

Repositorio Institucional de la Universidad Autónoma de Madrid <u>https://repositorio.uam.es</u>

Esta es la **versión de autor** del artículo publicado en: This is an **author produced version** of a paper published in:

Renewable Energy 148 (2020): 889-896

DOI: https://doi.org/10.1016/j.renene.2019.10.173

Copyright: © 2019 Elsevier Ltd.This manuscript version is made available under the CC-BY-NC-ND 4.0 licence http://creativecommons.org/licenses/by-nc-nd/4.0/

El acceso a la versión del editor puede requerir la suscripción del recurso Access to the published version may require subscription

1 Effect of basicity in the aqueous phase reforming of brewery

2 wastewater for H₂ production

3 A.S. Oliveira, J.A. Baeza, D. García, B. Saenz de Miera, L. Calvo*, J.J. Rodriguez,

4 M.A. Gilarranz

5 Departamento de Ingeniería Química, C/Francisco Tomás y Valiente 7, Universidad Autónoma

6 de Madrid, 28049 Madrid, Spain

7 *corresponding author e-mail: luisa.calvo@uam.es

8 Abstract

Real (RBW) and synthetic brewery wastewater (SBW) were treated by aqueous phase 9 reforming (APR) with different 3%Pt/C catalysts for H₂ production from the biomass-10 derived organic load. APR enabled simultaneous treatment of the wastewater and 11 12 valorisation to H₂ and alkanes of the biomass-derived organic load. In the catalytic APR 13 of SBW, TOC and COD removal was higher than 60% after reaction time of the experiments. The addition of KOH or NaOH to SBW resulted in a slightly lower TOC 14 15 and COD removal, however higher yields to H₂ and percentage of valuable gases were obtained in those cases where KOH was added. Catalyst with basic support and low 16 17 contribution of micropores showed the best performance in the APR of SBW+KOH (~50% of H₂ and 8.9 mmol H₂/g COD). The concentration of anions detected in the 18 19 liquid effluents varied with the catalysts tested and with the concentration of base, suggesting different reaction pathways. Increasing the concentration of KOH led to 20 21 CO₂-free H₂ without significant changes in H₂ yield. The results obtained with RBW were in good agreement with those from SBW, although the significantly different 22 behaviour of some catalysts suggests the need of tuning their properties according to the 23 composition of the wastewater. 24

- 25
- 26

27 Keywords: hydrogen, brewery wastewater, aqueous phase reforming, basicity

- 28
- 29

1 **1. Introduction**

The circular economy approach has attracted much interest in the last few years, 2 3 given the current scenario of high dependence on fossil fuels and human-borne climate 4 change. This approach involves, among others aspects, transitioning from fossil-based to renewable energy sources and a more efficient use of raw materials and products, 5 aimed to minimize waste and pollution. In this context, aqueous phase reforming (APR) 6 has gained an increasing attention since the pioneering work of Cortright et al. [1], 7 8 where the production of valuable gases, such as H₂, from biomass-derived compounds was reported. The APR process can be described by the overall reforming reaction 9 10 shown in Eq. (1), although other reactions, such as the water-gas shift reaction (WGS), 11 methanation, Fischer-Tropsch, dehydrogenation or dehydration/hydrogenation also 12 occur in different extent [1].

13

(1)

Oxygenated organic species, such as sorbitol, xylitol, glycerol, galactitol, ethanol, 1-14 propanol or ethylene glycol, among others, have been extensively studied as substrates 15 16 for APR [2-7], showing promising results in terms of carbon conversion into gases and valuable gas products. On the other hand, a diversity of catalytic systems, mainly based 17 on VIII group metals, have been described in the literature for APR of oxygenated 18 19 hydrocarbons [8,9]. Ru and Re catalyst exhibited a higher selectivity to alkanes [10], 20 while Pt-based catalysts showed to be the most active and selective toward H₂ among monometallic catalysts [11]. Nickle has been considered as an economic alternative 21 22 leading to high selectivity to alkanes, although low stability was observed for this type of catalysts [12]. While bimetallic catalysts were shown to have better performance in 23 selected applications [11,13,14]. The effect of the support on the performance of the 24 catalysts was also investigated in literature, where a large number of studies were 25

conducted using Pt supported on Al₂O₃ [11]. Due to the limited stability of Al₂O₃ under 1 APR conditions, carbon-based catalysts have also been studied [13–15]. Some authors 2 have reported a higher H₂ yield and catalytic activity using basic supports, while higher 3 alkanes production was achieved using neutral and acids supports [4]. However, in our 4 previous work on brewery wastewater APR we observed that, in addition to basic 5 6 character, texture properties of the support were also important and the best catalytic 7 performance was observed for catalysts supported on mesoporous carbon black with 8 virtually no microporosity and basic pH slurry [16].

Concerning the feasibility of the process, techno-economical studies on APR have 9 10 shown that the cost of the substrate has an important impact on the economy of the process [17]. Therefore, feeding APR processes with waste materials is worthwhile to 11 investigate. With this perspective, the APR process could be extended to new 12 13 applications such as the treatment of wastewater. Some exploratory works on the potential of APR for the treatment of different wastewaters have been reported by our 14 15 group [16,18]. However, regarding potential applications, more knowledge is needed on the effect of complex matrices in the catalysts performance, a crucial issue scarcely 16 studied in the literature so far. Most of the works are related to synthetic matrices, 17 which mainly consisting in of mixtures of compounds (methanol, acetic and phosphoric 18 acids, NaOH, etc.) with glycerol as main ingredient, emulating the aqueous fraction 19 from biodiesel production in biorefineries [19,20]. In spite of the experience gathered, 20 the role of bases (i.e KOH, NaOH) in the reaction medium is not well addressed. 21

Several authors have reported positive effects of a basic medium on the APR process due to favoured WGS reaction [21,22], in-situ removal of CO_2 [21–23], or increased gas production [19]. However, some authors indicated a negative effect on catalyst deactivation [20]. For instance, in the case of glycerol using Ni-La/Al₂O₃ catalysts, some authors [19] reported that the presence of acetic acid decreased gas
production, while KOH increased it. In another related study [20] using similar
catalysts, the effect of different acids (phosphoric, sulphuric and acetic) and bases
(KOH and NaOH) on the APR of glycerol was investigated, concluding that these
compounds affected to catalyst deactivation, particularly in the case of phosphoric acid
and KOH.

Regarding the application of APR to wastewater treatment, bases are relevant since they are present in a number of industrial wastewaters due to the cleaning-in-place (CIP) operations commonly used in industries such as processing food, beverages, brewing or pharmaceuticals, among others. In general, the CIP cycle involves several water-consuming steps, above ambient temperatures and the use of caustic solutions, leading to basic wastewaters that cannot be treated by conventional biological methods without previous neutralization.

In a recent work [16], we explored the application of APR for the treatment of a 14 15 synthetic brewery wastewater with an initial pH of about 7 and obtained fairly good 16 results in terms of TOC and COD removal (up to 99%) and valuable gases yield (up to 12.2 mmol H₂/g COD_{inital}), showing the potential of APR for the treatment of this sort of 17 18 effluents. In the current work, the effect of NaOH and KOH concentration on the 19 catalysts performance in APR of synthetic brewery wastewater is analysed. NaOH and KOH are commonly found in the formulation of detergents for CIP systems used in 20 breweries, therefore, they were the bases selected for this study. Likewise, a real 21 22 brewery wastewater has been tested to learn on the potential of application APR to these effluents. 23

24

2

2. Experimental

3 2.1. *Materials*

Malt extract, yeast extract, peptone, maltose (D-(+)-Maltose monohydrate from
potato, ≥ 99%), ammonium sulfate (≥ 99%), NaOH (≥ 99%) and KOH (≥ 99%)
hexachloroplatinic acid solution (H₂PtCl₆, 8% wt. in H₂O) were purchased from SigmaAldrich. Ethanol (≥ 99.5%) was supplied by Panreac AppliChem. Commercial activated
carbons Norit®CAPSUPER (CAP) and Merck (MER) were supplied by Norit and
Merck, respectively. Commercial carbon black ENSACO 250G (ENS) and Ketjenblack
EC-600JD (KJB) were purchased by Timcal and Akzonobel, respectively.

11 *2.2. Preparation and characterization of supports and catalysts*

Pt/C (3 wt. % Pt, carbon basis) catalysts were prepared by incipient wetness 12 impregnation using two commercial activated carbons (CAP and MER) and two carbon 13 blacks (ENS and KJB) as supports. After impregnation, the samples were dried at 333 K 14 overnight in an oven. Finally, the catalysts were calcined at 473 K (2 h) and reduced 15 with 25 N mL/min H₂ flow at 573 K (2 h). The Pt concentration used was selected in 16 preliminary experiments and was already tested in previous works [16,18]. The use of a 17 higher load was not considered because it may lead to nanoparticles agglomeration in 18 19 supports with low surface area, as in the case of ENS. Previous works also showed a good stability of Pt/C catalyst under simulated and real APR conditions, with low 20 21 significance changes in nanoparticles size, metal oxidation state and catalytic activity 22 [16,24].

The catalysts were characterized by scanning transmission electron microscopy (STEM) using a JEOL - 3000F at 300 kV microscope. The mean size of the Pt nanoparticles (NPs) and the size distribution were calculated by averaging more than 200 NPs randomly distributed in digital STEM images using the software 'ImageJ
1.51k'. The porous texture of the supports and catalysts was characterized by nitrogen
adsorption-desorption at 77 K (TriStar II, Micromeritics). Also, pH slurry
measurements were carried out by measuring the pH of an aqueous suspension in
distilled water (1 g of solid per 10 ml of water).

6

2.3. APR experiments and analytical procedures

7 Synthetic and real brewery wastewater were used as substrates. Synthetic brewery wastewater (SBW) was prepared using malt extract (1 g/L), yeast extract (0.5 g/L), 8 9 peptone (0.15 g/L), maltose (0.86 g/L), ammonium sulfate (1 g/L) and ethanol (2.8 10 mL/L) based on typical compositions found in brewery wastewater according to the literature [25]. NaOH and KOH were added to adjust the pH of SBW in order to 11 evaluate the effect of these bases and their concentration on the catalysts performance in 12 APR. The pH of SBW was 7, and was adjusted to 11 for some experiments since this is 13 14 the pH value for the real brewery wastewater (RBW) studied. This last was collected from the plant of an international brewing company based nearby Madrid (Spain). 15

APR runs were performed in stainless steel batch reactors (BR100, Berghoff) at 493 16 17 K and 24 - 28 bar (initial Ar pressure set at 5 bar) during 4 h, using 0.3 g of catalysts in 15 mL of reaction volume under Ar atmosphere. The reactors were purged with Ar 18 19 several times before each run. The gases were collected in multilayer foil sample bags (Supelco) and the volume was measured by a gas burette and expressed in normal 20 conditions (NTP). The aqueous phase was characterized by Total Organic Carbon 21 22 (TOC) measured in a TOC-VCSH apparatus (Shimadzu), Chemical Oxygen Demand (COD) determined according to the standard method (ASTM D1252), and ionic 23 chromatography (883 Basic IC Plus, Metrohm). The gas phase was analyzed by a 24

GC/FID/TCD (7820A, Agilent) using 2 packed columns and a molecular sieve allowing
 to detect H₂, CO, CO₂, CH₄, C₂H₆ and C₃H₈.

The TOC and COD removal (%) were determined as the difference between the initial and final TOC or COD values divided by the initial value (mg/L). Carbon conversion to gases (*CC gas* (%)) was calculated from the ratio between C content (g) in the gaseous products and C content (g) in the initial wastewater. H₂ yield (*Y*_{H2}) was defined as the amount of H₂ produced (mmol) divided by the initial COD (g).

8

3. Results and Discussion

9 *3.1. Catalysts and supports characterization*

Table 1 shows the specific surface area (S_{BET}), micropore and mesopore volume, 10 and pH slurry of the supports and catalysts prepared. The supports used covered in a 11 wide range of S_{BET} (65 - 1750 m²/g), micropore (< 0.001 - 0.66 cm³/g) and mesopore 12 volumes (0.09 - 1.67 cm^3 /g) and pH slurry (2.9 - 10.6). The carbon black supports (ENS 13 14 and KJB) showed basic pH slurry and did not present significant micropore volume (< 0.001 cm³/g), whereas the activated carbons yielded either acid or basic pH slurry and a 15 significant contribution of micropore volume $(0.38 - 0.48 \text{ cm}^3/\text{g})$. The catalysts prepared 16 presented slightly lower values of S_{BET} and pore volume than the corresponding 17 18 supports due to partial pore blockage by the Pt NPs. The pH slurry of the catalysts did not present any significant difference in comparison to the supports. 19

Table 1. S_{BET}, micropore and mesopore volume, and pH slurry of the supports and catalysts

Support/ catalyst	S _{BET} (m ² /g)	Micropore Volume (cm ³ /g)	Mesopore Volume (cm ³ /g)	pH slurry
ENS	65	< 0.001	0.09	8.9
KJB	1415	< 0.001	1.67	10.6
MER	930	0.38	0.15	8.3
CAP	1750	0.48	0.75	2.6

Pt/ENS	65	< 0.001	0.09	8.6
Pt/KJB	1350	< 0.001	1.59	10.2
Pt/MER	910	0.38	0.14	8.5
Pt/CAP	1360	0.31	0.75	2.9

	100111	1500	0.01	0.75	2.7	
1	Figure 1	shows STEM ima	ages and the corr	responding size d	listribution of	the Pt NPs
2	in the cataly	vsts. The mean NP	s size and size	distribution for t	he Pt/ENS, P	t/MER and
3	Pt/CAP cata	lysts were quite s	similar, in the 4	.2 - 4.7 nm rang	e, while the I	Pt/KJB one
4	gave a small	ler value of mean	NPs size (2.3 nr	n). In addition, it	t should ment	ion that the
5	Pt NPs of th	e Pt/MER catalyst	t, in some STEM	I images, showed	1 a higher agg	lomeration
6	than in the o	ther catalysts (Fig	ure 2).			

