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Abstract
The increasing prevalence of diet-related diseases calls for an improvement in nutritional advice. Personalized nutrition aims to solve 
this problem by adapting dietary and lifestyle guidelines to the unique circumstances of each individual. With the latest advances in 
technology and data science, researchers can now automatically collect and analyze large amounts of data from a variety of sources, 
including wearable and smart devices. By combining these diverse data, more comprehensive insights of the human body and its 
diseases can be achieved. However, there are still major challenges to overcome, including the need for more robust data and stan-
dardization of methodologies for better subject monitoring and assessment. Here, we present the AI4Food database (AI4FoodDB), 
which gathers data from a nutritional weight loss intervention monitoring 100 overweight and obese participants during 1 month. 
Data acquisition involved manual traditional approaches, novel digital methods and the collection of biological samples, obtaining: 
(i) biological samples at the beginning and the end of the intervention, (ii) anthropometric measurements every 2 weeks, (iii) lifestyle 
and nutritional questionnaires at two different time points and (iv) continuous digital measurements for 2 weeks. To the best of our 
knowledge, AI4FoodDB is the first public database that centralizes food images, wearable sensors, validated questionnaires and bio-
logical samples from the same intervention. AI4FoodDB thus has immense potential for fostering the advancement of automatic and 
novel artificial intelligence techniques in the field of personalized care. Moreover, the collected information will yield valuable insights 
into the relationships between different variables and health outcomes, allowing researchers to generate and test new hypotheses, 
identify novel biomarkers and digital endpoints, and explore how different lifestyle, biological and digital factors impact health. The 
aim of this article is to describe the datasets included in AI4FoodDB and to outline the potential that they hold for precision health 
research.

Database URL: https://github.com/AI4Food/AI4FoodDB
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Introduction
Precision nutrition has emerged as an essential tool in the 
prevention and treatment of non-communicable diseases 

(NCDs). These diseases, in particular those related to dietary 
imbalances, represent a significant burden on public health: 
behavioral and dietary habits are among the most relevant 

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baad049/7226275 by U

niversidad Autónom
a de M

adrid user on 15 M
arch 2024

https://orcid.org/0000-0002-8919-8687
https://orcid.org/0000-0003-3786-7233
https://orcid.org/0000-0002-9393-3066
https://orcid.org/0000-0001-8182-6784
https://orcid.org/0009-0005-2109-7782
https://orcid.org/0000-0003-0539-7636
https://orcid.org/0000-0001-9044-5633
https://orcid.org/0000-0002-1893-8019
https://orcid.org/0000-0003-4012-5548
https://orcid.org/0000-0001-7737-5562
https://orcid.org/0000-0003-0546-2143
https://orcid.org/0000-0002-6690-5684
https://orcid.org/0000-0003-1381-6407
https://orcid.org/0000-0002-6338-8511
https://orcid.org/0000-0002-6343-5656
https://orcid.org/0000-0003-1439-7494
https://orcid.org/0000-0003-0557-1948
https://orcid.org/0000-0002-9526-891X
https://orcid.org/0000-0002-7268-4785
https://orcid.org/0000-0002-2310-2267
mailto:ruben.tolosana@uam.es
mailto:enrique.carrillo@imdea.org
https://github.com/AI4Food/AI4FoodDB
https://creativecommons.org/licenses/by/4.0/


2 Database , Vol. 00, Article ID baad049

risk factors for the development of NCDs, causing 11 million 
deaths in 2017 (1). For instance, the prevalence of obesity 
nearly tripled between 1976 and 2016, and it is projected 
to affect >1900 million adults by 2030 (2). Strategies based 
on general ‘one-size-fits-all’ dietary recommendations are not 
enough to prevent these diseases as each individual is defined 
by a set of unique characteristics such as genetics, gut micro-
biome, metabolism, bodies, tastes and lifestyles (3). More-
over, personal nutritional requirements are also continuously 
changing due to many factors like ages, physical conditions, 
social factors or during circumstances such as pregnancy or ill-
ness. This underscores the need for personalized approaches 
that address an individual’s unique circumstances (4). The 
relevance of these approaches to address health problems 
affected by dietary habits has been stated by the ELIXIR Food 
& Nutrition (F&N) Community (5).

A significant effort has been made to identify biomark-
ers that explain the variability in patient responses to dietary 
interventions. This includes genetic polymorphisms present in 
regions relevant for the metabolism of different molecules, as 
well as changes in the gut microbiota (GM), i.e. the microbes 
residing in the digestive tract. For instance, differences in GM 
composition can be related to the variability in physiological 
responses after meal intake (6, 7); several studies have iden-
tified species in the GM that correlate with nutrient intake 
reports and blood markers (8, 9), as well as with different 
diet-related NCDs such as obesity or type 2 diabetes (T2D) 
(10, 11). Other approaches have focused on the stratification 
of patients suffering from the same disease. A good example 
of this is the proposition of the ‘metabolically healthy obe-
sity’ phenotype to describe patients that, despite having a BMI 
of >30 kg/m2, show good cardiovascular health and are at a 
lower risk of complications such as cardiovascular disease or 
T2D (12). These are only some examples on how nutritional 
research can address the personal situation of each subject 
to tailor nutritional and lifestyle recommendations to their 
needs.

However, much work still must be done in terms of patient 
care, follow-up and monitoring. Nutritionist visits tradition-
ally record physical activity and lifestyle data through the use 
of surveys and validated questionnaires, which are completed 
during the clinic visit or at home by the patient. These meth-
ods are well settled in clinical practice and are widely used in 
different health-related scenarios, including but not limited to 
nutrition (13). Usually, they are accompanied by the collec-
tion of biological samples in order to measure the presence of 
different molecules and biomarkers. However, collecting this 
information is costly and time-consuming, requiring invasive 
tests in controlled scenarios and burdening both the patient 
and the clinician. This slows data acquisition and limits the 
use of these approaches to large cohorts (14). Moreover, vari-
ations of parameters such as glycemia or heart rate (HR) 
throughout the day, which depend not only on meal intake 
or physical activity but also on the personal circumstances 
of each patient, are complicated to monitor through these 
strategies.

As a consequence, e-Health approaches that work toward 
a shift from paper-based questionnaires to automatic data 
recording strategies are becoming increasingly common (15). 
In addition, people’s concerns regarding self-managed health 
care have increased over the last few years, and the use of 
health devices (e.g. web-based applications, smartwatches and 

wearable sensors) has become widespread (16). Consequently, 
personalized attention via wearable sensors has been recently 
integrated as a powerful e-Health tool. Vital signs such as HR, 
body temperature, oxygen saturation (SpO2) or respiration 
rate are now continuously being monitored. These sensors are 
then integrated into Internet-of-things and smart devices that 
incorporate technology based on artificial intelligence (AI), 
responsible for detecting changes in the individual (17). Wear-
able devices are expected to transform current health care 
by monitoring the individual continuously in a non-invasive 
or minimally invasive manner, providing reliable information 
even in real and uncontrolled scenarios (18).

