
UNIVERSIDAD AUTÓNOMA DE MADRID
ESCUELA POLITÉCNICA SUPERIOR

Degree in Computer science

DEGREE WORK

scikit-fda: Interactive Visualization and Analysis
Tools for Functional Data

Author: Álvaro Sánchez Romero
Advisor: Alberto Suárez González

May 2021

All rights reserved.
No reproduction in any form of this book, in whole or in part
(except for brief quotation in critical articles or reviews),
may be made without written authorization from the publisher.

© 3 de Noviembre de 2017 by UNIVERSIDAD AUTÓNOMA DE MADRID
Francisco Tomás y Valiente, no 1
Madrid, 28049
Spain

Álvaro Sánchez Romero
scikit-fda: Interactive Visualization and Analysis Tools for Functional Data

Álvaro Sánchez Romero
C\ Francisco Tomás y Valiente Nº 11

PRINTED IN SPAIN

A mi madre por apoyarme siempre incondicionalmente

Necesitamos enseñar a que la duda no

sea temida, sino bienvenida y debatida.

No hay problema en decir: ’No lo sé’.

Richard Feynman

Prefacio

Este Trabajo de Fin de Grado ha sido creado con el propósito de extender una de las primeras

librerías de datos funcionales en Python, scikit-fda. Esta librería está integrada en el ecosistema SciKit

que incluye paquetes Python para matemáticas, ciencia e ingeniería. En concreto, se han diseñado

e implementado herramientas interactivas para la visualización y análisis de datos funcionales. Los

datos funcionales corresponden a curvas, superfcies, etc. cuyo valor depende de un parámetro con-

tinuo. Para su análisis partimos de una muestra compuesta por un conjunto de funciones, que pueden

ser consideradas como una realización independiente de un proceso estocástico. Debido a estas car-

acterísticas es necesario desarrollar métodos de análisis estadístico y visualización más complejos

que los utilizados en la estadística multivariante.

Durante su desarollo se ha tratado de facilitar al máximo el uso de esta parte de la librería, gracias a

la estandarización, homogenización y reestructuración de la funcionalidad de visualización. Adicional-

mente, se han completado y extendido herramientas de visualización y análisis fundamentales para la

caracterización de los datos funcionales. Por último, se ha dotado de interactividad a los gráfcos, que

hacen posible la exploración dinámica de los datos. Gracias a esta funcionalidad el usuario dispone de

herramientas avanzadas para extraer el máximo de información de los datos.

Como autor del trabajo, espero que este documento les sea entretenido y lúdico, tal y como me

sucedió a mí durante el desarrollo del mismo.

v

Agradecimientos

Quiero dar gracias a todo el grupo de trabajo que conforma este gran proyecto, scikit-fda. A Carlos

Ramos, por su gran ayuda tanto con la librería como con el mundo de los datos funcionales. A mi tutor,

Alberto Suárez, por su constante trabajo y disposición a orientarme al seleccionar el proyecto. A mis

compañeros, Elena Petrunina y Pedro Martín, que me han acompañado virtualmente a lo largo de la

realización del proyecto. También quiero dar gracias al profesorado de la universidad, los cuales me

han ayudado a llegar donde estoy, especialmente a Eloy Anguiano, por su plantilla para la realización

de este documento. Por último, quiero dar las gracias a mi familia por apoyarme siempre que lo he

necesitado.

vii

Resumen

En este trabajo se han desarrollado herramientas interactivas para la visualización y análisis de

datos funcionales en la librería scikit-fda [1]. La librería scikit-fda para el análisis de datos funcionales

está integrada en SciPy [2], un ecosistema de código abierto para matemáticas, ciencia e ingeniería,

desarrollado en Python. El Análisis de Datos Funcionales es la rama de la estadística que estudia

variables aleatorias que dependen de un parametro continuo; es decir, funciones aleatorias como

curvas, superfcies, etc. Este campo por ejemplo podría estudiar el crecimiento de la altura de una

persona durante su juventud (en este caso el continuo sería el tiempo). Para poder obtener información

gráfca de estos datos se han ido desarrollando gráfcas que permitan obtener detalles sobre las curvas,

valores atípicos, parametrización de funciones, entre otros.

Para empezar, se realizará un análisis comparativo de las librerías de visualización y análisis de

datos disponibles. En este estudio se prestará especial atención a las herramientas interactivas que

proporcionan al usuario. Con el fn de establecer el contexto en el que ha sido desarrollado el proyecto,

se proporcionará una somera descripción de la estructura y funcionalidad de la librería scikit-fda. De-

spués se discutirá sobre las principales herramientas de visualización desarrolladas: un detector de

curvas con forma atípica, un método para parametrizar funciones o un gráfco que permite comparar

un conjunto de datos con dos distribuciones. Adicionalmente, también se ha implementado un módulo

que permite interaccionar con todas las gráfcas mediante widgets o con el propio cursor. Para esto

ha sido necesario investigar las mejores y más efcaces soluciones que permitan que la herramienta

funcione en todas las interfaces gráfcas de usuario (GUI).

También el documento explicará las etapas de desarrollo software seguidas para conseguir diseñar

e implementar el software. Se hablará sobre la documentación, tipos de test y mecanismos de trabajo

utilizados. GitHub es la herramienta seleccionada para compartir los progresos y donde está disponible

el código [3].

Mis objetivos como trabajo de fn de grado son los de lograr crear un conjunto de herramientas de

visualización que ayuden a los usuarios, además de crear una interfaz más fácil, estándar y homogénea

para los métodos ya existentes y los nuevos.

Palabras clave
Análisis de Datos Funcionales, visualización, interactividad, Python, Matplotlib, scikit-fda (Paquete

de Python para FDA), medidas de profundidad, software de código abierto

ix

Abstract

In this work interactive tools have been developed for the visualization and analysis of functional

data in the scikit-fda library [1]. The scikit-fda library for the analysis of functional data is integrated in

SciPy [2], an open-source ecosystem for mathematics, science and engineering, developed in Python.

Functional Data Analysis (FDA) is the branch of statistics that studies random variables that depend on

a continuous parameter; or what is the same, random functions like curves or surfaces. FDA could for

example study the growth on the height of a person during his youth (in this case being the continuum

time). To be able to obtain graphical information from this data, new graphics had being developed to

obtain details of curves, atypical values, parameterization of functions and others.

To start, a comparative analysis of the visualization and data analysis libraries available will be

done. During this study attention will be paid to the interactive tools that are given to the user. With

the objective of establishing the context in which the project has been developed, a brief description of

the structure and functionality of scikit-fda will be given. After that, there will be a discussion about the

main visualization tools developed: a shape outlier detector, a method to parameterize functions and a

graphic that allows to compare a sample of data with two distributions. Besides that, I have also worked

in a module that allows you to interact with all the different graphics thanks to widgets or with your own

mouse. For this it has been necessary to investigate the best solutions and the most effcient ones that

allowed the plots to work in every graphical user interface (GUI).

Furthermore, this document will talk about the software steps that had to be followed to manage to

design and implement the project. It will comment on the documentation, types of tests used and work

mechanisms followed. GitHub is the tool used to share our progress and where the code is currently

available for everybody [3].

My objectives with this degree work are creating a set of visualization methods that help the users,

besides creating an easier, more standard and homogeneous interface for the already existing methods

and the new ones.

Keywords

Functional Data Analysis, visualization, interactivity, Python, Matplotlib, scikit-fda (Python package

for FDA), depth measures, open-source software

xi

Table of Contents

1 Introduction 1

1.1 Goals and scope . 2

1.2 Document structure . 3

2 State of the art 5

2.1 Visualization software . 5

2.1.1 Plotly . 5

2.1.2 Ggplot2 . 6

2.1.3 Matplotlib . 7

2.1.4 Seaborn . 8

2.2 Functional Data Analysis . 9

2.3 scikit-fda . 10

2.4 Visualization and tools for functional data analysis . 11

2.4.1 Depth measures . 11

2.4.1.1 Integrated Depth . 11

2.4.1.2 Band Depth . 12

2.4.1.3 Modifed Band Depth . 12

2.4.1.4 Modifed Epigraph Index . 12

2.4.2 DD Plot . 13

2.4.3 Parametric Plot . 13

2.4.4 Outliergram . 14

2.4.4.1 Relationship between MBD and MEI . 15

2.4.4.2 Shape outlier detection . 15

3 Software development 17

3.1 Analysis . 17

3.2 Design . 20

3.2.1 BasePlot Class . 21

3.2.2 Outliergram Class . 21

3.2.3 DDPlot Class . 22

3.2.4 ParametricPlot Class . 22

3.2.5 GraphPlot Class . 22

3.2.6 Rest of plotting classes . 23

3.2.7 MultipleDisplay class . 23

xiii

3.3 Implementation . 24

3.4 Testing . 25

3.5 Integration . 26

3.6 Licenses . 26

4 Results 27

4.1 Outliergram . 27

4.2 DD Plot . 28

4.3 Parametric Plot . 31

4.4 Graph Plot with gradient of colors . 33

4.5 Multiple Display . 34

5 Conclusions and future work 37

Bibliography 41

Appendices 43

A Tools used 45

A.1 Wemake-python-styleguide . 45

A.2 Testing . 46

A.3 Documentation . 46

A.4 GitHub . 47

B Usability test 49

C Gantt Chart 51

D Notebooks 53

xiv

Lists

List of fgures

2.1 Grammar of graphics . 7

2.2 Stem plot . 8

2.3 Modules scikit-fda . 10

2.4 Parametric plot example . 14

2.5 Curves with different shape . 16

3.1 Use case diagram . 19

3.2 Class diagram of the visualization module . 20

3.3 Colormap example . 23

4.1 Canadian Weather dataset (temperatures) . 27

4.2 Outliergram of the Canadian Weather dataset . 28

4.3 Representation of Atlantic, Continental and Pacifc temperature functions 29

4.4 DDPlot frst experiment . 29

4.5 DDPlot second experiment . 30

4.6 DDPlot third experiment . 30

4.7 Parameterization of word fda . 31

4.8 Parameterization of derivatives (2) . 31

4.9 Parameterization of gait cycle . 32

4.10 Parameterization of gait cycle . 32

4.11 Visualization of temperature curves with gradient of colors thanks to depths 33

4.12 Visualization of temperature curves with gradient of colors thanks to MEI 33

4.13 Basic Multiple Display . 34

4.14 Multiple Display clicked . 34

4.15 Multiple Display with widgets . 35

4.16 Hovering example . 36

C.1 Gantt Chart 1 . 51

C.2 Gantt Chart 2 . 52

C.3 Gantt Chart 3 . 52

xv

xvi

1
Introduction

Over the years, new felds in statistics had been growing. One of them is Functional Data Analysis

(FDA). This area’s object of study are data consisting of curves, surfaces or any quantity that changes

over a continuum. An example of these types of data is a collection of functions that depend on variables

such as time or space. Even if its beginnings are in the 1940s, core advances were made in recent

time thanks to Ramsay and Silverman [4] and Ferraty and Vieu [5]. These are some of the fundamental

references of this project as they have helped me to understand the most important concepts of FDA.

One of the interesting aspects of this branch of statistics, is the multiple areas it can be applied

to, like fnancial time-series, biomedical signal, climate patterns, and so on. As interest grows, more

frameworks appear related with this topic. Most of these are coded in the programming language, R;

even if we can fnd some in Matlab. In this language we can fnd multiple packages such as fda.usc [6],

fda [7] (which was also developed by Ramsay), fdasrvf [8] and others. Some of these libraries have

a more general objective while others are more specialized in certain functionalities like regression,

classifcation or clustering. Almost all the packages in R related with this matter, are stored in the

repository CRAN, The Comprehensive R Archive Network [9].

A functional dataset can be very simple to represent graphically. For example, a set of curves in

a 2 dimensional space. The representation of surfaces or higher dimensional-quantities poses more

diffculties. For this reason, it is important to have a good visualization module that allows users carry

out a visual exploration that increases their understanding of the data. The objective is to create a

simple and homogeneous interface for the user in which he can visualize easily his plot.

In this project I collaborate on the development of the visualization and interactivity module of a FDA

package in Python, scikit-fda [1]. This package is an open-source software project started in 2018 and

in which many people have contributed [10]. After that, it has been continued by other students and

researchers of the Machine Learning Group at the Department of Computer Science of the Universidad

Autónoma de Madrid (UAM) with the objective of creating one of the frst Python libraries related with

FDA. Some of the reasons for the creation of the package are the increase and high utilization of Python

in the areas of statistics and machine learning during the last years and growth of interest in FDA. This

software is expected to hopefully be useful for many Python users worldwide, which will have multiple

Introduction

functional data tools available for their scientifc projects.

1.1 Goals and scope

This project is focused on the development of visualization and analysis tools, expanding the work done

by other students in this area, like Amanda Hernando [11] that developed new depth measures and

clustering methods. The project goal is also to do a comprehensive redesign of the visualization tools.

These have been grouped in a module and organized in a hierarchical structure. The interface has

been homogenized, standardized and completed including interactive functionality to compare graphics

and get insights of them. To do this I had to study among all the most important visualization packages

to see which one fulflled better the requirements our project was demanding.

The new graphs developed are the Outliergram, which is focused on detecting shape outliers, the

DD-Plot, used to compare a dataset with different distributions and the Parametric Plot, which allows us

to show two functions as coordinates. Moreover, to give more information when representing samples I

added new features to the existing plotting method. These new functions give the library a wider range

of functions to view data and plots.

One problem that the library was facing is the non homogeneity of the visualization methods. It may

result diffcult for the users to understand how to use all of them, so I decided to give them a common

interface to make them all work in the same way. With the same purpose, it was studied the best ways

to standardize the code imitating other scientifc libraries, so the users are more comfortable with our

software. With these changes the project succeeds in the goal of making the library easier for the user,

something that is really important due to the complexity of the library and Functional Data Analysis as

not necessarily the user should be an expert of it.

