
UNIVERSIDAD AUTÓNOMA DE MADRID

Cardinality Constraints and
Dimensionality Reduction in

Optimization Problems

by

Rubén Ruiz-Torrubiano

A thesis submitted in partial fulfillment for the
degree of Doctor of Philosophy

in the
Escuela Politécnica Superior

Computer Science Department

under the supervision of Alberto Suárez González

June 2012

http://www.uam.es
http://www.eps.uam.es
http://www.eps.uam.es

Tribunal nombrado por el Mgfco. y Excmo. Sr. Rector de la Universidad Autónoma
de Madrid, el d́ıa de . de 2012.

Presidente: D. ..

Vocal: D. .

Vocal: D. .

Vocal: D. .

Secretario: D. ..

Realizado el acto de defensa y lectura de la Tesis el d́ıa de de
2012 en .

Calificación: ..

EL PRESIDENTE EL SECRETARIO

LOS VOCALES

“Science is facts; just as houses are made of stone, so is science made of facts; but
a pile of stones is not a house, and a collection of facts is not necessarily science”

Jules Henri Poincaré (1854-1912), French mathematician.

Abstract

The design of efficient methods to obtain sparse solutions in optimization problems
has become a research area of great interest for a variety of reasons. In some applications
sparse solutions are preferred because they are easier to manage and interpret. They
also require less memory for storage. Sparse prediction systems have faster response
times, which is a desirable feature in online applications. These benefits are especially
significant in high-dimensional problems. Another reason is that sparse solutions are
generally more robust and stable than solutions that involve all the original variables.
In particular, they are less sensitive to variations in the inputs of the optimization.
Examples of problems in which sparse solutions are important include optimal portfolio
selection and index tracking in quantitative finance, the identification of sparse principal
components in statistics and ensemble pruning in machine learning.

A direct procedure to generate sparse solutions is to impose cardinality constraints.
The inclusion of these types of constraints generally results in a mixed integer opti-
mization problem. Therefore, the specialized algorithms that are used to solve the un-
constrained problem need to be adapted in order to handle the cardinality constraints
imposed. In this thesis a hybrid framework is developed that combines metaheuris-
tics and these specialized algorithms to address cardinality constrained optimization
problems. Metaheuristics such as genetic algorithms, simulated annealing or estimation
of distribution algorithms are used to address the combinatorial aspect of the prob-
lem. These metaheuristics iteratively generate candidate solutions that specify only the
subset of non-zero variables. The candidate solutions are then evaluated by solving
a secondary optimization problem, which is analogous to the original problem but is
defined in the restricted subspace proposed by the metaheuristic. This subordinate op-
timization problem does not have a cardinality constraint and can therefore be efficiently
solved by specialized algorithms. To reduce the computational cost of the optimization
we also consider the application in a preprocessing step of heuristics that reduce the
dimensionality of the problem while preserving the quality of the solutions.

Cardinality constraints are difficult to handle in metaheuristics with standard encod-
ings of the candidate solutions. For instance, genetic algorithms with a binary encoding
cannot handle these constraints in a proper manner. The reason is that standard mu-
tation and crossover operators do not preserve these types of constraints. Therefore,
one needs to include repair mechanisms or penalty terms in the evaluation of the can-
didate solutions. However, these ad-hoc strategies may introduce undesirable biases in
the search and render it inefficient. In this thesis we propose a set encoding used in
conjunction with especially designed mutation and recombination operators that are
well adapted to handle cardinality constraints. Including specific domain knowledge in
this manner is shown to be an efficient and effective method for addressing cardinality
constrained optimization problems in a wide range of application domains.

In the second part of this thesis we apply the specialized hybrid metaheuristic ap-
proaches developed to several problems of practical interest: the identification of sparse
principal components, the tracking of financial indices and the selection of optimal in-
vestment portfolios. In general, the best overall performance is obtained by genetic
algorithms with a set encoding and appropriately designed mutation and crossover op-
erators, particularly when they are used in combination with simple dimensionality
reduction heuristics. The sparse solutions obtained by means of this approach are found
to be stable, robust and in the pertinent cases, have better out-of-sample performance.

An application of hybrid approaches to the construction of consensus trees in phy-
logenetics concludes this thesis. This problem is an integer linear problem for which
exact approaches such as branch-and-cut are not feasible. As a practicable alternative,
pruning heuristics and metaheuristic hybridization are combined to obtain high-quality
consensus trees.

v

Resumen

El diseño de métodos para obtener soluciones dispersas en problemas de optimización
se ha convertido en un área de investigación de interés por varias razones. En algunas
aplicaciones se prefieren soluciones que sean dispersas ya que son más fáciles de mantener
y de interpretar. Adicionalmente se requiere menos memoria para su almacenamiento.
Los sistemas de predicción dispersos presentan tiempos de respuesta más rápidos, lo cual
es una ventaja para aplicaciones en ĺınea. Estos beneficios son de especial importancia
en problemas de alta dimensionalidad. Por otro lado, las soluciones dispersas son más
robustas y estables que las soluciones que incluyen todas las variables originales. En
concreto, son menos sensibles a pequeñas variaciones en los parámetros de entrada de la
optimización. Algunos ejemplos de problemas en los que soluciones dispersas son impor-
tantes son la selección de carteras de inversión y la replicación de ı́ndices en finanzas, la
identificación de componentes principales dispersas en estad́ıstica y la poda de conjuntos
en aprendizaje automático.

Un procedimiento directo para obtener soluciones dispersas es imponer restricciones
de cardinalidad. La inclusión de este tipo de restricciones convierte en general el prob-
lema de optimización en un problema mixto entero. Por lo tanto, los algoritmos es-
pecializados que son utilizados para resolver el problema sin restricciones necesitan ser
adaptados para tener en cuenta las restricciones de cardinalidad. En esta tesis se de-
sarrolla un marco h́ıbrido que combina metaheuŕısticas y algoritmos especializados para
resolver problemas con restricciones de cardinalidad. Las metaheuŕısticas (algoritmos
genéticos, temple simulado y algoritmos de estimación de distribuciones) son utilizadas
para abordar el aspecto combinatorio del problema. Estos algoritmos generan candidatos
a solución de forma iterativa especificando únicamente el subconjunto de variables que
tiene un valor no nulo. Los candidatos a solución son evaluados resolviendo un problema
de optimización secundario que es análogo al problema original pero que está definido
en el subespacio restringido propuesto por la metaheuŕıstica. Este problema de opti-
mización subordinado no tiene restricciones de cardinalidad y puede ser resuelto eficien-
temente por algoritmos especializados. Con el fin de reducir el coste computacional de
la optimización consideramos también la aplicación en un paso de procesamiento previo
de heuŕısticas que reducen la dimensionalidad del problema manteniendo la calidad de
las soluciones obtenidas.

Las restricciones de cardinalidad son dif́ıciles de tratar para metaheuŕısticas con cod-
ificaciones estándar para los candidatos a solución. Por ejemplo, los algoritmos genéticos
con codificación binaria no pueden manejar estas restricciones de manera apropiada. La
razón es que, en general, los operadores más comunes para llevar a cabo los procesos de
mutación y cruzamiento no mantienen este tipo de restricciones. Por ello, es necesario
incluir mecanismos de reparación o términos de penalización en la evaluación de las solu-
ciones candidatas. Sin embargo, estas estrategias ad hoc pueden introducir sesgos en
la búsqueda, haciéndola más ineficiente. En esta tesis proponemos una codificación de
conjuntos, aśı como operadores de mutación y recombinación que están especialmente
diseñados para manejar restricciones de cardinalidad. Se muestra asimismo como la
inclusión de este tipo de conocimiento espećıfico del problema es un método eficaz para
resolver problemas con restricciones de cardinalidad en una gran variedad de dominios
de aplicación.

En la segunda parte de esta tesis aplicamos los métodos metaheuŕısticos h́ıbridos
diseñados a problemas de interés práctico: la identificación de componentes principales
dispersas, la replicación de ı́ndices financieros y la selección de carteras de inversión.
En general, los mejores resultados se obtienen mediante algoritmos genéticos con codifi-
cación de conjuntos y operadores de mutación y cruzamiento diseñados apropiadamente,
especialmente si son utilizados en combinación con heuŕısticas simples para la reducción
de dimensionalidad. Las soluciones dispersas obtenidas con este método son estables y
robustas y, en los casos en los que es pertinente, presentan un mejor rendimiento fuera
de muestra.

Esta tesis concluye con la aplicación de técnicas h́ıbridas al problema de construcción
de árboles filogenéticos de consenso. Se trata de un problema entero lineal, para el cual
técnicas exactas como branch-and-cut no son aplicables en la práctica. Como alternativa
viable, se usan heuŕısticas de poda e hibridación de metaheuŕısticas en combinación para
obtener árboles de consenso de gran calidad.

vi

Acknowledgements

The elaboration of this thesis has enriched me both personally and professionally
during all the years since the beginning of my graduate studies. Therefore, I would like
to thank in this place all the people that have made this experience possible. In the first
place, I am grateful to my advisor Alberto Suárez, who guided me through this difficult
journey and provided me with instructive discussions and advice. I could learn from
him besides many interesting things about optimization algorithms, that science is not
only a field of study, but a way of understanding life.

I would also like to thank Günther R. Raidl and the Algorithms and Data Struc-
tures Group of the Technical University of Vienna, Austria, for the 6 months I spent
there. During these months, I could learn new ways of doing research and know other
perspectives and problems on combinatorial optimization. Particularly, I became inter-
ested in general metaheuristic hybridization schemes and mathematical programming
techniques. I would like to thank especially Sandro Pirkwieser for the interesting and
valuable discussions we had when working on the consensus tree problem.

I am also very grateful to my parents, who supported me all these years, and my
brother, from whom I learned many useful things. My friends in Madrid also played a
very important role. Thank you too! Thanks also to my parents-in-law, who helped me
feeling at home in a new country, which now is part of my life. And last, but not least,
I would like to thank my wife. Without her support and her many useful comments
and suggestions, I would not have been ever able to complete this thesis. Thank you for
making me understand what life is really about!

vii

CONTENTS

Abstract v

Resumen vi

Acknowledgements vii

Abbreviations xiii

1 Introduction 1

1.1 Hybrid Algorithms for Cardinality Constrained Problems 5

1.2 Dimensionality Reduction . 7

1.3 Applications . 8

1.4 Contributions . 9

1.5 Publications . 10

1.5.1 Direct Work . 10

1.5.2 Related Work . 11

1.5.3 Submitted Work . 11

1.6 Summary by Chapter . 11

I Optimization Algorithms 15

2 Metaheuristics and Cardinality Constrained Problems 17

2.1 Introduction . 17

2.2 Metaheuristic Hybridization for Cardinality Constrained Problems 20

2.2.1 Metaheuristic Hybridization . 20

2.2.2 Hybrid Approach for Cardinality Constraints 22

2.3 Metaheuristics for optimal subset selection 25

2.3.1 Simulated annealing . 25

2.3.2 Genetic Algorithms . 27

2.3.3 Estimation of Distribution Algorithms 30

2.4 Dimensionality Reduction for Cardinality Constrained Optimization Prob-
lems . 33

ix

Contents x

2.4.1 Block pruning . 33

2.4.2 Greedy backward selection . 33

2.4.3 Greedy forward selection . 34

2.5 Summary and Discussion . 35

3 Design of Genetic Representations and Operators 37

3.1 Introduction . 37

3.2 Forma Theory . 39

3.3 Crossover operators . 42

3.3.1 Random Respectful Recombination (RRR) 44

3.3.2 Random Equivalence Recombination (RER) 44

3.3.3 Random Assortment Recombination (RAR) 44

3.3.4 Transmitting RAR (TransRAR) 45

3.4 Operators for cardinality constrained sets 46

3.4.1 Complexity analysis . 50

3.5 Summary and Discussion . 51

II Applications 53

4 The Knapsack Problem 57

4.1 Introduction . 57

4.2 Optimization model . 58

4.3 Hybrid approaches . 59

4.4 Results . 60

4.5 Summary and Conclusions . 62

5 Sparse Principal Component Analysis 65

5.1 Introduction . 65

5.2 Optimization Model . 67

5.3 Hybrid approach . 69

5.4 Results . 70

5.5 Summary and Conclusions . 74

6 Index Tracking by Partial Replication 75

6.1 Introduction . 75

6.2 Index Tracking with Cardinality Constraints 77

6.3 Hybrid approaches . 79

6.3.1 Genetic algorithms . 79

6.3.2 Simulated Annealing . 80

6.3.3 Estimation of Distribution Algorithms 80

6.3.4 Block pruning . 80

6.4 Empirical evaluation . 80

6.5 Summary and Discussion . 84

7 Optimal Portfolio Selection 87

7.1 Introduction . 88

Contents xi

7.2 Previous Work . 90

7.3 Portfolio Selection with Cardinality Constraints 92

7.3.1 The Markowitz Mean-variance Model 92

7.3.2 Constraints in Portfolio Selection Problems 94

7.3.3 Hybrid approaches to optimal portfolio selection 95

7.3.3.1 Genetic algorithms . 96

7.3.3.2 Simulated Annealing . 96

7.3.3.3 Estimation of Distribution Algorithms 96

7.3.4 Empirical evaluation . 96

7.3.5 Discussion . 106

7.4 Portfolio Selection with Transaction costs 106

7.4.1 Lasso penalties . 110

7.4.2 Hybrid Approach to Portfolio Selection under Transaction Costs . 111

7.4.3 Empirical evaluation . 115

7.4.3.1 In-sample evaluation . 116

7.4.3.2 Out-of-sample evaluation 122

7.4.3.3 Discussion . 130

7.5 Summary and Discussion . 131

8 The Consensus Tree Problem 133

8.1 Introduction . 133

8.2 Optimization model . 136

8.2.1 The UpDown Matrix Model . 137

8.2.2 The Triplet Model . 139

8.3 Solution methods . 139

8.3.1 Preprocessing step . 139

8.3.2 Using lazy constraints . 140

8.3.3 Reduction of dimensionality . 140

8.3.4 Refinement of incumbents . 140

8.3.4.1 SWAP . 141

8.3.4.2 STEP . 141

8.3.4.3 NNI or ROTATE . 141

8.3.4.4 SPR . 141

8.3.5 Generating new variables . 144

8.4 Results . 145

8.5 Summary and Conclusions . 149

9 Conclusions and Future Work 151

9.1 Future Work . 153

10 Conclusiones 155

A Appendix for Chapter 3 159

A.1 Proof of Lemma 3.11 . 159

Contents xii

B Appendix for Chapter 7 161

B.1 Tables for Greedy Backward and Forward Selection 161

C Appendix for Chapter 8 165

C.1 Proof of Theorem 8.1 . 165

Bibliography 167

ABBREVIATIONS

ARX AutoRegressive Exogenous
BCP Branch and Cut and Price
BnB Branch and Bound
BnC Branch and Cut
CCQP Cardinality Constrained Quadratic Program
CTP Consensus Tree Problem
EDA Estimation of Distribution Algorithm
EMNA Estimation of Multivariate Normal Algorithm
eRAR extended Random Assortment Recombination
GA Genetic Algorithm
ILP Integer Linear Program
IP Integer Program
LASSO Least Absolute Shrinkage and Selection Operator
LCA Least Common Ancestor
LP Linear Program
MA Memetic Algorithm
MCCP Master Cardinality Constrained Problem
MIP Mixed Integer Program
MIQP Mixed Integer Quadratic Program
MOEA Multi-Objective Evolutionary Algorithm
MSE Mean Squared Error
NFL No Free Lunch
NNI Nearest Neighbor Interchange
NP Non-deterministic Polynomial-time
PBIL Population Based Incremental Learning
PCA Principal Components Analysis
QP Quadratic Programming
RAR Random Assortment Recombination
RER Random Equivalence Recombination
RRR Random Respectful Recombination
SA Simulated Annealing
SCP Subordinate Continuous Problem
SDP SemiDefinite Programming
SPCA Sparse Principal Components Analysis

xiii

Abbreviations xiv

SPR Subtree Prune and Regraft
TA Threshold Accepting
TM Triplet Model
TR Tree Rank
TransRAR Transmitting Random Assortment Recombination
TS Tabu Search
UDMM UpDown Matrix Model
UMDA Univariate Marginal Distribution Algorithm
VND Variable Neighborhood Descent
VNS Variable Neighborhood Search
WT Weighted Triplet

To my family

xv

CHAPTER 1

INTRODUCTION

Optimization is the branch of mathematics concerned with finding the optimal points

and values of arbitrary functions f : D → I, where D is the domain of the function to

optimize and I its image. The problem can be stated in general form as follows

min
x∈D

f(x) (1.1)

subject to gj(x) ≤ 0 j = 1, . . . ,m

hk(x) = 0 k = 1, . . . , p.

In this case the function f is minimized. That is, we seek the optimal point x∗,

such that f(x∗) ≤ f(x) ∀x ∈ D. In minimization problems the function f represents

some kind of cost that must be minimized in the subregion of D implicitly defined by

constraints expressed by the functions gj and hk. If the function f represents some

measure of profit or utility, the goal is to maximize the function and we write maxx∈D
instead. Without loss of generality we will assume throughout this thesis that our

general optimization problem is of the form 1.1. A maximization problem can be solved

by writing f̂(x) = −f(x) and minimizing f̂ instead of f .

For particular forms of the objective function and the constraints, standard algo-

rithms exist that guarantee finding the optimal solution with a reasonable computational

effort. For instance, if both f and the gj ’s and hk’s are linear functions, the simplex

method (Dantzig (1998)) is an efficient procedure to find the optimal solution. More

generally, if the optimization problem is convex (that is, f is a convex function with a

convex domain D, the functions that appear in the inequality constraints are convex,

and the equality constraint functions are affine (Boyd and Vandenberghe (2004))) there

are efficient algorithms to perform the optimization that guarantee finding the global

optimum (e.g., interior point methods (Adler et al. (1989))). These algorithms can be

used to address many optimization problems of practical interest that arise in different

1

Chapter 1. Introduction 2

areas of application, such as network and circuit design (Hershenson et al. (2001)), lo-

gistics (Yu and Li (2000)), quantitative finance (Markowitz (1987)) and bioinformatics

(Han et al. (2007)). However, some optimization problems are not of these special types

and cannot be solved exactly in the general case. The inclusion of real-world constraints

may also preclude the use of standard techniques to obtain the exact solution. An

example is the introduction of decision variables with a discrete domain. These vari-

ables can be used to determine additional properties of the system being optimized or

to provide some specific information about the solution represented by the real-valued

variables. For instance, binary variables can be introduced to represent a subset of ob-

jects, which are then characterized by the values of the real variables. Such systems can

be described using mixed-integer real-valued functions. These are functions of the form

f : RN × BM → R, where B is some subset of the integers B ⊆ Z. Thus, the domain

of the function includes two types of variables: a first block of N real variables, and a

second block of M integer variables. The candidate solutions of such an optimization

problem can be expressed as a tuple (w, z), where w ∈ RN and z ∈ BM . If N = 0, the

optimization task is a pure integer problem.

An important kind of mixed-integer problems is the class of cardinality constrained

problems. These are problems in which the number of real-valued variables that are

different from zero is constrained to be lower than a given upper bound. Consider

the objective function f : RN → R. To introduce a cardinality constraint we replace

the original objective function f by an extended function f̂ : RN × {0, 1}N → R. In

the domain of this extended function, each of the binary variables zi encodes whether

variable wi has a value different from zero (zi = 1) or not (zi = 0). In terms of these

auxiliary variables the cardinality constraint is

N∑
i=1

zi ≤ K, (1.2)

where K < N is a specified upper bound. To ensure that the corresponding variables

are effectively 0, one can use inequality constraints of the form lizi ≤ wi ≤ uizi, where

li and ui are the lower and upper bounds on the value of wi, respectively. If zi is set to

zero, this constraint forces wi = 0. Otherwise, if zi = 1, the value of wi is constrained

to lie in the interval [li, ui].

One of the important properties of cardinality-constrained problems is that it is

possible to separately address the combinatorial optimization problem of determining

the values of the indicator variables {zi}Ni=1 that satisfy the cardinality constraint and

the optimization problem in RN of determining the value of the components of {wi}Ni=1

for which zi = 1. This separation property will be illustrated by means of a simple

example: Consider the minimization of the function

f(x, y) = 5
(x− 1

2

)2
−
(y
2

)2
(1.3)

Chapter 1. Introduction 3

Figure 1.1: Hyperbolic paraboloid as sample objective function.

X

−10

−5

0

5

10
Y

−10

−5

0

5

10

Z

0

50

100

150

in R2. Let the space of feasible solutions be

−10 ≤ x ≤ 10,

−10 ≤ y ≤ 10.

A plot of f in the feasible region is given in Figure 1.1. There are two minima:

(1,-10) and (1,10). Assume that a cardinality constraint is included so that only one of

the variables, either x or y, can be different from zero. This constraint can be enforced

by introducing two auxiliary binary variables z1, z2 ∈ {0, 1} and defining the extended

function

f̂(x, y, z1, z2) = 5
(x− 1

2

)2
−
(y
2

)2
. (1.4)

The space of feasible solutions is

−10z1 ≤ x ≤ 10z1

−10z2 ≤ y ≤ 10z2

z1 + z2 = 1.

Chapter 1. Introduction 4

This problem is a mixed-integer quadratic program (MIQP). It is possible to trans-

form the problem into a pure integer program

min
z1,z2

F (z1, z2) (1.5)

subject to z1 + z2 = 1 (1.6)

where F is defined as

F (z1, z2) =

minx 5
(
x−1
2

)2
−10 ≤ x ≤ 10, if z1 = 1, z2 = 0

miny
5
4 −

(
y
2

)2
−10 ≤ y ≤ 10, if z1 = 0, z2 = 1.

(1.7)

Figure 1.2 shows the objective functions for these two sub-problems. There are only

two feasible solutions to problem (1.5)-(1.6): (1,0) and (0,1). The first one results in

the one-dimensional optimization problem represented in Figure 1.2(a). The optimum

of this problem is reached at the value x = 1. The second solution results in the problem

depicted in Figure 1.2(b). The optimum of this sub-problem is achieved at y = −10 and

y = 10. The optimal value in the first case is 0, whereas in the second one we have -95/4.

We therefore choose the tuple (z1, z2) = (0, 1) as optimal solution of the integer problem.

As a result, the optimal solutions of the original cardinality constrained optimization

problem are (x, y) = (0,−10) and (x, y) = (0, 10).

In summary, instead of tackling this mixed-integer problem as a whole, it has been

divided into a combinatorial problem and continuous optimization subproblems. For

every candidate solution in the binary search space, a continuous subproblem is defined

in the reduced space determined by the binary variables. The continuous optimization

subproblem is of the same type as the original problem, except that it is defined in a

space of lower dimension and does not have any cardinality constraints. In this small

example, it was possible to generate all possible candidate solutions for the combina-

torial optimization problem and then solve the corresponding continuous optimization

subproblems. However, this direct method cannot be implemented in practice. The

combinatorial search space of the binary variables is too large for exhaustive search to

be a feasible strategy. For instance, for 100 variables and a strict cardinality constraint

of 30, the number of possible solutions in the binary space is approximately 3 · 1025. If

it were possible to solve each associated continuous subproblem in 1 millisecond, one

would need more than 1013 years to obtain the optimal solution. Therefore, we propose

to use an approximate method to search in this combinatorial optimization space. This

approximate method can then be combined with an exact or approximate continuous

optimization technique to obtain near optimal solutions efficiently and reliably.

Chapter 1. Introduction 5

−10 −5 0 5 10

0
50

10
0

15
0

X

Z

(a) Projection of the search space when y = 0

−10 −5 0 5 10

−
20

−
15

−
10

−
5

0

Y

Z

(b) Projection of the search space when x = 0

Figure 1.2: Projections of the search space for all possible solutions with cardinality
one.

1.1 Hybrid Algorithms for Cardinality Constrained Prob-

lems

In this thesis a general framework for the solution of optimization problems with cardi-

nality constraints is developed. To this end we define a master cardinality-constrained

problem (MCCP), in which the goal is to find the optimal values of the indicator variables

that satisfy the specified cardinality constraint. The objective function of the MCCP

is defined as the solution of the optimization problem in RN for the remaining parame-

ters. The MCCP is a combinatorial optimization problem that can be addressed using

metaheuristic approaches. However, standard formulations of these approaches are in

general ill-suited to handle cardinality constraints. For instance, in genetic algorithms

the use of a binary encoding with standard crossover and mutation operators frequently

Chapter 1. Introduction 6

results in individuals that violate the cardinality constraints. It is possible to reduce the

presence of these individuals in the population by penalizing their fitness. Alternatively

heuristic repair mechanisms can be used to derive feasible individuals from them. One

of the findings of this thesis is that such procedures tend to misguide the search process

and obtain poor results in practice. Moreover, black-box metaheuristic approaches, in

which specific domain knowledge is not incorporated in the algorithm, cannot perform

better than random search when averaged over all problem instances, as established by

the no-free-lunch theorems in optimization (Wolpert and Macready (1997)).

To design genetic algorithms that can handle cardinality constraints effectively, we re-

sort to forma theory (Radcliffe (1994)). This framework is a generalization of schema the-

ory (Holland (1975)) in which the building blocks used are formae instead of schemata.

A forma is defined as an equivalence class resulting from the definition of equivalence

relations that make the structure of the search space explicit. Individuals in the same

equivalence class should share some characteristic that is relevant for the solution of

the problem considered. The main idea is to incorporate specific problem knowledge

to define appropriate equivalence relations, which in turn yield a useful genetic repre-

sentation. The definition of an appropriate basis of equivalence relations for cardinality

constrained problems results in a set representation for genetic algorithms that will be

used throughout this thesis. The resulting set genetic algorithms are compared to other

metaheuristic approaches such as simulated annealing (Kirkpatrick et al. (1983)) and

estimation of distribution algorithms (Larrañaga and Lozano (2002)), which are also

adapted to address problems with cardinality constraints.

Additionally, genetic operators that are independent of the particular representation

used can be defined on the basis of properties such as assortment, transmission and

respect that are useful to guide the search: Assortment is the capability of an operator to

produce all possible meaningful combinations of the parents. Transmission requires that

the resulting children share all their characteristics with some parent. Respect ensures

that the relevant information that is present in the parents is inherited by the children.