2 Figure 1. STEM images of a) Pt/ENS, b) Pt/KJB, c) Pt/MER and d) Pt/CAP catalysts

2

Figure 2. STEM image of agglomeration of Pt NPs in the Pt/MER catalysts

3

4

3.2. Synthetic and real brewery wastewater characterization

5 The characterization of the SBW and RBW, including TOC, COD, pH and main anions analysed, is summarized in Table 2. The RBW showed TOC and COD values of 6 1646 and 4674 mg/L, respectively. The pH of RBW was basic (pH 11) since it contains 7 significant amounts of the NaOH commonly used in the CIP operations carried out in 8 9 the food processing and beverages industry. The main organic anions detected correspond to short chain organic acids, which are commonly present in malt extract 10 11 [26]. The SBW was prepared with a TOC and COD of 1871 and 5846 mg/L, 12 respectively, which are close to above values for RBW and in good agreement with the range of TOC and COD reported for this type of wastewater [25]. The starting pH of 13 SBW was neutral. The main differences found between SBW and RBW in terms of 14 anions composition were relative to acetate and sulfate, which were in significantly 15 16 higher and lower concentration, respectively, in the case of RBW.

- 17
- 18
- 19

Wastewate	er TOC (mg/L)	COD (mg/L)	pH _i	Acetate (mg/L)	Formate (mg/L)	Glycolate (mg/L)	Phosphate (mg/L)	Sulfate (mg/L)	Maleate (mg/L)
SBW	1871 ± 79	5846 ± 331	7	2 ± 1	1 ± 1	8 ± 1	18 ± 3	678 ± 78	-
RBW	1646 ± 230	4764 ± 586	11	172 ± 10	37 ± 3	39 ± 3	15 ± 1	41 ± 4	4 ± 1
2									
3	3.3. APR of	synthetic bre	ewery	wastewate	er				
4	Figure 3 de	epicts the TC	OC ar	nd COD r	emoval in	the blank (without cata	lyst) and	
5	catalysed APR	experiments	with	SBW. Li	kewise, the	e results of	the experim	ents with	
6	SBW modified	with NaOH	(SBV	V+NaOH)	or KOH (SBW+KOH) up to a pH	value of	
7	11 are included	d. The lowes	t TO	C and CO	D removal	(40 - 60%)) correspond	ed to the	
8	blank and can	be ascribed n	nostly	y to hydro	thermal car	rbonization	(HTC) of th	e organic	
9	substrates, whi	ch is favoure	d unc	der the ope	erating con	ditions used	1 [27]. In ge	neral, the	
10	TOC and COD	removal we	re hig	gher when	catalysts w	vere used, p	articularly ir	the case	
11	of Pt/KJB, Pt/	MER and Pt	/CAP	, which r	eached ren	noval value	s close to 7	70%. The	
12	addition of KC	OH and NaO	H to	SBW pro	voked a sl	ight decrea	se in TOC a	and COD	
13	removal in all	experiments,	exce	ept with P	t/ENS cata	lyst. Base a	ddition incr	eased the	
14	selectivity towa	ards liquid ph	nase p	products, p	orobably the	rough base-	catalysed de	hydration	
15	followed by hy	drogenation	react	ions [28],	thus reduc	ing the TO	C and COD	removal.	
16	No significant	differences i	n TO	C and CC	DD remova	l were four	d by using	NaOH or	
17	KOH in the exp	periments wit	h SB'	W.					

Table 2. Characterization of the SBW and RBW

2 3

4 Figure 3. a) TOC and b) COD removal in APR runs for SBW ($pH_i = 7$), and for 5 SBW+NaOH and SBW+KOH ($pH_i = 11$)^{*}

6 ^{*}Reaction conditions: 493 K; total reaction pressure: 24 - 28 bar (initial Ar pressure set at 5 bar); 15 mL

7 of wastewater; 0.3 g catalyst; 500 rpm, 4 h.

2 Table 3 shows the concentration of short chain carboxylic anions and the pH values measured before and after APR runs. Acetate, formate and glycolate were the most 3 representative in the initial SBW. These three anions significantly increased their 4 concentration in experiments without catalyst (blank), especially in the case of 5 6 SBW+NaOH and SBW+KOH. During the HTC process organics acids such as formic, 7 acetic and levulinic acids are produced from biomass-derived organic compounds. 8 Some authors [29] have reported that basic conditions significantly affect the decomposition pathway of hydroxymethyfurfural (HMF), which is converted to 9 10 levulinic or formic acid, increasing the concentration of these acids. In the catalytic APR test, the concentration of these anions decreased in general, particularly in the case 11 12 of formate, indicating that conversion of the initial substrates takes place upon APR 13 reactions through mechanisms different from those of HTC. Acetate concentration was barely affected by the operating conditions, indicating its refractory character, whereas 14 15 the glycolate concentration was very sensitive to the type of catalyst, being higher in the SBW+NaOH and SBW+KOH experiments. The carboxylic anions from the blank 16 experiments amounted 9 - 19% of the final TOC, this increasing to 13 - 24% with bases 17 18 addition. Moreover, the Pt/MER and Pt/CAP catalysts yielded in general effluents with higher glycolate concentration and percentage of short chain carboxylic anions in the 19 final liquid phase of TOC (20 - 24%). A similar observation was made by King et al. 20 21 [28] in the APR of glycerol, who found a higher production of acids with the addition of 22 a base to the reaction medium. They suggested that KOH could promote the Cannizzaro reaction, facilitating the production of acids. Another study using in situ X-ray 23 24 absorption spectroscopy reported a higher selectivity to acids (four-fold) upon addition of KOH ($pH_i = 11.8$) in the APR of glycerol [30]. This effect was explained through the 25

interaction between KOH and adsorbed reaction intermediates, especially aldehydes, on
the surface of Pt. The final pH of the effluents was 3 - 4 in the APR runs with SBW
(starting pH = 7), whereas it ranged between 6 and 8 in the SBW+NaOH and
SBW+KOH experiments, when amounts of acids were produced, giving rise to base
neutralization.

6

Short chain carboxylic anions (mg/L) Initial Final Sample Wastewater Acetate Formate Glycolate pН pН Initial SBW 2 ± 1 1 ± 1 8 ± 2 7 -SBW 74 ± 9 66 ± 7 105 ± 9 7 3 **BLANK** SBW+NaOH 123 ± 11 118 ± 14 221 ± 12 11 8 SBW+KOH 126 ± 12 121 ± 13 209 ± 10 7 11 4 SBW 98 ± 6 2 ± 1 64 ± 5 7 Pt/ENS SBW+NaOH 104 ± 9 10 ± 4 103 ± 8 11 8 SBW+KOH 106 ± 7 6 ± 3 82 ± 9 8 11 SBW 61 ± 5 34 ± 2 7 3 1 ± 1 Pt/KJB SBW+NaOH 80 ± 4 6 ± 1 111 ± 6 11 8 7 ± 1 SBW+KOH 89 ± 5 91 ± 8 8 11 79 ± 5 3 SBW 4 ± 1 102 ± 8 7 Pt/MER SBW+NaOH 71 ± 3 12 ± 2 199 ± 10 11 8 73 ± 6 7 14 ± 1 200 ± 12 11 SBW+KOH 3 SBW 117 ± 8 1 ± 1 67 ± 3 7 Pt/CAP SBW+NaOH 72 ± 4 19 ± 3 249 ± 11 11 6 256 ± 12 SBW+KOH 100 ± 6 11 ± 2 11 6

7 Table 3. Short chain carboxylic anions in the effluents from the SBW, SBW+NaOH and

8 SBW+KOH APR experiments^{*}

9 ^{*}Reaction conditions: 493 K; total reaction pressure: 24 - 28 bar (initial Ar pressure set at 5 bar); 15 mL

10 of wastewater; 0.3 g catalyst; 500 rpm, 4 h.

11

Table 4 summarizes the gas volume produced, gas composition, *CC gas* and H₂ yield in the APR experiments. The volume of gas produced varied within a wide range (1.0 - 40.1 mL), with the blanks showing the lowest production (1.0 - 2.2 mL). The blanks gave *CC gas* between 1.7 - 3.8%, consisting mainly of CO₂ (50 - 87%) with low H₂ yields (< 0.03 mmol H₂/g COD). CO was only detected in the blank experiments, representing 9% of the gas fraction from the APR of SBW and reaching more than 30%

from SBW+NaOH and SBW+KOH. The catalysts supported on carbon blacks showed a 1 2 gas production between 12.2 and 40.1 mL, with CC gas in the 15.8 – 41.3% range and H₂ yields between 1.4 and 8.9 mmol H₂/g COD. These values were significantly higher 3 than the obtained with the activated carbon supported catalysts (gas volume: 2.9 - 8.4 4 mL; CC gas: 3.7 - 15.1%; H₂ yield: 0.05 - 0.15 mmol H₂/g COD). This frankly higher 5 production of H₂ can be attributed to the fact that the ENS and KJB carbon blacks are 6 7 basic supports that can enhance the WGS reaction. Some authors [21] have suggested that the basic medium can favors the polarization and dissociation of H₂O, providing 8 hydroxyl anions that can be adsorbed on the catalysts surface, enhancing the WGS 9 10 reaction [31]. However, the Pt/MER catalyst yielded basic pH slurry while giving low 11 amounts of H₂ and other gases. This behavior of the Pt/MER catalyst can be related to its porous texture, since the MER support has a high contribution of micropores 12 13 opposite to ENS and KJB. That would determine severe mass transfer limitations of reactants and products, resulting in low gas production, H₂ selectivity and yield [32–34]. 14 The Pt/CAP catalyst has an important contribution of mesopores, but both the presence 15 of micropores and the low pH slurry of the support may causes the low H₂ production 16 17 observed, similar to that of Pt/MER.

18 Regarding the effect of the addition of bases to the wastewater, it has been reported [21,22] that CaO or KOH can favour the WGS reaction by gas withdrawal through the 19 in-situ removal of CO₂, displacing the reactions towards H₂ production. In the current 20 21 work the addition of bases led to lower percentages of CO₂ in the gas fraction with all the catalysts tested, particularly in the experiments with SBW+KOH, indicating that the 22 addition of a base was effective for the removal of CO_2 . However, the Y_{H2} in the 23 SBW+KOH and SBW+NaOH experiments was higher than in the SBW ones only with 24 the Pt/KJB catalyst. King et al. [28] studied the effect of KOH addition in the APR of 25

glycerol using 3%Pt/C and 3%Pt-Re/C catalysts and found a dramatic increase of 1 2 glycerol conversion. However, they reported a higher production of liquids, being the gas product, and H₂ yield barely affected. Likewise, they suggested that the addition of 3 KOH favoured the C-O bond cleavage, compared to C-C bond cleavage, by base-4 catalysed dehydration followed by hydrogenation that reduces the H₂ production. Karim 5 6 et al. [30] also found similar results in the APR of glycerol with Pt/C catalysts. The 7 addition of KOH did not affect the gas phase products, while a higher glycerol conversion was observed. These authors also attributed the results to a higher selectivity 8 9 toward dehydration reactions, which was reflected in a higher C-O/C-C ratio and lower 10 H₂ and CO₂ selectivities in the presence of that base.

11 Comparing the bases used, the highest percentage of H₂ was obtained with KOH. The experiments carried out with SBW+KOH also led to higher gas production, CC 12 13 gas, Y_{H2} , and in some cases a lower percentage of alkanes in the gas fraction. This can be better appreciated for the catalysts that yielded higher amounts of gases (Pt/ENS and 14 15 Pt/KJB). Similar results were obtained by Liu et al. [21] in the APR of ethylene glycol using Ni catalysts with different potassium salts and NaOH. The authors concluded that 16 KOH leads to higher CC gas and Y_{H2} and lower alkanes yields, probably due to 17 18 blockage of active sites enabling CO methanation. The addition of K to Pt/hydrotalcite catalysts was studied in the APR of glycerol [35] and the results showed that it 19 enhanced the basicity of the catalysts and increased the glycerol conversion and H₂ 20 21 selectivity, although an excess of K loading blocked the active sites of Pt NPs, having the opposite effect. 22

In the SBW+KOH experiments the Pt/ENS catalyst gave the highest percentage of valuable gases (H₂ and alkanes) in the gas fraction ($_{\sim}$ 75%) and H₂ yield (8.9 mmol H₂/g COD \approx 213.6 mL H₂/g COD). This production of gas is higher than the reported in the

- 1 literature from the anaerobic biological treatment of an equivalent brewery wastewater
- 2 (initial COD ca. 6000 mg/L, 149.6 mL H_2/g COD) [36], thus showing the potential of

3 APR as way of valorisation of brewery wastewater.

- 4
- 5 Table 4. Gas volume produced, composition of the gas fraction, CC gas and Y_{H2} in the
- 6 APR of SBW ($pH_i = 7$), SBW+NaOH ($pH_i = 11$) and SBW+KOH ($pH_i = 11$)^{*}

