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Abstract A conjecture of Bombieri (Invent Math 4:26–67, 1967) states that the coef-
ficients of a normalized univalent function f should satisfy

lim inf
f→K

n − Re an
m − Re am

= min
t∈R

n sin t − sin(nt)

m sin t − sin(mt)
,

when f approaches the Koebe function K (z) = z
(1−z)2

. Recently, Leung [10] dis-
proved this conjecture for n = 2 and for all m ≥ 3 and, also, for n = 3 and for
all odd m ≥ 5. Complementing his work, we disprove it for all m > n ≥ 2 which
are simultaneously odd or even and, also, for the case when m is odd, n is even and
n ≤ m+1

2 . We mostly not only make use of trigonometry but also employ Dieudonné’s
criterion for the univalence of polynomials.
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428 I. Efraimidis

1 Introduction

Let S denote the class of analytic functions

f (z) = z + a2z
2 + a3z

3 + · · · + anz
n + · · ·

which are univalent in the unit disk D = {z ∈ C : |z| < 1}. Throughout the long
history of this class, one of the motivating forces has been the Bieberbach conjecture,
now de Branges’ Theorem [3], which states that |an| ≤ n and that the only extremal
function is the Koebe function

K (z) = z

(1 − z)2
=

∞∑

n=1

nzn

and its rotations.
Long before the final solution by de Branges, efforts of many mathematicians

culminated in the proof of the local Bieberbach conjecture in an article of Bombieri
[2]. This weaker conjecture states that |an| ≤ n for functions in S in a neighborhood
of the Koebe function. In the same article, Bombieri conjectured that the numbers

σmn = lim inf
f →K

n − Re an
m − Re am

, (1)

usually referred to as the Bombieri numbers, should coincide with the trigonometric
numbers

Bmn = min
t∈R

n sin t − sin(nt)

m sin t − sin(mt)
,

for all m, n ≥ 2. We note that the lower limit in (1) refers to functions f in the class
S approaching the Koebe function uniformly on compacta.

In [12], Prokhorov and Roth showed that σmn ≤ Bmn . In addition, the local maxi-
mum property of the Koebe function yields that σmn ≥ 0. Setting

An(t) = n − sin(nt)

sin t
, t ∈ R, n ∈ N, (2)

it is relatively simple to see that Bmn = 0whenm is even and n is odd, since in that case
An(π) = 0 < Am(π). Hence σmn = Bmn = 0 and Bombieri’s conjecture is correct
whenm is even and n is odd. In addition, Bshouty and Hengartner [5] showed that the
conjecture is true for analytic variations of the Koebe function and for functions with
real coefficients (a simpler proof of the latter appeared in [12]). Some related results
are given in the recent article [1].
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On the Failure of Bombieri’s Conjecture for Univalent Functions 429

The Bombieri conjecture was first disproved by Greiner and Roth [9] in the case
(m, n) = (3, 2). They explicitly computed

σ32 = e − 1

4e
<

1

4
= B32.

Proofs (disproving the conjecture) for the points (2, 4), (3, 4) and (4, 2) were then
furnished by Prokhorov and Vasil’ev [13], who computed (approximately) the corre-
sponding Bombieri numbers.

Recently, Leung [10] developed a variational method which allowed him to show
that σm2 < Bm2 for all m ≥ 3 and that σm3 < Bm3 for all odd m ≥ 5. He used the
linear version of Loewner’s differential equation

∂ f

∂t
= z

∂ f

∂z

1 + κ(t)z

1 − κ(t)z
, (3)

whose solutions are chains of univalent functions f (z, t) = et (z+a2(t)z2+· · · ), t ≥
0. Any one-slit function in S can be seen as the initial value f (z) = f (z, 0) of such a
solution (see [11]). The drive function κ has the form κ(t) = eiϑ(t), with ϑ being real-
valued and piecewise continuous on [0,∞). In the special case when κ ≡ −1 we get
the chain f (z, t) = et K (z). Setting κ(t) = −eiεϑ(t), for ε > 0 and some admissible
ϑ and letting t = 0, Leung obtained from (3) a variation of Koebe’s function, given
by

f (z) = K (z) + εv(z) + ε2q(z) + O(ε3), (4)

for some analytic functions v and q which depend only on the choice of ϑ . This way,
Leung re-derived in a simpler fashion the exact same second variation q as Bombieri,
who used the non-linear version of Loewner’s equation. Thus, Bombieri’s formula [2,
(4.1)] was obtained by Leung as [10, (2.17)].