Another contribution of this thesis is the design of a new representation-independent

crossover operator called transmitting random assortment recombination (TransRAR).

This operator combines the concepts of forma theory in a novel way. Specifically, it gives

more importance to the property of transmission, instead of to assortment or respect.

As for other crossover operators defined in the framework of forma theory, a general

design of TransRAR operators is given. This general design can then be instantiated in

the particular genetic representation used to encode the candidate solutions.

A second building block for the general framework proposed to address cardinal-

ity constrained problems is the solution of the subordinate optimization problem that

defines the objective function for the MCCP. This problem will be referred to as the sub-

ordinate continuous problem (SCP). In this thesis, we focus on applications in which this

subordinate problem is convex. A large number of convex optimization methods exist to

obtain global optimal solutions to the SCP. Among these methods we find the simplex

algorithm for linear programming (Dantzig (1998)), interior point methods (Adler et al.

(1989)) and quadratic programming (Gill et al. (1991)). In this thesis, we mostly use

quadratic programming for the SCP.

Chapter 1. Introduction 7

In summary, the approach developed in this thesis to solve optimization problems

with cardinality constraints consists in dividing the original problem into a discrete and

a continuous part. The discrete problem involves the search for the optimal subset of the

original variables that satisfies the cardinality constraint. A combinatorial optimization

metaheuristic is used to carry out this search. The objective function of this combi-

natorial optimization problem is the solution of the original problem in the variables

specified by each candidate subset. This subordinate problem is solved using standard

continuous optimization techniques. The optimal value is then used as a measure of the

quality of the candidate solutions generated by the optimization metaheuristic.

1.2 Dimensionality Reduction

Many optimization problems of practical interest involve searching in spaces of large

dimensionality. However, because of redundancies, the intrinsic dimensionality of the

search space is often much lower than the space in which the original problem is for-

mulated. In problems with cardinality constraints, the elimination of variables whose

value in the optimal solution is zero does not affect the quality of the solutions obtained.

Therefore, in these types of problems, one can use heuristics to identify variables that

are not likely to be included in the final solution and eliminate them from the problem

without a deterioration of the quality of the solution. If effective heuristics can be de-

signed, one can take advantage of these dimensionality reduction techniques to improve

the efficiency of the search.

The increase in the dimensionality of the problem affects optimization methods dif-

ferently. For instance, estimation of distribution algorithms seem to have greater dif-

ficulties with high-dimensional search spaces than genetic algorithms (Ruiz-Torrubiano

and Suarez (2010)). Therefore, for these methods, it is important to identify dimension-

ality reduction techniques that do not significantly deteriorate the quality of the final

solutions. In this thesis three pruning heuristics are proposed to address this issue. The

first one, block pruning, uses the optimal solution of a relaxed version of the problem

to decide which variables to eliminate. In this case, the variables whose absolute value

is lower than a given threshold are eliminated from the problem. A more sophisticated

method, greedy backward selection, proceeds by eliminating in each iteration the variable

that has the lowest absolute value in the solution of a relaxed version of the problem.

The algorithm stops after a given number of iterations. In contrast, the greedy forward

selection heuristic incorporates in each iteration the variable that reduces the optimal

objective value the most. This method also terminates after a number of iterations

determined by an user-specified parameter. The heuristics proposed are executed as a

preprocessing step before applying the combinatorial optimization metaheuristic.

Dimensionality reduction techniques are also investigated in the context of integer

programming for the Consensus Tree Problem (CTP). In this case, ad-hoc pruning

heuristics are proposed to reduce the amount of input variables while preserving the

quality of the solutions obtained by an exact branch-and-cut algorithm. It is shown that

by carefully designing the pruning heuristic, optimal solutions can be obtained as well.

Chapter 1. Introduction 8

Additionally, the possibility of adding new variables as they are needed is investigated

using a heuristic column generation scheme. Exact column generation has widely been

used in applications of linear programming techniques in high-dimensionality problems

(Lübbecke and Desrosiers (2005)). However, an exact column generation scheme for

the CTP is difficult to formulate and to solve. Therefore, a heuristic is proposed that

generates new variables dynamically. This heuristic is embedded in the branch-and-cut

solver and incorporates new variables as soon as they appear in rounded solutions of LP

relaxations of the problem.

1.3 Applications

The second part of this thesis reviews applications of the techniques described in the

previous section in problems of practical interest. In particular, the general hybrid

framework for optimization problems with cardinality constraints and dimensionality

reduction techniques are applied to the problems of finding sparse principal components

in statistics, index tracking and portfolio selection in quantitative finance.

The goal of sparse PCA is to find principal components with only a few non-zero load-

ings (Zou et al. (2006)). The task can be formulated as a quadratic program with a car-

dinality constraint. The cardinality constraint limits the number of non-zero coefficients

that can appear in each principal component. For this problem, we analyze the per-

formance of several metaheuristic approaches and quadratic programming and perform

a comparison with a recent method based on semidefinite programming (d’Aspremont

et al. (2007)). Results with real and synthetic data show that it is possible to identify

sparse principal components that explain more variance than state-of-the-art methods

in the problems analyzed.

The index tracking problem in quantitative finance consists in building an invest-

ment portfolio that tracks the behavior of a particular financial index used as reference

(Markowitz (1987)). It is possible to track a financial index using full replication (Beasley

et al. (2003)); i.e., building a portfolio that invests on the same assets and with equal

proportions as the reference index. However, the resulting portfolio is typically large

and difficult to manage. To avoid this problem, we wish to track the evolution of the

index as closely as possible but investing in only a subset of the assets included in the

index. To limit the number of products used to track the index, one can introduce a

cardinality constraint in the problem formulation. Various metaheuristics and dimen-

sionality reduction techniques are applied to obtain high-quality solutions in an efficient

manner.

In the problem of optimal portfolio selection (Markowitz (1952)), cardinality con-

straints appear as a result of established management practices (Chang et al. (2000)).

For instance, an investor may want to limit the number of assets in her or his portfolio

to make portfolio rebalancing easier and to minimize transaction costs. This raises the

question of how to apply the algorithms developed for the one-period portfolio selection

problem in a multi-period scenario. In multi-period portfolio optimization, a sequence

of investment decisions is considered. In this context it is important to take into account

Chapter 1. Introduction 9

the transaction costs incurred when the composition of the portfolio is modified. In this

thesis we compare various investment strategies. The comparison is made in terms of

both the in-sample and the out-of-sample preformance of the portfolios selected. As

observed in previous studies, portfolios whose composition is optimal in a particular pe-

riod need not have a good performance in subsequent periods (DeMiguel et al. (2009b);

DeMiguel and Nogales (2009)). Therefore, in-sample performance is often not a good

predictor of the out-of-sample performance. As shown by our results, both cardinality

constraints and transaction costs play an important role as regularization terms in the

optimization problem. This regularization allows the identification of portfolios that are

robust with respect to small variations in the input data (namely, the expected returns

of the individual assets and correlations among the asset returns) and generally have

good out-of-sample performance.

Finally, the thesis investigates the problem of how to summarize the information

provided by a collection of phylogenetic trees obtained by different methods in a single

consensus tree. The problem can be formulated as an integer linear optimization problem

using different quality metrics. The purpose of our study is to apply general integer

programming techniques and develop hybrid approaches based on these techniques to

solve this problem. As a result of our work, a number of improvements on the classical

branch-and-bound solution technique are presented. Among these improvements, the

design and application of heuristics to reduce the space of input variables and the use

of a heuristic column generation scheme are the most important contributions of this

thesis in this area of research.

1.4 Contributions

The original contributions of this thesis can be summarized as follows

• A general framework for solving problems with cardinality constraints by dividing

the problem into a pure combinatorial and a continuous optimization part. Similar

decomposition schemes have been applied in previous studies to the index track-

ing problem (see Shapcott (1992) and Jeurissen and van den Berg (2008)) and,

in recent independent work for constrained portfolio selection (DiGaspero et al.

(2007)). The formulation presented in this thesis is general and can be applied in

a wide range of domains. To address the effectiveness of this approach, we have

compared strategies that use simulated annealing, genetic algorithms or estimation

of distribution algorithms to address the combinatorial aspect of the problem and

quadratic programming for the continuous part.

• A comparison of different encodings for genetic algorithms especially regarding

the way in which the cardinality constraints are handled. These include a binary

encoding with penalty and repair mechanisms and a set encoding. The most

effective genetic algorithms use set encoding in combination with specially designed

mutation and crossover operators that preserve the cardinality constraint.

Chapter 1. Introduction 10

• A new crossover operator (TransRAR), which has been designed using guidelines

derived from the theory of formae. General specifications are given for the imple-

mentation of this operator, which is then instantiated for the set representation

proposed. In the problems investigated, the genetic algorithms that employ this

operator outperform genetic algorithms with other set crossover operators (e.g.,

the RAR operator), which have been shown to be very effective in previous studies.

• The design and application of dimensionality reduction techniques (block pruning,

greedy backward and forward selection) for optimization problems with cardinality

constraints. In the problems investigated these techniques improve the efficiency

of the search without a significant deterioration of the quality of the solutions

obtained.

• Application and extensive empirical evaluation of the proposed techniques in the

problems of sparse principal components, index tracking, and portfolio selection.

• In the portfolio selection problem we have provided empirical evidence that both

transaction costs and cardinality constraints have a regularization effect, which

is useful to build portfolios that are robust, stable and have good out-of-sample

performance.

• New methods in the context of integer linear programming for solving the con-

sensus tree problem in phylogenetics. These contributions include the use of lazy

constraints, pruning of input variables, metaheuristic incumbent solution improv-

ing and heuristic column generation.

1.5 Publications

The following work was published as a result of the investigations performed in the

course of this thesis. The list of publications is presented in antichronological order. It

is divided in three blocks: (i) direct work, which includes articles directly related to the

contents of this thesis, (ii) related work, which considers results connected to the topics

presented in this thesis, and (iii) submitted work, which includes articles currently under

review for publication.

1.5.1 Direct Work

• Ruiz-Torrubiano, R., and Suárez, A. (2011). The TransRAR crossover operator for

genetic algorithms with set encoding. Proceedings of the 13th annual conference

on Genetic and Evolutionary Computation GECCO 2011, Dublin, Ireland, pp.

489-496. ACM New York.

• Ruiz-Torrubiano, R., Garćıa-Moratilla, S., and Suárez, A. (2010). Optimization

problems with cardinality constraints. In Tenne, Y., and Goh C. K. (editors)

Computational Intelligence in Optimization: Implementations and Applications

pp. 105-130. Springer.

Chapter 1. Introduction 11

• Ruiz-Torrubiano, R., and Suárez, A. (2010). Hybrid approaches and dimensional-

ity reduction for portfolio selection with cardinality constraints. IEEE Computa-

tional Intelligence Magazine 5(2):92-107.

• Ruiz-Torrubiano, R., and Suárez, A. (2009). A Hybrid Optimization Approach to

Index Tracking. Annals of Operations Research 166(1):57-71.

• Pirkwieser S., Ruiz-Torrubiano, R., and Raidl, G. R. (2008). Exact methods and

metaheuristic approaches for deriving high quality fully resolved consensus trees.

Proceedings of the 2nd International Conference on Bioinformatics Research and

Development BIRD 2008, Poster Presentations, Vienna, Austria. Schriftreihe

Informatik 26 pp. 115-124. Trauner Verlag.

• Ruiz-Torrubiano, R., and Suárez, A. (2007). Use of heuristic rules in evolutionary

methods for the selection of optimal investment portfolios. Proceedings of the IEEE

World Congress on Evolutionary Computation CEC 2007, Singapore pp. 212-219.

IEEE.

• Moral-Escudero, R., Ruiz-Torrubiano, R., and Suárez, A. (2006). Selection of op-

timal investment portfolios with cardinality constraints. Proceedings of the IEEE

World Congress on Evolutionary Computation CEC 2006, Vancouver, Canada pp.

2382-2388. IEEE.

1.5.2 Related Work

• Hernández-Lobato, D., Hernández-Lobato, J. M., Ruiz-Torrubiano, R., and Valle,

Á. (2006). Pruning adaptive boosting ensembles by means of a genetic algorithm.

In Corchado, E., Yin, H., Botti, V. J., and Fyfe, C. (editors) Proceedings of the 7th

International Conference on Intelligent Data Engineering and Automated Learn-

ing, Vol. 4224 Lecture Notes in Computer Science, pp. 322-329. Springer.

1.5.3 Submitted Work

• Ruiz-Torrubiano, R., and Suárez, A. A memetic algorithm for cardinality-constrained

portfolio optimization under transaction costs.

1.6 Summary by Chapter

This thesis is organized in two parts. Part I introduces the adaptation and improve-

ments of the optimization algorithms developed to address problems with cardinality

constrains. The second part presents the application of these techniques to problems of

practical interest. By chapters, the contents of the thesis are as follows:

Chapter 1. Introduction 12

Chapter 2 presents a review of hybridization methods, metaheuristics and memetic

algorithms. A general decomposition of optimization problems with cardinality con-

straints in two components is introduced: The original optimization problem is formu-

lated as a combinatorial search guided by the solution of a subordinate continuous opti-

mization problem. An optional third component, which involves the use of preprocessing

heuristics that reduce the dimensionality of the search space, is also described in this

chapter. We also discuss the advantages and disadvantages of the different metaheuristic

techniques that can be used to address the combinatorial part of the optimization prob-

lem. In particular simulated annealing, genetic algorithms and estimation of distribution

algorithms are reviewed in detail.

The focus of Chapter 3 is on the design of genetic representations and crossover

operators for problems with cardinality constraints within the framework of forma the-

ory. Specifically, the concepts of respect, assortment and transmission are introduced

as desirable properties that crossover operators should have. These properties are used

to guide the design of representation independent crossover operators, such as Ran-

dom Equivalence Recombination (RER), Random Respectful Recombination (RRR)

and Random Assortment Recombination (RAR). Additionally, a new crossover oper-

ator based on these design principles is introduced: Transmitting Random Assortment

Recombination (TransRAR). Finally, we introduce a set representation and particularize

the aforementioned operators for a genetic algorithm that is adapted to handle problems

with cardinality constraints.

Chapter 4 presents an analysis of the 0/1 knapsack problem using the ideas pre-

sented in the previous chapters. A general knapsack problem is expressed as a collection

of cardinality constrained problems. Both the efficiency and the quality of the solutions

obtained by the different metaheuristic approaches analyzed are compared with an exact

branch-and-bound optimization method.

Chapter 5 deals with the application of the methods developed to the problem of

constructing sparse principal components (SPCA). One of the disadvantages of PCA

is that, in general, principal components are linear combinations of all the original

variables. This makes the interpretation of these components difficult. Sparse principal

components improve the intelligibility of the results, because only a few of the problem

variables have a non-zero loading. The problem can be formulated as a mixed integer

quadratic program with a cardinality constraint. Therefore, the general combinatorial

optimization scheme introduced in this thesis can be used in conjunction with a quadratic

solver to address the subordinate continuous optimization problem. Experiments using

synthetic data and data from real-world applications show that this hybrid approach

can achieve results that are comparable or better than state-of-the-art approaches, such

as semidefinite programming.

Chapter 6 is devoted to the index tracking problem. This is a problem in quanti-

tative finance whose goal is to construct an investment portfolio that tracks a financial

index of reference over a period of time. A cardinality constraint is introduced in the

model to limit the number of assets in the tracking portfolio. The objective function

of the problem is chosen as the mean squared deviation between the returns of the in-

dex and those of the tracking portfolio. This measure results in the formulation of the

Chapter 1. Introduction 13

problem as a mixed integer quadratic program. The approach presented in this chapter

obtains high-quality results both in-sample and out-of-sample for tracking several finan-

cial indices. Additionally, a pruning technique is used to improve the performance of

the algorithm without significantly affecting the tracking accuracy.

In Chapter 7 the results of applying these hybrid techniques to the portfolio selec-

tion problem are presented. The framework used is the classical Markowitz model with

constraints limiting the amount that is invested on each asset or on groups of assets.

A cardinality constraint on the maximum number of assets that can be included in the

portfolio is introduced. This constraint converts the problem into a mixed integer convex

optimization problem. In the first part of this chapter, the single period selection prob-

lem with cardinality constraints is investigated using hybrid optimization algorithms.

Various pruning heuristics are also applied to obtain solutions of comparable quality

with a lower computational cost. In the second part, the multi-period problem with

cardinality constraints and piecewise linear transaction costs is solved using a hybrid

genetic algorithm. The performance of this optimization technique is compared to other

investment strategies, including an equally-weighted (1/N) portfolio and a portfolio ob-

tained by optimization with a lasso term that penalizes changes in the composition of the

portfolio. A conclusion that can be derived from the analysis of the empirical results is

that ignoring transaction costs leads to the selection of inefficient investment strategies

that involve large changes in the composition of the portfolio. Introducing cardinality

constraints also has a regularization effect in the optimization problem. As a result of

this regularization, the investment strategies select portfolios that are more stable and

exhibit good out-of-sample performance.

In Chapter 8 several hybrid optimization methods are proposed for the consensus

tree problem in phylogenetics. The goal in this problem is to build a phylogenetic tree

that summarizes as well as possible the information contained in a collection of input

trees. The trees in the input collection may be obtained by several methods based on

molecular information, or by several runs of the same non-deterministic procedure. The

similarity metrics used result in the formulation of the problem as an integer linear

program. The methods presented in this chapter are based on the use of a branch-and-

cut approach. Since this exact technique may require an exponential number of steps

to find the optimal solution, several methods are presented to improve its performance

in a heuristic manner. Among these techniques, we propose to use lazy constraints,

metaheuristic incumbent solution improving and heuristic variable addition. Moreover,

a pruning technique is presented that reduces the size of the search space. Improvements

in performance due to the pruning algorithm can be seen from the analysis of the results

of experiments on natural and synthetic trees.

Chapter 9 presents a summary of the conclusions of this thesis and outlines some

topics for future research.

Part I

Optimization Algorithms

15

CHAPTER 2

METAHEURISTICS AND CARDINALITY CONSTRAINED

PROBLEMS

Finding sparse solutions to complex optimization problems has attracted much attention

in different research areas (Zou et al. (2006), Brodie et al. (2009), Wu et al. (2006)).

Sparse solutions can be desirable either to satisfy user preferences, objectives and re-

strictions (e.g. sparse solutions are easier to understand and to manage) or to improve

their stability, robustness and out-of-sample performance. A way of enforcing sparsity is

to impose cardinality constraints that limit the number of non-zero variables in the opti-

mal solution. However, these types of restrictions introduce a combinatorial component

in the optimization, which generally precludes the direct use of standard optimization

techniques. General combinatorial metaheuristics such as simulated annealing, genetic

algorithms and estimation of distribution algorithms can handle optimization problems

that involve discrete components. Nonetheless, the continuous nature of the uncon-

strained problem or the interaction with other constraints can diminish the efficiency

of such metaheuristics. A possible approach is to use the metaheuristic to handle the

discrete optimization only. The metaheuristic produces candidate solutions that define

a subspace of the original search space. These candidate solutions are then evaluated

by the solution of the original optimization problem in the restricted subspace, without

cardinality constraints. The subordinate optimization problem defined in this manner

can then be solved using standard optimization techniques.

2.1 Introduction

A cardinality constraint in an optimization problem imposes an upper bound on the

number of variables that have non-zero values in the optimal solution. We consider the

case in which this constraint is hard. Therefore, solutions that violate the constraint,

even if it is by a small amount, are not acceptable. Cardinality constraints introduce a

combinatorial element in the optimization problem that generally increases the difficulty

of the problem.

17

Chapter 2. Metaheuristics and Cardinality Constrained Problems 18

Including a cardinality constraint in an optimization problem is a direct method to

obtain sparse solutions. Numerous recent research efforts have been directed to the de-

sign of methods to obtain sparse solutions, especially in the machine learning community

(Zou et al. (2006), Moghaddam et al. (2005), Argyriou et al. (2007), Wu et al. (2006),

Jacob et al. (2009)). Sparse solutions exhibit desirable statistical properties, such as

stability, robustness and good generalization performance. In a Bayesian framework,

sparsity can be favored by assuming special kinds of priors that assign a large prob-

ability to zero values and simultaneously have large probability mass in a wide range

of non-zero values. Some examples are Laplace (Seeger (2008)), Student’s t (Tipping

(2001)), horseshoe (Carvalho et al. (2009)) and spike-and-slab (George and McCulloch

(1997)) priors. One can also obtain sparsity by including special types of penalties in

the objective function. An example of this approach is the lasso method (“least absolute

shrinkage and selection operator”, Tibshirani (1996)), originally introduced in the con-

text of least-squares regression. The lasso is implemented by introducing a constraint

on the value of the L1 norm of the solution vector ∥x∥1. Alternatively, the constraint

can be enforced by including a lasso penalty term proportional to ∥x∥1 in the objective

function. The advantage of such a formulation is that, if the objective function and the

constranits satisfy some regularity conditions, convex optimization methods can be di-

rectly applied to solve the problem (Efron et al. (2004), Turlach (2005)). A drawback of

these approaches to the selection of sparse solutions is that it is not possible to directly

control the number of non-zero variables in the final solution. The degree of sparsity can

only be controlled indirectly through the parameters of the sparsifying prior in Bayesian

approaches or through the strength of the sparsity-inducing penalty in the lasso. By

contrast, the cardinality constraint directly specifies the sparsity of the solution vector.

Optimization problems with cardinality constraints are common in different areas of

practical interest. Some examples of applications in which cardinality constraints are

relevant are:

• Pruning of learning ensembles: Consider a collection of instances {xi, yi}Mi=1,

in which xi is the vector of attributes that characterizes the ith instance and yi
is the corresponding label (a categorical variable in classification problems, a real

variable in regression). The goal of supervised learning is to automatically induce

from these labeled instances (the training data) a system that accurately predicts

the label of a previously unseen test instance on the basis of xtest alone. Learning

ensembles are composed of a collection of such predictors. The ensemble pre-

diction is a combination of the individual member outputs. Ensembles have been

shown to be accurate and robust prediction systems. However, they generally have

large storage requirements. Furthermore the time needed to obtain a prediction

increases linearly with the size of the ensemble, which can be a disadvantage for

online applications. To alleviate these drawbacks one can select a subset of the

classifiers of a specified maximum size while preserving (and in some cases improv-

ing) the prediction accuracy of the system. This process is referred to as ensemble

pruning in literature and can be formulated as a subset selection problem.

Chapter 2. Metaheuristics and Cardinality Constrained Problems 19

• Sparse Principal Component Analysis: In the field of statistical data analysis,

principal components are used to reduce the dimensionality of a given dataset.

The objective is to find a few linear combinations of the input variables that are

uncorrelated and account for as much of the variance in the data as possible.

Typically, these principal components have loadings in all the input variables,

which makes their interpretation difficult. Sparse principal components analysis

seeks to obtain linear combinations of the original variables with as few non-zero

entries as possible, which still explain most of the variance. To achieve this goal,

a cardinality constraint on the maximum number of non-zero entries for each

principal component can be used. Common applications of this technique are data

compression and visualization.

• Portfolio selection in quantitative finance: A portfolio is a collection of fi-

nancial products (assets, bonds, cash) held by an investor. The goal of optimal

portfolio selection is to maximize the expected wealth while minimizing the risk

of the investment, subject to various constraints resulting from investment pref-

erences, market restrictions and other requirements. The standard framework for

portfolio optimization was originally proposed by H. Markowitz in 1952. In this

framework, the returns of the assets considered for investment are modeled as ran-

dom variables. The return of the portfolio is simply a convex combination of the

returns of the individual assets. The expected return of the portfolio is the mean

of this random variable. The risk of the portfolio is quantified in terms of the

variance of the portfolio returns. A common requirement in practice is to limit the

number of products included in the portfolio. This constraint facilitates portfolio

rebalancing and, as will be shown in this thesis, improves the robustness, stability

and out-of-sample performance of the portfolio.

• Financial index tracking: The goal of index tracking by partial replication is

to design an investment portfolio that tracks as closely as possible the evolution of

a specified financial index using only a subset of the products that are considered

in the construction of the index. The problem is formulated as a minimization

problem in which the cost function is the mean squared error (MSE) between

the returns of the portfolio and those of the index. It may also be desirable to

set lower and upper bounds on the weights of assets or groups of assets in the

replicating portfolio. The number of products in which the final portfolio invests

can be directly limited including a cardinality constraint.

• Subset selection in multiple linear regression: The goal of multiple linear

regression is to describe the relationship between the explanatory variables x and

the real-valued response variable y by fitting a linear model βT · x to some ob-

served data {xi, yi}Mi=1. The vector of regression coefficients β can be obtained by

minimizing the mean-squared error MSE = 1
M

∑M
i=1(yi − βTxi)

2. A cardinality

constraint can be introduced to limit the number of non-zero components in β.

This constraint generally reduces overfitting and allows the selection of models

that are stable, robust and have good generalization properties. The sparsity of

the solution also improves the interpretability of the resulting model.

Chapter 2. Metaheuristics and Cardinality Constrained Problems 20

Cardinality constraints are therefore important to improve the quality and facilitate

the interpretation of the solutions of numerous problems of practical interest. There-

fore it is important to design optimization techniques that can handle these constraints

efficiently and effectively. The research presented in this thesis focuses on optimiza-

tion problems that are convex in the absence of the cardinality constraint. To address

the combinatorial complexity introduced by the cardinality constraints we introduce a

hybrid strategy that combines general metaheuristic approaches with standard convex

optimization algorithms.

The organization of this chapter is as follows: Section 2.2 presents an overview on

how metaheuristics can be hybridized with standard optimization techniques to handle

optimization problems with cardinality constraints. The metaheuristics simulated an-

nealing, genetic algorithms and estimation of distribution algorithms, which are used in

different parts of this thesis, are described in Section 2.3. Section 2.4 introduces several

dimensionality reduction heuristics that can be used as a preprocessing step to improve

the efficiency of the metaheuristics. Section 2.5 summarizes the key ideas introduced in

this chapter.

2.2 Metaheuristic Hybridization for Cardinality Con-

strained Problems

In this section we first give a general overview of metaheuristic algorithms and introduce

the concept of metaheuristic hybridization. Next we describe the hybrid approach that

is used in this thesis to address optimization problems with cardinality constraints.