The use of e-Health and telemedicine approaches to aid 
patient monitoring in different disease stages, from diagno-
sis to rehabilitation, has experienced a great increase due 
to the Coronavirus Disease 2019 (COVID-19) pandemic, 
in an attempt to alleviate the pressure exerted on national 
health systems (19). Faced with a large amount of dispersed 
information, automatic approaches, and specifically, AI-based 
methods, have offered an effective solution in different fields 
such as biomedicine and health informatics. Machine learn-
ing (ML), a subfield of AI, is today a great solution to handle 
these vast amounts of information (20, 21). Sleep and physical 
activity, continuous glucose monitoring (CGM), stress man-
agement and HR tracking, among others, are some examples 
that use ML approaches to detect and prevent some of the 
most prevalent NCDs (22, 23).

Despite the increasing use of wearable devices in health 
and nutrition-related fields, current approaches still face many 
problems. For instance, today’s technology lacks the robust-
ness and user-friendly devices necessary to accurately measure 
the nutrient intake of each individual (24, 25). Instead, sev-
eral studies have opted to provide smartphone apps to track 
participants’ food intake (26): in the work of Lozano-Lozano 
et al. (27), they developed an app to promote lifestyle behav-
ioral changes of breast cancer survivors; others focused on 
developing smartphone and web-based apps for overweight 
and obese people to improve their health through weight loss 
(28, 29).

Several studies have shown that the use of wearable devices 
can improve both physical and mental conditions of individ-
uals (30). Some approaches aimed to mitigate cardiovascular 
diseases such as atrial fibrillation, arrhythmia or heart fail-
ure (31–33), while others promoted healthy lifestyle behaviors 
by increasing physical activity (34, 35). Recent studies have 
shown the effectiveness of using both wearable devices and 
ML approaches together with other types of health data 
sources, for instance, electronic health records, metabolic pro-
files, gut microbiome and diet: some studies investigated how 
blood glucose levels vary among individuals after consum-
ing standardized meals to combat diabetes (36), while others 
used CGMs and wearables devices to track food intake and 
physical activity in order to analyze the impact of glucose 
deviations during eating or exercising (37–40). Zeevi et al.
(7) also measured blood parameters, anthropometrics and 
lifestyle behaviors to demonstrate that personalized nutrition 
is a key factor to control glycemia.

In this context, the AI4Food framework has recruited 
100 obese and overweight participants through validated 
questionnaires, wearable devices, anthropometric measure-
ments and biological samples, with the aim of closely 
monitoring their lifestyle and health during the course of 
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Figure 1. An overview of the AI4FoodDB. The database comprises 10 datasets representing different types of data acquired during the nutritional 
intervention: Anthropometric Measurements (DS1), Lifestyle and Health (DS2), Nutrition (DS3), Biomarkers (DS4), Gut Microbiome (DS5), Vital Signs 
(DS6), Physical Activity (DS7), Sleep Activity (DS8), Emotional State (DS9) and Additional Information (DS10). Data acquisition methods are indicated by 
different colored boxes as well as by icons: manual (depicted with a notebook), clinical (microscope) or digital (smartwatch).

a 1-month weight loss intervention. Figure 1 provides a 
graphical description of the different information acquired in 
the AI4Food framework. Our goal is to work toward a com-
prehensive human body map or ‘digital twin’ by using the 
latest advances in technology and the new tools that mon-
itor this biological, physiological and lifestyle information. 
We expect that the integration of heterogeneous data will 
allow us to identify complex biomarkers, moving away from 
nutritional advice based solely on validated questionnaires. 
Consequently, the AI4Food framework aims to contribute 
to e-Health and the challenges defined by the ELIXIR F&N 
Community (5) by developing new AI technologies that allow 
for automatic and user-friendly, yet accurate, patient follow-
up. Here, we present the data collected within this framework, 
the AI4Food database (AI4FoodDB), comparing the various 
methods employed to monitor participants and providing 
examples of how these data can be used. The article is orga-
nized as follows. The section ‘AI4FoodDB: acquisition Setup’ 
describes the design and acquisition setup of the AI4FoodDB 
database. The section ‘AI4FoodDB: datasets’ details the 10 

different datasets defined in AI4FoodDB, representing differ-
ent types of data acquired during the nutritional intervention. 
Then, we briefly describe in the section ‘Case study: partici-
pant follow-up’ a case study of a single participant from the 
AI4FoodDB, and finally, we draw up future studies and con-
clusions in the section ‘Conclusions’. To the best of our knowl-
edge, AI4FoodDB is the first public database that centralizes 
food images, wearable sensors, validated questionnaires and 
biological samples from the same intervention. As a result, 
we believe that this database will enhance the current per-
sonalized nutrition benchmark and help to better understand 
human body behavior in NCDs.

AI4FoodDB: acquisition setup
The AI4FoodDB is designed to build a comprehensive map 
of the human being by employing the latest advances in biol-
ogy, sensing and AI technologies. The proposed database also 
aims to serve as a benchmark in the fields of nutrition, lifestyle 
and health informatics. Lifestyle, nutritional and biological 
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data have been gathered using diverse methodologies, includ-
ing the use of wearable devices, validated questionnaires and 
biological samples. The acquisition of AI4FoodDB was jointly 
conducted by the IMDEA Food Institute from Madrid, Spain, 
and the Biometrics and Data Pattern Analytics Laboratory 
from Universidad Autonoma de Madrid (UAM), Madrid, 
Spain.

Ethical issues
The protocols and methodology used in AI4FoodDB comply 
with the ethical principles for research involving human sub-
jects laid down in the Declaration of Helsinki (1964) and its 
modifications. The intervention was approved by the Research 
Ethics Committee of the IMDEA Food Foundation (refer-
ence IMD: PI-052, 5 April 2022). Participants were informed 
in detail about the different stages of the nutritional inter-
vention both orally and in writing. In addition, participants 
had to sign an informed consent prior to taking part in the 
study. This document included a section on the storage of the 
remaining samples and the collected data according to Span-
ish legislation (Royal Decree 1716/2011 of 18 November). 
The dissociation criteria are also applied to the volunteer’s 
data for anonymization, in compliance with the current Span-
ish legislation (Organic Law 15/1999 of 13 December, on the 
protection of Personal Data). 

Participants’ description
AI4FoodDB comprises initially a total of 100 overweight and 
obese participants. Recruitment was carried out by the Plat-
form for Clinical Trials in Nutrition and Health (GENYAL) 
at the IMDEA Food Institute. This was done by (i) contacting 
volunteers from the Platform’s database, (ii) advertising the 
trial in the IMDEA Food Institute website and social media 
and (iii) disseminating the information in the Cantoblanco 
Campus and collaborating entities. Seven participants quit 
the study before the end of the intervention. Table 1 outlines 
the specific criteria used for participant selection, including 
both the inclusion and exclusion criteria. A description of 
the participants involved in the study, including a compari-
son between Groups 1 and 2, is shown in Table 2. As shown 

Table 1. The full inclusion and exclusion criteria considered in the 
AI4FoodDB nutritional intervention.