In terms of the coefficients, formula (4) yields

an = n + εvn + ε2qn + O(ε3).

It is an innate property of the method that the coefficients vn are purely imaginary and
qn are real. Therefore,

n − Re an = −ε2qn + O(ε3).

Leung’s choice of ϑ yields

qn = −4

9
(n − 1)(2n2 − 4n + 3). (5)

(For the convenience of the reader, we have included at the end of the article an
appendix where it is shown how, beginning from Bombieri’s second variational for-
mula, one can arrive at this number qn .) Hence,
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430 I. Efraimidis

σmn ≤ lim
ε→0+

−ε2qn + O(ε3)

−ε2qm + O(ε3)
= qn

qm
,

for all m, n ≥ 2. Note that

qn
qm

= (n − 1)(2n2 − 4n + 3)

(m − 1)(2m2 − 4m + 3)
<

n3 − n

m3 − m

for all m > n ≥ 2 since

ϕ(n) = 2n2 − 4n + 3

n(n + 1)

increases. Indeed,

ϕ′(x) = 3(2x2 − 2x − 1)

x2(x + 1)2
> 0, for x >

1 + √
3

2
≈ 1,366.

Therefore, to disprove Bombieri’s conjecture for some m > n ≥ 2, it suffices to show
that

Bmn = n3 − n

m3 − m
. (6)

Leung showed that formula (6) holds true for n = 2 and for all m ≥ 3 and, also, for
n = 3 and for all odd m ≥ 5. Here, it is our purpose to prove (6) in some other cases,
including the ones just mentioned. In particular, we will prove the following theorem.

Theorem 1 Let m > n ≥ 2 be integers such that either

(a) both m and n are odd, or
(b) both m and n are even, or
(c) m is odd, n is even and n ≤ m+1

2 .

Then (6) is true.

We have already observed that one can deduce the following corollary.

Corollary Let m > n ≥ 2 be integers such that either (a), (b) or (c) in Theorem 1
holds. Then Bombieri’s conjecture for this pair of integers is false.

Theorem 1 will not only be proved mainly with the use of trigonometry, but also,
in the case when the hypothesis (c) holds, we will employ Dieudonné’s criterion for
univalent polynomials.

After carefully examining the relevant graphs for 2 ≤ n ≤ 80 using the http://
www.desmos.com/calculator software, one is lead to believe that the hypothesis (c)
in Theorem 1 can be notably weakened in that the point (m, n) has to be below the
straight line that joins the points (7, 6) and (17, 14). Thus, the following proposition
should be true.

Conjecture If m > n ≥ 2 are integers such that m is odd, n is even and n < 4m+2
5

then (6) is true.
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2 Auxiliary Lemmas

We first mention a criterion for the univalence of polynomials found by Dieudonné
[6] (see also [7, p. 75]).

Lemma 2 (Dieudonné’s criterion). The polynomial p(z) = z + a2z2 + · · · + anzn is
univalent in D if and only if its associated polynomials

q(z; t) = 1 + a2
sin(2t)

sin t
z + · · · + an

sin(nt)

sin t
zn−1

have no zeros in D for any choice of the parameter t ∈ [0, π ].
We now prove a simple lemma for An(t) = n − sin(nt)

sin t , which we defined in (2).

Lemma 3 For all t ∈ R and n ≥ 2, we have

An(t) ≥ 0 and An(2π − t) = An(t).

In addition, An vanishes only for t = 2	π, 	 ∈ Z, when n is even and only for t = 	π ,
	 ∈ Z, when n is odd.