Particular attention is given to the benefits of such an approach over metaheuristics

alone.

2.2.1 Metaheuristic Hybridization

A metaheuristic is a procedure that iteratively generates candidate solutions by intelli-

gently combining exploration and exploitation of the search space (Osman and Laporte

(1996)). The exploration and exploitation components of the metaheuristic are guided

by a learning strategy whose aim is to generate good candidate solutions. Different

learning strategies define different metaheuristics. The strategy implemented by genetic

algorithms (GA) (Holland (1975)) is inspired on the natural evolution of species in bi-

ology. In GAs candidate solutions are represented by individuals of a population that

undergoes an evolutionary process. Learning is performed by establishing mechanisms

that generate diversity while preserving the building blocks of the solution (mutation

and recombination). Finally, the selection of the best candidate solutions introduces a

directionality in the search.

Other biologically inspired metaheuristics are ant colony and particle swarm opti-

mization. In ant colony optimization (Dorigo and Gambardella (1997)), the source of

inspiration is the foraging behavior of ants. Ant colonies can be seen as a collection of

simple agents endowed with some communication mechanism (the trace of pheromone

Chapter 2. Metaheuristics and Cardinality Constrained Problems 21

left by an individual ant in a given trajectory) that can solve complex optimization

problems through the emergence of effective strategies at the level of the collective. In

particle swarm optimization (Eberhart and Kennedy (1995)) the strategy is inspired

in the global coordination of large flocks of birds through local interactions among the

individuals in the flock. These algorithms consider a collection of particles that explore

the search space. The motion of the particle is influenced by both the best local solution

it has found and by better solutions found by other particles. In this manner, the swarm

is expected to move towards the best solution while maintaining some diversity that

prevents it from becoming trapped in a local solution.

As established by the No-Free-Lunch Theorems for optimization (Wolpert and

Macready (1997)), metaheuristic approaches alone cannot perform better than random

search when averaged over all possible problems. It is therefore necessary to include

specific domain knowledge in order to find algorithms that are effective for the prob-

lem at hand. To achieve this goal, the concept of metaheuristic hybridization can be

used. The main idea is to combine a metaheuristic with specialized heuristics or other

metaheuristics to design hybrid algorithms that take advantage of the synergies among

the individual pieces. Different taxonomies of hybrid metaheuristics can be elaborated:

see, for instance Talbi (2002), El-Abd and Kamel (2005), Blum and Roli (2003). Here

we summarize the classification given in Raidl (2006) and use it to frame the hybrid

approach developed in this thesis to address optimization problems with cardinality

constraints. Metaheuristics can be classified according to the following characteristics:

1. Type of algorithms being hybridized: Metaheuristics can be combined with other

metaheuristics, with problem specific heuristics or with exact or approximate tech-

niques of the field of mathematical programming (for instance, integer or convex

programming).

2. The level of hybridization depends on how much information of the other al-

gorithms is incorporated in the design of the hybrid metaheuristic. Low-level

hybridization corresponds to a highly integrated design in which all pieces take

advantage of the internal workings of the other algorithms. By contrast, in high-

level hybridizations every algorithm retains its identity. The level of abstraction

is higher and the design of the the pieces does not require to know in detail how

the other algorithms work.

3. Execution order: The hybridized algorithms can be executed either sequentially

or in an interleaved manner. In an interleaved execution, one algorithm executes

the others as sub-procedures or they can interact in more complicated ways. If the

problem has the appropriate structure, a parallel approach may be used.

4. Control strategy: We can distinguish between integrative or collaborative ap-

proaches. In integrative approaches there is a master algorithm that invokes the

execution of the other algorithms. An example of integrative approach is the use

of decoders, where the master algorithm operates on an incomplete representation

of the solutions and obtains the complete solution by executing a subordinate algo-

rithm. For instance, the subordinate algorithm can be an optimization technique

Chapter 2. Metaheuristics and Cardinality Constrained Problems 22

that addresses a subproblem resulting from the decomposition of the original prob-

lem. In purely collaborative approaches there is no hierarchy in the execution of

the algorithms. Collaboration is implemented through the exchange of information

between the algorithms. For instance, genetic algorithms with populations evolved

in parallel that occasionally exchange individuals are examples of implementation

of a collaborative strategy (Shapcott (1992)).

Memetic algorithms (MA) represent an important example of metaheuristic hy-

bridization (Moscato and Cotta (2003)). These algorithms traditionally make use of

population metaheuristics, such as genetic algorithms, but instead of applying them as

black-box optimization techniques, they seek to combine them with problem knowledge

in a meaningful way. Usually, this results in using a mathematical programming tech-

nique to improve or decode a candidate solution in the population metaheuristic. The

denomination ’memetic’ corresponds to consider memes instead of genes as the building

blocks of the evolutionary process. A meme, as originally introduced in Dawkins (1976),

can be understood as a cultural analogue of a gene. It can represent an idea, a word

or a concept which, in the words of Dawkins, leaps “from brain to brain via a process

which, in the broad sense, can be called imitation”. Memetic algorithms have found a

wide area of application in the field of NP-Hard (Cormen et al. (1990)) optimization

problems, because they can often obtain high quality solutions with a moderate com-

putational effort. Some examples of the application of MAs include multidimensional

knapsack problems (Puchinger et al. (2010)), the traveling salesman problem (Krasnogor

and Smith (2000)), graph partitioning (Kim et al. (2011)), course timetabling (Qaurooni

(2011)), clustering (Speer et al. (2004)), and supply chain network (Yeh (2006)). As we

will shortly see, the approach described in this chapter can also be seen as a memetic

algorithm.

2.2.2 Hybrid Approach for Cardinality Constraints

For problems with a cardinality constraint, the size of the search space grows expo-

nentially with the maximum size of the feasible subsets. Let S be the set of feasible

solutions. Let N represent the number of elements available and K the upper bound on

the cardinality of the subsets (K ≤ N). The size of the combinatorial search space is

|S| =
K∑
k=1

(
N

k

)
. (2.1)

For a fixed K, this number grows exponentially with N and is quite large even for

moderate values of N and K.

Chapter 2. Metaheuristics and Cardinality Constrained Problems 23

Consider the cardinality constrained problem

min
x

f(x) (2.2)

subject to gj(x) ≤ 0 j = 1, . . . ,m

hk(x) = 0 k = 1, . . . , p

|{xi|xi ̸= 0, i = 1, . . . , N}| ≤ K.

We now introduce the vector of indicator variables z ∈ {0, 1}N . In this vector, the i-th

component takes the value zi = 1 if xi ̸= 0, otherwise zi = 0. Incorporating these new

variables, the optimization problem (2.2) can be written as

min
x,z

f(x, z) (2.3)

subject to gj(x, z) ≤ 0 j = 1, . . . ,m

hk(x, z) = 0 k = 1, . . . , p

N∑
i=1

zi ≤ K.

An alternative formulation of the problem is

min
z

f̂(z) (2.4)

subject to
N∑
i=1

zi ≤ K (2.5)

where, for a given z, f̂ is defined as the solution of the subordinate optimization problem

f̂(z) = min
x[z]

f(x[z]) (2.6)

subject to gj(x
[z]) ≤ 0 j = 1, . . . ,m

hk(x
[z]) = 0 k = 1, . . . , p.

The subordinate optimization problem does not have a cardinality constraint. The

search now takes place in a subspace defined by the subset of components of x for which

zi = 1. The vector x[z] is a k-dimensional vector (k ≤ K) obtained by removing from x

the components for which zi = 0. Problem (2.4) will be referred to as the master cardi-

nality constrained problem (MCCP). We use an optimization metaheuristic to address

the combinatorial MCCP, including the cardinality constraint. The metahuristic itera-

tively generates candidate solutions encoded by the particular values of z. For a fixed z,

subproblem (2.6), which will be called the subordinate continuous problem (SCP), can

be solved by an appropriate heuristic or exact method.

Let us classify this approach according to the criteria presented in subsection 2.2.1:

1. Types of algorithms hybridized: The metaheuristic is used to address the combina-

torial optimization problem. It is hybridized with an exact or a heuristic method,

Chapter 2. Metaheuristics and Cardinality Constrained Problems 24

depending on the form of the subordinate optimization problem. If this problem is

linear, the simplex algorithm can be used to solve it. If it is quadratic or convex,

general interior point methods can be applied.

2. The level of hybridization is relatively high: The evaluation function of the meta-

heuristic is the solution of the subordinate optimization problem. The algorithm

for the subproblem retains its own identity and does not have to be adapted to

the metaheuristic.

3. The execution of the algorithms is interleaved: The metaheuristic proceeds by

searching in the combinatorial space. For each candidate solution generated by

the metaheuristic a new instance of the subordinate problem has to be solved.

4. The control structure is clearly integrative, and represents a particular case of

the use of decoders: The metaheuristic operates on an incomplete representation

of a candidate solution, which is the particular subset of attributes that defines

the search space for the subordinate problem. To fully determine the candidate

solution of the original problem one needs to solve the subordinate problem as

well.

The hybrid approach proposed has several advantages. First, there is no need to handle

the constraints gj and hk in the metaheuristic. This keeps the successor operators simple

and avoids computationally expensive repair procedures. Second, the metaheuristic is

kept general so that it can also be applied to other problems with cardinality constraints.

The only adaptation needed is the particular algorithm used to solve the SCP. Third,

specialized optimization techniques can be used to solve the subordinate problem. If the

particular form of the objective function and the constraints permits it, this subordinate

problem can be solved to proven optimality.

In summary, our objective is to design metaheuristic approaches to efficiently search

in spaces of subsets of a specified cardinality. In this context, the question arises of how

to handle possible violations of the cardinality constraint in the metaheuristic. As will

be shown in Section 2.3.2, standard crossover operators in genetic algorithms generate

candidate solutions that need not have the same cardinality as their parents. There are

different strategies to address this limitation:

(i) Candidate solutions that violate the cardinality constraint can be generated by the

algorithm. Whenever a violation occurs, a repair algorithm is applied that trans-

forms the infeasible solution into a solution of the desired cardinality. Typically,

a local search is used to obtain the closest feasible solution, but random repair

mechanisms can be used as well.

(ii) Solutions that violate the cardinality constraint can be generated by the succes-

sor operators. In contrast to the previous approach, infeasible solutions are not

repaired. Instead, a penalty term is introduced in the evaluation function so that

infeasible candidate solutions have worse scores than feasible ones.

Chapter 2. Metaheuristics and Cardinality Constrained Problems 25

(iii) No candidate solutions that violate the cardinality constraint are generated at any

time by the algorithm. Therefore, one needs to design mechanisms that generate

successors of the appropriate cardinality.

In the next section we describe several metaheuristics that can be used to address

the combinatorial part of the optimization in cardinality constrained problems. In Part

II of this thesis the performance of the metaheuristics are compared in several problems

of practical interest.

Even with the hybrid scheme proposed in this section the combinatorial complexity

of the search could still be too large for the metaheuristic to be effective. To address

this difficulty we introduce in Section 2.4 some heuristics that can be used, when applied

in a preprocessing step, to reduce the dimensionality of the combinatorial search space.

The objective is to eliminate variables from the original problem without reducing the

quality of the obtained solutions. To this end one attempts to identify variables that

are not likely to be included in the final solution.

2.3 Metaheuristics for optimal subset selection

In this section we describe three types of metaheuristics that are used to address the

combinatorial aspect of the cardinality constrained optimization problems investigated in

Part II of this thesis. In the following descriptions we assume that an equality cardinality

constraint
∑N

i=1 zi = K is considered. A problem with inequality cardinality constraint

can be approached by solving a series of problems with an equality cardinality constraint∑N
i=1 zi = k, k = 1, . . . , N and taking the best value found.

2.3.1 Simulated annealing

Simulated annealing (SA) is an optimization technique inspired by the field of thermo-

dynamics (Kirkpatrick et al. (1983)). The main idea is to mimic the physical process

of melting a solid and then cooling it to allow the formation of a regular crystalline

structure that attains a minimum of the system’s free energy. Convergence to the global

minimum is guaranteed if the cooling (annealing) is sufficiently slow, so that the system

remains close to equilibrium at all stages in the process. If the molten solid is cooled too

fast, the system reaches a state that does not correspond to the regular lattice charac-

teristic of a crystal, but to the amorphous configuration of a glass, which is a metastable

local minimum of the free energy. Random thermal fluctuations provide a source of

variability in the exploration of the space of physical configurations. In a fluid, thermal

motion allows the molecules to access all the physical space available. At a given tem-

perature, most realized transitions lead to lower energy configurations. However, higher

energy states can be accessed with non-zero probability as well. These uphill transi-

tions provide a mechanism for escaping local minima in the energy landscape. As the

temperature is lowered, the probability of these fluctuations that bring the system away

from its equilibrium configuration is also reduced. In simulated annealing the function

to be minimized F (z) (objective or cost function) takes the role of the free energy in

Chapter 2. Metaheuristics and Cardinality Constrained Problems 26

the physical system. The physical configuration space is replaced by the space of candi-

date solutions, which are connected by transitions defined by a neighborhood operator

N (·). The stochastic search proceeds by considering transitions from the current state

z(cur) to a neighboring configuration zl ∈ N (z(cur)) generated at random. The proposed

transition is accepted with probability 1 if the value of the objective function decreases.

Otherwise, if the candidate configuration is of higher cost, the transition is accepted

only with a certain probability p ≤ 1. This probability is expressed with the following

function

Paccept(zl, z
(cur);Tk) = exp

(
−F (zl)− F (z

(cur))

Tk

)
, (2.7)

where the parameter Tk plays the role of the overall temperature of the system. The

probability of accepting an uphill transition becomes thus smaller as the temperature is

lowered. Greedy search, which only accepts cost-lowering transitions, is in fact recovered

when the temperature is set to zero. On the other extreme, the infinite temperature limit

corresponds to blind stochastic search (all transitions are accepted). At the beginning

of the cooling process, the exploration is performed using higher temperatures so that a

large amount of the search space can be effectively explored. The search then proceeds by

epochs. In the lapse that corresponds to an epoch the temperature is held constant. The

length of an epoch should be sufficient to allow the system to approach equilibrium at

the corresponding temperature. Between consecutive epochs the temperature is lowered

according to the annealing schedule. As the temperature is reduced, the search focuses

on regions of the configuration space characterized by lower values of the cost function.

If the annealing schedule is sufficiently slow, this procedure guarantees convergence to

the global minimum. In practice, faster annealing schedules are used, so that a solution

can be found within a reasonable amount of time. An example is the geometric annealing

schedule, in which the temperature is updated using the formula Tk = γTk−1. The value

of γ should be smaller than, but close to 1. Even though this schedule cannot guarantee

convergence to the global optimum, the solutions identified are near-optimal in many

cases of practical interest, especially if due to the structure of the search space there

exist low-cost paths connecting the initial state and the target optimum. A general

version of this technique is given as Algorithm 1. In this pseudocode, the function

annealingSchedule returns the temperature Tk for the following epoch.

Cardinality constraints can be handled in SA by selecting an appropriate encoding

for z and a corresponding neighborhood N (z). In particular, the candidate solutions can

be encoded as bit-strings of length N , representing a subset of the given cardinality K.

The components of the binary vector z are then interpreted as indicating membership

to the set: If zi = 1, the ith element is included in the solution. Otherwise, if zi = 0, it

is excluded from the selection. It is also convenient to design a neighborhood operator

that preserves the cardinality constraints, in order that no penalty or repair mechanisms

are needed. A simple design is to exchange an element included in the current candidate

solution with an element excluded from it.

Chapter 2. Metaheuristics and Cardinality Constrained Problems 27

Algorithm 1 Simulated annealing

• Generate an initial configuration z(0) and set the initial temperature T0

• z(cur) ← z(0)

• i← 0

• While convergence criteria are not met [Annealing loop]

– i← i+ 1

– Set the temperature for epoch i: Ti = annealingSchedule(Ti−1)

– Set the length of epoch i: Li

– For l = 1, . . . , Li [Epoch loop]

1. Select an element from the neighborhood of the current search state zl ∈
N (z(cur)) at random.

2. If F (zl) < F (z(cur)), then z(cur) ← zl with probability 1.

3. Else, z(cur) ← zl with probability Paccept(zl, z
(cur);Ti).

• Return the best value found.

2.3.2 Genetic Algorithms

Genetic algorithms are a class of optimization methods that imitate the process of the

natural evolution of a population of a species (Goldberg (1989); Holland (1975)). Opti-

mization is achieved by selection from a population that exhibits some random variabil-

ity. The evolved population is made up of individuals characterized by a chromosome

(the genotype) that encodes a problem-specific procedure to generate candidate solu-

tions. The objective is to maximize a fitness function Φ(I) that measures the quality

of the individual I in terms of the actual candidate solution generated (the phenotype).

Each phenotype is composed of genes. The possible values a gene is allowed to have are

called alleles.

The outline of a general genetic algorithm is shown in Algorithm 2. The algo-

rithm starts with an initial population of individuals that undergoes evolution in time

steps called generations. In each generation, a subset of individuals is selected from

the existing population for reproduction according to their fitness. From these selected

individuals a new population is generated, using mutation and crossover operations.

In the crossover operation one or more individuals are engendered from a given set of

parents (usually two) by exchanging parts of the parents’ genetic material. These are

then subject to mutation with a specified probability. The crossover operation generally

functions as a guide for the search process, introducing into the population individu-

als that combine advantageous features of their ancestors. Mutation mostly acts as a

mechanism of escaping local optima, so that unexplored regions of the search space can

be accessed. Once crossover and mutation have been applied, the population is then

renewed according to a generational substitution scheme that specifies how the new

population is selected from the pool of old and newly generated individuals. There are

Chapter 2. Metaheuristics and Cardinality Constrained Problems 28

different options for composing the new population for the next time step: A steady

state scheme replaces only the individual with the lowest fitness of the previous gen-

eration with a new individual. On the opposite extreme, in generational schemes the

whole population is composed of new individuals. This scheme has the disadvantage

of discarding solutions that could be optimal or near-optimal. In this case, it may be

useful to resort to elitism and retain a few high-fitness individuals from generation to

generation. This procedure ensures that the best solutions found so far are not lost.

However, abuse of this mechanism can cause premature convergence to local optima.

In each generation of the evolution process, the population is enriched with individuals

that have higher fitness values than their ancestors. Therefore the evolution process is

expected to eventually reach an optimum, possibly a local one.

Algorithm 2 Genetic Algorithm

• Generate an initial population P0 with P individuals.

• For each individual Ij ∈ P0, calculate its fitness Φ(Ij).

• Initialize the generation counter t← 0.

• While convergence criteria are not met:

– Increase the generation counter t← t+ 1.

– Select a parent set Πt ⊂ Pt composed of nP individuals from the population.

– While Πt ̸= ∅:
∗ Extract two individuals I1 and I2 from Πt.

∗ Apply the crossover operator Θ(I1, I2) and generate nC children (with
probability pC).

∗ Apply the mutation operator to the nC children (with probability pM).

– Calculate the fitness value of the new individuals.

– Add the new individuals to the population.

– Select P individuals that make up Pt+1, the population for generation t+ 1.

For problems with cardinality constraints, two alternative encodings for the candi-

date solutions are considered. One possibility is the standard binary representation,

in which the chromosomes are encoded by bit-strings. The different positions in the

chromosome correspond to binary variables. This scheme is a natural representation

for many combinatorial search problems. Standard genetic operators employed in com-

bination with this representation are uniform crossover, N -point crossover and bitwise

flip mutation. Uniform crossover consists in randomly choosing, for each position of the

chromosome, a parent (I1 or I2), and setting in the corresponding gene of the offspring

the allele from the parent selected. In N -point crossover, the child’s chromosome is

the result of the recombination of the genetic material of the parents. The segments

exchanged are defined by N randomly selected positions in the parent’s chromosomes.

The bitwise flip mutation operator selects a gene position at random and changes the

allele to its complementary. It is easy to show that these prescriptions for mutation

Chapter 2. Metaheuristics and Cardinality Constrained Problems 29

and crossover do not preserve the cardinality of the candidate solutions. Consider,

for instance, a problem with D = 10 variables and a cardinality constraint K = 5.

From parents (0100110011) and (0111100010), with cardinality 5, 1-point crossover with

crossover point 4 generates the offspring (0100100010) (0111110011), which do not fulfill

the cardinality constraint.

The difficulty with this encoding is that standard mutation and crossover operators

do not preserve the number of non-zero bits of the parents. Therefore, penalty terms in

the fitness function or ad-hoc repair mechanisms are needed to enforce the cardinality

constraints. One possible solution to this problem is to assign lower fitness values to

individuals in the population that violate the cardinality constraint. Assuming that a

problem with an equality cardinality constraint is considered, a penalized fitness function

can be built by subtracting from the standard fitness function a penalty term that

depends on the magnitude of the violation of the cardinality constraint of the individual

with binary chromosome z

∆k(z) = |Card(z)−K| . (2.8)

The penalized fitness function is then

Φp(z) = Φ(z)− βfp(∆k(z)), (2.9)

where fp : N → R+ is a monotonically increasing function of ∆k(z) and β ≥ 0

represents the strength of the penalty.

Another option is to repair infeasible individuals as soon as they are generated.

Several repair mechanisms can be defined for this purpose. For instance, an individual

can be repaired by randomly setting some bits to 0 or 1, as needed, until the cardinality

constraint is satisfied (random repair). Another alternative is to use a heuristic to

determine which bits must be set to 0 or to 1 (heuristic repair). The results of a greedy

optimization or the solutions of a relaxed version of the problem can also be used to

achieve this objective (Moral-Escudero et al. (2006)).

In summary, cardinality constraints are difficult to incorporate into GAs with a

binary representation using standard crossover and mutation operators. A possible so-

lution is to penalize infeasible individuals, assigning them lower fitness values. However,

the functional form of the penalty and the parameters need to be determined through

careful experimentation. Chromosome repair offers a more elegant, and possibly better

alternative. Nevertheless, the repair mechanism may introduce biases in the search and

can be costly. All these factors can mislead the search and cause premature convergence

to a local optimum in the genetic algorithm.

Chapter 3 of this thesis is devoted to the design of genetic representations and opera-

tors that generate individuals of the same cardinality as their parents. For this purpose,

the algorithm encodes the candidate solutions as a subset of the specified cardinal-

ity. This representation is more appropriate to design cardinality-preserving crossover

and mutation operators. In this manner, penalty functions and repair mechanisms are

Chapter 2. Metaheuristics and Cardinality Constrained Problems 30

avoided. It is expected that limiting the search to the space of feasible candidate solu-

tions will lead to the design of algorithms that are more efficient and effective.

2.3.3 Estimation of Distribution Algorithms

Estimation of distribution algorithms (EDAs) are a class of evolutionary methods in

which diversity is generated by a probabilistic sampling scheme (Larrañaga and Lozano

(2002)). At each time step in the evolutionary process, a probability distribution is used

to characterize the genotype of the generation in a statistical manner. A population of

individuals is obtained by generating random samples from this multidimensional dis-

tribution. Each sample (chromosome) encodes a candidate solution. Selection involves

generating a subsample in which individuals with larger fitness values are more likely to

be present. This subset is subsequently used to estimate a new probability distribution

that characterizes the population in the next generation. Finally, new individuals are

sampled from the distribution and another generation begins. This process is repeated

until the specified convergence criteria are met. The pseudocode for a generic EDA is

detailed in Algorithm 3.

Algorithm 3 Estimation of distribution algorithm (EDA)

• Initialize the distribution that characterizes the population P (0)(z)

• Initialize the generation counter g ← 0.

• While convergence criteria are not met

– Sample a population of P individuals using P (g)(z)

Dg = {z(g1), . . . , z(gP)}

– Sort the population by non-increasing fitness values

D
′
g = {z(gi1)), z(gi2), . . . , z(giP)},

where i1, i2, . . . , iP is a reordering of the indices 1, 2, . . . , P such that

Φ(z(gi1)) ≥ Φ(z(gi2)) ≥ · · · ≥ Φ(z(giP))

– Select the first M ≤ P individuals from the sorted population

DSe
g = {z(gi1), z(gi2), . . . , z(giM)}

– Estimate the new probability distribution P (g+1)(z) using DSe
g

– Update the generation counter g ← g + 1

• Return the best solution found.

Different classes of EDA are characterized by the sampling scheme used in the selec-

tion step. Population Based Incremental Learning (PBIL) is a representative algorithm

Chapter 2. Metaheuristics and Cardinality Constrained Problems 31

of the EDA family (Baluja (1994)). It operates on binary chromosomes of fixed length

and assumes statistical independence among the genes {zi; i = 1, 2, . . . , N}. In genera-

tion g, the genotype of the population is characterized by the probability vector p(g),

whose i-th component is the probability of assigning the value 1 to the gene in the

i-th position. The update of the probability distribution using DSe
g takes in PBIL the

following form

p(g+1) = α
1

M

M∑
m=1

z(gim) + (1− α)p(g), (2.10)

where z(gim) represents the individual in the im−th position in generation g (where

individuals in the population are sorted by non-increasing fitness values), and α ∈ (0, 1]

is a smoothing parameter included to avoid strong fluctuations in the estimates of

the probability distribution. The Univariate Marginal Distribution Algorithm (UMDA,

Muehlenbein (1998)) is a special case of PBIL when α = 1.

There is also a continuous version of PBIL (PBILc, Sebag and Ducoulombier (1998))

that operates on real-valued choromosomes ξ, which eventually need to be translated

into integer-valued indicator variables z. In this algorithm the joint distribution of ξ is

assumed to be a multidimensional Gaussian with a diagonal covariance matrix

p(ξ) =

N∏
i=1

1√
2πσi

exp

(
−(ξi − µi)2

2σ2i

)
. (2.11)

The update rule from generation g to g + 1 is similar to the discrete version, but

includes terms that bring the population mean µ(g+1) closer to the best two individuals

and away from the worst one

µg+1 = (1− α)µg + α
(
ξ(gi1) + ξ(gi2) − ξ(giP)

)
. (2.12)

Both the discrete and the continuous versions of PBIL and UMDA assume indepen-

dence among the individual genes in the chromosome (i.t., the joint probability distribu-

tion of the genes factorizes as the product of univariate marginals). In the EDA family

one can also design algorithms in which more complex statistical models are assumed. In

particular, the EMNA (Estimation of Multivariate Normal Algorithm, Larrañaga et al.