Inclusion criteria

− Age ≥ 18 years
− BMI1 between 27–35 kg/m2

− Able to understand the informed consent
− Willing to comply with the study protocol
− Able to use wearable devices for data collection

Exclusion criteria

− Cognitive impairment or neurological disorders
− Ongoing severe disease (e.g. liver and kidney)
− Pregnant or lactating
− Taking medications for weight loss
− Unwilling to be monitored by wearable devices and nutritionist 

visits
− Unwilling to comply with guidelines for healthy weight loss

1BMI: Body Mass Index.

in the table, the two intervention groups showed no sig-
nificant differences in anthropometric, HR and biochemical 
measurements.

Types of data
We consider three types of acquisition depending on how 
the data were collected: (i) manual, where both experts and 
participants filled out medical and lifestyle standard question-
naires; (ii) clinical, where a health professional was respon-
sible for data collection, including anthropometric measure-
ments and biological sample collection (blood, saliva, urine 
and stool) and (iii) digital, where wearable sensors recorded 
physical activity, biological signal information and blood glu-
cose levels from the participants. Figure 1 provides a graph-
ical representation of the information acquired within the 
AI4Food framework. The different data collection methods 
considered in this framework and the resulting available infor-
mation make AI4FoodDB a unique and complete database for 
precision nutrition research.

Acquisition protocol
The nutritional intervention lasted 5 weeks, with four dif-
ferent visits as depicted in Figure 2. First, during volun-
teer recruitment (V0, Week −1), potential participants were 
informed of the study design, signed the informed consent and 
were randomly assigned to an intervention group. Then, par-
ticipants were provided with the information they needed to 
follow the study. All participants were given nutritional and 
lifestyle guidelines for healthy weight loss at visit V1 (Week 
0), reducing ~500 kcal out of their total metabolic rate during 
4 weeks. A varied, balanced diet was designed for each partic-
ipant according to their specific needs. Moreover, participants 
were informed about the data that would be collected by dig-
ital sensors and were provided with instructions on their use 
and installation.

As shown in Figure 2, the intervention followed a cross-
over design. This means that, on visits V1–V3 (Weeks 0–4), 
all participants used both collection methods. However, 
the order in which these methods were used was different 
orders according to the intervention group. Participants in 
Group 1 started with the traditional/manual data collection 
between visits V1 and V2 (Week 0 and Week 2) and then 
switched to the digital collection for visits V2 and V3 (Week 
2 and Week 4), while those in Group 2 did the opposite, 
starting with the digital data collection and then switching 
to the traditional/manual collection. Regarding the clinical 
data, biological samples including blood, saliva, urine and 
stool samples were also collected at visits V1 (Week 0) and
V3 (Week 4).

Wearable devices and software
We provide next a description of the wearable devices and 
software considered in AI4FoodDB for digital acquisition:

• FitBit Sense Smartwatch (https://www.fitbit.com/): this is 
a commercial device designed by the FitBit company. The 
device, which can be used on any wrist, is very light (~46 g, 
1.26 Oz), and the battery lasts ~4–6 days. The smartwatch 
has also Bluetooth connectivity to synchronize with the 
FitBit app, available for Android and iOS smartphones. 
The device incorporates the latest sensorial advances and 
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Figure 2. A summary of the acquisition protocol considered in 
AI4FoodDB. The intervention followed a cross-over design. Participants 
used a single data collection method for the first 2 weeks (e.g. Group 1 
started with traditional data collection) and then switched to the opposite 
method (in the case of Group 1, digital data collection) for the remaining 
2 weeks.

algorithms to monitor and control the health care of 
the individual: (i) optical HR sensor to detect HR activ-
ity, variability or even oxygen saturation during sleep 
activity; (ii) electrodermal activity (EDA) sensor to detect 
stress levels; (iii) gyroscope and accelerometer inertial sen-
sors; (iv) skin temperature sensor to monitor changes; 
(v) airflow measurement sensor and microphone to detect 
the respiratory rate while sleeping; (vi) electrocardio-
gram (ECG) sensor to record heart electricity signals; (vii) 
Global Positioning System (GPS) and Global’naya Nav-
igatsionnaya Sputnikovaya Sistema (GLONASS) sensors 
for geolocalization and physical activity detection and 
(viii) algorithms to detect sleep quality and stages.

• Freestyle Libre 2 (https://www.freestyle.abbott/): this is 
a glucometer sensor designed by the Abbot Laborato-
ries company. The device is even smaller and lighter than 
the smartwatch (~5 grams, 0.17 Oz), which is placed on 
the back of the upper arm and lasts up to 14 days. The 
glucometer is connected to a smartphone via Near Field 
Communication (NFC) technology using the FreeStyle 
LibreLink app (available for Android and iOS smart-
phones) and monitors the blood sugar levels every 15 
min.

• Food Logging Web Platform: participants were asked to 
take pictures from their personal smartphones (provided 
if needed) of all the consumed food and drinks (except 
water) during the trial. For that purpose, we created a 
mobile-friendly web platform that stored in the cloud all 
food images with a timestamp of the moment when the 
picture was taken. Participants simply had to log in to the 
platform and then upload the images at any time of the 
day. The platform was developed using the Flask frame-
work, coded in Python. The image database was stored in 
Google Firebase, providing a fast and secure platform for 
the participants.

In addition, participants were provided with guidelines for 
using wearable devices and the mobile web platform prop-
erly. Regarding the smartwatch, participants were instructed 
to wear the device at all times, including during sleep. 
Participants utilized the FitBit app on their personal smart-
phones to synchronize data between the smartwatch and Fit-
Bit servers. While the smartwatch is capable of storing data for 
up to 1 week, we requested that participants synchronize their 

Table 2. A description of the participants included in AI4FoodDB.