		Gas	Gas compo	osition (% n	nol)		Y_{H2}
Sample	Wastewater	Volume (mL)	H ₂	CO ₂	Alkanes	CC gas (%)	(mmol H ₂ / g COD)
	SBW	2.2 ± 0.3	1.8 ± 0.3	86.8 ± 6.1	2.2 ± 0.3	3.8 ± 0.4	< 0.1
BLANK	SBW+NaOH	1.0 ± 0.4	6.6 ± 1.0	50.4 ± 6.4	7.5 ± 3.5	1.7 ± 0.7	< 0.1
	SBW+KOH	1.4 ± 0.4	4.2 ± 0.1	58.8 ± 7.0	6.7 ± 2.1	2.5 ± 0.7	< 0.1
	SBW	40.1 ± 0.5	46.7 ± 0.5	32.0 ± 0.8	21.3 ± 0.3	41.3 ± 0.9	8.9 ± 0.1
Pt/ENS	SBW+NaOH	23.7 ± 7.1	51.4 ± 2.0	25.6 ± 1.7	23.0 ± 3.7	21.8 ± 7.5	5.8 ± 1.5
	SBW+KOH	35.5 ± 6.9	52.7 ± 0.4	25.1 ± 0.1	22.2 ± 0.4	31.8 ± 6.1	8.9 ± 1.7
	SBW	12.2 ± 0.5	23.5 ± 0.6	56.9 ± 1.4	19.6 ± 0.9	17.5 ± 0.9	1.4 ± 0.1
Pt/KJB	SBW+NaOH	12.5 ± 0.5	32.7 ± 1.0	44.5 ± 1.9	22.8 ± 1.0	15.8 ± 0.9	1.9 ± 0.1
	SBW+KOH	19.3 ± 3.5	38.6 ± 3.4	39.7 ± 2.3	21.7 ± 1.1	22.3 ± 3.1	3.5 ± 0.9
	SBW	4.3 ± 0.4	3.2 ± 0.8	87.4 ± 0.2	9.4 ± 0.9	7.5 ± 0.7	0.1 ± 0.1
Pt/MER	SBW+NaOH	2.2 ± 0.4	4.4 ± 1.3	89.6 ± 0.1	6.0 ± 1.2	$3.7\pm\ 0.7$	0.1 ± 0.1
	SBW+KOH	2.8 ± 0.4	9.5 ± 0.2	76.4 ± 1.6	14.1 ± 1.8	4.7 ± 0.6	0.1 ± 0.1
	SBW	8.4 ± 0.4	1.6 ± 0.4	72.1 ± 0.7	26.3 ± 1.1	15.1 ± 0.6	0.1 ± 0.1
Pt/CAP	SBW+NaOH	2.9 ± 0.4	5.6 ± 0.6	86.2 ± 0.4	8.2 ± 1.0	4.9 ± 0.6	0.1 ± 0.1
	SBW+KOH	2.9 ± 0.4	10.6 ± 0.1	80.3 ± 1.2	9.1 ± 1.2	4.7 ± 0.6	0.1 ± 0.1

^{*}Reaction conditions: 493 K; total reaction pressure: 24 - 28 bar (initial Ar pressure set at 5 bar); 15 mL
of wastewater; 0.3 g catalyst; 500 rpm, 4 h.

10 *3.4. Effect of the pH on the catalyst performance*

Given the good results obtained with the Pt/ENS catalyst it was selected to assess the effect of the pH in the APR of SBW+KOH. The pH values tested were selected taking into account the previous results of CO_2 production in the corresponding experiments at an initial pH value of 11. An initial pH value of 13.0 was calculated as the one providing the stoichiometric amount of KOH needed to convert all the CO_2 produced, according to Eq. (2). Initial pH values below and above that value (11 and 13.5, respectively) were selected.

⁹

2

3

4

5

6

7

8

Figure 4 shows the TOC and COD removal achieved at these three initial pH values. Around 70% of TOC and COD removal reached at $pH_i = 11$, while lower percentages were achieved at higher pH. Similar results were found in the APR of glycerol with 3%Pt/C upon the addition of KOH ($pH_i = 12$) [28]. Therefore, this base may change the reaction pathway, increasing the production of liquids without increasing significantly the H₂ yield, due to competitive reactions involving base-catalysed dehydration followed by subsequent hydrogenation.

9

10 Figure 4. TOC and COD removal in the APR of SBW+KOH with Pt/ENS at different

11 initial pH^{*}

*Reaction conditions: 493 K; total reaction pressure: 24 - 28 bar (initial Ar pressure set at 5 bar); 15 mL
 of SBW+KOH; 0.3 g Pt/ENS catalyst; 500 rpm, 4 h.

14

Table 5 shows the concentration of representative anions from the APR runs of SBW+KOH at different initial pH values. In all cases the pH decreased along the APR due to de the generation of organic acids. Acetate, formate and glycolate concentration 1 was much lower at the lowest starting pH ($pH_i = 11$). The amount of these anions 2 corresponded to 14% of the final TOC, while increasing up to 30 and 36% at 13 and 3 13.5 initial pH, respectively. Thus confirming that organic acids formation is favoured 4 at increased pH [28,30].

5

Table 5. Short chain carboxylic anions the APR of SBW+KOH with Pt/ENS at different
 initial pH^{*}

Sampla	Initial nU	Short chain	Final nH		
Sample	initial pi	Acetate	Formate	Glycolate	r mai pri
	11	106 ± 7	6 ± 3	82 ± 9	8
Pt/ENS	13	235 ± 11	33 ± 4	392 ± 12	10
	13.5	330 ± 16	30 ± 4	419 ± 14	12

*Reaction conditions: 493 K; total reaction pressure: 24 - 28 bar (initial Ar pressure set at 5 bar); 15 mL
of SBW+KOH; 0.3 g Pt/ENS catalyst; 500 rpm, 4 h.

10

11 Table 6 shows the gas volume produced, the composition of the gas fraction, CC gas and Y_{H2} at the different values of initial pH tested. The CC gas significantly decreased 12 13 from around 32%, for an initial pH of 11, to around 15% for 13 and 13.5 initial pH, due 14 to the in-situ removal of the CO₂ giving rise to potassium carbonate. Table 6 also shows 15 that for those initial pH values no CO₂ was found in the gas fraction. A corrected-CC gas was estimated for the reactions performed under those conditions by adding the 16 17 amount of CO₂ produced in the experiment at pH 11. No significant differences were found between the CC gas of the reaction carried out at initial pH 11 and the corrected-18 CC gas at 13 and 13.5. Therefore, the in-situ removal of CO_2 did not affect to the total 19 carbon conversion to gases. The volume of gas produced decreased from 35.5 mL, for 20 21 an initial pH 11, to 25.8 - 27.1 mL at 13 and 13.5. The Y_{H2} did not change significantly with the initial pH of the wastewater (8.7 - 9.0 mmol H_2/g COD) and the amount of 22 alkanes was similar in all the experiments (0.31 - 0.34 mmol). However, looking at the 23 results in more detail, it can be seen that the molar fraction of C₂H₆ and C₃H₈ of the total 24

1 alkanes $((C_2H_6 + C_3H_8) / (CH_4 + C_2H_6 + C_3H_8)$ decreased from 10% at initial pH 11, to 3

2 and 2 % at 13 and 13.5, respectively. This indicates that the addition of KOH reduce the

3 formation of C_2^+ , probably because the dehydration-hydrogenation of alcohols is

4 hindered [28].

5

6 Table 6. Gas volume produced, composition of the gas fraction and Y_{H2} in the APR of 7 SBW+KOH with Pt/ENS at different initial pH^{*}

Initial	Gas	Gas composition (% mol)			CC gas	Corrected-	Y _{H2}
рН	produced (mL)	H ₂	CO ₂	Alkanes	(%)	<i>CC gas</i> (%)	(mmol H ₂ / g COD)
11	35.5 ± 6.9	52.7 ± 0.4	25.1 ± 0.1	22.2 ± 1.7	31.8 ± 6.1	-	8.9 ± 1.7
13	27.1 ± 1.9	70.2 ± 2.0	0	29.8 ± 2.0	15.0 ± 0.1	30.9	9.0 ± 0.9
13.5	25.8 ± 1.4	71.0 ± 1.5	0	29.0 ± 1.4	13.8 ± 0.1	29.6	8.7 ± 0.7

8 ^{*}Reaction conditions: 493 K; total reaction pressure: 24 - 28 bar (initial Ar pressure set at 5 bar); 15 mL
9 of SBW+KOH; 0.3 g Pt/ENS catalyst; 500 rpm, 4 h.

10

11 *3.5. APR of real brewery wastewater*

The study of the treatment by APR of RBW was carried out with a sample of pH_i 12 11, from a brewing plant. However, as indicated above, RBW with pH values even 13 higher can be generated depending on the dosage of alkali used in the CIP operations 14 and could contribute to total or partial removal of CO₂ from the resulting gas without 15 16 affecting significantly the production of valuable gases. The percentages of TOC and COD removal upon APR of that RBW are depicted in Figure 5. They ranged between 17 22 - 75% and 30 - 78%, respectively. The lowest values corresponded to the blank 18 19 which undergoes basically HTC at a lower than the SBW previously tested. The results 20 show that minor components of RBW are determining in the case of blank experiments, as observed in other works showing that complex carbohydrates contribute largely to 21 22 the formation of hydrochar [37]. The removal of TOC and COD from SBW and RBW was equivalent with Pt/ENS and Pt/KJB and slightly lower with Pt/MER. 23

3 Figure 5. TOC and COD removal after APR runs with different catalysts

^{*}Reaction conditions: 493 K; total reaction pressure: 24 - 28 bar (initial Ar pressure set at 5 bar); 15 mL
of RBW; 0.3 g catalyst; 500 rpm, 4 h.

6

Table 7 shows the concentration of short chain carboxylic anions and the pH values 7 measured before and after APR of RBW. The concentrations of acetate, formate and 8 9 glycolate significantly increased in the blank experiments. The amount of those species in the starting RBW corresponded to 6% of the TOC and this proportion increased to 10 34% in the blank experiment, being two-fold the percentage achieved in the blank 11 experiments previously conducted with SBW. In the catalysed APR reactions the 12 13 formate concentration hardly changed, while the concentration of acetate, glycolate and 14 maleate increased significantly, leading to final pH values between 7 and 8. Moreover, the Pt/MER catalyst yielded higher glycolate concentration than the other catalysts, as 15 observed in the APR of SBW as well. In the APR of RBW, in contrast to SBW, the 16

- 1 proportion of carboxylic anions in the remaining TOC was higher with the Pt/KJB
- 2 catalyst (60% of final TOC) than with the Pt/MER one (44%).
- 3
- 4 Table 7. Short chain carboxylic anions and final pH upon APR of RBW by APR with
- 5 different catalysts $(pH_i = 11)^*$

Initial	172 ± 10	37 ± 3	39 ± 3	4 ± 1	-	
BLANK	449 ± 13	260 ± 3	463 ± 3	0	7	
Pt/ENS	481 ± 13	44 ± 7	242 ± 7	25 ± 3	8	
Pt/KJB	420 ± 8	30 ± 2	109 ± 2	12 ± 4	8	
Pt/MER	386 ± 17	31 ± 2	504 ± 7	26 ± 1	8	

^{*}Reaction conditions: 493 K; total reaction pressure: 24 - 28 bar (initial Ar pressure set at 5 bar); 15 mL
of RBW; 0.3 g catalyst; 500 rpm, 4 h.

8

Table 8 shows the volume and composition of the gas fraction, CC gas and Y_{H2} from 9 the APR of RBW. The lowest CC gas (3%) was obtained in the blank experiments. The 10 carbon-black catalyst (Pt/ENS and Pt/KJB), yielded CC gas between 27 and 40%, 11 significantly higher than the obtained with Pt/MER. Likewise, those catalysts gave the 12 13 highest CC gas from both SBW and RBW, being similar with Pt/ENS and significantly 14 higher from the real wastewater with the Pt/KJB catalyst. The H₂ yield in the last case reached 12.9 mmol H₂/g COD (\approx 309.1 mL H₂/g COD), which is equivalent to the 15 highest H₂ yield found in our previous work with SBW but at higher temperature (498 16 K, 12.2 mmol H₂/g COD) [16]. This H₂ yield achieved doubles the optimized value 17 reported from anaerobic biological treatment (149.6 mL H_2/g COD) [36]. 18

- 19
- 20
- 21
- 22
- 23

1 Table 8. Gas volume produced, composition of the gas fraction, CC gas and Y_{H2} in the

2 APR of RBW

	Gas	Gas composition (% mol)			CC gas	Y_{H2}
Sample	produced (mL)	H_2	CO ₂	Alkanes	(%)	(mmol H ₂ / g COD)
BLANK	1.6 ± 0.1	0.9 ± 0.6	94.2 ± 2.1	3.6 ± 0.2	3.3 ± 0.1	< 0.1
Pt/ENS	26.3 ± 4.1	51.1 ± 3.2	$28.8\ \pm 2.1$	$20.1\ \pm 1.1$	27.0 ± 4.0	$7.8\ \pm 1.4$
Pt/KJB	$41.2\ \pm 2.4$	$53.6\ \pm 6.3$	$26.5\ \pm 5.6$	$19.9\ \pm 0.7$	40.0 ± 2.9	12.9 ± 2.3
Pt/MER	4.7 ± 0.9	11.7 ± 6.9	78.9 ± 7.6	9.4 ± 0.7	8.5 ± 1.0	0.3 ± 0.3

^{*}Reaction conditions: 493 K; total reaction pressure: 24 - 28 bar (initial Ar pressure set at 5 bar); 15 mL
of RBW; 0.3 g catalyst; 500 rpm, 4 h.

