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1 Introduction

As a classical theory, unimodular gravity is a geometric theory of gravity obtained by

defining the configuration space of theory to be the set of Lorentzian metrics which satisfy

the unimodular condition det gµν = −1. Hence, the covariance group of theory is no longer

the group of diffeomorphisms but a subgroup of it: the group of transverse diffeomorphisms.

As far as the classical equations of motion are concerned, unimodular gravity cannot be

distinguised from Einstein’s general relativity with an arbitrary Cosmological Constant.

Unimodular gravity thus appears to be a viable classical theory of gravity — for more

information, see [1–6]. That the determinant of the metric is no longer a degree of freedom

has the consequence that the vacuum energy does not gravitate. And thus, the problem

that arises in General Relativity of the huge discrepancy between the experimental value

of the Cosmological Constant and the quantum field theory “prediction” for that constant

does occur in unimodular gravity [7]. Of course, unimodular gravity does not predict the

value of the Cosmological Constant.

Although unimodular gravity and General Relativity seem to be equivalent classically,

this is not so at the quantum level, at least when analyzing phenomena where the Cosmo-

logical Constant cannot be set to zero. Some properties of unimodular gravity defined as

an effective quantum field theory have been analysed in a number of papers. It all points in

the direction that when the Cosmological Constant is set to zero, unimodular gravity and

General relativity have the same S matrix in the perturbative regime, but a proof of this

statement is still lacking. We refer the reader to references [8]–[22] for further information.

Supergravity was introduced in references [23, 24] and it is difficult to overstate the

impact that it has had and still has on high energy physics — see reference [25] for a

modern introduction. One of the salient, and most surprising, features of supergravity

is the way it ushers in Grassmann variables as a key ingredient in the description of the

spacetime dynamics. It thus seems imperative to see whether unimodular gravity can be

supersymmetrized to a supergravity theory.
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Minimal off-shell formulations of N = 1, d = 4 supergravity were formulated in [26, 27],

so that the supergravity algebra closes without imposing the equations of motion of

the fields.

The purpose of this paper is to formulate the minimal off-shell N = 1, d = 4 Poincaré

supergravity counterpart of unimodular gravity. We shall call this theory N = 1, d = 4

unimodular supergravity. This is not the first time in the literature that a supergravity

counterpart of unimodular gravity is proposed. A unimodular supergravity was put for-

ward in reference [28]. Our unimodular supergravity formalism differs from the one in

reference [28] by three main aspects. First, our formalism is off-shell, theirs is on-shell.

It should be noticed that the existence of an off-shell formulation of a supersymmetric

theory is a highly non-trivial issue — see reference [29] and that the off-shell extensions of

N = 1, d = 4 supergravity is not unique — see [30]. Second, we do not use any Langrange

multiplier to implement the vierbein unimodularity condition, so we deal with a minimum

number of fields. Third, the equation to be satisfied by the parameters of the unimodular

supergravity transformations is not the same as in reference [28]. Very recently, there has

been another new construction of unimodular supergravity — see [31], where the invariance

under the full diffeomorphism group is restored by using the Super-Stückelberg procedure.

The layout of this paper is the following. In section 2 we put forward the linearized

N = 1, d = 4 unimodular supergravity theory with auxiliary fields and show that the fields

carry an off-shell representation of N = 1 supersymmetry in four dimensions, up to gauge

transformations. We also see that it is a theory of free gravitons and gravitinos. The

minimal off-shell interacting unimodular supergravity theory of gravitons and gravitinos

is put forward in section 3. Here, we show that the algebra of unimodular supergravity

transformations closes modulo transverse diffeomorphisms and Lorentz transformations.

This closing is non trivial since on the one hand the parameters defining the unimodular

supergravity transformations are constrained and only transverse diffeomorphisms are al-

lowed as symmetries. In section 4, we discuss several aspects of the classical solutions to

the unimodular gravity equations of motion.

2 Linearized N = 1, d = 4 unimodular supergravity

In this section we shall supersymmetrize the linearized unimodular gravity theory. The

action, S(LUG), of the latter is obtained [9, 32] by imposing the tracelessness constraint —

the linearized unimodular condition,

hµµ = 0, (2.1)

on the graviton field in the Fierz-Pauli action. Thus, one obtains

S(LUG) = −1

4

∫
d4x

[
1

2
hµν∂2hµν + ∂µh

µλ∂νh
ν
λ

]
. (2.2)

Note that ∂2 stands for ∂µ∂
µ.

S(LUG) is not invariant under arbitrary infinitesimal diffeormophisms but only under

transverse infinitesimal diffeomorphisms:

δTdiffhµν = ∂µξν + ∂νξµ with ∂µξ
µ = 0. (2.3)
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It is plain that to have a chance of obtaining a supersymmetric theory whose particle

spectrum contains the graviton field, hµν , we must add to the action S(LUG) the Rarita-

Schwinger action, S(RS), for a spin-3/2 Majorana spinor field ψµ:

S(RS) = − i

2

∫
d4xψµγ

µνρ∂νψρ, (2.4)

where γµνρ = γ[µγνγρ]. [µνρ] stands for total antisymmetrization of the indices with

weight 1, i.e., there is a global factor 1/3! multiplying the sum running over all the signed

permutations of (µ, ν, ρ). Note that ε0123 = 1.

The action, S(RS), is invariant under the following gauge transformations

δgaugeψµ = ∂µχ, (2.5)

where χ is an arbitrary Majorana spinor. Let us recall that each component of the Majorana

vector-spinor ψµ(x) must be an odd element of a Grassmann algebra to prevent S(RS)

from vanishing.

We shall now look for infinitesimal rigid — i.e., not dependent on the coordinates —

fermionic transformations which turn the ψµ field into the hµν field, and viceversa, while

leaving invariant the sum S(LUG) + S(RS). An educated guess reads

δεhµν = − i
2
ε(γµψν + γνψµ)

δεψµ = −1

4
∂ρhσµ γρσε,

(2.6)

where ε is an infinitesimal rigid Majorana spinor.

Unfortunately, the previous transformations do not preserve the unimodular gravity

condition in (2.1), for, in general, γµψµ does not vanish. Notice that one cannot take

advantage of the invariance of S(LUG) under the transverse diffeomorphisms in (2.3) and

add to δεhµν above a transverse diffeomorphism so that the unimodular gravity condition,

hµµ = 0 be preserved, for that would entail the following constraint on ξµ:

∂µξ
µ = −εγµψµ,

which clashes with the transversality constraint on ξµ; unless, of course, γµψµ = 0.

