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Abstract

In de novo genome assembly each genome sequenced and assembled presents its own chal-
lenges such as sample quantity, DNA integrity, repetitiveness, heterozygosity... but above all,
mis-assemblies are often the most difficult ones to tackle. Fortunately the longer read size pro-
duced by third generation sequencing technologies allow a better characterization of complex
regions, usually differentiated by its large number of repeats [1],[2]. This masters project aims to
develop an automated pipeline for detecting large structural variants (SV) in de novo assemblies
produced by long reads which may be indicative of errors in the assembly process. By mapping
these reads to their assembly we might be able to pinpoint mis-assemblies or sequence blocks
with a high discrepancy to the real genomic fragment from which the read derived.

Methodology: In order to do so a Snakemake pipeline was developed. It incorporates
the most widely used aligners Minimap2 [3] and Ngmlr [4] as well as two SV prediction software
Sniffles[4] and Svim[5]. It also includes custom scripts to measure recall, precision, F1 and
precision-recall trade-off for evaluation purposes as well as some custom scripts for VCF (variant
call file) formatting and conversion.

Experiments conducted: First the SV predicting power was benchmarked replicating
an experiment in the Svim paper[5]: using NA12878 nanopore raw reads (obtained from the
Nanopore WGS consortium [6]) mapped against the hg19 human genome reference with 2676
high-confidence deletions and 68 high-confidence insertions as the high confidence SV dataset
(validated in a previous study using PacBio and Moleculo reads [7]). After successfully repli-
cating the experiment and setting the default parameters, the pipeline functionality was tested
with respect to mis-assembly detection. This experiment involved simulating long reads from
a reference genome into which we introduced Svs at known positions. The simulated reads
would then be mapped to the unaltered reference in order to detect the rearrangements (i.e.
“mis-assemblies”). In other words, the idea was for the unaltered hg19 reference to resemble a
de novo assembly mis-assembled with respect to the reads (rearranged-based simulated reads),
provided the reads are the "ground truth", and with the knowledge beforehand of where the
real SV were located. The hg19 reference genome (in this case chromosomes 21 and 22 to
avoid larger computation times in a more controlled environment) were rearranged introduc-
ing simulated homozygous SVs. 200 deletions, 100 inversions, 200 tandem duplications and
100 insertions (cut & paste more akin to conservative transposition) were introduced using the
R package RSVsim[8], providing us a high confidence “truth” SV dataset. The SimLoRD [9]
python package was required to simulate PacBio reads (x53 coverage) based on the rearranged
hg19 reference. Thus two conditions were proposed: rearranged-based reads mapped against the
hg19 reference to test prediction in homozygosity; and a merge of simulated reads based on the
rearranged reference (x26 coverage) and normal reference simulated reads (x26 coverage) for a
total of x52 coverage heterozygous reads against the normal reference.

Discussion: The results obtained are quite promising. With the caveat that only simulated
data was used instead of an actual assembly, the results seem to indicate that long read SV
detection methods can be used as a tool for mis-assembly detection. Though it is not imple-
mented, it would have been interesting to merge the calls from both SV predictors, generating
high confidence consensus calls to reduce the impact of spurious calls on complex genome as-
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semblies, such as the ones from the plant kingdom[10]. Future work would focus development
on an algorithm or reducing the number of mis-assemblies in draft genomes by rearranging the
target assembly according to the calls made by the MASV pipeline.

Key words

-de novo assembly, mis-assemblies, third generation sequencing, long reads, struc-
tural variants, Snakemake pipeline, simulated reads, homozygous, heterozygous.
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1
Introduction

1.1 Third generation sequencing: its impact on de novo assem-
blies and structural variant detection

In de novo genome assembly each genome sequenced and assembled presents its own chal-
lenges: for example, sample quantity, DNA integrity, polyploidy, heterozygosity and/or
repetitiveness. Moreover, no genome assembly is perfect: mis-assemblies are often made.
Previous studies[2],[11] have observed than most assembly breaks are caused by genomic
repeats that are equal to or longer in length than the sequencing reads. This is be-
cause unresolved repeats confound how the assembled contigs should be linked together,
causing the assembler to end the contig at that break point (Figure 1.1). Consequently,
when using reads shorter than the common repeats in the sequenced genome, repeats
can cause assembly errors where distant regions of the genome are incorrectly assem-
bled together[12] or a contig truncated by an unresolved repeat region is stitched back
together with an incorrect genomic region reference. Although some progress has been
made developing tools to identify mis-assembly and structural variants in assemblies from
short reads, they are still quite unreliable as they have been reported to suffer from low
sensitivity [13],[14] (30–70%) and up to 85% false discovery rate as it has been reported
by Sedlazeck in his review[1].

In the recent years, the development and use of third generation sequencing (TGS)
technologies have increased rapidly in the genomics field; being able to yield reads of 10kb
length as opposed to the few hundred bp produced by second generation sequencing tech-
nologies (NGS). The most widely used third generation single-molecule sequencing tech-
nologies are Pacific Biosciencies (PacbBio[15]) and Oxford Nanopore Technologies(ONT[16])

Pacbio’s Single Molecule, Real-Time (SMRT) technology performs sequencing-by-
synthesis (in essence akin to Illumina technologies), but it does so by capturing a single
DNA molecule. The PacBio platform uses a circular DNA template by ligating hairpin
adaptors to both ends of target double-stranded DNA[15]. Thus the DNA template is
sequenced multiple times to generate a continuous long read. By removing the adapter
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Figure 1.1: Pair-End signatures for mis-assemblies. Images (a, c) represent the correct assembly
of a complex region caused by genomic repeats, while images (b, d) represent the mis-assembly due to
the collapse and mis-linking of mate-pair: (a) Represents a two-copy tandem repeat shown with oriented
mate-pairs in a correct fashion. b) Represents a collapsed tandem repeat shown with confounded mate-
pairs (c) Represents a unique sequence B within a two-copy repeat, shown with oriented mate-pairs in
a correct fashion. (d) Represents a collapsed repeat shown with compressed and mis-linked mate-pairs.
Source of the image: [12]

sequences of the continuous long read, multiple subreads can be generated. This step is
key to generate the circular consesus sequence reads (CCS) with higher reported accuracy,
often > 99%[17] as shown in the Figure 1.2.

On the other hand ONT technologies sequence directly a native single-stranded DNA
molecule by measuring characteristic current changes as the bases are threaded through
the nanopore by a molecular motor protein[16]. Similarlly to SMRT, ONT technologies
(MinION and PromethION) originally used a hairpin adaptor to bound the DNA template
to its complement. The raw read that passed through the nanopore followed a template-
adaptor-complement structure. Thus it could be split into two 1D reads just by filtering
out the hairpin adaptor and a higher accuracy 2D read could be produced by generating
the consensus sequence of the two 1D reads[18] (Figure 1.3) However 1D tech with no
hairpin is the standard library prep right now. 2D with hairpins was abandoned due
to some technical limitations: the evaluation of the DNA quantity at different stages of
the protocol suggested that the hairpin tagmentation step and the bead purification step
resulted in a huge loss of DNA for the 2D analyses[19].

Both currently exhibit a similar error rate (around 10-20%[20]) albeit for different
reasons: ONT struggles to detect the transition between two identical k-mers (hence
complicating the identification of homopolymers longer than the k-mer length [21]) while
SMRT error rate mostly originates from lower signal-to-noise ratio from single DNA
molecules[17]. Consequently, this error rate poses a tangible challenge for further use of
these technologies. However, correction methods exist and the advantages of using long
reads far outweigh the disadvantages for de novo assembly.

2 CHAPTER 1. INTRODUCTION
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Figure 1.2: Schematic representation of the circular consensus sequence generation through
PacBio’s SMRT R© . The circular DNA template has ligating hairpin adaptors to both ends of target
double-stranded DNA. The polymerase reads are a sequence of nucleotides incorporated by the DNA
polymerase while reading the circular template and are most useful for quality control of the instrument
run. The subreads are generated after filtering the adaptor sequences. CCS is an example of a special
case where at least two full subreads are collected for an insert (the highest quality single sequence for an
insert, regardless of the number of passes). Image and information obtained through PacBio’s SMRT R©
Portal Help v2.2.0 documentation.

Figure 1.3: Schematic representation of the 1D, 2D and 1D2 sequencing approaches de-
veloped by Oxford Nanopore Technologies. A) In the 1D approach just the template strand (in
blue) is threaded by the motor protein ( in green). The complement strand (red) is discarded and se-
quenced.B) In the 2D approach both the template and complement are sequenced provided they are both
linked through a hairpin (in orange).C) For the 1D2 approach both strands are sequenced too. However
the complement strand is tethered to the membrane while the template is sequenced. Subsequently the
complement strand is drawn in and the tether is pulled loose, as opposed the 2D approach. Image and
information obtained from [22]

CHAPTER 1. INTRODUCTION 3



MASV, a misassembly detection and variant calling pipeline for long reads data.

One of such advantages is structural variant detection. Using these third generation
sequencing several studies have reported around 20,000 SVs per human genome, most of
which could not be detected using short-read sequencing[23]].

Structural variants (SVs) are typically defined as genomic variants larger than 50bps
(e.g. deletions, duplications, inversions, translocations ...). They are often studied due to
their impact on genes malfunction and regulatory regions disruption. However SVs can
be hard to correctly identify (Figure 1.4 ).

Figure 1.4: The SV calling problem: Some SV types can be simple to describe conceptually but they
are quite difficult to correctly identify via current variant calling methods. Some callers might classify
a call a Interspersed Duplication a Translocation while other might just simply call it Insertion. And
both would have been close to the truth but not quite there yet. It is important to know the limits of
the variant calling software in order to correctly interpret the results. Image obtained from [5]

Two main approaches have been used for SV discovery: a mapping-based approach or
a de novo assembly-based approach[1]. In the first approach the SVs are detected through
the means of direct mapping of the reads to a reference genome. The second approach
utilizes de novo assembly followed by whole-genome alignment between the samples or
the reference genome.

Both approaches have their fair share of advantages and disadvantages .. The main
strengths of a mapping approach are that it requires the least amount of coverage (a
minimum of only 15), is able to identify heterozygous SVs and is more robust to genomic
amplifications which tend to assemble poorly[4]. The main strength of the de novo
assembly approach is to provide sample-specific variations that might be hard to resolve
with the mapping approach".