5

6 4. Conclusions

The APR of brewery wastewater was studied using different Pt/C catalysts (3 wt. %) 7 8 and alkaline agents (NaOH, KOH) in order to assess the influence of the basicity conferred to wastewaters by CIP operations. TOC and COD removal in blank 9 experiments was between 40 - 60%, mainly ascribable to hydrothermal carbonization of 10 organic substrates, while removal values were higher when catalysts were used (up to 11 83%). The addition of NaOH or KOH to SBW resulted in slightly lower TOC and COD 12 13 removal, although an increase in the percentage of valuable gases (H₂ and alkanes) and H₂ yield was observed, mainly when KOH was added. Catalysts supported on carbon 14 blacks showed better performance in the APR of SBW in terms of gas production, 15 16 carbon conversion to gas and H₂ yields, respect to activated carbons due to higher basicity. Pt/ENS yielded the highest percentage of valuable gases in the gas fraction (~ 17 75%) and the highest H₂ yield (8.9 mmol H₂/g COD) in the APR of SBW+KOH with an 18 initial pH of 11. Increasing the initial pH of SBW+KOH up to pH 13 and 13.5, led to 19 CO₂-free H₂ without modifying the H₂ yield. Virtually CO free H₂ was also obtained, 20 which relevant in applications such as fuel cells. The results obtained with SBW or 21 RBW were relatively similar, indicating that SBW is a good representative of RBW for 22 23 testing as a wastewater treatment and valorisation approach. However, the different H₂

yields obtained with Pt/KJB from SBW and RBW suggest that the composition of the
 wastewater needs to be considered for the sake of optimization.

3 Acknowledgements

The authors greatly appreciate financial support from Spanish AEI (CTQ2015-65491-R). A. S. Oliveira thanks the Spanish AEI a research grant (BES-2016-077244) and B. Saenz de Miera thanks the Regional Government of Madrid a predoctoral grant (PEJD-2017-PRE/AMB-3670).

8

9 References

- 10 [1] R.D. Cortright, R.R. Davda, J.A. Dumesic, Hydrogen from catalytic reforming of
 11 biomass-derived hydrocarbons in liquid water, Nature. 418 (2002) 964–967.
 12 doi:10.1038/nature01009.
- R.R. Davda, J.A. Dumesic, Renewable hydrogen by aqueous-phase reforming of
 glucose, Chem. Commun. 10 (2004) 36–37. doi:10.1002/anie.200353050.
- J.W. Shabaker, R.R. Davda, G.W. Huber, R.D. Cortright, J.A. Dumesic,
 Aqueous-phase reforming of methanol and ethylene glycol over aluminasupported platinum catalysts, J. Catal. 215 (2003) 344–352. doi:10.1016/S00219517(03)00032-0.
- [4] G. Wen, Y. Xu, H. Ma, Z. Xu, Z. Tian, Production of hydrogen by aqueousphase reforming of glycerol, Int. J. Hydrogen Energy. 33 (2008) 6657–6666.
 doi:10.1016/j.ijhydene.2008.07.072.
- Y. Wei, H. Lei, Y. Liu, L. Wang, L. Zhu, X. Zhang, G. Yadavalli, B. Ahring, S.
 Chen, Renewable hydrogen produced from different renewable feedstock by

- aqueous-phase reforming process, J. Sustain. Bioenergy Syst. 4 (2014) 113–127.
 doi:10.4236/jsbs.2014.42011.
- 3 [6] A. V. Kirilin, A. V. Tokarev, L.M. Kustov, T. Salmi, J.-P. Mikkola, D.Y.
 4 Murzin, Aqueous phase reforming of xylitol and sorbitol: Comparison and
 5 influence of substrate structure, Appl. Catal. A Gen. 435–436 (2012) 172–180.
 6 doi:10.1016/j.apcata.2012.05.050.
- [7] L.I. Godina, A. V. Kirilin, A. V. Tokarev, D.Y. Murzin, Aqueous phase
 reforming of industrially relevant sugar alcohols with different chiralities, ACS
 Catal. 5 (2015) 2989–3005. doi:10.1021/cs501894e.
- I. Coronado, M. Stekrova, M. Reinikainen, P. Simell, L. Lefferts, J. Lehtonen, A
 review of catalytic aqueous-phase reforming of oxygenated hydrocarbons derived
 from biorefinery water fractions, Int. J. Hydrogen Energy. 41 (2016) 11003–
 11032. doi:10.1016/j.ijhydene.2016.05.032.
- R.R. Davda, J.W. Shabaker, G.W. Huber, R.D. Cortright, J.A. Dumesic,
 Aqueous-phase reforming of ethylene glycol on silica-supported metal catalysts,
 Appl. Catal. B Environ. 43 (2003) 13–26. doi:10.1016/S0926-3373(02)00277-1.
- I.N. Chheda, G.W. Huber, J.A. Dumesic, Liquid-phase catalytic processing of
 biomass-derived oxygenated hydrocarbons to fuels and chemicals, Angew.
 Chemie Int. Ed. 46 (2007) 7164–7183. doi:10.1002/anie.200604274.
- R.R. Davda, J.W. Shabaker, G.W. Huber, R.D. Cortright, J.A. Dumesic, A 20 [11] review of catalytic issues and process conditions for renewable hydrogen and 21 alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported 22 Environ. 23 metal catalysts, Appl. Catal. В 56 (2005)171–186. doi:10.1016/j.apcatb.2004.04.027. 24
- 25 [12] M. El Doukkali, A. Iriondo, J.F. Cambra, L. Jalowiecki-Duhamel, A.S. Mamede,

1		F. Dumeignil, P.L. Arias, Pt monometallic and bimetallic catalysts prepared by
2		acid sol-gel method for liquid phase reforming of bioglycerol, J. Mol. Catal. A
3		Chem. 368–369 (2013) 125–136. doi:10.1016/J.MOLCATA.2012.12.006.
4	[13]	M.C. Kim, T.W. Kim, H.J. Kim, C.U. Kim, J.W. Bae, Aqueous phase reforming
5		of polyols for hydrogen production using supported Pt-Fe bimetallic catalysts,
6		Renew. Energy. 95 (2016) 396-403. doi:10.1016/j.renene.2016.04.020.
7	[14]	B. Kaya, S. Irmak, A. Hasanoilu, O. Erbatur, Developing Pt based bimetallic and
8		trimetallic carbon supported catalysts for aqueous-phase reforming of biomass-
9		derived compounds, Int. J. Hydrogen Energy. 40 (2015) 3849-3858.
10		doi:10.1016/j.ijhydene.2015.01.131.
11	[15]	K.E. Jeong, H.D. Kim, T.W. Kim, J.W. Kim, H.J. Chae, S.Y. Jeong, C.U. Kim,
12		Hydrogen production by aqueous phase reforming of polyols over nano- and
13		micro-sized mesoporous carbon supported platinum catalysts, Catal. Today. 232
14		(2014) 151-157. doi:10.1016/j.cattod.2014.02.005.
15	[16]	A.S. Oliveira, J.A. Baeza, L. Calvo, N. Alonso-Morales, F. Heras, J.J. Rodriguez,
16		M.A. Gilarranz, Production of hydrogen from brewery wastewater by aqueous
17		phase reforming with Pt/C catalysts, Appl. Catal. B Environ. 245 (2019) 367-
18		375. doi:10.1016/j.apcatb.2018.12.061.
19	[17]	D.A. Sladkovskiy, L.I. Godina, K. V. Semikina, E. V. Sladkovskaya, D.A.
20		Smirnova, D.Y. Murzin, Process design and techno-economical analysis of
21		hydrogen production by aqueous phase reforming of sorbitol, Chem. Eng. Res.
22		Des. 134 (2018) 104–116. doi:10.1016/j.cherd.2018.03.041.
23	[18]	A.S. Oliveira, J.A. Baeza, L. Calvo, N. Alonso-Morales, F. Heras, J. Lemus, J.J.
24		Rodriguez, M.A. Gilarranz, Exploration of the treatment of fish-canning industry
25		effluents by aqueous-phase reforming using Pt/C catalysts, Environ. Sci. Water

Res. Technol. 4 (2018) 1979–1987. doi:10.1039/C8EW00414E.

- J. Remón, J. Ruiz, M. Oliva, L. García, J. Arauzo, Effect of biodiesel-derived 2 [19] impurities (acetic acid, methanol and potassium hydroxide) on the aqueous phase 3 reforming of glycerol, Chem. Eng. J. 299 (2016)431-448. 4 doi:10.1016/j.cej.2016.05.018. 5
- [20] J. Remón, C. Jarauta-Córdoba, L. García, J. Arauzo, Effect of acid (CH₃COOH,
 H₂SO₄ and H₃PO₄) and basic (KOH and NaOH) impurities on glycerol
 valorisation by aqueous phase reforming, Appl. Catal. B Environ. 219 (2017)
 362–371. doi:10.1016/j.apcatb.2017.07.068.
- [21] J. Liu, X. Chu, L. Zhu, J. Hu, R. Dai, S. Xie, Y. Pei, S. Yan, M. Qiao, K. Fan,
 Simultaneous aqueous-phase reforming and KOH carbonation to produce COxfree hydrogen in a single reactor, ChemSusChem. 3 (2010) 803–806.
 doi:10.1002/cssc.201000093.
- [22] C. He, J. Zheng, K. Wang, H. Lin, J.-Y. Wang, Y. Yang, Sorption enhanced
 aqueous phase reforming of glycerol for hydrogen production over Pt-Ni
 supported on multi-walled carbon nanotubes, Appl. Catal. B Environ. 162 (2015)
 401–411. doi:10.1016/j.apcatb.2014.07.012.
- 18 [23] Y. Xu, Z. Tian, G. Wen, Z. Xu, W. Qu, L. Lin, Production of COx-free hydrogen
 by alkali enhanced hydrothermal catalytic reforming of biomass-derived
 alcohols, Chem. Lett. 35 (2006) 216–217. doi:10.1246/cl.2006.216.
- [24] J. Lemus, J. Bedia, L. Calvo, I.L. Simakova, D.Y. Murzin, B.J.M. Etzold, J.J.
 Rodriguez, M.A. Gilarranz, Improved synthesis and hydrothermal stability of
 Pt/C catalysts based on size-controlled nanoparticles, Catal. Sci. Technol. 6
 (2016) 5196–5206. doi:10.1039/c6cy00403b.
- 25 [25] H. Habte Lemji, H. Eckstädt, A pilot scale trickling filter with pebble gravel as

- media and its performance to remove chemical oxygen demand from synthetic
 brewery wastewater, J Zhejiang Univ-Sci B (Biomed & Biotechnol). 14 (2013)
 924–933. doi:10.1631/jzus.B1300057.
- 4 [26] Dennis E. Briggs, Malts and Malting, Thomson Science, London, UK, 1998.
- 5 [27] J. Poerschmann, B. Weiner, R. Koehler, F.D. Kopinke, Hydrothermal
 6 carbonization of glucose, fructose, and xylose Identification of organic products
 7 with medium molecular masses, ACS Sustain. Chem. Eng. 5 (2017) 6420–6428.
 8 doi:10.1021/acssuschemeng.7b00276.
- 9 [28] D.L. King, L. Zhang, G. Xia, A.M. Karim, D.J. Heldebrant, X. Wang, T.
 10 Peterson, Y. Wang, Aqueous phase reforming of glycerol for hydrogen
 11 production over Pt-Re supported on carbon, Appl. Catal. B Environ. 99 (2010)
 12 206–213. doi:10.1016/j.apcatb.2010.06.021.
- 13 [29] T. Wang, Y. Zhai, Y. Zhu, C. Li, G. Zeng, A review of the hydrothermal
 14 carbonization of biomass waste for hydrochar formation: Process conditions,
 15 fundamentals, and physicochemical properties, Renew. Sustain. Energy Rev. 90
 16 (2018) 223–247. doi:10.1016/J.RSER.2018.03.071.
- [30] A.M. Karim, C. Howard, B. Roberts, L. Kovarik, L. Zhang, D.L. King, Y. Wang,
 In situ X-ray absorption fine structure studies on the effect of pH on Pt electronic
 density during aqueous phase reforming of glycerol, ACS Catal. 2 (2012) 2387–
 20 2394. doi:10.1021/cs3005049.
- [31] R. He, R.R. Davda, J.A. Dumesic, In situ ATR-IR spectroscopic and reaction
 kinetics studies of water-gas shift and methanol reforming on Pt/Al₂O₃ catalysts
 in vapor and liquid phases, J. Phys. Chem. B. 109 (2005) 2810–2820.
 doi:10.1021/jp045470k.
- 25 [32] T.-W. Kim, H.-D. Kim, K.-E. Jeong, H.-J. Chae, S.-Y. Jeong, C.-H. Lee, C.-U.