It would appear, in view of the previous analysis, that the value of the Majorana

vector-spinor field is to be restricted by constraint

γµψµ = 0, (2.7)

if the N = 1 supersymmetrization of our linear unimodular gravity theory is to be success-

ful. From now on we shall always assume that the Majorana spin-3/2 field ψµ satisfies (2.7).

Notice that (2.7) is the so-called Rarita-Schwinger gauge, which was introduced in the sem-

inal paper by Rarita and Schwinger [33] to characterize the pure spin-3/2 states. In the

context of supersymmetry, (2.7) could be viewed as the supersymmetry counterpart of the

tracelessness constraint — see (2.1) — on the graviton field which defines linear unimodu-

lar gravity.
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However, we are not done yet, for the constraint γµψµ = 0 is not preserved by the

second transformation in (2.6). Fortunately, now we can add to the right hand side of (2.6)

a suitably chosen gauge transformation, as defined in (2.5), so that the new transformation

preserves the constraint γµψµ = 0. We shall not give yet the value of such gauge transfor-

mation, for it is time that we introduce the bosonic auxiliary fields that will lead to the

off-shell realization of N=1 supersymmetry.

Let S and P be scalar and pseudoscalar real fields, respectively, and Aµ a real pseu-

dovector field. Guided by supersymmetry transformations of the standard linearized N =

1, d = 4 supergravity theory — see [26], we define the following transformations of the

fields of the linearized unimodular supergravity theory under construction

δLε hµν = − i
2
ε(γµψν + γνψµ),

δLε ψµ = −1

4
∂ρhσµ γρσε+

i

6
γµ(S − iγ5P )ε+

i

2
γ5

(
Aµ −

1

3
γµγ

νAν

)
ε+ ∂µθ[ε],

δLε S = −1

2
εγρσ∂ρψσ,

δLε P =
i

2
εγ5γ

ρσ∂ρψσ,

δLε Aµ =
3

4
εγ5

(
ηµρ −

1

3
γµγρ

)
γρσλ∂σψλ,

(2.8)

where γ5 = iγ0γ1γ2γ3 and

θ[ε](x) =−
∫
d4yD(x−y)

[
−1

4
γµ∂ρhσµ(y)γρσε+

2i

3
(S(y)−iγ5P (y))ε+

i

6
γ5γ

µAµ(y)ε

]
,

∂/xD(x−y) = δ(x−y)

∂/θ[ε] =
1

4
γµ∂ρhσµ γρσε−

2i

3
(S−iγ5P )ε− i

6
γ5γ

µAµε (2.9)

The summand ∂µθ(x) in (2.8) is needed so that

δLε (γµψµ) = 0, ∀hµν , ψµ, S, P,Aµ. (2.10)

Some comments regarding ∂µθ(x) are in order. First, it is plain that ∂µθ(x) does not con-

tribute to the variation of the Rarita-Schwinger action in (2.4). Secondly, when it acts on a

physical gravitino it has to be contracted with the corresponding vector-spinor wave func-

tion, which is transverse, thus yielding a vanishing constribution. Thirdly, contributions

of the type θ[ε](x) in (2.9) were not considered in [34], hence the negative result quoted in

the latter.

Let us stress now that (2.10) does not further constrain the fields hµν and ψµ since the

last equation of (2.9) holds for arbitrary hµν , ψµ, S, P,Aµ with appropriate regularity and

boundary behaviour.

Recall that in the unimodular theory hµν and ψµ are constrained by the unimodular

conditions in (2.1) and (2.7), respectively; which are indeed preserved by the transfor-

mations in (2.8). We shall see in the next section that δLε ψµ and all the remaining su-

persymmetry transformations in (2.8) are the order κ0 contributions to the supergravity

transformations of the full unimodular supergravity theory.
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Let us introduce the action, S(Aux), for the auxiliary fields

S(Aux) = −1

3

∫
d4x
(
S2 + P 2 +AµAµ

)
(2.11)

It can be readily shown that

δLε S
(LUG) =

i

4

∫
d4x εγµψν

[
∂2hµν + ∂µ∂ρh

ρ
ν + ∂ν∂ρh

ρ
µ

]
,

δLε S
(RS) = − i

4

∫
d4x εγµψν

[
∂2hµν − ∂µ∂ρhρν − ∂ν∂ρhρµ

]
+

∫
d4x

[
1

3
ε(S − iγ5P )∂µψµ +

1

2
εγ5γ

ρσλ∂ρψλAρ +
1

3
εγ5A/∂

λψλ

]
δLε S

(Aux) = −
∫
d4x

[
1

3
ε(S − iγ5P )∂µψµ +

1

2
εγ5γ

ρσλ∂ρψλAρ +
1

3
εγ5A/∂

λψλ

]
Hence, if we define

S(LUSG) = S(LUG) + S(RS) + S(Aux), (2.12)

we get

δLε S
(LUSG) = 0.

We are thus entitled to define S(LUSG) as the action of the off-shell linearized unimodular

N = 1, d = 4 supergravity theory.

Our next task will be the computation of the commutator [δLε1 , δ
L
ε2 ]. Before carrying out

such computation we shall establish the following variations of arbitrary — and therefore

not restricted by the unimodular constraints in (2.1) and (2.7) — hµµ and ψµ

δLε1δ
L
ε2

[
hµµ
]
|[h=0,γ·ψ=0] = 0, δLε1δ

L
ε2

[
γµψµ

]
|[h=0,γ·ψ=0] = 0. (2.13)

The symbol |[h=0,γ·ψ=0] indicates that the unimodular constraints h ≡ hµµ = 0 and

γ · ψ ≡ γµψµ = 0 are imposed after having worked out the infinitesimal variations. The

action of δLε on the arbitrary fields is given by the definitions in (2.8) and (2.9) with the

unimodular constraints removed.

Now, because θ(x) in (2.9) makes sense for arbitrary fields, it is plane that the following

equation

ε2Ψ[hµν , ψµ, S, P,Aµ] ≡ δLε2
[
γµψµ

]
= 0,

holds for arbitrary fields — i.e., not constrained by h = 0 and γ · ψ = 0, by construction.