The de novo approach however faces some challenges which have been brilliantly put
into words by Sedlazeck in his review: " The de novo approach has a higher sequence
coverage cost (about 50x), it is more demanding computationally and it has difficulties
resolving large insertions and novel sequences in the sample will not map well or at all
in the reference. Additionally it depends on the quality of the assembly, the quality of
the reference and the quality of the reads: a major challenge are posed by the repetitive
sequences which can mask SVs, although longer contigs can be more robustly aligned than
short contigs. Moreover, detection of heterozygous variants and the analysis of polyploid
regions remain challenging as heterozygous variants will often be left out of an assembly
or represented only as alternative contigs"[1].

4 CHAPTER 1. INTRODUCTION
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1.2 Aim of the study

Most of the mis-assembly detection software are applied on second generation sequencing
reads. We however intend to to develop a mis-assembly detection pipeline using the
long read data advantages to resolve this complex repetitive regions. In order to do
so, it is proposed the mapping approach to detect possible mis-assemblies in de novo
sequencing of new species through an automated pipeline able to be run in a cluster or
local drive.

In a de novo assembly process our closest “ground truth” so to speak are the genomic
reads (after taking into account the error rate implicit by the technical limitations).
Hence by mapping the raw reads against our assembly we would be able to pinpoint the
rearrangements (i.e. “mis-assemblies”) or sequence blocks with a high discrepancy with
the real genomic fragment derived from which the read derived.

However, this is easier said than done. SV detection methods require fine-tuning
metrics (such as precision, recall and F1 score) on benchmark datasets. As benchmarks
usually require a control dataset for which we already know beforehand the SVs against
which the prediction software can be evaluated. Thus, in this work we generate a simu-
lated environment in which we artificially introduce SVs into an assembly, simulate long
reads from it and then map the simulated reads to the unaltered assembly.

1.3 Main objectives and work plan

In order to fullfill this project’s aims, several specific objectives are proposed each with
specific milestones.

1. Benchmarking analysis: Compare mapping and calling algorithms for structural
variants.

• Milestone 1.1: Establish a benchmark dataset and evaluation criteria.
• Milestone 1.2: Compare different preprocessing strategies.
• Milestone 1.3: Compare different aligners.
• Milestone 1.5: Compare different SV callers.

2. Develop a long read SV calling pipeline for TGS data: Clear and concise
rules through Snakemake taking advantage of conda environments.

• Milestone 2.1: Develop and debug the pipeline using Snakemake.
• Milestone 2.2: Implement the final workflow.
• Milestone 2.3: Fine tune and test it on a simulated environment.

3. Upload all the code to a Github repository.

It must be said that most that not all the objectives nor all the milestones had the
same work focus. It was prioritized the second objective above all as it was inherently
related to the other two; developing the snakemake pipeline allowed easier benchmarking
and all the code used was being uploaded constantly to a Github repository.

CHAPTER 1. INTRODUCTION 5
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1.4 Limitations and challenges

Unfortunately, this project has suffered a fair amount of logistical challenges which have
hampered its ability to develop some of the proposed milestones, specifically the ones
requiring testing on preprocessing approaches.

It was intended to benchmark the pipeline on whether the raw reads were prepro-
cessed or not, as some evidence [24] indicated that preprocessing the reads yielded better
alignments and thus better SV detection calls.

#!/bin/bash
canu [-correct | -trim | -assemble | -trim -assemble] \

[-s <assembly -specifications -file >] \
-p <assembly -prefix > \
-d <assembly -directory > \
genomeSize=<number >[g|m|k] \
[other -options] \
[-pacbio -raw | -pacbio -corrected | -nanopore -raw | -nanopore -corrected] *fastq

Code 1.1: Canu command -help.

The proposed approach to generate preprocessed reads was using CANU/1.8.0., the
cutting edge version of Canu at the moment. Canu is a a successor of Celera Assem-
bler that is specifically designed for noisy single-molecule sequences(such as the PacBio
RSII or Oxford Nanopore MinION)[25]. The canu command is the ‘executive’ (or ’over-
seer’) program that runs all modules of the assembler. It oversees each of the three
principal tasks (correction, trimming, unitig construction), each of which performs mul-
tiple and varied tasks ( Code 1.1 ). Canu ensures that input files for each step exist,
that each step successfully finished, and that the output for each step exists, which
is critical for assembling provided it requires huge computational resources. Addition-
ally it is capable of performing minor bits of processing (such as reformatting files)
but its main function is executing other programs. More information can be found at
https://canu.readthedocs.io/en/latest/index.html.

Canu allows the user to run one task at a time by using the -correct, -trim or -assemble
options, although the default is to perform all three tasks. Each of the three tasks (read
correction, read trimming and unitig construction) follow the same pattern in the Canu
pipeline (information extracted from https://canu.readthedocs.io/en/latest/tutorial.htmlcanu-
the-pipeline):

• Load reads into the read database, gkpStore.

• Compute k-mer counts in preparation for the overlap computation.

• Compute overlaps.

• Load overlaps into the overlap database, ovlStore.

• Process the reads and the overlaps:

– The read correction task will replace the original noisy read sequences with
consensus sequences computed from overlapping reads.

– The read trimming task will use overlapping reads to decide what regions of
each read are high-quality sequence, and what regions should be trimmed. After
trimming, the single largest high-quality chunk of sequence is retained.

6 CHAPTER 1. INTRODUCTION
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– The unitig construction task finds sets of overlaps that are consistent, and uses
those to place reads into a multialignment layout. The layout is then used to
generate a consensus sequence for the unitig.

It was intended to use the correction and the trimming tasks consecutively in order to
preprocess our reads. The intention was to benchmark whether error correction and trim-
ming improved the SV prediction calls. Unfortunately it was proven to be a technological
bottleneck hard and unfeasible to maintain at a time when the cluster management team
were prioritizing resources.

I Canu is a computationally intensive software. The MHAP (Adaptive MinHash k-
mer weighting as an overlapping strategy) is able to produce up to a thousand batch
jobs for large repetitive genomes. Although you can set the number of threads and
the degree of parallelism; the sheer volume of data processed limits it for longer
runs in addition to overwhelm the job priority system in our cluster.

II Canu is storage intensive software. By design, Canu will only remove intermediate
files after each step is 100% finished. In large repetitive genomes (such as humans),
the intermediate files size reached over 20 Terabytes. With most of \scratch quota
completely and after two storage quota extensions, it was unfeasible to keep it up.

III Canu is quite vulnerable to data corruption. Ideally, each job would start and finish
without any kind of issues. With several cluster restarts, some of the submitted jobs
were corrupted, though initially they weren’t reported as such. Thus after starting
the next step that it would be found out that some of the jobs were indeed corrupted.
Thus it was required to return back to the last successful step and resubmit manually
most of those jobs, which proved to be really time consuming.

For all the above mentioned reasons, Canu preprocessing of the reads was scrapped,
but only after some taxing and time consuming efforts were already invested, which
affected some of the time originally intended to polish the benchmark objective.

CHAPTER 1. INTRODUCTION 7
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2
Snakemake. State of the Art

2.1 Workflow and basic rule structure

The Snakemake workflow management system is a tool to create reproducible and scal-
able data analyses[26]. Workflows are defined through a language close to Python syntax.
Moreover, it can be seamlessly scaled to server, cluster, grid and cloud environments, with-
out the need to modify the workflow definition; making it one of the best candidates to de-
velop an automated pipeline and becoming one of the most popular workflow builder tools
to date, with an impressive rate of 3 citations per week according to its documentation.
The online documentation can be found at https://snakemake.readthedocs.io/en/stable/
index.html.

A workflow consists of a set of user-defined rules that denote how to produce an
output file from an input file through the means of a shell command or Python code
(Code 2.1 ). The workflow is implied based on the dependencies that arise between the
rules: for example, from rule B needing the output of rule A as input. In addition
to that, Snakemake is capable of handling multiple named wildcards whose values are
inferred automatically from the files. This functionality is extended to how the workflow
handles the input and output files.

A rule is defined by 3 basic components:

I The rule’s name.

II The input files required and the output files produced.

III The shell command or Python code used to create the output from the input.

It must be noted however that with each new Snakemake release, more utils have been
added to the rule structure. Some of the most relevant are:

• Conda environments: can be specified per rule in order to use the dependencies
of a fully functional conda environment using the directive conda. In this way,
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conflicting software versions (e.g. combine Python 2 with Python 3) can be used
together in the same workflow. Additionally this is extremely beneficial in order to
create user-friendly reproducible and scalable data analsyses as all the dependencies
located within the conda environment which can be cloned or duplicated.

• Benchmarking: With the benchmark directive, Snakemake can be instructed to
measure the wall clock time of a job. Similar to output files, the path can contain
wildcards (although it must be the same wildcards as in the output files)

• Error logs: With the log directive, Snakemake can be instructed to output the error
log of a job. Similar to output files, the path can contain wildcards (it must be the
same wildcards as in the output files)

• Non-file parameters: Allows the user to define certain parameters separately from
the rule body using the directive params. It is quite handy as it is able to handle
wildcards as well as config file parameters.

• Threads and resources: Snakemake can be instructed to use a user-defined number
of threads in a specific rule. Likewise, you can specify the cluster/grid resources
for every rule.

• Tool wrappers: A wrapper is a short script that wraps (typically) a command line
application and makes it directly addressable from within Snakemake. They can be
accessed from the Snakemake Wrappers repository.

rule index_bam:
input:

"wdir/pan_troglodytes.bam"

output:
"wdir/pan_troglodytes.bam.bai"

log:
"logdir/pan_troglodytes.index_bam.log"

params:
mode = "index"

benchmark:
"benchmarkdir/pan_troglodytes.index_bam.txt

threads: 8

conda: "snakemake_alignment.yml"

shell:
"samtools {params.mode} -@ {threads} {input} {output} 2> {log}"

Code 2.1: Example of a basic Snakemake rule.

Snakemake has control structures and checkpoints too, e.g. When two rules can
produce the same output file, Snakemake cannot decide per default which one to use.
In those cases an AmbiguousRuleException is thrown. In order to avoid this kind on
situations, it is recommended to provide a ruleorder for example:

ruleorder: rule1 > rule2).