Proof The symmetry is fairly obvious. Due to it we may restrict our attention to the
interval [0, π ]. Using L’Hospital’s rule we find that

A2k(0) = A2k+1(0) = A2k+1(π) = 0, A2k(π) = 4k,

for any k ≥ 1. Now, for t ∈ (0, π), An(t) > 0 is equivalent to

ϕ(t) := n sin t − sin(nt) > 0,

whose derivative is

ϕ′(t) = n(cos t − cos(nt)).

If t0 is a critical point of ϕ then sin t0 = ± sin(nt0). Hence

ϕ(t0) = (n ∓ 1) sin t0 > 0

and the proof is complete. �
We wish to remark that there are at least two more ways to prove this lemma. First,

we could apply Dieudonné’s criterion to the univalent polynomial z− zn/n (which is,
moreover, starlike [4, Thm. 2.3]) and let z → 1 along the real axis. Alternatively, for
odd n we could use the connection with the Dirichlet kernel

Dn(x) = sin(n + 1/2)x

sin x/2
= 1 + 2

n∑

j=1

cos( j x),
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432 I. Efraimidis

which is A2k+1(t) = 2k + 1 − Dk(2t) (see [8, §8.4], for example). For even n, we
would simply have to adjust the proof of the above expansion in cosines, where the
trick with telescoping sums works equally well. However, we note that only the latter
of these two proofs yields naturally the strict inequality in the open interval (0, π).

Lemma 4 For all integers, n ≥ 2 and for all t ∈ (0, π) it holds that

An(t)

n3 − n
≥ An+2(t)

(n + 2)3 − (n + 2)
. (7)

Proof We set N = n + 1 ≥ 3 and see that (7) is equivalent to

N (N + 1)(N + 2)AN−1(t) ≥ N (N − 1)(N − 2)AN+1(t),

which, in turn, is equivalent to

4(N 2 − 1) − (N + 1)(N + 2)
sin(N − 1)t

sin t
+ (N − 1)(N − 2)

sin(N + 1)t

sin t
≥ 0.

Multiplying by 1
2 sin t , expanding the sines of the sums and setting


(t) = 2(N 2 − 1) sin t − 3N sin(Nt) cos t + (N 2 + 2) cos(Nt) sin t, (8)

we see that the above is equivalent to 
(t) ≥ 0. We note that



(π

2

)
= 2N 2 − 2 + (N 2 + 2) cos

(
Nπ

2

)
≥ N 2 − 4 > 0,

for shortly we will need to consider t �= π
2 . We compute


′(t)
N 2 − 1

= 2 cos t − 2 cos(Nt) cos t − N sin(Nt) sin t

= 2 sin

(
Nt

2

) (
2 sin

(
Nt

2

)
cos t − N cos

(
Nt

2

)
sin t

)
. (9)

Hence, one set of the roots of 
′ comes from sin
( Nt

2

) = 0. Solutions of this equation
satisfy Ntk = 2kπ, k ∈ Z, and it is easy to check that


(tk) = 3N 2 sin tk > 0.

The rest of the roots of 
′ comes from

tan

(
Nt

2

)
= N

2
tan t, (10)
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if we momentarily consider that cos
( Nt

2

) �= 0. We return to (8) and compute


(t) = (N 2 − 4) sin t + 2 cos2
(
Nt

2

)
sin t

(
N 2 + 2 − 3N

tan
( Nt

2

)

tan t

)
.

Hence, if t∗ satisfies (10) then


(t∗) = (N 2 − 4) sin t∗
(
1 − cos2

(
Nt∗

2

))
≥ 0,

which was our goal. Therefore, it is only left to consider the case when cos
( Nt

2

) = 0
for some critical point of 
. But this would give Nt = (2k + 1)π, k ∈ Z and a
substitution in (9) yields


′(t)
N 2 − 1

= 4 cos t,

which vanishes only at t = π
2 , a point we have previously considered. �

3 Proof of Theorem 1

We now proceed with the proof of our main theorem.

Proof of Theorem 1 We set

ϕmn(t) := n sin t − sin(nt)

m sin t − sin(mt)
= An(t)

Am(t)
, t ∈ [0, 2π ],

whose minimum is the number Bmn . In view of the symmetry of An (stated in
Lemma 3), we may restrict our attention to t in [0, π ].