Total (n = 100) Group 1 (n = 50) Group 2 (n = 50) P-value Adjusted P-value

Sex (female, %) 69 68 70 0.8 > 0.9
Age (years) 50 51 ± 13 48 ± 13 0.3 > 0.9
BMI1 (kg/m2) 30.66 ± 3.41 29.96 ± 2.88 31.37 ± 3.76 0.084 > 0.9
% Obese 50 46 54 0.4 > 0.9
Waist/hip ratio 0.97 ± 0.88 0.88 ± 0.09 1.06 ± 1.19 0.6 > 0.9
Basal metabolic rate 
(kcal)

1,617 ± 292 1,591 ± 314 1,644 ± 269 0.6 > 0.9

Intervention diet 
(kcal)

2,082 ± 349 2,063 ± 326 2,102 ± 373 0.8 > 0.9

HR (bpm) 72 ± 11 71 ± 11 72 ± 10 0.6 > 0.9
Dyastolic blood 
pressure (mmHg)

78 ± 10 78 ± 7 78 ± 11 > 0.9 > 0.9

Systolic blood 
pressure (mmHg)

123 ± 17 123 ± 17 124 ± 17 0.7 > 0.9

Total cholesterol 
(mg/dl)

200 ± 32 198 ± 30 202 ± 33 0.3 > 0.9

HDL2 cholesterol 
(mg/dl)

59 ± 14 57 ± 14 60 ± 15 0.3 > 0.9

LDL3 cholesterol 
(mg/dl)

120 ± 26 120 ± 24 120 ± 19 > 0.9 > 0.9

Triglycerides (mg/dl) 106 ± 46 102 ± 38 110 ± 53 0.9 > 0.9
Glucose (mg/dl) 82 ± 8 83 ± 8 82 ± 8 0.5 > 0.9
HbA1c4 (%) 5.63 ± 0.34 5.63 ± 0.33 5.63 ± 0.35 0.8 > 0.9
Insulin (μUI/ml) 10.5 ± 7.4 9.9 ± 7.2 11.0 ± 7.7 0.5 > 0.9
HOMA-IR5 2.18 ± 1.69 2.08 ± 1.65 2.29 ± 1.73 0.6 > 0.9
Adiponectin (μg/ml) 13 ± 8 13 ± 8 13 ± 8 > 0.9 > 0.9

Continuous variables are shown as mean ± SD. Differences between the groups are compared using the t-test for normally distributed data (tested with the 
Shapiro–Wilk test with a significance level at 0.05) and the Wilcoxon rank sum test for non-normal variables. Categorical variables were compared using 
Pearson’s chi-squared test. All P-values were corrected for multiple testing via the Benjamini–Hochberg false discovery rate correction.
1 BMI: Body Mass Index 2 HDL: High-density lipoprotein 3 LDL: Low-density lipoprotein 4 HbA1c: Hemoglobin A1C 5 HOMA-IR, homeostatic model 
assessment for insulin resistance.
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devices on a daily basis to monitor their activity. Moreover, 
they had to perform a daily ECG and EDA test to monitor 
heart and stress health, respectively.

For the glucose monitoring device, participants were 
instructed to scan the sensor with a compatible NFC-
enabled smartphone at least every 8 h, which amounts 
to approximately three times a day. This was to ensure 
that as much information as possible was captured, as 
the device only stores 8 h of data. After scanning the 
data with the smartphone, it was automatically transmit-
ted to the Abbot Laboratories servers via the FreeStyle
LibreLink app.

Additionally, participants were requested to take pic-
tures of their food and drinks consumed throughout the 
day and upload them to the food logging web plat-
form. The collected participant data were manually moni-
tored and reviewed daily for all wearable devices. Finally, 
all data were downloaded from their respective servers 
and subjected to preprocessing following a data cleaning
procedure.

AI4FoodDB: datasets
We provide next a description of the 10 distinct datasets 
defined in AI4FoodDB, representing different types of data 
acquired during the nutritional intervention, as depicted 
in Figure 1.

Dataset 1: anthropometric measurements
During the physical examination at V0, V2 and V3 visits, the 
following anthropometric measurements were recorded:

• Body mass index (BMI): body weight (kg) and height (cm) 
were measured and used to estimate the BMI as the body 
weight divided by the squared height (kg/m2).

• Body measurements: waist and hip circumference were 
measured in cm.

• Body composition: fat mass percentage, muscle mass per-
centage and visceral fat level were measured via bioelec-
trical impedance analysis.

As a result, a total of nine variables were collected for each 
participant at three different time points. Additionally, a mea-
surement of muscle strength was recorded using a digital hand 
dynamometer at V0 and V3, providing five more variables for 
each participant, and blood oxygen levels, represented by two 
variables, were measured using an oximeter during V2.

Dataset 2: lifestyle and health
At V0, participants completed a lifestyle survey that includes 
information on appetite, number of meals eaten at home or 
outside, alcohol and tobacco habits, physical activity, sleep 
habits and psychological variables. This survey considers a 
total of 27 variables for each participant.

A medical history was also registered at V0, including fre-
quent medication intake, current diseases and family health 
history. This questionnaire asks about a series of medications 
(e.g. contraceptives or anti-inflammatory drugs) and diseases 
(e.g. hypertension or triglyceridemia) by default. Participants 
also described any other conditions that applied to them, 
resulting in fields with unstructured text. This questionnaire 

was manually curated in order to transform it into a struc-
tured data format. The 11 medications and eight diseases 
included in the questionnaire are encoded as binary variables, 
whereas those that were added by the participants are reg-
istered as qualitative variables in two additional tables. Two 
more binary variables encode those participants that added 
information about new medications and those participants 
that did not consume any. The same was done for diseases. 
Information about whether and when the participants had 
reached menopause was also collected when applicable.

Moreover, a general well-being measure was recorded dur-
ing the manual-based intervention via the Spanish version 
of the Short Form-36 Health Survey (SF-36), a widely used 
generic health-related quality of life questionnaire  (41, 42). 
This survey consists of a total of 36 items (questions): 35 items 
that evaluate positive and negative health conditions, grouped 
into eight categories, and an additional item regarding the per-
ceived change in general health status over the last year. Items 
are classified into the following scales:

• Physical functioning (10 items): this evaluates whether the 
participant can or cannot carry out physical activities (i.e. 
running, showering or going up the stairs) due to health 
problems.

• Role physical (four items): this measures problems during 
work or other daily tasks caused by physical health.

• Bodily pain (two items): this assesses whether the partic-
ipant suffers from bodily pain that prevents them from 
performing daily tasks.

• General health (five items): participants are asked about 
their subjective perception of their own health.

• Vitality (four items): this provides a general measure of 
energy or fatigue.

• Social functioning (two items): whether physical or emo-
tional problems hamper regular social activities.

• Role emotional (three items): if emotional problems neg-
atively affect work or other daily tasks.

• Mental health (five items): this assesses anxiety, hopeless-
ness, happiness or calm feelings.

Each item is given a numeric score and the summation of all 
relevant items is calculated for each scale. Then, a total score is 
calculated. Higher scores on this questionnaire are indicative 
of better overall health status. These variables were assessed 
twice for each participant, at the beginning and the end of the 
traditional-based intervention.

Dataset 3: nutrition
During the 2-week manual data collection, participants 
recorded their nutritional habits using a food diary, record-
ing all food and drinks consumed over 3 days. Participants 
completed this 3-day food diary twice: at the beginning and 
the end of the traditional-based intervention. Following guide-
lines from the European Food Safety Authority (43), this diary 
includes two weekdays and a weekend day or holiday from the 
week previous to the nutritionist visit. Participants were asked 
to register the mealtime and the weight of every food item 
where possible, using approximate measures (e.g. one cup, 
one teaspoon and a large plate). These registers are then pro-
cessed using the DIAL commercial software (Alce Ingeniería, 
version 2.16, 2012) (44). This software is based on a database 
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with the composition of >1000 food items in terms of energy, 
macro- and micronutrients. This is protected by copyright and 
can be accessed by purchasing the DIAL software license. As 
a result, >180 numeric variables are obtained, which can be 
summarized into the following:

• General parameters: the total calorie intake, as well as 
the number of servings of grains, fruits, vegetables, dairy 
products and protein foods, is calculated, as well as the 
Healthy Eating Index as defined by Kennedy et al. (45).