In addition to that, there are other ways to bypass the AmbiguousRuleException such
as conditional control structure for different rules (e.g. using If conditionals). To sum
up, all this features complement Snakemake brilliantly as a workflow tool.
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2.2 Modularization and complex features

It is worth mentioning that some additional features have been added release after release
to enhance the workflow directives. Most notably:

• Rule modules: Through the use of the directive include: Snakemake can be in-
structed to include another Snakefile into the current one. This is useful to re-use
entiere set of rules or simply to structure large workflows in a clearer way.

• Configuration file: With the config directive, Snakemake allows the user to provide
configuration files for making the workflow more flexible, e.g. Providing parameters
to the defined rules. Moreover, it can be used effectively for abstracting away direct
dependencies to a fixed HPC cluster. The config file must be provided as JSON or
YAML(.yml) extensions.

• Functions as input: Snakemake can also make use of functions that return single
or lists of input files. It can be used lambda expressions instead of full function
definitions. Using this, rules can have entirely different input files (both in form and
number) depending on the inferred wildcards enhancing the workflow’s versatility.

Wildcards are quite handy in Snakemake. Being able to define a wildcard and use through
all the rules dependencies speeds up a lot of coding time. In addition to that, they can
be defined through some basic functions implemented into Snakemake such as expand
(Code 2.2 ).

# CONFIG AND MODULES #

include: "get_reference.smk"
config: "config.json"

ids = config["fastq_ids"] #List with all the fastq ids.

# RULE #
rule minimap2:

input:
fastq = expand("wdir/{ files }.{ format}"; files= ids.split(’,’), format =["fastq",

"fastq.gz"]),
reference = rules.get_reference.output

output:
protected(outdir + "/{ files}.bam")

log:
"logdir /{ files}. mapping.log"

params:
technology = "ont"
outdir = config["outdir"]

benchmark:
"benchmarkdir /{files }. mapping.txt

threads: 8

conda: "snakemake_alignment.yml"

shell:
"mkdir -p {params.outdir }; minimap2 -MD -t {threads} -ax {params.technology} {

input.reference} {input.fastq} | samtools sort -@ {threads} -O BAM -o {
output} 2> {log}"

Code 2.2: Example of a more complex Snakemake rule.
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Let’s briefly describe the above rule: First it must be noted that a config file "con-
fig.json" was provided. In addition to that, other rule module was included, specifi-
cally the rule "get_reference" which will probably obtain the reference genome from a
database. Then the rule minimap2 is defined.

If we take a look on the input, we notice a more complex syntax. The reference input is
provided directly from the output of the rule module "get_reference" (explicitly stating
a dependency between the two rules). The fastq input is the result of a Snakemake
function expand. This function uses the python itertools function product that yields all
combinations of the provided wildcard values. In this case file is each file id from the
ids list defined above and format allows any combination of the defined formats either
fastq or fastq.gz. Looking at the output, log and benchmark, they all share the same
wildcard file. Interestingly the output has the "protected" flag which protects it against
accidental deletion or overwriting. As opposed with the input, this wildcard is actually
inferred from the output and both log and benchmark require to use the same wildcard
as the output.

Taking a look into the params, it must be noted that some of them have been explicitly
provided from the config file. Finally you can add quite complex shell syntax: creating
a directory, then using minimap2 whose output will be piped through samtools sort.
Snakemake has proven itself as a really handy tool; easy to use but hard to master.
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3
MASV pipeline implementation

In order to get a fully reproducible data analysis, it is not sufficient to be able to execute
each step and document all used parameters. The used software tools and libraries have
to be documented as well. Consequently it was decided from the very start that the
MASV pipeline would incorporate three elements to achieve this goal: A config file as
well as a custom script to build it, a highly modular workflow defined by the specific task
per rule set and conda enviornments, allowing a user-friendly installation and to keep
track of all the software dependencies used to create this pipeline (Appendix A)

3.1 Snakefile MASV_pipeline.smk

The workflow base directory is where the main MASV_pipeline.smk is located. Fortu-
nately there is no need to use the workflow base directory as the working directory of
the pipeline as it can be set up directly from the config file. The MASV_pipeline.smk
is the main Snakefile of the pipeline as it handles all the other rule modules as well as
providing a base config and conda environment (Code 3.1 ). In the main Snakefile seven
target rules are defined:

• Rule all: It is the main target rule and it is defined as the first rule of the pipeline.
It takes as an input the output of all the rules in the pipeline.

• Rule mapping_only: This target rule is set to perform only the mapping on the
provided input reads.

• Rule sniffles or rule svim: These target two rules produce the final SV prediction
VCF (after filtering) for either Sniffles or Svim, individually.

• Rule eval_sniffles or rule eval_svim: These two target rules are used to obtain
the evaluation metrics of either Sniffles or Svim. These evaluation metrics and its
script is properly explained in the custom scripts section.

• Rule sanity_check: This target rule is set to produce a set of plots and stats
based on the coverage, the depth and mapping quality of the alignment.

13
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###############
# CONFIG FILE #
###############

configfile: os.path.join(workflow.basedir , "lib/config/config.json")

##############
# PARAMETERS #
##############

""" A set of global parameters was set for the pipeline """

################
# RULES STEPUP #
################

include: "lib/rules/alignment.smk"
include: "lib/rules/QC.smk"
include: "lib/rules/calling.smk"
include: "lib/rules/bedtools_eval.smk"

##############
# MAIN RULES #
##############

rule all:
input:

"""input for target rule all"""

rule mapping_only:
input:

"""input for target rule mapping_only"""

rule sniffles:
input:

"""input for target rule sniffles"""

rule svim:
input:

"""input for target rule svim"""

rule eval_sniffles:
input:

"""input for target rule eval_sniffles"""

rule eval_svim:
input:

"""input for target rule eval_svim"""

rule sanity_check:
input:

"""input for target rule sanity_check"""

Code 3.1: Schematic representation of the pipeline.smk .

Each of these target rules can be directly called using the sanakemake module. In
addition to these 7 target rules, I’ve defined 4 additional Snakefiles. They were named
after their functionality. Hence they were named alignment.smk, QC.smk, calling.smk
and evaluation.smk.

We can use the sanakemake command option --dag on any rule (for example the
rule eval_svim). This yields a directed acyclic graph (DAG) of jobs where the edges
represent dependencies and the nodes each rule (Figure 3.1 ). For rules with wildcards,
the value of the wildcard for the particular job is displayed in the job node.
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eval_svim

alignment_stats alignment_stats

eval_stats_svim eval_stats_svim

mapping_minimap2
ontfile: merged.reads.x52

index_bam

svim_calling

mapping_minimap2
ontfile: rearranged.reads.x26

index_bam

svim_calling

vcf_reformat_svim vcf_reformat_svim

Figure 3.1: DAG for the rule eval_svim: All the inferred dependencies for the target rule
are present in the image as dashed boxes while the rules explicitly called by the rule eval_svim
are present as normal boxes. Please note that in this particular example two fastq files went
through the target rule (being the "ontfile" the infered wildcard).

Now we are going to take a look at each of the other four beforementioned Snakefiles
and how they are implemented along MASV.

3.1.1 MASV implementation: Snakefile alignment.smk

The alignment.smk Snakefile contains four rules, two of which are dependant on the
user-defined aligner software (which is located in the config.json). Depending on the
selected aligner either rule_minimap2 or rule_ngmlr are going to be called. This
first set of rules are the ones mapping the raw reads to a reference. After doing so,
rule index_bam will generate the index necessary for the SV calling step as both
Sniffles and Svim require the input BAM to be indexed. At the same time, the rule
alignment_stats will produce some basic alignment stats such as the proportion of
reads that were mapped to the reference and the ones which were discarded.
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The alignment step is the most time consuming of the MASV pipeline. Ngmlr is
often used as an accurate aligner (and it has been reported enhancing Sniffles results[4])
but it is computationally intensive. For large repetitive genomes and between 16 and 24
threads, it can take a few days for computation time. Minimap2 on the other hand is
one of the fastests aligner[3]. With half the threads it would take less than 24 hours to
have the job done. As it is case specific, it is left to the user discretion which of the two
aligners should be used.

3.1.2 MASV implementation: Snakefile QC.smk

The QC.smk Snakefile contains three rules. All 3 rules require the output of the mapping
rule in the alignment.smk. It performs some basic quality control plots using Mosdepth
and Nanoplot.

Mosdepth was selected because it is about 2x as fast samtools depth[26]. Through
some scripts we are able to plot the distribution of proportion of bases covered at or
above a given threshold for each chromosome/scaffold and genome-wide.

Nanoplot is a plotting tool for long read sequencing data and alignments[27]. It has
been a quite popular choice for quality control for long read data (and more specifically
ONT data), so it was incorporated into the workflow. It can produce up to 12 different
plots: Histogram of read length (including log transformed), bivariate plot of length
against base call quality, heatmap of reads per channel, cumulative yield plot, Violin plot
of read length over time... etc.

3.1.3 MASV implementation: Snakefile calling.smk

The calling.smk Snakefile contains three rules. The first two are called rule snif-
fles_calling and rule svim_calling. These two rules require the output of the mapping
rule and the output of the index rule from the alignment.smk Snakefile as input. De-
pending on the target rule called from the workflow Snakefile, either rule or both will be
called. The final rule is a rule svim_filtering, which will apply the Q-score filtering
threshold provided in the config file.

Sniffles is a structural variation caller software that was jointly developed withNgmlr [4].
It requires third generation sequencing data and it detects SVs using evidence from split-
read alignments, high-mismatch regions, and coverage analysis. Sniffles report deletions
(DEL), duplications (DUP), insertions (INS), inversion (INV) and translocations (TRA)
as the standard SV types. Furthermore, it is able to report some complex events such as
inverted duplications (INVDUP) and other rare cases where it is not certain what type
the SVs is e.g. DEL/INV [4].

On the other hand, Svim is a novel structural variant caller for long reads[5]. It is able
to detect, classify and genotype five different classes of structural variants. Unlike existing
methods, Svim integrates information from across the genome to precisely distinguish
similar events, such as tandem and interspersed duplications and insertions. To do so
first it gathers the SV signatures from the split-read-alignments. Then the detected
signatures are clustered using a graph-based clustering approach and a novel distance
metric for SV signatures[5]. Lastly multiple SV events are merged and classified into
higher-order events (i.e. events involving multiple regions in the genome). Svim reports
the following SVTYPEs: DEL, INV, DUP:TANDEM, DUP:INT, and INS. It must be
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noted however that Svim makes the following distinctions in order to capture and classify
these higher-order events[5]:

• DUP signature clusters are called as interspersed duplications unless the genomic
origin overlaps a deletion call, in which the duplication is marked as potential cut
& paste insertion in the INFO field.