(2001)) assumes real-valued chromosomes ξ that are jointly distributed as a multivariate

Gaussian N (µ,Σ), with an arbitrary covariance matrix Σ

p(ξ) =
1√

2π|Σ|1/2
exp

(
−1

2
(ξ − µ)T ·Σ−1 · (ξ − µ)

)
. (2.13)

In generation g + 1, the vector of means µ(g+1) and the covariance matrix Σ(g+1) are

estimated by maximum likelihood

µ
(g+1)
i =

1

M

M∑
m=1

ξ
(gim)
i (2.14)

Chapter 2. Metaheuristics and Cardinality Constrained Problems 32

σ
(g+1)
ij =

1

M − 1

M∑
m=1

(ξ
(gim)
i − µ(g+1)

i)(ξ
(gim)
j − µ(g+1)

j). (2.15)

Only the M individuals of the previous generation with the largest fitness are used in

the estimation.

Since PBILc and EMNA operate on a continuous representation for ξ, a mechanism

for transforming the continuous variables into discrete indices is necessary. The following

is a straightforward procedure that can be used to derive an indicator vector z with only

K non-zero components from a real-valued one ξ: First, the N components of the

chromosome are sorted in non-increasing order

ξj1 ≥ ξj2 ≥ · · · ≥ ξjN (2.16)

The binary vector z ≡ 0 is initialized to zero. Then, for each i = 1, . . . ,K, we set

zji = 1.

When the encoding is binary the cardinality constraints can be enforced in the sam-

pling procedure. Algorithm 4 describes a sampling method that generates individuals

of a specified cardinality K from a distribution of bits characterized by the probability

vector p. The application of this method to sample new individuals guarantees that the

algorithm preserves the cardinality constraint.

Algorithm 4 Sampling individuals of a specified cardinality from p.

• Initialize p̂← p

• Initialize individual z = 0.

• For i = 1, 2, . . . ,K

– Generate a random number u ∼ U [0, 1]

– Determine the value of j such that
∑j−1

i=1 p̂i < u ≤
∑N

i=j+1 p̂i.

– Set zj = 1.

– Update the value p̂j ← 0

– Renormalize

p̂i ←
p̂i∑N
k=1 p̂k

, i = 1, 2, . . . , N,

so that p̂ can be interpreted as a probability vector
∑N

i=1 p̂i = 1.

– Return the generated individual z.

Numerous studies have shown that EDAs can be competitive and even outperform

GAs in many different domains, especially in optimization tasks in which the dependen-

cies among variables are complex or unknown (Larrañaga and Lozano (2002), Baluja

(1994), Baluja and Caruana (1995)). We therefore expect EDAs to be a useful tool in

the solution of combinatorial optimization problems with cardinality constraints.

Chapter 2. Metaheuristics and Cardinality Constrained Problems 33

2.4 Dimensionality Reduction for Cardinality Constrained

Optimization Problems

In this section we present three pruning techniques that can be applied to reduce the di-

mensionality of the search space in cardinality constrained optimization problems. These

heuristics attempt to identify variables that are not likely to be included in the optimal

solution. Because of the cardinality constraints, eliminating variables that do not appear

in the optimal solution has no effect on the quality of the solution. Therefore, by de-

signing appropriate heuristics we expect to improve the efficiency of the search without

a deterioration of the quality of the final solution. The performance improvements for

the metaheuristics used to address the combinatorial optimization problem can be large.

For instance, the efficiency of some types of EDAs tends to rapidly deteriorate with the

dimensionality of the search space (Ruiz-Torrubiano and Suarez (2010)). The reason

is that the probability estimations become more difficult in high dimensional spaces.

The benefits of reducing the number of variables that need to be considered are also

significant for GAs and SA.

In this section we introduce some heuristics that can be used to guide the dimension-

ality reduction process. The heuristics described assume that it is possible to efficiently

solve the original problem in the absence of cardinality constraints. In this relaxed

problem, it is important to also remove the lower bound constraints because otherwise

the problem may not be feasible. For instance, consider a problem where at most 10

variables are allowed to take a value different from zero. Assume that each variable must

lie within the interval [0, 1] and add up to 1. Assume also that there is a lower bound

constraint of 1/10 for each variable. The problem with cardinality constraint is clearly

feasible, but the relaxed problem, without the constraint, is not.

2.4.1 Block pruning

In block pruning a relaxation of the original problem without cardinality and lower

bound constraints is solved. A new problem is defined by eliminating from the original

problem those variables whose absolute value in the solution of the relaxed problem is

lower than a specified threshold ϵ > 0. This threshold is determined in such a way that

the number of remaining variables is small and the solution in the reduced space is similar

to the solution of the original problem. If the values of the variables included in the

solution are required to be above a lower bound l, a reasonable choice for the threshold

that determines whether a variable is eliminated or not is ϵ = l/2. The pseudocode is

given in Algorithm 5.

2.4.2 Greedy backward selection

In this pruning procedure one variable is discarded at each iteration. To choose the

variable that is discarded, one solves a relaxation of the current problem in which cardi-

nality and lower bounds constraints are eliminated. A new optimization problem is then

defined by removing the variable with the smallest absolute value in the optimal solution

Chapter 2. Metaheuristics and Cardinality Constrained Problems 34

Algorithm 5 Block pruning

• Let P be an optimization problem on x ∈ RN with cardinality constraints, such
that the problem P ∗ without the cardinality constraints can be solved efficiently.

• Let P ∗∗ be the problem P ∗ without lower bound constraints.

• Use EfficientOptimization(P ∗∗) to obtain the optimal solution x∗∗

• For each x∗∗i , if |x∗∗i | < ϵ, discard the variable i from P .

• Return the new problem P .

of the relaxed problem. The process is repeated until K + T variables remain, where K

is the value of the upper bound in the cardinality constraint and T is a parameter to

allow for some slack in the solution. The pseudocode of the greedy backward selection

method is given in Algorithm 6.

Algorithm 6 Greedy backward selection

• Let P be an optimization problem on x ∈ RN with cardinality constraints, such
that the problem P ∗ without the cardinality constraints can be efficiently solved.

• Let P ∗∗ be the problem P ∗ without lower bound constraints.

• While P has more than K + T variables:

– Use EfficientOptimization(P ∗∗) to obtain the optimal solution x∗∗

– Discard the variable i such that i = argmini |x∗∗i |.

• Return the new problem P .

Greedy backward selection requires more computational effort than block pruning,

since N − (K + T) relaxed optimizations need to be performed.

2.4.3 Greedy forward selection

This heuristic proceeds by adding in each iteration the variable that improves the value of

the objective function the most. We take as a starting point a problem P0 with only two

variables. These two variables are the optimal solution for K = 2, which is computed by

exhaustive search. Let the optimal solution to P0 be x0 and the corresponding value of

the objective function f(x0). One then optimizes N − 2 relaxed versions of the problem

P ∗∗
k+ without cardinality and lower bound constraints with the new variable k, where k

is not in P0. Let x∗∗
k+ be the optimal solution of P ∗∗

k+ including variable k. Then the

variable k∗ is chosen, such that |f(x0)− f(x∗∗
k∗+)| is maximal. The pseudocode is given

in Algorithm 7.

This pruning method is computationally more expensive than block pruning and than

greedy backward selection because it requires solving N(N − 1)/2 +
∑K+T+1

i=2 (N − i)
auxiliary optimization problems.

Chapter 2. Metaheuristics and Cardinality Constrained Problems 35

Algorithm 7 Greedy forward selection

• Let P0 be the optimization problem with two variables i, j such that {i, j} would
be the optimal solution for K = 2.

• Let x0 be the optimal solution to P0 and f(x0) its objective value.

• Initialize P ← P0.

• While P has fewer than K + T variables:

– For each k not yet in P , run EfficientOptimization(P ∗∗
k+) to obtain the optimal

solution x∗∗
k+

– Include the variable k∗ such that k∗ = argmaxk |f(x0)− f(x∗∗
k+)|.

• Return the new problem P .

2.5 Summary and Discussion

In this chapter, the importance of designing efficient and effective methods for the solu-

tion of cardinality constrained optimization problems has been illustrated with examples

of problems of practical interest in various areas of application. In this thesis we propose

to combine metaheuristics that are well suited to the solution of the combinatorial part

of the optimization task with specialized optimization algorithms that incorporate spe-

cific knowledge of the problem considered. A general description of the metaheuristics

used in the thesis has been presented. Additionally, various pruning heuristics, which

effectively reduce the size of the search space, have been proposed as a preprocessing

step. These heuristics attempt to identify and eliminate variables that are not likely to

be included in the optimal solution of the cardinality constrained problem.

Cardinality contraints can be incorporated in a genetic algorithm with 0-1 encoding

and standard crossover mechanisms by introducing chromosome repair procedures or

including penalty terms in the evaluation of the fitness of candidate solutions that do

not fulfill the constraint. However, as will be illustrated in Part II of this thesis, both

repair and penalization mechanisms tend to introduce a bias and mislead the search

process. Therefore, we will emphasize the need for designing algorithms that generate

only feasible individuals. In the particular case of genetic algorithms, the framework of

forma theory, which will be discussed in detail in Chapter 3, provides a principled way of

designing appropriate genetic representations and operators. This leads to a formulation

of genetic algorithms that uses a set representation, in which each candidate solution is

encoded as a subset of the specified cardinality.

CHAPTER 3

DESIGN OF GENETIC REPRESENTATIONS AND

OPERATORS

The choice of chromosome encoding is one of the key elements in the design of effective

genetic algorithms. This representation must be chosen to take advantage of the par-

ticular structure of the problem at hand. The framework of forma theory introduced in

Radcliffe (1994) can be used in the design of genetic representations that incorporate

specific domain knowledge. Formae are a generalization of schemata based on the analy-

sis of equivalence classes induced by equivalence relations over the space of chromosomes.

The theory of formae introduces some important properties that genetic operators should

have. These properties are formulated in terms of the effect these operators have on the

formae. The goal is to provide mechanisms to generate diversity that properly balance

exploration and exploitation. This theory can be used as a guidance to design encodings

for specific problems, in which operators with these desirable properties can be defined

and implemented in a simple and efficient manner. The introduction of specific problem

knowledge in the design of the algorithm is necessary in order to perform better than

random search, as expressed by the no-free-lunch theorems for optimization (Wolpert

and Macready (1997)). In this chapter we analyze different encodings that can be used

to represent candidate solutions in optimization problems with cardinality constraints.

In particular, to address these types of problems, we introduce a set-based encoding

with appropriately defined mutation and recombination operators (Random Assortment

Recombination (RAR), and Transmitting Random Assortment Recombination (Tran-

sRAR)) designed according to the principles of forma theory.

3.1 Introduction

The No-Free-Lunch (NFL) Theorems for optimization state that general optimization

techniques are equivalent in terms of their performance, when averaged over all problem

classes (Wolpert and Macready (1997)). In other words, above-average performance in

37

Chapter 3. Design of Genetic Representations and Operators 38

a given class of problems is compensated by below-average performance in other prob-

lem classes. Following Wolpert and Macready (1997), we consider only combinatorial

optimization problems in which both the search space, Z (size |Z|), and the space of

possible values of the objective function, Y (size |Y|), are finite. The derivations can

be extended to spaces that are infinite and also to continuous ones. An optimization

problem is represented by the objective function f : Z → Y where F = YZ is the space

of all possible problems. If an algorithm A performs better than random search on a

given problem, characterized by the objective function fi ∈ F , then there is another

problem, characterized by the cost function fj ∈ F , in which A performs worse than

random search. This is formally expressed by the following NFL theorem: For any pair

of algorithms A1 and A2∑
f∈F

P (dym|m,A1, f) =
∑
f∈F

P (dym|m,A2, f) (3.1)

where dym is the sequence of size m of successive values of the objective function pro-

duced by the optimization algorithm, which is assumed to be stochastic. Note that any

performance measure for a particular sequence dym can be expressed as a function of

the values of the objective function in the sequence Φ(dym). One of the implications of

(3.1) is that, if the prior distribution P (f) over all possible objective functions is uni-

form (which should be the case if no problem knowledge is incorporated in the designed

algorithm), then the average performance of any such algorithm (independently of the

particular measure used) is equal. This can be seen by defining the average performance

for algorithm A as

Φ̂(A) =
∑
dym

Φ(dym)P (d
y
m|m,A) =

∑
dym

Φ(dym)
∑
f

P (dym|A,m, f)P (f). (3.2)

Let |F| be the size of the space of all possible objective functions. If we assume a

uniform prior P (f) = 1/|F|,

Φ̂(A1) =
1

|F|
∑
dym

Φ(dym)
∑
f

P (dym|m,A1, f), (3.3)

Φ̂(A2) =
1

|F|
∑
dym

Φ(dym)
∑
f

P (dym|m,A2, f), (3.4)

for any A1, A2.

From Eq. (3.1), it follows that Φ̂(A1) = Φ̂(A2) for any performance measure Φ.

Introducing problem knowledge in a given algorithm A can therefore be seen as

assuming a non-uniform prior P (f) (i.e. some objective functions are weighted differently

than others). The quantity of interest is in this case

∑
f

P (dym|m,A, f)P (f). (3.5)

Chapter 3. Design of Genetic Representations and Operators 39

Assuming a non-uniform prior for the objective function means that it is possible to find

algorithms that are consistently better than others in a restricted class of problems. In

conclusion, to improve over random search it is necessary to incorporate in the design

of the optimization algorithm specific knowledge of the class of problems that we want

to solve.

Forma theory is a framework that provides guidance on how to introduce this

problem-specific knowledge in the design of representations and operators for genetic

algorithms. Formae are a generalization of schemata, in which one attempts to capture

the equivalence relations in the search space that are implied by the objective function

and the constraints. In particular, a good representation should have minimal redun-

dancy. The chromosomes that are instances of the same formae should have similar per-

formance. The genetic operators should be designed in such a way that the disruption

of these units is unlikely and that improvements are easy to obtain by recombination.

In this chapter we apply these design principles to problems with cardinality con-

straints. A set representation for the chromosomes is well-suited for these types of

problems. Different types of genetic operators that can be used to solve these problems

reliably and efficiently are investigated. The chapter is organized as follows: Section

3.2 introduces the general framework of forma theory presented in Radcliffe (1994).

Crossover operators defined within this framework are introduced in Section 3.3. These

operators are first defined in a general way. Then the concrete implementation for a set

representation is given in 3.4. Finally, Section 3.5 summarizes the conclusions of this

chapter.

3.2 Forma Theory

Genetic algorithms are general optimization methods in which a population of individu-

als (chromosomes), of which everyone represents a candidate solution to the optimization

problem, evolves through the mechanisms of diversity generation and selection (Holland

(1975)). A possible representation for these candidate solutions is a k-ary string of a

fixed size n. For instance, let k = 3, n = 5 and the alphabet ∆ = {0, 1, 2}. In this case,

valid chromosomes would be: 01200, 12101, 11120, Consider the extended alphabet

∆∗ = ∆∪{�}, where � stands for any of the symbols in the original alphabet. We define

a schema as a string of length n in the extended alphabet {0, 1, 2,�}. Schemata repre-

sent groups of chromosomes that have a common structure. For instance, the schema

1���� represents all chromosomes that have the value 1 in the first position. Similarly,

the schema �2��0 represents all chromosomes that have allele 2 in the second position

and 0 in the last position.

Assuming that the likelihood to be selected in the next generation is proportional

to the fitness of the individual it is possible to establish a lower bound on the expected

number of chromosomes that correspond to a given schema in the population. Let Xξ(t)

be the number of individuals that belong to the schema ξ in generation t. Let ϕξ(t) be

the average fitness of all chromosomes which are members of ξ in the population at time

t. Finally, let ϕ(t) be the average fitness of all the individuals in the population at time

Chapter 3. Design of Genetic Representations and Operators 40

t. With these definitions the schema theorem can be stated as follows:

E [Xξ(t+ 1)] ≥ Xξ(t)
ϕξ(t)

ϕ(t)

(
1−

∑
ω∈Ω

pωp
ξ
ω

)
, (3.6)

where E [·] denotes the expected value over the randomized operations in the algorithm,

pω represents the probability of applying the crossover operator ω ∈ Ω and pξω is the

probability that the crossover operator ω disrupts schema ξ.

Implicitly, the schema theorem assumes that a given schema ξ represents a set of

candidate solutions with a similar fitness. Otherwise, the quantity ϕξ(t) would no longer

be an useful measure of the average performance of schema ξ. Therefore, the assumption

is that the variance of the fitness values for the individuals in the population that

correspond to schema ξ is sufficiently low (Radcliffe and Surry (1995)). In contrast if

this variance is high (i.e. the chromosomes that are instances of ξ can have both low

and high values of the fitness function), the predictions of the schema theorem are no

longer useful. Therefore, it is necessary to use higher level entities, other than schemata,

to describe the evolution of the population.

Forma theory is a generalization of schema theory, in which formae instead of

schemata are used. A forma is an equivalence class that results from the definition

of genes as equivalence relations between candidate solutions for the problem at hand.

Therefore, we can identify a forma with an allele. Consider, for instance, the equivalence

relation “x is related to y if and only if x was born in the same country as y”. This

equivalence relation splits the search space into disjoint partitions, each one representing

a country. Therefore, the equivalence relation can be seen as a gene. Correspondingly,

the equivalence classes represent the different alleles of the gene. In general, a set of

N equivalence relations {ψ1, . . . , ψN} must be constructed in order to properly define a

genetic representation. Each equivalence relation defines a representative gene for the

problem at hand. Therefore, a meaningful set of equivalence relations gives rise to a

meaningful genetic representation. This is the key observation of forma theory.

In order to define what is ”meaningful” in this context, some auxiliary concepts

need to be introduced. The notation and definitions are adapted from those in Rad-

cliffe (1994). While remaining faithful to the original, we occasionally introduce some

modifications with respect to Radcliffe (1994) for the sake of clarity. If the changes are

significant for a given lemma, a proof of the lemma with the modified definitions is given

in the Appendix.

Let S represent the space of all candidate solutions for a given problem, and let E(S)
denote the set of all possible equivalence relations ψ that can be defined over S. Given

an equivalence relation ψ, Ξψ (or simply Ξ if there is no ambiguity) is defined as the set

of all equivalence classes induced by ψ. An equivalence relation is a reflexive, symmetric

and transitive relation that defines a partition of the original set

S =
∪
ξi∈Ξ

ξi and ξi ∩ ξj = 0 for all ξi, ξj ∈ Ξ , i ̸= j. (3.7)

Chapter 3. Design of Genetic Representations and Operators 41

In other words, ψ partitions the search space into disjoint equivalence classes ξi,

which we identify with formae.

The basic operation for combining equivalence relations is defined as the intersection

or logical conjunction. Let ψ and ϕ be two equivalence relations. Their intersection

ψ ∩ ϕ has value true if and only if both ψ and ϕ have value true on any given argument

pair

x(ψ ∩ ϕ)y if and only if xψy ∧ xϕy ∀x, y ∈ S. (3.8)

The equivalence classes generated by the intersection ψ ∩ ϕ are the intersections of

those generated by ψ and ϕ.

A meaningful genetic representation is characterized in this framework by the exis-

tence of an orthogonal basis of equivalence relations in S. The following definitions are

useful in understanding what is meant by this property:

Definition 3.1. Let Ψ be a set of equivalence relations over S. We say that Ψ covers

S if and only if for every candidate solution x ∈ S there is at least one y ̸= x such that

x and y are not equivalent under a relation in Ψ; that is, ∀x ∈ S, ∃ψ ∈ Ψ, y ∈ S and

x ̸= y such that xψy is false.

Coverage is a first condition for a set of equivalence relations Ψ to be meaningful.

This notion reflects the fact that it is possible to discriminate among the candidate

solutions in S using the equivalence relations in Ψ.

Definition 3.2. A set Ψ of equivalence relations is said to span another set Φ if and only

if every equivalence relation ϕ ∈ Φ can be constructed by intersections of the equivalence

relations in Ψ; that is, ∀ϕ ∈ Φ, ∃{ψ1, . . . , ψm} ⊆ Ψ such that ∩mi=1ψi = ϕ.

Definition 3.3. A set Ψ of equivalence relations is said to be independent if and only if

no equivalence relation ψ ∈ Ψ can be constructed by intersections of other equivalence

relations in Ψ.

Definition 3.4. A set Ψ of equivalence relations is said to be orthogonal if and only

if, given any subset of equivalence classes generated by different equivalence relations

in Ψ, their intersection is non-empty, i.e. given any subset {ξ1, . . . , ξk} where ξi is an

equivalence class of relation ψi ∈ Ψ, it holds that ∩ki=1ξi ̸= ∅.

Orthogonality implies that we can combine alleles in different genes independently.

That is, given any two genes, every combination of alleles always represents a feasible

candidate solution. Therefore, the assignment of a given allele to a gene is independent

of any other assignment in another gene.

Definition 3.5. A set Ψ of equivalence relations is said to form a basis for S if and

only if Ψ is independent and Ψ spans E(S).

An orthogonal basis of equivalence relations that covers S induces a meaningful

genetic representation. Moreover, this basis is unique, as shown in Radcliffe (1994). We

identify each equivalence relation in the basis with a gene, and each equivalence class

Chapter 3. Design of Genetic Representations and Operators 42

induced by an equivalence relation with an allele. An equivalence relation in the basis

will be called a basic equivalence relation and each equivalence class induced by a basic

equivalence relation will be called a basic forma.

In summary, the design of a meaningful genetic representation for a given problem

consists in defining a set of genes (equivalence relations) Ψ = {ψ1, . . . , ψN} with the

following properties:

1. Independence: No gene in Ψ can be constructed from other genes in the set.

2. Span: Every possible equivalence relation can be obtained by combinations of

genes in Ψ.

3. Orthogonality: Every candidate solution represented by any combination of al-

leles exists and is meaningful.

4. Coverage: For every two distinct candidate solutions x ̸= y, there is at least one

allele which is different in the genetic representation of x and y.

As noted in Radcliffe (1990), the schema theorem (3.6) also applies if ξ represents a

general equivalence class (forma) instead of a schema. Therefore, using formae instead

of schemata, the theorem remains valid and convergence of the genetic algorithm is

guaranteed if formae represent sets of candidate solutions with similar performance.

3.3 Crossover operators

We have established the properties that a genetic representation should have in order

to be meaningful within the framework of forma theory. The question now is how to

design useful crossover operators for a given genetic representation. Assuming that

a meaningful genetic representation (i.e. an orthogonal covering basis Ψ) has been

defined, we identify a set of properties that are desirable for the corresponding crossover

operators. To describe these properties it is useful to introduce some definitions first:

A crossover operator is a function ω : P(S) × Kω → S, where P(S) denotes the

power set of S and Kω the set of parameters of the operator. For instance, for one-point

crossover this set would have a single element that specifies the crossover point. The

following notions play an important role in the design of representation-independent

crossover operators:

Definition 3.6. Let P be a set of candidate solutions in a given search space S. The

dynastic potential of P , written Γ(P), is defined as the set of solutions whose alleles

are present in the set of alleles of all solutions in P , i.e., Γ(P) = {y ∈ S|∀ξ ∋ y, ∃x ∈
P such that x ∈ ξ}, where ξ is an allele.

The dynastic potential of a set of “parents” can be seen as the set of all possible

solutions that can be generated by taking alleles from the union set of all the alleles

present in the parents.

Chapter 3. Design of Genetic Representations and Operators 43

The following definition captures the notion of “intersection” of a given set of solu-

tions.

Definition 3.7. Let P be a set of candidate solutions in a given search space S, and
let Ψ be a basis of equivalence relations. The similarity set of P , written Σ(P), is

defined as the set of the candidate solutions that are equivalent to all candidate solutions

in P under a maximal subset of basic equivalence relations, i.e., let Ψ∗ ⊆ Ψ be the

maximal subset of Ψ such that ∀ψ∗ ∈ Ψ∗ and ∀x1, x2 ∈ P , x1ψ
∗x2. If Ψ∗ ̸= ∅, then

Σ(P) = {y ∈ S|∀x ∈ P and ∀ψ∗ ∈ Ψ∗ it holds that xψ∗y}. Otherwise, if Ψ∗ = ∅ we

define Σ(P) = S (i.e., the parents are not equivalent under any equivalence relation).

We now list the properties that crossover operators should have so that the combi-

nation of parent solutions leads to an effective exploration of the search space

Definition 3.8. Respect. We say that a crossover operator ω respects a genetic

representation if and only if all the children produced by ω share all common relevant

information with the parents, i.e. ∀P ⊆ S, ∀θ ∈ Kω, ω(P, θ) ∈ Σ(P).

Definition 3.9. Assortment. We say that a crossover operator ω assorts a genetic

representation if and only if for every forma ξ to which a given parent belongs, ω can

produce a child belonging to ξ, i.e., ∀P ⊆ S, ∀x ∈ P there is a θ ∈ Kω such that ∀ξ ∋ x,
ω(P, θ) ∈ ξ.

Definition 3.10. Transmission. A crossover operator ω is said to be transmitting if

and only if for every child produced by ω, every allele contained in the child is present

in some of the parents, i.e. ∀P ⊆ S, ∀θ ∈ Kω, ω(P, θ) ∈ Γ(P).

Respect is the property responsible for exploitation: the common information of the

parent set should be inherited by the children. Therefore, the search focuses on regions

of the solution space S containing formae to which all parents belong. A respectful

crossover operator generates offspring that belong to the similarity set Σ(P) of the

parents (lemma 42 in Radcliffe (1994)).

Assortment reflects the goal that the crossover operator should be able to produce all

potential combinations of formae to which the parents belong. It therefore corresponds

to the capacity of exploration of the genetic algorithm.

Transmission requires that the children produced by ω have all their alleles present

in at least one parent, i.e., the children lie in Γ(P). The following lemma states that

transmission implies respect.

Lemma 3.11. Let P ⊆ S be a given set of candidate solutions. Then their dynastic

potential is contained in their similarity set Γ(P) ⊆ Σ(P).