Suppose first that either the hypothesis (a) or (b) holds, that is, m and n are simul-
taneously odd or even. Note that,

ϕmn(0) = ϕmn(π) = n3 − n

m3 − m
for odd m, n

and that

ϕmn(0) = n3 − n

m3 − m
<

n

m
= ϕmn(π) for even m, n.

Hence, our goal is to show that

An(t)

Am(t)
≥ n3 − n

m3 − m
for t ∈ (0, π).
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But this follows directly from Lemma 4 after a finite number of iterations

An(t)

n3 − n
≥ An+2(t)

(n + 2)3 − (n + 2)
≥ An+4(t)

(n + 4)3 − (n + 4)
≥ · · · ≥ Am(t)

m3 − m
.

Suppose now that the hypothesis (c) holds, that is,m is odd, n is even and n ≤ m+1
2 .

Note that,

ϕmn(0) = n3 − n

m3 − m
< +∞ = ϕmn(π).

Once again, in view of Lemma 4, it suffices to prove that

An(t)

Am0(t)
≥ n3 − n

m3
0 − m0

for t ∈ (0, π),

where m0 = 2n − 1. This is equivalent to

4(2n − 1)An(t) ≥ (n + 1)A2n−1(t),

which, in turn, is the same as

1 − 4

3n − 1

sin(nt)

sin t
+ n + 1

(2n − 1)(3n − 1)

sin
(
(2n − 1)t

)

sin t
≥ 0. (11)

It would clearly suffice to prove that

1 − 4

3n − 1

sin(nt)

sin t
zn−1 + n + 1

(2n − 1)(3n − 1)

sin
(
(2n − 1)t

)

sin t
z2n−2 �= 0, (12)

for all z ∈ D, since this would imply that for z = x ∈ [0, 1) the function in (12) is
positive and (11) would follow after letting x → 1−. In view of Dieudonné’s criterion
(Lemma 2), (12) is equivalent to the statement that the function

f (z) = z − 4

3n − 1
zn + n + 1

(2n − 1)(3n − 1)
z2n−1 (13)

belongs to the class S. We will actually prove more: we will show that f is starlike,
which means that f is univalent and that for every w ∈ f (D) the line segment [0, w]
lies entirely in f (D).

First, we see that the roots of

f (z)

z
= 1 − 4

3n − 1
zn−1 + n + 1

(2n − 1)(3n − 1)
z2n−2
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satisfy

zn−1 = 2(2n − 1) ± i(n − 1)
√
3(2n − 1)

n + 1
,

and therefore,

|z|2n−2 = (2n − 1)(3n2 + 2n − 1)

(n + 1)2
> 1.

This shows that the function

p(z) = z f ′(z)
f (z)

is analytic in D and so to apply the well-known criterion for starlikeness [7, §2.5] it
suffices to show that

Re p(z) ≥ 0, for |z| = 1. (14)

We compute

p(z)

2n − 1
= (n + 1)z2n−2 − 4nzn−1 + 3n − 1

(n + 1)z2n−2 − 4(2n − 1)zn−1 + (2n − 1)(3n − 1)

and let zn−1 = eiθ , θ ∈ R. We then have

p(z)

2n − 1
= (n + 1)eiθ − 4n + (3n − 1)e−iθ

(n + 1)eiθ − 4(2n − 1) + (2n − 1)(3n − 1)e−iθ

= 2n(cos θ − 1) − (n − 1)i sin θ

(3n2 − 2n + 1) cos θ − 2(2n − 1) − 3n(n − 1)i sin θ
.

Multiplying by the complex conjugate of the denominatorwe see that (14) is equivalent
to

0 ≤ 2n(cos θ − 1)
[
(3n2 − 2n + 1) cos θ − 2(2n − 1)

] + 3n(n − 1)2 sin2 θ

= n(n + 1)(3n − 1)(cos θ − 1)2,

which is true. The proof is complete. �
Note that, the polynomial (13) resembles the polynomials considered in a theoremof

Brannan [4, Thm. 3.1],which gave necessary and sufficient conditions for a polynomial
of the form

z + a zn + z2n−1

2n − 1
, a ∈ C,
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to be univalent. Even though this theorem cannot be applied here, the main ingredient
in its proof, which is the Cohn rule (see [4, Lem. 1.2]), could be directly applied to
prove (12), thus giving an alternative ending of the proof of Theorem 1.