• INS signature clusters that are overlapping or close to matching breakpoints (BRK)
are called as interspersed duplications. However, if the genomic origin (as defined
by the BRK) overlaps a deletion call, the interspersed duplication is marked as
potential cut & paste insertion in the INFO field. The remaining INS signature
clusters are called as novel element insertions.

3.1.4 MASV implementation: Snakefile bedtools_eval.smk

The bedtools_eval.smk Snakefile contains 4 rules. The first two are called rule vcf_
reformat_sniffles and rule vcf_reformat_sniffles and their purpose is to use a
custom script to reformat the output vcf of the calling rules to fix the insertion calls.
This script is key to correctly determine the correct END coordinates for cut & paste
INS. It is necessary because for most of the SV callers the begin and end coordinates are
the same or +1.

The other two rules are rule eval_stats_sniffles and rule eval_stats_svim.
Both use as an input the output of the previous two rules. They are the rules in charge
of obtaining the precision, the recall and the F1 based on bedtools intersect overlaps.
In order to do so it is required to provide as an input a high confidence "truth" dataset
in order to generate the intersects. The current iteration is tuned for a reciprocal 50%
overlap between callset and truth dataset; but it can be manually modified if required.

3.2 Custom scripts implemented

3.2.1 Config file builder custom script: MASV_get_config.py

The config file builder script is named MASV_get_config.py. It defines a CreateCon-
figurationFile object which stores all the parameters the user can determine for the
Snakemake pipeline (Code 3.2 ).

The CreateConfigurationFile class object can be divided in 4 elements:

• The constructor function of the object.

• The register methods whose objective will be to parse the arguments provided by
the user.

• The check_parameters method whose objective will be to check if the provided
relative paths are correct and process the provided reads directory to store their ids
into a list in order to be used as wildcards for the Snakemake workflow..

• The storeParameters methods whose objective will be to store the user provided
parameters in a JSON like format.
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#!/usr/bin/env python3
import json
import argparse
import re
import os
#######################
### CONFIG FILE CLASS ###
#######################
class CreateConfigurationFile(object):

""" Class object which manages Configuration file Manager """

#####
#1. Create object class Configuration File
configManager = CreateConfigurationFile ()

#2. Create object for argument parsinng
parser = argparse.ArgumentParser(prog="create_configuration_file",

description="Create a configuration json file for the MASV pipeline.")

#2.1 Updates arguments and parsing
configManager.register_parameter(parser)

args = parser.parse_args ()

#2.2 Check Parameters
configManager.check_parameters(args)

#3. store arguments to super map structure
configManager.storeGeneralParameters(args)
configManager.storeInputParameters(args)
configManager.storeOutputParameters(args)
configManager.storeWildcardParameters(args)
configManager.storeMinimap2Parameters(args)
configManager.storeNgmlrParameters(args)
configManager.storeSnifflesParameters(args)
configManager.storeSvimParameters(args)

#4. Store JSON file
with open(args.configFile , ’w’) as of:

json.dump(configManager.allParameters , of, indent =2)

Code 3.2: Schematic representation of get_config.py.

3.2.2 Config file builder custom script: insertion_fix.py

The purpose of this script is to reformat a VCF file accounting for the correct end coordi-
nates of insertions. Insertions are often presented with START coordinates = END coor-
dinates or END coordinates = START + 1. As I am going to use bedtools intersect
to detect overlap between the calls and the high confidence rearrangements, it is key for
the insertions coordinates to be reliably represented.

In order to do so, this script defines two class objects: SV_Info and VCFile.
SV_Info class object is going to be used to process the VariantFile objects (through
pysam dependencies) selecting a set of relevant features including the start and end co-
ordinates. The VCFile class object is going to be used to process the VCF, reformat it
with the fix and rewrite it keeping the same header (Code 3.3 ).

#!/usr/bin/env python3
import re
import pybedtools
import logging
import os
import sys

18 CHAPTER 3. MASV PIPELINE IMPLEMENTATION



MASV, a misassembly detection and variant calling pipeline for long reads data.

from argparse import ArgumentParser , RawDescriptionHelpFormatter
from pysam import VariantFile
from pyfaidx import Faidx
######################
# Define the Objects #
######################
##First create the SV_Info object ##
class SV_Info:

def __init__(self , vcf_provided , caller):
self.id = vcf_provided.id
self.type = vcf_provided.info.get(’SVTYPE ’, None)
self.chr1 = vcf_provided.chrom
self.pos1 = vcf_provided.pos
self.pos2 = vcf_provided.stop
if caller == "sniffles":

self.length = abs(vcf_provided.info.get(’SVLEN ’, None))
else:

self.length = vcf_provided.info.get(’SVLEN ’, None)
self.vcf_record = vcf_provided
if len(vcf_provided.samples.keys()) != 1:

raise RuntimeError(
"Currently only a single sample per file is supported")

def __repr__(self):
return "{} {} {} {} {} {} ".format(self.id, self.chr1 ,

self.pos1 , self.pos2 ,
self.type , self.length)

##Then create the VCFile object ##
class VCFile:

def __init__(self , vcf_path , genome , fix_param=True , caller="svim"):
self._variants , self.header = self.read_vcf(vcf_path , genome , fixing=fix_param ,

caller="svim")
""" Here SV_TYPE_NAMES and SV_BASE_TYPE are defined too """

def read_vcf(self , vcf_path , genome , fixing=False , caller="svim"):
variants = []
contig_lengths = {}
vcf = VariantFile(vcf_path , "r")
fa = Faidx(genome)
for item in fa.index:

contig_lengths[item] = int(fa.index[item].rlen)
for item in vcf.fetch ():

sv_info = SV_Info(item , caller)
if fixing and sv_info.type in [’INS’, ’DUP_INT ’, ’DUP/INS’]:

if int(sv_info.pos2 - sv_info.pos1) <= 1:
logging.debug("Changing {}/{} to {}/{}".format(sv_info.pos1 ,

sv_info.pos2 ,
sv_info.pos1 ,
(sv_info.pos1 + int(

sv_info.length)))
for contig in contig_lengths:

if contig == sv_info.chr1:
max_len = contig_lengths[contig]
final = int(sv_info.pos1 + int(sv_info.length))
real_stop = sv_info.vcf_record.start + int(sv_info.length)
if final > max_len:

final = max_len
if real_stop > max_len:

real_stop = max_len
sv_info.pos2 = final
sv_info.vcf_record.stop = real_stop

else:
pass

variants.append(sv_info)
return variants , vcf.header

def write_vcf(self , vcfpath):
vcf = VariantFile(vcfpath , ’w’, header=self.header)
for variant in self._variants:

vcf.write(variant.vcf_record)
vcf.close()

Code 3.3: Snippet of insertion_fix.py. Only the key code was kept.
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The most important function is the read_vcf method (VCFile object). It takes
into account the length of the scaffolds/chromosomes of the provided assembly to make
sure the insertions do not exceed that maximum length size if the SV is located in a
specific scaffold/chromosome. For each record called by vcf.fetch(), it is extracted our
features of interest defined in the SV_Info object. Then it performs the fix only for INS,
DUP_INT (this is how the DUP:INT are correctly defined by Svim) and DUP/INS that
meet the condition END - START <= 1. The new END position is defined and stored
back into the SV_Info object.

3.2.3 Evaluation custom script: bedtools_eval.py

This script purpose is to perform the SV calling evaluation with the knowledge beforehand
of the SV present in the analysis. This script have two evaluation modes:

• Default mode: The VCF is only filtered by SV_TYPE. The evaluation is performed
and the results are stored in a .txt file

• Iterative mode: The VCF is filtered first by SV_TYPE and the evaluation is per-
formed in a iterative loop filtering for the Read Support score for Sniffles or Q score
for Svim. Wether the results are plotted or not; an average of each of the metrics
as well as their standard deviation are stored in a .txt file.

As we require some kind of measure of quality/trust on a variant call, Read Support
(number of reads supporting a specific variant call) and Q score were selected for Sniffles
and Svim respectively. As the Q score is mainly based on the number of supporting reads,
it was deemed a feature that would enable a fair comparison between the two.

The following metrics were selected for our analysis:

• Precision: As the name suggests precision means how precise is the model in
predicting a class. It is derived from the following formula:

Precision =
TruePositive

TruePositive+ FalsePositive

• Recall: Can be defined as out of all the actual Positives how many times our model
was able to correctly predict it as Positive. It is derived from the following formula:

Recall =
TruePositive

TruePositive+ FalseNegative

• F1 score: It is the harmonic mean of precision and recall. F1 score is used to find
the best or say optimal of both precision and recall. It must be noted that finding
optimal of both does not mean to take the average. It accounts for extreme and
absurd situations, i.e if precision is 1 and recall is 0 then F-1 score will be 0 as
precision and recall are being multiplied. It is derived from the following formula:

F1 = 2 ∗ Precision ∗Recall

Precision+Recall
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To correctly estimate the above mentioned metrics, bedtools intersect was used as
represented by the code below (Code 3.4 ).

#!/usr/bin/env python3
import sys
import os
import pandas as pd
import numpy as np

def recall_precision_stats(truth , callset):
""" Returns a table with the Recall , Precision and F1 scores when intersecting

the high confidence dataset and the call dataset for a single SVTYPE.
Params:
- truth: Str. Provided hq dataset path.
- callset: Str. Provided callset path.
The measures above mentioned where calculated using the following formulas:
- Recall: TP/(TP+FN) . TP were any called sv that overlaps once with any sv of

the truth dataset and FN were any of the truth dataset SVs left to be called
.

- Precision: TP/(TP+FP) . TP were any called sv that overlaps once with any sv
of the truth dataset and being FP any of the other called svs that did not
overlap not even once

- F1 score: 2*(( Recall*Precision)/( Recall+Precision)). It is the harmonic mean
of precision and recall

Just to simplify , the TP+FN would be total number of variants for the same
SVTYPE in the high confidence dataset and the TP+FP would be the total
number of variants for the same SVTYPE in the callset."""