For instance, assume a genetic representation with three genes A, B and

C: gene A can take the values (alleles) A1 and A2, B can take the values

B1, B2 and B3 and gene C can take the values C1 and C2. Let P = {x, y}
be the set of parents, with x = (A1, B1, C1) and y = (A1, B2, C2). According

to our definitions, Γ(P) = {(A1, B1, C1), (A1, B1, C2), (A1, B2, C1), (A1, B2, C2)}.

Chapter 3. Design of Genetic Representations and Operators 44

The equivalence relation ’The value of gene A is the same’ is ful-

filled by both parents. The similarity set is therefore Σ(P) =

{(A1, B1, C1), (A1, B2, C1), (A1, B3, C1), (A1, B1, C2), (A1, B2, C2), (A1, B3, C2)}.
Clearly, Γ(P) ⊆ Σ(P).

Lemma 3.11 is a slightly weaker version of lemma 48 in Radcliffe (1994) but the

proof we provide is simpler. This new proof is included in Appendix A for completeness.

If crossover operators can be built that successfully assort and respect formae, this

set of formae is said to be separable. Otherwise, we say that the formae are non-separable.

If respect and assortment cannot be simultaneously achieved, one should try to build

operators that randomly sacrifice respect for assortment, or the other way round.

In summary, forma theory introduces the notions of respect, assortment and trans-

mission, which can be used to guide the design of representation-independent crossover

operators. Given a representation that is well-suited to the problem considered, the

crossover operators designed can be instantiated and define a specialized genetic algo-

rithm. In the following subsections, we provide some examples of operators designed

according to these principles.

3.3.1 Random Respectful Recombination (RRR)

The RRR operator achieves respect and ignores assortment. It simply samples a candi-

date solution in the similarity set of the parents at random with uniform probability.

Algorithm 8 Random Respectful Recombination (RRR) crossover.

Input: A set of parents P
Output: A child chromosome Θ.

• Compute Σ(P), the similarity set of the parents.

• Randomly select Θ ∈ Σ(P)

3.3.2 Random Equivalence Recombination (RER)

The goal in the design of the Random Equivalence Recombination (RER) operator is

to select a random child from the set of all candidate solutions which, for each basic

equivalence relation, are equivalent to some parent. Let Λ(P) = {x ∈ S|∀ψ ∈ Ψ ∃y ∈
P, such that xψy holds}. The definition of the RER operator is similar to that of RRR,

except that the random uniform selection is made from Λ(P) instead of from Σ(P).

3.3.3 Random Assortment Recombination (RAR)

This crossover operation provides a good balance between respect and assortment for

cases in which the genetic representation is non-separable. RAR crossover is described

in Algorithm 16. The integer parameter w ≥ 0 (which stands for weight) determines the

Chapter 3. Design of Genetic Representations and Operators 45

Algorithm 9 Random Equivalence Recombination (RER) crossover.

Input: A set of parents P
Output: A child chromosome Θ.

• Compute Λ(P) = {x ∈ S|∀ψ ∈ Ψ ∃y ∈ P, such that ψ(x, y) holds}.

• Randomly select Θ ∈ Λ(P)

amount of relevant common information of all parents that is retained by the offspring.

For w = 0, elements that are present in the chromosomes of all parents are not allowed

in the child. Higher values of w assign more importance to the elements in the parents’

similarity set. In the limit w →∞, only elements in Σ(P) are selected and the operator

converges to RRR.

Algorithm 10 Random Assortment Recombination (RAR) algorithm

Input: A set of parents P
Output: A child chromosome Θ.

• Construct a bag (a multiset, in which there can be repeated elements) G with the
following formae ∀ξ ∈ ΞP :

– If ∀x ∈ P , x ∈ ξ, introduce w copies of ξ.

– else introduce 1 copy of ξ.

• Initialize ΞΘ = S

• While G ̸= ∅:

– Choose randomly ξ ∈ G.
– If ξ ∩ ΞΘ ̸= ∅, ΞΘ = ΞΘ ∩ {ξ}

• Return a random element in ΞΘ.

3.3.4 Transmitting RAR (TransRAR)

The Transmitting RAR operator was originally introduced in Ruiz-Torrubiano and

Suárez (2011). The principle used in the design of the RAR operator is to achieve

an appropriate balance between respect and assortment. The key idea of the TransRAR

operator is to guarantee gene transmission instead of respect. Transmission is preferable

to strict respect because it guarantees that the genetic material of the parents’ chro-

mosomes will be transmitted to their offspring. The importance of transmitting genetic

recombination has been emphasized in previous studies. For instance, Cotta and Troya

(2003) establish the sufficient conditions to ensure that the pieces of information being

transmitted are independent of the actual ordering in which formae are included the

child. However, the condition they formulate relies on the separability of the genetic

Chapter 3. Design of Genetic Representations and Operators 46

representation. TransRAR recombination is effective also when the representation used

is non-separable.

The operator is described in Algorithm 11. The TransRAR operator assorts formae

because every combination of alleles in the parents can be obtained with a non-zero

probability. It also transmits genes: if they are selected, alleles that are present in

all parents are accepted with probability one. Formae that are present in only one

of the parents are accepted with probability p. The value of p controls the degree of

respectfulness of the operator. For lower values of p the operator favors respect. In the

limit p = 0 all formae to which all parents belong are selected. For higher values of the

parameter p, more formae not present in every parent are selected on average. In this

manner transmission is favored.

Algorithm 11 The TransRAR crossover operator.

INPUT: A set P of parents.
OUTPUT: A child chromosome Φ.

1. Create the multiset U as the multiset-union of the formae to which some parent
x ∈ P belongs: U =

⊎
{ξ|∃x ∈ P such that x ∈ ξ}.

2. Initialize ΞΘ = S

3. While U ̸= ∅:

• Extract ξk from U at random with uniform probability. U = U \ {ξk}
• If ∀x ∈ P , x ∈ ξk then ΞΘ = ΞΘ ∩ {ξk} with probability 1.

• else, ΞΘ = ΞΘ ∩ {ξk} with probability p.

3.4 Operators for cardinality constrained sets

In this section we instantiate the crossover operators defined in the previous section for

the particular case of genetic representations based on sets of fixed cardinality. In this

case, the relevant basis of equivalence relations is the following:

Let N be the number of available elements. For the sake of simplicity, we represent

each element by an integer in the set N = {1, . . . , N}. We define the search space

S = {s ∈ P(N) such that |s| = K}, where | · | denotes cardinality of a set and K, with

0 < K < N , is the fixed size of the sets.

Let Ψ be a set of N equivalence relations Ψ = {ψ1, . . . , ψN} such that xψiy is true

if and only if i ∈ x ∩ y. Then Ψ is a covering orthogonal basis of equivalence relations

for S. Since any two distinct elements x ̸= y in S are two subsets of N with cardinality

K < N , then it is clear that there is at least one ψi ∈ Ψ such that x and y are not

equivalent under ψi (i.e., the equivalence relation corresponding to an element i ∈ N
they do not have in common). Therefore, Ψ covers S.

The two requirements for Ψ to form a basis are: (i) Ψ is independent and (ii) Ψ spans

E(S), the set of all equivalence relations which can be defined over S. The independence

Chapter 3. Design of Genetic Representations and Operators 47

of Ψ is directly established by the observation that no equivalence relation ψi can be

constructed by intersections of other equivalence relations in Ψ. It is also apparent that

every equivalence relation in E(S) can be expressed as the intersection of equivalence

relations in Ψ. For instance, the equivalence relation “x and y are subsets ofN containing

the elements j and k” can be expressed as ψj ∩ ψk. Thus Ψ spans E(S). In general,

every equivalence relation in E(S) has the form “x and y are subsets of N containing

all the elements in a given subset s ⊆ N”. Such equivalence relations can be expressed

as ∩i∈sψi.

It can be easily seen that Ψ is an orthogonal set of equivalence relations, because

any intersection of the formae induced by equivalence relations in Ψ is non-empty. For

instance, let s ⊆ N and ∩i∈sψi be an arbitrary intersection of equivalence relations in

Ψ. This intersection is the set of all subsets that contain all the elements in s. This set

is always non-empty.

A simple example illustrates the notions of transmission, respect and assortment for

sets of fixed cardinality. Suppose we have to recombine the sets {1, 2, 3} and {1, 2, 4},
where the set of all elements is {1,2,3,4,5}. The first individual contains the alleles 1,

2, 3, 4̄ and 5̄, where ī denotes that element i is not part of the subset. Similarly, the

second individual is determined by the alleles 1, 2, 3̄, 4 and 5̄. Respect requires that

the children produced by the crossover operation are equivalent to all parents under

the relations ψ1 and ψ2. Therefore, the possible children would be {1, 2, 3}, {1, 2, 4}
and {1, 2, 5}. Transmission, which is stronger than respect, requires the children to have

every allele in common with some parent. The alleles present in the parents are 1, 2, 3, 3̄,

4, 4̄ and 5̄. Therefore, the possible children would be {1, 2, 3} and {1, 2, 4}. Assortment

requires every combination of the alleles to be a possible outcome of the recombination.

For instance, {2, 3, 4} should be possible with some probability. As can be seen, respect

and assortment cannot be simultaneously achieved in this representation.

Therefore we have shown that Ψ is a meaningful genetic representation for S. We can

now write down specific versions of the representation-independent operators introduced

in the previous section. In Algorithm 12 the pseudocode of RRR for fixed-size sets is

given. It begins by calculating the intersection of the parents’ chromosomes. Then the

elements in this intersection are selected at random until the child is complete (i.e., it

contains exactly K elements) or until the intersection is empty. In this last case, the

child chromosome is completed with elements selected at random from N .

The pseudocode in Algorithm 13 shows the corresponding set version for RER. In-

stead of taking the intersection of the parents’ chromosomes, the union set is calculated.

Then elements are selected at random until the desired cardinality is reached. Note that

the union set of two sets of cardinality K has cardinality at least K. Therefore, the set

from which elements are selected (originally the union set) cannot be empty before the

child is complete.

The RAR crossover operator for sets is detailed in Algorithm 14. As mentioned

earlier, a positive integer w is used to control the amount of common information of the

parents that is retained by the offspring. The RAR operator makes use of six sets: Set

A is the intersection set, which consists of elements that appear in both parents. Set

Chapter 3. Design of Genetic Representations and Operators 48

Algorithm 12 The Random Respectful Recombination operator for sets of fixed car-
dinality.

Input: Two parents I1 and I2, and a fixed cardinality K.
Output: A child chromosome Θ.

1. Θ = I1 ∩ I2.

2. While |Θ| < K:

• Extract randomly an item s ∈ N .

• Θ = Θ ∪ {s}.

Algorithm 13 The Random Equivalence Recombination operator for sets of fixed car-
dinality.

Input: Two parents I1 and I2, and a fixed cardinality K.
Output: A child chromosome Θ.

1. Θ = ∅.

2. U = I1 ∪ I2.

3. While |Θ| < K:

• Extract randomly an item s ∈ U .

• Θ = Θ ∪ {s}.

B includes the elements that are absent from all parents. Sets C and D contain the

elements that are present in only one parent. Set E is initially empty (E = ∅). An

additional set G is built with w copies of the elements from A and B and one copy from

the elements in C and D. The elements in G include a label that specifies the set from

which they originate. A child chromosome is generated by extracting one element from

G in each iteration. Let g be the element extracted from G: If it originates from A or

C and g /∈ E, then it is directly included in the child’s chromosome. If g ∈ B or g ∈ D,

then it is included in set E. The process is terminated when the child has the required

cardinality K or when G = ∅. If the latter happens, then the child is completed with

elements still not included. These elements are selected at random from N as in RRR.

Finally, Algorithm 15 provides an instantiation of TransRAR for sets of fixed cardi-

nality. In this pseudocode the extension function EI1I2 for the parent chromosomes I1
and I2 denotes the following function

EI1I2 : I1 ∪ I2 → {0, 1}

EI1I2(u) =

{
1 if u ∈ I1 ∩ I2
0 if u ∈ I1 ∪ I2 − (I1 ∩ I2).

(3.9)

Chapter 3. Design of Genetic Representations and Operators 49

Algorithm 14 The Random Assortment Recombination operator for sets of fixed car-
dinality.

Input: Two parents I1 and I2, and a fixed cardinality K.
Output: A child chromosome Θ.

1. Create auxiliary sets A,B,C,D,E:

• A = elements present in both parents.

• B = elements not present in any of the parents.

• C ≡ D elements present in only one parent.

• E = ∅.

2. Build setG = {w copies of elements from A and B, and 1 copy of elements in C and D}

3. While |Θ| < k and G ̸= ∅:

• Extract g ∈ G without replacement.

• If g ∈ A or g ∈ C, and g /∈ E, Θ = Θ ∪ {g}.
• If g ∈ B or g ∈ D, E = E ∪ {g}.

4. If |Θ| < k, add elements chosen at random from N − Θ until chromosome is
complete.

Algorithm 15 The TransRAR crossover operator for sets of fixed cardinality.

Input: I1, I2 the parent chromosomes of cardinality K.
Output: Φ offspring of cardinality K.

1. Create multiset U as the multiset-union of the parent chromosomes: U = I1 ⊎ I2.

2. Assign each element u ∈ U the attribute EI1I2(u).

3. While child chromosome Φ is incomplete (|Φ| < K):

• Extract an element uk from U uniform randomly. U = U \ {uk}
• If EI1I2(uk) = 1, then Φ = Φ ∪ {uk} with probability 1.

• else, Φ = Φ ∪ {uk} with probability p.

• If U = ∅, select K − |Φ| elements randomly to complete chromosome.

Chapter 3. Design of Genetic Representations and Operators 50

This function determines an auxiliary attribute that is assigned to each element in

the union of the parents’ chromosomes. This attribute has the value 1 when the element

belongs to the intersection set I1 ∩ I2 and 0 otherwise. We then create a multiset in

which each element has multiplicity 2 if it belongs to both parents, and 1 otherwise. If

the attribute EI1I2 is equal to 1, the new element is included in the child chromosome

with probability 1. If not, the element is included with a probability p. An adequate

balance between respect and diversity is achieved for intermediate values of p. After

exploratory experiments, the value p = 1/2 is used in the empirical evaluations because

it provides good overall results in all the problems investigated, as will be shown in Part

II of this thesis.

3.4.1 Complexity analysis

Here we present an analysis of the run-time complexity of the set versions of the crossover

operators RER, RRR, RAR and TransRAR.

Let K and N be defined as in the previous sections. The RER and RRR algorithms

can be implemented in O(K logK) time: once the parent chromosomes are sorted, calcu-

lating the intersection and the union requires only linear time. The run-time complexity

of the RAR operator is computed for a fixed value of the parameter w > 0: Step 1

in Algorithm 14 can be completed in O(N) + O(K logK) operations, assuming that

the parent chromosomes have to be sorted first. Assume that building the multiset G

requires constant time O(1). In the worst case step 3 of the algorithm requires |G|
iterations. By construction, |G| = O(wN). The determination of the set from which

g originates requires constant time if each element is appropriately labeled when G is

constructed. Assuming that set E is kept sorted at every step, then searching g in E

requires O(logN) steps. Therefore, the total worst-case complexity is

f(N,K,w) = O(1) +O(N) +O(K logK) +O(wN logN) = O(wN logN). (3.10)

The TransRAR operator can be implemented very efficiently. Let I1 and I2 be the

parent chromosomes of cardinality K, and let the extension function EI1I2 be defined

as in Eq. (3.9). Steps 1 and 3 require O(K) operations. Consider Step 2. The value of

the function EI1I2 can be obtained by sorting the elements in U and then removing one

element u for which we calculate EI1I2(u). Note that element u is repeated if and only

if it is in the intersection set of the two parent sets. Therefore binary search can be used

to search for an additional copy of u. If a copy is found, then EI1I2(u) = 1. Otherwise

EI1I2(u) = 0. Since sorting requires O(K logK) steps and removing and searching in the

sorted multiset require O(logK) steps, the worst case complexity f(K) of the algorithm

is

f(K) = O(K) +O(K logK) = O(K logK). (3.11)

Note that the worst-case complexity of TransRAR is expressed in terms of the size

of the subset K, whereas in the case of RAR the complexity is a function of the size

of the total number of elements, N > K. In many cases of practical interest N ≫ K.

Therefore, the worst-case complexity of RAR is larger than TransRAR. This does not

Chapter 3. Design of Genetic Representations and Operators 51

necessarily imply that TransRAR is more efficient than RAR on average. Note also that

the complexity of TransRAR does not depend on the parameter p either. Nonetheless,

the worst-case complexity of RAR depends explicitly on the parameter w.

3.5 Summary and Discussion

In this chapter the framework of forma theory has been reviewed. Several definitions have

been introduced to characterize genetic representations that are meaningful according

to this framework. The genetic encodings designed according to the principles of forma

theory include problem knowledge in the form of equivalence relations over the space

of feasible solutions. This approach presents several advantages over standard analysis

based on schemata, which do not take into account the specific structure introduced by

the cost function in the search space. By taking into account specific domain knowledge

in the chromosome representation and in the design of the crossover operators we expect

to obtain better solutions to the optimization problem at a lower computational cost.

It is possible to design representation-independent crossover operators in a very gen-

eral way using abstract concepts of forma theory, such as respect, assortment and trans-

mission. Examples of these types of operators that have been used in previous studies

are RRR, whose goal is to achieve respect, and RAR, an operator that balances respect

and assortment. In this thesis we introduce the TransRAR operator, which is designed

to balance assortment with transmission instead of with respect.

In forma theory a genetic representation is defined as an orthogonal basis of equiv-

alence relations that covers the search space. The set of equivalence relations selected

should bring out the structure induced by the objective function in the search space.

Once a particular representation is chosen the general crossover operators defined in an

abstract level can be instantiated for that particular representation. If the chosen repre-

sentation appropriately reflects the relevant features of the problem considered, one can

use the instantiated versions of the abstract operators directly, without much fine-tuning

of their parameters. Otherwise, if the basis of equivalence relations does not reflect all

relevant aspects of the problem, more sophisticated operators need to be be designed.

Finally, this chapter proposes the use of a particular chromosome encoding based

on sets with a fixed number of elements to address cardinality-constrained optimization

problems. Particular implementations of the RER, RRR, RAR and TransRAR crossover

operators for this type of representation are given and their complexity is analyzed. In

the remainder of this thesis we investigate the improvements of performance that can

be obtained using these specially designed genetic algorithms in problems of practical

interest.

Part II

Applications

53

In the following chapters, we present applications of the general framework proposed

for the solution of optimization problems with cardinality constraints. The first opti-

mization task considered is the 0/1 knapsack problem. This problem is intended to

serve as an illustration of how the metaheuristics investigated can be used to perform

the combinatorial search when cardinality constraints are considered. In these problems

the performance of metaheuristic approaches is compared with exact solutions.

In the other domains of application investigated the problem without the cardinality

constraint can be solved using quadratic programming. In particular, we consider the

problems of determining sparse principal components in statistics, and the optimal port-

folio selection and index tracking problems in quantitative finance. The combination of

metaheuristics and quadratic programming provides an efficient approach to the solution

of these problems. The sparse solutions obtained are stable and robust with respect to

the inputs of the optimization, and, in the pertinent cases, exhibit good out-of-sample

performance. This finding is one important contribution of this thesis. Additionally,

one can use pruning heuristics to reduce the dimensionality of the problem. This pro-

vides a practical procedure to tackle high-dimensional problems, whose solution would

be unfeasible without the dimensionality reduction.

Finally, we address the consensus tree problem in phylogenetics. In this problem

dimensionality reduction techniques are also used to improve the efficiency of exact

methods based on branch-and-cut techniques. Additional improvements can be obtained

using hybrid metaheuristics. These improvements in efficiency are illustrated using both

simulated trees and phylogenetic trees obtained from actual genetic data.

CHAPTER 4

THE KNAPSACK PROBLEM

The 0/1 knapsack problem is a classical example of constrained combinatorial optimiza-

tion. It consists in maximizing the total profit of the elements contained in a knapsack.

Since the knapsack has only limited capacity, the problem is to select a subset of ele-

ments such than the sum of the profits of the elements in the subset is maximal and the

capacity of the knapsack is not exceeded. In its original formulation, the problem does

not include a cardinality constraint. However, it can be approached by solving a series

of cardinality constrained problems. In this chapter, the knapsack problem is used as

benchmark for testing the ideas presented in Chapters 2 and 3.

4.1 Introduction

Knapsack problems are a family of combinatorial optimization problems that involve

selecting a subset from a pool of items. An extensive survey of methods to solve knapsack

problems is presented in Kellerer et al. (2004). There are several variants of knapsack

problems. In the bounded knapsack problem (Pisinger (2000)), one is allowed to take

a limited number of items from each type. The unbounded version of the problem

(Poirriez et al. (2009)) allows any number of elements to be selected from each type.

Multidimensional knapsack problems (Puchinger et al. (2010)) introduce more than one

knapsack, and consider a linear restriction per knapsack. In this case, repetitions of the

elements are not allowed in the knapsack. A quadratic objective function instead of a

linear one is considered in the quadratic knapsack problem (Pisinger (2007)). The profit

is a quadratic form computed from a symmetric matrix of non-negative profits.

In this chapter, we restrict our attention to the classical 0/1 knapsack problem. Both

exact and approximate methods have been used to address this problem, which is NP-

complete and cannot be solved in polynomial time (Miller and Thatcher (1972)). In

Balas and Zemel (1980), the authors introduce the notion of core of a knapsack problem

and used it to construct efficient heuristics for its solution. The core can be understood

as the subset of the original problem variables which remains if we eliminate the variables

57

Chapter 4. The Knapsack Problem 58

for which there is certainty that that are included or that they are not included in the

optimal solution. Their approach is based on solving the LP relaxation of the problem

to obtain an approximation to the core. A dynamic programming approach was used

in Martello et al. (1999). The authors also derived tighter bounds for the LP relaxation

of the problem to improve the performance of the algorithm. Exact algorithms based

on branch-and-bound approaches and dynamic programming were reviewed in Pisinger

(2005). In this reference the author focuses on constructing new test instances of the

problem that are difficult to solve by state-of-the-art algorithms. Genetic algorithms

with a transposition mechanism were tested in Simões and Costa (2001). In their study,

GAs that use transposition performed better than GAs that use standard crossover op-

erators. In Ku and Lee (2001) a set oriented GA was presented. The representation

and operators employed in this study exhibit some similarities with those introduced

in the framework on forma theory. In Larrañaga and Lozano (2002) EDAs are used to

address problems of this type. The authors of this study introduce binary and permu-

tation based representations and propose an effective mechanism to handle unfeasible

individuals.

The objective of this chapter is to illustrate the application of the ideas from Chapters

2 and 3 using the knapsack problem as benchmark. Since no subordinate optimization

is necessary, one can concentrate on the cardinality constraint and compare the various

methods proposed without having any influence from difficulties in the solution of sub-

ordinate optimization problems. Therefore, the focus will be on the comparison of the

perfomance of the various metaturistics considered: GAs with binary and set encoding,

simulated annealing and estimation of distribution algorithms.

The rest of this chapter is organized as follows: Section 4.2 introduces the 0/1

knapsack problem. In Section 4.3, the hybrid approaches used to solve the problem with

cardinality constraints are detailed. Section 4.4 presents the results of computational

experiments performed to compare the metaheuristic approaches with an exact solution

based on a branch-and-bound approach. Finally, Section 4.5 outlines the conclusions of

the chapter.

4.2 Optimization model

Consider a set of N items that can be used to fill up a knapsack. Each of these elements

has a profit pi > 0 and a weight wi > 0 associated with it. The objective is to identify

the subset of items that maximizes the accumulated profit, subject to the constraint

that the overall weight does not exceed a fixed capacity W > 0

max
z

N∑
i=1

pizi (4.1)

s.t.
N∑
i=1

wizi ≤W (4.2)

zi ∈ {0, 1} for i = 1, . . . , N. (4.3)

Chapter 4. The Knapsack Problem 59

In this formulation of the problem, the components of the binary vector z encode

which items are included (zi = 1) or excluded (zi = 0) from the knapsack. Note that the

model does not have an explicit cardinality constraint. Nevertheless, the optimum can

be found by solving a series of cardinality constrained knapsack problems of the form

max
z

N∑
i=1

pizi (4.4)

s.t.

N∑
i=1

wizi ≤W (4.5)

N∑
i=1

zi = k for k = 1, . . . ,K. (4.6)

The k-th element in this sequence of problems is a knapsack problem with the restric-

tion that only k items can be included in the knapsack. Let zk be the optimal solution to

the problem with cardinality k. Then we take as final solution z∗ = argmaxk
∑N

i=1 piz
k
i .

Note that we can also apply the following early termination criterium: if a problem with

cardinality k is not feasible, the problems with cardinalities k + 1, . . . , N need not be

investigated.

4.3 Hybrid approaches

We now describe the optimization metaheuristics that will be applied to the standard

knapsack problem. Since this problem has no continuous variables or additional con-

straints, one can directly evaluate the objective function of the candidate solution (4.1)

without having to solve a subordinate optimization problem as is the case in most of

the applications analyzed in this thesis. To make a fair comparison of all the methods

investigated, the capacity constraint is handled in the same manner in all of them: if

the candidate subset exceeds the knapsack capacity W , a penalty proportional to the

weight surplus is applied. This penalty is not related to the term that could be used to

penalize violations of the cardinality constraints as is done in some of the metaheuristics

considered (see subsection 2.3.2).

In the family of genetic algorithms (GA), we consider on the one hand GAs with

binary encoding with uniform crossover and a linear penalty term for the cardinality

constraint, and, on the other hand, GAs with set encoding that employ the different

crossover operators described in Section 3.3: RER (Algorithm 13), RRR (Algorithm

12), RAR (Algorithm 14) and TransRAR (Algorithm 15). We also apply simulated

annealing with a set representation (Algorithm 1) where the neighboring states in the

search are generated using the operator that is used for mutation in the GAs. This

operator exchanges one element present in the candidate solution with an element not

present in it.

Chapter 4. The Knapsack Problem 60

Finally, the PBIL algorithm from the EDA family (see Algorithm 3) with update eq.

(2.10) is included in the comparison. To sample individuals of a given cardinality from

the distribution of gene values, we use the sampling scheme detailed in Algorithm 4.

4.4 Results

To compare the performance of the different optimization methods analyzed, we use the

testing protocol proposed in Michalewicz (1996) and Simões and Costa (2001). Three

types of problems, defined in terms of two parameters v, r ∈ R+, v > 1, are considered:

(1) Uncorrelated : Weights and profits are generated uniformly at random in [1, v].

(2) Weakly correlated : Weights are generated uniformly at random in [1, v]. Profits

are generated in the interval [wi − r, wi + r].

(3) Strongly correlated : Weights are generated uniformly at randmon in [1, v]. The

value of the profit is determined as pi = wi + r.

In general, knapsack problems with correlations between weights and profits are more dif-

ficult to solve than problems in which the weights and profits are independent (Pisinger

(2005)). We use v = 10, r = 5 and a capacityW = 2v, which tends to result in solutions

with only a small number of items.

The results reported are averages over 25 realizations of each problem, which are

solved using the different approximate methods: a standard GA with linear penalty,

different GAs with set encoding using the RER, RRR, RAR and TransRAR crossover

operators, SA and PBIL. A geometric annealing schedule Tk = γTk−1 with γ = 0.9 is

used to obtain the solutions in SA. The GAs evolve populations composed of 100 indi-

viduals. The probabilities of crossover and mutation are pc = 1, pm = 10−2, respectively.

In PBIL, a population composed of 1000 individuals is used. The probability distribu-

tion is updated using the best 10% of the individuals. The smoothing parameter α is

0.1. Exact results obtained with the solver SYMPHONY from the COIN-OR project

(Ladanyi et al. (2009)) implementing a branch-and-cut (B&C) approach (Padberg and

Rinaldi (1991)), are also reported for reference. In the strongly correlated problems, it

has not been possible to find the exact solution with the amount of time allocated.

The value of the parameter p in the TransRAR operator (Alg. 11) is determined in

exploratory experiments. Figure 4.1 presents a typical outcome of these experiments.

This figure displays the best average profit obtained in a knapsack problem with 500

elements and no correlation as a function of p, the probability of accepting an element

that is present in only one of the parents once it has been drawn. As can be seen from

this plot, large values of p lead to a sharp deterioration of performance. The reason

is that too much variability is introduced in the search and the algorithm is not able

to preserve formae that perform well. Values of p close to 1/2 yield the best results.

Fairly good results are also obtained for lower values of p. In this particular case,

high degrees of respect (and therefore lower variability) lead to good results. This is

Chapter 4. The Knapsack Problem 61

 50

 60

 70

 80

 90

 100

 110

 120

 130

 0 0.2 0.4 0.6 0.8 1

M
ea

n
pr

of
it

Probability of accepting

Figure 4.1: Mean profit obtained by TransRAR in the knapsack problem with 500
items and no correlation as a function of the probability of acceptance.

generally the case, but too much respect can result in premature convergence, in which

case suboptimal solutions would be obtained. Experiments in other problems give similar

results. Therefore, no further adjustments of this parameters are made and the value

p = 1/2 is used in all cases.

The optimal value of the parameter w in RAR has also been determined in ex-

ploratory experiments. In view of the results of these experiments, the best performance

is obtained with w = 1. This is different from the value w = 2 proposed as a natural

choice and used in the original study by Radcliffe (Radcliffe and George (1993)). In

our experiments, the more standard choice w = 2 leads to suboptimal solutions because

too much common information of the parents is exploited by the crossover operator.

The consequence is that the algorithm frequently converges prematurely and becomes

trapped in local optima.

Tables 4.1 and 4.2 display the average profit obtained and the total execution time (in

seconds) for each method. The experiments were performed on an Intel Core Duo with

3.00 Ghz processor speed and 2 Gb RAM. None of the approximate methods reaches the

optimal profit, which is calculated using an exact branch-and-cut method. The highest

profit obtained by an approximate optimization method is highlighted in boldface.

In most cases, the best results are obtained by TransRAR. Nevertheless, the differ-

ences in quality between the solutions obtained by RAR and by TransRAR are often

very small. In terms of efficiency, the computational cost of TransRAR is much lower

than RAR, RER and RRR. The smallest speed-up ratio between TransRAR and the

following fastest method in the GA family is 2.1 in the strong correlation case with a

universe of 100 elements. In general the algorithms that use a set encoding (set GAs and

Chapter 4. The Knapsack Problem 62

Table 4.1: Comparison of average profits with restrictive capacity.

Algorithm Problem No. items
100 250 500

GA Linear No corr. 79.36 90.63 95.93
penalty weak 52.97 59.07 60.40

strong 76.19 83.98 84.52

No corr. 80.84 99.81 109.43
GA RER weak 53.39 63.67 68.43

strong 78.98 92.40 96.20

No corr. 80.74 96.61 104.68
GA RRR weak 52.96 61.80 65.21

strong 78.76 89.99 94.79

No corr. 82.09 105.34 119.88
GA RAR weak 54.38 66.24 74.17

strong 79.77 94.20 101.40

No corr. 81.97 105.46 120.11
GA TransRAR weak 54.38 66.69 74.78

strong 79.78 94.20 101.40

No corr. 80.70 102.91 118.07
SA weak 53.53 65.13 73.40

strong 79.73 94.15 102.16

No corr. 81.89 104.51 117.28
PBIL weak 54.33 65.85 72.05

strong 78.99 92.39 96.60

B&C No corr. 82.11 106.43 123.93
(exact) weak 54.43 67.10 76.61

strong - - -

SA) exhibit the best performance. However, they require longer times to reach a solution

as well, especially SA. PBIL obtains good results in small uncorrelated problems, being

also competitive in medium size instances, but the algorithm encounters some difficulties

in the larger instances. This is explained by the fact that the sampling and estimation

of probability distributions becomes progressively more difficult as the dimensionality

of the problem increases. Furthermore, PBIL assumes statistical independence between

the variables, which makes the algorithm perform worse on problems in which correla-

tions are present. As expected, the standard GA with linear penalty has a very poor

performance in all the knapsack problems analyzed. The linear penalty function mis-

leads the search and cannot conduct the algorithm efficiently towards promising regions

in the search space.

4.5 Summary and Conclusions

In this chapter, we have used the 0/1 knapsack problem as benchmark for testing the

ideas and algorithms proposed in Chapter 2 and 3. The focus has been placed on com-

paring the performance of the different algorithms in solving the cardinality constrained

Chapter 4. The Knapsack Problem 63

Table 4.2: Comparison of total execution times with restrictive capacity.

Algorithm Problem No. items
100 250 500

GA Linear No corr. 26.2 38.1 57.2
penalty weak 26.9 38.3 56.1

strong 26.2 37.8 55.3

No corr. 34.8 53.5 66.1
GA RER weak 34.4 51.2 66.8

strong 37.1 57.3 70.8

No corr. 24.6 34.7 42.4
GA RRR weak 24.2 32.6 41.1

strong 25.8 36.5 49.8

No corr. 46.0 106.3 199.9
GA RAR weak 45.6 102.6 200.4

strong 48.4 109.0 204.0

No corr. 20.9 31.9 41.9
GA TransRAR weak 21.0 30.8 42.7

strong 22.5 33.3 43.2

No corr. 98.4 284.4 531.7
SA weak 99.9 286.4 531.9

strong 98.7 286.0 525.6

No corr. 24.1 47.4 91.5
PBIL weak 24.2 47.7 87.9

strong 24.0 47.3 86.9

B&C No corr. 62.0 178.7 568.8
(exact) weak 81.8 180.3 560.1

strong - - -

sub-problems resulting from our problem formulation. We used a testing protocol where

instances with various degrees of dependency between weights and profits were generated

and compared the results with an exact approach based on branch-and-cut.

From the results obtained by the methods investigated in a sufficient number of

randomly generated instances of the problem, we conclude that the GA approaches that

use the set representation introduced in Chapter 3 outperform the binary GA, SA and

PBIL. Moreover, there is only a small gap between the true optimal solutions found

by branch-and-cut and the approximate solutions obtained by the best of the set GAs.

In these types of problems the RER and RRR crossover operators obtain worse results

than RAR and TransRAR. These operators either generate too much variability (in

case of RER) or exploit too much common information from the parents (in RRR), and

consequently fail to produce high-quality solutions. By contrast, the GA with RAR and

TransRAR crossover operators achieve a good balance between assortment and either

respect (RAR) or transmission (TransRAR). Among these the GA with TransRAR

crossover obtains the best results both in terms of quality and speed. It is noteworthy

that the best overall performing algorithm, the set GA with TransRAR, is also the fastest

method. This is due to the fact that the TransRAR operator can be implemented very

efficiently.

CHAPTER 5

SPARSE PRINCIPAL COMPONENT ANALYSIS

Principal component analysis (PCA) is a data analysis technique that consists in finding

a set of orthogonal directions along which the variance of the observed data is as large

as possible. The first principal component is the direction along which the data has

the largest variance. Assuming that k principal components have been identified, the

(k + 1)th principal component is the direction of largest variance that is orthogonal to

the k principal components identified. This problem, without additional constraints,

can be formulated as a quadratic programming problem for which efficient algorithms

exist. In general, the principal components obtained are a combination of all input vari-

ables, which complicates their interpretation. The addition of a cardinality constraint

to enforce sparsity makes the resulting combinatorial problem (known as Sparse PCA)

difficult to solve. To address this problem, we propose to apply the hybrid algorithms

introduced in the first part of this thesis: metaheuristics are used to generate candidate

solutions of the combinatorial optimization. These candidate solutions are evaluated

using the solution of a subordinate optimization problem that can be efficiently solved

using quadratic programming. Finally, the efficacy of his approach is illustrated in a

series of experiments using data from real-world applications.

5.1 Introduction

Principal Component Analysis (PCA) is a dimensionality reduction technique that is

frequently used in data analysis, compression and visualization. It consists in finding

the directions along which the variance of the data is maximized. These directions,

which can be expressed as linear combinations of the initial variables, are known as

principal components. The degree of participation of each variable is measured by its

coefficient in the linear combination or loading. Figure 5.1 shows an example of PCA

using a sample of two-dimensional random variables. Principal components can be

obtained by computing the eigenvectors of the covariance matrix of the data. Since the

covariance matrix is symmetric, its eigenvectors are real and form an orthogonal basis

in the original space. The identification of principal components can also be formulated

65

Chapter 5. Sparse Principal Component Analysis 66

Figure 5.1: Example of PCA on random data. The arrows indicate the principal
components obtained.

−3 −2 −1 0 1 2 3 4

−
3

−
2

−
1

0
1

2
3

x

y

as a constrained optimization problem. To find the first m principal components one

needs to find the m directions that maximize the explained variance, subject to the

constraint that the solution vectors are normalized and orthogonal to each other. This

is a quadratic programming problem, in which the function to be maximized is the

variance of the projection of the random vector X composed by the original problem

variables, X = {x1, x2, . . . , xN} onto an m-dimensional space.

A drawback of this method is that, in general, the principal components are linear

combinations of all the original variables in the problem. This makes their analysis and

interpretation difficult. Requiring sparsity of these components is a way to improve their

interpretability. Sparse principal components are linear combinations of a small subset

of the original variables that explain as much of the variance of the original data as

possible. Since they have loadings in only a few of the problem variables they are easier

to interpret. Furthermore, the variables that are more likely to appear in the first sparse

principal components can be identified as the most relevant to the problem. Additionally,

sparse representations for this principal components can be used to reduce storage costs.

However, finding sparse principal components is an NP-hard problem (d’Aspremont et al.

(2008a)). This is a consequence of the cardinality constraint limiting the number of

loadings that are allowed to take non-zero value. The standard optimization techniques

Chapter 5. Sparse Principal Component Analysis 67

that can be used to efficiently solve the original problem need therefore to be adapted

to handle the cardinality constraint.

The problem of finding sparse principal components has received much attention

in recent literature. A simple heuristic based on setting to zero the loadings that are

smaller than a given threshold (known as “simple thresholding”) is proposed in Cadima

and Jolliffe (1995). The solutions can be good approximations to sparse PCs, but are

no longer orthogonal. Methods based on the lasso can also be applied to SPCA (Jolliffe

et al. (2003)). The technique proposed in this reference (called SCoTLASS, “simplified

component technique - LASSO”) employs a project gradient method. In the lasso, a

L1-norm penalty for non-zero values of the factor loadings is used. A larger weight of the

penalty term in the objective function leads to sparser models. However, it is not possible

to have direct control of the number of non-zero coefficients in the solution. In Zou et al.

(2006) SPCA is formulated as a regression problem that can be approximately solved

using convex optimization techniques. Greedy search was used in Moghaddam et al.

(2005). In this work, a simple local heuristic is proposed to improve candidate solutions.

Furthermore, the value of cardinality constraint is determined automatically for each

problem based on the eigenvalues of the covariance matrix and a target minimum value

of the variance to be explained. Since the k-th smallest eigenvalue of the covariance

matrix is a lower bound on the maximum possible variance with this cardinality, one

may choose the smallest k for which the corresponding eigenvalue is equal or above the

target variance. A cardinality constraint that explicitly limits the number of non-zero

loadings in the components is considered in d’Aspremont et al. (2007). In this reference

an approximate solution is obtained by solving a relaxed version of the original problem.

The relaxation consists in replacing the cardinality constraint with a convex inequality

constraint. The relaxed problem can then be solved using semidefinite programming

(Vandenberghe and Boyd (1996)).

This chapter is organized as follows: Section 6.2 formulates SPCA as a constrained

optimization problem. In Section 6.3, the hybrid optimization approach introduced in

the first part of this thesis is applied to the problem using several optimization meta-

heuristics. The results of an empirical evaluation of the solution methods proposed are

presented in Section 6.4. These results are obtained on randomly generated instances

and the “pitprops” dataset. Finally, the conclusions of this chapter are summarized in

6.5.

5.2 Optimization Model

In this section SPCA is formulated as a constrained quadratic optimization problem.

The strategy adopted is to identify one principal component at a time. To obtain m

principal components, a sequence of m cardinality constrained optimization problems

need to be solved. Additional constraints are included to enforce that the solutions

of each problem in the sequence are normalized and are also orthogonal to the sparse

principal components obtained earlier in the sequence. In this way, we guarantee that

the resulting components actually form an orthonormal basis.

Chapter 5. Sparse Principal Component Analysis 68

The first sparse principal component is obtained by solving the cardinality-

constrained optimization problem

max
x,z

x[z]T ·A[z,z] · x[z] (5.1)

s.t. ∥x[z]∥2 = 1 (5.2)

zT · 1 ≤ K, (5.3)

where A is the n × n covariance matrix of the data. The elements of the binary

vector z encode whether the principal component has a non-zero projection along the

corresponding direction (zi = 1) or not (zi = 0). The x[z] is obtained by removing the

components for which zi = 0 from x. Similarly A[z,z] is obtained by eliminating from A

the rows and colums for which zi = 0.

Once the first principal component x1 has been found, the covariance matrix A is

deflated as follows

A1 = A−
(
xT
1 ·A · x1

)
x1 x

T
1 , (5.4)

and a new problem of the form (5.1)-(5.3) is solved in terms of the deflated covariance

matrix A1 with the additional orthogonality constraints

xj
T · x = 0 j = 1, . . . ,m, (5.5)

where xj is the j−th principal component and m is the number of PCs obtained up

to that moment. Note that the optimum for the first principal component is attained

exactly with cardinalityK because of the interlacing property (Moghaddam et al. (2005))

of symmetric matrices: Let {λi(An)}ni=1 be the spectrum of the n×n symmetric matrix

An, where λ1(An) ≤ λ2(An) ≤ · · · ≤ λn(An), and let An−1 be a submatrix of size n−1.

The eigenvalues of An−1 are interlaced with the eigenvalues of An

λ1(An) ≤ λ1(An−1) ≤ λ2(An) ≤ · · · ≤ λn−1(An) ≤ λn−1(An−1) ≤ λn(An) (5.6)

This implies that eliminating one variable also shrinks the spectrum of the reduced

matrix by incrementing the minimum and decrementing the maximum eigenvalues. It is

therefore sufficient to consider the equality cardinality constraint zT · 1 = K. Note that

in the subsequent problems this may not be true because of the orthogonality restriction,

and therefore all cardinalities strictly below K have to be taken into consideration as

well.

The number m of principal components (i.e. the number of optimization problems to

solve) is normally determined beforehand or given implicitly by stopping when a given

percentage of the total variance of the original dataset is explained by the principal

components identified thus far.

Chapter 5. Sparse Principal Component Analysis 69

5.3 Hybrid approach

Since the matrix A is positive-definite standard quadratic programming techniques can

be used to solve the problem without the constraint (5.3). In the hybrid approach

proposed in this thesis the metaheuristics generate candidate solutions for z. The non-

zero components of this vector specify which variables are allowed to be used in the

linear combination that defines the sparse principal component. This subordinate opti-

mization problem is of the same form as the original problem, without the cardinality

constraint, but is now defined in a subspace of the original space. Therefore, it can

be efficiently solved using quadratic programming. In summary, the metaheuristics

described in Chapter 2 (GAs, SA and EDA) propose candidate solutions to the combi-

natorial optimization problem of selecting the subset of the original variables in which

the corresponding sparse principal component has loadings different from zero. The

subsets of variables proposed by the metaheuristic are then evaluated using the solution

of the subordinate optimization problem (5.1)-(5.2) for a fixed z.

Two different encodings are considered for the genetic algorithms. The first one is

binary encoding. In this type of encoding the candidate set of variables is represented as

a binary string of length n (the vector z introduced in the previous section). Standard

crossover operators, such as uniform crossover, can produce individuals that violate

the cardinality constraint (see Subsection 2.3.2). It is therefore necessary to determine

how these unfeasible individuals should be handled. Two options are considered. The

first one involves including a linear penalty, such as (2.9), in the fitness function. The

parameter β, which quantifies the strength of the penalty, is determined in exploratory

experiments. Another way of handling unfeasible individuals is applying the repair

mechanism outlined in Subsection 2.3.2. A second type of genetic encoding considered

is the set representation introduced in Chapter 3. In this representation, an individual

is encoded as a subset of size k ≤ K. As crossover operators for this representation

we use RAR (Algorithm 14) and TransRAR (Algorithm 15). Mutation is implemented

by interchanging a randomly chosen element in the current subset with an element not

included in it.

We also apply SA (Subsection 2.3.1, Algorithm 1) to solve the problem of finding the

optimal subset of variables. Every candidate solution is represented as a subset of the

target cardinality in a similar way to the GA with set encoding. The neighborhood of a

given candidate solution is determined by the operator that interchanges an element in

the subset with an element outside of the subset (i.e. the mutation operator in the GA

with set encoding).

In another set of experiments the PBIL algorithm (given by the update rule (2.10))

from the EDA family (Subsection 2.3.3) is used to address the combinatorial part of the

problem. This algorithm works with a binary encoding. Therefore, individuals of the

target cardinality are obtained by sampling using the Algorithm 4.

Chapter 5. Sparse Principal Component Analysis 70

5.4 Results

To compare the performance of the different methods under consideration, we first apply

them to the benchmark problem introduced in d’Aspremont et al. (2008a). Consider

the sparse vector v, whose components are

vi =


1, if i ≤ 50

1/(i− 50), if 50 < i ≤ 100

0, otherwise

(5.7)

A covariance matrix is built from this vector and U, a square matrix of dimensions

150× 150 whose elements are U [0, 1] random variables

A = σvvT +UTU, (5.8)

where σ = 10 is the signal-to-noise ratio. In this manner the pattern of cardinality is

partially masked by noise.

In our experiments the results of SA, binary GAs (with linear penalties and random

repair), set GAs with RAR (with w = 1) and TransRAR crossover operators, PBIL

and DSPCA, an approximate method based on semidefinite programming (d’Aspremont

et al. (2007, 2008b)) are compared. SA uses a geometric annealing scheme with γ = 0.9.

The GAs use a population of 50 invididuals. Crossover and mutation are performed with

probabilities pc = 1 and pm = 10−2, respectively. PBIL is executed with a population

of 400 individuals and α = 0.1. In this algorithm, the best 10% of the individuals are

used to update the probability distribution. The first sparse principal component is then

calculated. For every method involving stochastic search (all except DSPCA), the best

out of 5 independent executions of the algorithm is taken.

Figure 5.2 displays the variance explained by the first sparse principal component as

a function of its cardinality K = 1, 2, . . . , 140, for all the methods considered. As shown

in this figure, the GA using a linear penalty does not obtain high-quality solutions.

This is mainly due to the high dimensionality of the problem. PBIL performs slightly

better, but is clearly inferior to all the other methods except the GA with linear penalty.

Table 5.1 shows the detailed results for cardinality K = 50, which is the cardinality of

the true hidden pattern. In this table, the largest value of the variance achieved is

highlighted in boldface. The success rates, the run-time of the algorithm on an Intel

Core Duo machine with 3.00 GHz clock speed and 2 GB RAM and the total number

of optimizations performed are shown in this table as well. Note that times for the

the DSPCA algorithm are not given because the MATLAB implementation used in

d’Aspremont et al. (2008a) cannot be directly compared with the C programs used to

obtain the other results. From these results we conclude that the GA with set encoding

and RAR (w = 1) or TransRAR crossover and the GA with binary encoding and random

repair obtain the best results and explain more variance than the solution obtained by

DSPCA. The implementation of the GA with the TransRAR operator is clearly faster

than the other GAs. SA is very fast and achieves a result that is only slightly worse

Chapter 5. Sparse Principal Component Analysis 71

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 25 50 75 100 125 150

V
ar

ia
nc

e

Cardinality

GA Linear Penalty
GA Random Repair

GA RAR
GA TransRAR

SA
PBIL

DSPCA

Figure 5.2: Comparison of results for the SPCA problem.

Table 5.1: Results for the GA, SA, EDA and DSPCA approaches in the synthetic
problem for K = 50

Algorithm Best Success Time (s) Optimizations
variance rate

GA + Linear Penalty 18.8899 0.20 82.11 5142

GA + Random Repair 22.7423 0.80 127.75 7924

GA + RAR (w = 1) 22.7423 0.80 71.11 5162

GA + TransRAR 22.7423 1.00 66.75 4544

PBIL 20.4326 1.00 128.73 40800

SA 22.3304 1.00 30.20 10932

DSPCA 22.5001 − − −

with a success rate of 100%. PBIL and the GA with binary encoding and linear penalty

obtain solutions that are of clearly inferior quality. The reason for their poor performance

could be the high dimensionality of the problem. The performance of algorithms of the

EDA family rapidly deteriorates with increasing dimensionality (see, for instance, Ruiz-

Torrubiano and Suarez (2010)). On the other hand, the sampling of individuals of a

given cardinality and the use of a probability distribution in which all marginals are

independent could be hindering the performance of PBIL as well. The use of a linear

penalty term in the genetic algorithm with binary encoding seems to be detrimental to

the efficacy of the search.

In a second experiment with synthetic data, we generate a test instance as proposed

in Zou et al. (2006) by defining three hidden factors V1, V2 and V3

Chapter 5. Sparse Principal Component Analysis 72

V1 ∼ N (0, 290)

V2 ∼ N (0, 300)

V3 = −0.3V1 + 0.925V2 + ϵ, ϵ ∼ N (0, 1)

Next we define the 10 observed variables

Xi = Vj + ϵji , ϵ ∼ N (0, 1)

where j = 1 for i = 1, . . . , 4, j = 2 for i = 5, . . . , 8 and j = 3 for i = 9, 10. The ϵji
are independent random variables. We compute the exact covariance matrix and target

two principal components for it. Since the hidden factors approximately have the same

variance, and each of the first two factors appears in four variables, we expect withK = 4

principal components with non-zero loadings in {X1, X2, X3, X4} and {X5, X6, X7, X8},
respectively. Table 5.2 shows the results for these types of problems. Non-zero loadings

in sparse principal components are underlined. The first principal component explaining

roughly 40% of the variance is obtained with equal loadings in the variables X5, X6,

X7 and X8. The second principal component explains nearly the same variance with

loadings in the first four variables. This is the same result as the one obtained in

d’Aspremont et al. (2004) with DSPCA.

Table 5.3 shows the results obtained using a set GA with RAR crossover in the “pit-

props” dataset (Jeffers (1967)). This dataset represents a typical case where the loadings

obtained using standard PCA are very difficult to interpret. Following the methodology

described in d’Aspremont et al. (2004), 6 sparse principal components are obtained.

The 6 unconstraind principal components explain almost 87% of the total variance. The

most sparse result in d’Aspremont et al. (2004) is obtained with a maximum of 6 non-

zero loadings, explaining 77.3% of the total variance. The cardinality constraint is set to

K = 5 in our experiments, seeking therefore sparser principal components. The resulting

6 sparse principal components identified capture 78.8% of the total variance. Note that

the principal components obtained are less sparse than the ones obtained using SDP. In

this case, the sparsity pattern is (6, 2, 3, 1, 1, 1) (a total of 14 non-zero loadings). Every

principal component obtained using RAR-GA has cardinality 5. In consequence, there

are 25 non-zero loadings. To provide a more direct comparison we attempt to obtain

principal components with a similar sparsity pattern as SDP. We found out that using

the sparsity pattern (5, 2, 2, 2, 2, 1) the RAR-GA principal components are able to

explain 77.7% of the total variance, slightly better than SDP with only a maximum of

5 and a total of 14 non-zero loadings. RAR-GA could not find a feasible solution using

exactly the same sparsity pattern as SDP. It is also interesting that with a sparsity

pattern of (4, 3, 3, 2, 2, 2) RAR-GA is able to explain 78.3 % of the total variance. This

results in a maximum of 4 non-zero loadings, which is even easier to interpret.

Chapter 5. Sparse Principal Component Analysis 73

T
a
b
le

5
.2
:
R
es
u
lt
s
fo
r
th
e
h
id
d
en

fa
ct
or
s
d
at
as
et
.

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

X
1
0

%
V
ar

V
ar
.A

cc
.

P
C
A

−
0
.1
15

7
−
0.
11

57
−
0.
11

57
−
0
.1
1
5
7

0
.3
9
5
5

0.
3
9
5
5

0.
3
9
5
5

0
.3
9
5
5

0.
4
0
0
5

0
.4
0
0
5

6
0.
06

60
.0
6

0
.4
78

5
0
.4
78

5
0.
47

85
0.
47

8
5

0
.1
4
4
9

0.
1
4
4
8
9

0
.1
4
4
8
9

0
.1
4
4
8
9
−
0
.0
0
9
5
−
0.
0
0
9
5

3
9.
67

9
9
.7
3

R
A
R
-G

A
0
.0
00

0
0
.0
00

0
0.
00

00
0.
00

0
0

0
.5
0
0
0

0.
5
0
0
0

0.
5
0
0
0

0
.5
0
0
0

0.
0
0
0
0

0
.0
0
0
0

4
0.
91

40
.9
1

(K
=

4)
0
.5
00

0
0
.5
00

0
0.
50

00
0.
50

0
0

0
.0
0
0
0

0.
0
0
0
0

0.
0
0
0
0

0
.0
0
0
0

0.
0
0
0
0

0
.0
0
0
0

3
9.
55

8
0
.4
6

T
a
b
le

5
.3
:
R
es
u
lt
s
fo
r
th
e
”p

it
p
ro
p
s”

d
at
a
se
t

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

X
1
0

X
1
1

X
1
2

X
1
3

%
V
a
r

V
a
r.
A
c
c
.

0
.4
0
5
2

0
.4
0
6
9

0
.1
2
5
6

0
.1
7
4
5

0
.0
5
7
1

0
.2
8
5
2

0
.3
9
7
4

0
.2
8
9
2

0
.3
5
7
6

0
.3
7
9
5

−
0
.0
1
1
0

−
0
.1
1
4
8

−
0
.1
1
2
2

3
2
.3
7

3
2
.3
7

0
.2
1
5
7

0
.1
8
3
9

0
.5
4
0
8

0
.4
5
5
3

−
0
.1
7
0
6

−
0
.0
1
5
7

−
0
.1
8
8
5

−
0
.1
8
6
8

0
.0
1
5
0

−
0
.2
5
1
1

0
.2
0
6
1

0
.3
4
4
3

0
.3
0
9
4

1
8
.2
7

5
0
.6
4

P
C
A

−
0
.2
0
6
5

−
0
.2
3
4
0

0
.1
3
9
8

0
.3
5
0
0

0
.4
7
8
7

0
.4
7
4
5

0
.2
5
9
1

−
0
.2
5
1
6

−
0
.2
0
7
4

−
0
.1
1
8
3

−
0
.0
7
1
6

0
.0
9
2
9

−
0
.3
2
4
0

1
4
.4
9

6
5
.1
3

−
0
.0
9
2
8

−
0
.1
0
4
9

0
.0
8
3
5

0
.0
6
2
7

0
.0
5
8
3

−
0
.0
6
2
8

−
0
.0
7
6
2

0
.2
9
3
1

0
.0
9
5
8

−
0
.2
0
0
9

0
.7
9
5
1

−
0
.3
0
7
0

−
0
.3
0
7
4

8
.5
5

7
3
.6
8

0
.0
8
3
3

0
.1
1
3
9

−
0
.3
4
9
4

−
0
.3
5
7
8

−
0
.1
8
0
0

0
.3
0
9
8

0
.2
2
2
4

−
0
.1
9
6
6

0
.1
0
8
9

−
0
.1
5
9
1

0
.3
6
2
1

0
.5
8
2
2

−
0
.0
7
8
8

7
.0
3

8
0
.7
1

0
.1
1
9
1

0
.1
6
2
0

−
0
.2
7
3
3

−
0
.0
5
2
1

0
.6
2
5
0

0
.0
4
9
6

0
.0
0
3
7

−
0
.0
5
4
8

0
.0
3
2
8

−
0
.1
7
2
9

0
.1
7
4
4

−
0
.1
7
4
7

0
.6
2
7
8
4

6
.2
7

8
6
.9

8
0
.4
7
9
8

0
.4
9
0
8

0
.0
0
0
0

0
.0
0
0
0

0
.0
0
0
0

0
.0
0
0
0

0
.4
0
5
0

0
.0
0
0
0

0
.4
2
2
8

0
.4
3
1
4

0
.0
0
0
0

0
.0
0
0
0

0
.0
0
0
0

2
6
.2
0

2
6
.2
0

0
.0
0
0
0

0
.0
0
0
0

0
.6
3
0
3

0
.6
5
5
2

0
.0
0
0
0

0
.3
1
1
7

0
.0
0
0
0

0
.0
0
0
0

0
.0
0
0
0

0
.0
0
0
0

0
.1
4
5
0

0
.2
3
4
9

0
.0
0
0
0

1
6
.2
4

4
2
.4
4

R
A
R
-G

A
0
.0
0
0
0

0
.0
0
0
0

0
.0
0
0
0

0
.0
0
0
0

0
.4
2
4
1

0
.3
6
6
7

0
.0
0
0
0

0
.4
2
3
5

0
.0
0
0
0

0
.0
0
0
0

0
.0
0
0
0

−
0
.4
8
6
6

−
0
.5
1
9
1

1
3
.3
8

5
5
.8
2

(K
=

5
)

0
.0
0
0
0

0
.0
0
0
0

0
.0
0
0
0

0
.0
0
0
0

0
.0
0
0
0

−
0
.3
5
5
2

−
0
.3
2
0
3

0
.3
0
7
5

0
.3
0
6
8

0
.0
0
0
0

0
.7
6
3
2

0
.0
0
0
0

0
.0
0
0
0

9
.2
1

6
5
.0
3

0
.0
0
0
0

0
.0
0
0
0

−
0
.1
4
5
3

0
.0
0
0
0

0
.7
9
4
6

0
.0
0
0
0

0
.0
0
0
0

−
0
.4
8
6
6

0
.0
0
0
0

0
.0
0
0
0

0
.1
9
6
0

0
.2
6
9
0

0
.0
0
0
0

7
.6
3

7
2
.6
6

0
.0
0
0
0

0
.0
0
0
0

0
.0
8
9
9

0
.1
3
0
4

0
.2
2
1
3

0
.0
0
0
0

0
.0
0
0
0

0
.0
0
0
0

0
.0
0
0
0

0
.0
0
0
0

0
.0
0
0
0

−
0
.6
0
5
1

0
.7
4
8
2

6
.1
6

7
8
.8

2

Chapter 5. Sparse Principal Component Analysis 74

5.5 Summary and Conclusions

In this chapter we have presented an application of the hybrid optimization method

introduced in Chapter 2 for the SPCA problem. The objective is to obtain principal

components with few non-zero loadings. The benefits are twofold: First, sparse principal

components are easier to interpret. Second, sparse principal components can be eval-

uated and stored more efficiently than normal PCs. This can be relevant for problems

such as data compression.

Several hybrid metaheuristics have been compared with state-of-the-art methods,

such as the DSPCA technique proposed in d’Aspremont et al. (2007). Analyzing the

results of this comparison the conclusions are: GAs with random repair and set GAs

with RAR or TransRAR perform best in our experiments. Furhtermore, the GA with

the TransRAR operator achieves the best-known solution more efficiently than GAs that

employ other crossover operators. This underscores the importance of gene transmission

in enhancing the effectiveness of the search as discussed in Subsection 3.3.4. Binary GAs

using penalties are clearly misled by the penalty term in the fitness function. The GA

with binary encoding and a repair mechanism for unfeasible individuals also obtains

good results in the problems analyzed. However, the heuristic repair mechanism tends

to produce duplicated genotypes, which is detrimental for the search. SA obtains high-

quality solutions very quickly. Therefore, it can be used in applications where a quick

initial guess is needed (for instance, as a seed for other metaheuristic approaches). The

performance of PBIL is rather poor. This is due mainly to the high-dimensionality of

the problem: the estimation and sampling from the probability distribution becomes

more difficult as the dimensionality of the problem increases.

In the synthetic problems analyzed, the best hybrid methods identify principal com-

ponents that explain more variance than DSPCA. In the “pitprops” dataset, the set GA

with RAR (w = 1) finds very sparse PCs that explain a large portion of the variance.

As future work, more comparisons with other methods (for instance, the greedy method

proposed in Moghaddam et al. (2005) or lasso approaches (Efron et al. (2004))) are

needed to further establish the effectiveness of the hybrid approach introduced in this

thesis.

CHAPTER 6

INDEX TRACKING BY PARTIAL REPLICATION

Index tracking consists in reproducing the performance of a stock market index by in-

vesting in a subset of the stocks included in the index. The definition of tracking error as

the mean squared deviation between the returns of the index and the tracking portfolio

leads to the formulation of the problem as a mixed-integer quadratic programming prob-

lem. Given a subset of assets, a quadratic solver can be used to find the optimal tracking

portfolio that invests only in the selected assets. Several optimization metaheuristics are

used to solve the combinatorial problem of identifying the appropriate assets. This hy-

brid approach allows the identification of quasi-optimal tracking portfolios at a reduced

computational cost.

6.1 Introduction

Index tracking consists in constructing a portfolio whose evolution during a specified

period is as close as possible to the index that is being tracked. Such a portfolio is called a

tracking portfolio. The index tracking problem arises in the context of asset management.

A rational investor typically wishes to obtain the highest possible performance assuming

as little risk as possible. There could be additional restrictions for investment, which

may either arise from conditions imposed by the market (minimum investment in a given

asset), be the result of a quantitative analysis (e.g. capital concentration constraints

from the Black-Litterman model), or reflect expert knowledge and preferences of the

investor. This set of market constraints and investor preferences in combination with

the expected risk and return of the assets determines the strategy that should be used

for fund management.

The goal of the index tracking problem is to build an investment portfolio whose

performance is as close as possible to a benchmark financial index, which is used as

reference. The problem can be solved exactly by investing on every asset an amount

of capital that is proportional to the corresponding weight in the index. In practice,

this strategy has the drawback of incurring high initial transaction costs. There is

75

Chapter 6. Index Tracking by Partial Replication 76

Figure 6.1: An example of a tracking portfolio for the Hang Seng index that invests
in only 5 assets.

0 50 100 150 200 250 300
50

100

150

200

250

300

350

400

Time (weeks)

P
ric

es

Tracking Portfolio (c = 5)
Hang Seng

an overhead in managing a portfolio that invests in every constituent of the index.

Moreover, rebalancing the portfolio can be costly if the composition of the index is

revised. An alternative is to design a tracking portfolio that invests only in a reduced

set of assets. Figure 6.1 shows an example of a tracking portfolio for the Hang Seng

index. Although only 5 products are used, the portfolio can still track the index fairly

well. Nonetheless, this partial replication strategy will in general be unable to exactly

reproduce the behavior of the index.

A tracking portfolio that invests in a fixed number of assets and closely follows the

evolution of the index can be obtained by minimizing a measure of tracking error. In

literature several measures of this error have been proposed (Amann and Zimmermann

(2001), Lobo et al. (2007), Shapcott (1992), Beasley et al. (2003), Buckley and Korn

(1998), Rudolf et al. (1999)). Most of them are based either on correlations between the

tracking portfolio and the index returns or on estimations of the variance of the difference

between the returns of the index and the returns of the tracking portfolio (Markowitz

(1987), Buckley and Korn (1998), Shapcott (1992)). However, measures based solely on

the variance of the tracking deviations are insufficient to quantify the tracking quality.

As noted in Beasley et al. (2003), if the difference between the returns of the index and

those of the tracking portfolio is constant, then the tracking error would be zero. This

measure is inaccurate because it does not take the tracking bias into account. In the

current investigation the mean squared error for the returns is used as the measure of

disagreement between the tracking portfolio and the index which is being tracked. This

definition of the tracking error has the advantage of being quadratic. Furthermore it

takes the bias of the tracking portfolio into account, so that constant differences are

also penalized (Amann and Zimmermann (2001), Beasley et al. (2003), Gilli and Këllezi

(2001b)).

Chapter 6. Index Tracking by Partial Replication 77

In this chapter we report the results of applying the hybrid optimization approach

described in Chapter 2 with several combinatorial optimization metaheuristics and a

preprocessing pruning step. The metaheuristic is responsible for finding the optimal

subset of assets in which the tracking portfolio invests. A quadratic solver (Gill et al.

(1991)) is the used to find the optimal composition of the portfolio that invests in the

specified subset of assets.

Most previous work on index tracking focuses on finding the portfolio that is optimal

using as inputs the recent historical evolution of the assets. Since we are interested in

the future tracking performance of the portfolio, it is necessary to assume that recent

historic performance is a good predictor of the performance in the near future. In this

investigation, the validity of this assumption is tested estimating both in-sample and out-

of-sample measures of performance. Using the language of machine learning, the data

is partitioned into training and testing sets. The training data is used to construct the

optimal tracking portfolio investing in a subset of the index assets. The performance of

this tracking portfolio is then evaluated not only with the data used in the optimization

(in-sample performance), but also in an independent test set, which is not used in the

optimization (out-of-sample performance). We show that optimal portfolios with respect

to the training data need not be optimal in the test set. Conversely, portfolios that

are suboptimal on the training data can have a better out-of-sample (generalization)

performance (i.e. a lower tracking error) in the test set.

This chapter is organized as follows: In Section 6.2 we formulate the index tracking

problem. We then briefly review the methods that have been proposed in literature to

address this problem. Section 6.3 describes the hybrid approach and the used meta-

heuristics used to solve the index tracking problem in this thesis. The results of an

empirical evaluation of the methods proposed are discussed in Section 6.4. The conclu-

sions of this chapter are presented in 6.5.

6.2 Index Tracking with Cardinality Constraints

Index tracking has been extensively investigated in literature. In Markowitz (1987) the

problem of index tracking was formulated as a multiobjective mean-variance optimiza-

tion by making some assumptions on the statistical properties of the returns of the index

assets. In this reference the cardinality constraints that are the main concern of this the-

sis were not considered. These types of constraints were investigated in Shapcott (1992).

In this work the problem of selecting the optimal subset of assets and the quadratic opti-

mization problem that results once this subset is selected were handled separately. The

resulting hybrid evolutionary algorithm is similar to the one investigated in this chapter.

In particular, Shapcott (1992) also employed a GA with set encoding and the Random

Assorting Recombination (RAR) crossover operator. The main goal of Shapcott (1992)

was to compare a random search algorithm to a genetic algorithm with and without

migrations in a multiprocessor environment. The objective function used in that work

was the variance of the difference between the index returns and the tracking portfolio

returns. In the present work, the tracking error considered is the mean squared error

Chapter 6. Index Tracking by Partial Replication 78

(MSE) between the returns of the index and of the tracking portfolio. Additionally, we

take into account other realistic constraints in the model. In particular, we consider

bounds on the minimum and maximum amount of investment that can be made in an

asset or in a certain class of assets.

The index tracking problem was also addressed in Buckley and Korn (1998) using

optimal impulse control techniques. In that reference the problem was formulated as a

continuous-time control problem, in which the the random cash flows to and from the

portfolio were modeled as a diffusion process. In Gilli and Këllezi (2001b) the problem

was addressed by using the threshold accepting (TA) heuristic, which is a deterministic

analogue of simulated annealing in which transitions are rejected only when they lead to a

deterioration in performance that is above a specified threshold. Evolutionary algorithms

with real-valued chromosome representations were used in Beasley et al. (2003). That

investigation focused on the effects of transaction costs and portfolio rebalancing in the

final performance. In Lobo et al. (2007) the portfolio optimization and index tracking

problems were addressed by means of a heuristic relaxation method that consists in

solving a small number of convex optimization problems with fixed transaction costs.

Hybrid optimization approaches to minimizing the tracking error by partial replication

were also investigated in Jeurissen and van den Berg (2005, 2008); Ruiz-Torrubiano and

Suárez (2007a).

In this work, index tracking is formulated as a mixed-integer quadratic optimization

problem

min
w,z

 1

T

T∑
t=1

N∑
j=1

(wjrj(t)− rt)2
 (6.1)

N∑
i=1

wi = 1, (6.2)

l ≤ A ·w ≤ u (6.3)

zi ∈ {0, 1}, aizi ≤ wi ≤ bizi, ai ≥ 0, bi ≥ 0, i = 1, 2, . . . , N (6.4)
N∑
i=1

zi ≤ K, (6.5)

where T is the number of timesteps considered, N is the number of constituents

of the index, rj(t) is the return of asset j at time t and rt is the return of the index

at time t. Restriction (6.2) is a budget constraint that ensures that all the capital is

invested in the portfolio. Investment concentration constraints are captured by (6.3).

These constraints set an upper and a lower bound in a linear combination of assets or

asset classes. The N×M matrix A contains on each row the coefficients of theM linear

inequality constraints, and M × 1 vectors l and u represent the lower and the upper

bounds on these inequalities, respectively. Expression (6.4) reflects lower and upper

bound constraints on individual assets. The binary variables {z1, z2, . . . , zN} indicate

whether an asset is included in or excluded from the tracking portfolio. Note that when

Chapter 6. Index Tracking by Partial Replication 79

zi = 0, the lower and upper bounds for the weight of asset i are both equal to zero,

which effectively excludes this asset from the investment. The cardinality constraint is

expressed by Eq.(6.5).

In this work, we consider the problem of finding an optimal tracking portfolio for a

time period [1, T], which generally corresponds to the recent past in which the evolution

of the assets is known. The ultimate goal is to construct portfolios whose tracking

performance in the period [T +1, T +L] is also close to optimal. However, the evolution

of the assets in this period is not known. Therefore, it is necessary to assume that

portfolios that are optimal during the initial time period will also perform well within

a future horizon L. Provided that T + L is not too far in the future it is reasonable

to assume that the statistical properties of the asset returns in the near future are

similar to those in the recent past. As L → ∞, the validity of this hypothesis becomes

more questionable and the tracking performance of the portfolio typically deteriorates.

Borrowing the concepts used in machine learning, we refer to the returns in the initial

time period [1, T] as the training data, and to the returns in time period [T + 1, T + L]

as the test data. In the experiments carried out we measure the tracking performance of

the selected portfolios both in the training set (in-sample performance) and in the test

set (out-of-sample performance).

6.3 Hybrid approaches

As outlined in Chapter 2, we apply a combinatorial optimization metaheuristic to de-

termine the optimal subset of assets that should be included in the portfolio. For each

candidate solution, a quadratic solver is used to determine the optimal portfolio that

invests only in these assets by minimizing (6.1) subject to (6.2)-(6.4). As metaheuris-

tics, we apply genetic algorithms, simulated annealing and estimation of distribution

algorithms. We also include a preprocessing step based on block pruning and compare

the results using the reduced and the complete set of products.

6.3.1 Genetic algorithms

Genetic algorithms have been introduced in Subsection 2.3.2 and in Algorithm 2. Two

different encodings are investigated in this case. A traditional binary encoding with stan-

dard crossover and mutation operators is compared to the set representation described

in Chapter 3.

Using a binary encoding, a candidate solution is represented as a fixed size binary

string. Each bit represents the presence or absence of a given product in the portfolio

encoded by the individual. For instance, the chromosome 010011 represents the optimal

portfolio investing in products 2, 5 and 6. The problem is how to handle individuals

that do not satisfy the cardinality constraint. Such individuals can be generated by the

application of standard crossover such as N -point and uniform crossover. A possible

approach is to use penalty functions, like the linear penalty given in Eq. (2.9). In this

case, the strength of the penalty (parameter β) must be estimated through exploratory

Chapter 6. Index Tracking by Partial Replication 80

experiments. The other possibility is to use repair mechanisms to transform unfeasible

individuals into individuals that satisfy the cardinality constraint. The heuristic repair

applied in this cases consists in performing an optimization without the constraints (6.4)

and (6.5). The products are then ranked according to their weights. We then eliminate

from the replicating portfolio the products with lower weights until the cardinality con-

straint is satified.

We can also use genetic algorithms using a representation in which an individual

encodes a subset of the specified cardinality. In this case, each chromosome represents

the optimal portfolio investing in only those products present in the subset. For instance,

the individual {1, 2, 4} represents the optimal portfolio investing only in products 1, 2

and 4. To implement mutation, one simply exchanges a product in the portfolio with

another product that is not in the portfolio. This operator preserves the cardinality of

the individual. As crossover operator, RAR (Algorithm 14) and TransRAR (Algorithm

15) are used.

6.3.2 Simulated Annealing

The simulated annealing metaheuristic was described in Subsection 2.3.1 (Algorithm

1). Candidate solutions are represented by sets of fixed cardinality. The neighborhood

operator N (·) is defined as the interchange of one product in the portfolio with another

one not included in it. The free energy function is the MSE of the optimal tracking

portfolio that invests only in the products included in the set that defines the investment

universe for the candidate solution.

6.3.3 Estimation of Distribution Algorithms

EDAs are introduced in Section 2.3.3. For this investigation, we used the discrete version

of the PBIL algorithm. The sampling of individuals is performed with Algorithm 4.

6.3.4 Block pruning

We apply the block pruning heuristic as described in Section 2.4 and Algorithm 5.

The relaxed optimization problem that is used to determine which assets should be

excluded from the investment universe consists in minimizing (6.1) subject to (6.2)-

(6.4). In the next section, which presents the results of the empirical evaluation of the

different methods proposed, we perform a series of experiments to determine to what

extent reducing the universe of assets in which the optimization takes place affects the

in-sample and the out-of-sample performance of the replicating portfolio.

6.4 Empirical evaluation

In the current investigation publicly available benchmark data from the OR-Library

(Beasley (1990)) is used to compare the optimization techniques described in the previous

Chapter 6. Index Tracking by Partial Replication 81

section. The historical returns of five world market indices are used in the experiments:

Hang Seng (31 assets), DAX (85 assets), FTSE (89 assets), S&P (98 assets) and Nikkei

(225 assets). For every index, the time series of 290 weekly returns for the index and

for its constituents are available. From these data, the first 145 values are used to build

a tracking portfolio that includes a maximum of K = 10 assets. The last 145 values

are used to measure the out-of-sample tracking error. The population sizes are 350 for

the GAs and 1000 for PBIL. A steady state substitution scheme with no elitism is used

in each generation. The probabilities of crossover and mutation are set to pC = 1.0

and pM = 0.01, respectively. For SA, a geometrical cooling scheme with α = 0.9 is

used. Table 6.1 presents a summary of the experiments performed. The best out of

5 executions of the different optimization methods is reported. The best in-sample

MSE and the corresponding out-of-sample MSE are given in the next two columns. The

fraction of times in which the algorithm obtains the best solution is shown in the column

“Sucess rate”. We also give the execution time on an Intel Core Duo machine with 3.00

GHz clock-speed and 2 GB RAM and the number of quadratic optimizations performed

in the last two columns.

The set GA with the TransRAR crossover operator obtains the best overall results.

The set GA with the RAR operator (w = 1) has comparable performance except in the

replication of the Nikkei, which is the index with the largest number of constituents.

Note that the execution time of TransRAR is always lower than that of RAR. PBIL

has also good performance, but the computational costs are higher than for the other

algorithms. In fact, the algorithm reached the maximum number of optimizations es-

tablished without having converged. The results of SA and GA with binary encoding

and linear penalty are suboptimal in all but the simplest problems (Hang Seng and

DAX). They also exhibit low success rates. Nonetheless, the very low execution times

of SA for all problems except Nikkei are noteworthy. In this last case, all the algorithms

seem to have difficulties in converging. This is due to the presence of highly correlated

assets which mislead the algorithms towards suboptimal solutions. An example of such

correlated series is shown in Figure 6.2 in the Nikkei case.

In all the problems investigated, the out-of-sample error is typically larger than the

in-sample error, but of the same order of magnitude. Note that there are cases in which

a replicating portfolio that has poor in-sample performance exhibits in turn better out-

of-sample performance. For instance, the in-sample MSE of the binary GA with linear

penalty in the problem of replicating the FTSE index is rather large. By contrast, it

has the best out-of-sample MSE. In most other cases, the best in-sample result also

corresponds to the best out-of-sample result (for instace, the GA with the TransRAR

crossover operator for the Nikkei problem).

We now apply block pruning as a preprocessing step for all the algorithms inves-

tigated. In block pruning, we eliminate those products that have a weight under li/2

in an unconstrained optimization. Note that this is equivalent to eliminating from the

optimization universe assets whose weight in the replicating portfolio is small. This is

reasonable if our goal is to obtain sparse solutions. Table 6.2 shows the resulting num-

ber of products after applying block pruning on every problem instance. The amount of

pruning depends on the structure of the particular index considered: While in the S&P

Chapter 6. Index Tracking by Partial Replication 82

Table 6.1: Results for the GA, SA and EDA approaches in the index tracking problem.

Algorithm Index Best MSE MSE Success Time Number
In-Sample Out-of-Sample rate (s) opts.

Hang Seng 1.3462 · 10−5 2.0575 · 10−5 0.60 4.15 51509
DAX 8.0837 · 10−6 7.4824 · 10−5 0.20 13.69 144868

GA FTSE 2.7345 · 10−5 5.3148 · 10−5 0.20 17.66 158465
Linear Penalty S&P 1.7974 · 10−5 5.2898 · 10−5 0.20 36.89 311008

Nikkei 2.0061 · 10−5 1.0707 · 10−4 0.20 123.28 1015774

Hang Seng 1.3462 · 10−5 2.0575 · 10−5 1.00 5.92 81690
DAX 8.0837 · 10−6 7.4824 · 10−5 1.00 18.89 231840

GA FTSE 2.1836 · 10−5 8.0091 · 10−5 0.40 21.20 255820
Random Repair S&P 1.6573 · 10−5 5.5457 · 10−5 0.20 47.02 508313

Nikkei 1.8255 · 10−5 6.9574 · 10−5 0.20 170.62 1664696

Hang Seng 1.3462 · 10−5 2.0575 · 10−5 1.00 4.67 51513
DAX 8.0837 · 10−6 7.4824 · 10−5 1.00 14.17 124717

GA FTSE 2.1836 · 10−5 8.0091 · 10−5 0.40 18.83 156456
RAR (w = 1) S&P 1.6573 · 10−5 5.5457 · 10−5 0.20 42.31 311002

Nikkei 1.8917 · 10−5 8.1057 · 10−5 0.20 175.34 1015766

Hang Seng 1.3462 · 10−5 2.0575 · 10−5 1.00 3.67 50301
DAX 8.0837 · 10−6 7.4824 · 10−5 1.00 9.45 121792

GA FTSE 2.1836 · 10−5 8.0091 · 10−5 0.60 12.22 152348
TransRAR S&P 1.6573 · 10−5 5.5457 · 10−5 0.80 26.09 302868

Nikkei 1.7969 · 10−5 6.4711 · 10−5 0.20 84.98 989744

Hang Seng 1.3462 · 10−5 2.0575 · 10−5 0.40 1.12 19342
DAX 8.0837 · 10−6 7.4824 · 10−5 0.40 1.73 27101

SA FTSE 2.3951 · 10−5 7.0007 · 10−5 0.20 1.44 24657
S&P 1.6781 · 10−5 4.7347 · 10−5 0.20 1.97 29764
Nikkei 2.1974 · 10−5 1.0719 · 10−4 0.20 95.00 1476549

Hang Seng 1.3462 · 10−5 2.0575 · 10−5 1.00 167.04 2010000
DAX 8.0837 · 10−6 7.4824 · 10−5 1.00 199.28 2010000

PBIL FTSE 2.1836 · 10−5 8.0091 · 10−5 1.00 195.31 2010000
S&P 1.6781 · 10−5 4.7347 · 10−5 0.60 314.77 2010000
Nikkei 1.9510 · 10−5 7.4572 · 10−5 0.20 222.86 2010000

index only 21.4 % of the assets are eliminated, the heuristic prunes 68 % of the products

in the Nikkei index.