Hence, its variation under δLε1 also vanishes. Hence,

δLε1δ
L
ε2

[
hµµ
]

= ε2δ
L
ε1

[
γµψµ

]
= 0 (2.14)

We are now ready to work out the action of [δLε1 , δ
L
ε2 ] on the fields. Due to the re-

sults (2.10) and (2.13), one can readily do so by computing the action of such commutators

on arbitrary — i.e., not constrained by h = 0 and γ · ψ = 0 — fields and then imposing

the unimodular constraints on the result. Now, notice that if we remove the summand

∂µθ from the transformations in (2.8), we are left with the standard linearized off-shell

– 5 –
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supergravity transformations, whose algebra closes on translations — modulo gauge trans-

formations when the commutator acts of either hµν or ψµ. Hence, it is not difficult to

reach the conclusion that the following equations hold for the fields — constrained — of

our linearized unimodular supergravity theory:

[δLε1 , δ
L
ε2 ]hµν =

i

2
ε1γ

ρε2 ∂ρhµν + ∂µχν + ∂νχµ,

[δLε1 , δ
L
ε2 ]ψµ =

i

2
ε1γ

ρε2 ∂ρψµ + ∂µΘ,

[δLε1 , δ
L
ε2 ]S =

i

2
ε1γ

ρε2 ∂ρS,

[δLε1 , δ
L
ε2 ]P =

i

2
ε1γ

ρε2 ∂ρP,

[δLε1 , δ
L
ε2 ]Aµ =

i

2
ε1γ

ρε2 ∂ρAµ,

(2.15)

with

χν = − i
4
ε1γ

µε2hµν +
i

2

(
ε1γνθ[ε2]− ε2γνθ[ε1]

)
Θ = − i

2
ε1γ

ρε2ψρ +
i

8
(ε1γ

σψργρσε2 − ε2γσψργρσε1) + δLε1θ[ε2]− δLε2θ[ε1].

θ[ε] is given in (2.9).

Using the value of θ[ε] given in (2.9), one can show that this χµ satisfies

∂µχ
µ = 0,

if hµµ = 0. Hence, χµ defines an infinitesimal transverse diffeomorphism, as required.

Further, γµψµ = 0, (2.14) and (2.15) leads to the conclusion that

∂/Θ = 0.

Hence, Θ defines a gauge transformation, ∂µΘ, of ψµ which preserves the constraint

γµψµ=0.

It is clear that the algebra generated by the transformations in (2.15) closes on trans-

lations when these transformations act on local operators which are invariant under the

gauge transformations in (2.3) and (2.5). This invariance being a sensible requirement for

a local operator to qualify as an observable. We thus conclude that the fields of the lin-

earized supergravity theory with action in (2.12) carry a linear representation of the N = 1

supersymmetry algebra in four dimensions.

Let us now focus on the plane wave solutions to the equations of motion derived from

S(RS) in (2.4) with ψµ such that γµψµ = 0. We shall close this section by showing that

such solutions involve only helicity ±3/2 quanta upon canonical quantization.

By setting to zero the change of S(RS) under the variation

δψµ =

(
δνµ −

1

4
γµγ

ν

)
δσν ,

– 6 –
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where δσν is an arbitrary infinitesimal — i.e., not constrained — spinor-vector field, one

obtains the equation of motion to be satisfied by the ψµ of our linearized unimodular

supergravity theory. This equation reads(
δµν −

1

4
γµγν

)
γνρσ∂ρψσ = 0.

Since γµψµ = 0, the previous equation of motion is equivalent to

∂/ψµ =
1

2
γµ
(
∂ρψρ

)
. (2.16)

We shall use below the fact that the previous equation implies the following one

∂/
(
∂µψµ

)
= 0. (2.17)

A general Majorana plane-wave solution to the previous equation has following form

in terms of its positive and negative frequency parts:

ψµ(x) =

∫
d3~k

(2π)32E(~k)

[
ψ(+)
µ (~k) eikx + ψ(−)

µ (~k) e−ikx
]

(2.18)

with E(~k) = ~k2, kx = E(~k)x0 − ~k · ~x, ψ
(+)
µ = C[ψ

(−)
µ ]> and γµψ

(±)
µ = 0.

By substituting (2.18) in (2.16), one gets

k/ψ(±)
µ (~k) =

1

2
γµ
(
kρψ(±)

ρ (~k)
)
, (2.19)

where kρ = (E(~k), ~k). Obviously, (2.17) leads to

k/
(
kρψ(±)

ρ (~k)
)

= 0. (2.20)

Now, multiplying both sides of (2.19) by k/, first, and then taking into account that

k2 = 0, that γµψ
(±)
µ = 0 and that (2.20) holds, one reaches the conclusion that

kµψ(±)
µ (~k) = 0.

Putting it all together, we conclude that the ψ±µ (~k)’s of our plane-wave function

in (2.18) have to satisfy the following equations

k/ψ(±)
µ (~k) = 0, kµψ(±)

µ (~k) = 0 and γµψ(±)
µ (~k) = 0.

It is clear that the solution to the previous set of equations contains longitudinal

modes of the type kµφ
±(~k), φ±(~k) being spinors that satisfy k/φ±(~k) = 0. And yet, this

longitudinal modes can be gauged away while preserving the constraint γµψµ = 0, for

k/φ±(~k) = 0. Finally, it is a well-established fact — see, eg, [35] — that once these

longitudinal modes are disposed of, we are left only with modes which, upon quantization,

give rise to operators whose helicity is either +3/2 or −3/2.

To close this section we shall compute the supersymmetry current that the Noether’s

theorem associates to the supersymmetry transformations in (2.8). Let replace the rigid

– 7 –
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parameter ε in (2.8) with an x-dependent infinitesinal Majorana spinor ε(x) and define the

following transformations

δLε(x)hµν =− i
2
ε(x)(γµψν+γνψµ),

δLε(x)ψµ =−1

4
∂ρhσµ γρσε(x)+

i

6
γµ(S−iγ5P )ε(x)+

i

2
γ5

(
Aµ−

1

3
γµγ

νAν

)
ε(x)+∂µθ[ε(y)],

δLε(x)S=−1

2
ε(x)γρσ∂ρψσ,

δLε(x)P =
i

2
ε(x)γ5γ

ρσ∂ρψσ,

δLε(x)Aµ =
3

4
ε(x)γ5

(
ηµρ−

1

3
γµγρ

)
γρσλ∂σψλ, (2.21)

θ[ε(y)](x) =−
∫
d4yD(x−y)

×
[
−1

4
γµ∂ρhσµ(y)γρσε(y)+

2i

3
(S(y)−iγ5P (y))ε(y)+

i

6
γ5γ

µAµ(y)ε(y)

]
,

∂/xD(x−y) = δ(x−y)

∂/xθ[ε(y)](x) =
1

4
γµ∂ρhσµ γρσε(x)− 2i

3
(S−iγ5P )ε(x)− i

6
γ5γ

µAµε(x) (2.22)

Now, since SLUG is invariant under the rigid supersymmetry transformations in (2.8),

one concludes that

δLε(x)S
(LUSG) =

∫
d4x ∂µε(x) Jµ(x) = −

∫
d4x ε(x)∂µJ

µ(x). (2.23)

Taking into account (2.2), (2.4), (2.11) and (2.21), one shows that

δLε(x)S
(LUSG) = δLε(x)S

(LUG) + δLε(x)S
(RS) + δLε(x)S

(Aux) =

∫
d4x ∂µε(x)

[
i

4
∂ρhσλγρσγ

λµδψδ

]
.

(2.24)

By comparing (2.23) and (2.24), one concludes that the supersymmetry current, Jµ, asso-

ciated to supersymmetry transformations in (2.8) reads

Jµ =
i

4
∂ρhσλγρσγ

λµδψδ (2.25)

That this supersymmetry current is conserved when hµν and ψµ satisfy the equation of

motion derived from S(LUSG) is a consequence of the fact that the variations in (2.21)

preserve the unimodularity constraints hµµ = 0 and γµψµ = 0 and, hence,

δLε(x)S
(LUSG) = 0, (2.26)

if hµν and ψµ are solutions the equation of motion. Recall that ε(x) in (2.23) is arbitrary

Majorana spinor.

Notice that Jµ in (2.25) is the very supersymmetry current that one obtains by ap-

plying, first, the technique above to the ordinary linearized supergravity theory and, then,

– 8 –
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imposing on the fields the gauge conditions hµµ = 0 and γµψµ = 0. Recall that, with our

conventions, the Fierz-Pauli action, SFP reads

S(LUG) = −1

4

∫
d4x

[
1

2
hµν∂2hµν + ∂µh

µλ∂νh
ν
λ + h∂µ∂νh

µν − 1

2
h∂2h

]
, (2.27)

where h = hµµ.

Finally, the current Jµ in (2.25) plays a mayor role in the construction of the interacting

unimodular supergravity theory by means of the Noether method [36] as discussed in the

next section.

3 Off-shell unimodular N = 1, d = 4 supergravity

In this section we shall introduce the unimodular N = 1, d = 4 supergravity in its minimal

off-shell formulation. But, first, let us settle the notation.

ηab will denote the Minkowski metric with mostly minus signature. gµν will stand for

the metric of the semi-Riemannian 4d spin manifold. eaµ denotes a vierbein for the metric

gµν and eµa the inverse of the former. ω ab
µ will stand for the spin connection and Rabµν [ω]

the curvature of the latter:

Rabµν [ω] = ∂µω
ab
ν − ∂νω ab

µ + ω ac
µ ω b

νc − ω ac
ν ω b

µc

The numerical Dirac matrices will be denoted by γa and they satisfy

{γa, γa} = 2ηab.

The matrix γµ is defined by the equation γµ = γaeµa . ψµ will be the symbol representing

a Majorana spin-3/2 field on the manifold. ψµ = ψ†µγ0 wil denote the Dirac conjugate of

ψµ. Dµ[ωabρ ] will act on ψν as follows

Dµ[ωabρ ]ψν = ∂µψν +
1

4
ω ab
µ γabψν ,

where γab = 1
2 [γa, γb]. The following symbol will be much used

γµ1µ2µ3 =
1

3!

∑
π

(−1)σπ γµπ(1)γµπ(2)γµπ(3) .

π(1)π(2)π(3) denotes a permutation of 123 with signature σπ.

In view of the results presented in the previous section it is quite natural to postulate

that the action of the theory at hand should be

S(USG) =− 1

2κ2

∫
d4xeµae

ν
bR

ab
µν [ω(ecρ,ψρ)]−

i

2

∫
d4xψµγ

µνρDν [ω(eaρ,ψρ)]ψρ−
1

3

∫
d4x
[
S2+P 2+AaAa

]
.

(3.1)

In the previous equation the vierbein, eaµ, and the field ψµ are constrained by the following

unimodularity conditions:

e ≡ det ea
µ = 1, γµψµ = 0. (3.2)
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The constraint on the determinant of eaµ is what defines [37] the unimodular gravity theory

in the Palatini formalism. The invariance of the unimodularity — i.e., e = 1 — of eaµ under

the supergravity transformations is guaranteed by the constraint on ψµ, as we shall see

below. S, P and Aµ are the auxiliary fields needed to set up the off-shell formalism. S is a

real scalar, whereas P and Aµ are a real pseudoscalar and real pseudovector, respectively.

In the action in (3.1), ω(eaρ, ψρ) denotes the following spin connection with torsion:

ω ab
µ (ecσ, ψσ) = ω ab

µ (ecσ) +K ab
µ (ecσ, ψσ),

K ab
µ (ecσ, ψσ) = i

κ2

4

(
ψµγ

bψa − ψaγµψb + ψ
b
γaψµ

)
,

(3.3)

where ω ab
µ (ecσ) is the Levi-Civita spin connection for the vierbein eaµ. The reader may

notice that S(USG) in (3.1) is the standard action [35] of N = 1, d = 4 supergravity when

eaµ and ψµ satisfy the constraints in (3.2).

To define the supergravity transformations that will leave invariant S(USG) in (3.1), we

shall proceed as follows. First, we shall recall the value of the supergravity transformations

of standard N = 1, d = 4 supergravity:

δ̃ε̃ẽ
a
µ = −iκ

2
ε̃γaψ̃µ, γ̃µ ≡ γaẽaµ

δ̃ε̃ψ̃µ =
1

κ
Dµ[ω(ẽaσ, ψ̃σ)]ε̃+

i

6
γ̃µ(S − iγ5P )ε̃+

i

2
γ5

(
δνµ −

1

3
γ̃µγ̃

ν

)
ε̃Aν ,

δ̃ε̃S = −1

4
ε̃γ̃µR̃µ,

δ̃ε̃P =
i

4
ε̃γ5γ̃µR̃µ

δ̃ε̃A
a =

3

4
ε̃γ5

(
ẽaν −

1

3
γaγ̃ν

)
R̃ν ,

(3.4)

where ẽaµ, ψ̃µ are, respectively, the vierbein and gravitino fields of standard supergravity,

and, therefore, they are not subjected to the constrains in (3.2), and S, P and Aa are the

auxiliary fields. ε̃ is the standard supergravity transformation parameter. Rµ is given by

the formulae

R̃µ = γ̃µνρD̃νψ̃ρ,

D̃µψ̃ρ = Dµ[ωabν (ẽcσ, ψ̃σ)]ψ̃ρ − i
κ

6
γ̃ρ(S − iγ5P )ψ̃µ − i

κ

2
γ5

(
δλρ −

1

3
γ̃ργ̃

λ

)
ψ̃µAλ,

Dµ[ωabν (ẽcσ, ψ̃σ)] = ∂µ +
1

4
ω(ẽcσ, ψ̃σ) ab

µ γab.

ωabν (ẽcσ, ψ̃σ) is the spin connection with torsion of standard N = 1, d = 4 supergravity. This

spin connection yields the connection in (3.3), when ẽaµ = eaµ and ψ̃µ = ψµ:

ωabν (ecσ, ψσ) = ωabν (ẽcσ, ψ̃σ)|[ẽaµ=eaµ,ψ̃µ=ψµ].

The transformations in (3.4) were introduced by the authors of ref. [26], but the reader

should be warned that our conventions are not theirs.
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Taking into account the way the action S(USG) in (3.1) was obtained, it is quite natural

to define the supergravity transformations of the fields in it by setting ẽaµ = eaµ and ψ̃µ = ψµ
in the transformations in (3.4). However this is not enough to obtain a set of meaningful

transformations, for it is plain that they will not preserve the constraint γµψµ = 0, if ε̃ is

arbitrary. We are thus lead to restrict the set of allowed values of ε̃ to those belonging to

the set of solutions of the equation:

δε̃
(
γµψµ

)
= γaδε̃e

µ
aψµ + γµδε̃ψµ = 0, (3.5)

where δε̃e
µ
a and δε̃ψµ are defined as follows

δε̃e
µ
a =

[
δ̃ε̃ẽ

a
µ

]
[ẽaµ=eaµ,ψ̃µ=ψµ]

, δε̃ψ =
[
δ̃ε̃ψ̃µ

]
[ẽaµ=eaµ,ψ̃µ=ψµ]

.

The symbols on the right hand sides of the previous equations indicate that ẽaµ = eaµ and

ψ̃µ = ψµ are imposed on the right hand sides of the corresponding transformations in (3.4).

By using the definitions in (3.4), one easily shows that (3.5) is equivalent to

γµDµ[ω(eaσ, ψσ)]ε̃+ i
κ2

2
(ε̃γbψa)γ

aψb + i
2κ

3
(S − iγ5P )ε̃+ i

κ

6
γ5γ

ν ε̃Aν = 0. (3.6)

From now on we shall denote by ε(eaµ, ψ, S, P,Aµ) — or, just ε, for short — any solution

to the equation in (3.6). We shall take the solution to (3.6) to be given by the formal

series expansion in κ that solves the equation upon setting eaµ = δaµ +
∑

n>1 κ
nC

(n) a
µ — the

C
(n) a
µ ’s are constrained by det eaµ = 1. Since this formal series expansion can be worked

out by sequentially solving an infinite set of inhomogeneous Dirac equations in flat space-

time, it is plain that (3.6) imposes on the fields eaµ and ψµ no constraints other than the

appropriate regularity and boundary conditions for the solutions to those Dirac equations

to be smooth enough. It is in this sense that (3.6) holds whatever the value of eaµ, ψµ, S, P

and Aa and, in particular, for fields that differ infinitesimally. To be more concrete, let us

work out the first order in κ solution to (3.6). Actually, the first order in κ contribution

to ε, gives rise precisely to supersymmetry transformations (2.8), as we had anticipated in

the previous section. Indeed, if we expand the metric around the Minkowski metric — i.e.,

gµν = ηµν + κhµν + o(κ2), the spin connection ωabµ (ecσ, ψσ) inherits the following expansion

in κ:

ωabµ (ecσ, ψσ) = −κ
2

(∂ahbµ − ∂bhaµ) + o(κ2). (3.7)

If we substitute now this expression and ε = ε(0) + κε(1) + o(κ2) in (3.6), we obtain

∂/ε(0) = 0

∂/ε(1) =
1

4
γµ∂ρhσµ γρσε

(0) − 2i

3
(S − iγ5P )ε(0) − i

6
γ5γ

µAµε
(0).

(3.8)

Hence, ε(1) can be taken to be given by

ε(1) = ε(1)+

∫
d4yD(x−y)

[
1

4
γµ∂ρhσµ(y)γρσε

(0)− 2i

3
(S(y)−iγ5P (y))ε(0)− i

6
γ5γ

µAµ(y)ε(0)

]
,

∂/xD(x−y) = δ(x−y). (3.9)
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where ∂/ε(1) = 0 By choosing a rigid ε(0) and ε(1) = 0, taking into account (3.7), (3.8)

and (3.9), and, using, finally, (3.4), one easily recovers the supersymmetry transformations

in (2.8). The full unimodular formalism we are developing is thus naturally, in harmony

with the linear unimodular supergravity theory we constructed in the previous section.

Note that, indeed, the second equation in (3.8) posses no contraints on the fields, as we

said above, for (3.8) always exist provided appropriate regularity and boundary conditions

are met.

Notice that the expansion in κ we have introduced in the previous paragraph is totally

in harmony with the fact that one may rightly consider unimodular supergravity as a theory

of gravitons and gravitinos propagating in Minkowski spacetime. Indeed, as we shall see

in the next section, the maximally supersymmetric solution to the equations of motion of

the unimodular supergravity theory is Minkowski spacetime.

Let us briefly discuss the construction of the full unimodular supergravity theory by

using the Noether method — see reference [36], for the ordinary case. We shall consider

the expansion of the unimodular supergravity action up to first order in κ. Taking into

account (2.23) and (2.21), we define the following action

S1 = S(LUSG) − κ

2

∫
d4x ψ̄µJ

µ + o(κ2), (3.10)

where Jµ is given in (2.25). Let us stress the fact that the previous action can be obtained

by expanding S(USG) in (3.1) up to first order in κ.

Now, S1 is invariant, up to order κ, under the following local transformations

δε(x)hµν =− i
2
ε(x)(γµψν+γνψµ),

δε(x)ψµ =
1

κ
∂µε(x)− 1

4
∂ρhσµ γρσε(x)+

i

6
γµ(S−iγ5P )ε(x)

+
i

2
γ5

(
Aµ−

1

3
γµγ

νAν

)
ε(x)+∂µθ[ε(y)],

δε(x)S=−1

2
ε(x)γρσ∂ρψσ,

δε(x)P =
i

2
ε(x)γ5γ

ρσ∂ρψσ,

δε(x)Aµ =
3

4
ε(x)γ5

(
ηµρ−

1

3
γµγρ

)
γρσλ∂σψλ,

(3.11)

But we should also demand that the constraint γµψµ = 0, with γaeµa , be preserved by

the transformations in (3.11) up to order κ0 — the transformation for ψµ starts with κ−1.

Clearly, this will constraint the allowed values of ε(x) in the transformations in (3.11).

Using the expansions eµa = δµa − κ
2h

µ
a + o(κ2) and ε(x) = ε(0) + κε(1) + o(κ2), one gets that

γµψµ = 0 is preserved up to order κ0, if

∂/ε(0) = 0 = ∂/ε(1).

Bearing in mind this last result and substituting ε(x) = ε(0) + κε(1) + o(κ2) in (3.11), one

obtains the same transformations rules that are obtained from (3.4) by expanding in powers

of κ, once ε̃ is constrained by (3.6), i.e., once (3.8) and (3.9) are imposed.
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It is high time that we postulate what the unimodular supergravity transformations,

δεe
a
µ, δεψµ, δεS, δεP and δεAa, are. This we do now:

δεe
a
µ = [δ̃ε̃ẽ

a
µ][ε̃=ε,ẽaµ=eaµ,ψ̃µ=ψµ] =−iκ

2
εγaψµ, γµ≡ γaeaµ

δεψµ = [δ̃ε̃ψ̃µ][ε̃=ε,ẽaµ=eaµ,ψ̃µ=ψµ] =
1

κ
Dµ[ωabµ (ecσ,ψσ)]ε+

i

6
γµ(S−iγ5P )ε+

i

2
γ5

(
δνµ−

1

3
γµγ

ν

)
εAν ,

δεS= [δ̃ε̃S][ε̃=ε,ẽaµ=eaµ,ψ̃µ=ψµ] =−1

4
εγµRµ,

δεP = [δ̃ε̃P ][ε̃=ε,ẽaµ=eaµ,ψ̃µ=ψµ] =
i

4
εγ5γµRµ

δεA
a = [δ̃ε̃A

a][ε̃=ε,ẽaµ=eaµ,ψ̃µ=ψµ] =
3

4
εγ5

(
ẽaν−

1

3
γaγν

)
Rν , (3.12)

where

Rµ = γµνρDνψρ,

Dµψρ = Dµ[ωabν (ecσ, ψσ)]ψρ − i
κ

6
γρ(S − iγ5P )ψµ − i

κ

2
γ5

(
δλρ −

1

3
γργ

λ

)
ψµAλ,

Dµ[ωabν (ecσ, ψσ)] = ∂µ +
1

4
ω(ecσ, ψσ) ab

µ γab.

ωabν (ecσ, ψσ) is the spin connection with torsion in (3.3). It is most important to recall that

ε is a solution to (3.6), so that δε
(
γµψµ

)
= 0. The symbol

[δ̃ε̃(field)][ε̃=ε,ẽaµ=eaµ,ψ̃µ=ψµ], field = ẽaµ, ψ̃µ, S, P, Aa

indicates that the substitutions ε̃→ ε, ẽaµ → eaµ and ψ̃µ → ψµ are applied to the polynomial

in the fields and their derivatives that are equal to the symbol δ̃ε̃(field) according to the

definition in (3.4).

Taking into account that

δεe = [δ̃ε̃ẽ][ε̃=ε,ẽaµ=eaµ,ψ̃µ=ψµ] = 0, where e = det eaµ, ẽ = det ẽaµ,

δε
(
γµψµ

)
= [δ̃ε̃

(
γ̃µψ̃µ

)
][ε̃=ε,ẽaµ=eaµ,ψ̃µ=ψµ] = 0,

and the definitions in (3.12), one concludes that

δε S
(USG) = 0, (3.13)

where S(USG) is the off-shell unimodular supergravity action in (3.1). Indeed, if we consider

the spin connection, ωabµ , in (3.1) to be an independent field, its equation of motion is solved

by ω ab
µ (ecσ, ψσ) in (3.3), so that one may apply the “1.5” formalism — see reference [35]

— to the case at hand. Thus, one obtains

δε S
(USG) = δSEH + δSRS + δSAux = 0,
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for

δSEH = − 1

2κ2

∫
d4x (δεe

µ
a)eνbR

ab
µν [ω(ecα, ψα)] = − i

2κ

∫
d4x (εγµψa)e

ν
bR

ab
µν [ω(ecα, ψα)],

δSRS =
1

2

∫
d4x εµνρσ[(δεψµγσγ5Dν [ω(ecα, ψα)]ψρ + ψµγa(δεe

a
σ)γ5Dν [ω(ecα, ψα)]ψρ

+ ψµγσγ5Dν [ω(ecα, ψα)](δεψρ)] =

=
i

2κ

∫
d4x (εγµψa)e

ν
bR

ab
µν [ω(ecα, ψα)]− δ SAux

δ SAux = −2

3

∫
d4x
[
SδεS + PδεP +AaδεAa

]
.

Notice that in the previous equations we have used that

γaψµe
aµ = 0.

Otherwise (3.13) would not hold.

Let us move on and compute the commutator of two unimodular supergravity trans-

formations as defined in (3.12). Let ε1 and ε2 be any two solutions to (3.6), then, the

following equations hold

δε1
(
γµψµ

)
= 0, δε2

(
γµψµ

)
= 0, δε1δε2

(
γµψµ

)
= 0. (3.14)

Let us point out that δε1δε2
(
γµψµ

)
= 0 comes from the fact that, in the formal series

expansion in κ we are using to solve (3.6),

δε2
(
γµψµ

)
= F [ε2(eaµ, ψµ, S, P,Aa), e

a
µ, ψµ, S, P,Aa] = 0

holds for any value of eaµ, ψ, S, P,Aa with the appropriate regularity and boundary be-

haviour — the paragraph right below (3.6) is most relevant in this regard. We have

introduced the function F to remark that δε2
(
γµψµ

)
depends on the fields both explicitly

and implicitly, the latter dependence through ε2.

Using (3.14) and the definitions in (3.4) and (3.12), one readily comes to the conclusion

that

δε1δε2
(
ufield

)
= δ∆12

(
ufield

)
+ [δ̃ε̃1 δ̃ε̃2

(
field

)
][ε̃1=ε1,ε̃2=ε2,ẽaµ=eaµ,ψ̃µ=ψµ]

∆12 = δε1ε2, ufield = eaµ, ψµ, S, P, Aa; field = ẽaµ, ψ̃µ, S, P, Aa.
(3.15)

Recall that ε1 and ε2 depend on the unimodular fields so that ∆12 = δε1ε2 is not zero.

By employing the results in (3.15), one shows that

[δε1 , δε2 ](ufield) = δ
(Diff)
ξ (ufield) + δ

(Lorentz)
Λ (ufield) + δΣ(ufield), (3.16)

where δ
(Diff)
ξ is a diffeomorphism with parameters ξa, δ

(Lorentz)
Λ denotes a Lorentz transfor-

mation with parameters Λa
b and δΣ is given by the supergravity transformations in (3.12)

with parameter Σ instead of ε. The value of each of these parameters is given next:

ξµ =
i

2
ε1γ

µε2,

Λab = ξρω a
ρ b +

κ

6
ε2γ

a
b(S − iγ5P )ε1 −

κ

12
ε2{γab, γc}γ5ε1Ac,

Σ = δε1ε2 − δε2ε1 − κξρψρ.

(3.17)
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Since we want the commutator of two unimodular supergravity transformations

in (3.12) to yield a unimodular supergravity transformation modulo a transverse diffeo-

morphism — not a general diffeomorphism — and a Lorentz transformation, the equation

in (3.16) cannot be the end of the story. It remains to be shown that ∂µξ
µ = 0 and that

δΣ(γµψµ) = 0. We do so next.

Let us show first that ∂µξ
µ = 0, where ξµ is given in (3.17). Let Γρµν(eaσ, ψσ) be given by

Γρµν(eaσ, ψσ) = Γρµν(g)−K ρ
µν (eaσ, ψσ), (3.18)

where Γρµν(g) detones the Christoffel symbols for the unimodular metric gµν = eaµeaν and

K ρ
µν (eaσ, ψσ) is defined by

K ρ
µν (eaσ, ψσ) = i

κ2

4

(
ψµγ

ρψν − ψνγµψρ + ψ
ρ
γνψµ

)
.

Then, taking advantage of the following results

γµDµ[ω(eaσ, ψσ)]ε1 = −iκ
2

2
(ε1γ

bψa)γ
aψb − i

2κ

3
(S − iγ5P )ε1 − i

κ

6
γ5γ

νε1Aν ,

Dµ[ω(eaσ, ψσ)]ε2γ
µ = −iκ

2

2
(ε2γ

bψa)ψbγ
a + i

2κ

3
ε2(S − iγ5P ) + i

κ

6
ε2γ5γ

νAν ,

∂µγ
ν +

1

4
ωµab(e

a
σ, ψσ)[γab, γν ] + Γνµρ(e

a
σ, ψσ)γρ = 0,

one shows that

2∂µξ
µ = iε1γ

ρε2 Γµµρ(e
a
σ, ψσ). (3.19)

Now, Γµµρ(g) = 0, for gµν is unimodular, and Kµ
µρ(eaσ, ψσ) = 0, since ψµ is Majorana and

γµψµ = 0. Hence, putting together (3.18) and (3.19), one reaches the conclusion that

∂µξ
µ = 0; as required.

Let us show next that δΣ(γµψµ) = 0, where Σ is given in (3.17), i.e., Σ is an admis-

sible parameter for the unimodular supergravity transformation in (3.12). Now, since the

equations in (3.14) hold, we have

[δε1 , δε2 ](γµψµ) = γa([δε2 , δε1 ]eµa)ψµ + γµ([δε1 , δε2 ]ψµ) = 0. (3.20)

Using (3.16), one can readily deduce that

[δε1 , δε2 ]eµa = −eµb e
ν
a

(
ξρ∂ρe

b
ν + ∂νξ

ρebρ + Λbce
c
ν − i

κ

2
Σγbψν

)
. (3.21)

We also have — see (3.16) — that

[δε1 , δε2 ]ψµ = ξρ∂ρψµ + ∂µξ
ρψρ +

1

4
Λabγ

abψµ +
1

κ
Dµ[ωab(ecµ, ψµ)]Σ

+
i

6
γµ(S − iγ5P )Σ +

i

2
γ5

(
δνµ −

1

3
γµγ

ν

)
ΣAν .

(3.22)

By substituting first (3.21) and (3.22) in (3.20) and, then, performing a lengthy algebra,

one obtains — due to the occurrence of a surprising bunch of cancellations — that Σ

satisfies the following equation

γµDµ[ω(eaσ, ψσ)]Σ = −iκ
2

2
(Σγbψa)γ

aψb − i
2κ

3
(S − iγ5P )Σ− iκ

6
γ5γ

νΣAν .
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This is what was required for Σ to be an admissible unimodular supergravity transformation

parameter.

Summarizing, we have shown that the unimodular supergravity transformations

in (3.12) form a closed algebra modulo transverse diffeomorphims and Lorentz transfor-

mations.

To close this section we shall introduce the on-shell counterpart of our off-shell theory.

This is achieved by imposing that the auxiliary fields S, P and Aa satisfy the corresponding

equations of motion derived from the action in (3.1). These equations of motion read

S = 0, P = 0 and Aµ = 0. (3.23)

Hence, the action of our on-shell theory is

S(Onshell) = − 1

2κ2

∫
d4x eµae

ν
bR

ab
µν [ω(ecρ, ψρ)]−

i

2

∫
d4xψµγ

µνρDν [ω(eaρ, ψρ)]ψρ.

By substituting (3.23) in the off-shell transformations of eaµ and ψµ in (3.12), one ob-

tains the on-shell unimodular supergravity transformations which leave S(Onshell) invariant:

δ(Onshell)
ε eaµ = −iκ

2
εγaψµ, γµ ≡ γaeaµ

δ(Onshell)
ε ψµ =

1

κ
Dµ[ωabµ (ecσ, ψσ)]ε,

(3.24)

where Dµ[ωabν (ecσ, ψσ)] = ∂µ + 1
4ω(ecσ, ψσ) ab

µ γab. Of course, the infinitesimal parameter

ε = ε(eaµ, ψµ) in the on-shell transformations in (3.24) now satisfies the equation

γµDµ[ω(eaσ, ψσ)]ε+ i
κ2

2
(εγbψa)γ

aψb = 0, (3.25)

so that the unimodular constraints det eaµ = 1 and γµψµ = 0 are preserved under the

transformations in (3.24). Of course, (3.25) can be obtained by substituting (3.23) in (3.6).

Finally, it can be shown, in analogy with the off-shell case, that the parameters

ξ(Onshell)
µ =

i

2
ε1γµε2,

Σ(Onshell) = δ(Onshell)
ε1 ε2 − δ(Onshell)

ε2 ε1 − κξρψρ,
(3.26)

defining, respectively, the diffeomorphims and supergravity transformations that occur

when computing the commutator of two on-shell unimodular supergravity transformations

with parameters ε1 and ε2 are, indeed, transverse — ∂µξ
(Onshell)
µ = 0 — and satisfy

γµDµ[ω(eaσ, ψσ)]Σ(Onshell) + i
κ2

2
(Σ(Onshell)γbψa)γ

aψb = 0,

respectively; as it must be.
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4 Unimodular supergravity and its classical solutions

A classical solution of a supergravity theory is a bosonic field configuration which satisfies

the equations of motion of the theory once the auxiliary fields have been removed and the

fermionic fields have been set to zero. Not every classical solution of a supergravity theory

is invariant under the supergravity transformations defining the latter. Those classical

solutions that preserve some of the aforementioned supergravity transformations are called

supersymetric or BPS solutions. In the case of the unimodular supergravity theory whose

action is in (3.1), setting ψµ = 0 and S = 0, P = 0 and Aµ = 0 leads to the conclusion

that the classical solutions of the theory at hand are those unimodular metrics which are

solutions to the unimodular gravity equations of motion, which read:

Rµν −
1

4
Rgµν = 0. (4.1)

Rµν and R denote the Ricci tensor and the scalar curvature for the unimodular metric

gµν = eaµeaν , respectively. It is plain that any classical solution of the standard N = 1, d = 4

Poincaré supergravity equation of motion is a solution to the equations of motion of the

unimodular supergravity theory put forward in this paper, but not the other way around.

Indeed, the equations in (4.1) admit de Sitter and anti-de Sitter spacetimes as solutions;

these spacetimes are not classical solutions of standard N = 1, d = 4 Poincaré supergravity.

So, standardN = 1, d = 4 Poincaré supergravity is not equivalent to the unimodular gravity

theory whose action is given (3.1) in the sense that their spaces of classical solutions are

not the same. However, the solutions to (4.1) with a non vanishing Cosmological Constant

are never invariant under the unimodular transformations (3.12). Indeed, the supergravity

invariance condition

0 = δεψµ =
1

κ
Dµε, Dµ = ∂µ +

1

4
ωabρ (ecµ)γab,

where ωabρ (ecµ) is the Levi-Civita spin connection, implies that ε has to be a killing spinor.

But it is known [38] that if such a spinor would exist then R = 0, which would contradict

the hypothesis of a non vanishing Cosmological Constant. Notice that when ψµ=0, S=0,

P =0 and Aa=0, any killing spinor satisfies (3.6) — which boils down to γµDµ[ωabρ (ecµ)]ε=0

— and, therefore, it is an admissible unimodular supergravity transformation parameter.

We stress that, unlike in the standard N = 1, d = 4 Poincaré supergravity case, both de

Sitter and anti-de Sitter are vacua of the unimodular N = 1, d = 4 theory; they break —

spontaneously — unimodular supergravity invariance, though.

It is well known [39] that the maximally supersymmetric vacuum of standard N = 1,

d = 4 is Minkowski spacetime. This spacetime is also the unique maximally supersym-

metric vacumm of unimodular N = 1, d = 4 Poincaré supergravity, for any killing spinor

satifies (3.6) when ψµ = 0, and, of course, S = 0, P = 0, Aa = 0. Hence, it is legitimate

to view unimodular N = 1, d = 4 supergravity as a theory of gravitons and gravitinos

propagating in Minkowski spacetime, in the perturbative κ-expansion.

Finally, it is plain that if we look for classical solutions of our N = 1, d = 4 unimodular

supergravity which partially break unimodular supergravity, we shall only find the standard

gravitational pp-waves: one has to solve the same killing spinor equation [39] as in the

ordinary N = 1, d = 4 Poincaré supergravity.

– 17 –
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5 Conclusions and discussion

The main conclusion of this paper is that a unimodular N = 1, d = 4 Poincaré super-

gravity can be formulated off-shell. This unimodular gravity theory is the counterpart of

the standard N = 1, d = 4 Poincaré supergravity. Analogously to the case of unimodular

gravity, the infinitesimal parameters defining the unimodular supergravity transformations

are constrained by a differential equation which make those parameters field dependent.

Indeed, along with the gravitational unimodular contraint det eaµ = 1, one has to impose

the constraint γµψµ = 0, if e = 1 is to be preserved by the supergravity transformations.

That the constraint γµψµ = 0 be preserved under supegravity transformations leads to the

differential equation we have just mentioned. We have shown that despite that field depen-

dence the commutator of two unimodular supergravity transformations closes on transverse

diffeomorphisms, Lorentz transformations and unimodular supergravity transformations.

We have shown that the unimodular N = 1, d = 4 Poincaré supergravity theory presented

here has de Sitter and anti-de Sitter spacetimes as classical solutions that break — sponta-

neously — supergravity. This phenomenon makes unimodular N = 1, d = 4 supergravity

different from its standard counterpart N = 1, d = 4 Poincaré supergravity, for all classical

solutions to the latter are Ricci flat.1 And yet, the only maximally supersymmetric vac-

uum solution of our unimodular supergravity theory is Minkowski spacetime. Around this

vacuum our theory is a theory of interacting gravitons and gravitinos as we have shown

by studying the linearized unimodular supergravity theory which has a (rigid) N = 1

supersymmetry.

In view of the discussion above one may ask whether a unimodular counterpart of AdS

supergravity can be formalated by generalizing the framework presented here along the

lines of reference [40] — see also [41–43]. Thus, if successful, we will have a unimodular

theory whose maximally supersymmetric vacuum will be anti-de Sitter spacetime (AdS).

One can answer that question in the affirmative by adding to the action in (3.1) the term

SL =
2

κL

∫
d4x

[
S +

κ2

4
ψ̄µψµ

]
.

Indeed, it can be shown [44] that SL is invariant under the unimodular supergravity trans-

formations in (3.12), so that the resulting theory has AdS spacetime with radius L as a max-

imally supersymmetric vacuum. This unimodular supergravity theory also has Minkowski

spacetime and de Sitter spacetime as classical vacua, although they break supergravity

spontaneously. Further details can be found in reference [44].

A few years ago, 38 years after the formulation of N = 1, d = 4 AdS supergravity

in [40], a pure and complete N = 1, d = 4 supergravity theory having dS spacetime as

classical vacuum has been constructed in references [45] and [46] — see also [47] — within

the standard — i.e., no unimodularity conditions imposed — supergravity formalism by

using the superconformal approach — see chapter 16 of [25] — to N = 1, d = 4 supergravity.

Whether there is a relationship of this dS supergravity in [45] and [46] with the unimodular

1Notice that the inclusion of a Cosmological Constant term in the action of standard — i.e., non-

unimodular — supergravity will make Minkowski spacetime to be a vacuum of the theory no longer.
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supergravity theory presented in this paper deserves to be studied. However, this study lies

outside the scope of this paper, for it seems to demand that the unimodular counterpart of

the superconformal approach to N = 1, d = 4 supergravity be formulated. Let us point out

that in the unimodular supergravity construction of reference [31] supergravity turns out

to be coupled to a goldstino much in analogy with the nonunimodular dS supergravities

we have just mentioned.

Finally, we have not considered in this paper the supersymmetrization of unimodu-

lar gravity as formulated in reference [4]. It will be much interesting to formulate the

supergravity counterpart of the theory put forward in [4]. Indeed, the latter theory con-

tains a gauge three-form which is involved in the dynamical generation of the Cosmological

Constant as does the so-called variant three-form off-shell supergravity — see [48–50] and

references therein. This is an intriguing coincidence that demands to be analysed in depth,

for variant three-form supergravity is relevant in the effective theory description of com-

pactified string theory.
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