Appendix: Calculation of qn

Here, our starting point will be Bombieri’s formula [2, (4.1)]. According to it, if φ

is a function in L2[0, 1] then a second variation of the Koebe function is given by
q(z) = Q

(
K (z)

)
, where

Q(w) = −w2
∫ 1

0

φ(u)2

U
du − 2w3

∫ 1

0

∫ u

0

(
3 + 1

V

)
φ(u)φ(v)√

UV
dvdu, (15)

U = 1 + 4uw and V = 1 + 4vw. Note the following homogeneity property: if we
replace φ by c φ (c ∈ R) then instead of Q we obtain c2Q. In fact, our aim here is to
show how a specific choice of φ yields

qn = −1

9
(n − 1)(2n2 − 4n + 3),

which is a scalar multiple of (5). We will provide a slightly more direct approach than
Leungwho, for additional purposes, considers (15)with variable z ∈ D and integration
over the interval [−1, 1] to use properties of classical orthogonal polynomials.

We rewrite (15) as

Q(w) = −w2
∫ 1

0

φ(u)2

1 + 4uw
du

− 6w3
∫ 1

0

∫ u

0

φ(u)φ(v)√
1 + 4uw

√
1 + 4vw

dvdu

− 2w3
∫ 1

0

∫ u

0

φ(u)φ(v)√
1 + 4uw(1 + 4vw)3/2

dvdu

and denote by I1, I2 and I3 the three integrals in the order of appearance, so that

Q(w) = −w2(I1 + 6w I2 + 2w I3).

We observe that the integrand in I2 is symmetric in u and v, and therefore, its integral
over the lower triangle of [0, 1]2 (which is I2) is equal to the integral over the upper
triangle. Hence,

I2 = 1

2

(∫ 1

0

φ(u)√
1 + 4uw

du

)2

.
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To deal with I3, we note that

2w

(1 + 4vw)3/2
= − ∂

∂v

(
1√

1 + 4vw

)
.

An integration by parts now yields

2w I3 = −
∫ 1

0

φ(u)2

1 + 4uw
du + φ(0)

∫ 1

0

φ(u)√
1 + 4uw

du

+
∫ 1

0

∫ u

0

φ(u)φ′(v)√
1 + 4uw

√
1 + 4vw

dvdu.

In total, we have

Q(w) = −w2φ(0)
∫ 1

0

φ(u)√
1 + 4uw

du − 3w3
(∫ 1

0

φ(u)√
1 + 4uw

du

)2

−w2
∫ 1

0

∫ u

0

φ(u)φ′(v)√
1 + 4uw

√
1 + 4vw

dvdu. (16)

We now choose φ(u) = 1 − u. It is helpful to compute

∫ u

0

dv√
1 + 4vw

=
√
1 + 4uw − 1

2w

and (integrating by parts):

∫ 1

0

u du√
1 + 4uw

=
√
1 + 4w

2w
− (1 + 4w)3/2 − 1

12w2 .

Then, we can compute the integrals in (16). They are

∫ 1

0

φ(u)√
1 + 4uw

du = (1 + 4w)3/2 − 6w − 1

12w2

and

∫ 1

0

∫ u

0

φ(u)φ′(v)√
1 + 4uw

√
1 + 4vw

dvdu = (1 + 4w)3/2 − 6w2 − 6w − 1

24w3 .

We substitute these in (16) and after elementary but cumbersome calculations we
obtain

Q(w) = 1 + 4w

6

(√
1 + 4w − 1 − 2w

)
.
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Setting w = K (z) = z
(1−z)2

we get

q(z) = Q
(
K (z)

) = − z2(1 + z)2

3(1 − z)4
.

Finally, we compute the n-th coefficient of q with the aid of the standard formula

1

(1 − z)4
=

∞∑

n=0

(n + 1)(n + 2)(n + 3)

6
zn .
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