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• AI predicts future episodes of atrial fibril-
lation from sinus-rhythm 12-lead ECGs.

• The effect of patients’ age and time win-
dows on neural networks predicting AF.

• Longitudinal analysis reveals common pat-
terns in the development of AF.
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Objective: Artificial Intelligence (AI) in electrocardiogram (ECG) analysis helps to identify persons at 
risk of developing atrial fibrillation (AF) and reduces the risk for severe complications. Our aim is to 
investigate the performance of AI-based methods predicting future AF from sinus rhythm (SR) ECGs, 
according to different characteristics of patients, time intervals for prediction, and longitudinal measures.
Methods: We designed a retrospective, prognostic study to predict AF occurrence in patients from 12-
lead SR ECGs. We classified patients in two groups, according to their ECGs: 3,761 developed AF and 
22,896 presented only SR ECGs. We assessed the impact of age on the overall performance of deep 
neural network (DNN)-based systems, which consist in a variation of Residual Networks for time series. 
Then, we analysed how much in advance our system can predict AF from SR ECGs and the performance 
for different categories of patients with AUC and other metrics.
Results: After balancing the age distribution between the two groups of patients, our model achieves 
AUC of 0.79 (0.72-0.86) without additional constraints, 0.83 (0.76-0.89) for ECGs recorded in the last 
six months before AF, and 0.87 (0.81-0.93) for patients with stable AF risk measures over time, with 
sensitivity of 90.62% (80.70-96.48) and diagnostic odd ratio of 20.49 (8.56-49.09).

Abbreviations: AI, Artificial Intelligence; ECG, Electrocardiogram; AF, Atrial Fibrillation; SR, Sinus Rhythm; DNN, Deep Neural Network; AUC, Area Under the Curve; DOR, 
Diagnostic Odd Ratio; CI, Confidence Interval; IQR, Interquartile Range.
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Conclusion: This study shows the ability of DNNs to predict new onsets of AF from SR ECGs, with the 
best performance achieved for patients with stable AF risk score over time. The introduction of this time-
based score opens new possibilities for AF prediction, thanks to the analysis of long-span time intervals 
and score stability.
© 2023 AGBM. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND 

license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).
1. Introduction

Atrial fibrillation (AF) is one of the most common sustained ar-
rhythmias, increasing the risk of strokes [1], heart failure [2], and 
other heart-related complications [3]. AF is often asymptomatic 
and can be undiagnosed until a first manifestation of stroke [4,5]. 
Identifying individuals at risk of developing AF and providing ap-
propriate treatment can reduce mortality and strokes, as well as 
cut healthcare costs [6].

Electrocardiograms (ECGs) hold meaningful information that 
can significantly aid in estimating AF risk [7]. Over the years, many 
techniques for predicting AF have emerged, based on ECG analy-
sis. Traditional techniques involve the processing of discrete ECG 
features with machine learning classifiers [8,9]. These methods 
only rely on partial ECG information and require a time-consuming 
phase, also prone to errors, to handcraft features [10].

In contrast, deep neural networks (DNNs) autonomously learn 
representative and robust features from ECG signals, to replace or 
complement traditional handcrafted features. DNNs have demon-
strated their ability to detect subtle abnormalities derived from 
structural derangements in 12-lead ECGs [11]. Despite DNN-based 
ECG analysis has been explored in the literature to assess the risk 
of future AF, providing important results [12,13] and outperform-
ing traditional techniques, DNNs remain mostly black-box tools. 
Their integration into medical diagnosis, planning, and control re-
quires a higher level of trust in the machine’s capabilities [14].

In this study, we propose a new DNN-based system designed 
to process 12-lead raw ECGs recorded during normal sinus rhythm 
(SR) with the aim of predicting patients at risk of developing AF. 
Unlike previous works, we consider a variety of conditions for pa-
tients and ECGs, analysing our system capabilities as described in 
the following.

Firstly, we observe that AF prevalence in adults is closely linked 
to age, with numerous studies confirming the increase in incidence 
among elderly individuals [15–17]. In a previous study, we iden-
tified significant variations of performance when evaluating our 
system with ECGs from patients in diverse age groups [18]. In this 
study, we focus on disparities in age distribution between patients 
who developed AF and patients who did not. Specifically, we deter-
mine if AF prediction is feasible when age is not a distinguishing 
factor between the two groups of patients.