- Kim, Catalytic production of hydrogen through aqueous-phase reforming over
 platinum/ordered mesoporous carbon catalysts, Green Chem. 13 (2011) 1718–
 1728. doi:10.1039/c1gc15235a.
- X. Wang, N. Li, Z. Zhang, C. Wang, L.D. Pfefferle, G.L. Haller, High-yield 4 [33] 5 hydrogen production from aqueous phase reforming over single-walled carbon nanotube 1480-1486. 6 supported catalysts, ACS Catal. 2 (2012)doi:10.1021/cs300274m. 7
- 8 [34] T.W. Kim, H.J. Park, Y.C. Yang, S.Y. Jeong, C.U. Kim, Hydrogen production
 9 via the aqueous phase reforming of polyols over three dimensionally mesoporous
 10 carbon supported catalysts, Int. J. Hydrogen Energy. 39 (2014) 11509–11516.
 11 doi:10.1016/j.ijhydene.2014.05.106.
- [35] C. Pendem, B. Sarkar, N. Siddiqui, L.N.S. Konathala, C. Baskar, R. Bal, KPromoted Pt-hydrotalcite catalyst for production of H₂ by aqueous phase
 reforming of glycerol, ACS Sustain. Chem. Eng. 6 (2018) 2122–2131.
 doi:10.1021/acssuschemeng.7b03512.
- [36] X.Y. Shi, D.W. Jin, Q.Y. Sun, W.W. Li, Optimization of conditions for hydrogen
 production from brewery wastewater by anaerobic sludge using desirability
 function approach, Renew. Energy. 35 (2010) 1493–1498.
 doi:10.1016/j.renene.2010.01.003.
- [37] P. Biller, A.B. Ross, Production of biofuels via hydrothermal conversion, Handb.
 Biofuels Prod. (2016) 509–547. doi:10.1016/B978-0-08-100455-5.00017-5.
- 22

1 Effect of basicity in the aqueous phase reforming of brewery

2 wastewater for H₂ production

3 A.S. Oliveira, J.A. Baeza, D. García, B. Saenz de Miera, L. Calvo*, J.J. Rodriguez,

4 M.A. Gilarranz

5 Departamento de Ingeniería Química, C/Francisco Tomás y Valiente 7, Universidad Autónoma

6 de Madrid, 28049 Madrid, Spain

7 *corresponding author e-mail: luisa.calvo@uam.es

8 Abstract

9 Real (RBW) and synthetic brewery wastewater (SBW) were treated by aqueous phase reforming (APR) with different 3%Pt/C catalysts for H₂ production from the biomass-10 derived organic load. APR enabled simultaneous treatment of the wastewater and 11 valorisation to H₂ and alkanes of the biomass-derived organic load. In the catalytic APR 12 13 of SBW, TOC and COD removal was higher than 60% after reaction time of the experiments. The addition of KOH or NaOH to SBW resulted in a slightly lower TOC 14 15 and COD removal, however higher yields to H₂ and percentage of valuable gases were obtained in those cases where KOH was added. Catalyst with basic support and low 16 17 contribution of micropores showed the best performance in the APR of SBW+KOH (~50% of H₂ and 8.9 mmol H₂/g COD). The concentration of anions detected in the 18 19 liquid effluents varied with the catalysts tested and with the concentration of base, suggesting different reaction pathways. Increasing the concentration of KOH led to 20 21 CO₂-free H₂ without significant changes in H₂ yield. The results obtained with RBW were in good agreement with those from SBW, although the significantly different 22 behaviour of some catalysts suggests the need of tuning their properties according to the 23 composition of the wastewater. 24

25

26 Keywords: hydrogen, brewery wastewater, aqueous phase reforming, basicity

- 27
- 28
- 29

1 **1. Introduction**

The circular economy approach has attracted much interest in the last few years, 2 3 given the current scenario of high dependence on fossil fuels and human-borne climate 4 change. This approach involves, among others aspects, transitioning from fossil-based to renewable energy sources and a more efficient use of raw materials and products, 5 aimed to minimize waste and pollution. In this context, aqueous phase reforming (APR) 6 7 has gained an increasing attention since the pioneering work of Cortright et al. [1], 8 where the production of valuable gases, such as H₂, from biomass-derived compounds was reported. The APR process can be described by the overall reforming reaction 9 10 shown in Eq. (1), although other reactions, such as the water-gas shift reaction (WGS), 11 methanation, Fischer-Tropsch, dehydrogenation or dehydration/hydrogenation also 12 occur in different extent [1].

13

(1)

Oxygenated organic species, such as sorbitol, xylitol, glycerol, galactitol, ethanol, 1-14 propanol or ethylene glycol, among others, have been extensively studied as substrates 15 for APR [2-7], showing promising results in terms of carbon conversion into gases and 16 valuable gas products. On the other hand, a diversity of catalytic systems, mainly based 17 18 on VIII group metals, have been described in the literature for APR of oxygenated 19 hydrocarbons [8,9]. Ru and Re catalyst exhibited a higher selectivity to alkanes [10], while Pt-based catalysts showed to be the most active and selective toward H₂ among 20 monometallic catalysts [11]. Nickle has been considered as an economic alternative 21 22 leading to high selectivity to alkanes, although low stability was observed for this type of catalysts [12]. While bimetallic catalysts were shown to have better performance in 23 selected applications [11,13,14]. The effect of the support on the performance of the 24 catalysts was also investigated in literature, where a large number of studies were 25

conducted using Pt supported on Al₂O₃ [11]. Due to the limited stability of Al₂O₃ under 1 APR conditions, carbon-based catalysts have also been studied [13–15]. Some authors 2 have reported a higher H₂ yield and catalytic activity using basic supports, while higher 3 alkanes production was achieved using neutral and acids supports [4]. However, in our 4 previous work on brewery wastewater APR we observed that, in addition to basic 5 6 character, texture properties of the support were also important and the best catalytic 7 performance was observed for catalysts supported on mesoporous carbon black with 8 virtually no microporosity and basic pH slurry [16].

Concerning the feasibility of the process, techno-economical studies on APR have 9 10 shown that the cost of the substrate has an important impact on the economy of the process [17]. Therefore, feeding APR processes with waste materials is worthwhile to 11 investigate. With this perspective, the APR process could be extended to new 12 13 applications such as the treatment of wastewater. Some exploratory works on the potential of APR for the treatment of different wastewaters have been reported by our 14 15 group [16,18]. However, regarding potential applications, more knowledge is needed on the effect of complex matrices in the catalysts performance, a crucial issue scarcely 16 studied in the literature so far. Most of the works are related to synthetic matrices, 17 18 which mainly consisting in of mixtures of compounds (methanol, acetic and phosphoric acids, NaOH, etc.) with glycerol as main ingredient, emulating the aqueous fraction 19 from biodiesel production in biorefineries [19,20]. In spite of the experience gathered, 20 21 the role of bases (i.e KOH, NaOH) in the reaction medium is not well addressed.

Several authors have reported positive effects of a basic medium on the APR process due to favoured WGS reaction [21,22], in-situ removal of CO_2 [21–23], or increased gas production [19]. However, some authors indicated a negative effect on catalyst deactivation [20]. For instance, in the case of glycerol using Ni-La/Al₂O₃ catalysts, some authors [19] reported that the presence of acetic acid decreased gas
production, while KOH increased it. In another related study [20] using similar
catalysts, the effect of different acids (phosphoric, sulphuric and acetic) and bases
(KOH and NaOH) on the APR of glycerol was investigated, concluding that these
compounds affected to catalyst deactivation, particularly in the case of phosphoric acid
and KOH.

Regarding the application of APR to wastewater treatment, bases are relevant since they are present in a number of industrial wastewaters due to the cleaning-in-place (CIP) operations commonly used in industries such as processing food, beverages, brewing or pharmaceuticals, among others. In general, the CIP cycle involves several water-consuming steps, above ambient temperatures and the use of caustic solutions, leading to basic wastewaters that cannot be treated by conventional biological methods without previous neutralization.

In a recent work [16], we explored the application of APR for the treatment of a 14 15 synthetic brewery wastewater with an initial pH of about 7 and obtained fairly good results in terms of TOC and COD removal (up to 99%) and valuable gases yield (up to 16 12.2 mmol H₂/g COD_{inital}), showing the potential of APR for the treatment of this sort of 17 18 effluents. In the current work, the effect of NaOH and KOH concentration on the catalysts performance in APR of synthetic brewery wastewater is analysed. NaOH and 19 KOH are commonly found in the formulation of detergents for CIP systems used in 20 breweries, therefore, they were the bases selected for this study. Likewise, a real 21 22 brewery wastewater has been tested to learn on the potential of application APR to these effluents. 23

24

2

2. Experimental

3 2.1. *Materials*

Malt extract, yeast extract, peptone, maltose (D-(+)-Maltose monohydrate from
potato, ≥ 99%), ammonium sulfate (≥ 99%), NaOH (≥ 99%) and KOH (≥ 99%)
hexachloroplatinic acid solution (H₂PtCl₆, 8% wt. in H₂O) were purchased from SigmaAldrich. Ethanol (≥ 99.5%) was supplied by Panreac AppliChem. Commercial activated
carbons Norit®CAPSUPER (CAP) and Merck (MER) were supplied by Norit and
Merck, respectively. Commercial carbon black ENSACO 250G (ENS) and Ketjenblack
EC-600JD (KJB) were purchased by Timcal and Akzonobel, respectively.

11 *2.2. Preparation and characterization of supports and catalysts*

Pt/C (3 wt. % Pt, carbon basis) catalysts were prepared by incipient wetness 12 impregnation using two commercial activated carbons (CAP and MER) and two carbon 13 blacks (ENS and KJB) as supports. After impregnation, the samples were dried at 333 K 14 overnight in an oven. Finally, the catalysts were calcined at 473 K (2 h) and reduced 15 with 25 N mL/min H₂ flow at 573 K (2 h). The Pt concentration used was selected in 16 preliminary experiments and was already tested in previous works [16,18]. The use of a 17 higher load was not considered because it may lead to nanoparticles agglomeration in 18 19 supports with low surface area, as in the case of ENS. Previous works also showed a good stability of Pt/C catalyst under simulated and real APR conditions, with low 20 21 significance changes in nanoparticles size, metal oxidation state and catalytic activity 22 [16,24].

The catalysts were characterized by scanning transmission electron microscopy (STEM) using a JEOL - 3000F at 300 kV microscope. The mean size of the Pt nanoparticles (NPs) and the size distribution were calculated by averaging more than 200 NPs randomly distributed in digital STEM images using the software 'ImageJ
1.51k'. The porous texture of the supports and catalysts was characterized by nitrogen
adsorption-desorption at 77 K (TriStar II, Micromeritics). Also, pH slurry
measurements were carried out by measuring the pH of an aqueous suspension in
distilled water (1 g of solid per 10 ml of water).

6

2.3. APR experiments and analytical procedures

7 Synthetic and real brewery wastewater were used as substrates. Synthetic brewery wastewater (SBW) was prepared using malt extract (1 g/L), yeast extract (0.5 g/L), 8 9 peptone (0.15 g/L), maltose (0.86 g/L), ammonium sulfate (1 g/L) and ethanol (2.8 mL/L) based on typical compositions found in brewery wastewater according to the 10 literature [25]. NaOH and KOH were added to adjust the pH of SBW in order to 11 evaluate the effect of these bases and their concentration on the catalysts performance in 12 APR. The pH of SBW was 7, and was adjusted to 11 for some experiments since this is 13 14 the pH value for the real brewery wastewater (RBW) studied. This last was collected from the plant of an international brewing company based nearby Madrid (Spain). 15

APR runs were performed in stainless steel batch reactors (BR100, Berghoff) at 493 16 17 K and 24 - 28 bar (initial Ar pressure set at 5 bar) during 4 h, using 0.3 g of catalysts in 15 mL of reaction volume under Ar atmosphere. The reactors were purged with Ar 18 19 several times before each run. The gases were collected in multilayer foil sample bags (Supelco) and the volume was measured by a gas burette and expressed in normal 20 conditions (NTP). The aqueous phase was characterized by Total Organic Carbon 21 22 (TOC) measured in a TOC-VCSH apparatus (Shimadzu), Chemical Oxygen Demand (COD) determined according to the standard method (ASTM D1252), and ionic 23 chromatography (883 Basic IC Plus, Metrohm). The gas phase was analyzed by a 24

GC/FID/TCD (7820A, Agilent) using 2 packed columns and a molecular sieve allowing
 to detect H₂, CO, CO₂, CH₄, C₂H₆ and C₃H₈.

The TOC and COD removal (%) were determined as the difference between the initial and final TOC or COD values divided by the initial value (mg/L). Carbon conversion to gases (*CC gas* (%)) was calculated from the ratio between C content (g) in the gaseous products and C content (g) in the initial wastewater. H₂ yield (Y_{H2}) was defined as the amount of H₂ produced (mmol) divided by the initial COD (g).

8

3. Results and Discussion

9 *3.1. Catalysts and supports characterization*

Table 1 shows the specific surface area (S_{BET}), micropore and mesopore volume, 10 and pH slurry of the supports and catalysts prepared. The supports used covered in a 11 wide range of S_{BET} (65 - 1750 m²/g), micropore (< 0.001 - 0.66 cm³/g) and mesopore 12 volumes (0.09 - 1.67 cm^3 /g) and pH slurry (2.9 - 10.6). The carbon black supports (ENS 13 14 and KJB) showed basic pH slurry and did not present significant micropore volume (< 0.001 cm³/g), whereas the activated carbons yielded either acid or basic pH slurry and a 15 significant contribution of micropore volume $(0.38 - 0.48 \text{ cm}^3/\text{g})$. The catalysts prepared 16 presented slightly lower values of S_{BET} and pore volume than the corresponding 17 18 supports due to partial pore blockage by the Pt NPs. The pH slurry of the catalysts did not present any significant difference in comparison to the supports. 19

Table 1. S_{BET}, micropore and mesopore volume, and pH slurry of the supports and catalysts

Support/ catalyst	S _{BET} (m ² /g)	Micropore Volume (cm ³ /g)	Mesopore Volume (cm ³ /g)	pH slurry
ENS	65	< 0.001	0.09	8.9
KJB	1415	< 0.001	1.67	10.6
MER	930	0.38	0.15	8.3
CAP	1750	0.48	0.75	2.6

Pt/ENS	65	< 0.001	0.09	8.6
Pt/KJB	1350	< 0.001	1.59	10.2
Pt/MER	910	0.38	0.14	8.5
Pt/CAP	1360	0.31	0.75	2.9

	1.0111	1000	0.01	0.70	=.,	
1	Figure 1	l shows STEM im	ages and the cor	responding size	distribution of	the Pt NPs
2	in the catal	ysts. The mean N	Ps size and size	distribution for	the Pt/ENS, Pt	t/MER and
3	Pt/CAP cat	alysts were quite	similar, in the 4	.2 - 4.7 nm ran	ge, while the H	t/KJB one
4	gave a small	ller value of mean	NPs size (2.3 n	m). In addition,	it should menti	on that the
5	Pt NPs of the	he Pt/MER catalys	st, in some STEN	A images, showe	ed a higher agg	lomeration
6	than in the o	other catalysts (Fig	gure 2).			