#Total number of variants in the high confidence (hq) dataset: TP+FN
command_hq_1 = ’cat ’ + os.path.abspath(truth) + ’ | awk \’OFS ="\\t" {{ if($1

!~ /^#/) {{ print $0}} }}\’ | wc -l’
number_variants_hq = os.popen(command_hq_1).read()

#Total number of variants called in the call dataset: TP+FP
command_call_1 = ’cat ’ + os.path.join(callset) + ’ | awk \’OFS ="\\t" {{ if($1

!~ /^#/) {{ print $0}} }}\’ | wc -l’
number_variants_callset = os.popen(command_call_1).read()

#Number of hits by the intersect -a truth -b callset
command_out_1 = ’bedtools intersect -u -a ’+os.path.abspath(truth)+’ -b ’+os.

path.join(callset)+’ -r -f 0.5 | wc -l’
truth_vs_call = os.popen(command_out_1).read()

#Number of hits by the intersect -a callset -b truth
command_out_2 = ’bedtools intersect -u -a ’+os.path.join(callset)+’ -b ’+os.path

.abspath(truth)+’ -r -f 0.5 | wc -l’
call_vs_truth = os.popen(command_out_2).read()

#Evaluation Metrics:
recall = (int(truth_vs_call) -1)/int(number_variants_hq)
precision = (int(call_vs_truth) -1)/int(number_variants_callset)
f1 = 2*(( recall*precision)/( recall+precision))

df = pd.DataFrame ([[ recall],
[precision], [f1]],
columns = [’Results in proportion ’])

df.insert(loc=0, column=’Eval Metrics ’, value =[’Recall ’,’Precision ’, ’F1’])
return df

Code 3.4: Bedtools intersect implementation to calculate the precision, recall and f1 score.

There are two relevant options in the bedtools intersect command line: -u and
-r -f 0.5. -u is the command for unique, as we are only interested on whether the
variant called is located in the other dataset once ( correcting for multiple hits for the
same variant). The -r -f 0.5 option represent a reciprocal overlap between the two
variants’ coordinates of 50%. By doing so, we are able to be more stringent regarding the
overlap region and rejecting spurious hits that are not significant, i.e. rejecting a variant
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call of 100 bp that overlaps with a real variant of 10 kb.

It is important to note that the iterative loop that is going to be generated for a range
of filtering values depend on the min_read_support parameter selected for Sniffles.
As this parameter allows an initial prefiltering, it is only fair to take into account that
factor or else we would have the same value for the first iterations where the iterator =<
min_read_support.
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4
Materials, methods and benchmarking

4.1 Materials used for this project

Before conducting the main experiments it was required to perform some benchmarking
on the SV caller software. The benchmarking was peformed on raw nanopore data in
which several set of parameters were tested for both aligners and sv callers; ultimately
selecting a default for both.

The idea behind the main experiments conducted was for the unaltered hg19 reference
to resemble a de novo assembly mis-assembled with respect to the reads which are going
to be simulated from the rearranged hg19 reference. In order to do so, it was required
first to rearrange the reference and then to simulate reads from it. Two main experiments
were conducted:

• Evaluate the precision, recall and F1 score in homozygosis.

• Evaluate the precision, recall and F1 score in heterozygosis

4.1.1 Raw data and truth callset for the Benchmarking

Finding a high-quality benchmark structural variant calls for human reference genomes
is difficult. High-quality benchmark small variant calls for "platinum quality" reference
NA12878 have been developed by the Genome in a Bottle Consortium (GiaB)[28], but
so far (and to our current knowledge) only a set of 2676 high-confidence deletions and 68
high-confidence insertions have been provided for benchmarking SV callers[7].

In order to perform the benchmarking using that high quality SV set, it was required
to download raw long read data from NA12878. Hence the entire release 6 (rel6) dataset
from the Nanopore WGS Consortium was downloaded because since earlier releases are
considered deprecated and not representative of the current state-of-the-art nanopore
sequencing.

The total rel6 dataset is composed of:
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• 53 flowcells

• 132,931,102,331 bases

• 15,666,888 reads

The Nanopore WGS Consortium developed a ultra-long protocol able to yield a N50
above 50 kb or more. They incorporated the x5 ultra-long reads to the x30 of nanopore
long read data that was originally sequenced for a total of x35 coverage NA12878 reads[6].

4.1.2 Rearranging the hg19 reference genome

The final milestone of the MASV pipeline implementation required testing the Snakemake
workflow with a simulated genome in order to detect rearrangements within the assembly.
This experiment involved simulating long reads from a reference genome into which we
introduced SVs at known positions. With that objective in mind, the hg19 reference
genome was selected as the target for SV simulation. To reduce computation size, only
a subset of the hg19 reference genome was modified: the chr21 and chr22 due to their
lower size. Using RSVsim we were able to simulate and introduce SVs into our chr21-22
hg19 reference. RSVsim is a tool for simulating deletions, insertions, inversions, tandem
duplications and translocations in any genome available as FASTA-file or BSgenome
data package[8]. Structural variations are placed within the given genome in a random,
non-overlapping manner. Additionally RSVsim is able to introduce biases towards SV
formation mechanisms and repeat regions by setting the parameter repeatBias=TRUE:
RSVSim will then simulates a bias of breakpoint positioning towards certain kinds of
repeat regions and regions of high homology.

The bias is calculated taking into account the following two steps:

I Weighting SV formation mechanisms (RSVsim provides by default: NAHR, NHR,
VNTR, TEI, Other) for each SV type.

II Weighting each SV formation mechanism for each kind of repeat (supported by
default: LINE/L1, LINE/L2, SINE/Alu, SINE/MIR, segmental duplications (SD),
tandem repeats (TR), Random).

The default weights were chosen by the authors from (RSVsim from studies with SVs
>1.000bp such as [29],[30] and [31]. This bias feature requires the coordinates of repeat
regions for hg19 which can be provided from the UCSC Browser’s RepeatMasker track[8].

Moreover, the user can specify the size vector for each of the SV that are going to be
simulated. Fortunately RSVsim provides another function estimateSVSizes that draws
random values for SV sizes from a beta distribution. The default shape parameters for
deletions, insertions, inversions and tandem duplications were estimated from sequencing
studies in the Database of Genomic Variants release 2012-03-29 to estimate the shape of
the beta distribution[8]. All of these perks were considered as it was intended to generate
human SV as realistic as possible.

With that in mind, the following homozygous SV were simulated :

• 200 deletions.

24 CHAPTER 4. MATERIALS, METHODS AND BENCHMARKING



MASV, a misassembly detection and variant calling pipeline for long reads data.

• 100 cut & paste insertions ( more akin to conservative transposition) .

• 100 inversions.

• 200 tandem duplications.

The output of the script is a genomic FASTA as well as a BED file for each of the SV
types introduced into it. The code used to generate the rearranged reference is provided
below ( Code 4.1). The R session info can be located at the supplementary material (
Code B.1 ).

#R 3.4.4
######### LIBRARY #########
#if (!requireNamespace (" BiocInstaller", quietly = TRUE))
# install.packages (" BiocInstaller ")
#BiocInstaller :: biocLite (" BSgenome.Hsapiens.UCSC.hg19")
library("BSgenome.Hsapiens.UCSC.hg19")

#BiocInstaller :: biocLite (" BSgenome.Hsapiens.UCSC.hg19.masked ")
library("BSgenome.Hsapiens.UCSC.hg19.masked")

#BiocInstaller :: biocLite (" RSVSim ")
library("RSVSim")

##### SETUP PARAMS #####
#As the original data ranges from 500 bp to 10kb, we are going to use the default beta

distribution as the sv vector size and then adjust it with minSize of 50 and maxSize
of 10000.

del.default <- RSVSim :: estimateSVSizes (200, default = "deletions", hist = TRUE )
del.vect <- RSVSim :: estimateSVSizes (200, del.default , minSize = 50, maxSize = 10000,

hist = TRUE )

ins.default <- RSVSim :: estimateSVSizes (100, default = "insertions", hist = TRUE )
ins.vect <- RSVSim :: estimateSVSizes (100, ins.default , minSize = 50, maxSize = 10000,

hist = TRUE )

inv.default <- RSVSim :: estimateSVSizes (100, default = "inversions", hist = TRUE )
inv.vect <- RSVSim :: estimateSVSizes (100, inv.default , minSize = 50, maxSize = 10000,

hist = TRUE )

dup.default <- RSVSim :: estimateSVSizes (200, default = "tandemDuplications", hist = TRUE
)

dup.vect <- RSVSim :: estimateSVSizes (200, dup.default , minSize = 50, maxSize = 10000,
hist = TRUE )

max.dups <- 10 #Maximum number of repeats for tandem duplications

#Provide the weights that we are going to apply to the biases of our generated sequence:
data(weightsMechanisms , package="RSVSim")
data(weightsRepeats , package="RSVSim")

#For chr21 -22
RSVSim :: simulateSV(output = "/scratch/devel/dfuentes/hg19_rearranged/chr21 -22. rearranged

/", chrs = c("chr21","chr22"),
dels = 200, ins = 100, inv = 100, dups = 200, sizeDels = del.vect ,

sizeIns = ins.vect , sizeInvs = inv.vect , sizeDups = dup.vect ,
maxDups = max.dups ,

weightsMechanisms = weightsMechanisms , weightsRepeats =
weightsRepeats , percCopiedIns = 0, repeatBias = TRUE)

Code 4.1: R script used to simulate SV into the chr21-22 hg19 reference genome.
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4.1.3 Simulating long reads from the rearranged hg19 genome

In order to simulate long reads from the rearranged chr21-22 hg19 genome, the Python
package SimLoRD. SimLoRD is a read simulator for third generation sequencing reads
currently focused on the Pacific Biosciences SMRT error model[9]. The baseline error
probabilities per subreads can be specified individually for substitutions ( -ps ), insertions
( -pi ) and deletions ( -pd ). Error probabilities for subreads are by default 1, 12 and
2% for substitutions, insertions and deletions, respectively, on average (15% total error
probability)

For the proposed experiments that are going to be discussed in detail the Results
section, the following simulations were required:

I Simulation of long reads based on the rearranged chr21-22 hg19 genome selecting a
specific coverage of x52. Hence we were able to successfully simulate homozygous
reads.