For patients who developed AF, we also hypothesise that AF 
prediction is more accurate when we consider ECGs collected in 
proximity to the day when AF was initially detected. ECGs recorded 
too early might not exhibit any signs of AF, while ECGs collected 
in the days immediately before AF may pertain to hospitalised pa-
tients who also suffered other diseases or underwent surgery. In 
the case of hospitalised patients, AF may be induced by causes be-
yond the scope of this work, for instance coronary artery bypass 
grafting surgery [19].

Finally, for every patient who developed AF, we conduct a lon-
gitudinal study based on their sequences of ECGs recorded over 
time. By considering the AF prediction computed for each ECG, we 
categorise these patients into five distinct groups, suggesting dif-
ferent diagnostic, prognostic, or therapeutic implications for each 
category [20]. This approach may reduce the occurrence of false 
predictions, whose consequences include the prescription of un-
necessary treatments, with possible side effects.
2

In summary, this study analyses the ability of our system to 
predict AF according to various factors, such as the age distribu-
tion of patients and the time span between the analysed ECG and 
their respective onsets of AF, up to eight years in advance. Further-
more, we conduct a longitudinal study for patients who developed 
AF, to identify common patterns in AF development and recom-
mend tailored treatment approaches. To the best of our knowledge, 
this study represents the first analysis of the temporal evolution of 
AF, quantified with a numerical score provided by a DNN-based 
model. Valuable findings in this area are expected to lead to the 
implementation of new strategies for AF screening in population.

2. Related works

The limited availability of suitable public databases hinders the 
development of DNN systems for predicting AF from ECGs recorded 
during SR. Public ECG databases have a small patient dataset [21], 
or focus on ECG classification into rhythm classes [22,23].

A review of publications from the past decade has been pub-
lished in 2022 [24] focusing on AF episode prediction, detection, 
and classification using wavelets and artificial intelligence (AI). We 
observe a scarcity of studies on AF prediction, with only one util-
ising DNNs [25]. However, such study was conducted with a small 
set of 139 ECG samples, from which 30-second segments were ex-
tracted and randomly divided for training and testing.

In the last years, valuable studies made significant advance-
ments in the field employing large private ECG databases to train 
DNNs. These studies demonstrated that using AI it is possible to 
diagnose the signs of AF at an early stage and predict the onset of 
AF attacks [12,13,26].

As stated by authors, the first DNN-based study to predict AF 
from ECGs recorded during SR employed a database composed of 
454,789 ECGs collected at the Mayo Clinic ECG laboratory (USA) 
between 1993 and 2017. Their DNN model was trained to predict 
new onsets of AF within 31 days and provided AUC of 0.87 dur-
ing evaluation [12]. Subsequently, other DNN-based systems were 
trained with a vast database of 1.6 M 12-lead ECGs from 430,000 
patients to predict new onsets of AF within one year, providing 
AUC of 0.85 [13]. However, compared to our study, these two 
works predicted AF in a period closer to its occurrence, and did 
not provide any insights into the features learnt by the network. 
This could be a drawback in clinical practice, where explainability 
is essential for healthcare professionals. Finally, these studies did 
not address the age distribution differences between healthy and 
unhealthy patients in their test sets.

Recently, a random forest was trained to predict the risk of de-
veloping AF within five years using a database composed of 1.1 M 
12-lead ECGs from 415,389 patients, achieving the highest AUC of 
0.91 [26]. However, it is important to note that the two groups of 
healthy and unhealthy patients used to develop the system exhib-
ited a significant difference in age distribution. As demonstrated 
in our experiments, the age distribution disparity can significantly 
influence the overall model performance.

The works described are the most relevant in the literature for 
comparison to our study. In another study, a DNN was used to in-
fer 5-year incident AF risk using 12-lead ECGs from patients under 
longitudinal primary care at Massachusetts General Hospital [27]. 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Rather than binary classification, the model proposed in [27] used 
a loss function accounting for the time distance from an AF event. 
The study makes a valuable contribution to existing research by 
introducing a deep learning model that explicitly considers time 
to AF outcome. However, there are significant differences in the 
design of the model that preclude direct comparison with the pre-
vious systems described above, as acknowledged by the authors. 
Additionally, in [27] it is shown that the combination of both clin-
ical risk factors and AI-based analysis of ECGs can increase the 
predictive accuracy. The obtained results, with AUC values between 
0.71 and 0.82 for different test sets, provide new evidence that 
ECG-derived risk estimates are generalizable, with predictive value 
maintained up to 5 years after an ECG is performed.