2 Figure 1. STEM images of a) Pt/ENS, b) Pt/KJB, c) Pt/MER and d) Pt/CAP catalysts

2

Figure 2. STEM image of agglomeration of Pt NPs in the Pt/MER catalysts

3

4

3.2. Synthetic and real brewery wastewater characterization

5 The characterization of the SBW and RBW, including TOC, COD, pH and main anions analysed, is summarized in Table 2. The RBW showed TOC and COD values of 6 1646 and 4674 mg/L, respectively. The pH of RBW was basic (pH 11) since it contains 7 significant amounts of the NaOH commonly used in the CIP operations carried out in 8 9 the food processing and beverages industry. The main organic anions detected correspond to short chain organic acids, which are commonly present in malt extract 10 11 [26]. The SBW was prepared with a TOC and COD of 1871 and 5846 mg/L, 12 respectively, which are close to above values for RBW and in good agreement with the range of TOC and COD reported for this type of wastewater [25]. The starting pH of 13 SBW was neutral. The main differences found between SBW and RBW in terms of 14 anions composition were relative to acetate and sulfate, which were in significantly 15 16 higher and lower concentration, respectively, in the case of RBW.

- 17
- 18
- 19

Wastewate	er TOC (mg/L)	COD (mg/L)	pH _i	Acetate (mg/L)	Formate (mg/L)	Glycolate (mg/L)	Phosphate (mg/L)	Sulfate (mg/L)	Maleate (mg/L)
SBW	1871 ± 79	5846 ± 331	7	2 ± 1	1 ± 1	8 ± 1	18 ± 3	678 ± 78	-
RBW	1646 ± 230	4764 ± 586	11	172 ± 10	37 ± 3	39 ± 3	15 ± 1	41 ± 4	4 ± 1
2									
3	3.3. APR of	synthetic bre	ewery	wastewate	er				
4	Figure 3 de	epicts the TC	OC ar	nd COD r	emoval in	the blank (without cata	ulyst) and	
5	catalysed APR	experiments	with	SBW. Li	kewise, the	e results of	the experim	ents with	
6	SBW modified	with NaOH	(SBV	V+NaOH)	or KOH (SBW+KOH) up to a pH	value of	
7	11 are included	d. The lowes	t TO	C and CO	D removal	(40 - 60%)) correspond	led to the	
8	blank and can	be ascribed r	nostly	y to hydro	thermal car	rbonization	(HTC) of th	e organic	
9	substrates, whi	ch is favoure	d uno	der the ope	erating con	ditions used	1 [27]. In ge	neral, the	
10	TOC and COD	removal we	re hig	gher when	catalysts v	vere used, p	articularly ir	n the case	
11	of Pt/KJB, Pt/	MER and Pt	/CAF	, which r	eached ren	noval value	s close to 7	70%. The	
12	addition of KC	OH and NaO	H to	SBW pro	voked a sl	ight decrea	se in TOC a	and COD	
13	removal in all	experiments,	exce	ept with P	t/ENS cata	lyst. Base a	ddition incr	eased the	
14	selectivity towa	ards liquid pł	nase p	products, p	orobably the	rough base-	catalysed de	hydration	
15	followed by hy	drogenation	react	ions [28],	thus reduc	ing the TO	C and COD	removal.	
16	No significant	differences i	n TO	C and CC	DD remova	l were four	d by using	NaOH or	

Table 2. Characterization of the SBW and RBW

17 KOH in the experiments with SBW.

2 3

4 Figure 3. a) TOC and b) COD removal in APR runs for SBW ($pH_i = 7$), and for 5 SBW+NaOH and SBW+KOH ($pH_i = 11$)^{*}

6 ^{*}Reaction conditions: 493 K; total reaction pressure: 24 - 28 bar (initial Ar pressure set at 5 bar); 15 mL

7 of wastewater; 0.3 g catalyst; 500 rpm, 4 h.

2 Table 3 shows the concentration of short chain carboxylic anions and the pH values measured before and after APR runs. Acetate, formate and glycolate were the most 3 representative in the initial SBW. These three anions significantly increased their 4 concentration in experiments without catalyst (blank), especially in the case of 5 6 SBW+NaOH and SBW+KOH. During the HTC process organics acids such as formic, 7 acetic and levulinic acids are produced from biomass-derived organic compounds. 8 Some authors [29] have reported that basic conditions significantly affect the decomposition pathway of hydroxymethyfurfural (HMF), which is converted to 9 10 levulinic or formic acid, increasing the concentration of these acids. In the catalytic APR test, the concentration of these anions decreased in general, particularly in the case 11 12 of formate, indicating that conversion of the initial substrates takes place upon APR 13 reactions through mechanisms different from those of HTC. Acetate concentration was barely affected by the operating conditions, indicating its refractory character, whereas 14 15 the glycolate concentration was very sensitive to the type of catalyst, being higher in the SBW+NaOH and SBW+KOH experiments. The carboxylic anions from the blank 16 experiments amounted 9 - 19% of the final TOC, this increasing to 13 - 24% with bases 17 18 addition. Moreover, the Pt/MER and Pt/CAP catalysts yielded in general effluents with higher glycolate concentration and percentage of short chain carboxylic anions in the 19 final liquid phase of TOC (20 - 24%). A similar observation was made by King et al. 20 21 [28] in the APR of glycerol, who found a higher production of acids with the addition of 22 a base to the reaction medium. They suggested that KOH could promote the Cannizzaro reaction, facilitating the production of acids. Another study using in situ X-ray 23 24 absorption spectroscopy reported a higher selectivity to acids (four-fold) upon addition of KOH ($pH_i = 11.8$) in the APR of glycerol [30]. This effect was explained through the 25

interaction between KOH and adsorbed reaction intermediates, especially aldehydes, on
the surface of Pt. The final pH of the effluents was 3 - 4 in the APR runs with SBW
(starting pH = 7), whereas it ranged between 6 and 8 in the SBW+NaOH and
SBW+KOH experiments, when amounts of acids were produced, giving rise to base
neutralization.

6

Short chain carboxylic anions (mg/L) Initial Final Sample Wastewater Acetate Formate Glycolate pН pН Initial SBW 2 ± 1 1 ± 1 8 ± 2 7 -SBW 74 ± 9 66 ± 7 105 ± 9 7 3 **BLANK** SBW+NaOH 123 ± 11 118 ± 14 221 ± 12 11 8 SBW+KOH 126 ± 12 121 ± 13 209 ± 10 7 11 4 SBW 98 ± 6 2 ± 1 64 ± 5 7 Pt/ENS SBW+NaOH 104 ± 9 10 ± 4 103 ± 8 11 8 SBW+KOH 106 ± 7 6 ± 3 82 ± 9 8 11 SBW 61 ± 5 34 ± 2 7 3 1 ± 1 Pt/KJB SBW+NaOH 80 ± 4 6 ± 1 111 ± 6 11 8 7 ± 1 SBW+KOH 89 ± 5 91 ± 8 8 11 79 ± 5 3 SBW 4 ± 1 102 ± 8 7 Pt/MER SBW+NaOH 71 ± 3 12 ± 2 199 ± 10 11 8 73 ± 6 7 14 ± 1 200 ± 12 11 SBW+KOH 3 SBW 117 ± 8 1 ± 1 67 ± 3 7 Pt/CAP SBW+NaOH 72 ± 4 19 ± 3 249 ± 11 11 6 256 ± 12 SBW+KOH 100 ± 6 11 ± 2 11 6

7 Table 3. Short chain carboxylic anions in the effluents from the SBW, SBW+NaOH and

8 SBW+KOH APR experiments^{*}

9 *Reaction conditions: 493 K; total reaction pressure: 24 - 28 bar (initial Ar pressure set at 5 bar); 15 mL

10 of wastewater; 0.3 g catalyst; 500 rpm, 4 h.

11

Table 4 summarizes the gas volume produced, gas composition, *CC gas* and H₂ yield in the APR experiments. The volume of gas produced varied within a wide range (1.0 - 40.1 mL), with the blanks showing the lowest production (1.0 - 2.2 mL). The blanks gave *CC gas* between 1.7 - 3.8%, consisting mainly of CO₂ (50 - 87%) with low H₂ yields (< 0.03 mmol H₂/g COD). CO was only detected in the blank experiments, representing 9% of the gas fraction from the APR of SBW and reaching more than 30%

from SBW+NaOH and SBW+KOH. The catalysts supported on carbon blacks showed a 1 2 gas production between 12.2 and 40.1 mL, with CC gas in the 15.8 – 41.3% range and H₂ yields between 1.4 and 8.9 mmol H₂/g COD. These values were significantly higher 3 than the obtained with the activated carbon supported catalysts (gas volume: 2.9 - 8.4 4 mL; CC gas: 3.7 - 15.1%; H₂ yield: 0.05 - 0.15 mmol H₂/g COD). This frankly higher 5 production of H₂ can be attributed to the fact that the ENS and KJB carbon blacks are 6 7 basic supports that can enhance the WGS reaction. Some authors [21] have suggested that the basic medium can favors the polarization and dissociation of H₂O, providing 8 hydroxyl anions that can be adsorbed on the catalysts surface, enhancing the WGS 9 10 reaction [31]. However, the Pt/MER catalyst yielded basic pH slurry while giving low 11 amounts of H₂ and other gases. This behavior of the Pt/MER catalyst can be related to its porous texture, since the MER support has a high contribution of micropores 12 13 opposite to ENS and KJB. That would determine severe mass transfer limitations of reactants and products, resulting in low gas production, H₂ selectivity and yield [32–34]. 14 The Pt/CAP catalyst has an important contribution of mesopores, but both the presence 15 of micropores and the low pH slurry of the support may causes the low H₂ production 16 17 observed, similar to that of Pt/MER.

18 Regarding the effect of the addition of bases to the wastewater, it has been reported [21,22] that CaO or KOH can favour the WGS reaction by gas withdrawal through the 19 in-situ removal of CO₂, displacing the reactions towards H₂ production. In the current 20 21 work the addition of bases led to lower percentages of CO₂ in the gas fraction with all the catalysts tested, particularly in the experiments with SBW+KOH, indicating that the 22 addition of a base was effective for the removal of CO_2 . However, the Y_{H2} in the 23 SBW+KOH and SBW+NaOH experiments was higher than in the SBW ones only with 24 the Pt/KJB catalyst. King et al. [28] studied the effect of KOH addition in the APR of 25

glycerol using 3%Pt/C and 3%Pt-Re/C catalysts and found a dramatic increase of 1 2 glycerol conversion. However, they reported a higher production of liquids, being the gas product, and H₂ yield barely affected. Likewise, they suggested that the addition of 3 KOH favoured the C-O bond cleavage, compared to C-C bond cleavage, by base-4 catalysed dehydration followed by hydrogenation that reduces the H₂ production. Karim 5 6 et al. [30] also found similar results in the APR of glycerol with Pt/C catalysts. The 7 addition of KOH did not affect the gas phase products, while a higher glycerol conversion was observed. These authors also attributed the results to a higher selectivity 8 9 toward dehydration reactions, which was reflected in a higher C-O/C-C ratio and lower 10 H₂ and CO₂ selectivities in the presence of that base.

11 Comparing the bases used, the highest percentage of H₂ was obtained with KOH. The experiments carried out with SBW+KOH also led to higher gas production, CC 12 13 gas, Y_{H2} , and in some cases a lower percentage of alkanes in the gas fraction. This can be better appreciated for the catalysts that yielded higher amounts of gases (Pt/ENS and 14 15 Pt/KJB). Similar results were obtained by Liu et al. [21] in the APR of ethylene glycol using Ni catalysts with different potassium salts and NaOH. The authors concluded that 16 KOH leads to higher CC gas and Y_{H2} and lower alkanes yields, probably due to 17 18 blockage of active sites enabling CO methanation. The addition of K to Pt/hydrotalcite catalysts was studied in the APR of glycerol [35] and the results showed that it 19 enhanced the basicity of the catalysts and increased the glycerol conversion and H₂ 20 21 selectivity, although an excess of K loading blocked the active sites of Pt NPs, having the opposite effect. 22

In the SBW+KOH experiments the Pt/ENS catalyst gave the highest percentage of valuable gases (H₂ and alkanes) in the gas fraction ($_{\sim}$ 75%) and H₂ yield (8.9 mmol H₂/g COD \approx 213.6 mL H₂/g COD). This production of gas is higher than the reported in the

- 1 literature from the anaerobic biological treatment of an equivalent brewery wastewater
- 2 (initial COD ca. 6000 mg/L, 149.6 mL H_2/g COD) [36], thus showing the potential of

3 APR as way of valorisation of brewery wastewater.

- 4
- 5 Table 4. Gas volume produced, composition of the gas fraction, CC gas and Y_{H2} in the
- 6 APR of SBW ($pH_i = 7$), SBW+NaOH ($pH_i = 11$) and SBW+KOH ($pH_i = 11$)^{*}

