2 ≥ 10% in our scans, the second lightest Higgs boson unavoidably exhibits deviations
from the SM regarding the coupling coefficients. However, BPs with Σh2 < 10% cannot
accommodate both excesses, as we checked with dedicated scans, because in that case
the doublet component of h1 is too small. Hence, the conclusions drawn here are not
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affected by demanding Σh2 ≥ 0.1.
In case a deviation from the SM prediction will be found, the predicted scaling be-

havior of the coupling coefficients in the type II scenario (upper plot) and the type IV
scenario (lower plot), might lead to distinct possibilities for the two models to accom-
modate these possible deviations. Precision measurements of the SM-like Higgs-boson
couplings could then be used to exclude either the type II or the type IV scenario. This
holds for all points except the ones highlighted in yellow in Fig. 8.17. The yellow points
are a subset of points of our scans that, if such deviations of the SM-like Higgs-boson
couplings will be measured, could correspond to a BP of both the scan in the type II
and the type IV scenario. However, this subset of points is confined to the diagonal lines
of both plots which constitutes a very specific region of the overall allowed parameter
space. For the type II scenario, in the upper plot, the yellow points are determined
by the additional constraint that |ch2tt̄| ∼ |ch2τ τ̄ | which is exactly true in the type IV
scenario. For the type IV scenario, in the lower plot, the yellow points are determined
by the additional constraint that |ch2bb̄| ∼ |ch2τ τ̄ | which is exactly true in the type II
scenario.

For completeness we show in Fig. 8.18 the absolute value of the coupling modifier of
the SM-like Higgs boson w.r.t. the vector boson couplings |ch2V V | on the vertical axis.
Again, the parameter points of both types show deviations larger than the projected
experimental uncertainty at HL-LHC and ILC. The BPs closest to the SM prediction
correspond to the ones with lowest singlet component Σh2 . One can show that

|ch2V V |2 ∼ 1− Σh2 , (8.28)

so that there are no BPs above |ch2V V | ∼ 0.95 due to the uppwe limit of Σh2 ≥ 0.1 in
our scans. However, as already emphasized, BPs with lower Σh2 , potentially lying within
the colored ellipse in Fig. 8.18, cannot accommodate the LEP and CMS excesses, so that
they are of no relevance here.

Direct searches

Direct searches for additional Higgs bosons are promising ways of testing our scenarios.
As already mentioned, despite the fact that the diphoton bump has persisted through
LHC Run I and II, a definite discovery of the possible 96 GeV Higgs boson is particularly
challenging at the LHC. However, it is worth exploring the possibility of discovering
the remaining Higgs boson of the N2HDM in future runs of the LHC. The search for
the charged Higgs bosons appears to be promising in the region of low tanβ, where
we already encountered strong bounds from current searches (see Figs. 8.8 and 8.13).
Stronger constraints or discovery signs of a charged Higgs boson in the region between
600 GeV and 950 GeV are expected once more data is collected. Prospects for a 5σ
discovery in the charged Higgs-boson searches can be found in Ref. [64].

For larger values of tanβ the production of the charged Higgs boson in association
with a decay into a W boson and a lighter CP-even Higgs boson is a very promising
signal. As already emphasized in Sect. 8.2.2, these signatures are particularly interesting,
because they can be used to distinguish between the N2HDM and the 2HDM. We show
in Figs. 8.19-8.21 the branching ratios of the charged Higgs boson decaying into W±hi
final states as a function of MH± for the BPs that fulfill all theoretical and experimental
constraints in the type II scenario (the situation is analogues in type IV). The colors
indicate if the value of χ2

CMS−LEP is below or above 2.30 for each BP. The decay into the
SM-like Higgs boson h2 shown in Fig. 8.20 is the smallest of the three. This is because the



170 CHAPTER 8. LEP AND CMS EXCESSES AT ∼ 96 GEV

Figure 8.19: Type II: BR(H± →W±h1) versusMH± for the points fulfilling all theoreti-
cal and experimental constraints, with the colors indicating if the point fits both excesses
within 1 σ accuracy (blue) or not (red).