For a better understanding of the functions, an interactive module was added allowing the user

to combine graphs and compare different representations of the same dataset in different plots. This

provides users a much more comfortable and fexible experience.

One of the priorities of the project was also to develop high quality software, understandable for any

user familiar with libraries in the Python scientifc ecosystem. For this, besides the already mentioned,

I pursued the objective of commenting and typing our code intensively. Online notebooks were created

as examples (available at the website of the project [12]) of new functionality added to the project.

Finally I also took into account how well integrated was the code with different independent platforms

as Jupyter, and how the new interactivity was functioning. Besides, the code is tested for Windows, Mac

and Ubuntu, and compatible with Python 3.7 and 3.8 versions. Our main goal, was to make it work for

every different Python user independently of the backend they use.

scikit-fda: Interactive Visualization and Analysis Tools for Functional Data2

1.2. Document structure

1.2 Document structure

The document is organized in the following chapters:

• Chapter 2, explores the state of art of the area, by providing a review of advanced tools for vi-

sual data analysis and studying the latest technologies and algorithms implemented. First, an

analysis of the most advanced libraries for creating both static and interactive visualizations

is done, revising the functionality they provide, their limitations and positive qualities. After-

wards, Functional Data Analysis and the package containing the new functionality developed

in the project (scikit-fda) are explored, explaining its main modules and purposes. Finally, I

describe the main visualization methods developed, their formulas and what information these

graphics give us.

• Chapter 3, describes the software development process followed to develop the project. It

describes all the steps made (analysis, design, implementation and testing) and the main

decisions taken in each one.

• Chapter 4 shows the illustrations for all the functionality implemented during the project, from

the visualization methods to the interactive graphics.

• Finally, chapter 5 ontains a summary of the contributions made in this project and some

conclusions. Different possibilities for future developments are explored as well. Finally, I will

provide my personal assessment of the project, including a review of the acquired skills that I

have applied and the new ones that I have learned.

Álvaro Sánchez Romero 3

2
State of the art

This chapter explores some advanced static and interactive tools for visual data analysis, as well as

the visualization functions developed in the project. First, a review of software packages for static and

interactive visualization is made. Their functionality, advantages and disadvantages will be discussed.

The study focuses on those aspects that are relevant to the current project. Special attention will be

devoted to Matplotlib, which is one of the most common visualization packages in Python, and is used

extensively in our project. The most salient aspects of its Application Programming Interface (API) are

highlighted as it helps to understand some design decisions explained during the following chapter.

Then, the scikit-fda library, its different modules and the functionality provided by each module are

explained. Finally, an exploration of the visualization tools developed in the project is done, explaining

the basic functional data notions that sustain the necessity for them, how they work or what can they

do. These tools include the expansion of others already implemented, like the curves and surfaces

visualization or new ones like the Outliergram, DDPlot, etc.

2.1 Visualization software

In this section, the most advanced visualization packages nowadays are explored, explaining their

characteristics, how well they ft into our project and which one we will be using (Matplotlib).

2.1.1 Plotly

Plotly [13] is one of the most advanced open-source visualization libraries developed in Python. De-

spite this, it is also compatible with other multiple programming languages such as R or MATLAB. A

basic version of this library is distributed under the under the MIT license (X11 license), which gives

permission for both private and commercial use, modifcation. Furthermore, it is compatible with other

licenses. Additional functionality intended for large companies, such as Chart Studio Enterprise or

Dash Enterprise, is provided at a cost.

This toolkit is web-based, can be accessed by multiple GUIs like Jupyter and provides an extense

State of the art

variety of graphs. Plotly fgures can be exported to a static fle like an SVG, PNG, PDF or to HTML

format that can be displayed in websites. This HTML format incorporates interactive visualization tools,

such as hovering, zooming or showing and hiding elements thanks to the legend. It also has the

possibility of adding widgets to interact with the fgures.

The main disadvantage plotly presents is that it is not very common in other scientifc libraries,

having less dependants. This decreases the possibilities of maintenance due to there is no incentive

to keep the library up to date. Furthermore, its use also hinders mantaining a similar structure to other

SciKit packages that commonly use Matplotlib.

2.1.2 Ggplot2

Ggplot2 [14] is a library written in R that forms part of tidyverse, which is a collection of R packages

created for data science. It is very popular due to the use of the concept of Grammar of Graphics [15].

This concept divides in layers the components of a graphic, simplifying the readability of the code

generated thanks to creating graph by combining them.

Grammar of Graphics is a technique created by Leland Wilkinson with the aim of establishing a

standard way of creating any type of graphic from any context, allowing us to divide the necessary

components that create a graphic. As it can be seen in Figure 2.1, its different components form a

pyramidal structure depending on its importance. The three fundamental pillars used to describe a

graphic are the data to be plotted, the aesthetics defning what data is wanted to be displayed (for

example the axis) and the geometric object used to plot our data (lines, points, bars, etc.). Without

this three components it is not possible to create a graphic, but the ones above them are optional.

The optional components are facets (used to create subplots), statistical transformations (percentiles,

median, etc.), the coordinate system and theme used. The theme describes features not related with

the data directly like legends or colors.

This layered framework for plot creation facilitates the specifcation and analysis of graphs. There

is an implementation in Python that makes use of this framework (plotnine). In principle, it could have

been used for this project. However, the usage of the library is rather limited, which rises the possibility

of its support and maintenance being discontinued in the future. Besides, it is also important that other

scientifc libraries use it to have the most standard code, making it easier for the user.

One disadvantage of ggplot2 it is that it doesn’t have its own interactive module and it is commonly

combined with plotly (Section 2.1.1) to create interactive graphics. Other tools in R like ggiraph have

appeared to provide also this functionality to ggplot2, giving an alternative to plotly.

scikit-fda: Interactive Visualization and Analysis Tools for Functional Data6

2.1. Visualization software

Figure 2.1: Main layers of the Grammar of Graphics

2.1.3 Matplotlib

Matplotlib [16] is one of one of the most widely used open-source packages for Python and its purpose

is data visualization. It is known thanks to its extensive functionality and compatibility with other libraries

like Numpy [17]. It allows the user to plot any type of data from curves (plot), points (scatter), surfaces

(plot_surface), heatmaps, etc. It also has the possibility of creating 3D Axes, which in this project

logically are very useful and allow to plot clearly not only curves but also surfaces or stem plots (useful

to plot a discrete sequence of data, example in Figure 2.2). Another advantage of Matplotlib is that

other packages in the Python scientifc ecosystem like scikit-learn [18] are based on this library. Its

wide use means that the library is likely to being maintained and updated in the short to medium term.

Perhaps, other libraries have more advanced functionality but a priority of the project is the stability

of the libraries used, so a popular one like Matplotlib provides us this. Besides, as in this project is

pursued the standardization of our code, it is a great option to use similar conventions and API to other

packages and to facilitate the use of scikit-fda’s visualization tools by programmers who are already

familiar with Matplotlib. Another interesting aspect, it that thanks to pyplot it gives the user a plotting

framework similar to the one offered in MATLAB [19]. Due to this reasons, Matplotlib is the library used

in our project.

Besides the different and multiple representing functionalities it offers almost a total control in style,

visualization settings that can result useful for our project. Matplotlib also has extra toolkits like mplot3d

or axisartists, and very useful third party packages like seaborn 2.1.4.

Matplotlib uses as its canvas an object of type Figure, which is a collection of different Axes or

subplots in which the data is represented. The main advanced functionalities used to develop the

project and the functionality that allows us to interact with graphs are:

• Matplotlib events: they are used to connect any element of our represented fgure to a

Álvaro Sánchez Romero 7

State of the art

Figure 2.2: Example of an stem plot created with Matplotlib.

callback function. This events are triggered by a selected action such as the pointer’s hovering

an axis, selecting a point in a scatter plot, moving the mouse and others. For a specifc action,

the corresponding functionality is implemented in the callback function associated to it.

• Artist class: it is an abstract class for all the objects that are rendered (Axis, Figure, plots,

scatterings, etc.). This is fundamental for the interactivity, as the callback functions can use

its properties to edit the transparency of any sample (set_alpha), modify its color, plot new

functions or add annotations. Depending on the representation function used, there are

different types of artists like Line2D objects when plotting, PathCollection when scattering,

Poly3DCollection when plotting a surface, etc. These different artists have different extra

functionalities. For example, in the case of PathCollection they can be selected, which is used

for the interactivity module. Other type of Artist that also exist are Patch objects, that are

commonly shapes or Annotation objects (labels with text).

• Matplotlib widgets: they allow us to interact with graphics by triggering a Matplotlib event

when a widget is used. They are represented inside an Axes object and have the advantage

that work in every GUI backend. There are multiple types of widgets, like CheckButton, Slider

and TextBox. It is possible to defne callbacks for their activation in order to modify the Figure.

2.1.4 Seaborn

Seaborn [20] is a Python visualization package based in Matplotlib. The most clear advantage it has,

is the upgrade on the previous graphics, obtaining better plots with the same code. Another feature

that seaborn presents is the existence of some extra plots oriented to statistics, like regression plots or

facet plots. This plots can be also created in Matplotlib, but require more code to be created. Besides,

the variety of color palettes offered by seaborn is wider and present differents usages like categorizing,

scikit-fda: Interactive Visualization and Analysis Tools for Functional Data8

2.2. Functional Data Analysis

indicating importance with a sequence of colors or thanks to a diverging palette giving extra importance

to the extreme point and under emphasizing the central. The main disadvantage of seaborn is that it is

not used in other scikit projects and the advantages aren’t enough to justify using this library.

Another library also based in Matplotlib is Yellowbrick. This package has been considered exces-

sively complex, as it uses the scikit-learn API, which is intended for machine learning workfows, as the

API for the plotting methods.

2.2 Functional Data Analysis

Functional Data Analysis (FDA) is a branch of statistics that deals that data consisting in curves, sur-

faces or in general, functions defned on a continuum. Due to new advances in the area, its use has

grown considerably along the years. Despite this, because of the complexity of some datasets that

comprehend multi-dimensional spaces, it is fundamental to create a good visualization module that

allows the user to visualize data.

For the sake of completeness, and to provide the context of the contributions made, an overview

of the characteristics of functional data is made. A sample of functional data consists of a collection

of instances, such as curves, surfaces or general functions whose value depends on a continuous

parameter. These instances can have different dimensions depending on its codomain. For example, it

is not the same a curve in a 2D graphic than a curve in a 3D graphic.

Most of the software packages for functional data analysis are written in R. They can be retrieved

from the Comprehensive R Archive Network (CRAN) [9]. One of most comprehensive FDA packages

is fda [7], developed by one of the authors of Functional Data Analysis [4] (J. Ramsay). It was designed

to obtain a tool containing the concepts and functionality explained in the book. Such as fda, fda.usc [6]

[21] is another package with extense functionality. Other tools, such as the rainbow package [22] [23]

are smaller as they contain more specifc methods. This package was created to visualize functional

time series and identify functional outliers. Outliers are instances of our sample that represent an

atypical case in it, showing atypical values (magnitude outliers) or shape (shape outliers). One of the

methods the rainbow package has to detect and view these outliers is the BoxPlot, which also exists in

our library, scikit-fda. These outliers can be useful in the visualization methods and multiple visualization

tools use them to give more information to the user.

A package that cannot be found in CRAN is tidyfun [24], that forms part of a collection of R packages

for data science called tidyverse. Tidyfun allows to manipulate data with other tools from the tidyverse.

Its purpose is giving the users an easy experience with functional data analysis and data wrangling

thanks to what they call tf vectors. Functional Data is stored as tf vectors that can be visualized or

manipulated. It contains some advanced visualization methods such as the lasagna plot. The lasagna

plot is a heatmap containing the different observations in rows and uses colors to indicate the values of

Álvaro Sánchez Romero 9

State of the art

them.

2.3 scikit-fda

The software project oriented to FDA in which I have collaborated is scikit-fda [1]. Its purpose is to offer

a generic and wide range of tools to the user, so the library can be applied to any area related with

FDA.

scikit-fda

representation exploratory
analysis preprocessing

inference machine learning datasets

Figure 2.3: Main sections of scikit-fda package

Figure 2.3 is a scheme containing the six main modules of the package:

• Representation: This module provides support for the representation and storage of func-

tional data. There are different ways of storing a functional datum. One option is to represent

the funtion as a one-dimensional array of values at a set of discrete observation points in a

grid (FDataGrid object). Another possibility is to use a basis representation. Once the basis

is fxed, a functional datum is represented by the coeffcients of a expansion in that basis

(FDataBasis object). Both of them have a parent abstract class, FData, that has its common

functionality.

• Exploratory analysis: this module includes the tools (classes, methods) necessary to char-

acterize, analyze and visualize the data. It is composed of different submodules. Of particular

importance for this project is the visualization submodule. This submodule contains meth-

ods to visualize clusters, Functional Principal Components Analysis (FPCA), etc. Finally, the

methods for computing the depth of a functional datum within a sample are included in the

depth submodule. These depth measures are extensively used for data visualization and out-

lier detection. The tools for the estimation of summary statistics (contains methods such as

mean or median) and outlier detection are grouped in the submodules named after them.

• Preprocessing: the classes and methods contained in this module are used to process

and prepare the data for subsequent analysis. Some of its functionalities are smoothing that

scikit-fda: Interactive Visualization and Analysis Tools for Functional Data10

���� ����

2.4. Visualization and tools for functional data analysis

reduces noise, registration that aligns data to eliminating phase variation and dimensionality

reduction to simplify the data.

• Inference: This module provides tools for hypothesis testing and the estimation of population

properties from data samples of fnite size. Some of its main submodules are ANOVA and

Hotelling.

• Machine learning: set of tools to automatically infer predictors from data. It contains three

submodules: classifcation, regression and clustering. The classes and methods included in

this module follow the design patterns of scikit-learn and provide interfaces compatible with

this package. This ensures that scikit-learn’s tools can be used in combination with predictors

for functional data (e.g. model evaluation and selection tools, cross-validation grid-search for

hyperparameter estimation, and others).

• Datasets: contains all the functionality used to obtain some datasets from the CRAN and

UCR repositories. This provides the user an extense variety of datasets to work with and the

possibility to add even more.

2.4 Visualization and tools for functional data analysis

In this section, the depth measures used in the visualization tools are described. Then, a description

of the graphics that have been implemented, the information that can be extracted from them, together

with guidelines for their use are provided.

2.4.1 Depth measures

Consider a sample consisting of a collection of curves. A depth is a measure of how central a curve is

with respect to the curves in the sample. Different defnitions of a centrality measure can be formulated.

In this section, some important depth measures are presented.

2.4.1.1 Integrated Depth

An integrated depth consists in the integral of a multivariate depth along the continuous parameter on

which the functional data depend. An instance of these types of depth functions is the one introduced

by Fraiman and Muniz [25] with the next equation:

1
D(x) = 1 − − F (x)

2

This depth measure is used in several examples in Chapter 4.

Álvaro Sánchez Romero 11

State of the art

2.4.1.2 Band Depth

The Band Depth [26] is a depth measure based on the concept of bands. A band is the area delimited

by two curves in the sample. The Band Depth of a curve of our sample is the fraction of bands obtained

by two instances that enclose completely the curve whose depth is being computed.

2.4.1.3 Modifed Band Depth

The Modifed Band Depth (MBD) as well as the Band Depth [26], relies in the concept of bands. MBD

To compute the value of the MBD, one measures the fraction of time each curve is enclosed for each of

the bands, defned by a pair of curves in the sample. This quantity is averaged for all possible bands in

the dataset.

Let x1, . . . , xn the different functions in our dataset. The measure of centrality estimated in terms of

the MBD is: � �−1 n nX Xn λ({t ∈ I | min(xi(t), xj (t)) ≤ x(t) ≤ max(xi(t), xj (t))})
,MBD{x1,...,xn}(x) =

2 λ(I)
i=1 j=i+1

In this expression one considers the band formed by each pair of curves xi and xj is defned in

I × R. The denominator (λ(I)) is the length of I, the interval within which the functions in the sample

are defned. The numerator is the fraction of time in the interval I that x(t) spends within the band

defned by xi(t) and xj (t).

2.4.1.4 Modifed Epigraph Index

The Modifed Epigraph Index (MEI) is not exactly a depth measure, as it doesn’t represent centrality, but

is explained in this section due to its high relationship with the Modifed Band Depth. MEI is the average

time a sample of our data stays under the rest of curves or surfaces of our dataset. It is measure

related, albeit simpler, to the MBD in which the band is replaced for the area below a given sample.

Let x1, . . . , xn be the collection of functions in our sample. The expresion of the MEI is:

nX1 λ({t ∈ I | xi(t) ≥ x(t)})
MEI{x1,...,xn}(x) = ,

n λ(I)
i=1

In this case the numerator for the ith term in the summation is the fraction of time that the function

x(t) is below xi(t). A naive implementation requires carrying out three nested loops. The time com-
2plexity of this algorithm is O(n m) (being m the number of instances of the sample and n the number

of points that conform a curve), which is rather poor. It is possible to reverse the order of the sum and

the integral The computation of this quantity can be vectorized by reordering the curves at every point

in the domain with the rankdata Scipy function. This avoid one loop and taking into account the worst

scikit-fda: Interactive Visualization and Analysis Tools for Functional Data12

2.4. Visualization and tools for functional data analysis

case the complexity drops to O(n ∗ log(n)m). This process improves the effciency of the algorithm,

which makes it possible to carry out the computation of this index in large datasets faster.

2.4.2 DD Plot

The DD Plot or Depth vs. Depth Plot [27] [28] [29] is a tool to compare two samples. The comparison is

done by computing the depths of the instances of a dataset in the two mentioned samples. This gives

us a pair of depths for each instance of the dataset. Every pair is formed by the depth of an instance

obtained in both samples.

The graphic consist in plotting this pairs of depths as coordinates to see the relationship between

both, as the higher values obtained, the more related they are. In the same graph, a straight line of

slope one is plotted for reference. If both samples have the same distribution of depths, the points in

the plot are located along this line.

This line divides our graph in two spaces, the points lying below that have a function more similar

to the frst distribution, whereas the one above it that have a closer form to the second distribution. If

both distributions are similar, the pair of calculated depths for every instance should be close in value,

tending to form a straight line very similar to the auxiliary one.

This type of plot can be used also for classifcation. Given a test function, the goal is to determine

whether this instance belongs to the frst or to the second sample. To this end the depths of this test

function with respect to each of the samples are computed. Then, the point whose coordinates are

these depth is plotted in the graph. If this point lies below the reference line, it is assigned to the frst

distribution. In the opposite case, when it lies above the reference line, it is assigned to the second

sample. This is the DD-classifer [30], currently being developed by Pedro Martín as a part of his

undergraduate thesis.

2.4.3 Parametric Plot

The Parametric Plot [4] is he graph defned by a set of points in the real plane whose coordinates are

given by the values of two functions. For example, consider the following functions:

f(x) = x 2

f 0(x) = 2x

They both depend on the same parameters and have the same representation (x, f(x)) and (x, f’(x)).

The parametric plot instead represents (f(x), f’(x)), in order to see for example how they change with

respect to the other. In Figure 2.4 the parameterization can be observed.

This is very useful for differential equations as understanding the evolution of both simultaneously

Álvaro Sánchez Romero 13

State of the art

0 50 100 150 200 250 300 350 400
f(x)

−40

−30

−20

−10

0

10

20

30

40

f'
(x
)

Figure 2.4: Parametric plot of f(x) and f’(x)

gives us important insights. It can be also used to compare an instance of our sample with its average

to fnd differences between them. For example, in Functional Data Analysis [4] there is an example

where they use this plot to get insight in the way a child walks. To do this they compare two functions,

one representing the hip angle and the other one representing the knee angle. In the results chapter,

this simulation is done with the tool (Section 4.3). Plotting the average function versus the case of only

one child can show problems of the way of walking which can be diffcult to realise otherwise.

Despite the software part is covered later, there are two different cases of entry in our function:

• A function of type f : R −→ R2 that has a codomain of dimension 2 and domain of dimen-

sion 1. This would be directly processed by our function.

• Each of the two functions of type f : R −→ R, has a codomain of dimension 1 and domain

of dimension 1. If they are joined as coordinates, the result obtained is a function of the frst

type that can be normally processed.

2.4.4 Outliergram

The Outliergram is a graphical tool for the identifcation of shape outliers for functional data [31]. To

understand how it works, two important concepts need to be introduced: magnitude and shape outliers.

Magnitude outliers functions in a dataset whose values are atipically low or high with respect to the

other functions in the sample. They can be found using measures of centrality such as depth methods.

Shape outliers aren’t as easy to characterize as magnitude outliers. In particular, depth measures

cannot be used to detect them. This is because what characterizes them is the anomalous shape or

form they present. With the Outliegram, a new option is given to solve this issue and fnd this last kind of

outliers. Removing these kinds of atypical instances can help us preprocess our data in order to make

sample estimations that are more accurate.

scikit-fda: Interactive Visualization and Analysis Tools for Functional Data14

2.4. Visualization and tools for functional data analysis

The scikit-fda package includes a number of graphical tools that can be used for outlier detection.

For example the Magnitude-Shape Plot [11]. This method uses a depth method to compute the direc-

tional outlyingness of each instance, indicating the centrality of it. Thanks to the directional outlyingness

it is possible to detect the outliers. The difference between the Magnitude-Shape Plot and the Outlier-

gram, is that with the Magnitude-Shape Plot is possible to distinguish magnitude and shape outliers

thanks to the directional outlyingness method. By contrast, the outliergram is especially useful to iden-

tify shape outliers in the sample. The authors suggest to use the outliergram in combination with the

functional boxplot [32] (already implemented in the library) to get also the magnitude outliers.

This visualization method utilized two depth methods: Modifed Band Depth [33] [11] and Modifed

Epigraph Index [34]. The frst one, was already implemented in the library, the second one, has been

developed in this project.

2.4.4.1 Relationship between MBD and MEI

The interest of our plot relies on the interaction of these two depth functions, and that is why the graph

consists on plotting MBD (Y-axis) against the MEI (X-axis). When both of them are scattered in a graph,

almost all of the points tend to form a parabola. This is because the fact MEI has very low or high

values means that our sample is located at the lower or upper part of the graph, respectively. If the

instance has extreme values, the MBD should be low as it is contained by bands for a low proportion of

time. The points that correspond to a high MBD value indicate this instances are centered, having then

approximately the same number of curves above as below it (central MEI value).

The way to detect these shape outliers is to spot points that the lie far down from our parabola. If

a point has an average value (around 0.5) in its MEI, this means the curve values, are very central

as it stays the same amount of time under curves and above them. As the datum or instance has a

central MEI value, it would be normal to expect that also the MBD is high and as it is a central value,

it should be contained by many bands. Due to the different shape a curve can exhibit, as appears in

Figure 2.5, it won’t be contained by as many curves as expected, then we can conclude it has a different

shape. Besides this, even if it is not specifcally designed for it, the points of the corners of the plot could

represent some magnitude outliers, as they have lots of curves behind or over them most of the time.

2.4.4.2 Shape outlier detection

Everything that has been talked about until now are non-computable ways to distinguish these shape

outliers. Detecting an outlier by seeing that its corresponding point lies far from the parabola it is not a

bad method but can be improved. To get which points are indeed outliers, the frst step is to compute

the parabola that this points defne. Taking into account our sample x1, . . . , xn and its corresponding

MBD(mbi = MBDx1,...,xn (xi)) and MEI(mei = MEIx1,...,xn (xi)).

Álvaro Sánchez Romero 15

State of the art

0.0 0.2 0.4 0.6 0.8 1.0
MEI

0.0

0.2

0.4

0.6

0.8

1.0

M
B

D

Canadian Weather

0 100 200 300
day

−30

−20

−10

0

10

20

te
m

p
e
ra

tu
re

 (
ºC

)

Multiple display

Figure 2.5: Outliergram example of a curve that exhibits different shape

pi = a0 + a1mei + n 2 a2mei
2 ,

a1 = 2(n + 1)/(n − 1), a0 = a2 = −2/n(n − 1) being n the number of functions of our sample.

With the array of points p1, . . . , pn is possible to plot the parabola. The vertical distance of each point

to the parabola can be computed by subtracting to the last array its corresponding mbi, as represented

in the following function:

di = pi − mbi,

A common way to determine outliers and the one used to compute the dashed parabola that sep-

arates the outliers is using the interquartile range, which was already implemented in our library. The

detection algorithm determines that a point is an outlier if its distance is bigger or equal than the sum of

the third quartile and the inter-quartile range of d. It follows the next inequation:

di ≥ Qd3 + 1.5IQRd

For a clearer vision to the viewer, a copy of the previous parabola is shifted down to get the curve in

our graph that defnes the limit between outlier and non-outliers.

Even if it is a very good method to keep track of this kind of atypical curves, it should be taken into

consideration that if a function presents a very low or high MEI (near 0 or 1), it must present a low MBD

so it is not detected as an outlier. Some option to solve this, would be shifting this kind of cases to more

centered values before using the Outliergram.

scikit-fda: Interactive Visualization and Analysis Tools for Functional Data16

3
Software development

During this chapter, I explore the different steps taken in the Software Development Process and the

main decisions made to develop the project. The initial phase is planning, which in my project consisted

on estimating the amount of time needed, the organization followed during the course and choosing a

software development process model. I decided to opt for an incremental model, as my job was divided

into two big parts, developing the new tools and after that, standardizing it with the previous methods

to add interactivity. With this strategy, I could make the project by small steps, which eased my work

during the year.

As scikit-fda is a project in which many people work during the year, the collaborators decided to

organize weekly meetings every Monday in order to share our advances, new knowledge or ideas for

future parts of the project. These online gatherings came in handy, as everybody could learn from each

other work and keep up with the latest updates in the library. During this chapter the tools used during

the development have been omitted and can be found in Appendix A.

3.1 Analysis

In this stage I developed a software requirements specifcation, defning functional and non-functional

requirements, in order to specify what I wanted the project to do and under which conditions it does it,

respectively. The functional requirements obtained related with specifc new functionalities are:

• FR(1) The visualization module should have a new graphic tool that represents the Outlier-

gram, enabling the user to detect shape outliers by following the equations defned in Section

2.4.4.

• FR(2) The visualization module should have a new graphic tool that represents the DDPlot,

enabling the user to compare a sample to different distributions thanks to a depth measure,

as defned in 2.4.2.

• FR(3) The visualization module should have a new graphic tool that enables the user to plot

parameterized curves Section, as defned in 2.4.3.

Software development

• FR(4) The visualization module should extend the representation of curves by adding the

possibility of using a gradient of colors in the different samples.

The functional requirements that are thought for all the module are:

• FR(5) The visualization module should have a common interactive module that allows users

to interact with graphics and combine them in different subplots in the same fgure.

• FR(6) The visualization module should allow users to hover points and get an more informa-

tion about the sample hovered thanks to a temporal foating annotation.

• FR(7) The visualization module should allow users to click points and highlight the sample

clicked in all the different subplots present in the current fgure.

• FR(8) The visualization module should allow users to add widgets attached to a criteria (for

example a depth measure) that allows the users to interact with the different subplots of the

fgure highlighting the curves that fulfll the condition the criteria has.

Some of the non-functional requirements are common for all the library and had been applied in

other earlier projects, and are the following:

• NFR(1) The software designed should be cross platform, as it has to work in the main oper-

ating systems: Windows, Mac and Linux.

• NFR(2) The software should have a complete documentation including explanation of argu-

ments and examples of the use of the functionality.

• NFR(3) The software developed should be compatible other scientifc libraries like scikit-

learn [18], Matplotlib [16], NumPy [17] or SciPy [2], in order to help the user and make them

comfortable.

• NFR(4) The software must be implemented in Python.

• NFR(5) The software is public and open-source.

• NFR(6) The software should follow the PEP 8 [35] and PEP 257 [36] standards for coding

and documentation.

• NFR(7) The project should be stored in GitHub due to its version control, automatic testing

for all the platforms, style checking or code coverage.

• NFR(8) The software should include unit tests.

• NFR(9) The software should be compatible with Python 3.7 and 3.8 versions.

• NFR(10) The software should be usable in every different Python environment: Jupyter Note-

book, IPython, QTConsole and others. This is specially important for the interactivity module

and its possible incompatibilities.

• NFR(11) The software code and comments should be written in English.

scikit-fda: Interactive Visualization and Analysis Tools for Functional Data18

3.1. Analysis

• NFR(12) The software code and comments should have the correct style and follow the

rules determined by the Wemake-Python-Styleguide (WPS) specifed in out setup.cfg fle.,

enforcing other already mentioned like PEP8 thanks to fake8.

Furthermore, for a better undertanding of the requirements of the module I made a use-case anal-

ysis (Figure 3.1), that also helps to understand the actors and possible processes that can happen:

Figure 3.1: Use case diagram of the visualization module.

After the software requirements specifcation, I developed a Gantt Chart to organize the estimated

time for each of the functional requirements and chores of the project. This diagram is available in

Appendix C.

During the analysis I had to decide which visualization library I was going to use for the project and

as explained in 2.1, I opted for Matplotlib.

Another important aspect I had to take into account in step of the software development process

was to understand the existing project and its main modules (Figure 2.3 [1]), which have been explained

in the previous chapter.

Furthermore, another important aspect of the project is the inclusion of it into the SciPy Toolkits

Álvaro Sánchez Romero 19

Software development

(SciKits). This collection of toolkits are scientifc opens-source packages united under the SciKit brand.

The packages in it should be under OSI-approved licenses (Section 3.6). My project is focused in the

development of the visualization submodule of exploratory analysis, that is in charge of the tools that

create the graphics that represent our functional data plots.

3.2 Design

During the design, I went through two periods: a frst one where I had to create the new algorithms

and functions of the new tools required and a second one where I had to think of a way to make all

the visualization modules alike. By doing this, they have a simple interface that is similar to all of them.

Finally, I had to create a class that can join every module into a multiple graph where the user can

interact with the graphics.

After all the design, the module is totally integrated and has the following class diagram (Figure 3.2).

BasePlot

+ artists: np.ndarray
+ fig: Figure

+ axes: Sequence[Axes]

+ plot(): Figure
+ n_samples(): int

+ set_figure_and_axes(chart, fig, axes)
+ _repr_svg_()

Boxplot

+ factor: float
+ fdatagrid: FDataGrid

+ envelopes:
List[Tuple(np.ndarray, np.ndarray)

+ outliers: np.ndarray
+ show_full_outliers: Bool

MultipleDisplay

+ fig: Figure
+ axes: Sequence[Axes]

+ criteria: Sequence[Sequence[float]]
+ point_clicked: Artist = None

+ previous_hovered: Artist = None
-is_updating: Bool

+ plot(): Figure
+ init_axes(chart, fig, axes)

- pick(event)
- hover(event)

-value_updated(value)
+ reduce_points_intensity()
+ restore_points_intensity()
+ change_points_intensity()

+ create_sliders(criteria, sliders, label_sliders)

1..*

DDPlot

+ fdata: FData
+ dist1: FData
+ dist2: FData

+ depth_method:
Depth[FData]

ParametricPlot

+ fdata1: FData
+ fdata2: FData = None

+ fd_final: FData

MagnitudeShapePlot

+ outliers: np.ndarray
+ fdatagrid: FDataGrid

Outliergram

+ fdata: FDataGrid
+ depth: ModifiedBandDepth

+ mbd: np.ndarray
+ mei: np.ndarray

+ parable: np.ndarray
+shifted_parable: np.ndarray

- compute_outliergram()
- compute_distances()

- modified_epigraph_index_list()

ClusterMembershipLinesPlot

+ fdata: FData
+ estimator: BaseEstimator

ScatterPlot

+ fdata: FData
+ grid_points:

np.ndarray

FPCAPlot

+ mean: FData
+ components: FData

+multiple: float

- get_component_perturbations(mean,
components, index, multiple)

GraphPlot

+ fdata: FData
+ gradient_color_list:

Sequence[float]
+ max_grad: float
+ min_grad: float

+gradient_list:
Sequence[float]

ClusterMembershipPlot

+ fdata: FData
+ estimator: BaseEstimator

ClusterPlot

+ fdata: FData
+ estimator: BaseEstimator

Figure 3.2: Class Diagram of the visualization module of the project

scikit-fda: Interactive Visualization and Analysis Tools for Functional Data20

3.2. Design

All this classes can be found in the directory skfda/exploratory/visualization folder of the project,

which can be consulted in GitHub.

In the next subsections, there is a description of the main design decisions taken with the classes.

During this explanations there are notions and concepts explained in section 2.3.

3.2.1 BasePlot Class

As it can be seen in the class diagram, BasePlot is an abstract class of which all the plottable classes

inherit, giving a common structure for this kind of objects. This allows scalability for this module as if

new visualization methods are added following this structure they would be also available for a multiple

and interactive plot.

My main concern when designing the BasePlot was the necessity for a simple interface that all the

classes could follow, without exceptions. The problem encountered initially when creating this class was

that every function in the different fles had been implemented by different people (different projects),

following different styles so I had to fnd something in common to all of them. The answer is that

Matplotlib uses a Figure object that represents the plot and that is formed by a sequence of Axes

corresponding to the different graphs a plot can have. As in every visualization function this fgure

and axes had to be initialized manually by some parameters or automatically if none where given, an

abstract method was created to initialize them.

Despite I already had where to plot our data, I realised that not every visualization function plotted

FData objects, actually some of them plotted some computations done with the FData, for example,

depths in DDPlot or more than one FData could be used (Parametric Plot). So I realised the only thing

the modules had in common was that they all represented in some ways instances of a functional data

set or a combination of functional data sets. This was very useful to create our array of artists, a group

of references to the Artist objects (graphical elements in the fgure) obtained when scattering or plotting

each of the elements in our data set and that is used in the interactivity part at MultipleDisplay, as the

array contains information and can edit the different data plotted.

3.2.2 Outliergram Class

This module is the one containing the most complex algorithms developed in the project. As it has been

seen previously this module also inherits from the BasePlot class and has a very simple input. The

Outliergram is only compatible with FDataGrid objects and it computes the Modifed Band Depth and

Modifed Epigraph Index of the selected FDataGrid.

Additionally, the parabolas are computed thanks to the formulas provided in the state of the art

chapter, so the outliers can be checked visually. Despite the complexity of its algorithms, when encap-

Álvaro Sánchez Romero 21

https://github.com/GAA-UAM/scikit-fda

Software development

sulating its functionality it has a very simple code with just the steps mentioned before. As this method

does scattering, the references to the Artist are PathColletion objects.

3.2.3 DDPlot Class

This module has the advantage that allows FDataGrid and FDataBasis. It receives three functional data

sets, one is our data and the other two represent the distributions that that are compared with the frst.

It is possible to select any depth method to compare our dataset to the distributions, which is done by

ftting frst our data with the depth, and after that comparing with the depth method every instance of

our data with the two distributions.

The representation of both depths is also done in a loop as the Outliergram to get in artists all the

PathCollection references to modify the intensity of the points afterwards in an interactive mode.

3.2.4 ParametricPlot Class

This module allows all types of FData and depending on the size of its domain and codomain, it receives

one or two functional data sets. If the dimension of the codomain of our function is two, the method will

be able to parameterize this dataset alone. On the other hand, if the codomain is one another function

of the same type to do the plot will be needed. This two functions are be joined as parameters to obtain

a function of the frst type. In this case, as the method plots curves, the artists stores Line2D objects,

the kind of Artist Matplotlib has for curves.

3.2.5 GraphPlot Class

This module was in charge of plotting any kind of FData, from curves to surfaces. My job with this mod-

ule was to expand its functionality and allow representing datasets with a degree of colors depending

on a parameter. This parameter is a sequence of foats that determine the color in the display of each

of the curves or surfaces in our graph, like the result obtained when computing a functional depth to our

data. To use properly this sequence and get the most representative gradient of colors, the sequence

should be normalized. To do this normalization, there are optional parameters to set manually minimal

and maximum values for the sequence. Usually, this sequence indicating the gradient of colors is the

result of the computation of a depth, so in a quick glimpse the user can see the data selected and how

it is distributed.

This list is used to compute the color thanks to a colormap which could be introduced by the user.

With the typical colormaps, the instances with the higher values are represented with a more intense

color while the ones with the lower value with a softer one. I defned as the default colormap the

Autumn one, that can be seen in Figure 3.3. This was done due to it was the one that presented the

scikit-fda: Interactive Visualization and Analysis Tools for Functional Data22

3.2. Design

most standard and gradual colors, from a soft one to a more intense one, being very fexible for every

situation. Despite this, it can be selected in the inputs of our class initialization.

Figure 3.3: Autumn colormap.

As I mentioned before, depending on the dimension of the domain this module will plot curves or

surfaces. Thanks to the design of the interactivity module the surfaces are also interactive due to their

object obtained while plotting also inherits from the Artist class, so it has the necessary methods to

work.

3.2.6 Rest of plotting classes

Besides the functionality already mentioned, the rest of the classes had to be changed too. The Scat-

terPlot had to be converted into a class but wasn’t any trouble due to its similarity with the GraphPlot.

Other visualization methods like Clustering had to be divided in to three different classes, depending on

the different plot they represented (ClusterPlot, ClusterMembershipLinesPlot and ClusterMembership-

Plot). The rest of the modules, FPCAPlot, MagnitudeShapePlot and BoxPlot, received the necessary

modifcation to be transformed into a class and have interactive functionality.

3.2.7 MultipleDisplay class

This class is the responsible of the interactivity module and the relationship among the different Base-

Plot objects. It is formed by a sequence of BasePlot objects, each one with its corresponding axes. The

most elementary functionality it presents is offering the possibility of plotting multiple graphics together

that have the same number of samples represented, typically the same data in different ways. I realised

this was extremely useful and decided to search for a way to highlight an element in all the graphs

among the rest. After some time thinking, I realised that instead of highlighting the selected element I

could make more transparent the ones not selected, in this way the whole dataset could be seen but

specially the selected one.

One of the problems of having a big functional dataset is the diffculty of recognising the different

instances represented in descriptive graphs that show outliers like an Outliergram or a Magnitude-

ShapePlot. Due to this, I decided to add an interesting interactive functionality which allowed the user

to get more information of an instance of the sample if its being hovered (passing the cursor over the

point that represents it). To do this I used the hover functionality of Matplotlib ("motion_notify_event")

which activates a callback while moving the mouse over an Axes object. I created different annotations

for each Axes instance which updates its location and information in case of hovering. The annotation

Álvaro Sánchez Romero 23

Software development

contains the instance number and coordinates of the represented point. The instance number could be

very useful for them to revise manually the data on the different graphs with that id and the coordinates

give the position of the point which could represent depths or other measures.

Moreover, I thought of another idea of selecting elements different to picking which consisted on the

use of widgets. I started researching for the best libraries of widgets python had until I found the two

that best ftted into the project, ipywidgets [37] and the widget module Matplotlib incorporated. The frst

mentioned is the library Jupyter Notebook incorporates for interactive HTML widgets, including a wide

variety and a very good graphical appearance. The widget section Matplotlib has, contains a smaller

collection of widget types and doesn’t have as modern aspect as its competitor. Due to this I initially

designed all the project with ipywidgets. During the last month of the project, I realised that many users

around me didn’t necessarily use Jupyter Notebook, what was fatal for the frst library and would incur

on not respecting the NFR(9). presented in the previous section. Finally I changed my implementation

to Matplotlib for a total fexibility of the project, allowing all the users to enjoy the advantages of widgets.

Despite this, a small sacrifce was made in the graphical appearance and usability.

With this change of widget implementation, I decided to focus our selection of widgets into Sliders,

because from the catalog was the one that ftted most our purpose. The sliders are used to order the

data instances thanks to a criteria created by the user. The criteria is used to order our data, using for

example the centrality functions I have already mentioned, depths. If a point has low depth, it will be

located in the lowest points of the slider and viceversa.

One of the advantages of the implementation, is the possibility of adding as many widgets as

pleased. Because of this, all the widgets have to be updated every time one widget or point is clicked.

This is important as sliders represent notions like depths which should always have coherent values.

As widgets and the clicking points functionality does the same changes in variables in different ways, it

was important to add the functionality that made them compatible.

3.3 Implementation

As scikit-fda is a collaborative project in which many people have participated during the years, one of

the top priorities is to improve the readability and documentation. Besides this, as it is an open-source

project that can be used by anybody and can receive the help and collaboration of other developers, it

is important not to only think about easing the job for people that want to use our tool but also for people

that will be making modifcations in the future.

Before I started the project, two of the main Python Enhancement Proposal (PEP) were already

being followed PEP 8 [35] and PEP 257 [36]. The frst of them, PEP 8 (Style Guide for Python Code)

is a code convention indicating rules for the coding style of the project. The second one, PEP 257

(Docstring Conventions) is in charge of the rules related with how the project should be documented.

scikit-fda: Interactive Visualization and Analysis Tools for Functional Data24

3.4. Testing

In the Appendix A, I have explained the tools used to ensure this styleguides are followed (wemake-

python-styleguide) and generating the best possible documentation from the docstrings (Sphinx).

3.4 Testing

Testing is a vital part of every software project, and this one is not an exception. It is very important as

it is the best way to detect regressions, bugs that may have appeared while adding new functionality

or due to changing older modules. Furthermore, new improvements could be detected to improve the

software developed. As it was a project already in development, some of the previous tests had to be

modifed with the new design and some new visualization features had to be tested. During the project

I developed two types of tests: unitary test and user tests.

As my job with the visualization methods was to create graphics, it was not very easy to test all the

functionality I developed, so what I did was to create tests for the data that needed to be computed to

be plotted. Nevertheless, as some data that was going to be plotted were depth measures that had

its functionality already tested, it was not tested again as this tests would not give us extra information.

I studied some ways to do image comparison tests with Matplotlib in order to see if the graphs were

correct, but I decided fnally not to use them because they where hard to develop for the advantages

it actually gave. Finally, the new unitary tests were focused on the outliergram and the computation of

the MEI. In Appendix A.2 the tools used for doing unitary tests are explained.

Besides the unitary testing, I also developed a usability test with the objective of making the app

easier for typical users, fnding bugs or getting a different perspective of the software implemented. The

technique used is Thinking Aloud [38], considered by Nielsen as one of the best methods to test the

usability. It consists on a test where the user is asked to verbalize what he is feeling while using our

interface and the questions he has and the doubts that may appear. It is a good technique that allowed

us to improve our interface and which was partially implemented in our weekly meetings when I showed

the progress online to the rest of the people in the group and they gave me their opinions. This feedback

allowed me to see errors that I didn’t realise of or new ideas that could improve the user experience. At

the end of the project a total review of the tool was done with one of the main developers of the library,

Carlos Ramos, who hasn’t tried yet himself the new module. The usability test results can be consulted

in Appendix B.

After this stage, the last step in software development is the maintenance. It basically consists

on resolving bugs that may appear and are noticed by other developers or users. To do this, new

issues can be created in GitHub to inform the developers of errors or new features to be implemented.

Moreover, one of the objectives of following good coding styles and documenting our code properly, is

that this allows to reduce the time spent on maintenance, as the code is clearer for other developers

and it prevents bugs.

Álvaro Sánchez Romero 25

Software development

3.5 Integration

Another important aspect taken into account during the software development process is the version

control of the project and how it was integrated. As mentioned in the non-functional requirements, this

project used GitHub to upload the code and compare the new versions. More information abount Github

can be found in Appendix A.4 with the rest of the tools used. The version control software it uses is Git,

that allows the different developers to create and combine their own branches of the project with their

new work. The use of branches, helps to avoid losing data thanks to having different versions of the

project what helps to have a good quality software. To organize our branches, it was needed to select a

model, in my case the project used GitFlow as it allows the different developers to work in parallel and

as a consequence, faster and more comfortable.

The main branches conforming our model are develop and master. In the master branch, everything

is up to the offcial last version of the project, whereas the develop branch receives the new functionality

that is being continuously integrated. From time to time, a new version is created and the branch

version is upgraded with the functionality that has been added to the develop branch (through a release

branch). Usually these new versions are done when the new functionalities implemented in develop are

complete. Other types of branches are feature branches, that are in charge of adding new functionality

to the project, and are supposed to merge to the develop branch. In addition, there are also hotfx

branches, that are used to solve bugs in master; and release branches, that merge the develop branch

with the master in order to ensure that when a new version of the project is released, all of it is ready to

be uploaded and has no bugs.

3.6 Licenses

One important concept in open-source projects is the choice of licenses. Besides the license your

project has, it is important to revise the licenses present on its dependencies. A software license

is a contract that controls the use and distribution of software and its copyright. As this is an open

source-project the license used is BSD 3, that allows the commercial use of the library in projects, its

modifcation, distribution or private use, with the condition of reproducing the copyright notice already

mentioned. Some of the limitations it has are that it doesn’t provide neither liability or warranty. BSD

3 appears as a modifcation of BSD 2 license which is very similar, but in the case of BSD 3, there

is a third clause that doesn’t allow to use the name of the contributors or the project with the aim of

promoting any product without consent.

The relevance of licenses is not only important to understand due to the copyright of our own library

but for the libraries used in our project. The packages should be used respecting their licenses and

making sure they are compatible with ours. While selecting and investigating the visualization packages

this was something I had to take into account due to its legal implications.

scikit-fda: Interactive Visualization and Analysis Tools for Functional Data26

4
Results

During the chapter, I will explore the fnal results obtained thanks to multiple experiments of the new

project’s functionality. My goal is to explain the different use cases of the tools, how they work and

what can be done with them. I will be also be viewing how they interact between them thanks to the

interactivity module and its widgets. To show the changes and interactivity in a plain fle I will try to show

the elementary actions that can be done, like clicking, hovering or using widgets. More examples are

available at the Appendix D and also in the website [12] examples section.

4.1 Outliergram

The data sample mainly used for the results is the one representing the data of the temperatures in

Canada in different stations along the year, from the Ramsay’s FDA package [39] available in CRAN.

The sample represents the temperatures of different climates found in the country as can be seen in

the following picture (Figure 4.1), using each color to represent the different climates:

0 50 100 150 200 250 300 350
day

−30

−20

−10

0

10

20

te
m

p
e
ra

tu
re

 (
ºC

)

Canadian Weather Arctic

Atlantic

Continental

Pacific

Figure 4.1: Representation of the temperatures during a year in the different stations of the Canadian

Weather dataset.

Results

Thanks to the Outliergram it is possible to catch the shape outliers or what is the same, the curves

that exhibit an anomalous form in the sample. In Figure 4.2 it is displayed the the outliergram for the

previous dataset and as explained in the previous sections a parabola is calculated to show that the

closest points to it are the ones having a more normal shape, while the ones that are further present

a not so similar form. The dashed parabola is the outlier detector, so all the points that lie below it

are considered shape outliers. The two observations considered as outliers, have been represented in

Figure 4.2(b) to prove the experiment with the outliergram is working. As we can see, this curves are

fatter, having not so cold winters and small temperature changes along the year.

0.0 0.2 0.4 0.6 0.8 1.0
MEI

0.0

0.2

0.4

0.6

0.8

1.0

M
B

D

Canadian Weather

0 50 100 150 200 250 300 350
day

−30

−20

−10

0

10

20

te
m

p
e
ra

tu
re

 (
ºC

)

Canadian Weather nonoutliers

outliers

(a) Outliergram of the temperatures dataset. (b) Curves detected as shape outliers by the outliergram.

Figure 4.2: Figure 4.2(a) shows the detected shape outliers by the outliergram, which can be seen

represented as curves in Figure 4.2(b).

The points that are over the upper parabola are not necessarily considered outliers due to the

calculation of the parabola is an approximation of the Modifed Band Depth and Modifed Epigraph

Index each point should have to show the most typical shape, independently of the magnitude outliers

that mainly the MBD can detect.

4.2 DD Plot

For the experiments related with the DDPlot the samples taken in the Artic station are not used, as I just

want three different types of data. The Artic sample was rejected as this one was the less numerous and

it gave us the least information. The experiments explain all the possible outputs and consequences

this plot can have. The main data used in the tests corresponds to all the observations of the Atlantic

weather. In the different experiments, I swapped the different distributions used in each axis to compare

with the Atlantic sample.

The following graph (Figure 4.3) represents the samples used in the experiments thanks to labels

indicating the three different climates:

scikit-fda: Interactive Visualization and Analysis Tools for Functional Data28

4.2. DD Plot

0 50 100 150 200 250 300 350
day

−30

−20

−10

0

10

20

te
m

p
e
ra

tu
re

 (
ºC

)

Canadian Weather Atlantic

Continental

Pacific

Figure 4.3: Atlantic, Continental and Pacifc temperature functions of the Canadian Weather dataset.

The next two graphics represent the comparison of the depth of each Atlantic sample in the two

distributions formed respectively by the Pacifc (X axis) and Continental (Y axes) temperature functions.

0.0 0.2 0.4 0.6 0.8 1.0
X depth

0.0

0.2

0.4

0.6

0.8

1.0

Y
 d

e
p
th

Canadian Weather

0.5 0.6 0.7 0.8 0.9 1.0
X depth

0.5

0.6

0.7

0.8

0.9

1.0

Y
 d

e
p
th

Canadian Weather

(a) DDPlot computed with MBD. (b) DDPlot computed with Integrated Depth.

Figure 4.4: These graphs represent the DDPlot of the Atlantic samples compared with the Pacifc

samples (X axis) and Continental samples (Y axis). The difference between the graphs is the depth

method used.

As it can be seen in spite of the fact I am using different depth measures to create the graphics the

conclusions are similar, almost all of the instances of our Atlantic data look more similar to the pacifc

distribution. This is known because the points are located below the grey line, what means the have a

higher depth with this distribution than the other one. The more points below and the higher the depths

they have the more similar they are to the x axis distribution. This can also be useful to know how

similar is our data to the two distributions or perhaps fnd outliers.

These two DDPlot representations are the comparison of the depth of each Atlantic sample with

Álvaro Sánchez Romero 29

Results

itself (X axis) and continental (Y axes) temperature functions.

0.0 0.2 0.4 0.6 0.8 1.0
X depth

0.0

0.2

0.4

0.6

0.8

1.0

Y
 d

e
p
th

Canadian Weather

0.5 0.6 0.7 0.8 0.9 1.0
X depth

0.5

0.6

0.7

0.8

0.9

1.0

Y
 d

e
p
th

Canadian Weather

(a) DDPlot computed with MBD. (b) DDPlot computed with Integrated Depth.

Figure 4.5: These graphs represent the DDPlot of the Atlantic samples compared with the Atlantic

samples (X axis) and Continental samples (Y axis). The difference between the graphs is the depth

method used.

This case of use is not that common, but it can result useful to fnd outliers too. The results of the

experiment make sense, as almost all the points show high depths with its distribution and only two

have a bit higher depth in the continental dataset.

These two DDPlot representations are the comparison of the depth of each Atlantic sample with

itself in both axis.

0.0 0.2 0.4 0.6 0.8 1.0
X depth

0.0

0.2

0.4

0.6

0.8

1.0

Y
 d

e
p

th

Canadian Weather

0.5 0.6 0.7 0.8 0.9 1.0
X depth

0.5

0.6

0.7

0.8

0.9

1.0

Y
 d

e
p

th

Canadian Weather

(a) DDPlot computed with MBD. (b) DDPlot computed with Integrated Depth.

Figure 4.6: These graphs represent the DDPlot of the Atlantic samples compared with with itself in

both axis. The difference between the graphs is the depth method used.

scikit-fda: Interactive Visualization and Analysis Tools for Functional Data30

4.3. Parametric Plot

4.3 Parametric Plot

One good example to test the proper functionality of our ParametricPlot is the handwrit dataset from the

fda package (available in CRAN). It was created by J. Ramsay and represents the x and y coordinates

obtained as result after writing 20 times the word fda. In Figure 4.7(a) it can be seen the representation

of the coordinates over time.

0 200 400 600 800 1000 1200 1400
time

−0.04

−0.02

0.00

0.02

x
 c

o
o
rd

in
a
te

s

0 200 400 600 800 1000 1200 1400
time

−0.025

0.000

0.025

y
 c

o
o
rd

in
a
te

s

handwrit

−0.04 −0.03 −0.02 −0.01 0.00 0.01 0.02 0.03
x coordinates

−0.04

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

0.04

y
 c

o
o
rd

in
a
te

s

handwrit

(a) Representation of coordinates along time. (b) Parameterization of coordinates x and y.

Figure 4.7: Parameterization of word fda.

By parameterizing the coordinates the word fda is obtained, as the x axis represents the x coordi-

nates and the y axis y coordinates. With the graphic represented in Figure 4.7(b), the time is ommited

and it gives us a clear example of what the ParametricPlot can do.

The next example is shown in Figure 4.8 and uses the next functions: f(x) = sin(x) and its

derivative, f 0(x) = cos(x).

−10 −5 0 5 10

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

g
(x
)

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
g(x)

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

f(
x
)

(a) Representation of f(x) and f’(x). (b) Parametric plot representing (f(x), f’(x)).

Figure 4.8: Representation and parametric plot of the equations above.

Due to the form of this trigonometric functions and how they interact with each other, when they are

Álvaro Sánchez Romero 31

Results

plotted with its derivatives they tend to form loops, in this case creating a circle.

One of the other uses the ParametricPlot has, is comparing different parameterized curves. An

example shown in Functional Data Analysis [4] is done with a dataset containing the angles made by

the hip and knee of different children during its gait cycle. This two samples of curves, that represent hip

and knee angles changing during the gait cycle, don’t show us two much information when represented

alone. In Figure 4.9 there is a comparison of the parameterization of the mean of both samples (orange)

and one child (blue).

0.0 0.2 0.4 0.6 0.8 1.0
time (proportion of gait cycle)

0

25

50

h
ip

 a
n
g
le

 (
d
e
g
re

e
s)

0.0 0.2 0.4 0.6 0.8 1.0
time (proportion of gait cycle)

0

25

50

75

kn
e
e
 a

n
g
le

 (
d

e
g
re

e
s)

gait

(a) Representation of hip angle and knee angle curves over the gait

cycle.

0 10 20 30 40 50
hip angle (degrees)

0

10

20

30

40

50

60

70

kn
e
e
 a

n
g
le

 (
d
e
g
re

e
s)

gait

(b) Parametric plot representing the parameterization of the average

hip and knee angle (orange), and the parameterization of any in-

stance (blue).

Figure 4.9: Representation of gait dataset and parametric plot representing the parameterization of

the average hip and knee angle, and the parameterization of any instance.

Thanks to this graphic (Figure 4.9(b)), with a quick glimpse, anomalies in the way of walking of a

child can be detected in order to give him a special treatment if needed. The child was selected using

the Outliergram to see how a anomalous shape can exhibit strange behaviour in its parameterization.

In Figure 4.10 there is a parameterization of all the curves of the sample.

−10 0 10 20 30 40 50 60
hip angle (degrees)

0

20

40

60

80

kn
e
e
 a

n
g
le

 (
d
e
g
re

e
s)

gait

Figure 4.10: Parameterization of the gait dataset.

scikit-fda: Interactive Visualization and Analysis Tools for Functional Data32

4.4. Graph Plot with gradient of colors

4.4 Graph Plot with gradient of colors

In the GraphPlot it was added an option to plot the a dataset of curves or surfaces with a gradient of

colors depending on a list of parameters. As it may be expected, one of the most important measures

that can be done in FDA are depths. In the next images (Figure 4.12), it can be seen the same plot

as the one done in Figure 4.1, but using the Integrated Depth and Modifed Band Depth to plot each

curve with a different color depending on the depth. The higher the depth is, the more intense the color.

Nevertheless, this depends on the selected colormap and it can be also inverted.

0 50 100 150 200 250 300 350
day

−30

−20

−10

0

10

20

te
m

p
e
ra

tu
re

 (
ºC

)

Canadian Weather

0 50 100 150 200 250 300 350
day

−30

−20

−10

0

10

20

te
m

p
e
ra

tu
re

 (
ºC

)

Canadian Weather

(a) GraphPlot using Integrated Depth. (b) GraphPlot using Modifed Band Depth.

Figure 4.11: This graphs represent temperatures in the canadian station showing a color gradient

depending on functional depths.

Another interesting example would be using the already mentioned Modifed Epigraph Index, which

doesn’t actually measure the centrality of a curve or surface but the average time it stays under other

instances. This can be seen in Figure 4.12, as the curves with a more intense color are the ones that

have more curves above for more time.

0 50 100 150 200 250 300 350
day

−30

−20

−10

0

10

20

te
m

p
e
ra

tu
re

 (
ºC

)

Canadian Weather

Figure 4.12: Graph representing temperatures in the canadian station showing a color gradient

depending on MEI.

Álvaro Sánchez Romero 33

Results

4.5 Multiple Display

The Multiple Display functionality allows us to combine graphics and interact with them thanks to wid-

gets, clicking points or hovering them. The next image (Figure 4.13) shows a clear example.

0.0 0.2 0.4 0.6 0.8 1.0
MEI

0.0

0.2

0.4

0.6

0.8

1.0

M
B

D
Canadian Weather

0 100 200 300
day

−20

0

20

te
m

p
e
ra

tu
re

 (
ºC

)

−6 −4 −2 0 2
MO

0

2

4

6

8

V
O

MS-Plot

0.6 0.8 1.0
X depth

0.6

0.8

1.0

Y
 d

e
p

th

Canadian Weather

Multiple display

Figure 4.13: Multiple Display containing Outliergram, GraphPlot, Magnitude Shape Plot and DDPlot.

This frst case of the multiple display functionality is the most basic appearance possible, as there

are no widgets created, none of the points of the graphs have been clicked and neither one of them is

being hovered. In Figure 4.14 as you may observe, one of the instances has been selected by clicking.

As it has been clicked, the rest of the instances had incremented their transparency in every graph.

0.0 0.2 0.4 0.6 0.8 1.0
MEI

0.0

0.2

0.4

0.6

0.8

1.0

M
B

D

Canadian Weather

0 100 200 300
day

−20

0

20

te
m

p
e
ra

tu
re

 (
ºC

)

−6 −4 −2 0 2
MO

0

2

4

6

8

V
O

MS-Plot

0.6 0.8 1.0
X depth

0.6

0.8

1.0

Y
 d

e
p

th

Canadian Weather

Multiple display

Figure 4.14: Same graph as Figure 4.13 but one point has been selected.

From the situation above I will explain what could happen as it can only be seen by interacting

scikit-fda: Interactive Visualization and Analysis Tools for Functional Data34

4.5. Multiple Display

directly with the tool or seeing a video. If the same point was clicked, the original graph of Figure 4.13

would be restored but if any other point was clicked this one would return to its original form and the frst

point clicked would reduce its opacity in all the plots. This is a good form of interacting with the graph

as there is an easy way to return to the original state.

The following multiple display case only present two graphs, an Outliergram and a GraphPlot, to-

gether with two sliders that have as criteria Modifed Band Depth and Integrated Depth. The slider

presents 35 different options (one for each curve represented). In Figure 4.15 there is an example of

the widget being clicked.

0.0 0.2 0.4 0.6 0.8 1.0
MEI

0.0

0.2

0.4

0.6

0.8

1.0

M
B

D

Canadian Weather

0 100 200 300
day

−30

−20

−10

0

10

20

te
m

p
e
ra

tu
re

 (
ºC

)

MBD 26

0 34

Int.D. 23

0 34

Multiple display

Figure 4.15: Multiple Display containing Outliergram, GraphPlot and two sliders representing MBD

and Integrated Depth.

As it appears in the picture above, the user has used the widgets to select an instance. We can

see the values obtained make sense, as in the outliergram the MBD is represented in the Y axis and

as it appears in the frst widget, the point selected and the widget have a relatively high value. It is

important to highlight that even if the selected widget was the one that used Modifed Band Depth, the

other one was also updated to the corresponding value of that point in its widget criteria. From this point

we could continue using the widgets to select other curves and they would continue having congruent

values. It would also be valid to click a point instead of using the widget again as they activate the same

functionality.

Figure 4.16 contains the last experiment done with the interactive module. The graphics show an

example of the outcome of hovering a graph, which shows us some extra information of a point. In

the outliergram, our user has tried to get extra information about the curve that presents the highest

Modifed Band Depth. To do this the user has hovered the graphic and obtained the corresponding

MBD and MEI values (0,54 and 0.53, respectively). Besides he also can see that this point represents

the curve 15 of our dataset. This information is very useful if users want to get information fast about

Álvaro Sánchez Romero 35

Results

any instance. Besides, other forms of getting a specifc curve are way more diffcult for a common user,

with this the users job is speeded up so they get the best results as soon as possible.

0.0 0.2 0.4 0.6 0.8 1.0
MEI

0.0

0.2

0.4

0.6

0.8

1.0

M
B

D
15: (0.54, 0.53)

Canadian Weather

0 100 200 300
day

−30

−20

−10

0

10

20

te
m

p
e
ra

tu
re

 (
ºC

)

MBD 0

0 34

Int.D. 0

0 34

Multiple display

Figure 4.16: Hovering example with a Multiple Display.

scikit-fda: Interactive Visualization and Analysis Tools for Functional Data36

5
Conclusions and future work

Working in this project has resulted to be a very fulflling experience due to various reasons. The frst is

that when I searched for a fnal degree work I was very interested on the idea of working in a team with

different developers and people from multiple knowledge areas. This really helped me to learn how it

would be working in an open source software project and gave me experience using advanced tools

like GitHub to upload code, automatically test it or create pull requests and branches. Furthermore, I

feel like I contributed to the library in a very important part of it, which is the visualization of the data,

giving users more tools to use and have a better experience with the package.

I am also satisfed with the changes developed as I think the library is easier to use for the new-

comers thanks to the homogenization and standarization of the code corresponding to the visualization

section. I also feel that my coding style and documentation skills have improved drastically, as now I am

used to following strict coding rules, which will help me in my future profesional or research projects,

as it will be easier for the rest of people and even for me to understand my code. It also helped me to

discover an unknown world previously for me, Functional Data Analysis. I really got interested to it due

to the extense applications it can have in different felds like biology, engineering, economics, ect.

I think that the visualization area is very extense and in the future it could receive new features or

extra tools. One of the objectives of the project, was to make sure the software was easily scalable and

future developers could use the structure I designed to continue adding new plots. An interesting new

graphic that could be added is the LasagnaPlot [40], which is a different representation used to view

how the different curves of a sample are aligned. It would be interesting to see how this plot (heatmap)

could interact with the interactivity module and trying to search for new functionality to be added. This

functionality could help us interact with other kinds of graphics and try to make our interactivity module

compatible with as much different types of plots as possible. Apart from this, a logical expansion of

the ParametricPlot would be extending this functionality to three dimensions so it would be possible

to parameterize curves in a 3 dimensional space (functions with type f : R −→ R3). In the design

aspect, late in the project it was also considered implementing the Composite design pattern [41] for

the visualization module, in which the MultipleDisplay object would be also a BasePlot. It was not fnally

implemented in this project because there weren’t many use cases where it would be used and the cost

of developing it was high, but in the future it could be added. Another interesting new feature, would

Conclusions and future work

be generalizing the text that can be added to the plots and subplots (titles, labels, etc.) so that it can

be controlled by the user. To end with future work, I should highlight that in a few years new widget

libraries may appear or Matplotlib could be expanded, so it would be great to look for the possibility of

having more types of widgets available that work in every Python backend, as the current ones.

To sum up, I feel like during this project I have managed to apply multiple competences that I

acquired while studying my degree like coding, statistics, software engineering or machine learning. I

also think that thanks to it I could expand my knowledge beyond computer science and explore other

interesting areas like FDA.

scikit-fda: Interactive Visualization and Analysis Tools for Functional Data38

Bibliography

[1] C. R. Carreño, “scikit-fda: A python package for functional data analysis.,” III International Work-

shop on Advances in Functional Data Analysis, 2019.

[2] P. Virtanen, R. Gommers, and S. et al., “SciPy 1.0: Fundamental Algorithms for Scientifc Comput-

ing in Python,” Nature Methods, vol. 17, pp. 261–272, 2020.

[3] “Github: Gaa-uam / scikit-fda.” https://github.com/GAA-UAM/scikit-fda, 2018.

[4] J. Ramsay and B. Silverman, Functional Data Analysis. Springer-Verlag New York, 2005.

[5] F. Ferraty and P. Vieu, Nonparametric Functional Data Analysis. Springer-Verlag New York, 2006.

[6] F. S. e. a. J. Goldsmith, “refund: Regression with functional data.” https://cran.r-project.
org/web/packages/fda.usc/index.html, 2012.

[7] S. G. J.O. Ramsay and G. Hooker, “fda: Functional data analysis.” https://www.psych.
mcgill.ca/misc/fda/software.html, 2017.

[8] J. D. Tucker, “fdasrvf: Elastic functional data analysis.” https://cran.r-project.org/
web/packages/fdasrvf/index.html, 2014.

[9] K. Hornik, “The comprehensive r archive network.” https://cran.r-project.org/.

[10] C. R. Carreño, A. Suárez, J. L. Torrecilla, M. C. Berrocal, P. M. Manchón, P. P. Manso, A. H.

Bernabé, D. G. Fernández, Y. Hong, and P. M. R.-P. Eyriès, “Gaa-uam/scikit-fda: Version 0.5,”

Dec. 2020.

[11] A. Hernando, “Development of a python package for functional data analysis. depth measures,

applications and clustering,” 2019.

[12] “scikit-fda documentation.” https://fda.readthedocs.io/en/latest/index.html,

2019.

[13] P. T. Inc., “Collaborative data science,” 2015.

[14] H. Wickham, ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016.

[15] L. Wilkinson, The Grammar of Graphics. Springer-VerlagBerlin, Heidelberg, 2005.

[16] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in Science & Engineering, vol. 9,

no. 3, pp. 90–95, 2007.

[17] C. Harris and S. v. d. W. e. a. K. Jarrod and, “Array programming with NumPy,” Nature, vol. 585,

2020.

[18] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-

hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and

E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Machine Learning Research,

vol. 12, pp. 2825–2830, 2011.

[19] MATLAB, version 7.10.0 (R2010a). Natick, Massachusetts: The MathWorks Inc., 2010.

https://github.com/GAA-UAM/scikit-fda
https://cran.r-project.org/web/packages/fda.usc/index.html
https://cran.r-project.org/web/packages/fda.usc/index.html
https://www.psych.mcgill.ca/misc/fda/software.html
https://www.psych.mcgill.ca/misc/fda/software.html
https://cran.r-project.org/web/packages/fdasrvf/index.html
https://cran.r-project.org/web/packages/fdasrvf/index.html
https://cran.r-project.org/
https://fda.readthedocs.io/en/latest/index.html

Bibliography

[20] M. Waskom, O. Botvinnik, D. O’Kane, P. Hobson, S. Lukauskas, D. C. Gemperline, T. Augspurger,

Y. Halchenko, J. B. Cole, J. Warmenhoven, J. de Ruiter, C. Pye, S. Hoyer, J. Vanderplas, S. Villalba,

G. Kunter, E. Quintero, P. Bachant, M. Martin, K. Meyer, A. Miles, Y. Ram, T. Yarkoni, M. L. Williams,

C. Evans, C. Fitzgerald, Brian, C. Fonnesbeck, A. Lee, and A. Qalieh, “mwaskom/seaborn: v0.8.1

(september 2017),” Sept. 2017.

[21] M. O. de la Fuente, “Functional data analysis using fda.usc package.” https://rpubs.com/
moviedo/fda_usc_introduction.

[22] H. L. Shang, “rainbow: An r package for visualizing functional time series.” https://journal.
r-project.org/archive/2011/RJ-2011-019/RJ-2011-019.pdf, 2011.

[23] H. L. Shang, “rainbow: Bagplots, boxplots and rainbow plots for functional data.” https://cran.
r-project.org/web/packages/rainbow/index.html, 2011.

[24] “tidyfun.” https://github.com/tidyfun/tidyfun.

[25] . M. G. Fraiman, R., “Trimmed means for functional data,” Nature Methods, vol. 10(2), pp. 419–440,

2001.

[26] R. J. López-Pintado S., “On the concept of depth for functional data,” Journal of the American

Statistical Association, vol. 104, pp. 718–734, 2009. Link.

[27] J. P. R.Y. Liu and K. Singh, “Multivariate analysis by data depth: Descriptive statistics, graphics

and inference (with discussion),” Ann. Statist, vol. 27, pp. 822–831, 1999.

[28] R. Liu and K. Singh, “A quality index based on data depth and multivariate rank test,” Journal of

the American Statistical Association, vol. 88, 1993.

[29] A. W. D. Kosiorowski, M. Bocian and Z. Zawadzki, “ddplot: Depth versus depth plot.” https:
//rdrr.io/cran/DepthProc/man/ddPlot.html.

[30] M. O. de la Fuente and M. F. Bande, “classif.dd: Dd-classifer based on dd-plot.” https://rdrr.
io/cran/DepthProc/man/ddPlot.html.

[31] A. Arribas-Gil and J. Romo, “Shape outlier detection and visualization for functional data: the

outliergram,” Biostatistics, vol. 15, pp. 603–619, oct 2014. Download.

[32] S. Y. and G. M. G.., “Functional boxplots,” Journal of Computational and Graphical Statistics,

vol. 20, pp. 316–334, 2011. Link.

[33] R. J. López-Pintado S., “On the concept of depth for functional data,” Journal of the American

Statistical Association, vol. 104, pp. 1679–1695, 2009. Link.

[34] R. J. López-Pintado S., “A half-region depth for functional data,” Computational Statistics Data

Analysis, vol. 55, pp. 1679–1695, 2011. Link.

[35] B. W. G. van Rossum and N. Coghlan, “Pep 8 – style guide for python code,” jul 2001.

[36] D. Goodger and G. van Rossum, “Pep 257 – docstring conventions,” may 2001.

[37] “ipywidgets.” https://ipywidgets.readthedocs.io/en/latest/, 2021.

[38] J. Nielsen, Usability Engineering: Amazon.de: Jakob Nielsen: Englische Bücher. 2012.

[39] S. A. S. LaZerte and N. Brown, “Package ‘weathercan’.” https://cran.r-project.org/

web/packages/weathercan/weathercan.pdf, jan 2021.

scikit-fda: Interactive Visualization and Analysis Tools for Functional Data40

https://rpubs.com/moviedo/fda_usc_introduction
https://rpubs.com/moviedo/fda_usc_introduction
https://journal.r-project.org/archive/2011/RJ-2011-019/RJ-2011-019.pdf
https://journal.r-project.org/archive/2011/RJ-2011-019/RJ-2011-019.pdf
https://cran.r-project.org/web/packages/rainbow/index.html
https://cran.r-project.org/web/packages/rainbow/index.html
https://github.com/tidyfun/tidyfun
https://amstat.tandfonline.com/doi/abs/10.1198/jasa.2009.0108#.YHXLV-gzaUk
https://rdrr.io/cran/DepthProc/man/ddPlot.html
https://rdrr.io/cran/DepthProc/man/ddPlot.html
https://rdrr.io/cran/DepthProc/man/ddPlot.html
https://rdrr.io/cran/DepthProc/man/ddPlot.html
https://watermark.silverchair.com/kxu006.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAArYwggKyBgkqhkiG9w0BBwagggKjMIICnwIBADCCApgGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMyaE7bhpmOANThAiIAgEQgIICaZR0-JqtuYyQR0TTwNxHrje3VyO2P3jxoERZplAUclvCArv1bIsWiK6m4Lkj3B09kYotyC1F72aHpbZU1Kwxnrh0-IM8Tdj0VjD-_LKcYy8TPCK3p8BGRF_56qHWo4G2mepb5FPxGW_kE37b10CJA_jdHbq2MK0fH09aPS-YOHx3J6WQVcuoj_X7MI_Y6dK2DhHHtdL5r5OYSdJF6Ink2SdqVPAwyhO4QPZ-C8E6prxHIkpTHzVY-Zf_hYmlwu2eoLcflwnVDsp2TfmODzb8uHx9Ez9PCWTr24E31usO6qR8RjPXQefyVL-RDp9o44hNPuqQaSEAoGUJjkhxYJWs7i76EnUqS1FvHfLnFnaqnCkecnNTPUWLa0bBSxw_ILD_sc69jLLyX1XA3dx3_y-AHo4fAiih-2E2Hav5IteQ07kB7-DI0hHjuAcO3mJaM3zVPskc-CyONHrbYFtgtT8B8cSEtEEg9mMiIvsVtZ3-T0vlyInRkywKslh0Hf3D7RdekU-S-6TeeHjkdRZaBET10uikiV7-AEfd5Sm9WyhLlQK0BQ6puv2pEjCDI5WIYr-WoSwvqXy4u38Ge_uTZBo7w1xcqRe_NVHIdn-EfKB8ESzhOixcWqqmL89ZLxsrFoHiXqiljsn-CD_uVwjcUCNtanFu4s-fClEwTNDgaADfsFghYTi3zAyWaIMZH1iIW3mm4VLD0-ZLSiRrJbONDLNLxfKActEfEsAjUszI_e4WN9RappONr6kUX08Xq_dPbIMoqO1ZSBZRAqLzVwDdS0iZcUWSi4dUKp5qdRTen7Xys1LI_32LNwkDZoZn
https://amstat.tandfonline.com/doi/abs/10.1198/jasa.2009.0108#.YHXLV-gzaUk
https://amstat.tandfonline.com/doi/abs/10.1198/jasa.2009.0108#.YHXLV-gzaUk
https://www.sciencedirect.com/science/article/pii/S0167947310004123?casa_token=-HtKkMiNfMYAAAAA:bWdyFl41ZQByqq0f0XkMGQe5ZRJQ1YJJdaxC3jCDLmRQdPNYIaVXAapYOHCaW1VFG718rMIqH48
https://ipywidgets.readthedocs.io/en/latest/
https://cran.r-project.org/web/packages/weathercan/weathercan.pdf
https://cran.r-project.org/web/packages/weathercan/weathercan.pdf
https://Amazon.de
https://classif.dd

Bibliography

[40] J. Goldsmith, “Visualization.” https://tidyfun.github.io/tidyfun/articles/x04_
Visualization.html, may 2020.

[41] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides, Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley Professional, 1 ed., 1994.

[42] J. L. G. van Rossum and Langa, “Pep 484 – type hints,” sep 2014.

[43] I. L. e. a. R. Gonzalez, P. House, “Pep 526 – syntax for variable annotations,” aug 2016.

Álvaro Sánchez Romero 41

https://tidyfun.github.io/tidyfun/articles/x04_Visualization.html
https://tidyfun.github.io/tidyfun/articles/x04_Visualization.html

Appendices

A
Tools used

A.1 Wemake-python-styleguide

To succeed in our mission of creating a standard, understandable and effcient code, during this year

we started following wemake-python-styleguide (WPS). This styleguide is a fake8 plugin which has as

its goal to enforce the programmers of the library to follow the best code practices. The plugins and

libraries used in the linter (tool used to analyze code and detect any kind of error) are specifed in the

setup.cfg fle. This fle also contains exceptions and other additional information related with linting. For

the installation of the WPS tool, a new post in the wiki was created (this was done by other student in

the project, Pedro Martín Rodríguez) and it will be useful for future developers of the tool, as GitHub

does automatic style WPS tests every time a pull request is updated. The main goals of using this linter

are fnding style errors, bugs, revising complexity of methods or classes to make a more maintanable

and scalable code and making developers use good coding practices.

This are the following tools used in WPS:

• Flake8 is a common linting tool used in python to avoid errors, correct style errors and write

a higher quality code, which is in our case very important. It makes sure the standards already

mentioned related with coding and documenting are properly followed.

• isort is a library specialized on making sure the the imports are divided in groups, sorted

alphabetically and have the proper spaces between them. This is done for a better compre-

hension of the code and its imports.

• Mypy is a static type checker, which uses the Python3 annotations of PEP 484 [42] and

PEP 526 [43]. Even if Python has the "advantage" of not having to indicate the type of the

variables, in big and complex codebases like ours, it really helps. For such a big project

like scikit-fda it gives multiple advantages like improving the comprehension of the library for

other developers or the users of the library, better debugging, reducing the effort made by

future developers and catching errors faster. As the arguments and outputs of the different

functions are typed, if a function receives an incorrect type, the error will be detected before

the code is executed.

Tools used

There are two main ways to type our code, nominal and structural subtyping. The frst is the

most common and the most used during the project, as it checks the compatibility of types

based on the hierarchy of classes. The second one is based on classes sharing the attributes

and methods specifed. To use structural subtyping it is common to use predefned Protocols

(which are classes that defne the methods and attributes that need to be shared) or defne

our own protocols, giving us a lot of fexibility in typing.

A.2 Testing

Due to the high amount of potential collaborators an open-source software project has it is basic to have

a good testing framework. In our case there are two testing frameworks, the most famous in Python:

unittest and pytest.

• unittest : this package is inspired on JUnit, a testing framework for Java programming lan-

guage. Its way of testing is (as you may imagine by its name) unitary testing. Unitary tests,

are used to check the correct functionality of elementary parts of our code (units). As the

software is object-oriented, these basic elements could be the classes designed. To test all

of our code unittest provides us with different types of tests: test cases, which are the most

fundamental ones; test suites, that are collections of test cases or test suites, and used to

test different functionalities in one execution; test fxtures, which are used to do elementary

actions needed to do the tests (creating and populating a database or starting a server) and

test runners which are used to combine all of them and get a fnal result for the user.

• pytest : despite almost all of the test had been developed with the other framework and it

has its own way of executing all the test, in this project I have been using pytest to execute

all the tests as it has better reporting features. These features include complete information

about errors that have happened when testing (giving us information to trace them), the ability

of being combined with unittest and an extense collection of plugins.

To make sure that all the project has been properly tested, I have been using Codecov, a tool that

realizes code coverage tests, giving a visual measurement of what parts of our code are being covered

by our test suites. Thanks to this, it is known which parts need more tests and the total code coverage.

These calculations are automated in our GitHub repository when making pull-requests.

A.3 Documentation

In order to obtain the best documentation of the project, I used the tool Sphinx, a Python document

generator under the BSD license. Thanks to this tool our code and documentation is transformed from

scikit-fda: Interactive Visualization and Analysis Tools for Functional Data46

A.4. GitHub

reStructuredText into other formats like PDF or HTML. This is very useful as it allows us to display in

the projects API examples explaining how the classes work. Moreover, as the library can result diffcult

at frst for beginners, they can check the code from the website thanks to Sphinx and even download it

as a Python fle or a notebook. To review this online examples, I use doctests that revise the docstrings

in order to view if the examples they have are updated with the current code, so the documentation is

coherent with the changes.

A.4 GitHub

The tool used in the project to store and develop our code is GitHub. This code repository allows

users to work collaboratively using the Git version control system. It allows the creation of private or

public repositories depending on the aim of the project. In the second case, any person can create pull

request to try to add new features to your code, what makes this a perfect place to develop an open-

source software. Besides, GitHub can use external bots that are activated when new code is uploaded

to a pull request. In our case, the repository has multiple bots to test the test coverage of the code

(Codecov), do automated style tests (wemake-python-styleguide) and ensure continuous integration

(Travis CI).

Álvaro Sánchez Romero 47

B
Usability test

In this section of the appendix, I will explain the usability test done to one of the developers of the library,

Carlos Ramos. The technique used in this test is Thinking Aloud, in which the user does specifc chores

defned by the tester. While the user is doing that, he is supposed to express how he is feeling with

the software, possible doubts or questions about the program. It is important to take into account when

doing this test, who is the subject and what can be expected of them, to extract the best conclusions of

the process.

The user will be analyzing the visualization module and was asked to do the next chores:

• Download the branch containing the upgraded module.

• Create a notebook and represent the Canadian weather dataset using the new functionality

(GraphPlot).

• Create the outliergram that represents the temperature functions of the Canadian weather

dataset.

• Create an interactive display combining the outliergram and a representation of the dataset.

• Interact with the outliergram selecting the point with the lowest Modifed Band Depth, that

can be identifed thanks to the axes.

• Hover the points that are considered shape outliers to get their position and id.

• Pick the outlier points with the mouse in order to check that the shape they expose is atypical.

During the test, I took down all what he said and reached the following conclusions:

• The user experiences certain discomfort with Matplotlib and the fact that when creating the

fgure when initializing a BasePlot they are always plotted. Anyway this can’t be solved by us

as this is a problem of the library.

• He is satisfed with the colors and how the Outliergram object is displayed. He also is satis-

fed with the precision of the parabolas computed.

• He feels comfortable with the homogeneous way of creating and plotting visualization ob-

jects.

Usability test

• He suggests the possibility of adding parameters that can specify the colors of any plot. This

has been added to the future work of the project.

• He feels comfortable with the way of interacting with points clicking them and shows no

problems using the tool despite being the frst time.

• He achieves all the tasks without any problem and feels satisfed with how he can get insights

thanks to the Multiple Display.

• He fnds useful for users the possibility to get in a fast way the id of a sample just by hovering

it.

• He made suggestions to the titles and labels of the different subplots. Thanks to this I

modifed it and decided to have as title the name of the dataset.

scikit-fda: Interactive Visualization and Analysis Tools for Functional Data50

C
Gantt Chart

Gantt Chart created for the organization of the project. In it I included the initial research studies done

about Functional Data Analysis, to get a good basis about this area of statistics, and about the most

advanced visualization and interactive tools that exist and could ft in the scikit-fda project. Afterwards,

I added all the functional requirements that needed to be implemented. Finally the time expected for

the creation of the fnal version of the document, considering that during development of the Functional

Requirements previous temporary documents where created.

Figure C.1: Gantt Chart.

Gantt Chart

Figure C.2: Gantt Chart.

Figure C.3: Gantt Chart.

scikit-fda: Interactive Visualization and Analysis Tools for Functional Data52

D
Notebooks

This section contains the notebooks developed for each of the different functionalities created in the

project. They contain annotations and simulations done with the new tools of the package.

Notebooks

OutliergramExamples

May 15, 2021

[1]: from skfda import datasets

from skfda.exploratory.visualization import Outliergram

import matplotlib.pyplot as plt

First, the dataset is loaded. In this case, the Canadian Weather dataset from package ‘fda’ in CRAN
is selected. In the experiment, the outliergram cointains the curves representing the temperatures
of different weather stations along the year. There are 365 measures, one for each day of the year.

[2]: dataset = datasets.fetch_weather()

fd = dataset["data"]

fd_temperatures = fd.coordinates[0]

In the next graphic it can be observed the functions representing the dataset, with the outliergram
our objective is to detect curves with an atypical shape.

[3]: fig = fd_temperatures.plot()

1

scikit-fda: Interactive Visualization and Analysis Tools for Functional Data54

There are two shape outliers, the one lying below the dashed parabola.

[4]: fig = Outliergram(fd_temperatures).plot()

2

Álvaro Sánchez Romero 55

Notebooks

In the next example, the Handwrit dataset also from ‘fda’ is loaded. It contains the evolution of
X and Y coordinates along time while writing the word fda. This dataset was preprocessed by
its author so its curves do not represent magnitude outliers. This helps in the detection of shape
outliers.

[5]: dataset = datasets.fetch_handwriting()

fd_x = dataset['data'].coordinates[0]

fd_y = dataset['data'].coordinates[1]

[6]: fig, axes = plt.subplots(2)

fd_x.plot(ax = axes[0])

fig = fd_y.plot(ax = axes[1])

3

scikit-fda: Interactive Visualization and Analysis Tools for Functional Data56

The outliergram in the next cases is much flatter and doesn’t have magnitude outliers as the MBD
is very high. There aren’t any shape outliers in any of the two next outliergrams as no point is
under the dashed parabola.

[7]: fig = Outliergram(fd_x).plot()

4

Álvaro Sánchez Romero 57

Notebooks

[8]: fig = Outliergram(fd_y).plot()

5

scikit-fda: Interactive Visualization and Analysis Tools for Functional Data58

6

Álvaro Sánchez Romero 59

Notebooks

DDPlotExamples

May 17, 2021

[1]: %matplotlib inline

[2]: # Author: Álvaro Sánchez Romero

sphinx_gallery_thumbnail_number = 2

from skfda import datasets

from skfda.exploratory.depth import IntegratedDepth

from skfda.exploratory.depth import ModifiedBandDepth

from skfda.exploratory.visualization import DDPlot

import matplotlib.pyplot as plt

import numpy as np

First, the dataset is loaded. In this case, the Canadian Weather dataset from package ‘fda’ in CRAN
is selected. In the experiment, the outliergram cointains the curves representing the temperatures
of different weather stations along the year. There are 365 measures, one for each day of the year.

[3]: dataset = datasets.fetch_weather()

fd = dataset["data"]

fd_temperatures = fd.coordinates[0]

The dataset is divided in different categories depending on the climate the station belongs to. In
this example the sample is divided depending on its climate.

[4]: artic_elements = []

atlantic_elements = []

continental_elements = []

pacific_elements = []

for i in range(fd_temperatures.n_samples):

if dataset["target"][i] == 0:

artic_elements.append(i)

if dataset["target"][i] == 1:

atlantic_elements.append(i)

if dataset["target"][i] == 2:

continental_elements.append(i)

if dataset["target"][i] == 3:

pacific_elements.append(i)

1

scikit-fda: Interactive Visualization and Analysis Tools for Functional Data60

fd_temp_artic = fd_temperatures[artic_elements]

fd_temp_atlantic = fd_temperatures[atlantic_elements]

fd_temp_continental = fd_temperatures[continental_elements]

fd_temp_pacific = fd_temperatures[pacific_elements]

Representation of the artic temperatures.

[5]: fig = fd_temp_artic.plot()

Representation of the atlantic temperatures.

[6]: fig = fd_temp_atlantic.plot()

2

Álvaro Sánchez Romero 61

Notebooks

Representation of the continental temperatures.

[7]: fig = fd_temp_continental.plot()

3

scikit-fda: Interactive Visualization and Analysis Tools for Functional Data62

Representation of the pacific temperatures.

[8]: fig = fd_temp_pacific.plot()

4

Álvaro Sánchez Romero 63

Notebooks

The DDPlot functionality can be tested with different depth methods, the following examples
use Integrated Depth and Modified Band Depth, respectively. These two graphics compare the
atlantic sample with two distributions, the pacific and continental datasets. Thanks to the DDPlot
similarities between the datasets can be detected.

[9]: int_depth = IntegratedDepth()

dd_plot_int1 = DDPlot(fd_temp_atlantic, dist1 = fd_temp_pacific, dist2 =

↪→fd_temp_continental, depth_method = int_depth)

fig = dd_plot_int1.plot()

5

scikit-fda: Interactive Visualization and Analysis Tools for Functional Data64

[10]: mbd = ModifiedBandDepth()

dd_plot_mbd1 = DDPlot(fd_temp_atlantic, dist1 = fd_temp_pacific, dist2 =

↪→fd_temp_continental, depth_method = mbd)

fig = dd_plot_mbd1.plot()

6

Álvaro Sánchez Romero 65

Notebooks

These two graphics compare the atlantic sample with two distributions, itself and continental
datasets. As it is logical, almost all of the points are more similar to the atlantic distribution, but
two of them have higher depths with the continental one. This might be because they are outliers.

[11]: dd_plot_int2 = DDPlot(fd_temp_atlantic, dist1 = fd_temp_atlantic, dist2 =

↪→fd_temp_continental, depth_method = int_depth)

fig = dd_plot_int2.plot()

7

scikit-fda: Interactive Visualization and Analysis Tools for Functional Data66

[12]: dd_plot_mbd2 = DDPlot(fd_temp_atlantic, dist1 = fd_temp_atlantic, dist2 =

↪→fd_temp_continental, depth_method = mbd)

fig = dd_plot_mbd2.plot()

8

Álvaro Sánchez Romero 67

Notebooks

These two graphics compare the atlantic sample with two distributions, both of them are itself.
This results on a straight line of points, as the depth of every instance is equal.

[13]: dd_plot_int3 = DDPlot(fd_temp_atlantic, dist1 = fd_temp_atlantic, dist2 =

↪→fd_temp_atlantic, depth_method = int_depth)

fig = dd_plot_int3.plot()

9

scikit-fda: Interactive Visualization and Analysis Tools for Functional Data68

[14]: dd_plot_mbd3 = DDPlot(fd_temp_atlantic, dist1 = fd_temp_atlantic, dist2 =

↪→fd_temp_atlantic, depth_method = mbd)

fig = dd_plot_mbd3.plot()

10

Álvaro Sánchez Romero 69

Notebooks

11

scikit-fda: Interactive Visualization and Analysis Tools for Functional Data70

ParametricPlotExamples

May 17, 2021

[1]: # Author: Álvaro Sánchez Romero

from skfda import datasets

from skfda.exploratory.visualization import ParametricPlot

from skfda.representation import FDataGrid

import math

import matplotlib.pyplot as plt

import numpy as np

In the first example, the parameterization is done with xˆ3 and its derivative. Both of them are
functions with domain 1 and codomain 1, so they can be accepted by the ParametricPlot, that will
join them as coordinates to parameterize them.

[2]: x = np.arange(-20,21)

function = lambda x: x ** 3

derivative = lambda x: 3 * (x ** 2)

[3]: array_f = np.vectorize(function)

f1 = array_f(x)

array_d = np.vectorize(derivative)

f2 = array_d(x)

fd_func = FDataGrid(f1, x, coordinate_names = ("f(x)",))

fd_der = FDataGrid(f2, x, coordinate_names = ("f'(x)",))

The curves to be parameterized are shown in the next graphic.

[4]: fig = plt.figure()

fd_func.plot(fig)

fig = fd_der.plot(fig)

1

Álvaro Sánchez Romero 71

Notebooks

The ParametricPlot gives us the next result when parameterizing the last curves.

[5]: parametric_plot1 = ParametricPlot(fd_func, fd_der)

fig = parametric_plot1.plot()

2

scikit-fda: Interactive Visualization and Analysis Tools for Functional Data72

In the second example, the parameterization is done with trigonometric functions as sen(x) and
cos(x). Both of them are functions with domain 1 and codomain 1, so they can be accepted by the
ParametricPlot, that will join them as coordinates to parameterize them.

[6]: x = np.arange(-100,100)

x = x / 8

sen1 = lambda x: math.cos(x)

sen2 = lambda x: math.sin(x)

[7]: array_s1 = np.vectorize(sen1)

f3 = array_s1(x)

[8]: array_s2 = np.vectorize(sen2)

f4 = array_s2(x)

[9]: fd_s1 = FDataGrid(f3, x, coordinate_names = ("f(x)",))

fd_s2 = FDataGrid(f4, x, coordinate_names = ("g(x)",))

Their representation can be seen in the next graphic:

[10]: fig = plt.figure()

fd_s1.plot(fig)

fig = fd_s2.plot(fig)

Due to their form the result of their parameterization are loops, in this case a circle.

3

Álvaro Sánchez Romero 73

Notebooks

[11]: parametric_plot_sen = ParametricPlot(fd_s2, fd_s1)

fig = parametric_plot_sen.plot()

The next example tests uses two curves, a function of codomain of dimension 2.

[12]: data_matrix = [[[1, 0.3], [2, 0.4]], [[-1, -2], [3, 2]]]

grid_points = [2, 4]

fd_comb = FDataGrid(data_matrix, grid_points, coordinate_names = ("f1", "f2"))

[13]: fig = fd_comb.plot()

4

scikit-fda: Interactive Visualization and Analysis Tools for Functional Data74

The result of their parameterization can be seen in the next graph:

[14]: parametric_plot2 = ParametricPlot(fd_comb)

fig = parametric_plot2.plot()

5

Álvaro Sánchez Romero 75

Notebooks

In the next example the Gait dataset is loaded (‘fda’ package from CRAN). This dataset represents
the hip angles and knee angles of different children while walking.

[15]: dataset = datasets.fetch_gait()

fd_hip = dataset['data'].coordinates[0]

fd_knee = dataset['data'].coordinates[1]

The next graphic has the representation of the gait cycle of the children in the dataset.

[16]: fig, axes = plt.subplots(2)

fd_hip.plot(ax = axes[0])

fig = fd_knee.plot(ax = axes[1])

The mean is calculated to compare in a graph the parameterization of a single child hip and knee
angles with the one done with the average of all the instances. Thanks to this it will be easier to
detect anomalies.

[17]: fd_hip_mean = fd_hip.mean()

fd_knee_mean = fd_knee.mean()

This is the result of the parameterization of the mean and one children.

6

scikit-fda: Interactive Visualization and Analysis Tools for Functional Data76

[18]: parametric_plot_el = ParametricPlot(fd_hip[4], fd_knee[4])

parametric_plot_el.plot()

parametric_plot_mean = ParametricPlot(fd_hip_mean, fd_knee_mean, fig =

↪→parametric_plot_el.fig)

fig = parametric_plot_mean.plot()

In the next example it can be seen the parameterization of the whole dataset.

[19]: fig = ParametricPlot(fd_hip, fd_knee).plot()

7

Álvaro Sánchez Romero 77

Notebooks

In the next example the Handwrit dataset is loaded (‘fda’ package from CRAN). This dataset
represents the X and Y coordinates obtained while drawing fda.

[20]: dataset = datasets.fetch_handwriting()

[21]: fd_x = dataset['data'].coordinates[0]

fd_y = dataset['data'].coordinates[1]

[22]: fig, axes = plt.subplots(2)

fd_x.plot(ax = axes[0])

fig = fd_y.plot(ax = axes[1])

8

scikit-fda: Interactive Visualization and Analysis Tools for Functional Data78

As both curves represent the evolution of the coordinates over time, if both of them are parame-
terized the word fda can be seen.

[23]: fig = ParametricPlot(fd_x, fd_y).plot()

9

Álvaro Sánchez Romero 79

Notebooks

10

scikit-fda: Interactive Visualization and Analysis Tools for Functional Data80

GraphPlotExamples

May 15, 2021

[1]: # Author: Álvaro Sánchez Romero

sphinx_gallery_thumbnail_number = 2

from skfda.exploratory.depth import ModifiedBandDepth

from skfda.exploratory.depth import IntegratedDepth

from skfda.exploratory.visualization.representation import GraphPlot

First, the dataset is loaded. In this case, the Canadian Weather dataset from package ‘fda’ in CRAN
is selected. In the experiment, the outliergram cointains the curves representing the temperatures
of different weather stations along the year. There are 365 measures, one for each day of the year.

[2]: from skfda import datasets

dataset = datasets.fetch_weather()

fd = dataset["data"]

fd_temperatures = fd.coordinates[0]

Thanks to the new feature added, it is possible to represent our data with a gradient of colors that
depends on a criteria. This criteria in our example is the computation of the Integrated Depth,
allowing the user to see the centrality of the different curves represented.

[3]: depth_in = IntegratedDepth()

graph_integrated_depth = GraphPlot(fd_temperatures, depth_in(fd_temperatures))

fig = graph_integrated_depth.plot()

1

Álvaro Sánchez Romero 81

Notebooks

Representation of the temperature curves using as criteria the Modified Band Depth.

[4]: mbd = ModifiedBandDepth()

graph_mbd = GraphPlot(fd_temperatures, mbd(fd_temperatures))

fig = graph_mbd.plot()

2

scikit-fda: Interactive Visualization and Analysis Tools for Functional Data82

3

Álvaro Sánchez Romero 83

	Introduction
	Goals and scope
	Document structure

	State of the art
	Visualization software
	Plotly
	Ggplot2
	Matplotlib
	Seaborn

	Functional Data Analysis
	scikit-fda
	Visualization and tools for functional data analysis
	Depth measures
	Integrated Depth
	Band Depth
	Modified Band Depth
	Modified Epigraph Index

	DD Plot
	Parametric Plot
	Outliergram
	Relationship between MBD and MEI
	Shape outlier detection

	Software development
	Analysis
	Design
	BasePlot Class
	Outliergram Class
	DDPlot Class
	ParametricPlot Class
	GraphPlot Class
	Rest of plotting classes
	MultipleDisplay class

	Implementation
	Testing
	Integration
	Licenses

	Results
	Outliergram
	DD Plot
	Parametric Plot
	Graph Plot with gradient of colors
	Multiple Display

	Conclusions and future work
	Bibliography
	Appendices
	Tools used
	Wemake-python-styleguide
	Testing
	Documentation
	GitHub

	Usability test
	Gantt Chart
	Notebooks