		Gas	Gas compo	osition (% n	nol)		Y_{H2}
Sample	Wastewater	Volume (mL)	H ₂	CO ₂	Alkanes	CC gas (%)	(mmol H ₂ / g COD)
	SBW	2.2 ± 0.3	1.8 ± 0.3	86.8 ± 6.1	2.2 ± 0.3	3.8 ± 0.4	< 0.1
BLANK	SBW+NaOH	1.0 ± 0.4	6.6 ± 1.0	50.4 ± 6.4	7.5 ± 3.5	1.7 ± 0.7	< 0.1
	SBW+KOH	1.4 ± 0.4	4.2 ± 0.1	58.8 ± 7.0	6.7 ± 2.1	2.5 ± 0.7	< 0.1
	SBW	40.1 ± 0.5	46.7 ± 0.5	32.0 ± 0.8	21.3 ± 0.3	41.3 ± 0.9	8.9 ± 0.1
Pt/ENS	SBW+NaOH	23.7 ± 7.1	51.4 ± 2.0	25.6 ± 1.7	23.0 ± 3.7	21.8 ± 7.5	5.8 ± 1.5
	SBW+KOH	35.5 ± 6.9	52.7 ± 0.4	25.1 ± 0.1	22.2 ± 0.4	31.8 ± 6.1	8.9 ± 1.7
	SBW	12.2 ± 0.5	23.5 ± 0.6	56.9 ± 1.4	19.6 ± 0.9	17.5 ± 0.9	1.4 ± 0.1
Pt/KJB	SBW+NaOH	12.5 ± 0.5	32.7 ± 1.0	44.5 ± 1.9	22.8 ± 1.0	15.8 ± 0.9	1.9 ± 0.1
	SBW+KOH	19.3 ± 3.5	38.6 ± 3.4	39.7 ± 2.3	21.7 ± 1.1	22.3 ± 3.1	3.5 ± 0.9
	SBW	4.3 ± 0.4	3.2 ± 0.8	87.4 ± 0.2	9.4 ± 0.9	7.5 ± 0.7	0.1 ± 0.1
Pt/MER	SBW+NaOH	2.2 ± 0.4	4.4 ± 1.3	89.6 ± 0.1	6.0 ± 1.2	$3.7\pm\ 0.7$	0.1 ± 0.1
	SBW+KOH	2.8 ± 0.4	9.5 ± 0.2	76.4 ± 1.6	14.1 ± 1.8	4.7 ± 0.6	0.1 ± 0.1
	SBW	8.4 ± 0.4	1.6 ± 0.4	72.1 ± 0.7	26.3 ± 1.1	15.1 ± 0.6	0.1 ± 0.1
Pt/CAP	SBW+NaOH	2.9 ± 0.4	5.6 ± 0.6	86.2 ± 0.4	8.2 ± 1.0	4.9 ± 0.6	0.1 ± 0.1
	SBW+KOH	2.9 ± 0.4	10.6 ± 0.1	80.3 ± 1.2	9.1 ± 1.2	4.7 ± 0.6	0.1 ± 0.1

^{*}Reaction conditions: 493 K; total reaction pressure: 24 - 28 bar (initial Ar pressure set at 5 bar); 15 mL
of wastewater; 0.3 g catalyst; 500 rpm, 4 h.

10 *3.4. Effect of the pH on the catalyst performance*

Given the good results obtained with the Pt/ENS catalyst it was selected to assess the effect of the pH in the APR of SBW+KOH. The pH values tested were selected taking into account the previous results of CO_2 production in the corresponding experiments at an initial pH value of 11. An initial pH value of 13.0 was calculated as the one providing the stoichiometric amount of KOH needed to convert all the CO_2 produced, according to Eq. (2). Initial pH values below and above that value (11 and 13.5, respectively) were selected.

⁹

3

4

5

6

7

8

Figure 4 shows the TOC and COD removal achieved at these three initial pH values. Around 70% of TOC and COD removal reached at $pH_i = 11$, while lower percentages were achieved at higher pH. Similar results were found in the APR of glycerol with 3%Pt/C upon the addition of KOH ($pH_i = 12$) [28]. Therefore, this base may change the reaction pathway, increasing the production of liquids without increasing significantly the H₂ yield, due to competitive reactions involving base-catalysed dehydration followed by subsequent hydrogenation.

9

10 Figure 4. TOC and COD removal in the APR of SBW+KOH with Pt/ENS at different

11 initial pH^{*}

*Reaction conditions: 493 K; total reaction pressure: 24 - 28 bar (initial Ar pressure set at 5 bar); 15 mL
 of SBW+KOH; 0.3 g Pt/ENS catalyst; 500 rpm, 4 h.

14

Table 5 shows the concentration of representative anions from the APR runs of SBW+KOH at different initial pH values. In all cases the pH decreased along the APR due to de the generation of organic acids. Acetate, formate and glycolate concentration 1 was much lower at the lowest starting pH ($pH_i = 11$). The amount of these anions 2 corresponded to 14% of the final TOC, while increasing up to 30 and 36% at 13 and 3 13.5 initial pH, respectively. Thus confirming that organic acids formation is favoured 4 at increased pH [28,30].

5

Table 5. Short chain carboxylic anions the APR of SBW+KOH with Pt/ENS at different
 initial pH^{*}

Sampla	Initial nU	Short chain	Final nH		
Sample	initiai pii	Acetate	Formate	Glycolate	r mai pri
	11	106 ± 7	6 ± 3	82 ± 9	8
Pt/ENS	13	235 ± 11	33 ± 4	392 ± 12	10
	13.5	330 ± 16	30 ± 4	419 ± 14	12

*Reaction conditions: 493 K; total reaction pressure: 24 - 28 bar (initial Ar pressure set at 5 bar); 15 mL
of SBW+KOH; 0.3 g Pt/ENS catalyst; 500 rpm, 4 h.

10

11 Table 6 shows the gas volume produced, the composition of the gas fraction, CC gas and Y_{H2} at the different values of initial pH tested. The CC gas significantly decreased 12 13 from around 32%, for an initial pH of 11, to around 15% for 13 and 13.5 initial pH, due 14 to the in-situ removal of the CO₂ giving rise to potassium carbonate. Table 6 also shows 15 that for those initial pH values no CO₂ was found in the gas fraction. A corrected-CC gas was estimated for the reactions performed under those conditions by adding the 16 17 amount of CO₂ produced in the experiment at pH 11. No significant differences were found between the CC gas of the reaction carried out at initial pH 11 and the corrected-18 CC gas at 13 and 13.5. Therefore, the in-situ removal of CO_2 did not affect to the total 19 carbon conversion to gases. The volume of gas produced decreased from 35.5 mL, for 20 21 an initial pH 11, to 25.8 - 27.1 mL at 13 and 13.5. The Y_{H2} did not change significantly with the initial pH of the wastewater (8.7 - 9.0 mmol H_2/g COD) and the amount of 22 alkanes was similar in all the experiments (0.31 - 0.34 mmol). However, looking at the 23 results in more detail, it can be seen that the molar fraction of C₂H₆ and C₃H₈ of the total 24

1 alkanes $((C_2H_6 + C_3H_8) / (CH_4 + C_2H_6 + C_3H_8)$ decreased from 10% at initial pH 11, to 3

2 and 2 % at 13 and 13.5, respectively. This indicates that the addition of KOH reduce the

3 formation of C_2^+ , probably because the dehydration-hydrogenation of alcohols is

4 hindered [28].

5

6 Table 6. Gas volume produced, composition of the gas fraction and Y_{H2} in the APR of 7 SBW+KOH with Pt/ENS at different initial pH^{*}

Initial	Gas	Gas comp	osition (% 1	nol)	CC gas	Corrected-	Y _{H2}
рН	produced (mL)	H ₂	CO ₂	Alkanes	(%)	<i>CC gas</i> (%)	(mmol H ₂ / g COD)
11	35.5 ± 6.9	52.7 ± 0.4	25.1 ± 0.1	22.2 ± 1.7	31.8 ± 6.1	-	8.9 ± 1.7
13	27.1 ± 1.9	70.2 ± 2.0	0	29.8 ± 2.0	15.0 ± 0.1	30.9	9.0 ± 0.9
13.5	25.8 ± 1.4	71.0 ± 1.5	0	29.0 ± 1.4	13.8 ± 0.1	29.6	8.7 ± 0.7

8 ^{*}Reaction conditions: 493 K; total reaction pressure: 24 - 28 bar (initial Ar pressure set at 5 bar); 15 mL
9 of SBW+KOH; 0.3 g Pt/ENS catalyst; 500 rpm, 4 h.

10

11 *3.5. APR of real brewery wastewater*

The study of the treatment by APR of RBW was carried out with a sample of pH_i 12 11, from a brewing plant. However, as indicated above, RBW with pH values even 13 higher can be generated depending on the dosage of alkali used in the CIP operations 14 and could contribute to total or partial removal of CO₂ from the resulting gas without 15 16 affecting significantly the production of valuable gases. The percentages of TOC and COD removal upon APR of that RBW are depicted in Figure 5. They ranged between 17 22 - 75% and 30 - 78%, respectively. The lowest values corresponded to the blank 18 19 which undergoes basically HTC at a lower than the SBW previously tested. The results 20 show that minor components of RBW are determining in the case of blank experiments, as observed in other works showing that complex carbohydrates contribute largely to 21 22 the formation of hydrochar [37]. The removal of TOC and COD from SBW and RBW was equivalent with Pt/ENS and Pt/KJB and slightly lower with Pt/MER. 23

3 Figure 5. TOC and COD removal after APR runs with different catalysts

^{*}Reaction conditions: 493 K; total reaction pressure: 24 - 28 bar (initial Ar pressure set at 5 bar); 15 mL
of RBW; 0.3 g catalyst; 500 rpm, 4 h.

6

Table 7 shows the concentration of short chain carboxylic anions and the pH values 7 measured before and after APR of RBW. The concentrations of acetate, formate and 8 9 glycolate significantly increased in the blank experiments. The amount of those species in the starting RBW corresponded to 6% of the TOC and this proportion increased to 10 34% in the blank experiment, being two-fold the percentage achieved in the blank 11 experiments previously conducted with SBW. In the catalysed APR reactions the 12 13 formate concentration hardly changed, while the concentration of acetate, glycolate and 14 maleate increased significantly, leading to final pH values between 7 and 8. Moreover, the Pt/MER catalyst yielded higher glycolate concentration than the other catalysts, as 15 observed in the APR of SBW as well. In the APR of RBW, in contrast to SBW, the 16

- 1 proportion of carboxylic anions in the remaining TOC was higher with the Pt/KJB
- 2 catalyst (60% of final TOC) than with the Pt/MER one (44%).
- 3
- 4 Table 7. Short chain carboxylic anions and final pH upon APR of RBW by APR with
- 5 different catalysts $(pH_i = 11)^*$

Initial	172 ± 10	37 ± 3	39 ± 3	4 ± 1	-	
BLANK	449 ± 13	260 ± 3	463 ± 3	0	7	
Pt/ENS	481 ± 13	44 ± 7	242 ± 7	25 ± 3	8	
Pt/KJB	420 ± 8	30 ± 2	109 ± 2	12 ± 4	8	
Pt/MER	386 ± 17	31 ± 2	504 ± 7	26 ± 1	8	

^{*}Reaction conditions: 493 K; total reaction pressure: 24 - 28 bar (initial Ar pressure set at 5 bar); 15 mL
of RBW; 0.3 g catalyst; 500 rpm, 4 h.

8

Table 8 shows the volume and composition of the gas fraction, CC gas and Y_{H2} from 9 the APR of RBW. The lowest CC gas (3%) was obtained in the blank experiments. The 10 carbon-black catalyst (Pt/ENS and Pt/KJB), yielded CC gas between 27 and 40%, 11 significantly higher than the obtained with Pt/MER. Likewise, those catalysts gave the 12 13 highest CC gas from both SBW and RBW, being similar with Pt/ENS and significantly 14 higher from the real wastewater with the Pt/KJB catalyst. The H₂ yield in the last case reached 12.9 mmol H₂/g COD (\approx 309.1 mL H₂/g COD), which is equivalent to the 15 highest H₂ yield found in our previous work with SBW but at higher temperature (498 16 K, 12.2 mmol H₂/g COD) [16]. This H₂ yield achieved doubles the optimized value 17 reported from anaerobic biological treatment (149.6 mL H_2/g COD) [36]. 18

- 19
- 20
- 21
- 22
- 23

1 Table 8. Gas volume produced, composition of the gas fraction, CC gas and Y_{H2} in the

2 APR of RBW

	Gas	Gas compo	osition (% m	CC gas	Y_{H2}		
Sample	produced (mL)	H_2	CO ₂	Alkanes	(%)	(mmol H ₂ / g COD)	
BLANK	1.6 ± 0.1	0.9 ± 0.6	94.2 ± 2.1	3.6 ± 0.2	3.3 ± 0.1	< 0.1	
Pt/ENS	26.3 ± 4.1	51.1 ± 3.2	$28.8\ \pm 2.1$	$20.1\ \pm 1.1$	27.0 ± 4.0	$7.8\ \pm 1.4$	
Pt/KJB	$41.2\ \pm 2.4$	$53.6\ \pm 6.3$	$26.5\ \pm 5.6$	$19.9\ \pm 0.7$	40.0 ± 2.9	12.9 ± 2.3	
Pt/MER	4.7 ± 0.9	11.7 ± 6.9	78.9 ± 7.6	9.4 ± 0.7	8.5 ± 1.0	0.3 ± 0.3	

^{*}Reaction conditions: 493 K; total reaction pressure: 24 - 28 bar (initial Ar pressure set at 5 bar); 15 mL
of RBW; 0.3 g catalyst; 500 rpm, 4 h.

5

6 4. Conclusions

The APR of brewery wastewater was studied using different Pt/C catalysts (3 wt. %) 7 8 and alkaline agents (NaOH, KOH) in order to assess the influence of the basicity conferred to wastewaters by CIP operations. TOC and COD removal in blank 9 experiments was between 40 - 60%, mainly ascribable to hydrothermal carbonization of 10 organic substrates, while removal values were higher when catalysts were used (up to 11 83%). The addition of NaOH or KOH to SBW resulted in slightly lower TOC and COD 12 13 removal, although an increase in the percentage of valuable gases (H₂ and alkanes) and H₂ yield was observed, mainly when KOH was added. Catalysts supported on carbon 14 blacks showed better performance in the APR of SBW in terms of gas production, 15 16 carbon conversion to gas and H₂ yields, respect to activated carbons due to higher basicity. Pt/ENS yielded the highest percentage of valuable gases in the gas fraction (~ 17 75%) and the highest H₂ yield (8.9 mmol H₂/g COD) in the APR of SBW+KOH with an 18 initial pH of 11. Increasing the initial pH of SBW+KOH up to pH 13 and 13.5, led to 19 CO₂-free H₂ without modifying the H₂ yield. Virtually CO free H₂ was also obtained, 20 which relevant in applications such as fuel cells. The results obtained with SBW or 21 RBW were relatively similar, indicating that SBW is a good representative of RBW for 22 23 testing as a wastewater treatment and valorisation approach. However, the different H₂

yields obtained with Pt/KJB from SBW and RBW suggest that the composition of the
 wastewater needs to be considered for the sake of optimization.