Figure 8.20: Type II: As in Fig. 8.19 for BR(H± →W±h2).
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Figure 8.21: Type II: As in Fig. 8.19 for BR(H± →W±h3).

tree-level couplings cH±W±hi vanish in the limit in which the corresponding hi becomes
SM-like (see Tab. 6 in Ref. [30]). The decay into the heavy Higgs boson h3 (see Fig. 8.21)
is the largest of the three if kinematically possible. This is in complete analogy to the
2HDM. However, in the N2HDM the decay with the light singlet-like scalar h1 in the
final state provides a third option with fairly large branching ratios. For our solution to
the LEP and CMS excesses this is of particular importance, because, as can bee seen in
Fig. 8.21, the BPs that fit the excesses at the 1σ level (blue) tend to have larger branching
ratios. The reason for this is that both the signal strengths µLEP and µCMS, as well as
the couplings of h1 to gauge bosons, demand a sizable doublet component. Thus, the
decay H± →W±h1 could constitute a promising signal related to H± beyond the decays
to third family lepton, and precise information about the branching ratios could help to
distinguish the N2HDM from the 2HDM. The prospects for the searches for the heavy
neutral Higgs bosons or the CP-odd Higgs boson A, decaying dominantly to tt̄, may also
be promising. However, we are not aware of corresponding HL-LHC projections. The
decays of h3 or A into a Z boson and a lighter Higgs boson can be relevant for future
searches looking for Higgs cascades.

In contrast to the LHC, e+e− colliders show good prospects for the search of light
scalars [53, 65], such that the singlet-like Higgs boson at ∼ 96 GeV can be looked for
directly. The main production channel in this mass range is the Higgsstrahlung process
e+e− → h1Z. The LEP collaboration has previously performed such searches [16], which
resulted in the 2σ excess given by µLEP. The ILC, with its much higher luminosity and
the possibility of using polarized beams, has a substantially higher potential to discover
such particles.

In Fig. 8.22 and Fig. 8.23 we show the bounds from LEP and the projected bounds
from the ILC on the cross section for the Higgsstrahlung production of h1 normalized
to the SM prediction which is given here by the coupling coefficient ch1V V squared, in
association with a subsequent decay of h1 to a pair of b-quarks. The expected bounds for
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Figure 8.22: The 95% CL expected (orange dashed) and observed (blue) upper bounds
on the Higgsstrahlung production process with associated decay of the scalar to a pair
of bottom quarks at LEP [16]. Expected 95% CL upper limits on the Higgsstrahlung
production process normalized to the SM prediction S95 at the ILC using the traditional
(red) and the recoil technique (green) as described in the text [53]. Also shown are the
points of our scan in the type II scenario which lie within (blue) and outside (red) the
1σ ellipse regarding the CMS and the LEP excesses.
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the ILC correspond to a center-of-mass energy of
√
s = 250 GeV with beam polarizations

(Pe− , Pe+) of (−80%,+30%), and an integrated luminosity of 2000 fb−1 [53]. The quan-
tity S95 used in Ref. [53] corresponds to an upper limit at the 95% confidence level on the
cross section times branching ratio generated within the ’background only’ hypothesis,
where the cross section has been normalized to the reference SM-Higgs cross section and
the BRs have been assumed to coincide with the SM values. Hence, we take the obtained
limits to be valid for the total cross section times branching ratio. The green bound is
obtained using the more conservative recoil technique, where only the recoil mass distri-
bution of the di-muon system produced in Z decay is analyzed [66]. The red bound, on
the other hand, is obtained in the context of the traditional method which is based on the
particular decay mode h1 → bb̄, along with Z decays to µ+µ− final states (see Ref. [53]
for details). The traditional method achieves stronger constraints, but introduces more
model dependence into the analysis, since a particular decay mode of h1 is exploited.
The colored points shown in Fig. 8.22 and Fig. 8.23 are the points of our scans in the
type II and type IV scenario satisfying all the theoretical and experimental constraints.

One immediately sees that the BPs of our scans can in both the type II and the
type IV scenario be covered completely by searches at the ILC for additional Higgs
bosons below ∼ 125 GeV. Depending on ch1V V , i.e., the light Higgs-boson production
cross section, h1 can be produced and analyzed in detail at the ILC. An analysis of the
corresponding experimental precision of the light Higgs-boson couplings is beyond the
scope of this thesis.
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Chapter 9

Conclusions

The discovery of the Higgs boson with a mass of ∼ 125 GeV is a ground-breaking moment
in the history of particle physics. So far it is the only fundamental scalar particle observed
in nature. Considering the current experimental uncertainties, the new particle behaves
as the Higgs boson predicted by the SM. Each model proposed to incorporate new physics
has to accommodate the new particle state. However, in contrast to the SM, many BSM
models predict extended Higgs sectors with more than a single Higgs boson. There is still
no experimental evidence for additional Higgs bosons, yielding bounds on the parameter
space of these models. Complementary, precise measurements of known observables
provide constraints, as the presence of additional particles can alter the theory predictions
indirectly. In particular, the properties of the SM-like Higgs boson can show deviations
in models with extended Higgs sectors due to mixing effects. Thus, the Higgs boson acts
as a sensor for BSM phenomena.

In the scope of this thesis the extended Higgs sectors of two different BSMmodels were
investigated. The first model was the µνSSM that, in addition to the general attractive
features related to the presence of Susy, can accommodate neutrino masses and mixings
in agreement with experimental data via a seesaw mechanism at the electroweak scale.
The µνSSM requires the existence of right-handed neutrinos. The scalar Susy partners
of the neutrinos contribute to the EWSB, yielding a complicated but phenomenologically
rich Higgs sector. The second model that was investigated was the N2HDM. This model
results from enhancing the SM particle content by a second Higgs doublet field and a real
scalar gauge-singlet field. The N2HDM comprises the phenomenology of various BSM
models, for instance certain Susy models in which the presence of the aforementioned
particles results from theoretical considerations, so that the N2HDM is a well motivated
extension of the SM.

The work in the µνSSM was aimed to perform the complete one-loop renormalization
of the neutral scalar sector at the one-loop level. At first, a renormalization prescription
for the one-generation case, i.e., the µνSSM with on right-handed neutrino superfield,
was established. Subsequently, the approach was extended to the more realistic three-
generation case, i.e., the µνSSM with three right-handed neutrino superfields. So far,
higher-order corrections in the µνSSM had been restricted to DR calculations in which the
relations between model parameters and physical observables, e.g., particle masses, are
rather obscure. In our renormalization prescription, OS renormalization conditions were
deployed whenever this was eligible, thus taking advantage of direct relations between
model parameters and observables. As soon as OS conditions are implemented, the
renormalization cannot be automated anymore (in contrast to pure DR calculations), but
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has to be reconsidered for each model studied. Therefore, we gave a detailed description
of the renormalization conditions applied both in the one- and in the three-generation
case of the µνSSM. The renormalization of the neutral scalar sector was used to attain
the higher-order corrections to the masses of the neutral scalars.

Our analysis in the one-generation case was aimed to identify the conceptual differ-
ences to the MSSM and the NMSSM. The appearance of kinetic mixing and non-diagonal
soft mass parameters which have their origin in the breaking of lepton-number conserva-
tion and R-parity led to a larger number of counterterms and more complicated expres-
sions for the renormalization conditions. The numerical impact of genuine µνSSM-like
corrections, i.e., corrections beyond the NMSSM, to the SM-like Higgs-boson mass were
shown to be negligible compared to the parametric theory uncertainty, and also exceeded
by the (anticipated) experimental uncertainty. This indicates that via the incorporation
of state-of-the-art MSSM-like higher-order corrections the theoretical uncertainty of our
Higgs-boson mass prediction is of the same level of accuracy as in the NMSSM. However,
one-loop corrections to the masses of relatively light left-handed sneutrinos were shown
to be potentially even larger than the tree-level masses, owing to the large hierarchy
between the vevs of left-handed sneutrinos and the remaining neutral scalar fields. We
illustrated the phenomenology of the scalar sector of the µνSSM in representative sce-
narios, in which we obtained numerical results for a SM-like Higgs-boson mass consistent
with the experimental bounds. In addition, the scenarios presented feature additional
light scalars. One of them, namely the CP-even right-handed sneutrino, was demon-
strated to be able to reproduce at the 1σ level two experimental excesses measured at
LEP and CMS at ∼ 96 GeV.

As already mentioned, the subsequent analysis in the µνSSM extended the renor-
malization procedure to the three-generation case. Here both the CP-even and CP-odd
scalar sectors are further enhanced by a second and a third right-handed sneutrino. This
yields a drastic increase in the total number of parameters. Apart from that, a second
source of kinetic mixing of the scalar fields arises, since the three right-handed sneutri-
nos share the same quantum numbers. The resulting renormalization procedure, again
exploiting OS conditions where that was adequate, was described in detail. The numer-
ical analysis in the three-generation case exhibits two main differences compared to the
one-generation case. Firstly, there are three instead of one gauge-singlet scalar fields
present. Their mixing with the SM-like Higgs boson can, without taking into account
experimental constraints, be arbitrarily large. Secondly, the presence of three instead of
one right-handed neutrino yields also three light neutrino masses at tree level instead of
just one. Because of this, we were able for the first time to evaluate the masses and mix-
ings in the neutral scalar sector with high precision, while simultaneously reproducing
the experimental neutrino data, i.e., mass differences and mixing angles. We illustrated
the unique relations between scalar and fermionic sectors of the µνSSM in scenarios in
which the SM-like Higgs boson is accompanied by one or more light right-handed sneu-
trinos. One of these was substantially mixed with the SM-like Higgs boson. We explicitly
showed that in these kind of scenarios the non-universality of genuine µνSSM parameters
w.r.t. their generation indices results in contributions to the SM-like Higgs-boson mass
of ∼ 1 GeV in experimentally allowed parameter regions.

The investigations in the N2HDM were focused particularly on a more accurate fit to
the two experimental excesses at ∼ 96 GeV measured at LEP and CMS. Since we saw
that in the µνSSM, where Susy relations constrain the form of the scalar potential, the
accommodation of the excesses is limited, we aimed for a better fit in a model without
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Susy. The N2HDM was a natural candidate, as the particle content of the Higgs sec-
tor resembles the one of the µνSSM, where also a gauge-singlet scalar field is present
in addition to two Higgs doublet fields. Taking into account all relevant constraints,
we specified the relevant parameter space of the N2HDM in which a Higgs boson with a
mass of ∼ 96 GeV, having a dominant singlet component, can reproduce both excesses si-
multaneously in perfect agreement with the experimental signal-strenghts measurements.
Furthermore, we demonstrated that only the type II and type IV N2HDM can provide
a Higgs boson reproducing both signals accurately. In these types the couplings of the
Higgs bosons to down-type and up-type fermions can be adjusted independently. This
is crucial to attribute the desired properties to the ∼ 96 GeV Higgs boson. Finally,
we investigated how our proposed scenario can (and will) be tested at future colliders.
We found that the scenario can be ruled out entirely if the future SM-like Higgs-boson
coupling measurements at the HL-LHC will not find deviations from the SM predictions.
A future e+e− collider like the ILC could produce the ∼ 96 GeV Higgs boson from our
analysis in large numbers, and would be able to precisely measure its branching ratios.
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Conclusiones

El descubrimiento del bosón de Higgs con una masa de ∼ 125 GeV es un hito en la
historia de la física de partículas. Hasta ahora, es la única partícula escalar observada
en la naturaleza. Teniendo en cuenta las incertidumbres de los experimentos actuales,
la nueva partícula se comporta tal y como se había previsto según el modelo estandar
(SM). Cada modelo propuesto para incorporar nueva física también ha de acomodar
esta partícula. Sin embargo, al contrario que el SM, muchas teorías más allá del SM
(BMS) predicen un sector de Higgs extendido, que tiene más que un bosón de Higgs.
Todavía no hay pruebas experimentales de que bosones de Higgs adicionales existan.
Como consecuencia, hay que tener en cuenta restricciones sobre el espacio de parámetros
de modelos BSM. Además, las medidas precisas de los observables conocidos producen
restricciones de forma indirecta. En concreto, las propiedades del bosón de Higgs podrían
verse afectadas por la presencia de otros escalares. En este sentido, el bosón de Higgs
puede actuar como un sensor de fenómenos BSM.

Durante el desarollo de la tesis, investigamos los sectores de Higgs de dos modelos
distintos. El primer modelo fue el µνSSM. El µνSSM es un modelo supersimétrico, que
es capaz de acomodar las masas y mezclas de los neutrinos en concordancia con los valores
medidos experimentalmente, mediante un mecanismo de seesaw a la escala electrodébil.
El µνSSM require la existencia de neutrinos right-handed. Las parejas supersimétricas
de los neutrinos contribuyen a la ruptura de la simetría electrodébil. Esto da lugar a un
sector de Higgs complejo, pero con una fenomenología muy rica. El segundo modelo que
investigamos fue el N2HDM. En el N2HDM se añaden otro campo de Higgs doblete y
un campo escalar real al contenido del sector de Higgs del SM. El N2HDM comprende
la fenomenología de varios modelos BSM en los que están presentes bosones de Higgs
adicionales de este tipo. Por ello, el N2HDM es un modelo bien motivado.

Nuestro trabajo en el µνSSM se centró en llevar a cabo la renormalización completa
a nivel de un loop del potencial de los escalar neutrales. En primer lugar, desarrollamos
una prescripción de renormalización para el caso de una generación, es decir, para el
µνSSM con un neutrino right-handed. Después extendimos el método para el caso más
realista de tres generaciones, es decir, el µνSSM con tres neutrinos right-handed. Hasta
ahora, los cálculos de las correcciones de órdenes superiores estaban limitados únicamente
a esquemas de renormalización DR en los cuales las relaciones entre los parámetros del
modelo y los observables, por ejemplo la masa de una partícula, no quedan de todo
claras. En nuestra prescripción de renormalización en la que usamos condiciones on-shell
(OS) nos aprovechamos de las relaciones directas entre parámetros y observables. Una
vez implementadas las condiciones OS, ya no se puede automatizar la renormalización
(a diferencia de los esquemas DR). En cada modelo investigado hay que reconsiderar
la renormalización. Por ello, catalogamos en detalle las condiciones de renormalización
aplicadas en el caso de una y tres generaciones del µνSSM. Utilizamos la renormalización
del potencial de los escalares neutrales para obtener las correcciones de órdenes superiores
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para las masas de los escalares.

El análisis del caso de una generación se centró en identificar las diferencias concep-
tuales respecto al MSSM y NMSSM. Debido a la ruptura de la conservación del número
leptónico y de R-paridad aparecen términos cinéticos mezclados y términos no diagonales
de masas soft. Esto da lugar a un número total de contratérminos más grande y, a la
vez, a expresiones más complicadas para las condiciones de renormalización. Mostramos
que el impacto numérico de las contribuciones específicas del µνSSM que contribuyen
a la masa del bosón de Higgs del SM es desdeñable comparado con las incertidumbres
teóricas y experimentales. Esto indica que, una vez incorporadas las correcciones de
órdenes superiores del MSSM, nuestra predicción de la masa del bosón de Higgs del
SM tiene la misma exactitud que los cálculos correspondientes en el NMSSM. Sin em-
bargo, demostramos también que las correcciones a nivel de un loop para las masas de
sneutrinos left-handed pueden ser de la misma magnitud que las masas de las mismas a
nivel clásico, debido a la jerarquía entre vevs de los sneutrinos left-handed y el resto de
escalares. Illustramos la fenomenología del sector escalar del µνSSM en escenarios rep-
resentativos en los que obtuvimos resultados numéricos para la masa del bosón de Higgs
del SM consistente con el valor experimental. Además, los escenarios contienen escalares
adicionales con masas bajas. Uno de estos, en concreto el sneutrino right-handed par
bajo CP, es capaz de reproducir a nivel de 1σ dos excesos experimentales medidos con
los colisionadores LEP y LHC alrededor de ∼ 96 GeV.

Como ya hemos mencionado, el análisis siguiente en el µνSSM extendió la prescripción
de renormalización al caso de tres generaciones. En este caso, los sectores escalares pares
e impares bajo CP tienen un segundo y tercer sneutrino right-handed. Describimos en
detalle la renormalización del potencial de Higgs, incorporando de nuevo condiciones OS.
El análisis numérico en el caso de tres generaciones muestra dos diferencias importantes
con respeto al caso de una generación. En primer lugar, hay tres singletes en vez de
uno en el sector de Higgs, y todos se pueden mezclar con el bosón de Higgs del SM.
En segundo lugar, la presencia de tres neutrinos right-handed da lugar a tres masas
en vez de una a tree level para los neutrinos left-handed. Por ello, fuimos capaz de
calcular con precisión las masas y las mezclas de los escalares neutrales y simultáneamente
reproducir los datos experimentales relacionados con los neutrinos: sus diferencias de
masas y sus ángulos de mezcla. Ilustramos las relaciones especiales que existen entre el
sector escalar y el sector fermiónico del µνSSM en escenarios en los que por lo menos
uno de los sneutrinos right-handed tiene una masa parecida a la del bosón de Higgs del
SM. Debido a ello puede haber una mezcla considerable entre los dos. Demostramos
que la predicción de la masa del bosón de Higgs del SM se ve afectada por efectos no
universales de los parámetros específicos del µνSSM. Por ejemplo, valores no universales
para los parámetros λi dieron lugar a variaciones de ∼ 1 GeV en escenarios que cumplían
las restricciones experimentales.

Nuestra investigación en el N2HDM se centró en lograr un ajuste aún mejor de los dos
excesos medidos alrededor de ∼ 96 GeV. Dado que vimos que en el µνSSM, en el cual
las relaciones supersimétrias restringen la forma del potencial escalar, la incorporación de
los excesos está limitada, pretendimos mejorar el ajuste en un modelo no supersimétrico.
El N2HDM es un candidato natural, porque el contenido de partículas se parece al del
µνSSM en el cual también están presentes un campo escalar real yu un segundo campo de
Higgs doblete. Teniendo en cuenta todas las restricciones experimentales, especificamos
el espacio de parámetros en el que un bosón de Higgs con una masa de ∼ 96 GeV,
que tiene una componente dominante del campo singlete, es capaz de reproducir las
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señales en concordancia perfecta con las medidas. Además, demostramos que solo el
tipo II y el tipo IV del N2HDM poseen un bosón de Higgs que reproduzca las dos señales
a la vez. En estos tipos de construcciones se pueden ajustar independientemente los
acoplamientos de los bosones de Higgs con los fermiones tipo up y tipo down. Esto
es fundamental para atribuir las propiedades deseadas al bosón de Higgs a ∼ 96 GeV.
Por último, investigamos cómo colisionadores futuros podrán comprobar el escenario
prupuesto. Descubrimos que el HL-LHC puede descartar el escenario, si no se miden
desviaciones con respecto a las predicciones en las medidas de los acoplamientos del bosón
de Higgs del SM. Un posible colisionador e+e− como el ILC sería capaz de producir el
bosón de Higgs a ∼ 96 GeV de nuestro analisis en cantidades muy grandes y podría
medir los branching ratios con una precisión muy elevada.
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