• Nutrient intake information: the Recommended Dietary 
Allowance (RDA), as well as the amount (weight) ingested 
and the percentage of the RDA that it represents, is given 
for a list of macro- and micronutrients.

In the same manner, participants were requested to capture 
images of all food and drinks consumed during the 2-week 
digital data collection. More precisely, they were required to 
upload all food images using the web platform described early.

Dataset 4: biomarkers
Blood, urine and saliva samples were collected at the begin-
ning and the end of the intervention (V1 and V3) in order to 
measure a series of biomarkers:

• Immune markers: tumor necrosis factor alpha,
immunoglobulin levels (IgG, IgA, IgM and IgE) and 
immune cell populations, including lymphocytes, mono-
cytes, segmented neutrophils, eosinophils and basophils.

• Biochemical parameters: triglycerides, high-density
lipoprotein (HDL), low-density lipoprotein 
(LDL), total cholesterol, blood sugar levels, insulin, gly-
cated hemoglobin, HOMA index, albumin, prealbumin, 
C reactive protein, adiponectin and leptin.

• Genetics: a series of single-nucleotide polymorphisms 
associated with metabolism, nutrition and immune system 
deterioration were measured.

Biochemical analyses of blood samples provided informa-
tion from 39 variables, which were measured at two different 
time points: V1 (100 samples) and V3 (93 samples).

During the digital collection, participants were equipped 
with a CGM device that collected blood sugar levels on 
a 15-min basis, categorized into five different ranges: very 
high values (>250 mg/dl), high values (between 181 and 250 
mg/dl), target range (70–180 mg/dl), low values (54–69 mg/dl) 
and very low values (<54 mg/dl). Additionally, the Glucose 
Management Indicator, which indicates the average AC1 level 
based on the average glucose level, glucose variability and 
coefficient of variation of all readings logged over 2 weeks 
(until the glucometer battery drained), were also computed.

Dataset 5: gut microbiome
Apart from the biological samples described in the section 
‘Dataset 4: biomarkers’, stool samples were also collected at 
V1 and V3 to characterize the gut microbiome composition 
and functionality via shotgun metagenomics and untargeted 
metabolomics. In total, 97 and 91 samples were collected at 
V1 and V3, respectively.

Dataset 6: vital signs
Visits V0, V2 and V3 included clinical measurements of HR 
and blood pressure, stored in three variables: HR, systolic 
blood pressure and diastolic blood pressure. There are missing 
data points from two occasions in which participants attended 
the visit, but these measurements were not taken. In addition, 
the smartwatch utilized photoplethysmography to measure 
these parameters during the digital data collection. Photo-
plethysmography uses light to measure blood flow, allowing 
for continuous monitoring of vital signs in a non-invasive way. 
The following vital signs were captured using the wearable 
device:

• HR: it is recorded for each participant every 5 s as beats 
per minute (bpm). Additionally, the smartwatch provides 
HR zones, which are associated with physical activity and 
define how hard the exercise was based on four default 
zones: below zone 1 (no activity), zone 1 (low-intensity 
activity), zone 2 (medium-intensity activity) and zone 3 
(high-intensity activity).

• ECG: participants performed a 30-s ECG test once a day, 
preferably at night when HR and stress levels were low. 
After completing the test, waveform samples with a 250-
Hz frequency, the average HR and a result classification 
were stored. The test results included normal sinus rhythm 
(indicating normal heart rhythm), atrial fibrillation (indi-
cating signs of atrial fibrillation) or an inconclusive result 
due to a high or low rate, or a poor reading.

Dataset 7: physical activity
During the 2-week manual collection, participants com-
pleted the Spanish-translated version of the short last 7-day 
self-administered International Physical Activity Question-
naire (IPAQ) to record their physical activity (46). This 
questionnaire was completed twice by each participant: at 
the beginning and the end of the traditional-based inter-
vention. This questionnaire consists of seven items that 
assess physical activity performed during leisure time, work, 
transport or domestic tasks lasting >10 min, as well as 
the time spent sitting. Activities are classified into three
categories:

• Vigorous-intensity activity: these activities take a hard 
physical effort and require the participant to breathe 
harder than normal, such as heavy lifting or aerobics.

• Moderate-intensity activity: participants undertake a 
moderate physical effort and breathe harder than normal 
in this kind of activity (e.g. doubles tennis or lifting lighter 
weights). Walking is excluded from this category.

• Walking: this includes walks to or from work, transport, 
leisure walks, etc., that are >10 min.

These three categories are assessed by two items each: 
days per week and time spent each day. The seventh item 
asks participants about the amount of time they spend sit-
ting every day. Then, each activity is weighted by its energy 
requirements in METs (multiples of the resting metabolic 
rate), estimating that vigorous-intensity activities require eight 
METs, moderate-intensity activities require four and walk-
ing requires four. These requirements are multiplied by the 
total minutes spent for each activity, yielding a score in MET-
minutes for each kind of activity that serves as a quantitative 
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measure of physical activity. A qualitative measure of physical 
activity based on three categories is also provided:

• Inactive: no physical activity or activity <600 MET-
minutes per week.

• Minimally active: participants undertake either (i) 3 or 
more days of vigorous-intensity activity of at least 20 min 
per day; (ii) 5 or more days of moderate-intensity activ-
ity or walking during at least 30 min per day or (iii) 5 or 
more days with any combination of walking, moderate-
intensity and vigorous-intensity activities, given that at 
least 600 MET-minutes per week are reached.

• Active: participants register either (i) 3 days of vigorous-
intensity activity, reaching 1500 MET-minutes per week 
or (ii) 7 days of any combination of walking, moderate 
intensity and vigorous-intensity activities with a minimum 
of 3000 MET-minutes per week.

AI4FoodDB considers the answers to all seven items in 
numeric variables, including the MET values for each type 
of activity and their summation. The categorical classifica-
tion for each participant and the observations recorded by 
nutritionists during each visit are also stored.

In addition to manually collected data, during the 2-week 
digital data collection, the smartwatch automatically detected 
each physical activity performed by the participant, includ-
ing running, swimming, walking or cycling, among others. In 
this sense, HR data from participants during physical activ-
ity is also available in Dataset 6. We next provide the features 
collected by the FitBit smartwatch.

• Physical activity reports: this provides detailed reports of 
any physical activity. Calories, distance, duration, speed 
and additional specific information are included for each 
activity. For instance, swimming activity contains extra 
information about swim lengths, strokes or even lap 
duration in seconds.