3 Acknowledgements

The authors greatly appreciate financial support from Spanish AEI (CTQ2015-65491-R). A. S. Oliveira thanks the Spanish AEI a research grant (BES-2016-077244) and B. Saenz de Miera thanks the Regional Government of Madrid a predoctoral grant (PEJD-2017-PRE/AMB-3670).

8

9 References

- 10 [1] R.D. Cortright, R.R. Davda, J.A. Dumesic, Hydrogen from catalytic reforming of
 biomass-derived hydrocarbons in liquid water, Nature. 418 (2002) 964–967.
 doi:10.1038/nature01009.
- R.R. Davda, J.A. Dumesic, Renewable hydrogen by aqueous-phase reforming of
 glucose, Chem. Commun. 10 (2004) 36–37. doi:10.1002/anie.200353050.
- J.W. Shabaker, R.R. Davda, G.W. Huber, R.D. Cortright, J.A. Dumesic,
 Aqueous-phase reforming of methanol and ethylene glycol over aluminasupported platinum catalysts, J. Catal. 215 (2003) 344–352. doi:10.1016/S00219517(03)00032-0.
- [4] G. Wen, Y. Xu, H. Ma, Z. Xu, Z. Tian, Production of hydrogen by aqueousphase reforming of glycerol, Int. J. Hydrogen Energy. 33 (2008) 6657–6666.
 doi:10.1016/j.ijhydene.2008.07.072.
- Y. Wei, H. Lei, Y. Liu, L. Wang, L. Zhu, X. Zhang, G. Yadavalli, B. Ahring, S.
 Chen, Renewable hydrogen produced from different renewable feedstock by

- aqueous-phase reforming process, J. Sustain. Bioenergy Syst. 4 (2014) 113–127.
 doi:10.4236/jsbs.2014.42011.
- A. V. Kirilin, A. V. Tokarev, L.M. Kustov, T. Salmi, J.-P. Mikkola, D.Y.
 Murzin, Aqueous phase reforming of xylitol and sorbitol: Comparison and
 influence of substrate structure, Appl. Catal. A Gen. 435–436 (2012) 172–180.
 doi:10.1016/j.apcata.2012.05.050.
- [7] L.I. Godina, A. V. Kirilin, A. V. Tokarev, D.Y. Murzin, Aqueous phase
 reforming of industrially relevant sugar alcohols with different chiralities, ACS
 Catal. 5 (2015) 2989–3005. doi:10.1021/cs501894e.
- I. Coronado, M. Stekrova, M. Reinikainen, P. Simell, L. Lefferts, J. Lehtonen, A
 review of catalytic aqueous-phase reforming of oxygenated hydrocarbons derived
 from biorefinery water fractions, Int. J. Hydrogen Energy. 41 (2016) 11003–
 11032. doi:10.1016/j.ijhydene.2016.05.032.
- R.R. Davda, J.W. Shabaker, G.W. Huber, R.D. Cortright, J.A. Dumesic,
 Aqueous-phase reforming of ethylene glycol on silica-supported metal catalysts,
 Appl. Catal. B Environ. 43 (2003) 13–26. doi:10.1016/S0926-3373(02)00277-1.
- I.N. Chheda, G.W. Huber, J.A. Dumesic, Liquid-phase catalytic processing of
 biomass-derived oxygenated hydrocarbons to fuels and chemicals, Angew.
 Chemie Int. Ed. 46 (2007) 7164–7183. doi:10.1002/anie.200604274.
- R.R. Davda, J.W. Shabaker, G.W. Huber, R.D. Cortright, J.A. Dumesic, A 20 [11] review of catalytic issues and process conditions for renewable hydrogen and 21 alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported 22 Environ. 23 metal catalysts, Appl. Catal. В 56 (2005)171–186. doi:10.1016/j.apcatb.2004.04.027. 24
- 25 [12] M. El Doukkali, A. Iriondo, J.F. Cambra, L. Jalowiecki-Duhamel, A.S. Mamede,

1		F. Dumeignil, P.L. Arias, Pt monometallic and bimetallic catalysts prepared by
2		acid sol-gel method for liquid phase reforming of bioglycerol, J. Mol. Catal. A
3		Chem. 368–369 (2013) 125–136. doi:10.1016/J.MOLCATA.2012.12.006.
4	[13]	M.C. Kim, T.W. Kim, H.J. Kim, C.U. Kim, J.W. Bae, Aqueous phase reforming
5		of polyols for hydrogen production using supported Pt-Fe bimetallic catalysts,
6		Renew. Energy. 95 (2016) 396-403. doi:10.1016/j.renene.2016.04.020.
7	[14]	B. Kaya, S. Irmak, A. Hasanołlu, O. Erbatur, Developing Pt based bimetallic and
8		trimetallic carbon supported catalysts for aqueous-phase reforming of biomass-
9		derived compounds, Int. J. Hydrogen Energy. 40 (2015) 3849-3858.
10		doi:10.1016/j.ijhydene.2015.01.131.
11	[15]	K.E. Jeong, H.D. Kim, T.W. Kim, J.W. Kim, H.J. Chae, S.Y. Jeong, C.U. Kim,
12		Hydrogen production by aqueous phase reforming of polyols over nano- and
13		micro-sized mesoporous carbon supported platinum catalysts, Catal. Today. 232
14		(2014) 151-157. doi:10.1016/j.cattod.2014.02.005.
15	[16]	A.S. Oliveira, J.A. Baeza, L. Calvo, N. Alonso-Morales, F. Heras, J.J. Rodriguez,
16		M.A. Gilarranz, Production of hydrogen from brewery wastewater by aqueous
17		phase reforming with Pt/C catalysts, Appl. Catal. B Environ. 245 (2019) 367-
18		375. doi:10.1016/j.apcatb.2018.12.061.
19	[17]	D.A. Sladkovskiy, L.I. Godina, K. V. Semikina, E. V. Sladkovskaya, D.A.
20		Smirnova, D.Y. Murzin, Process design and techno-economical analysis of
21		hydrogen production by aqueous phase reforming of sorbitol, Chem. Eng. Res.
22		Des. 134 (2018) 104–116. doi:10.1016/j.cherd.2018.03.041.
23	[18]	A.S. Oliveira, J.A. Baeza, L. Calvo, N. Alonso-Morales, F. Heras, J. Lemus, J.J.
24		Rodriguez, M.A. Gilarranz, Exploration of the treatment of fish-canning industry
25		effluents by aqueous-phase reforming using Pt/C catalysts, Environ. Sci. Water

Res. Technol. 4 (2018) 1979–1987. doi:10.1039/C8EW00414E.

- J. Remón, J. Ruiz, M. Oliva, L. García, J. Arauzo, Effect of biodiesel-derived 2 [19] impurities (acetic acid, methanol and potassium hydroxide) on the aqueous phase 3 reforming of glycerol, Chem. Eng. J. 299 (2016)431-448. 4 doi:10.1016/j.cej.2016.05.018. 5
- [20] J. Remón, C. Jarauta-Córdoba, L. García, J. Arauzo, Effect of acid (CH₃COOH,
 H₂SO₄ and H₃PO₄) and basic (KOH and NaOH) impurities on glycerol
 valorisation by aqueous phase reforming, Appl. Catal. B Environ. 219 (2017)
 362–371. doi:10.1016/j.apcatb.2017.07.068.
- [21] J. Liu, X. Chu, L. Zhu, J. Hu, R. Dai, S. Xie, Y. Pei, S. Yan, M. Qiao, K. Fan,
 Simultaneous aqueous-phase reforming and KOH carbonation to produce COxfree hydrogen in a single reactor, ChemSusChem. 3 (2010) 803–806.
 doi:10.1002/cssc.201000093.
- [22] C. He, J. Zheng, K. Wang, H. Lin, J.-Y. Wang, Y. Yang, Sorption enhanced
 aqueous phase reforming of glycerol for hydrogen production over Pt-Ni
 supported on multi-walled carbon nanotubes, Appl. Catal. B Environ. 162 (2015)
 401–411. doi:10.1016/j.apcatb.2014.07.012.
- 18 [23] Y. Xu, Z. Tian, G. Wen, Z. Xu, W. Qu, L. Lin, Production of COx-free hydrogen
 by alkali enhanced hydrothermal catalytic reforming of biomass-derived
 alcohols, Chem. Lett. 35 (2006) 216–217. doi:10.1246/cl.2006.216.
- [24] J. Lemus, J. Bedia, L. Calvo, I.L. Simakova, D.Y. Murzin, B.J.M. Etzold, J.J.
 Rodriguez, M.A. Gilarranz, Improved synthesis and hydrothermal stability of
 Pt/C catalysts based on size-controlled nanoparticles, Catal. Sci. Technol. 6
 (2016) 5196–5206. doi:10.1039/c6cy00403b.
- 25 [25] H. Habte Lemji, H. Eckstädt, A pilot scale trickling filter with pebble gravel as

- media and its performance to remove chemical oxygen demand from synthetic
 brewery wastewater, J Zhejiang Univ-Sci B (Biomed & Biotechnol). 14 (2013)
 924–933. doi:10.1631/jzus.B1300057.
- 4 [26] Dennis E. Briggs, Malts and Malting, Thomson Science, London, UK, 1998.
- 5 [27] J. Poerschmann, B. Weiner, R. Koehler, F.D. Kopinke, Hydrothermal
 6 carbonization of glucose, fructose, and xylose Identification of organic products
 7 with medium molecular masses, ACS Sustain. Chem. Eng. 5 (2017) 6420–6428.
 8 doi:10.1021/acssuschemeng.7b00276.
- 9 [28] D.L. King, L. Zhang, G. Xia, A.M. Karim, D.J. Heldebrant, X. Wang, T.
 10 Peterson, Y. Wang, Aqueous phase reforming of glycerol for hydrogen
 11 production over Pt-Re supported on carbon, Appl. Catal. B Environ. 99 (2010)
 12 206–213. doi:10.1016/j.apcatb.2010.06.021.
- 13 [29] T. Wang, Y. Zhai, Y. Zhu, C. Li, G. Zeng, A review of the hydrothermal
 14 carbonization of biomass waste for hydrochar formation: Process conditions,
 15 fundamentals, and physicochemical properties, Renew. Sustain. Energy Rev. 90
 16 (2018) 223–247. doi:10.1016/J.RSER.2018.03.071.
- [30] A.M. Karim, C. Howard, B. Roberts, L. Kovarik, L. Zhang, D.L. King, Y. Wang,
 In situ X-ray absorption fine structure studies on the effect of pH on Pt electronic
 density during aqueous phase reforming of glycerol, ACS Catal. 2 (2012) 2387–
 20 2394. doi:10.1021/cs3005049.
- [31] R. He, R.R. Davda, J.A. Dumesic, In situ ATR-IR spectroscopic and reaction
 kinetics studies of water-gas shift and methanol reforming on Pt/Al₂O₃ catalysts
 in vapor and liquid phases, J. Phys. Chem. B. 109 (2005) 2810–2820.
 doi:10.1021/jp045470k.
- 25 [32] T.-W. Kim, H.-D. Kim, K.-E. Jeong, H.-J. Chae, S.-Y. Jeong, C.-H. Lee, C.-U.

- Kim, Catalytic production of hydrogen through aqueous-phase reforming over
 platinum/ordered mesoporous carbon catalysts, Green Chem. 13 (2011) 1718–
 1728. doi:10.1039/c1gc15235a.
- X. Wang, N. Li, Z. Zhang, C. Wang, L.D. Pfefferle, G.L. Haller, High-yield 4 [33] 5 hydrogen production from aqueous phase reforming over single-walled carbon nanotube 1480-1486. 6 supported catalysts, ACS Catal. 2 (2012)doi:10.1021/cs300274m. 7
- 8 [34] T.W. Kim, H.J. Park, Y.C. Yang, S.Y. Jeong, C.U. Kim, Hydrogen production
 9 via the aqueous phase reforming of polyols over three dimensionally mesoporous
 10 carbon supported catalysts, Int. J. Hydrogen Energy. 39 (2014) 11509–11516.
 11 doi:10.1016/j.ijhydene.2014.05.106.
- [35] C. Pendem, B. Sarkar, N. Siddiqui, L.N.S. Konathala, C. Baskar, R. Bal, KPromoted Pt-hydrotalcite catalyst for production of H₂ by aqueous phase
 reforming of glycerol, ACS Sustain. Chem. Eng. 6 (2018) 2122–2131.
 doi:10.1021/acssuschemeng.7b03512.
- [36] X.Y. Shi, D.W. Jin, Q.Y. Sun, W.W. Li, Optimization of conditions for hydrogen
 production from brewery wastewater by anaerobic sludge using desirability
 function approach, Renew. Energy. 35 (2010) 1493–1498.
 doi:10.1016/j.renene.2010.01.003.
- [37] P. Biller, A.B. Ross, Production of biofuels via hydrothermal conversion, Handb.
 Biofuels Prod. (2016) 509–547. doi:10.1016/B978-0-08-100455-5.00017-5.
- 22

Declaration of interests

 \boxtimes The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

□The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: