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Effects of the electrostatic environment on superlattice Majorana nanowires
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Finding ways of creating, measuring, and manipulating Majorana bound states (MBSs) in superconducting-
semiconducting nanowires is a highly pursued goal in condensed matter physics. It was recently proposed
that a periodic covering of the semiconducting nanowire with superconductor fingers would allow both gating
and tuning the system into a topological phase while leaving room for a local detection of the MBS wave
function. We perform a detailed, self-consistent numerical study of a three-dimensional (3D) model for a
finite-length nanowire with a superconductor superlattice including the effect of the surrounding electrostatic
environment, and taking into account the surface charge created at the semiconductor surface. We consider
different experimental scenarios where the superlattice is on top or at the bottom of the nanowire with respect
to a back gate. The analysis of the 3D electrostatic profile, the charge density, the low-energy spectrum, and the
formation of MBSs reveals a rich phenomenology that depends on the nanowire parameters as well as on the
superlattice dimensions and the external back-gate potential. The 3D environment turns out to be essential to
correctly capture and understand the phase diagram of the system and the parameter regions where topological

superconductivity is established.
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I. INTRODUCTION

The appearance of Majorana bound states (MBSs) at the
edges of topological superconductors in solid-state devices
has attracted a great deal of attention both from theorists
and experimentalists [1-6]. These non-Abelian mid-gap zero-
energy modes are intriguing from a fundamental point of view
and germane to topologically protected quantum computing
applications [7-9]. Due to their relative simplicity, most of
the scrutiny has fallen onto one-dimensional (1D) proposals
such as hybrid superconducting-semiconducting nanowires
with strong spin-orbit coupling [6] and ferromagnetic atomic
chains on a superconductor (SC) [10—13]. Tuning the system
to appropriate conditions, experimentalists are able to find
zero-energy modes compatible with the existence of MBSs
in the form of zero-bias peaks in tunneling spectroscopy
experiments [14-22].

However, due to the possibility of alternative explanations
for the observed zero-bias peak, the actual nature of these
low-energy states has been brought into question [23-28]. A
complementary measurement that could disperse the doubts
would be to measure the actual zero-mode probability density
along the wire or chain, which should show for Majoranas an
exponential decay from the edge toward its center with the
Majorana localization length [29]. Attempts in this direction,
including simultaneous tunneling measurement at the the end
and the bulk of the wire, were performed in Ref. [21].
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The zero-mode probability profile could in principle be
accessed with the help of a scanning tunneling microscope
(STM) that explores the local density of states at a certain en-
ergy along the wire [30]. STM measurements of this type have
been carried out in iron chains on lead [10,11], but in this case
it is difficult to control the parameters of the system as these
are fixed by material properties. In contrast, the parameters
and topological phase transition of semiconducting wires can
be manipulated by external magnetic and electric fields [6].
This is one of the reasons making the semiconducting wire
platforms so popular in the attempts to engineer topological
superconductivity and to pursue MBSs. In these wires, the
induced pairing is achieved by proximity to a SC that can be
either deposited or grown epitaxially over the wire [31]. In
the last case, hard superconducting gaps have been reported
in InAs [31] and InSb [32] wires with epitaxial Al layers.

These hybrid wires are subjected to an external in-plane
magnetic field B that generates a Zeeman energy for the
electrons in the wire, Vz = gugB/2, given in terms of the
wire’s g factor and the Bohr magneton ug. According to
simple 1D effective models [33,34], these wires experience a
phase transition to a topological state at Zeeman fields greater
than V., = /A2 + u?, where A is the induced gap and u
the wire’s chemical potential. The charge density inside the
wire, and thus p, can in principle be controlled by the voltage
applied to a back gate Vyue. Due to their tunability, it would be
ideal to perform STM experiments on these wires, a task that
can be carried out nowadays [35].

Looking for an appropriate device to conduct such an ex-
periment, Levine et al. [36] recently showed that it is possible
to find topological superconductivity in these wires when
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the superconductor (SC) is deposited periodically, forming
a superlattice structure instead of covering continuously the
length of the wire. A configuration with a superlattice of SC
fingers at the bottom enables the STM tip to approach the wire
from above, where it is free of any metal, and to drive a current
between the tip and each of the SC fingers. Due to the metal
free regions between the fingers, the back gate is capable of
changing the charge density inside the wire due to the reduced
screening by the finite-size fingers. In this case [36], the
topological phase diagram becomes more complex than for
the uniformly covered nanowire (due to the presence of lon-
gitudinal minibands created by the periodicity of the system),
and extends over a wider region in parameter space (to lower
Zeeman fields and higher values of the chemical potential).

Levine et al. [36] considered a minimal 1D model for the
nanowire superstructure, in a similar fashion to other previous
studies [37-40] with related periodic structures. However, in
the last couple of years it has been shown that the elec-
trostatic environment and the three dimensionality of these
wires play an important role in all aspects concerning the
trivial /topological phases and the appearance of MBSs. For
instance, the electrostatic profile is not homogeneous along
(and across) the wire, which creates a position-dependent
chemical potential [23,24,26,41-43] that has consequences
for the topological phase transition and the shape and the
overlap of MBSs [44—47]. It also creates a position-dependent
Rashba spin-orbit coupling [48-50]. Moreover, the charge
density is not distributed uniformly across the wire and its
location depends strongly on the external gate voltage [49,51].
This has consequences for the induced proximity effect
[52,53] and the appearance of orbital magnetic effects [54,55].
All these aspects influence the topological phase diagram and
the topological protection of the Majorana zero modes [56].

Motivated by the new possibilities afforded by the super-
lattice structures and the necessity to include electrostatic
effects when analyzing the performance of a particular device
design, here we perform a detailed study of the systems
shown in Fig. 1. We consider two types of generic superlattice
Majorana nanowires, one with the superconducting fingers at
the bottom, between the nanowire and the back gate used to
control the wire’s charge density [see Fig. 1(a)], and the other
with the fingers on top, further away from the back gate [see
Fig. 1(b)]. In this last case, the fingers themselves can play the
role of local probes along the wire [21,57]. In both scenarios
we assume that the fingers are connected to a macroscopic
SC or grounded, so that we can neglect charging effects. Note
that there are other works [40,58—60] with periodic structures
in the form of coupled quantum dots where the charging effect
could be essential.

The physics of the setups analyzed here is primarily af-
fected by the periodic structure along the wire that creates,
among other things, a periodic potential profile for the elec-
trons [see Fig. 1(c)], a periodic spin-orbit coupling, and a
periodic induced pairing potential. These quantities are further
dependent on the transverse coordinates [see Fig. 1(d)], which
are in turn conditioned by the wire’s boundary conditions
(discussed in the next section). All this gives rise to a rich
phenomenology that has consequences for the topological
phase diagram and the spectral properties of the wires. Fun-
damental parameters characterizing this phenomenology are
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FIG. 1. Schematic 3D (top) and lateral view (bottom) represen-
tations of the two types of superlattice Majorana nanowires analyzed
in the text: The bottom superlattice where the SC fingers are below
(a) and the top superlattice where they are on top of the nanowire
(b). The nanowire is depicted in green, the SC superlattice in gray,
the dielectric substrate in purple, and the back gate in black. We
choose the x axis along the nanowire and the z axis as the direction
perpendicular to the back gate’s surface. Different materials have
different dielectric constants and dimensions. Vsc is the wire’s con-
duction band offset to the metal Fermi level at the interface with
the SC fingers, pg,r is the positive surface charge at the rest of the
wire’s facets, and Vg is the back gate’s voltage. (c), (d) Examples of
the self-consistent solution of the Poisson-Schrodinger equations in
the Thomas-Fermi approximation. The electrostatic potential energy
profile (in red) and the charge density profile (in blue) are shown
along the wire (x direction at z = 30 nm) in (c) and across the wire
(z direction at x = 1 um) in (d), for Ve = —0.5V, Vs¢ = 0.2V, and
Peurt = 2 x 107 e/cm? in a surface layer of thickness 1 nm. Geo-
metric parameters are Ly = 2 um, L, = 500 nm, Lgc = 250 nm,
Wai = 10 nm, Wsio = 20 nm, W3 = 80 nm. Other parameters are
given in Table L.

the superlattice cell length L.; and the SC coverage ratio
rsc = Lsc/Lcenn, Where Lgc is the size along the wire of the SC
fingers. Since the geometry and the resulting 3D electrostatic
profile in each setup are different, we find notable differences
between both of them with advantages and disadvantages.
The bottom superlattice setup can be easily accessed from
the top, for example, with an STM tip as mentioned before,
while its charge density is still controllable with the back
gate thanks to the metal-free regions between the SC fingers.
Nevertheless, the screening effect of the fingers is strong due
to their vicinity to the gate, which produces sizable potential
oscillations for the electrons inside the wire. This in turn
has negative consequences for the stability of the topological
phase due to the appearance of localized states on top of the
SC fingers that interact with the MBSs when they are present.
Furthermore, the spin-orbit coupling changes sign along the
wire with the periodicity of the superlattice, averaging to a
small value. In contrast, in the top-superlattice device the
charge density is more easily varied without the need of large
back-gate potentials and the topological phase is more readily
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accessible. The potential oscillations are thus softer and the
spin-orbit coupling does not change sign and averages to a
larger value. In turn, there is less nanowire surface exposed to
open air and it is in principle more difficult to access.

In both setups, the SC does not cover continuously the
wire and consequently there is less induced superconductivity
than in a uniformly covered one. We find that this leads
to a reduced topological protection, manifested in a smaller
topological minigap (energy difference between the Majorana
zero-energy mode and the continuum of states for V; > V)
and in a larger overlap between Majoranas at opposite ends
of the wire (as measured by the Majorana charge [30]).
Interestingly, the Majorana localization length is not only
dependent on the SC coherence length, Fermi wavelength, and
spin-orbit length, as in the uniform hybrid wire, but also on the
superlattice length.

To enhance the topological protection, at the end of the
paper we propose an alternative configuration that combines a
conventional hybrid Majorana nanowire (with one of its facets
covered uniformly by a thin SC layer) and a superlattice of
(normal or superconducting) fingers. This setup benefits from
the advantages of the superlattice configuration while display-
ing a topological minigap and Majorana charge comparable to
the uniform wire.

The structure of the paper is the following. In Sec. IT we de-
scribe the superlattice setups and the methodology employed
to analyze them (further details on the numerical methods can
be found in Appendix A). We use a numerical approach that
combines the effect of the electrostatic environment through
the Poisson’s equation and the wire’s charge density through
the Schrodinger’s equation in a self-consistent manner. As in
previous works where the electrostatic environment was con-
sidered [51-53,56,61], our calculations are very demanding
computationally, more so here since we have a superlattice
structure. For this reason, we perform a series of approxima-
tions. For instance, we treat the proximity effect by the SC
superlattice as a rigid boundary condition on the nanowire,
effectively integrating out other SC degrees of freedom. We
also ignore the orbital effects of the magnetic field. As we
argue later on, this approximation will be justified at low
densities and when the electron’s wave function is pushed
toward the SCs by the effect of the back gate.

It is important to note that in these systems there are many
parameters as well as many length scales playing a role. Thus,
we analyze different aspects separately in the first sections. In
Sec. III A we inspect the electrostatic potential profile along
and across the wire for the two setups (further details in
Appendix C). In Sec. III B we analyze their inhomogeneous
Rashba couplings. In Sec. IV we examine the impact of the
superlattice on the nanowire spectral properties. We consider
separately the effect of the inhomogeneous electrochemical
potential, Sec. IV A, the role of the wire’s intrinsic doping,
Sec. IV B, and the impact of the inhomogeneous induced
pairing, Sec. IV C. In Sec. IVD we present a diagram in su-
perlattice parameter space where we summarize the different
features having a role in the stability of the topological phase
analyzed in the previous sections.

Finally, in Sec. V we consider all the previous ingredients
together and analyze the behavior of both setups for realistic
superlattice nanowire parameters. In particular, we find the

spectrum over an extended range of external gate’s voltages.
We then focus on a particular longitudinal subband where the
wire is topological and analyze the appearance of Majorana
oscillations, the size of the topological minigap, as well as the
spatial profile of MBSs. An alternative configuration that en-
hances the topological protection is discussed in Sec. V A. For
these calculations we solve the Schrédinger-Poisson equation
in the Thomas-Fermi approximation. To check its accuracy,
we compare it with the full Schrédinger-Poisson problem for
some specific values of back gate’s potential in Appendix B.
Finally, we conclude in Sec. VI.

II. SETUP AND METHODOLOGY

Our aim is to study equilibrium properties of the super-
lattice Majorana nanowires of Figs. 1(a) and 1(b) taking into
account their electrostatic environment. To that end, we first
compute the electrostatic potential by solving the Poisson’s
equation along and across the wire, taking into account its
3D geometry and the electrostatic parameters of the different
materials. Then, we introduce this potential into the system’s
Bogoliubov—de Gennes Hamiltonian and diagonalize it to
find its eigenvalues and eigenvectors (both for infinite and
finite-length wires) as a function of external parameters such
as the voltage applied to the back gate or the external mag-
netic field. Since the potential profile depends on the wire’s
charge density according to the Poisson’s equation, and the
charge density is calculated by diagonalizing the system’s
Hamiltonian, to solve the full Poisson-Schrodinger problem
one needs to iterate the two in a self-consistent manner until
convergence. In order to simplify this procedure, we will em-
ploy the Thomas-Fermi approximation to calculate the wire’s
charge density, as explained below in this section. In doing so,
and similarly to previous works [53,56], we assume that the
potential is independent of the magnetic field (calculated at
B = 0). This is justified since the charge density only depends
slightly on B for the B values considered in this work, as we
prove in Appendix B.

A fully realistic calculation of the three-dimensional
(3D) device would require to include the SC superlattice
in the Hamiltonian at the same level as the nanowire it-
self. This is an involved problem that has been tackled in
Refs. [52,53,56,62,63]. In general, it can be seen that the SC
induces by proximity effect a renormalization of the wire’s
parameters such as w, o, or g. When this renormalization is
strong, called a metallization of the wire [63], it is detrimental
for the appearance of a topological phase. Concerning the
induced pairing, it is possible to find parameters (including
the width of the SC layer [53,62]) where it is good, but it is in
general necessary to assume a certain degree of disorder [56]
in the SC to obtain a hard induced gap in the nanowire that
is close to the parent’s one. Here, and due to the complexity
already introduced by the superlattice, we will treat the SC as
a rigid boundary. Nonetheless, the SC superlattice width Wy,
and its infinite dielectric constant will be taken into account
when solving the electrostatic problem. We will assume good
proximity effect described by a constant pairing amplitude
Ay, comparable to that of the SC bulk gap, at the sites in
contact to the SC fingers (determined by the superlattice
parameters L. and Lgc). Good proximity in such superlattice
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TABLE I. Parameters used in this work.

Waurzite InAs parameters [69,70]

m* = 0.023m, Er=0 e = 30 meV nm

Electrostatic parameters [53,56,66,71]

€mas = 17.7¢ €sio = 5.5€ €vacuum = €0
Vse =200meV  pl) =2 x 107-4 Py =2 x 1074-%
Geometrical parameters
Winas = 80 nm War = 10 nm Wsio = 20 nm
Other parameters
Ay = 0.2 meV [31] T =10 mK

devices could be achieved, for example, by using molecular
beam epitaxy, either by shadowing techniques or by etching
half-shell coated wires [64].

We model the superlattice Majorana nanowire generalizing
the 1D Hamiltonian of Refs. [33,34] to 3D space

1 -
H =5 [ Voo,

R2k?

2m*

HF) = [ — ep(7) — EF}ﬁoz

- %é R x Gr(F) — ar(F) X K12, + Vyb k.
—iA(F)6y 1y, ey

where 7 = (x, y, z) and k= (ky, ky, k;). Here, m* is the ef-
fective mass of the conduction band of the InAs nanowire,
¢(7) the electrostatic potential inside the wire, Er the wire’s
Fermi energy, &r(7) the vector of Rashba couplings in the
three spatial directions, Vz the Zeeman energy produced by
an external magnetic field in the x direction, A(¥) the induced
superconducting pair potential, and o and t the Pauli matrices
in spin and electron-hole space, respectively. The specific
wire, electrostatic, and geometrical parameters used in our
simulations are summarized in Table I. We note that there are
three quantities entering the Hamiltonian as inhomogeneous
functions: The potential profile ¢ (that controls the local
wire’s band bottom), the spin-orbit coupling &g, and the
induced pairing A. On the other hand, we consider other quan-
tities constant in space: The Zeeman splitting Vz, assuming
that the applied magnetic field does not suffer from SC finger
screening, and the effective mass m*, which is taken as an
effective renormalized parameter. In the remainder of this sec-
tion we explain in detail how we model the spatial-dependent
quantities. For a description of the precise numerical methods
used to solve the Hamiltonian, see Appendix A.

The electrostatic potential ¢(7) is found by solving self-
consistently the Poisson’s equation

V(@) - Vo) = pald ()], 2)

where €(7) is the dielectric permittivity in the entire sys-
tem and p[¢(7)] is the total charge density of the wire,
which itself depends on ¢ (7). The two superlattice geometries

considered in this work [Figs. 1(a) and 1(b)] are taken into
account through piecewise functions of €(7), where each ma-
terial is characterized by a different constant permittivity, as
shown in Fig. 1(a), leading to abrupt changes at the interfaces.
Following Ref. [56], we model the total charge density of the
wire as

Prot = Psurf T Pmobile - (3)

Here, psur represents the charge density of a thin layer of
donor states that typically forms at the surface of the InAs
wire exposed to air [65]. It depends on the details of the
surface chemistry and its precise value is difficult to know
[66]. We model it as a 1-nm layer of positive charge fixed
at the wire’s surface that is independent of the applied gate
voltage. We consider two possible values compatible with
existent literature, one larger, pgus/e =2 x 10'® cm™3, and
the other smaller, pg,/e = 2 x 10'7 cm~3. The main effect of
this charge is to produce an accumulation of electrons in the
wire close to the surface and thus an infrinsic average doping
in the absence of applied gate voltage. Hence, it conditions the
values of Vg, necessary to deplete or charge the wire.

On the other hand, pmebile represents the mobile charges
inside the wire. For the range of Vg values that we are
going to explore in this work pmebile = Pe, 1.€., it is the charge
density produced by the electrons in the InAs conduction
band. Should we consider stronger (negative) gate voltages,
we would need to also take into account mobile charges com-
ing from the InAs heavy-hole and light-hole bands (separated
from the conduction band by the semiconducting gap energy),
but this is not the case here (see Appendix A 1 for more
details). The spatial distribution of p. depends on ¢(7), in
contrast to the surface charge pg,r that is localized at the
nanowire facets not covered by the Al, as explained before.
In our calculations we use the Thomas-Fermi approximation
for a 3D electron gas and take

(?)__L 2m*le¢p(F) + Ep|f( — [ed(F) + EF])
peF) = =3 =

(SIS

“

where f is the Fermi-Dirac distribution (we assume
T =10 mK) and we set to zero the wire’s Fermi energy
(Er=0). We use the Thomas-Fermi approximation instead
of performing a full Schrodinger-Poisson calculation because
it is less demanding computationally. It has nevertheless
been shown recently [53] that this approximation gives re-
sults in good agreement with the full treatment in similar
simulations of InAs/Al heterostructures. To check this, we
perform Schrodinger-Poisson self-consistent calculations for
some specific cases in Appendix B and quantify the deviations
of the wire’s charge distribution between the two. We find
that Thomas-Fermi approximation slightly overestimates the
electron charge density close to the SC fingers and at the
wire’s boundaries, but otherwise produces very similar results
for the electrostatic potential.