• Active minutes: this parameter indicates the duration of 
physical activity based on four different activity levels: 
from sedentary and light activity to moderate and very 
active exercise. Furthermore, the device monitors and ana-
lyzes exercise intensity by identifying three active zones: 
fat burn zones related to moderate activity, peak zones 
related to hard activity and cardio burn zones related to 
vigorous activity. Each active zones is counted in minutes.

• Estimated oxygen consumption (VO2): measured in 
ml/kg, it represents an estimated maximum volume of 
oxygen that an individual can utilize during physical activ-
ity. The maximal oxygen consumption (VO2 max) values 
significantly vary for each individual due to several fac-
tors including age, gender, training and heredity, among 
others. In addition, filtered estimated maximum VO2 and 
computed errors are also stored.

• Additional physical activity data: other activity-related 
features such as calories burned per day, altitude, 
daily steps taken and distance covered per day (cal-
culated from steps and strides) on a minute-by-minute
basis.

Dataset 8: sleep activity
Manual assessment of sleep habits was performed via the 
Oviedo Sleep Questionnaire (OSQ) (47) in two occasions: 

at the beginning and the end of the traditional-based inter-
vention. The OSQ is a semi-structured interview that aids 
the diagnosis of insomnia and hypersomnia during the pre-
vious month based on the DSM-IV and ED-10 criteria, which 
has been validated in patients with depressive disorders. This 
questionnaire consists of 15 items, 13 of which are grouped 
into three different subscales:

• Subjective satisfaction with sleep: a single item, scored 
from 1 (very unsatisfied) to 7 (very satisfied).

• Insomnia: this scale is composed of nine items that con-
template difficulty with falling or remaining asleep, early 
awakenings or restorative sleep, among others.

• Hypersomnia: this scale contains three items that assess 
daytime sleepiness and its effects on daily tasks.

The two remaining items provide information about para-
somnias and the use of sleep aids (e.g. medication and CPAP 
machine). Each item is scored on a 1–5 scale, except for the 
item related to subjective satisfaction with sleep. These items 
are stored as numeric variables, while the answers related 
to parasomnias and the use of help for sleeping, as well as 
clinical observations, are stored as text variables. Medical 
records for participants who use pharmacological drugs to 
help them sleep were reviewed and updated to also include 
this information.

Participants were instructed to wear the smartwatch dur-
ing all sleep activities, primarily at night, for the digital data 
collection. The smartwatch automatically detects and records 
the different sleep stages whenever a participant starts to sleep, 
regardless of the time of the day. Similarly to Dataset 7 (physi-
cal activity), HR data from participants during sleep activity is 
also available in Dataset 6. The sleep-related features captured 
by the device are grouped into the following:

• Sleep quality: this feature is assessed using several scores 
computed each nightly sleep. The overall sleep score is 
calculated based on (i) the duration score, which moni-
tors the total sleep time, (ii) the revitalization score, which 
measures how refreshed is the participant after waking up 
and is calculated from breathing disturbances and sleep-
ing HR and (iii) the composition score, which considers 
the different nightly sleep stages. Other sleep parameters, 
including resting HR, duration of deep sleep stage and 
restlessness, which indicate the frequency of participant 
tossing and turning during the night, are also recorded.

• HR variability (HRV): this feature measures variations 
in the time range between heartbeats during the night’s 
sleep, and it is defined by five parameters. The parameter 
root mean square of the successive difference reflects vagal 
activity with normal sinus rhythm and is recorded every 
5 min and globally for each nightly sleep. Additionally, 
coverage, low-frequency and high-frequency features are 
also recorded every 5 min. On the other hand, NREMHR 
(non–rapid eye movement HR), which measures the HR 
during light and deep sleep stages, and the entropy feature 
are captured nightly.

• Respiratory rate: measured in breaths per minute, the res-
piratory rate indicates the average breath count for each 
night’s sleep considering different sleep stages, includ-
ing full sleep, deep sleep, light sleep and non -rapid eye 
movement (REM) sleep, along with their corresponding 
standard deviation (SD) and signal-to-noise ratio.
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• Oxygen saturation (SpO2): this measures the average, 
lower bound and upper bound of SpO2 values for each 
night.

• Skin temperature: this measures the skin temperature in 
∘
C taking samples every minute. It also records the wrist 

temperature throughout the day and additional relative 
sample features (e.g. baseline relative sample sum or sum 
of squares, among others).

• Additional sleep data: detailed reports of night sleep activ-
ities are also generated for each participant, including 
information about the start and end time of sleep, the 
duration of different sleep stages and time spent in bed, 
among other parameters.

Dataset 9: emotional state
During the 2-week manual data collection, we also mea-
sured the psychological state of the participants using the 
short version of the Depression, Anxiety and Stress Scale 
(DASS-21) (48). As with the other validated questionnaires, 
the DASS-21 survey was completed twice by each participant. 
This self-reported questionnaire evaluates the emotional states 
of depression, anxiety and stress during the past week via 
three scales with 7 Likert items:

• Depression: this subscale assesses feelings such as hope-
lessness, lack of involvement or self-deprecation.

• Anxiety: these items evaluate subjective feelings and phys-
ical sensations such as a dry mouth, difficulty breathing or 
trembling.

• Stress: this scale rates feelings of agitation, irritability or 
impatience, as well as nervous arousal.

All items are rated on a scale from 0, if they did not apply 
to the participant at all, to 3, if it applied to them very much 
or most of the time. A score for each scale is calculated by 
summing all the related items and these scores are later added 
to obtain a general score.

On the other hand, during the 2-week digital data col-
lection, the emotional state was measured using the FitBit 
measurements of stress levels produced by the daily routine. 
The smartwatch considers some lifestyle factors such as sleep, 
exercise and mental well-being.

• Stress score: it comprises a daily stress management score 
derived from 10 factors grouped into three categories: 
sleep patterns, responsiveness that are related to heart-rate 
data and EDA activity, and exertion balance computed 
from physical activity. The final score ranges from 1 to 
100, meaning a higher score fewer physical signs of stress.

• EDA sessions: the device records HR- and EDA-related 
features such as the skin conductance levels (SCLs) for 
each test. In this case, differences in the SCL indicate 
trends in the body’s response to stress and are directly 
associated with the sympathetic nervous system.

Dataset 10: additional information
Cognitive impairment was measured once (V2) using the 
Spanish version of the Mini-Mental State Examination 
(MMSE) by Folstein et al.  (49, 50), which includes a series 
of five items with a maximum punctuation of 35 points. 
Scores <3 are indicative of cognitive impairment. A total of 
98 participants underwent the examination.

Participants also completed a survey regarding COVID-
19 severity and persistence. Vaccination state, as well as the 
severity and duration of COVID-19 symptoms for those par-
ticipants that had suffered from the disease, was recorded. 
The information about vaccination status and the timing 
of participants’ COVID-19 diagnoses is encoded in 15 vari-
ables. Additionally, participants reported information about 
the symptoms they suffered. Thus, 23 different symptoms are 
included in the dataset, with five additional variables to fur-
ther characterize them. A total of 99 participants completed 
the survey. This information was collected at a single visit for 
each participant.

A System Usability Scale (SUS) consisting of 10 different 
items was handed out to the participants at the end of the 
intervention in order to evaluate adherence to digital data col-
lection devices. This survey was answered by 96 participants 
at a single time point, corresponding to the last visit of the 
digital-based intervention.

Problems encountered during the acquisition
A list of challenges has been gathered during the AI4FoodDB 
acquisition, including those related to manual and digital 
data, and the utilization of user-friendly technologies.

• Data collection based on printed questionnaires implies 
the manual entry of the collected data to a computer. This 
process is time-consuming and mistakes can be made, thus 
requiring a subsequent step of data curation. Here, all the 
questionnaires have been reviewed and curated to solve 
inconsistencies, identify missing data points and convert 
all the information into a structured data format when 
necessary.

• Besides the mentioned limitations related to manual data 
entry into a database, both manual and digital-based data 
collection approaches can be biased. Dietary assessment 
based on food diaries is highly dependent on the subject’s 
perception of portions, as well as when uploading food 
images to the web platform.

• Given the complexity of collecting continuous signals 
from multiple devices and relying on participants to syn-
chronize their data, minor information was missed or not 
properly stored. Specifically, regarding the smartwatch, 
some tests related to Datasets 6, 8 and 9 were not reg-
istered in those participants who took off the smartwatch 
while sleeping or did not perform them correctly (~15% 
of the total data). For the glucose device, ~10% of the 
total data were lost due to a lack of synchronization (from 
>29 000 h of data). In addition, some meals were not 
uploaded by the participants to the food logging web plat-
form (~23% of the total meals). As can be seen from the 
figures, this minor lack of information does not affect the 
correct development of the research project and it is in line 
with real-life acquisitions.

• There is no standardization of the format of files from 
digital devices. Therefore, the preprocessing of these files 
requires a complex and time-consuming task.

• Recent digital technologies do not seem to be user-friendly 
for elderly people yet. Some of the main challenges 
encountered by a few participants, particularly the elderly, 
include NFC technology, synchronization between wear-
able devices and smartphones and even the use of web 
platforms to upload images.
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• Around 7% of the glucose devices stopped working after 
a few days, requiring the devices to be replaced.

Case study: participant follow-up
AI4FoodDB can be used to retrieve information regarding 
different lifestyle, health and nutritional variables from each 
participant. To provide an example, Figure 3.1 and 3.2 sum-
marize the data collected for a single participant, comparing 
the follow-up that was carried out with digital and traditional 
methods for each of the datasets. We also compare how dif-
ferent variables were assessed during different parts of the 
intervention, providing an example of how these data can be 
integrated to monitor lifestyle habits. 

The selected participant is a 61-year-old male that started 
the intervention with a BMI of 30.5 kg/m2, finishing with 
a BMI of 29.0 kg/m2 and a body weight reduction of 4.3 
kg (4.96% of his body weight), as depicted in Figure 3.1A. 
This information is included in Dataset 1. For a general idea 
of the participants’ lifestyle and health state, we can access 
the lifestyle survey (included in Dataset 2), which reveals that 
this participant does not smoke and has a moderate alcohol 
intake of up to five fermented beverages a week. Other ques-
tionnaires can also provide relevant information: for instance, 
the MMSE revealed no signs of cognitive impairment. More-
over, according to the SUS survey, he did not encounter any 
major issues when using digital tools. Both questionnaires 
are included in Dataset 10. This participant was randomized 
into Group 1, meaning that he was assessed via traditional 
methods during the first 2 weeks (V1 and V2) and via digital 
methods during the following 2 weeks (V2 and V3).

Figure 3.1B shows how vital signs (Dataset 6) were assessed 
during the 2-week digital and manual interventions. A static 
measurement can be retrieved by accessing the blood pressure 
and HR measured by nutritionists during the different visits 
(V0, V2 and V3). Additionally, the digital intervention allows 
for the continuous measurement of HRs and the analysis of 
how they relate to various activities (refer to Figure 3.2H). 
Higher HRs are directly associated with physical activities or 
movements, certain moments during the meal or after waking 
up. In contrast, lower HRs are observed during sleep or rest 
periods, or even after eating, among other activities. Over-
all, the participant exhibited lower HRs during mornings and 
nights, with an average HR of 58 bpm from 0 to 8 h and a 
slightly higher average HR of 65 bpm from 16 to 24 h. In 
contrast, the participant’s average HR during the day (from 8 
to 16 h) was 79 bpm. An ECG is displayed in the figure for 
completeness.

In addition to vital signs, several biomarkers (Dataset 4) 
were measured via biological sample collection at the begin-
ning and the end of the intervention (V1 and V3). Moreover, 
glucose levels were continuously monitored during the digital 
intervention (V2 and V3). Thus, we have static measure-
ments of fasting blood glucose, insulin levels and glycated 
hemoglobin levels for visits V1 and V3, which are accompa-
nied by continuous monitoring of blood glucose levels from 
V2 to V3 as depicted in Figure 3.1C. A blood glucose level 
summary over the 2-week digital intervention is also included: 
glucose levels averaged a value of 104 mg/dl, a 5.8% of the 
hemoglobin A1c (HbA1c) level and a 15.9% glucose vari-
ability. As an example, the Ambulatory Glucose Profile of a 

24-h interval is also provided. Moreover, Figure 3.2H shows 
this profile in combination with other information such as 
dietary intake (Dataset 3), sleep (Dataset 8) and physical activ-
ity (Dataset 7). High glucose peaks are directly related to 
when the participant ate the different meals. High glycemic 
index foods such as rice, bread, breakfast cereals or sugary 
foods mean a higher blood glucose level reflected in the par-
ticipant, while low-medium glycemic index foods (e.g. fruits, 
vegetables or fish) produce a lower glucose peak. Finally, GM 
composition is also proposed to be relevant in NCDs such as 
obesity. Here, the relative abundances of the different micro-
bial species identified can be retrieved (Dataset 5). Figure 3.1D 
shows a summary of the top phyla that were found at 
the beginning and the end of the nutritional intervention
(V1 and V3).

Dietary habits were documented through photographs and 
food diaries (Dataset 3). Figure 3.1E provides a summary of 
the macronutrients and food-type data via food diaries. The 
number of portions of grains, vegetables, fruits, dairy prod-
ucts and meat is provided on the left. On the right, the amount 
of macronutrients consumed is represented as the percentage 
over the total energy value. Conversely, Figure 3.2H shows a 
2-day eating pattern captured through food images uploaded 
by the participant to the web platform. We include the precise 
moment when the images were taken to compare them with 
blood glucose levels and the HR signal data. Both approaches 
agree on a high intake of vegetables, fruits and grains, which 
are present in every meal. The traditional approach allowed 
for nutrient intake calculations, while the digital approach 
yielded valuable visual data.

In this study, we demonstrate how AI4FoodDB can be 
used to retrieve general lifestyle information as well as data 
related to different biomarkers. Regarding lifestyle informa-
tion, we can track sleep habits (Dataset 8), physical activity 
(Dataset 7) and dietary intake (Dataset 3). Figure 3.2F shows 
the differences in sleep habits information for the participant 
in question. These data sources report different types of infor-
mation. While we can compare basic parameters such as hours 
of sleep or awakeness, more research is required to analyze 
how the different OSQ scores might relate to the sleep stages 
detected by the smartwatch. During the manual intervention, 
the participant reported spending 8 h of sleep, out of which 
seven were spent sleeping. The OSQ also provides different 
scales to assess sleep quality, as shown in the figure. During 
the digital intervention, the participant slept an average of 6 h 
and 51 min, from which 4 h and 21 min was in the light sleep 
stage, 42 min in the deep sleep stage, 56 min in the REM 
stage and ~51 min awake (sometimes unnoticed by the par-
ticipant). In addition, the average bedtime was ~00:21 a.m. 
and the average wake-up time was ~07:12 a.m. Notably, both 
blood glucose levels and HR signal were typically low during 
sleep, as shown in Figure 3.2H.

Lastly, the information related to physical activity retrieved 
from the traditional collection is the minutes spent car-
rying out physical activities of different intensities (i.e. 
walking, moderate-intensity and vigorous-intensity activ-
ities), along with an estimate of their energy require-
ments (Figure 3.2G). Digital data also provide information 
on the specific activity performed: the participant went for 
a walk ~207 min per week, rode a bicycle ~116 min per 
week and swam ~44 min per week. Moreover, the overall 
VO2 calculated from all activities was 40.97. Figure 3.2H 
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Figure 3.1 Graphical analysis of participant data (a 61-year-old male) collected from AI4FoodDB during the clinical intervention. (A) Participant summary, 
which includes anthropometric measurements from the three visits and additional information (extracted from Datasets 1, 2 and 10). (B) Vital signs 
associated with manual and digital measurements (Dataset 6). (C) Blood sugar levels, which include manual and digital measurements (Dataset 4). (D) 
Gut microbiota: relative abundances of the five most abundant phyla at V1 and V3 (Dataset 5). (E) Diet (Dataset 3).
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Figure 3.2 Continuing from Figure 3.1. (F) Sleep habits from both subjective (OSQ) and objective (wearable devices) perspectives (extracted from 
Dataset 8). (G) Physical activity from both subjective (IPAQ) and objective (wearable devices) perspectives (Dataset 7). (H) Daily habits, which comprise a 
2-day report that includes blood glucose levels, HR, night sleep activity, physical activity and images of the different foods consumed during these 2 
days (Datasets 3, 4, 6, 7 and 8).
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shows four physical activities performed by the partici-
pant during the 2-day habit report, including two walks, 
one bicycle road and one swim. Data from both man-
ual and digital interventions reveal that this participant is
highly active.

This case study shows the potential of digital data col-
lection methods in e-Health, as they enable continuous and 
in-depth monitoring of lifestyle habits compared to manual 
data collection approaches. The reduction of body weight 
and waist/hip ratio after the intervention is accompanied by 
lifestyle changes such as lower meat consumption, reduced 
glycated hemoglobin levels and maintaining an active lifestyle 
with high levels of physical activity.

Conclusions
Diet-related chronic diseases represent today many challenges 
in the nutrition and health-care system. Personalized dietary 
recommendations result beneficial for both clinicians and 
patients, but existing tools are still far from optimal. Emerg-
ing technologies such as e-Health and wearable devices offer 
a promising and cost-effective means of characterizing each 
patient. However, the implementation of such approaches 
in clinical practice requires appropriate techniques for data 
processing and interpretation. To this end, we have moni-
tored 100 obese and overweight participants with different 
methods, collecting diverse data that we have gathered into 
AI4FoodDB.

The use of e-Health strategies in nutritional and clinical 
interventions has been evaluated elsewhere, showing positive 
effects in NCDs such as T2D, obesity or metabolic syndrome 
(51–54). However, the need to compare these approaches to 
those currently used in health systems has been pointed out 
(52), and it seems that the use of digital technologies in inter-
ventional studies might be effective when combined with in-
person consultations, rather than as a substitute (51). Lastly, 
none of these reviews contemplates the use of pictures for 
dietary tracking together with mobile-based resources. There-
fore, we are confident that AI4FoodDB is a unique resource 
in this field, as (i) a crossover design was followed, allow-
ing to compare the use of traditional and digital methods, (ii) 
participants attended nutritionist consultations every 2 weeks, 
warranting close follow-up by health-care providers and (iii) 
very diverse data collection techniques are used, resulting in a 
thorough and integrative characterization of each participant.

AI4FoodDB is completely aligned with the efforts car-
ried out by the food and nutrition community to create 
resources and infrastructures that support the development 
of the personalized nutrition, like those from the ELIXIR 
F&N Community (5). The European Open Science Cloud 
(https://eosc-portal.eu/) and the Food Nutrition and Security 
Cloud (FNS-Cloud, https://www.fns-cloud.eu/) have stated 
the fragmentation of the datasets, the poor metadata anno-
tation and the lack of FAIRness of the data resources in the 
nutrition field. Moreover, improved and new databases are 
required to overcome the different challenges for the deploy-
ment of personalized nutrition, as described by the American 
Nutrition Association (55) or the ELIXIR F&N Commu-
nity (5). AI4FoodDB is an open and FAIR database with 
very complete and rich information from different sources, 
like clinical assessments, biomarkers, omics data or biosen-
sors derived from advanced technologies. We believe that the 

information provided in AI4FoodDB will be very valuable for 
the development of the personalized nutrition field, support-
ing the activities of the ELIXIR F&N Community (5) or those 
to create nutrition infrastructures, like PI HDHL INTIMIC 
knowledge platform (https://www.healthydietforhealthylife.
eu/), FNS-Cloud or the ESFRI research infrastructure: Food, 
Nutrition and Health RI (https://fnhri.eu/).

Our goals include the generation of AI techniques to ana-
lyze this large collection of data, providing the research 
community with algorithms that allow them to analyze mul-
timodal datasets. Moreover, the large amount of information 
provided by AI4FoodDB will open new research lines in the 
near future, enhancing our comprehension of individuals’ 
demands and enabling us to combat the most prevalent dis-
eases in contemporary society. The holistic human body map 
obtained here will merge different areas comprising health 
informatics, nutrition, biology or AI, among others.

Data availability
AI4FoodDB is available at https://github.com/AI4Food/
AI4FoodDB.
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