Two previous works utilised the same database as our current 
study. The first one predicted AF development using a Multivari-
ate Logistic Regression system with 33 variables, achieving AUC of 
0.80 [7]. This study also demonstrated that age and other vari-
ables related to P-wave are correlated with AF risk. In the second 
study, DNN-based systems were evaluated across various demo-
graphic patient groups, also providing graphical representations of 
the automatically learned features [18]. Our proposed study stands 
out from previous research in several ways. We deploy DNN-based 
systems for AF prediction with groups of patients well-balanced in 
terms of age. We also carry out a comprehensive analysis of time 
windows and establish strict criteria for selecting ECG data for 
evaluation. We consider ECGs recorded up to eight years before AF 
onset, excluding data that may introduce misleading effects, such 
as ECGs with artifacts or those from hospitalised patients.

Finally, we introduce a novel approach by conducting a longitu-
dinal study that examines the progression of AF scores generated 
by DNN models. The absence of this longitudinal study is con-
sidered a limitation in [26]. Existing longitudinal studies in the 
literature focus on the cumulative incidence of AF over years, typ-
ically categorising patients into various AF risk groups [28,29].

3. Methods

3.1. Study design and participants

This retrospective study utilises an ECG database collected 
from a large cohort of patients at La Princesa University Hospital 
(Madrid, Spain) between May 5, 2010 and February 4, 2019. The 
Clinical Ethics Committee from Hospital La Princesa approved this 
study with a waiver of obtaining informed consent from patients 
(Protocol number EC1835). The initial database contains 296,022 
12-lead ECGs from 122,394 patients. Each ECG has a sampling fre-
quency of 500 Hz and lasts approximately ten seconds. We follow 
the study design proposed in [18], summarised below.

We exclude from the study patients with missing age infor-
mation and patients with only one recorded ECG, not useful for 
our analysis. The remaining patients are 50,448 (25,558 female), 
with median age of 69 years (IQRs 53-80) and median number 
of ECGs equal to 3 (IQRs 2-5). We divide these patients into two 
groups: i) those who developed AF at least once along their clini-
cal history (11,707, AF patients), and ii) those who have exclusively 
presented SR ECGs along their clinical history (23,302, SR patients). 
Patients not belonging to any of these two categories (15,439) are 
discarded.

We use the automatic interpretations of ECG rhythm provided 
by the recording machine [30] to detect the presence of AF. Ac-
knowledging that automatic AF interpretations may be prone to 
errors [31], we employ a DNN-based ECG rhythm classifier to 
validate the AF interpretations made by the recording machine, 
avoiding the manual inspection of thousands of ECGs. DNN-based 
classifiers have demonstrated a high level of reliability, achieving 
AUC of 0.97 in the classification of 12 different ECG rhythms [32]. 
3

Inspired by [32], we deployed in-house a DNN-based classifier of 
ECG rhythms, to distinguish between ECGs presenting SR and AF. 
To train and evaluate our rhythm classifier, we use a set of ECGs 
with AF and SR rhythm, manually labelled by cardiologists at La 
Princesa University Hospital. We evaluate our DNN classifier with 
a test set of 190 ECG samples, that equally represents the two 
rhythms. The size of the test set is determined by the availabil-
ity of ECG samples labelled by cardiologists with AF rhythm, and 
results from the traditional split of 70%, 15%, 15% between train-
ing, validation, and testing data. Our DNN classifier achieves AUC of 
0.9986, with 95% CI between 0.9931 and 1.0000, providing strong 
evidence of the evaluation’s robustness.

For each patient who developed AF, we define the AF index date 
as the date in which the first episode of AF occurred. We anal-
yse 11,707 ECGs at AF index dates (i.e., one for each AF patient), 
and discard 3,066 patients (26%) whose ECG rhythm is not classi-
fied as AF by our DNN-based classifier. This approach ensures that 
we do not incorporate ECGs with potentially incorrect labels in our 
subsequent experiments, preventing misleading effects in our anal-
ysis. On the other side, we trust the automatic SR interpretations 
provided by the recording machine, and do not double-check the 
interpretation of SR data. In fact, a manual check performed at La 
Princesa University Hospital revealed that only two of 800 (0.25%) 
ECGs with automatic SR interpretation were inaccurately labelled 
[7].

Hereinafter, for both AF and SR patients, we only consider ECGs 
that present an automatic interpretation of “sinus rhythm”, accord-
ing to our goal of predicting AF from ECGs that exhibit no prior 
evidence of AF. Among the 58,949 ECGs belonging to AF patients 
whose ECG at AF index was positively checked (i.e., 8,641 patients), 
only 15,387 ECGs present an interpretation of “sinus rhythm” and 
can be used in the experiments.

For each patient in the SR group, we define the SR index date 
as the date of their last recorded ECG. In both groups we apply 
the following exclusion criteria: ECGs with age < 18 years, with 
extrasystoles, with atrial to ventricular ratio > 2 or < 1/2, with 
an average number of P waves per QRS complex �= 1, and with 
number of QRS complexes in the rhythm group higher than the 
average number of P waves per QRS complex. These rules are set 
to avoid atrial oversensing secondary to artifacts and to increase 
the specificity of SR diagnosis, according to a previous work [7]. As 
a result, we obtain: i) the AF group composed of 12,198 SR ECGs 
from 3,761 AF patients, and ii) the SR group composed of 64,829 
SR ECGs from 22,896 SR patients. A concise summary of the per-
formed operations is reported in Fig. 1.

3.2. Time windows

Time windows play a crucial role in our study, defining for 
each patient the temporal interval containing the ECGs of inter-
est, according to their AF or SR index date. We consider multiple 
consecutive time windows to evaluate our model. Their union re-
sults in a larger time window that includes, for each AF patient, all 
the SR ECGs recorded at least one week before the AF index date. 
This constraint is inspired by a previous work [7], and diverges 
from other studies [12,13,26]. Thisensures that we do not incorpo-
rate ECGs from hospitalised patients, whose AF might be induced 
by factors outside the scope of this work. ECGs recorded in the last 
week before AF index are only included in training sets to increase 
their size, but they are not used in any evaluation datasets. In total, 
we consider five intervals for AF prediction, evaluating the perfor-
mance of our model up to “more than two years” in advance, with 
ECGs recorded until 8 years before AF.

For each patient in SR group, we set a time window comprising 
ECGs recorded at least two years before the SR index date. This 
constraint increases the confidence that SR data employed in the 
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Fig. 1. Diagram flow of patients and ECGs - Data cleaning and creation of experimental datasets. In the first experiment, the number of test patients for the SR group remains 
the same in the three considered scenarios. In the second experiment, the number of test patients in the AF group is higher compared to the first experiment because ECGs 
from multiple time intervals need to be tested. AF=Atrial Fibrillation, ECG=Electrocardiogram, SR=Sinus Rhythm.
experiments are isolated from episodes of AF, which may not be 
part of the initial database. In Fig. 2 we provide an example of 
time window for patients in AF and SR groups.

3.3. Overview of the AI model

In our experiments we consider a DNN-based model and in-
vestigate its ability to predict AF from the different features au-
tomatically learned from 12-lead raw ECGs. We have made the 
model architecture available at https://github .com /eHealthUAM /
ECGpredictAF, along with the final weights used in our experi-
ments. The model considered in this study is the one that provides 
the best results in our previous study [18]. The model processes 
two-dimensional input signals: one-dimensional 10-second signals 
from 12 different leads. The bottom layers of our model are ob-
tained from a Residual Network for time series [33] (details in 
Supplemental Methods) and a fully connected layer that generates 
four aggregated features. They are concatenated with two numer-
ical values, representing the age and the sex of the patient, and 
processed by another fully connected layer that outputs the fi-
4

nal AF score, constrained in the [0, 1] interval. Our DNN model 
is trained to provide AF scores near 1 for ECGs belonging to pa-
tients who developed AF, and scores near 0 for ECGs from patients 
with exclusively ECGs recorded during SR.

3.4. Experiments

In the first experiment, we assess the model performance by 
training and evaluating it using datasets with distinct age distri-
butions. The goal of this experiment is to analyse the effect of 
different age distributions on AF prediction. We predict AF in the 
smallest time window of the study, that contains ECGs recorded 
between two months and one week before the first AF episode, 
and consider three different scenarios, in which we keep the same 
data for the AF group and constantly change data for the SR group. 
In the first scenario we randomly sample SR data, in the second 
scenario we sample SR data to match the age distributions of AF 
patients, and in the third scenario we consider SR patients that 
are in average younger than all the previously considered sets of 
patients. We verify that the age distributions of AF and SR pa-

https://github.com/eHealthUAM/ECGpredictAF
https://github.com/eHealthUAM/ECGpredictAF
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Fig. 2. Time windows for AF patients and SR patients – Representation of ECG included and excluded from time window for patients in AF group (above) and SR group 
(below).
Table 1
Details on the test sets for Experiment 2. Number of patients, ECGs, and median age 
for different time windows for AF data. For each time window, the same SR group 
is considered. AF=Atrial Fibrillation, SR=Sinus Rhythm.

Test subsets Patients ECGs Age (yr)

AF, more than 2 years 504 939 79 (71-84)
AF, 1 year to 2 years 208 294 82 (75-87)
AF, 6 months to 1 year 88 117 83 (76-88)
AF, 2 months to 6 months 64 85 82 (73.75-87)
AF, 1 week to 2 months 58 83 82.5 (74-86.75)
SR group 609 1315 77 (76-81)

tients considerably affect the model performance. In subsequent 
experiments, we exclusively work with datasets characterized by 
balanced age distributions between the two patient groups, to ex-
plore factors other than patient age [7].

The second experiment assesses the model performance in pre-
dicting AF risk using ECGs from five consecutive time windows, 
covering a period up to one week before the occurrence of AF. The 
goal is to analyse the prediction performance from more than 2 
years up to one week before AF. We train our model with an age-
balanced dataset that equally represents the different time win-
dows. Each time window is evaluated with a specific AF group and 
the same SR group, to obtain a fair comparison of results. The con-
sidered AF and SR groups present identical age distributions. The 
number of patients and ECGs considered for each group in the sec-
ond experiment are reported in Table 1. AF patients may appear in 
the test sets of multiple time windows, leading to a cumulative 
number of AF patients higher than the number reported in Fig. 1
(i.e., 650 patients).

In the last experiment, we focus on the evolution of AF his-
tory in patients. ECGs are a convenient, cost-effective, non-invasive, 
and accessible diagnostic tool, often included in routine patient ex-
aminations. Consequently, patients typically undergo multiple ECGs 
over time. Our model provides a measure of AF risk (AF score) for 
each ECG sample, enabling us to perform a longitudinal study.

We define five categories of patients presenting the following 
characteristics: i) only one ECG, ii) at least three months between 
consecutive ECGs (“distant ECGs”) and stable AF score, iii) at least 
three months between consecutive ECGs and unstable AF score, iv) 
less than three months between consecutive ECGs (“close ECGs”) 
and stable AF score, and v) less than three months between con-
secutive ECGs and unstable AF score. The number of patients, ECGs, 
5

Table 2
Details on the test sets for Experiment 3. Number of patients, ECGs, and median 
age for different time windows for AF data. For each time window, the same SR 
group is considered (patients with a single ECG recorded at least two years before 
SR index). ECGs in AF groups are recorded in the last two years before AF episodes. 
AF=Atrial Fibrillation, SR=Sinus Rhythm.

Test subsets Patients ECGs Age (yr)

AF, Single ECG 83 83 82 (71.5-87.5)
Distant ECGs, stable AF score 64 96 82.75 (75.75-88)
Distant ECGs, unstable AF score 43 65 82 (75.5-86.75)
Close ECGs, stable AF score 38 101 83.5 (75.8-87)
Close ECGs, unstable AF score 65 234 82.25 (74.5-87)
SR group 312 312 77 (76-82)

and the median age of patients for each AF and SR category are 
reported in Table 2 (only ECGs recorded in the last two years be-
fore AF are considered here). We define the AF score stable for a 
specific patient when the gap between their maximum and mini-
mum AF scores is 0.15 or less. We select this threshold as suitable 
to represent the concept of stability. Our patient categories aim 
at providing clinical value by identifying patients that may be al-
ready under monitoring or treatment (because of the short time 
between consecutive ECGs) and patients at various stages of the 
disease, based on the evolution of their AF scores. We evaluate 
and compare the model performance (already trained during the 
second experiment) across the five categories of patients.

We compare different test sets of AF group with the subset of 
SR patients with a single ECG in the test set (i.e., a single ECG 
recorded at least two years before SR index), which is expected for 
the average healthy population.

Further details regarding the experimental protocol of the three 
experiments can be found in Supplemental Material.

3.5. Statistical analysis

To train our model we consider categorical cross entropy as loss 
function, with Adam optimizer and initial learning rate of 0.001. At 
each epoch we evaluate the loss function on the validation set. We 
halve the learning rate if the function does not decrease for two 
consecutive epochs. We stop the training if the function does not 
decrease for six consecutive epochs.

For each evaluation we compute AUC, sensitivity, specificity, 
and diagnostic odd ratio (DOR) with confidence intervals (CIs) of 
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Table 3
Experiment 1: median ages and AUC achieved in the three different scenarios considered. We provide the median age of ECGs in the training and validation sets, and the 
median age of patients in the test set. Between brackets, interquartile ranges for median ages and 95% confidence intervals for AUC are reported. In “AF data” row, the median 
ages of the datasets combined in each scenario with SR data are reported. The results reported in the “AUC” column show how the model performance changes according to 
the set of SR data considered in the different scenarios. Sensitivity and specificity are computed with a threshold of 0.55. AF=Atrial Fibrillation, AUC=Area Under the Curve, 
SR=Sinus Rhythm.

Scenarios Age in training 
set (yr)

Age in validation 
set (yr)

Age in test 
set (yr)

AUC Sensitivity Specificity

1. Random sampling 
(SR group)

63 66 64 0.89 82% 79%
(50-75) (54-77) (50-75) (0.83-0.95) (70-90) (74-83)

2. Balancing distributions 
(SR group)

75 77 82.5 0.79 78% 68%
(67-80) (72-87) (73-88) (0.72-0.86) (66-88) (62-73)

3. Young SR group 53 53 53 0.98 95% 95%
(43-60) (45-59) (43.38-60) (0.95-1.00) (86-99) (92-97)

AF group (same in 1., 2., 3.) 79 77 82.5 - - -
(70-84) (72-87) (73-88)
95%. We calculated 2-sided P values from Z score to evaluate if 
the difference between AUCs is statistically significant (P < 0.05). 
The size of test sets in the different experiments is limited by the 
amount of data dedicated to training. This has been established 
empirically after many trials in which it was found beneficial to in-
crease the training set as much as possible to obtain better model 
performance.

4. Results

Patients in AF group present a median age of 80 years (IQRs 
70-86) at their AF index date and 49.61% of them are females. Pa-
tients in SR group present a median age of 64 years (IQRs 50-77) 
at their SR index date and 52.96% of them are females. We report 
age statistics that refer to index dates, to consider unique ages for 
patients with multiple ECGs recorded through years. However, we 
consider in the experiments exact ages of patients at the date of 
ECG recordings.

If we only consider the SR ECGs in AF group that are recorded 
at least one week before the first event of AF, 6,023 ECGs in to-
tal, the median distance from the AF index date 719 days (IQRs 
305-1,370.5). If we only consider the SR ECGs in SR group that are 
recorded at least two years before their SR index dates, 19,722 in 
total, the median distance from the SR index date is 1,453 days 
(IQRs 1,036-1,987).

When computing AUC in the experiments, for each patient in 
the test set we average the AF scores related to their ECGs and 
provide a unique score representing their own risk of developing 
AF. While our model has been trained with the same number of 
ECGs belonging to AF and SR groups, in all the experiments we can 
observe that sensitivity is generally higher than specificity. Hence, 
this means it is easier to recognise patients who will develop AF 
(i.e., to identify those SR ECGs that anticipate AF development) 
compared to patients who will not develop it. This is favourable 
to our goal of predicting AF, although this behaviour may change 
according to the threshold set or training settings.

4.1. Experiment 1: effect of age in the AF and SR groups

In the first experiment, we predict AF in the smallest time 
window of the study, that contains ECGs recorded between two 
months and one week before the first AF episode. Given the lim-
ited number of ECGs recorded in this time window (412 in total), 
we select two small sets for validation and testing (Fig. 1), each 
one representing approximately 20% of ECGs in the time window. 
We include in the training set the remaining 252 ECGs (around 
60%) recorded from two months to one week before AF, to repre-
sent as best as possible this specific time interval during training. 
Also, in experimental trials we have found beneficial to increase 
6

the size of the training dataset with ECGs recorded in other time 
windows that precede the first AF episode.

Median ages and performance achieved by our model are pro-
vided in Table 3 for the three different scenarios considered. The 
results achieved in the first scenario are consistent with those of 
previous studies [12,13,26]. However, unlike them we prevent the 
evaluation of performance with data recorded in the last week be-
fore AF, as the causes of AF may be out of the scope of this work 
[34].

We observe that if we increase the difference between the age 
distributions of AF and SR patients, we also increase the model 
performance. Even if additional ageing-related information can be 
extracted from ECGs and improve the performance of the model, 
with this experiment we simply aim to emphasise the relation-
ship between age distributions and model performance. In general, 
related works do not report the difference in the distributions of 
patients age [12,13] or do not mitigate this aspect during data se-
lection [26]. This aspect should be always addressed because, as 
we show in the experiment, it is very easy to boost the model 
performance by selecting opportune sets of patients. To assess if 
other-than-age information can be exploited to predict AF, we per-
form the next experiments with age-balanced datasets. To support 
our findings, we calculate the P value of the AUC difference be-
tween the common scenario of random sampling (scenario 1) and 
the proposed scenario of age-balancing (scenario 2). For the AUC 
difference of 0.1 between the two scenarios, we obtain a statisti-
cally significant P value = 0.03, with standard error = 0.05.

4.2. Experiment 2: effect of time windows

The results obtained in the analysis of the different time win-
dows are reported in Table 4, where the same model was tested 
with different age-balanced datasets. Hence, these results are 
hardly comparable with other studies that do not consider age 
balance. The goal is to show the different performances achieved 
with different time windows for the AF group. Our model provides 
similar performances when considering ECGs recorded in the last 
two years before AF, with increment of AUC when time windows 
refer to a period closer to the AF event. Also, it is very interest-
ing to see that even in the furthest time window the model can 
predict future AF with an AUC of 0.70 (0.67-0.73). Sensitivity and 
DOR provide an equal trend, as the values of specificity are con-
stant across the different time windows.

4.3. Experiment 3: categories of patients based on longitudinal 
measures

During evaluation we do not consider ECGs recorded more than 
two years before AF: as we observed in Experiment 2, they pro-
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Table 4
Experiment 2: performance obtained for the different time windows considered.
95% confidence intervals are reported in brackets for all the metrics. The results re-
ported in the “AUC” column show how the model performance decreases with the 
increase of the distance from the day of AF event. For each time window we con-
sider the same set of ECGs for the SR group, always obtaining the same specificity 
of 66.83% (62.93-70.56). AUC=Area Under the Curve, DOR=Diagnostic Odd Ratio.

Time windows AUC Sensitivity DOR

More than 2 years 0.70 62.50% 3.36
(0.67-0.73) (58.11-66.74) (2.62-4.30)

1 year to 2 years 0.80 79.81% 7.96
(0.76-0.84) (73.70-85.04) (5.46-11.62)

6 months to 1 year 0.77 68.18% 4.32
(0.71-0.83) (57.39-77.71) (2.67-6.97)

2 months to 6 months 0.83 84.38% 10.88
(0.76-0.89) (73.14-92.24) (5.43-21.81)

1 week to 2 months 0.83 82.76% 9.67
(0.76-0.90) (70.57-91.41) (4.79-19.51)

Table 5
Experiment 3: performances obtained for the different categories of patients de-
scribed in detail in Section 4.3. 95% confidence intervals are reported in brackets for 
all the metrics. The results reported in the “AUC” column show how the model per-
formance is higher when predicting AF for patients who provide a stable AF score 
over time. For each category we consider the same set of ECGs for the SR group, 
always obtaining the same specificity of 67.95% (62.46-73.09). AF=Atrial Fibrillation, 
AUC=Area Under the Curve, DOR=Diagnostic Odd Ratio, ECG=Electrocardiogram.

Categories AUC Sensitivity DOR

Single ECG 0.79 78.31% 7.66
(0.73-0.85) (67.91-86.61) (4.31-13.59)

Distant ECGs, stable AF score 0.87 90.62% 20.49
(0.81-0.93) (80.70-96.48) (8.56-49.09)

Distant ECGs, unstable AF score 0.77 74.42% 6.17
(0.68-0.85) (58.83-86.48) (2.99-12.73)

Close ECGs, stable AF score 0.85 84.21% 11.31
(0.77-0.93) (68.75-93.98) (4.58-27.92)

Close ECGs, unstable AF score 0.78 72.31% 5.54
(0.71-0.85) (59.81-82.69) (3.06-10.02)

vide less accurate information compared to ECGs closer to AF onset 
(note that the sum of ECGs from AF patients in Table 1, recorded 
in the last two years between AF, is equal to the sum of ECGs from 
AF patients in Table 2). The results obtained in the final test of our 
model are reported in Table 5. The best performance is obtained in 
the categories of patients with stable AF score, with sensitivity of 
90.62% (80.70%-96.48%) and DOR of 20.49 (8.56-49.09) for patients 
with distant ECGs.

In Supplemental Appendix, we show the evolution of AF score 
for some patients with at least four ECGs and belonging to the 
two categories of patients with distant ECGs, which are more likely 
patients under regular monitoring (stable AF score in Supplemental 
Figures 3–6 and unstable AF score in Supplemental Figures 7–10). 
We observe the sequences of AF scores in the last two years before 
AF and provide summary statistics in Supplemental Results.

In the category of patients with stable AF score, the minimum 
scores of each patient are in average higher and settled in high 
values. Hence, we can increase the threshold that identifies AF to 
reduce the number of misclassified patients. In the category of pa-
tients with unstable AF score, the maximum scores of each patient 
are in average lower and AF score tends to increase over time. For 
these patients it is more difficult to detect AF and the increase of 
AF score is a signal to watch out. For the first time, our results 
showed the relevance of assessing an AF score over time as stable 
high-risk patients have a higher risk of developing AF, according to 
the AF score.
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5. Discussion

The study underscores the significance of age distributions in 
influencing model performance, noting that predicting AF is signif-
icantly easier when the healthy patients are younger than the un-
healthy ones. We balance the age distributions to force our model 
to rely on features other than age to predict AF. Despite this set-
ting leads to a decrease in performance, we obtain high sensitivity 
values for specific subsets of patients.

We confirm the effectiveness of DNN-based AF prediction and 
demonstrate the utility of complementing the monitoring of pa-
tients over time with a trusted implementation of AF score. Our 
analysis of time windows reveals that AF score performs better 
within the two years preceding the AF event, with further im-
provement in the last six months. In addition, AF becomes ob-
servable in some patients only after a certain period. The growing 
trend of AF score may facilitate AF prediction while the score re-
mains below a certain threshold.

AF is associated to several conditions which may produce sec-
ondary ECG changes. These changes may be transient or persis-
tent depending on the underlying clinical situation. Specifically, 
transient ECG changes might be related to electrolytes disorders, 
acute diseases, or intercurrent drugs use whereas persistent ECG 
changes might be related to structural heart diseases, conduction 
disorders, or chronic drug use. Therefore, patients with a stable 
high-risk score over time might have a persistent clinical disorder 
which present a higher risk of AF development. Further studies are 
needed to clarify this hypothesis.

AI-based models also remove the clinicians’ subjective, error-
prone interpretations and provide an objective prediction within 
seconds [35].

Our system is promising and easy to implement, although it 
is necessary to overcome some limitations before employing it in 
a real scenario. First, a better understanding of the features that 
DNNs automatically learn in the task may encourage the accep-
tance of such decision-making systems in practice. In this sense, 
the graphical representation of features provided in [18] provides a 
foundation for exploration and further investigation. Secondly, the 
integration of additional clinical data may improve the prognos-
tic value of our proposed method. For instance, without precise 
clinical information, we can only define heuristic rules for data 
cleaning and time windows. Finally, we consider the limitations 
related to the creation of AF and SR groups, common to similar 
studies. Paroxysmal AF is the initial form of AF and in up to one-
third of patients it may be silent. This means that some patients 
included in the AF group may have experienced asymptomatic AF 
episodes before the diagnostic ECG recording. Data contained in 
the SR group are chosen to represent the condition of ordinary 
population, even if they may include data from patients with un-
detected or asymptomatic episodes of paroxysmal AF. Hopefully, 
the increasing interest for wearables with the capability of long-
term ECG monitoring may overcome this limitation, however, their 
use in general population is still reduced.

For future work, multiple age-specific models can be trained for 
specific age intervals when a larger database is available. The pre-
diction of AF would be computed by an age-specific model that 
exploits features learned for the appropriate age interval of inter-
est. Also, the proposed score should be prospectively tested in a 
clinical trial before implementing it into the clinical practice.

6. Conclusion

This study demonstrates the ability of DNNs in predicting fu-
ture AF from SR ECGs, with higher predictive capability in the 
two years preceding AF occurrence, and for patients with stable AF 
scores over time. Our proposed approach offers an affordable and 
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accessible technique to assess the risk of developing AF in the gen-
eral population. It may also help cardiologists to consider specific 
treatments for different categories of patients. ECGs can be easily 
integrated into routine check-ups, making the proposed technique 
suitable for a screening strategy, and potentially opening new pos-
sibilities for AF early detection.
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