In the bottom-right panel of Fig. 1(b) we show schemat-
ically the boundary conditions used in our simulations. A
voltage Vg is applied to the back gate that is at a distance
from the SC fingers/nanowire structure given by the width
of the substrate (which we take as SiO;). This back gate is
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used to tune the average chemical potential inside the wire. We
assume that pg,s covers all the wire’s facets except for those
in direct contact to the SC fingers. The boundary condition
between the nanowire and the SC superlattice depends on
several microscopic details such as their material composition,
their sizes, the type and quality of the interface, etc. Certainly,
the proximity effect will also depend on these details. A
detailed description of this problem is beyond the scope of
this work. Concerning its electrostatic effect, we shall assume
that there is a perfect Ohmic contact between the SC and
the semiconductor that imposes a constant potential at the
interface that we call Vsc. It represents the band bending with
respect to the Fermi level of the InAs conduction band in the
vicinity of the SC-semiconductor interface due to the work
function difference between both materials. For an extended
epitaxial InAs-Al interface, this quantity has been recently
analyzed in Refs. [52,53]. Following those studies, here we
will take Vsc = 0.2 eV. However, the precise number is not
important for the qualitative analysis that we present here. It
will create an accumulation of electrons close to the SCs very
similar to the one created by pgyf, contributing to the intrinsic
doping of the wire in the absence of V. It will thus have
an influence on the values of back gate’s voltages needed to
deplete or charge the wire.

To visualize the effect of SC superlattice and pgyf, We
show for the top-superlattice setup an example of the potential
energy profile (in red) and the electron charge density profile
(in blue) along the wire (x direction) in Fig. 1(c), and across
the wire’s section (z direction) in Fig. 1(d). These curves are
calculated with the self-consistent Thomas-Fermi approxima-
tion for some particular representative values of Vg, Vsc, and
psurf- As expected, the potential energy profile (that represents
the local band-bottom energy) oscillates along the wire with
the periodicity set by the SC superlattice. It is minimum below
the SC fingers and maximum between them. Conversely, the
charge density profile is maximum below the fingers and
minimum between them. In the transverse direction we can
see that the charge density localizes close to the SC finger,
right where the band-bottom energy is minimum, forming an
electron accumulation layer.

The second inhomogeneous quantity that enters the
Hamiltonian of Eq. (1) is the spin-orbit coupling. We assume
that it is locally proportional to the electric field & (¥)
E(?) = —%d)(?). According to Refs. [48,56] and using an
eight-band k - p theory [67], it can be modeled as

N . eP?
a(r) = dip + 3

1 o

Eczv (Ecv + Evv)2 ] V¢(r)’ (5)
where P is the coupling between the lowest-energy conduc-
tion band and the highest-energy valence band, E., is the
semiconductor gap (energy difference between the conduction
and valence bands), and E,, is the energy gap between the
highest-energy and lowest-energy valence bands (split-off
gap). For an InAs nanowire with wurzite crystal structure
these values are [67] P = 919.7 meV nm, E., = 418 meV,
and E,y = 380 meV. Additionally, since we are considering a
wurtzite InAs nanowire, there is an intrinsic Rashba constant
contribution in the x direction [68,69] of the order of a;j, ~
30 meV nm.

Finally, the last inhomogeneous quantity is the induced
superconducting pairing A(7), which we model as a telegraph
function with a constant value A (of the order of the bulk gap
in the parent superconductor) at the wire’s facets in contact to
the SC fingers and zero otherwise.

III. ELECTROSTATIC EFFECTS
A. Electrostatic potential profile

We want to study the impact of a realistic electrostatic
potential profile along and across the 3D wire on the topo-
logical phase diagram and the formation of MBSs. Since we
are interested in understanding the effect of the superlattice
structure, we consider throughout this work periodic boundary
conditions in the x direction (and thus ignore border effects in
the electrostatic problem). Moreover, in this section we ignore
the screening effect of the mobile charges inside the wire
pe because we want to isolate the impact of the electrostatic
environment on the wire’s potential profile (see Appendix A 1
and Fig. 15). Nevertheless, they are included self-consistently
in Sec. V.

In Fig. 2 we plot the potential profile ¢ created by the bot-
tom gate normalized t0 Vg, both for the bottom-superlattice
device to the left and for the top-superlattice one to the right.
In this case, we ignore the presence of the Al-InAs band offset
and the surface charge layer and take Vsc = 0 and pgys = 0.
The potential oscillates along the wire with the periodicity of
the superlattice, but the oscillations are very different for each
setup [see white dotted guidelines in Figs. 2(c) and 2(d) that
highlight some isopotentials. In the bottom-superlattice device
the potential maximum oscillates between the top and the
bottom of the wire depending on whether the wire’s section

Bottom-superlattice

Top-superlattice

C)

2
W5
0 0.25 0.5 >~
2/ Lupire 025
=N
z
=
0
-0.5 0 05 -05 0 0.5
y/W, y/W-.

FIG. 2. Electrostatic potential profile created inside an InAs wire
in contact to Al SC fingers due to the voltage applied to the back
gate. Here, Vsc = 0, psur = 0, and p. is neglected. Two setups are
considered, bottom superlattice to the left and top superlattice to the
right, with L.y = 150 nm and rsc = 0.5. (a), (b) Sketches of both
systems. (c), (d) Electrostatic profile normalized to V. along the
wire (top), and across the wire’s section (bottom), both for sections
with SC finger (enclosed by a purple square) and between SC fingers
(enclosed by a green square). A white dotted line is used in (c) and
(d) to highlight the shape of the potential oscillations in each setup
for one particular isopotential.
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FIG. 3. Electrostatic potential profile created inside an InAs wire
in contact to Al SC fingers due to the wire’s band offset with respect
to the Fermi level at the interface with the SC (Vsc = 0.2 V) and
the surface charge layer at the rest of the facets. Here, Vge = 0 and
pe is neglected. Two setups are considered, bottom superlattice to
the left and top superlattice to the right, with L.; = 150 nm and
rsc = 0.5. (a), (b) Sketches of both systems. (c), (d) Electrostatic
profile along the wire (top), and across the wire’s section (bottom) for
a surface charge density of pg =2 x 10'® (e/cm?). (e), (f) Same
for pgr =2 x 107 e/cm?.

is between or on top of the SC fingers, while in the top-
superlattice setup the maximum is always at the bottom of the
wire, leading to smaller oscillations along the x direction. This
can be better appreciated in the bottom panels of Figs. 2(c)
and 2(d), where the potential profile across the wire’s section
is depicted both for sections with a SC finger (purple squared)
and between SC fingers (green squared). The oscillations thus
produce stronger potential wells in the first setup and sub-
sequent bound states localized over the SCs. When present,
these states are detrimental for the stability of the topological
phase as we will analyze in Sec. IV.

Another difference between the two setups is the ability of
the gate to control the potential inside the wire (and, therefore,
to produce a certain doping) in the presence of the electro-
static environment. Gating is more difficult in the bottom-
superlattice device because the metallic fingers are closer to
the gate and thus they screen its potential more efficiently.
This is why ¢/Vgae is closer to zero (blue color) in Fig. 2(c)
whereas in Fig. 2(d) the potential better approaches Vg (red
color) at the bottom of the wire, away from the SC fingers.

Now, we explore the electrostatic potential profile created
by the surface charge density pg, and the potential boundary

condition at the interface with the SC fingers (Vsc = 0.2 V).
As illustrated in Fig. 3, we perform this study setting the back-
gate potential to zero. As before, the potential oscillates along
the wire with the periodicity of the superlattice and across the
wire’s section it varies depending on whether that section is
on or between the SC fingers. Since the potential profile times
the electron charge —e represents the wire’s conduction band
bottom, the wire’s doping is proportional to the electrostatic
potential. The main effect of the wire’s band offset with
respect to the Fermi level at the SC interface and the surface
charge at the other interfaces is to increase the wire’s doping
by a quantity that we call pui, which is the spatial average
of the potential energy profile created by Vsc and pgys. This
is more pronounced for the case with a larger pg,s. We note
that for realistic parameters, uiy is always positive. On the
other hand, the total doping of the wire u coming both from
the intrinsic charge and the gate voltage can be positive or
negative depending on the sign and magnitude of V.

B. Inhomogeneous Rashba coupling

The inhomogeneous electrostatic potential calculated in
the previous section creates an inhomogeneous electric field
that, in turn, generates an inhomogeneous Rashba coupling
along and across the wire. We assume that the Rashba cou-
pling is locally proportional to the electric field, as explained
in Sec. II. There are three Rashba couplings o, ., giving rise
to six terms in the Hamiltonian of Eq. (1). Considering that
the magnetic field in our model points in the x direction, only
two of those terms contribute to the opening of a topological
minigap. These are proportional to «.0,k, and ay0.k,. The
effect of the other four Rashba terms is basically to produce
hybridization of the transverse subbands and the subsequent
even-odd effect for the appearance of Majoranas [72]. It turns
out that «, is negligible in these wire setups (due to the
back-gate superlattice parallel disposition). Thus, we focus

Bottom-superlattice Top-superlattice

(a) (b)

V(/at(’

0 & 025 05 0.75 1
s¢ @/ Luire
05
5 < / < /
0
05
5 0 05 05 0 05 - 0 - 0
y/W, y/W, y/W, y/W,

FIG. 4. Contribution of the back-gate potential to the local
longitudinal Rashba coupling inside the wire. Vsc and pg,¢ are
fixed to zero, and p. is neglected. Two setups are considered,
bottom superlattice to the left and top superlattice to the right, with
Leen = 150 nm and rsc = 0.5. (a), (b) Sketches of the two setups. (c),
(d) o, along the wire (top) and across the wire’s section (bottom),
both for sections on with SC finger (inside a purple square) and
between SC fingers (inside a green square).
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FIG. 5. Contribution of the Al-InAs band offset (Vsc = 0.2 V)
and surface charge layer to the local longitudinal Rashba coupling
inside the wire. Here, Ve = 0 V and p. is neglected. Two setups are
considered, bottom superlattice to the left and top superlattice to the
right, with L. = 150 nm and rsc = 0.5. (a), (b) Sketches of the two
setups. (c), (d) «; along the wire (top), and across the wire’s section
(bottom) for a surface charge density of pgs =2 x 10'% e/ cm’. (e),
(f) Same for pgs = 2 x 107 e/cm’.

here on analyzing the spatial behavior of the transverse c«,
coupling, shown in Figs. 4 and 5. Following the rationale of
the previous section, in the first figure we explore the Rashba
coupling behavior against the back-gate potential (normalized
t0 Viaee) setting Vsc =0 V and pgr = 0. Conversely, in the
second one we study the contribution of the Al-InAs band
offset and surface charge density setting Ve = 0 V.

For the top-superlattice setup we can see in Fig. 4(d)
that o, exhibits some oscillations along the wire with the
periodicity of the lattice, especially close to the SC fingers,
but it is on average large and positive. This is beneficial for
the formation of a robust topological minigap for Vz > V. On
the contrary, for the bottom-superlattice device «, oscillates
between positive and negative values along the x direction [see
Fig. 4(d)], averaging to a smaller number, which is detrimental
for the protection of MBSs.

The Rashba coupling produced by the back-gate electric
field has to be supplemented with the one created by the
Al-InAs band offset and surface charge layer, shown in Fig. 5.
On average, this is proportional to the magnitude of pgys
[see the different color bar ranges in Figs. 5(c) and 5(d) and
5(e) and 5(f). For the bottom-superlattice device shown in
Figs. 5(c) and 5(e), «, oscillates along x as before but with
the same sign, giving a finite contribution to the topological

gap (especially close to the SC fingers). This is also true for
the top-superlattice device in the case of the smaller pgyf
[Fig. 5(f)], but it changes sign along and across the wire for
the larger one, Fig. 5(d).

According to these results and unless there are other
sources of electric fields, the Rashba spin-orbit coupling rel-
evant for Majoranas in the bottom-superlattice setup is going
to be dominated by boundary conditions rather than by the
voltage applied to the back gate. On the contrary, for the top-
superlattice device «, is going to be dominated by the back
gate except for small values of Vg, in which case its qualita-
tive behavior is strongly dependent on the magnitude of pgy¢.

IV. IMPACT OF THE SUPERLATTICE ON
THE NANOWIRE SPECTRAL PROPERTIES

We focus now on the impact of the superlattice, in particu-
lar the inhomogeneous electrochemical potential and the inho-
mogeneous induced superconductivity, on the spectral prop-
erties of a finite-length nanowire. In the calculations of this
section we consider that all the charge density is at the wire’s
symmetry axis, so that we effectively solve a 1D problem.
We do this for two reasons. One is that it is computationally
less expensive and still useful to understand the impact of the
superlattice on the formation of MBSs. It is also a way to
isolate the effect of the longitudinal subbands created by the
superlattice, which is what we seek here, from the transverse
subbands, which introduce further phenomenology [72-74]
unrelated to the superlattice. Nevertheless, as explained in the
Introduction, in the final section we will solve the complete
3D problem.

Since we aim to understand qualitatively the effect of each
kind of inhomogeneity, in the following subsections we study
their contribution separately, fixing other parameters to con-
stant homogeneous values. For example, to find the spectrum
in Secs. IVA and IV B we diagonalize the Hamiltonian of
Eq. (1) for constant A and ag = o, but for the potential
profile along x calculated in Sec. IIT A, which is the result
of a 3D Poisson calculation (but taken at y = 0 and z = 0).
In Sec. IV C we consider an inhomogeneous induced pairing
in x and fix p and again ¢, to constant values. We have also
analyzed the case of an inhomogeneous superlattice Rashba
coupling with other parameters constant (not shown), but
the effect on the wire’s spectrum is small, although it does
influence the Majorana wave-function shape.

A. Impact of the inhomogeneous electrochemical potential

We start by analyzing the effect on the wire’s spectrum of
the superlattice chemical potential. We take a similar potential
profile as the ones of Figs. 2(c) and 2(d) (but with different
L values), i.e., ignoring the inhomogeneous intrinsic doping
of the wire, at (y,z) = (0,0). On the other hand, we take
constant values for the induced pairing and Rashba coupling
(Ap = 0.2 meV and o, = 40 meV nm).

Due to the superlattice structure, the real-space unit cell is
larger than for a homogeneous potential wire, leading to the
formation of longitudinal subbands in the dispersion relation
[see Figs. 6(a) and 6(d) for two values of L. ]. The number
of these longitudinal subbands per unit energy increases with
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FIG. 6. (a) Dispersion relation for a 1D superlattice nanowire
with superlattice parameters L.,; = 400 nm and rsc = 0.5. The elec-
trostatic potential profile oscillates along the wire’s axis following a
similar profile as the one shown in Fig. 2 but evaluated at (y, z) =
(0, 0). Here, we take homogeneous in x values for the induced
SC pairing, Rashba coupling, and intrinsic doping: Ay = 0.2 meV,
o, =40 meV nm, and u;,, = 5 meV. (b) Corresponding topological
phase diagram for the bulk system. (c) Lowest level energy for a
finite-length nanowire of Ly = 1.2 um. (d)—(f) The same but for
Leen = 100 nm. The green dots mark the values of Vz; and u =
e(¢(x)) for which the top figures are plotted.

Leen. As stated in Ref. [36], only when the Fermi energy
crosses an odd number of Fermi pair points, the system is
topologically nontrivial (light blue regions). Otherwise, it is
trivial (light pink regions). The electrostatic potential can open
a gap between longitudinal subbands, whose size depends on
the strength of the potential oscillations, leading to energy
ranges where the Fermi energy crosses no band [38] [see
Fig. 6(d)]. This causes the wire to exit the topological phase.

In Figs. 6(b) and 6(e) we plot the wire’s phase diagram
versus Zeeman field V7 and chemical potential, given by the
space average of the electrostatic potential times the electric
charge e(¢(x)). The green dots mark the values of these
parameters for which the dispersion relations in Figs. 6(a) and
6(d) are plotted. This phase diagram is certainly more com-
plex than the one of a homogeneous 1D Majorana nanowire,
characterized by a single solid hyperbolic topological zone
corresponding to one topological band (whose boundary is
given by the condition u = £+ sz — A?). Here, since we
have several longitudinal subbands, we have several more
or less contiguous topological zones (with shapes that only
slightly resemble the single-band hyperbolic one) separated
by trivial regions whenever the Fermi energy crosses an
even number of Fermi pair points [see Fig. 6(b)]. Moreover,

whenever the Fermi energy lies at the gaps between longitudi-
nal subbands, the phase diagram develops trivial holes within
the topological phase [see for instance the light pink region
at the bottom-right corner in Fig. 6(e)]. At the boundaries of
these trivial holes we have the condition Ap = L, as pointed
out in Refs. [38,40]. Additionally, we note that a change
in the back-gate potential will not only move the subbands
upward or downward in a rigid way, but it will also change
the hybridization between the longitudinal subbands, leading
to a change in the trivial hole sizes.

It is known that, for a finite-length nanowire, Majorana
zero modes appear in the wire’s spectrum in the topological
phase. These states are localized at the edges of the wire
and decay exponentially toward its center with the so-called
Majorana localization length, that is proportional to the SC
coherence length [29]. When the wire’s length is not much
greater than the Majorana localization length, left and right
MBSs overlap and their energy lifts from zero producing
characteristic Majorana oscillations as a function of V7 and .
The lowest level energy of a finite-length nanowire (Lyire =
1.2 um) is shown in Figs. 6(c) and 6(f), where we see the
impact of the electrostatic potential superlattice on the Ma-
jorana oscillations. As it can be observed, the regions where
the lowest-energy modes approach zero energy in Figs. 6(c)
and 6(f), coincide (roughly) with the nontrivial regions in the
phase diagrams of Figs. 6(b) and 6(e).

B. Role of the intrinsic doping

In this section we solve the same problem as in the previous
one, but we now include the effect of the inhomogeneous
doping wiy created by the SC-semiconductor band offset and
the surface charge density. Figures 7 and 8 show, for the
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FIG. 7. Lowest level energy as a function of applied gate volt-
age and Zeeman field for a finite-length 1D bottom-superlattice
nanowire in the presence of an inhomogeneous potential profile. This
potential is taken from a 3D calculation with Al-InAs band offset
Vsc =0.2 V and different surface charge density values, evaluated at
(v, z) = (0, 0). Different superlattice cell sizes (with rsc = 0.5) are
considered. Topologically trivial regions are colored in light pink,
nontrivial regions are plotted in blue-red scale given by the color bar
(where the MBS energy is normalized to A), and the black dashed
lines mark localized trivial zero-energy modes. The Rashba coupling
and induced pairing in the Hamiltonian are fixed to the homogeneous
quantities og = 30 meV nm and Ay = 0.2 meV. The length of the
wire i$ Lyje = 1.2 pum.
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FIG. 8. Same as Fig. 7 but for a top-superlattice setup.

bottom- and top-superlattice devices, the lowest level energy
as a function of the Zeeman field and the back-gate voltage
for different superlattice cell sizes (with rsc = 0.5) and for
different surface charge densities. Note that trivial regions are
colored in light pink, as in the phase diagrams of Fig. 6.

The different columns in Figs. 7 and 8 correspond to
different sizes of L. Notice that the size of the topological
regions increases as the superlattice cell decreases. Actually,
for a large enough L. the topological phase is inexistent [see
Figs. 7(d) and 7(g) and 8(d) and 8(g)]. For large superlattice
cell sizes, topologically trivial localized states are present
(black dashed lines), which may interfere with the MBSs. This
effect is more pronounced in the bottom-superlattice setup
because the back-gate voltages needed to enter the topological
phase are larger due to the screening of the SC fingers. This in
turn produces stronger potential oscillations and subsequent
localized states, as explained in Sec. IIT A. At smaller Ly
sizes, the localized states disappear.

For medium cell sizes L, which are probably more
appropriate for experimental realization, we typically en-
counter the condition Arp = L explained in the previous
subsection and trivial holes appear in the topological phase,
both in the bottom- and top-superlattice setups. However,
the top-superlattice setup develops larger topological regions
and they are present for the two values of pg,¢ considered
[see Figs. 8(e) and 8(h)]. In the bottom-superlattice case, no
topological region is found for the larger pq,¢ [see Fig. 7(e)].

For small L. sizes, the topological phase is more stable,
meaning that there are no trivial holes. This is so because for
small and short potential oscillations the electrons in the wire
feel an effective homogeneous potential [36]. Moreover, the
performance of both setups (top and bottom) is comparable,
although the back-gate voltages needed for the bottom one are
much larger.

C. Impact of inhomogeneous induced pairing

Finally, we consider the impact of the inhomogeneous
superconductivity. For this purpose, we solve a 1D wire where
we fix the chemical potential and Rashba coupling to constant
values. The superconducting pairing amplitude is taken as a
telegraph function that oscillates between Ay = 0.2 meV and
zero with a period given by L. and rsc. As done in the
previous sections, this is a simplified model to understand
qualitatively the effect of inhomogeneous superconductivity.

(a) ag =10nm -meV  (b) = 100nm - meV

0 02 04 06 08 1
rsc

FIG. 9. Energy gap (at Zeeman energy V; = 0 and k = 0) versus
Loy and rsc = Lsc/Leen for a 1D nanowire with a telegraph super-
conducting pairing that oscillates between Ay = 0.2 meV and zero
along x. The chemical potential and Rashba coupling are fixed to
homogeneous values u = 0 and (a) ag = 10 meV nm, (b) ag = 100
meV nm.

When we consider the realistic 3D model later on, the induced
pairing will be only present at the surface of the wire in the
regions where it is close to the SC fingers.

Figure 9 shows the energy gap (energy of the lowest-energy
state at k = 0) normalized to Ay for an infinite 1D wire
against the superlattice parameters L. and rsc = Lsc/Leel-
For small coverage rsc < 0.5 the induced superconductivity is
poor and it improves as rsc increases. For rsc — 1 we recover
a perfect induced gap A corresponding to a wire covered by
an uniform SC at Vz = 0. Interestingly, for strong spin-orbit
coupling the gap energy basically does not depend on L [see
Fig. 9(b)]. However, for small ag the induced gap worsens
considerably with L., as shown in Fig. 9(a).

D. Superlattice features in parameter space

We can summarize our previous findings by plotting a
diagram in parameter space that shows the different features
caused by the superlattice and that interfere with the topolog-
ical phase. This is done in Fig. 10 versus L. and rsc for
Vz = 0.6 meV and Ay = 0.2 meV, and taking the following
(realistic) spatial average values for other parameters: ((t;n) =
200 meV, (uv,,.) € [0, 3] meV, and («;) € [5, 50] meV nm.

In the brown area we have values of L. and rgc for
which the Fermi energy crosses an even number of Fermi
pair points in the nanowire dispersion relation. This happens

Top-superlattice

Bottom-superlattice

Localized
states

Longitudinal
2 subbands

gaps
Longitudinal

subbands
overlaps

FIG. 10. Approximate regions in superlattice parameter space
L.y and rsc where different mechanisms that spoil the topologi-
cal phase appear, such as the formation of longitudinal subband
overlaps, longitudinal subband gaps, and localized states, marked
in brown, red, and blue, respectively. We have taken V; = 0.6 meV,
(Mine) =200 meV, (uv,,.) € [0, 3] meV, and (a;) € [5, 50] meV nm.
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when the level spacing between longitudinal subbands is
smaller than the (energy) size of the topological phase

< VV2 — A?). In this case, the topological regions

szzel]
of contiguous longitudinal subbands interfere and the system

exits the topological phase (there is an annihilation of an even
number of Majoranas at each wire’s edge). See, for instance,
the upper subbands plotted in Figs. 6(a) and 6(b).

In the red area we have values of L. and rsc for which
there appear gaps between (the lowest) longitudinal subbands
in the nanowire’s dispersion relation. As we explained in
Sec. IV A, when the Fermi energy is within these gaps, trivial
holes emerge in the topological regions of the phase diagram.
See for example the bottom-right corner of Fig. 6(e). This hap-
pens when there is a resonance between the Fermi wavelength
Ar and the superlattice length L. The red area is somewhat
larger for the bottom superlattice than for the top one. This is
because the appearance and size of the longitudinal subbands
gaps depends on the strength of the potential oscillations,
which is larger for the bottom superlattice due to the back
gate’s screening by the metallic fingers.

Finally, in the blue area, localized states are formed. As
we saw in Sec. IIT A, the superlattice of fingers creates po-
tential oscillations along the wire. When the height of these

oscillations is large enough (% < %(/Lim)), there appear
potential wells for the electrons that create localized states
(see Appendix C for the L.y-rsc dependence of (¢) and o).
These states interfere with the MBSs detaching them from
zero energy. Moreover, when the potential oscillations are
very strong, they divide effectively the nanowire into regions
of smaller length, destroying the Majoranas. Again, the blue
area is slightly larger for the bottom superlattice than for the
top one.

This diagram gives us an idea of different detrimental
mechanisms for a robust topological phase that may appear as
a function of superlattice parameters. This does not mean that
we cannot find topological regions for those L. and rs¢ val-
ues, but that those regions will be interrupted at some points
instead of extending more widely as a function of nanowire
parameters. To complete this study, we should also consider
the size of the topological minigap. As we saw in Sec. IV C
(see Fig. 9), it decreases when the superconducting partial
coverage rsc does, which is additionally Rashba coupling
dependent (see Appendix C for more details). Moreover, we
have to bear in mind that the qualitative analysis of Fig. 10 is
performed for a 1D model of the nanowire. When a 3D wire
is considered, several transverse modes can be occupied. In
this case there will be an interplay between longitudinal and
transverse subbands that will introduce further complexity to
the determination of the optimal superlattice parameters.

V. 3D RESULTS

In this section we consider together all the different in-
gredients that have been analyzed separately in the previous
sections and for a realistic 3D nanowire. In particular, we
take representative superlattice parameters Le;; = 100 nm and
rsc = 0.5. To calculate the electrostatic potential profile we
perform self-consistent Poisson simulations in the Thomas-
Fermi approximation for the bottom- and top-superlattice

setups. We find the wire states by diagonalizing the
Bogoliubov—de Gennes Hamiltonian for a 2-pum-long wire
using the previous potential. As mentioned in Sec. IV C, we
model the induced pairing as a telegraph function with Ag =
0.2 meV in the regions of the wire close to the SC fingers
and zero otherwise. In particular, for these 3D calculations
we consider Ay # 0 for a certain depth (~25% of the wire’s
width) close to the SC fingers in the transverse direction.

In Fig. 11 we show the low-energy spectrum as a function
of back-gate voltage for a particular value of Zeeman splitting
Vz = 0.6 meV, both for the bottom-superlattice setup in (a)
and the top-superlattice setup in (b). We explore a wide range
of Vyate values that correspond to the first transverse occupied
subband that develops topological states (seen as quasi-zero-
energy states whose energies split from zero in an oscillating
manner). As explained before, this subband appears for larger
negative values of Vg in the bottom-superlattice case due to
the screening effects of the SC fingers. We note that, strictly
speaking, in these systems one cannot really label subbands as
purely transverse or longitudinal because the spin-orbit term
in the Hamiltonian mixes the two momenta. However, and due
to the small cross section of the wires, groups of subbands
have still a dominant weight on a particular quasitransverse
subband.

In these spectra we can observe all the phenomenology
that we have been discussing in previous sections. For the
most negative values of Vg [left part of Figs. 11(a) and
11(b)], the wire is almost empty except for very flat bands
that appear at the quantum wells of the electrostatic potential
oscillations. As a function of Vg these create quick gap
closings and reopenings and the topological phase cannot be
developed. As Vg is increased [middle part of Figs. 11(a)
and (b)], different dispersing longitudinal subbands become
populated. When the topological conditions are satisfied, we
find extended Vg, regions with oscillating low-energy modes
separated by a minigap from the quasicontinuum of states
(dark gray). These are the regions of interest because those
oscillating states correspond to (more or less overlapping)
MBSs localized at the left and right edges of the finite-length
wire. The size of the oscillations and the minigap depends
on the longitudinal subband. Sometimes, these topological
regions are crossed by a localized state that closes the minigap
at a certain Vg, point [see arrows in Figs. 11(a) and 11(b)].
The localized states disperse linearly with Vga and cross zero
energy displaying an x shape. Other times we find trivial
regions (without Majorana oscillations) between two topolog-
ical ones due to topological subbands gaps or to topological
subbands overlaps, as explained in Sec. IV A. Finally, at the
rightmost values of Vg, an additional transverse subband
crosses below the Fermi level and the spectrum becomes more
intricate, with the even-odd effect playing a role (not shown).

For comparison, we also show in Fig. 11(c) the case of
a nanowire homogeneously covered by a SC at the top of
the wire. The range of Vg values displayed in this case is
chosen so that no hole states appear in the system. For more
negative voltages, the lower part of the nanowire becomes
populated by hole quasiparticles from the valence band and a
proper description of the system would require to consider an
extended version of the model Hamiltonian of Eq. (1) where
electrons and holes coexist. To avoid this complication, we
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FIG. 11. Low-energy spectrum versus back-gate voltage for a 2-pum-long 3D top-superlattice nanowire (a), bottom-superlattice nanowire
(b), and homogeneous nanowire (c). Superlattice parameters are L., = 100 nm and rsc = 0.5. Wire parameters are Vz = 0.6 meV,
Ag=0.2meV, Vsc = 0.2V, and pgs/e =2 x 10'7 cm™>. The red rectangles represent the Veare values for which Fig. 12 is plotted.

analyze higher voltages for which several transverse subbands
are already populated. Note that here there are no longitudinal
subbands. At the left and right parts of Fig. 11(c) we observe
the well-known even-odd effect between overlapping topolog-
ical regions of different subbands. In the middle part, however,
and for a pretty wide range of gate voltages, we have a region
with no subgap states that corresponds to the trivial phase
developed between two well-separated transverse subbands.
Now, we focus more specifically on one of the topo-
logical regions and analyze the location and shape of its
MBSs. In Fig. 12 we show with more detail the low-energy
spectrum as a function of back-gate voltage for the regions
marked by a red rectangle in Fig. 11. To understand their
behavior, in Fig. 13 we plot the corresponding electrostatic
potential, Rashba coupling «, and charge density profiles for
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the Vg voltage marked by a blue line in the corresponding
spectrum.

The topological minigap is somewhat larger for the top-
superlattice setup than for the bottom one. In the top-
superlattice device it reaches approximately Ag/2, which
corresponds to the maximum possible induced gap for a
superlattice with rsc = 0.5 (see analysis of Fig. 9). This
relatively large value can be understood by looking at the
Rashba coupling profile in Fig. 13(d). We see that «; has a
pretty homogeneous finite value all over the wire and it gets
especially sizable (~—30 meV nm) below the SC fingers, pre-
cisely where most of the charge density is located according to
Fig. 13(f). However, the minigap in the bottom superlattice is
smaller than in the top’s one. In this case, «, strongly oscillates
between positive and negative values along the wire’s axis [see
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FIG. 12. Low-energy spectrum and Majorana wave function for the same devices of Fig. 11 at the region of the red rectangles. (a), (¢) Top
and front views of the two setups considered throughout this work: Bottom and top superlattices of SC fingers. (b), (f) Low-energy spectrum
versus back-gate voltage. (c), (g) Probability density of the lowest-energy eigenstate at the voltage marked with a blue line in (b), (f). (d), (h)
Longitudinal cut of the probability density of (c), (g) at the (y, z) cross-section values marked by arrows. For comparison, we show equivalent

results for an homogeneous nanowire in (i)—(1).
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FIG. 13. Electrostatic potential (a), (b), Rashba coupling «, (c),
(d), and charge density profiles (e), (f) for the same bottom- and
top-superlattice nanowires of Fig. 12. Here, Ve = —2.142 V for the
bottom superlattice and Ve = —0.376 V for the top one, marked
by blue lines in Figs. 12(b) and 12(f). The total wire’s charge is
Qior/e = 809 for (e) and O, /e = 633 for (f).

Fig. 13(c)], resulting in a smaller average Rashba coupling. In
the homogeneous case the minigap is the largest, close to Ay
in the middle region of panel Fig. 12(j). Here, the induced ef-
fective gap has to be necessarily better since the SC covers the
whole length of the wire. Moreover, there is a homogeneous
and large Rashba coupling along the wire (~—30 meV nm)
close to the SC where the charge density concentrates (not
shown here). Concerning the Majorana oscillations, they are
pretty comparable for the two types of superlattices and
definitively bigger than for the homogeneous case.

In Figs. 12(c), 12(g), and 12(k) we plot the Majorana
probability density of the different setups along and across
the wire for the values of Vg marked by the blue lines in
Figs. 12(b), 12(f), and 12(j), respectively. We find that in all
cases the MBSs are localized at the edges of the wire, but
with different longitudinal and transverse profiles. Across the
wire’s section the wave function tends to be close to the SC
fingers in the top-superlattice setup. This is consistent with
the charge density profile of Fig. 13(f). On the other hand,
the probability density oscillates from top to bottom in the
bottom-superlattice one [see lower panel of Fig. 12(c)]. As we

noticed in Sec. IIT A, this is related to the shape of the potential
profile due to the strong gate voltages needed to deplete the
wire in this setup. The probability density accommodates
to the isopotential curves, which for the bottom-superlattice
device oscillate from top to bottom in the z direction as
highlighted with a white guideline in Fig. 13(a) for a particular
¢ value.

Figures 12(d), 12(h), and 12(1) show longitudinal cuts
of the probability density at the (y, z) cross-section values
marked by arrows in Figs. 12(c), 12(g), and 12(k). As ex-
pected, in the homogeneous case the wave function decays
exponentially toward the wire’s center with the Majorana
localization length &y [29]. For the parameters of this case we
obtain &,y = 350 nm, which is consistent with Fig. 12(1). On
the other hand, for the superlattice nanowires the decay length
is characterized by the interplay between two scales, the
Majorana length and the superlattice length L. The decay
length in the homogeneous case is shorter and the probability
density is pretty localized at the wire edges and almost zero
at its center. This is not the case for the superlattices since
their wave functions decay more slowly. To quantify this, we
finally compute the absolute value of the Majorana charge QO
that measures the wave-function overlap between the right and
the left Majoranas [30,45,46]

|Om| = e , (6)

/ up (Fug (F)dr’

where up g are the electron components of the left and right
Majorana wave functions, given by y = ¥ + ¢¥_; and
yr = —i(Y¥4+1 — ¥_1), being ¥4 the even/odd lowest-energy
eigenstates. We get the values |QB5|/e = 0.93, |QF5|/e =
0.88, and |Q1§,[| /e = 0.63 for the bottom-superlattice, top-
superlattice, and homogeneous cases, respectively. As ex-
pected, the Majorana charge is larger for both superlattice
devices compared to the homogeneous case.

A. Alternative superlattice configuration

We have seen that the main inconvenience of the Majorana
superlattice nanowires analyzed in this work comes from
the partial superconducting coverage produced by the SC
superlattice (especially as rgc diminishes). This leads to a
reduced induced SC gap that, in turn, produces a smaller
topological minigap and a larger Majorana charge. We could
improve this scenario by covering one of the wire’s facets con-
tinuously with a thin SC layer, like in a conventional epitaxial
Majorana nanowire, while still placing the hybrid structure
on a superlattice. We analyze this alternative configuration in
Fig. 14 for the case of a bottom-superlattice setup. Now the
superlattice can be either superconducting or normal (since
the induced superconductivity is already provided by the SC
layer). We choose here a set of normal metal fingers, such
as gold, that could be used as tunneling local probes along
the wire by driving a current between each finger and the
SC homogeneous layer. The tunneling coupling in this case
is advantageous because it leads to a smaller wire’s intrinsic
doping and to a larger localization of the MBS wave functions
close to the Al SC layer, where the electrostatic potential and
induced pairing are larger.
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FIG. 14. (a) Alternative superlattice nanowire configuration de-
signed to increase the MBSs topological protection. It combines a
semiconducting nanowire (green) with one facet covered uniformly
by SC layer (gray) and a superlattice of (nonsuperconducting) fin-
gers (brown). (b) Low-energy spectrum versus back-gate voltage.
(c) Probability density of the lowest-energy eigenstate at the voltage
marked with a blue line in (b). (d) Longitudinal cut of the probability
density of (c) at the (y, z) cross-section values marked by arrows.
Parameters are the same as in Fig. 12: Ly, = 2 um, L.y = 100 nm,
WAu = WAI =10 nm, rsc = 05, VZ =0.6 meV, AO =02 meV,
Vsc = 0.2V, and pgi/e = 2 x 107 cm™3. We take Viy = 0 V as the
boundary condition for the fingers.

In Fig. 14(b) we show the low-energy spectrum of this
setup for the same parameters of Fig. 12 except for the
boundary condition between the (normal) bottom superlattice
and the wire, which we take as Vy >~ 0 V. The values of
Veae Tor which we find the first topological subbands are
pretty negative since the continuous Al layer induces a large
intrinsic doping in the wire. The structure of this spectrum is a
combination of the homogeneous and superlattice ones. From
Veate = —13.7 V to >~ —12.3 'V, one transverse topological
subband is occupied. At that point, a different transverse
subband populates the wire and the even-odd effect destroys
the topological phase (as it occurs in the homogeneous wire).
However, at Vgye >~ —11.3 V a zero-energy mode appears
again but without a (prominent) gap closing. This is the signa-
ture of a gap between different longitudinal subbands, which
allows one of the last two transverse subbands to reenter into
the topological phase. The interplay between longitudinal and
transverse subbands gives rise to a wider Vgqe-Vz space where
topological states emerge, in comparison to a homogeneous
nanowire, as it was previously stated in Ref. [36].

Now, as was our intention, in the topological regions we
get a topological minigap that is comparable to the one of the
homogeneous case [see Fig. 12(j)]. The probability density
of the lowest-energy mode at the Vg value marked with a
blue line in Fig. 14(b) can be seen in 14(c). As expected, it is
located close to the Al thin layer in the transverse direction.

A longitudinal cut at the (z,y) values marked by arrows is
shown in 14(d). The MBSs, that still display a doubling of
the oscillating peaks characteristic of the superlattice, decay
exponentially from the edges toward the wire’s center faster
than for the top- and bottom superlattices analyzed before.
The Majorana charge is now |Quy|/e = 0.71, considerably
smaller than for the bottom superlattice alone (0.93) and
closer to that of the homogeneous case (0.61). The sizable
minigap in this case protects the system from quasiparticle
excitations, separating the Majorana modes from the quasi-
continuum of states and preventing transitions into it due to,
e.g., temperature or out-of-equilibrium perturbations.

To finish this section, we would like to mention that in this
study and for simplicity we have ignored the orbital effects of
the magnetic field. According to the literature (see for instance
Ref. [56]), the orbital effects are important when the electron’s
wave function is spread across the wire’s section, especially
when it has a ringlike shape. In this case, the electrons circu-
late around the magnetic field that points along the wire and
interference orbital effects appear. Furthermore, orbital ef-
fects are also enhanced for high-electron densities since most
high transverse subbands have large angular momentum that
couples strongly to the magnetic field. Conversely, the orbital
effects diminish both for low transverse subbands and when
the electron’s wave function is pushed toward the SCs (by the
action of the back gate) since it then occupies only a small
region of the wire’s section. We note that this is precisely the
region in the spectrum that we focus on in Figs. 12 and 14.
We have explored the first occupied transverse subband (that
displays MBSs) for the different superlattice structures since
it is the best behaved for Majorana purposes. For the back-
gate voltages involved, the wave function is indeed pushed
toward the SC fingers (which is beneficial for the stability of
the Majoranas since the induced pairing, and consequently
the minigap, are larger there). Admittedly, this is not the
case for the bottom superlattice setup [Fig. 12(c)], where the
electron probability density oscillates from top to bottom in
the transverse direction. Therefore, we expect that the orbital
effects might be important in that case and beyond the current
analysis performed in our work.

VI. SUMMARY AND CONCLUSIONS

In this work, we have analyzed in detail the proposal of
Levine et al. [36] to look for topological superconductivity in
Majorana nanowires in which the induced superconductivity
is achieved by proximity to a superlattice of SC fingers
(instead of having the SC cover continuously the length of the
semiconducting wire). This configuration can have practical
benefits to manipulate the Majorana wave function and to
measure it. For instance, one could use an STM tip to drive a
current between the tip and each of the SC fingers to measure
the local density of states along the wire. The fingers could
also work as local probes themselves.

Specifically, here we study the impact of the three dimen-
sionality of the system and the electrostatic environment on
the spectral properties of the nanowire. To this end, we com-
pute self-consistently the 3D Schrodinger-Poisson equations
in the Thomas-Fermi approximation, where we include the
Rashba coupling as a term locally proportional to the electric
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field. We consider two types of experimental setups, one in
which the SC superlattice is on top of the nanowire and the
other where it is below with respect to the back gate. We find
that an accurate description of the nanowire boundary condi-
tions and the surrounding media are crucial for a proper under-
standing of the system’s properties. In particular, the interface
of the nanowire with the SC, vacuum, or substrate creates an
accumulation of electrons around the wire’s cross section. Its
main effect is to contribute to the average intrinsic doping
of the wire (that has to be compensated with an external
gate when looking for the first populated subbands). On the
other hand, the extrinsic doping produced by the applied gate
voltage is dominated by the SC superlattice structure, giving
rise to an inhomogeneous (oscillating) electrostatic potential.

Depending on the location of the SC superlattice and the
number and width of the SC fingers, we find a rich phe-
nomenology that includes the emergence of trivial holes in
the topological phase diagram and the formation of localized
states near the SC fingers that may interfere with the topo-
logical states. Moreover, since the Rashba coupling is pro-
portional to the electric field, the spin-orbit coupling also be-
comes an inhomogeneous quantity in this system. This results
in a reduction of the topological minigap, especially in the
bottom-superlattice device, owing to a lower spatial average
Rashba value. In the same vein, the induced superconducting
gap is smaller than in a conventional homogeneous Majorana
nanowire due to the smaller superconducting coverage of the
nanowire.

In contrast, the system develops a wider topological phase
as a function of magnetic field and average chemical potential
as a consequence of the emergence of additional (longitudi-
nal) subbands. In the topological regions, MBSs do appear
at the edges of the superlattice nanowire. Their probability
density across the wire’s section is concentrated close to the
SC fingers in the top-superlattice setup. They extend further
into the wire’s bulk in the bottom-superlattice one due to
the stronger potential oscillations created in this case by the
back gate. Along the wire, the MBSs decay exponentially
toward its center with a decay length characterized by the
interplay between the superconducting coherence length and
the superlattice length.

In general, we find that the performance of the two types of
setups considered here is quite similar, although the bottom-
superlattice nanowire is slightly worse because of the larger
potential oscillations that appear in this case. In both cases,
the main disadvantage is the poor topological protection of the
MBSs (manifested in a small topological minigap and large
left and right Majorana wave-function overlap), arising es-
sentially from the low superconducting coverage. This could
be solved by covering one of the lateral wire’s facets with a
continuous SC layer while still placing it on a superlattice of
fingers (that could be superconducting or not). This kind of
device benefits from the superlattice structure (with a wider
topological phase in Vyue-Vz space and the possibility to use
the fingers as probes), and furthermore displays a sizable
topological minigap and small Majorana charge comparable
to those of a conventional homogeneous Majorana nanowire.
We thus believe that the use of mixed setups of this type is
probably the best route toward creating Majorana states in the
presence of superlattices.

The dataset and scripts required to plot the figures of this
publication are available at the Zenodo repository [75].
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APPENDIX A: NUMERICAL DETAILS

In this Appendix we detail the numerical methods used to
solve the Schrodinger-Poisson equation given by Egs. (1) and
(2) in the main text. As explained in Sec. II, instead of solving
the coupled equations, our general procedure consists of, first,
computing self-consistently the electrostatic potential within
the Thomas-Fermi approximation, and then, building and
diagonalizing the Hamiltonian in order to obtain the eigen-
spectrum. The reliability of this procedure compared to a full
Schrodinger-Poisson approach is discussed in Appendix B.

1. Electrostatic potential

To obtain the electrostatic potential, we solve the Poisson
equation [given by Eq. (2) in the main text] using a partial
differential equation solver for Python called FENICS [76,77],
which uses finite-element techniques. We use a mesh with
Lagrange elements with a discretization of 1 nm. Regarding
the boundary conditions of the semiconducting nanowire, we
impose Ve at the back gate, Vsc at the boundaries with the
SC fingers, Vy at the normal metal boundaries (if applicable),
and periodic boundary conditions at the nanowire ends. This
last condition eliminates border effects, which are well known
[45-47] and do not change the qualitative physics introduced
by the superlattice structure. The different geometries stud-
ied in this work (i.e., the bottom and top superlattices, the
continuously covered nanowire, and their combinations) are
taken into account through an inhomogeneous dielectric per-
mittivity € (7). We model it as a piecewise function: Constant
inside each material and with abrupt changes at the interfaces.
The specific values used in our simulations for the dielectric
permittivity can be found in Table I in the main text.

The source term pPior = Psurt + Pmobile Of the Poisson equa-
tion [shown in Eq. (3) in the main text] has two independent
terms. The first one is the surface charge layer, that we model
as a fix superficial positive charge density o, placed in the
points of the mesh localized at the InAs vacuum and InAs-SiO
interfaces. The second source term is the 3D mobile charge
density inside the wire, Pmobile = Pe + O + Phn, Which in
principle includes the contributions of the conduction band p.,
and the light-hole pj, and heavy-hole py, bands. However, in
this work we ignore the hole terms since they are not present
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FIG. 15. Representative examples of the electrostatic potential
profile in a top-superlattice nanowire along the z direction for Vgye =
—0.5V, Vs¢ = 0.2V, and puc = 0 in (a); and for pue = 2 x 10'8
e/cm? and Vaate = Vsc = 0 in (b). The screening effect of the mobile
charges inside the wire ppyobite 1S ignored in the dashed line solution,
whereas it is taken into account in the solid one. Geometric parame-
ters are Wy = 10 nm, Ws;o = 20 nm, Wy, = 80 nm.

for the gate potentials that we consider in our simulations.
Specifically, they are relevant when e¢(x,y, z) < E,y, that,
for the specific geometries of this work, only occurs when
Veae < —3.5 V in the bottom superlattice, Vgae < —0.8 V in
the top one, Vyye < —1.8 V in the homogeneous nanowire,
and Vg < —15.7 V in the alternative configuration that
combines a bottom (normal) superlattice and a continuous
SC layer. Therefore, we only compute the electron charge
density corresponding to the wire’s conduction band using to
this end the Thomas-Fermi approximation for a 3D electron
gas, as explained in Sec. II of the main text. As the charge
density depends in turn on the potential, the Poisson equation
must be solved self-consistently. For this purpose, we use
an iterative method to obtain the charge density using the
Anderson mixing

(n) _ px (n—1)
Prmobite = BPmapite T (1 = B)Prmapile (AD)

where n is the step of the procedure and g is the Anderson
coefficient. In the first step of the process (i.e., n = 0) we
take pﬁ?o)b”e = 0 and we compute the electrostatic potential of
the system. At an;/ other arbitrary step n, we compute the
charge density i)r(&bﬂe using the electrostatic potential found
in the previous iteration n — 1. Then, we compute the elec-
trostatic potential at the n step using pﬁfgbﬂe, given by the
Anderson mixing of Eq. (Al). This charge density mixing
between the n and n — 1 steps ensures the convergence to the
solution. We repeat the procedure until the cumulative error is
below the 1%. Once the electrostatic potential is known, the
Rashba coupling ag (7) is computed using Eq. (5) of the main
text.

To provide more insight into the electrostatic potential
created by the gate, the superficial charge density and the
mobile charge density, we show in Fig. 15(a) the potential
profile produced by some particular values of Vg, and Vsc (in
the absence of pg,) along the wire’s cross section (z direction)
for a top-superlattice device. Separately, in Fig. 15(b) we
show the effect of the surface charge layer for zero Ve
and Vs for the same device. The solid curve corresponds to
the self-consistent solution (in the Thomas-Fermi approxima-
tion), while for the dashed curve the presence of Ppopbile in
the Poisson equation has been ignored. The effect of pPmobile
is small when the effective chemical potential is close to the
bottom of the conduction band, as is the case of Fig. 1(a).
However, when this is not the case, the non-self-consistent

solution overestimates the band-bottom displacement with re-
spect to the Fermi level [see Fig. 1(b)]. This happens because
the screening effect of the mobile charges pushes the band
bottom upward, reducing the wire’s average doping.

2. 3D Hamiltonian

The 3D Hamiltonian of Eq. (1) in the main text is
discretized using the finite-difference method within the
Bogoliubov—de Gennes formalism, using an intersite distance
(discretization) of 5 nm in the three directions. We find the
eigenstates of the Hamiltonian using the ARPACK diagonal-
ization tools implemented in the standard package SCIPY of
Python. In order to reduce the computational cost, we only
compute the 10 lowest-energy eigenstates, which are the
relevant ones for Majorana physics.

3. 1D Hamiltonian and topological invariant

We build the finite 1D Hamiltonian following the same
method as for the 3D case, but taking the electrostatic po-
tential at the center of the wire [i.e., ¢(x,y = 0,z = 0)]. We
exploit the periodic nature of this Hamiltonian to build the
infinite 1D Hamiltonian in k space H(k), as explained in
Ref. [36]. From there, we can compute the class D topological
invariant [36] Q as

Q = sgn(Pf{AH (k = 0)}) sgn (Pf {AH (" - %) D
(A2)

where Pf{M} is the Pfaffian of a matrix M, which we compute
numerically using the Python package PFAFFIAN provided by
Ref. [78], and A is the electron-hole symmetry matrix, that in
our basis obeys

AH* (=)A= —H(k) < A =T3. ® 09 ®1,. (A3)
APPENDIX B: RELIABILITY OF THOMAS-FERMI
APPROXIMATION

The calculations shown in the main text have been per-
formed using the Thomas-Fermi approximation for the charge
density inside the wire. However, a more realistic and com-
plete description consists of solving the coupled Schrodinger-
Poisson equations, which requires to compute the charge
density from the eigenspectrum of the Hamiltonian

pe(SP)(?) —e Z |Mi(7)|2f(Ei) + |Ui(l7)|2f(—Ei)’

i>0

B

where u;(7) and v;(¥) are the electron and hole components
of the ith eigenstate, E; its corresponding energy, f(E) the
Fermi-Dirac distribution, and the sum is done for every
positive energy (i > 0). Since the eigenspectrum is found
by diagonalizing the Hamiltonian, which depends in turn on
the charge density through the Poisson equation, the coupled
Schrodinger-Poisson equations have to be solved self-
consistently as well, following the same iterative procedure
as described in Appendix A. Nevertheless, this process is
computationally more expensive because the Hamiltonian is
diagonalized in each self-consistent step. Hence, when both
methods provide similar results, it is justified to use the
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Thomas-Fermi approximation to reduce the computational
cost.

It is a well-known fact that the Thomas-Fermi approxima-
tion ignores the kinetic terms, as well as the magnetic field
dependence. Remarkably, some previous works [53] have
shown that both approaches provide similar results, although
for simplistic models of Majorana nanowires. However, this
could not be true for superlattice ones since the superlattice
leads to a stronger charge localization. In this Appendix we
compare the results obtained using both methods. First, we
show that for Vz = 0 both methods predict similar results
for the lowest-energy modes, in spite of ignoring the kinetic
terms. And second, we show that the magnetic field depen-
dence of the wire’s charge density can be neglected.

1. Comparison between Thomas-Fermi approximation
and full Schrodinger-Poisson calculation

Figure 16 shows a comparison between both methods for
the bottom [(a), (b)] and top [(c), (d)] setups of Sec. V,
for the same parameters of Fig. 13, except for V; = 0. The
difference Ap. between the charge densities computed using
the Schrodinger-Poisson approach pP) and the Thomas-
Fermi approximation p{™ is shown in Figs. 16(a) and 16(c)
for both devices. In both cases, the difference is a small
positive quantity very close to the SC-InAs interface [more
clearly seen in Fig. 16(a)], which means that the Thomas-
Fermi approximation slightly overestimates the electron den-
sity close to this interface, where the majority of the charge is
located. Conversely, it is slightly negative further away from
the interface. Everywhere else, Ap. ~ 0. The total charges

obtained with both methods are Q1" ~ 809¢ and Q5" ~

709¢ in the bottom-superlattice nanowire, and QL ~ 633e
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FIG. 16. Difference between the electron charge densities inside
the nanowire computed using the Schrodinger-Poisson approach and
the Thomas-Fermi approximation Ap, for the bottom-superlattice
setup (a) and the top-superlattice one (c). (b), (d) Show their cor-
responding electrostatic potential difference A¢. Parameters are the
same as in Fig. 13, except for V; = 0.

and Q[((ip) 2~ 624e in the top-superlattice one, which are pretty
similar.

To obtain a quantitative estimation of the error made us-
ing the Thomas-Fermi approximation, we now analyze the
electrostatic potential created by the charge density using
both methods, which is the quantity that indeed enters into
the Hamiltonian of Eq. (1). The electrostatic potential differ-
ence Agp = P — ¢ between both methods is plotted in
Figs. 16(b) and 16(d) for each device. Since the bare electro-
static interaction given by the Poisson equation is long ranged,
A¢ is very small (or zero) close to the SCs, despite the finite
charge density difference there. By contrast, the maximum
A¢ in both cases is found far apart from the back gate. It is
roughly 20 mV and homogeneous for the bottom-superlattice
nanowire, and around 10 mV between SC fingers for the top
one. Comparing with the electrostatic potential of Fig. 13,
which is computed using the Thomas-Fermi approximation
for the same devices and for the same back-gate voltages, we
conclude that the average error is below 10%, justifying the
use of the Thomas-Fermi approximation for the range of gate
voltages used in our simulations.

2. Accuracy of the zero magnetic field
Thomas-Fermi approximation

The previous analysis has been carried out for Zeeman
splitting Vz = 0 since the charge density computed using
the Thomas-Fermi approximation [Eq. (4)] in the main text
ignores the magnetic field dependence. To obtain a quantita-
tive estimation of the error made due to this approximation,
we show in Figs. 17(a) and 17(c) the difference between
the charge densities computed using the Schrodinger-Poisson
approach with and without an applied magnetic field (for both

Potential difference
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FIG. 17. Difference between the charge densities computed us-
ing the Schrodinger-Poisson equation with magnetic field (V7 =
0.6 meV) and without it, for the bottom-superlattice nanowire (a) and
for the top-superlattice one (c). (b), (d) Show their corresponding
electrostatic potential difference. Parameters are the same as in
Fig. 13.
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geometries). In addition, Figs. 17(b) and 17(d) show their
corresponding electrostatic potential difference. Comparing
with Fig. 13, one can see that the error is below 1%. This small
difference is due to the fact that typical Zeeman splittings
in these systems (Vz ~ 1 meV) are much smaller than the
electrochemical potentials (e¢p — Eg ~ 100 meV), so that last
quantity dominates. Consequently, we conclude that neglect-
ing the magnetic field dependency in the charge density is an
adequate approximation for these calculations.

APPENDIX C: ELECTROSTATIC POTENTIAL
AND RASHBA COUPLING IN SUPERLATTICE
PARAMETER SPACE

In this last Appendix we show how the induced elec-
trostatic potential and Rashba coupling behave versus the
superlattice parameters L. — rsc. This is relevant since, as
we show below, we find that for some L. and rsc values
it is difficult to gate the wire due to screening effects, or the
spin-orbit coupling induced by the back gate is negligible. We
have (partially) used this information to plot Fig. 10 in the
main text.

Figures 18(c) and 18(d) show the lever arm (in logarithmic
scale) versus the superlattice parameters for the bottom-
[Fig. 18(c)] and top-superlattice [Fig. 18(d)] devices. This
quantity is defined as the back-gate potential needed to change
the spatially averaged electrostatic potential (¢). Here, this
variation is independent of Vg, because for simplicity we

Bottom-superlattice

g

Jaie

Top-superlattice

Ii

log1o(Vyate/ (0))

0

0.4 0.6 0.4 0.6 1

rsc rsc

0 0.2 0.8

FIG. 18. Variation of the spatially averaged electrostatic poten-
tial inside the wire due to the voltage applied to the back gate. Here,
Vsc =0, psut = 0, and p. is neglected. Two setups are considered:
Bottom superlattice to the left and top superlattice to the right. (a),
(b) Sketches of both systems. (c), (d) Lever arm, defined as the back-
gate potential needed to change the spatially averaged electrostatic
potential (¢), versus superlattice parameters L. and rsc = Lsc/Leen
in logarithmic scale. (e), (f) Dispersion of the electrostatic potential

variations along and across the wire, oy = /(¢?) — ((¢))%.

ignore the screening produced by p.. In both setups, when
the partial coverage of the SC rgc is small, the lever arm is a
factor of the order of 10°~10!. This means that, for example,
to change (¢) by 1 meV we need to apply a voltage to the gate
of 1-10 meV. However, as rsc increases, so does the lever
arm and larger back-gate potentials are needed to effectively
deplete or fill the wire. This happens dramatically for the
bottom-superlattice setup since the superlattice is placed
between the back gate and the nanowire. Thus, for large rsc,
the screening effect of the SC fingers is strong. By contrast, in
the top-superlattice setup the lever arm converges to a finite
small value corresponding to that of the continuously covered
nanowire.

Since the electrostatic potential close to the SC fingers is
fixed by the boundary condition V¢, large lever arms lead
to large electrostatic variations along the wire. This can be
detrimental for the stability of Majorana states since these
large variations lead in turn to the formation of localized
states (as explained in Sec. IV of the main text). The standard
deviation oy of the electrostatic potential along and across the
wire shown in Figs. 18(e) and 18(f) (for both setups) gives an
idea of the size of these potential variations. As pointed out
before, for small rsc, when the lever arm is small as well, the
variations are negligible. However, for larger rsc, the varia-
tions are larger, especially for the bottom-superlattice setup.

Since the Rashba coupling depends locally on the electric
field, the spin-orbit strength also depends on the superlattice
parameters. The average value of «, along the wire is shown
in Figs. 19(c) and 19(d) for both superlattice setups. We
only consider the contribution of the back-gate potential

Top-superlattice

Bottom-superlattice

0 02 04 06 08 1
rsc

FIG. 19. Similar analysis as in Fig. 18 but for the spin-orbit
coupling. Two setups are considered, bottom superlattice (a) to
the left and top superlattice (b) to the right. (a), (b) Sketches of
both systems. (c), (d) Variation of the spatially averaged o, Rashba
coupling inside the wire due to the voltage applied to the back gate.
(e), (f) Dispersion of «, variation defined as o,, = \/(a2) — ({a.))?.
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(fixing Vsc =0 and pgf = 0). For small rsc, the Rashba
coupling is roughly 5 meV nm when 1 V is applied to
the back gate (for both devices). As rgc is increased, (c;)
decreases for the bottom-superlattice setup until it reaches
zero, while it increases for the top-superlattice one until it
reaches 15 meV nm (when 1 V is applied to the back gate),
corresponding to the value of the mean Rashba coupling in
the homogeneous nanowire. This qualitative difference is

again due to the strong screening effect of the SC fingers in
the bottom-superlattice setup.

For completeness, we show the dispersion of the o, spin-
orbit coupling variation along the wire in Figs. 19(e) and 19(f).
We find that the dispersion is constant in the top-superlattice
setup [Fig. 19(f)] regardless of the superlattice parameters.
However, the spin-orbit variations increase with rgc in the
bottom-superlattice one.
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