II Simulation of long reads based on the unaltered hg19 genome selecting a specific
coverage of x26. Through downsampling the rearranged reads (obtained through
the first simulation) to x26 coverage and merging them to the unaltered simulated
reads we were able to generate a x52 heterozygous simulated reads.

4.2 Benchmarking

While simulated datasets enable the comprehensive comparison of SV caller tools in a
controlled and precise manner, they might be unable to reflect the complexity in real
sequenced data. The NA12878 dataset is more realistic than the simulated datasets but
impose the limitation that there exists no complete gold standard set of SVs that we are
currently aware of.

It was selected a high confidence SV dataset that consisted of only 2614 deletions and
68 insertions[7] hence we were expecting a underfitting issue, provided that a recent study
by the Human Genome Structural Variation Consortium (HGSVC) found an average
of 12,680 deletions and 18,919 insertions per individual[32]. This is precisely true for
insertions due to the small size ( n = 68 ) of the high confidence dataset, and as such
their results should be take with caution. Consequently, the only measure taken into
account for the benchmark analysis was recall because precision could not be accurately
measured in this scenario.

The raw reads were first mapped against the hg19 reference using Minimap2 and
Ngmlr (with default parameters).

After the mapping step, a quality control of the output BAMs was performed. Using
the QC.smk rules there was plotted the average depth and N50 of NA12878. The total
depth was slightly below the expected 35x[6] for both Ngmlr and Minimap2 (Figure 4.1 ).
Ngmlr performed a little bit better, as it yielded 34.2 instead of the 34.0 provided by
Minimap2.

N50 statistic defines assembly quality in terms of contiguity. Given a set of contigs,
the N50 is defined as the sequence length of the shortest contig at 50% of the total genome
length. It can also be described as a weighted median statistic such that 50% of the entire
assembly is contained in contigs or scaffolds equal to or larger than this value. In our
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Figure 4.1: Mosdepth total coverage for the NA12878 dataset using minimap2. Please note
that the svim_results was the directory flag. The total depth is roughly x34 coverage

Figure 4.2: Histogram of read length log transformed for the NA12878 dataset using
minimap2. This raw data incorporates 30x normal long reads with 5x of ultra-long read
reads. The read length histogram has shifted slightly towards a N50 of 20k due to a positive
skew produced by the impact of the ultra-long reads

case we can clearly detect a N50 20 kb for both Minimap2 and Ngmlr. This result was
expected as the effect of the ultra-long reads have shifted slightly the distribution towards
larger read lengths (Figure 4.2 ). The skewness can be observed for those reads whose
length is >= 100 kb.

However Minimap2 and Ngmlr are clearly noticeable when comparing their computa-
tion times. Minimap2 was able to finish in less than a third of the time spent by Ngmlr
(Table 4.1).
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Aligner Threads s h:m:s

Minimap2 16 84106.4999 23:21:46
Ngmlr 32 331998.7294 92:13:18

Table 4.1: Benchmark for Minimap2 and Ngmlr. Although Snakemake provides additional
benchmarking parameters, only time in s (seconds) and h:m:s (hours:minutes:seconds) was kept.
The number of threads provided was introduced manually.

4.2.1 Comparison between Sniffles and Svim

For the first comparison only default parameters was selected. Here we present two figures
with 4 subplots each. The high confidence used the one for deletions, and the evaluation
was performed on the DEL SVTYPE.

Figure 4.3: Benchmarking: Svim DEL evaluation with default settings using minimap2. The
95% confidence interval was plotted around the data points (in blue). The trade-off between sensitivity
(recall) and precision is quite clear. Please note this figures were plotted with the benchmarking script,
and as such a few differences in format are present with the final MASV plotting script.

For this comparison, we plotted the results for both Svim and Sniffles for 34 iterations
of filtering on both Q score and Read support respectively. Svim results clearly show the
trade-off between recall (sensitivity) and precision. It must be noted however that we
are expecting a large number of false "False Positives" as we are using a limited high
confidence dataset. However we can clearly see the that filtering allows to balance out
the recall vs precision trade off, with an optimum Q score filtering value between 2 and
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4 in which we would maintain a high recall 93% for an increase of 15% in accuracy.

Figure 4.4: Benchmarking: Sniffles DEL evaluation with default settings using minimap2.
The 95% confidence interval was plotted around the data points (in blue). Recall and precision is kept
for the first 10 iterations because Sniffles performs a prefiltering step based on minimum read support
set to 10 reads.

This however cannot be said for Sniffles. As the default settings allow a prefiltering
SV with a read support < 10, the real trade-off starts above 10. However the gain in
precision is minimal at best, while the cost for recall is really high.

For insertions, the results were significantly lower. Considering a really low effective
size of 68 high confidence insertions, precision can be almost rejected for the benchmark-
ing. It must be noted however two current limitations of the evaluation script.

I The average result and its standard deviation depend on the number of iterations
used for the evaluation. Hence, a lower number of iterations (in other words, a less
stringent filtering) would yield higher averages and lower standard deviations.

II It doesn’t provide the filtering score for which the value is optimum. Right now it
requires to manually check the visualization plots.

Below it is provided as a table the benchmarking on both callers with default param-
eters using Minimap2 as the aligner (Table 4.2):
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SVTYPECaller Metric Results at 0 filt Average results Std values

DEL

Svim
Recall 98.91% 71.41% 22.84%

Precision 0.0801 % 22.63 % 7.77%
F1 score 1.66 % 31.93 % 8.81%

Sniffles
Recall 96.30 % 60.22% 30.69%

Precision 13.34% 15.96% 1.47%
F1 score 23.43 % 21.99% 2.88%

INS

Svim
Recall 72.05% 32.41% 23.24%

Precision 0.011% 0.35% 0.13%
F1 score 0.036% 0.68% 0.24%

Sniffles
Recall 57.35% 24.34% 29.87%

Precision 0.029% 0.087% 0.007%
F1 score 0.058% 0.15% 0.1%

Table 4.2: Benchmark performed with default parameter for Minimap2 alignments.
Recall is significantly lower than deletions, probably due to the small effective size of the high
confidence dataset. Moreover, precision for INS is extremely low, provided the number of false
positives ( both real and "false") is huge: 68 real TP against an expected 18,919.

The results on default parameters when using Ngmlr were quite similar albeit signifi-
cantly better for Sniffles. Svim results are mostly the same, with an small improvement
on the insertion detection. Sniffles yielded better results for both INS and DEL as op-
posed to using Minimap2.

SVTYPE Caller Metric Results at 0 filt Average results Std values

DEL

Svim
Recall 98.87% 69.69% 23.81%

Precision 0.083 % 24.42 % 7.02%
F1 score 1.84% 33.66 % 8.96%

Sniffles
Recall 99.01 % 71 .12% 21.65%

Precision 16.37% 25.49% 5.51%
F1 score 27.01 % 31.71% 3.09%

INS

Svim
Recall 76.24% 34.06% 22.39%

Precision 0.061 % 0.420 % 0.19%
F1 score 0.094% 0.284 % 0.185%

Sniffles
Recall 65.35% 31.34% 27.62%

Precision 0.047% 0.205% 0.057%
F1 score 0.068% 0.310% 0.140%

Table 4.3: Benchmark for INS with default parameters using Ngmlr . Sniffles’ perfor-
mance has improved, specially for INS calls. SVIM performance is kept mostly the same with a
slight improvement in INS detection.

For a proper benchmarking, more situations were considered. However, it must be
said that the time spent on benchmarking was hampered as it has been discussed in the
section 1.4 Limits and challenges (pages 6-7).

As I invested more than a month trying to obtain the preprocessed reads through
Canu, the number of additional benchmarking tests were quite limited. However, as
expected several SV calling parameters had a great impact on the evaluation metrics such
as min_support_reads (which performs a prefiltering on the calls based on Support
Reads score) and minimum_sv_length for Sniffles and minimum_sv_length as
well for Svim.
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Selecting a predefined min_support_reads is equivalent to select a specific dat-
apoint in the plot. Consequently, stringent values will yield lower recall and higher
precision than relaxed values.

Modifying the minimum_sv_length will affect the recall and precision of the eval-
uation, although I wouldn’t recommend it as the bias impact would largely impact the
outcome of the evaluation. Consequently, the default parameters were kept for the ex-
periments conducted, with the exception of minimum_sv_length which was adapted
to 50bp to keep it up with the SV size convention.
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5
Experiments conducted and results

In order to test MASV pipeline functionality for mis-assembly detection, two experiments
were proposed:

I Evaluate the precision, recall and F1 with homozygous reads.

II Evaluate the precision, recall and F1 with heterozygous reads.

All the following experiments were performed using the final version of the MASV
pipeline. Provided the time to spend to end this project was limited, the slow computation
time far outweighs the improved results by using Ngmlr. Hence Minimap2 was selected
as the default aligner and all the reads were mapped against the unaltered hg19 reference.

The experiments were conducted with the following structure in mind:

I Run the MASV_pipeline.smk selecting as the target the rule all. 16 threads were
provided and it was allowed a maximum parallelization of up to 8 threads.

II After the first run was performed, modify config adding a new high confidence
dataset for the evaluation script and manually edit the bedtools_eval.smk file, specif-
ically the feature type to be evaluated.

III Repeat step II for each feature type that is going to be tested.

IV Combine all the metric results in a large table file.

5.1 Evaluating homozygous reads

Hereby we present the results for the homozygous reads evaluation (Table 5.1).

Both Sniffles and Svim are quite precise at detecting the four SV types with the
exception of cut & paste insertions, which could not be detected by Sniffles. For both,
the recall is quite good, although Sniffles outperforms Svim in tandem duplications and
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SVTYPE Caller Metric Results at 0 filt Average results Std values

DEL

Svim
Recall 99.50% 98.70% 0.5783%

Precision 48.38% 64.00% 5.22%
F1 score 65.10% 77.50% 4.14%

Sniffles
Recall 99.50% 99.50% 1.11e-16%

Precision 68.58% 68.47% 2.39e-03%
F1 score 81.19% 81.12% 1.68e-03%

INS

Svim
Recall 95.00% 73.70% 13.80%

Precision 97.93% 98.51% 0.326%
F1 score 96.44% 83.97% 9.37%

Sniffles
Recall Null Null Null

Precision Null Null Null
F1 score Null Null Null

INV

Svim
Recall 95.00% 94.00% 0.447%

Precision 97.95% 98.89% 0.215%
F1 score 96.45% 96.38% 0.204%

Sniffles
Recall 94.00% 94.00% 1.11e-16%

Precision 94.94% 95.99% 1.56e-02%
F1 score 94.47% 94.97% 7.57e-03%

DUP:TAND

Svim
Recall 83.50% 73.70% 4.87%

Precision 98.33% 99.19% 0.3103%
F1 score 90.31% 84.47% 0.309%

Sniffles
Recall 99.00% 98.87% 0.216%

Precision 98.93% 98.89% 0.042%
F1 score 98.96% 98.88% 0.127%

Table 5.1: Evaluation on the homozygous x53 simulated reads during 20 iterations.
With the exception of DEL, both callers are quite precise independently of the SVTYPE. It
must be noted that Sniffles is not able to capture cut & paste insertions. However this limita-
tion is directly linked with how Sniffles do not allow an insertion region (key for our overlaps
approach)around the breakpoints, which Svim does.

deletions. The precision is quite similar between the two although Svim tends to be more
precise than Sniffles with the exception of deletions.

Due to how Svim classifies cut & paste insertions, they could only be detected for the
feature DUP_INT (Interspersed Duplication). Hence, it is key to understand the limits
of each variant calling software in order to adjust the analysis before interpreting the
results.

It seems that Svim is more dependent on Q score filtering than Sniffles regarding
Read Support (RE) filtering. It must be said however that as default parameters were
for the most part kept, Sniffles had already undergone a prefiltering step. It might
already affected some of the Sniffles results, nonetheless we can observe that the impact
of RE filtering isn’t as high as for Q score.

Below we are going to provide as an example the plot comparison between Svim
(Figure 5.3) and Sniffles (Figure 5.4) for deletions. The rest of the plots can be found in
the Annex B.
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Figure 5.1: Svim evaluation of homozygous x52 simulated read with default settings for
DEL. There is a huge tradeoff between recall and precision where for an almost neglectable loss of recall
there is a gain of up to 15% accuracy gain when using a filtering score >= 2. However with a Q score
filtering of 4, we are able to reach the optimum filtering to maximize both precision and recall as it is
supported by the F1 plot.
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Figure 5.2: Sniffles DEL evaluation of homozygous x52 simulated read with default settings
for DEL. We can clearly observe a slight decrease in recall. At the same time, a decrease albeit a bit
more pronounced can be observed for precision too. I would not recommend a more stringent filtering,
as we are able to keep the optimum filtering with just the default parameter for Sniffles prefiltering.
Please note that although the number of iterations is 30, as the default prefiltering minimum RE is 10,
the first 10 are skipped so in essence is just 20 iterations (starting from 10).
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It must be noted however that in order to determine the best filtering cutoff, we need
to take into account the full picture, in other words all four SV evaluation.

For Svim the final optimum filtering score would have been between 2 and 4. INS
detection optimum value is at 2(Figure B.6), while for the other ones is closer to 4(Figures
5.3, B.7 and B.8).

Although the base prefiltering score of 10 yields quite good results for Sniffles, it
would be recommended a filtering score of 16 provided it is the optimum value for INV
(Figure B.9). Recall and precision are quite robust for DEL and DUP:TANDEM calls
(Figures 5.4 and B.8) hence there isn’t any major trade-off for selecting a more stringent
filtering score.

5.2 Evaluating heterozygous reads

However most of the time we are not sure whether the organism we have sequenced and
assembled is heterozygous or not. It is key then to evaluate how both SV callers perform
for heterozygous data as we could be unable to detect some mis-assemblies or detect some
of them incorrectly. In order to test this precise scenario, we perform an analysis on the
simulated heterozygous reads and these are the results obtained:

SVTYPE Caller Metric Results at 0 filt Average results Std values

DEL

Svim
Recall 99.00% 98.20% 0.865%

Precision 35.60% 61.66% 9.69%
F1 score 52.36% 75.16% 8.35%

Sniffles
Recall 99.50% 85.33% 27.06%

Precision 69.60% 69.76% 2.57%
F1 score 81.90% 73.89% 18.70%

INS

Svim
Recall 91.00% 70.85% 16.02%

Precision 98.91% 98.53% 0.357%
F1 score 94.79% 81.40% 11.30%

Sniffles
Recall Null Null Null

Precision Null Null Null
F1 score Null Null Null

INV

Svim
Recall 94.00% 93.09% 1.06%

Precision 97.93% 98.88% 0.213%
F1 score 95.92% 95.90% 0.564%

Sniffles
Recall 94.00% 84.80% 12.43%

Precision 98.94% 98.80% 0.217%
F1 score 96.41% 90.74% 8.01%

DUP:TAND

Svim
Recall 83.50% 74.50% 5.12%

Precision 97.17% 98.78% 0.76%
F1 score 89.82% 84.82% 0.303%

Sniffles
Recall 98.00% 92.03% 11.82%

Precision 98.85% 98.79% 0.182%
F1 score 98.42% 94.83% 7.30%

Table 5.2: Evaluation on the heterozygous x52 simulated reads during 20 iterations.
Both performed slightly worse than during the evaluation of homozygous reads., however the
performance drop is quite small. Hence both Sniffles and Svim are quite robust to heterozygosity.
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Figure 5.3: Svim evaluation of heterozygous x52 simulated reads with default settings for
DEL. We are able to observe again a huge trade-off between recall and precision with a boost over 15%
accuracy gain when using a filtering score >= 2. There isn’t any major difference with the results of
homozygous DEL.
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Figure 5.4: Sniffles evaluation of heterozygous x52 simulated reads with default settings
using for DEL. As well as with the Svim evaluation before, there isn’t any major difference with the
results of homozygous DEL.
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The weird behaviour in the Sniffles plots can be explained by the composition of the
dataset. The heterozygous dataset was created by merging a 26x rearranged reads with
26x normal reads. Hence we would expect to have maximum read support around 26
reads.

This might have exclusively affected the Sniffles results, as the iterative loop reached
a filtering value of 30. The results for filtering values above 26 will have reduced the
averages of the metrics tested, as well as affecting the standard deviation. However, as
we can clearly see from the plots, the tendency is well kept for the most part.

In conclusion: Overall both are quite robust. Albeit performing slightly worse than
for homozygous reads, both were able to accurately pinpoint most of the time the correct
variants after some filtering. Interestingly the filtering thresholds set for homozygous
reads would have sufficed for both Svim and Sniffles.
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6
Discussion and conclusions

6.1 Discussion and future work

During the benchmarking process I was wondering which of the two metrics should be
prioritized. If set on maximizing recall, the algorithm should be able to detect most if
not all of the possible mis-assemblies, but not accurately. Whereas maximizing precision
would detect few mis-assemblies, but all of the ones detected would have been real errors
of the assembly process. I would recommend however to try to maximize precision above
recall (but keeping recall at a reasonable level, high enough to fully exploit this pipeline).
For future implementations such as a script able to re-assemble and correct the mis-
assemblies based on the information gathered by MASV pipeline, it would be far more
critical to correct the real mis-assemblies that are detected that be able to detect all
real mis-assemblies but have the uncertainty of introducing new rearrangements based
on false positives.

Both Svim and Sniffles reported similar results for both heterozygous and homozy-
gous reads. Sniffles has proven to be the most robust caller out of the two although
the maximum values were more often found in Svim. It must be noted however that
Sniffles currently is not able to detect cut and paste insertions. At the very best it is
able to provide break points’ coordinates. Unfortunately, the way the evaluation was
designed relying on overlaps, it was not possible to take individual breakpoints into ac-
count. Whereas Svim was able to identify these complex events and incorporate into the
calling. Thus, it would be really interesting to merge the calls from both SV predictors.
Hereby I propose two approaches:

I Merging and keeping only the overlaps between Sniffles and Svim. By doing that
we would generate a high confidence consensus call (HCCC). Though complex,
with a merging algorithm that would account for a merged Q score/Read Support
to even further weigh the likeliness of that HCCC to be a real mis-arrangement.

II Merging both VCF files, without any special weighting on the overlaps between
the two. Using this approach, we would be able to capture SV that wouldn’t be
captured by using only one or the other SV predictor.
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This feature alone might prove to be invaluable to reduce the impact of spurious calls
on complex genome assemblies, such as the ones from the plant kingdom[10] or cancer
genomes.

In addition, future work would focus development on an algorithm for reducing the
number of mis-assemblies in draft genomes by rearranging the target assembly accord-
ing to the calls made by the MASV pipeline. If the SV can effectively represent mis-
assemblies, then the logical step would be to incorporate the information from the SV
calls to correct the mis-assemblies. Perhaps it could draw inspiration from the GATK
Alternate Reference Maker algorithm or something similar. However, it is easier
said than done and it probably warrants a project in itself.

The conducted experiments perhaps required further exploration and additional ideas.
As such, some of this project’s caveats were:

• The experiments were conducted on a simulated genome, which may be unable to
capture the complexities of real genomes. It would have been interesting to test it
on a real assemble from which we knew beforehand where were the mis-assemblies
located.

• A small size genome (only chr21 and chr22 from the hg19 reference genome) was
rearranged. It would have been desirable to test them on a full rearranged genome.

• It was used a fairly good coverage for the experiments (x52). It would have been
interesting using lower coverage simulations as it would have provided us a better
understanding of the coverage dependant limitations of these SV caller.

Finally, we were not able to test everything. A few ideas were left out due to re-
sponsible time and focus allocation. Trying to work out the preprocessing step for the
benchmarking consumed an important amount of time and resources. Perhaps in the
future this idea could be revisited.

6.2 Conclusions

De novo genome assembly has been forever changed with the addition of third generation
sequencing technologies. Longer reads facilitate the complex task of assembling repetitive
regions which are prone to errors. New and precise long read structural variant callers
have been developed as well. We originally hypothesised that SV calling might help to
detect real mis-assemblies. To test this idea, we developed the MASV pipeline.

The MASV pipeline was designed through Snakemake. Snakemake is a flexible and
intuitive tool, easy to use but hard to master. It has however plenty of advantageous
perks making it one of the most popular choices for workflows design. MASV pipeline has
proven its utility, being able to accommodate several modular steps into a single easy-
to-follow workflow. Some of the conscious decision regarding the pipeline design have
improved reproducibility and scalability exceptionally well, specially the usage of conda
environments. In addition to just adding software dependencies to the pipeline workflow,
it has been further enhanced through the use of custom scripts to provide additional
utility (a script to generate on-demand config files) and functionality (reformat VCFs
and evaluation metrics).
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After benchmarking the pipeline with a fair share of difficulties and challenges, two
experiments were proposed: test the SV detection capabilities for homozygous and het-
erozygous calls. The high precision and recall obtained through these two experiments
suggest that MASV could be used effectively for mis-assembly detection as well as for SV
detection. Further work is required but the future of MASV is promising.
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Glossary of Terms and Acronyms

• TGS: Third Generation Sequencing

• SV: Structural Variant

• VCF: Variant Call File

• CNAG: Centro Nacional de Análisis Genómico

• NGS: Next Generation Sequencing

• SMRT: Single Molecule, Real-Time

• ONT: Oxford Nanopore Technologies

• CCS: Circular Consensus Sequence

• BAM: Binary Alignment Map

• JSON: JavaScript Object Notation

• YAML: YAML Ain’t Markup Language

• DEL: Deletions

• INS: Insertions

• INV: Inversions

• DUP:TANDEM: Tandem Duplications

• DUP:INT: Interspersed Duplications

• NAHR: Non-Allelic Homologous Recombination

• NHR: Non Homologous Recombination

• VNTR: Variable Number of Tandem Repeats

• LINE: Long Interspersed Nuclear Element

• SINE: Short Interspersed Nuclear Element

• UCSC: University of California Santa Cruz

• BED: Browser Extensible Data

• HGSVC: Human Genome Structural Variation Consortium

• GIAB: Genome In A Bottle consortium
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A
User manual

The MASV pipeline is located at https://github.com/Dfupa/MASV-pipeline. All the
available code has been uploaded in that repository. Below we provide a quickstart

A.0.1 Getting Started

First it is required to pre-install conda with either anaconda or miniconda3.

anaconda - please follow these instructions: https://docs.anaconda.com/anaconda/install/

Alternatively, you can install:

miniconda3 - please follow these instructions: https://conda.io/projects/conda/en/latest/user-
guide/install/index.html

A.0.2 Pipeline Installation

After installing conda, download and install the pipeline

# First clone the MASV repository
$ git clone https :// github.com/Dfupa/MASV -pipeline.git
# Change to MASV directory
$ cd MASV -pipeline/
# Set the conda environment with all the necessary dependencies
$ conda env create -f MASV_pipeline.yml
# Activate the conda environment
$ conda activate MASV_pipeline

A.0.3 Input

This pipline uses as an input a config file located in the MASV_pipeline/lib/config/
directory. The user can find in that directoy a script called MASV_get_config.py which
will build a config file with the parameters provided by the user.

51



MASV, a misassembly detection and variant calling pipeline for long reads data.

More information is provided by using the help parameter of MASV_get_config.py

# Always assuming the MASV_pipeline environment is active
$ python3 lib/config/MASV_get_config.py -h

A.0.4 Target rules

The target rules currently available to use are:

• rule all: Outputs both Svim(https://github.com/eldariont/svim) and Sniffles(https:
//github.com/fritzsedlazeck/Sniffles) filtered calls, as well alignment QC and eval-
uation output (only if a truth dataset has been provided to the config file).

• rule mapping_only: Outputs only the BAM alignment between the reads and the
reference.

• rule sniffles: Outputs Sniffles filtered calls.

• rule svim: Outputs Svim filtered calls.

• rule eval_sniffles: Outputs evaluation output for Sniffles only.

• rule eval_svim: Outputs evaluation output for Svim only.

• rule sanity_check: Outputs alignment QC based onmosdepth(https://github.com/
brentp/mosdepth) and Nanoplot(https://github.com/wdecoster/NanoPlot).

A.0.5 How to run Snakemake

In order to run the MASV pipeline just use the following command

# Always assuming the MASV_pipeline environment is active
$ snakemake -s MASV_pipeline.smk -r all -j 16 -n

The -n option is for a dry run, avoding the execution of any job yet. -j is the number
of threads provided to the pipeline. In this specific example, we selected the rule all using
the parameter -r. More information regarding Snakemake and its commands can be found
through Snakemake documentation: https://snakemake.readthedocs.io/en/stable/index.html.

A.0.6 Important considerations

• Right now the pipeline is able to handle .fastq and .fastq.gz. Please keep this in
mind when providing your own reads.

• Right now the pipeline uses either Minimap2 (https://github.com/lh3/minimap2)
or Ngmlr(https://github.com/philres/ngmlr) aligner, but not both.

• The evaluation script requires one specific SV feature ( default is DEL) and a truth
dataset for tha feature types. The user must manually edit the bedtools_eval.smk
file in lib/rules/ and account for the feature change.

• The pipeline was developed and test in Unix like environments. As such, function-
ality is not assured when used from Windows or Mac.
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B
Supplementary material

> sessionInfo ()
R version 3.4.4 (2018 -03 -15)
Platform: x86_64-pc-linux -gnu (64-bit)
Running under: Ubuntu 18.04.2 LTS

Matrix products: default
BLAS: /usr/lib/x86_64-linux -gnu/blas/libblas.so .3.7.1
LAPACK: /usr/lib/x86_64-linux -gnu/lapack/liblapack.so .3.7.1

locale:
[1] LC_CTYPE=en_US.UTF -8 LC_NUMERIC=C LC_TIME=es_ES.UTF -8 LC

_COLLATE=en_US.UTF -8 LC_MONETARY=es_ES.UTF -8
[6] LC_MESSAGES=en_US.UTF -8 LC_PAPER=es_ES.UTF -8 LC_NAME=C LC

_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=es_ES.UTF -8 LC_IDENTIFICATION=C

attached base packages:
[1] stats4 parallel stats graphics grDevices utils datasets methods base

other attached packages:
[1] RSVSim_1.18.0 BSgenome.Hsapiens.UCSC.hg19.masked_1.3.99

BSgenome.Hsapiens.UCSC.hg19_1.4.0
[4] BSgenome_1.46.0 rtracklayer_1.38.3

Biostrings_2.46.0
[7] XVector_0.18.0 GenomicRanges_1.30.3

GenomeInfoDb_1.14.0
[10] IRanges_2.12.0 S4Vectors_0.16.0

BiocGenerics_0.24.0

loaded via a namespace (and not attached):
[1] zlibbioc_1.24.0 GenomicAlignments_1.14.2 BiocParallel_1.12.0

lattice_0.20 -35 hwriter_1.3.2
[6] tools_3.4.4 SummarizedExperiment_1.8.1 grid_3.4.4

Biobase_2.38.0 latticeExtra_0.6 -28
[11] matrixStats_0.55.0 Matrix_1.2-12 GenomeInfoDbData_1.0.0

RColorBrewer_1.1-2 bitops_1.0-6
[16] RCurl_1.95 -4.12 DelayedArray_0.4.1 compiler_3.4.4

Rsamtools_1.30.0 ShortRead_1.36.1
[21] XML_3.98 -1.20

Code B.1: R session info for the RSVsim usage.
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Figure B.1: Supplementary plot: Svim evaluation of homozygous x52 simulated reads with
default settings for INS. The optimum Q score filtering value seems to be located at 3, where the
precision is at its maximum and recall starts to significantly drop.
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Figure B.2: Supplementary plot: Svim evaluation of homozygous x52 simulated reads with
default settings for INV. The optimum Q score filtering value is clearly located at 2, although the
performance is quite robust for all the filtering values.
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Figure B.3: Supplementary plot: Svim evaluation of homozygous x52 simulated reads with
default settings for DUP:TANDEM. The optimum Q score filtering vale is 2. It must be noted
however than at 3-4 the precision is almost 1 at the cost of recall who would take a significant loss.
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Figure B.4: Supplementary plot: Sniffles evaluation of homozygous x52 simulated reads
with default settings for INV.. The optimum RE filtering value would be 16, as recall do not
significantly change, but precision can be improved at that value. Please note that although the number
of iterations is 30, as the default prefiltering minimum RE is 10, the first 10 are skipped so in essence is
just 20 iterations (starting from 10).
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Figure B.5: Supplementary plot: Sniffles evaluation of homozygous x52 simulated reads
with default settings for DUP:TANDEM. There is no optimum score, as barely for all metrics the
resuls are equivalent with the ones obtained through the prefiltering phase (except for the RE values
at the end of the iteration) Please note that although the number of iterations is 30, as the default
prefiltering minimum RE is 10, the first 10 are skipped so in essence is just 20 iterations (starting from
10).
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Figure B.6: Supplementary plot: Svim evaluation of heterozygous x52 simulated reads with
default settings for INS. The optimum Q score is 4, as it is the maximum recall value before a signifcant
drop in recall. Precision is kept near 1, although it starts to perform worse through overfiltering.
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Figure B.7: Supplementary plot: Svim evaluation of heterozygous x52 simulated reads
with default settings for INV. For inversions, only some sort of filtering is required to maximize the
precision and recall metrics, as we can clearly see when using a filtering value of 1.
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Figure B.8: Supplementary plot: Svim evaluation of heterozygous x52 simulated reads
with default settings for DUP:TANDEM. For tandem duplications, the optimum score to maximize
precision is 8. However recall takes a significant hit by doing so. In order to maximize both, the optimum
Q score filtering is 2, as we can clearly see in the F1 plot.
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Figure B.9: Supplementary plot: Sniffles evaluation of homozygous x52 simulated reads
with default settings for INV. In this case the optimum RE score would be 13-14, as it is the RE
value that maximizes both recall and precision according to the F1 plot. Please note that although the
number of iterations is 30, as the default prefiltering minimum RE is 10, the first 10 are skipped so in
essence is just 20 iterations (starting from 10).
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Figure B.10: Supplementary plot: Sniffles evaluation of homozygous x52 simulated reads
with default settings for DUP:TANDEM. In this case, any filtering value in the range of 10-16
would suffice as optimum filtering value. Please note that although the number of iterations is 30, as the
default prefiltering minimum RE is 10, the first 10 are skipped so in essence is just 20 iterations (starting
from 10).
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