The results with pruning are listed in Table 6.3. In this table, the last column

shows the speed-up factors obtained by dividing the execution time without pruning by

the execution time after pruning. These speed-up factors range from 1.61 (TransRAR,

FTSE) to 77.87 (SA, Nikkei). The largest speed-up factors are achieved by PBIL,

although in this case the detrimental effect of pruning seems to have the largest influence.

As can be seen from these results, both set GAs with RAR and TransRAR achieve the

best known results for all problems except for the problem of replicating the Nikkei

index. This is an indication that, in this problem, the pruning heuristic eliminates some

products from the optimization that are actually present in the best known solution.

Nonetheless, the quality of the obtained solutions remains almost unchanged in all other

Chapter 6. Index Tracking by Partial Replication 83

Table 6.2: Number of assets that are kept after block pruning

Index N before CP N after CP % Pruning

Hang Seng 31 23 25.8 %

DAX 85 45 47.1 %

FTSE 89 68 23.6 %

S&P 98 77 21.4 %

Nikkei 225 72 68.0 %

Table 6.3: Results for the GA, SA and EDA approaches in the index tracking problem
with block pruning.

Algorithm Index Best MSE MSE Success Time Speed-up
In-Sample Out-of-Sample rate (s) Factor

Hang Seng 1.5323 · 10−5 1.9840 · 10−5 0.20 2.53 1.64
DAX 9.5296 · 10−6 7.5745 · 10−5 0.20 2.91 4.70

GA FTSE 2.2745 · 10−5 7.8406 · 10−5 0.20 7.48 2.36
Linear Penalty S&P 1.8026 · 10−5 6.4064 · 10−5 0.20 15.72 2.35

Nikkei 2.3845 · 10−5 9.6544 · 10−5 0.20 24.11 5.11

Hang Seng 1.3462 · 10−5 2.0575 · 10−5 1.00 1.52 3.89
DAX 8.0837 · 10−6 7.4824 · 10−5 1.00 4.56 4.14

GA FTSE 2.4408 · 10−5 6.4976 · 10−5 0.20 10.59 2.00
Random Repair S&P 1.6573 · 10−5 5.5457 · 10−5 0.60 21.48 2.19

Nikkei 2.3114 · 10−5 7.8567 · 10−5 0.40 33.11 5.15

Hang Seng 1.3462 · 10−5 2.0575 · 10−5 1.00 1.23 3.80
DAX 8.0837 · 10−6 7.4824 · 10−5 1.00 4.20 3.37

GA FTSE 2.1836 · 10−5 8.0091 · 10−5 0.20 8.84 2.13
RAR (w = 1) S&P 1.6573 · 10−5 5.5457 · 10−5 0.60 18.17 2.33

Nikkei 2.1584 · 10−5 1.0225 · 10−4 0.20 27.36 6.41

Hang Seng 1.3462 · 10−5 2.0575 · 10−5 1.00 1.13 3.25
DAX 8.0837 · 10−6 7.4824 · 10−5 0.40 2.95 3.20

GA FTSE 2.1836 · 10−5 8.0091 · 10−5 0.20 7.57 1.61
TransRAR S&P 1.6573 · 10−5 5.5457 · 10−5 0.20 15.72 1.66

Nikkei 2.3114 · 10−5 7.8567 · 10−5 0.80 25.45 3.34

Hang Seng 1.3462 · 10−5 2.0575 · 10−5 0.80 0.31 3.61
DAX 8.0837 · 10−6 7.4824 · 10−5 0.20 0.39 4.43

SA FTSE 2.1836 · 10−5 8.0091 · 10−5 0.20 0.87 1.65
S&P 1.6816 · 10−5 4.7808 · 10−5 0.40 0.92 2.14
Nikkei 2.3083 · 10−5 8.9584 · 10−5 0.20 1.22 77.87

Hang Seng 1.3462 · 10−5 2.0575 · 10−5 1.00 3.39 49.27
DAX 8.2111 · 10−6 7.7601 · 10−5 0.40 3.77 52.86

PBIL FTSE 2.1932 · 10−5 7.8699 · 10−5 0.20 13.66 14.30
S&P 1.6782 · 10−5 4.7347 · 10−5 0.40 13.91 22.63
Nikkei 2.9726 · 10−5 8.9375 · 10−5 0.20 5.31 41.97

Chapter 6. Index Tracking by Partial Replication 84

Figure 6.2: Highly correlated assets contained in the Nikkei index.

0 50 100 150 200 250 300
70

80

90

100

110

120

130

140

150

160

170

Time (weeks)

P
ric

es

Asset 198
Asset 123

cases. In general, pruning does not improve the out-of-sample MSE, except in a few

cases in which the solutions have high in-sample MSE, but low out-of-sample MSE (GA

Linear, Hang Seng).

6.5 Summary and Discussion

In this chapter, the problem of financial index tracking by partial replication is solved by

means of the hybrid optimization approach presented in Chapter 2. In particular, GAs,

SA and PBIL are used to address the combinatorial component of the problem. The use

of a quadratic measure of tracking error allows the use of a quadratic solver to evaluate

the candidate solutions proposed by the metaheuristics. From the methods considered,

the best results are achieved by the GAs with set encoding that employ the TransRAR

crossover operator. Nonetheless using RAR crossover instead also leads to high-quality

solutions. Using a binary encoding with either a penalty term in the fitness function or

complemented by a repair mechanism, generally obtains poorer results than the other

algorithms. SA can obtain high quality solutions very quickly. It can be therefore used

to obtain a quick initial guess or a seed for other algorithms. The PBIL algorithm has

difficulties to converge, and has the longest execution times among all the techniques

compared.

We can also apply dimensionality reduction techniques to eliminate from the invest-

ment universe assets that are not likely to be included in the optimal solution. After

applying a block pruning heuristic, both set GAs with RAR and TransRAR are still

able to obtain the best known solution in all cases except in the Nikkei problem. This

indicates that, in most cases, the heuristic can be used to reduce the dimensionality of

the problem without causing significant deterioration of the final solution. In the Nikkei

Chapter 6. Index Tracking by Partial Replication 85

problem the performance of the solution that is obtained after pruning is only slightly

inferior to the best known solution. The speedup factors obtained by pruning are in

general large, especially for the PBIL algorithm.

With some noteworthy exceptions, the in-sample and out-of-sample performances of

the replicating portfolios are correlated: portfolios with low in-sample MSE also have low

out-of-sample MSE. Therefore, in the problems investigated, the tracking performance of

the portfolio in a given period seems to be a good predictor for the tracking performance

in the subsequent period.

CHAPTER 7

OPTIMAL PORTFOLIO SELECTION

The problem of selecting an investment portfolio that is optimal has attracted much

attention from researchers in finance and in optimization. Imposing constraints that

limit the number of products that can be included in the portfolio is an useful strategy

that facilitates the management of the portfolio. As will be shown in this chapter car-

dinality constrained optimal portfolios tend to be more stable, robust and have better

out-of-sample performance than unconstrained portfolios. However, including cardinal-

ity constraints transforms portfolio selection into a mixed-integer quadratic problem,

which can be difficult to solve. Therefore, it is necessary to develop efficient algorithms

to find near-optimal solutions at a reasonable computational cost that can be used by

practitioners in real-world applications. In this thesis we propose to combine meta-

heuristics, such as genetic algorithms, simulated annealing or estimation of distributions

algorithms, and standard quadratic programming algorithms to address the problem.

The metaheuristics can be used to address the combinatorial part of the problem, which

consists in selecting the products in which the portfolio invests. The candidate solutions

generated by the metaheuristic are evaluated using the solution of a subordinate opti-

mization problem. This subordinate problem is a portfolio optimization in the reduced

investment universe specified by the candidate solution, but now without the cardinality

constraints. Because of the cardinality constraints, many of the products in the original

universe considered for investment are not included in the final portfolio. Therefore,

one can think of using pruning techniques that identify and eliminate such products in

a preprocessing step. The dimensionality reduction obtained by applying these pruning

heuristics greatly improves the computational efficiency of the optimization. Further-

more, provided that the application of these heuristics does not eliminate products whose

presence in the final portfolio is crucial for the optimality of the portfolio, pruning has

no or small impact on the quality of the solutions obtained. Finally, the problem of

portfolio selection is extended to take into account transaction costs.

87

Chapter 7. Optimal Portfolio Selection 88

7.1 Introduction

The selection of optimal investment portfolios is a problem of great interest in the area

of quantitative finance and has attracted much attention in the scientific community

(Chang et al. (2000), Bienstock (1995), Crama and Schyns (1999), Gilli and Këllezi

(2001a), Lobo et al. (2007), Schaerf (2002), Moral-Escudero et al. (2006), DiGaspero

et al. (2011)). The problem is of practical importance for investors, whose objective is

to allocate capital in an optimal manner among assets while respecting some investment

restrictions. Several models and methods for solving this problem have been proposed,

mostly within the classical framework developed by H. Markowitz in 1952 (Markowitz

(1952)). In the work of Markowitz, which sets the foundations of modern portfolio

optimization theory, the returns of the products that are considered for investment

are modeled as random variables. The profit of the investment is the expected portfolio

return. The risk measure is the variance of the portfolio returns. Therefore, portfolio se-

lection is a multiobjective optimization task with two opposing goals: the maximization

of profit and the minimization of risk. Since these cannot be simultaneously achieved,

the problem is to identify the efficient frontier, which is defined as the set of solutions

that are Pareto optimal. A portfolio is in the efficient frontier if for a given risk no

other portfolio with a larger expected return can be built by modifying the investment

weights. By duality, this same portfolio is the one that minimizes risk for that value of

expected return.

Without further constraints the identification of portfolios in the efficient frontier

is a quadratic optimization problem that can be readily solved by standard numerical

techniques (Gill et al. (1991)). A difficulty with this approach is that the portfolios

resulting from this unconstrained optimization typically invest small amounts in large

numbers of products to take advantage of the benefits of diversification and reduce the

overall risk. This type of investment strategy can be difficult to implement in practice:

Portfolios composed of a large number of assets are difficult to manage and may incur

high transaction costs. To address this shortcoming, several restrictions can be imposed

on the allocation of capital among assets. One can limit the total number of assets in the

final portfolio or impose lower and upper bounds to the proportion of capital invested in

each product. These constraints make the problem difficult to solve by standard opti-

mization techniques. In fact, the problem becomes NP-Complete (Moral-Escudero et al.

(2006); Tabata and Takeda (1995)). Nonetheless, heuristic optimization methods can be

applied to identify near-optimal solutions at a reasonable computational cost. Several

general optimization techniques have been proposed to solve this problem: evolution-

ary algorithms (Michalewicz (1996), Goldberg (1989), Chang et al. (2000)), simulated

annealing (Kirkpatrick et al. (1983), Crama and Schyns (1999)), tabu search (Glover

(1986), Schaerf (2002)), local search (DiGaspero et al. (2007), DiGaspero et al. (2011)),

and other. In this chapter we propose several memetic (Moscato and Cotta (2003))

techniques to solve the problem. In memetic algorithms, prior knowledge of the prob-

lem at hand is used to combine different algorithmic techniques to obtain high-quality

solutions with a moderate computational effort (Jeong et al. (2009)). We apply these

ideas to construct a variety of portfolio optimization algorithms by combining either a

Chapter 7. Optimal Portfolio Selection 89

genetic algorithm with binary and set encoding (Moral-Escudero et al. (2006), Radcliffe

(1993)), simulated annealing or various estimation of distribution algorithms (Larrañaga

and Lozano (2002)), quadratic programming (Gill et al. (1991)) and specially designed

pruning heuristics that effectively reduce the size of the search space. The problem of

finding the optimal subset of assets for investment is addressed by the metaheuristic

technique. The continuous optimization problem of finding the optimal weights given

this subset is solved using a standard quadratic optimization algorithm. Different vari-

ants of EDAs are investigated in this chapter, including models in which all the variables

are assumed to be statistically independent (Muehlenbein (1998), Baluja (1994)), and

models in which more complex interactions between the variables are allowed (Larrañaga

et al. (2001)). The evaluation and comparison of the different methods are carried out

on publicly available benchmark data from the OR-Library (Beasley (1990)), which

includes data from assets included in major world stock indices. The experiments per-

formed show that efficient and accurate solutions are obtained when special pruning

heuristics are applied. Pruning attempts to identify and eliminate from the universe

of assets available for investment those products that are not likely to appear in the

optimal portfolio. The use of pruning heuristics not only improves the results of the

hybrid methods based on EDA, but also enhances the efficiency of SA and of genetic

algorithms with a set representation (Moral-Escudero et al. (2006)).

Finally, we present the results of a hybrid metaheuristic method designed to solve the

multi-period portfolio selection problem including transaction costs and turnover con-

straints. Piecewise linear transaction costs are non-differentiable. Therefore standard

quadratic programming algorithms are not appropriate to solve the problem. Turnover

restrictions, which partition the search space into disjoint feasible regions for each invest-

ment decision (hold the actual position, purchase or sell a minimum amount), introduce

additional combinatorial complexity in the problem. We adapt the set encoding proposed

for the single-period formulation of the problem by including an additional attribute for

each element in the subset, which reflects the trading decision made for that particular

asset (buy, hold or sell). As will be shown in the empirical evaluation (using public

available data compiled by Fama and French1), both transaction costs and cardinality

constraints have have a regularization effect which results in stable, robust portfolios

that have in general good out-of-sample performance.

This chapter is organized as follows: Section 7.2 summarizes previous work on the

portfolio selection problem. In Section 7.3, the optimization model with cardinality

constraints and hybrid methods for its solution, as well as empirical results are presented.

The inclusion of transaction costs is considered in Section 7.4, where a hybrid approach

with an extended set encoding is used in an extensive empirical evaluation to solve the

problem. Finally, the discussion of the results and some conclusions are presented in

Section 7.5.

1Data available from http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html

Chapter 7. Optimal Portfolio Selection 90

7.2 Previous Work

There is a large amount of literature on portfolio selection considering both the single

period and the multi-period formulations of the problem. The single period problem con-

sists in building a portfolio of fixed composition whose performance is optimal in a given

investment period. It can be formulated as an optimization that uses as input either

recent historical data or implicit market estimates of expected returns and covariances

among returns. The multi-period problem consists in finding the optimal investment

strategy to manage a portfolio that can be rebalanced at specified times during the life

of the investment.

We first consider the single period formulation. Branch-and-Bound techniques were

used in Bienstock (1995) to solve the problem exactly. Despite the fact that these

techniques improved the efficiency of the search, the time needed to find the global

optimum grows exponentially with the number of assets available for investment. Ge-

netic algorithms have also been used to address this problem. In Chang et al. (2000),

the performance of GAs was compared to simulated annealing (SA) (Kirkpatrick et al.

(1983)) and to tabu search (Glover (1986)). In this work the best results were obtained

by pooling the results of the different heuristics. In Crama and Schyns (1999) simu-

lated annealing was used to explore the space of real-valued asset weights. Tabu search

and other local search techniques were employed in Schaerf (2002). In this reference, a

continuous encoding was used and the neighborhood operators were designed to obtain

feasible portfolios at all times. In Huang and Jane (2009), a hybrid portfolio selection

and forecasting approach was designed by combining ARX, Grey systems and rough

set theory. The authors predicted stock market trends and, making use of these pre-

dictions, selected an investment portfolio based on automatically generated investment

rules. Several factors reflecting company wealth information were also considered in

their approach. In Streichert et al. (2004) and Streichert and Tamaka-Tamawaki (2006)

Multi-Objective Evolutionary Algorithms (MOEAs) were used to address the problem.

These algorithms employed a hybrid encoding instead of a pure continuous one. Heuris-

tic operators were applied to repair unfeasible individuals generated in the course of

the evolution. The impact of Lamarckism and of local search improvements were also

analyzed in this work. The authors concluded that the hybrid encoding used improved

the overall performance of the algorithm. A hybrid optimization approach to the prob-

lem of tracking a stock index by partial replication is also proposed in Jeurissen and

van den Berg (2005, 2008); Shapcott (1992). In these articles, the discrete optimization

problem of calculating the optimal subset of assets to be included in the portfolio and

the problem of determining the weight of the selected assets by minimizing the tracking

error were handled separately. The subset selection problem was solved using a genetic

algorithm with different mutation and crossover operators that maintain the cardinal-

ity constraint. In particular, the set representation and the RAR crossover operators

introduced by Shapcott (1992) are used in the current investigation as well. A similar

decomposition of the problem in a continuous and a combinatorial optimization was re-

cently used in DiGaspero et al. (2011, 2007). In these articles, the authors used a hybrid

approach where the combinatorial problem of searching for the optimal subset of assets

Chapter 7. Optimal Portfolio Selection 91

was carried out by a local search algorithm, and the portfolio weights were calculated

by quadratic programming once the subset determined by the candidate solution was

fixed. The comparison of genetic algorithms that use a standard binary representation,

in which the violations of the cardinality constraint are either penalized or avoided by

repairing unfeasible individuals, and a genetic algorithm based on set representations of

fixed cardinality, as in Shapcott (1992), was performed in Moral-Escudero et al. (2006);

Ruiz-Torrubiano and Suárez (2007b). These articles showed that using penalty terms

in the cost function is not an effective method for handling unfeasible individuals when

a binary encoding is used. In contrast, algorithms in which the generated individuals

always remain feasible either by repair techniques, or by using specially designed op-

erators that preserve the cardinality of the candidate solutions, generally perform well.

In the current approach, we extend and improve this work by considering additional

metaheuristics and by exploiting the advantages of pruning techniques that effectively

reduce the size of the universe of assets where the search is conducted.

For the multi-period formulation of the problem it is important to take into ac-

count the transaction costs incurred when rebalancing the portfolio. An extension of

the Markowitz model that includes transaction costs was proposed in Pogue (1970). In

that reference, transaction costs resulting from both brokerage fees and market illiq-

uidity were considered. In Perold (1984) the standard complementary pivot algorithm

of Markowitz (Markowitz (1987)) was extended to take into account concave piecewise

linear transaction costs, turnover constraints and approximate minimum trading size

constraints. A non-linear programming technique was applied by Yoshimoto (Yoshi-

moto (1996)) to a portfolio selection problem with V-shaped transaction costs. That

work showed that ignoring the transaction costs can result in inefficient portfolios. In

contrast, considering transaction costs leads to the selection of portfolios that are gen-

erally more stable. Turnover or minimum trading size constraints were not considered

in that investigation. In Lobo et al. (2007) the authors addressed non-convex portfolio

optimization problems with transaction costs that include a fixed fee. They proposed an

iterative heuristic algorithm to approximate the optimal portfolio by solving a series of

convex relaxations of the original problem. The resulting portfolio was suboptimal but

had the advantage of being an upper bound of the optimal solution. They also showed

that, in real-world cases, the bound is generally tight, even for large problems. The same

approach can be used also for index tracking. In Mitchell and Braun (2004), the authors

proposed to rescale the objective function by the amount of wealth invested after trans-

action costs are subtracted. The resulting model was a fractional programming problem

that can be addressed by convex optimization techniques. Best and Hlouskova (Best

and Hlouskova (2008)) applied a modified quadratic programming active set algorithm

to solve the mean-variance problem with transaction costs in an investment universe of

size N . The transaction costs can be accounted for by defining a 3N -dimensional opti-

mization problem with 3N additional constraints. To reduce the complexity associated

with the increase of the dimensionality of the optimization space, they proposed an al-

gorithm that works in N -dimensions, in which the transaction costs were accounted for

implicitly rather than explicitly. No cardinality or turnover constraints were considered

in that work.

Chapter 7. Optimal Portfolio Selection 92

Several authors have focused on obtaining portfolios with better out-of-sample perfor-

mance by imposing additional constraints or modifications in the portfolio optimization

model. Specifically, DeMiguel et al. (2009a) propose to constrain the norm of the vector

of portfolio weights. Robust estimation techniques were used in DeMiguel and Nogales

(2009) to obtain portfolios whose weights have small fluctuations over time. Santos

et al. (2012) addressed the problem of finding portfolios whose capital requirements are

minimized by imposing constraints on the number of VaR violations in a given period

of time. In Brodie et al. (2009) optimal portfolio selection was formulated as a regular-

ized regression problem. The objective function included a penalty term proportional

to the L1 norm of the vector of portfolio weights ||w||1 as in lasso regression (Tibshirani

(1996)). As a consequence of the properties of the L1 norm, when the weight of this

type of penalty term is sufficiently large, the portfolios obtained are sparse and invest in

only a subset of the assets available for investment. In general, these sparse portfolios

are more stable than minimal variance portfolios obtained without the L1-norm penalty.

In the current work we consider an extension of this idea and include in the objective

function an L1 term that penalizes the differences between the portfolio weights before

and after rebalancing
∣∣∣∣w −w(0)

∣∣∣∣
1
, instead. This form of the penalty is similar to the

term that appears in the objective function when transaction costs are considered. The

inclusion of this type of penalties leads to the selection of portfolios whose composition

is more stable over time. As a result, they are easier to manage, have lower rebalancing

costs and generally exhibit good out-of-sample performance.

7.3 Portfolio Selection with Cardinality Constraints

7.3.1 The Markowitz Mean-variance Model

The work published by H. Markowitz in 1952 (Markowitz (1952)) is considered as the

foundation of modern portfolio theory. It provides a mathematical framework for optimal

portfolio selection. The problem consists in how to allocate a fixed amount of capital

among different assets, whose evolution is subject to uncertainty, in such a way that

the expected return of the investment is maximized and the risk associated with it is

minimized. The approach adopted by Markowitz is to model the asset returns as a

random vector whose distribution can be fully characterized by a vector of expected

returns and a covariance matrix. If the returns of the assets were deterministic (zero

variance) the optimal solution would be to invest only in the asset with the highest

expected return. In the presence of uncertainty this solution need not be optimal. The

investor may prefer to settle for a lower expected return provided that the uncertainty

in the investment is reduced as well. This establishes a rational basis for understanding

the potential benefits of diversification.

Let N be the number of assets in U , the universe of products available for investment.

Consider the prices of each market product at time instant t,

{Si(t)}Ni=1

Chapter 7. Optimal Portfolio Selection 93

The Markowitz framework considers the evolution of the portfolio during the period

[t, t + 1). The composition of the portfolio {xi}Ni=1, where xi is the units of product

i, is determined at the beginning of this period and held constant during the interval

considered. The evolution of the value of the portfolio during this period is

P (τ) =
N∑
i=1

xiSi(τ), τ ∈ [t, t+ 1). (7.1)

Since the composition of the portfolio is fixed, the changes in portfolio value are due to

changes in the market value of the assets of which it is composed (i.e., market capital-

ization). The return of the portfolio in the interval [t, t+ 1), is

rP =
P (t+ 1)− P (t)

P (t)
=

N∑
i=1

wiri = wT · r,

where rT = (r1, r2, . . . , rN) is the transposed vector of asset returns

ri =
Si(t+ 1)− Si(t)

Si(t)
, (7.2)

and wT = (w1, w2, . . . , wN) is the transposed vector of asset weights

wi =
xiSi(t)∑N
j=1 xjSj(t)

;

N∑
i=1

wi = 1; 0 ≤ wi ≤ 1, (7.3)

which determines the fraction of capital invested in each asset. Thus, the return of the

portfolio is a convex combination of the returns of the assets included in the portfolio.

Following Markowitz, we make the assumption that the distribution of the returns is

completely determined by the vector of means r̂ and the covariance matrix Σ. In this

investigation these parameters are assumed to be known and given as input to the model.

Their estimation from historical and market data is itself an active research field (Ledoit

and Wolf (2004); Leonard and Hsu (1992)).

The expected value and the variance of the portfolio returns can be expressed in

matrix form as

E(rP) =

N∑
i=1

wir̂i = wT · r̂ (7.4)

Var(rP) =

N∑
i=1

N∑
j=1

wiwjΣij = wT ·Σ ·w. (7.5)

The portfolio selection problem can be formulated as the solution of two different

optimization problems that have common solutions. In the first formulation, the goal is

Chapter 7. Optimal Portfolio Selection 94

to minimize a measure of risk for a fixed target value R∗ of the expected return

min
w

Var(rP) = wT ·Σ ·w (7.6)

s.t. wT · r̂ = R∗∑N
i=1wi = 1 wi ≥ 0, i = 1, . . . , N

The dual of this convex optimization problem (Fletcher (2000)) consists in maximizing

the expected return while the variance of the portfolio returns is held constant at a

specified value (σ2)∗, which is determined by the risk profile of the investor. The solution

involves optimizing a linear function with linear and quadratic constraints:

max
w

E(rP) = wT · r̂ (7.7)

s.t. wT ·Σ ·w = (σ2)∗∑N
i=1wi = 1 wi ≥ 0, i = 1, . . . , N

There are several efficient quadratic optimization techniques that can be used to mini-

mize a quadratic form subject to linear equality and inequality constraints (Gill et al.

(1991)). For this reason the first formulation has been chosen. The set of portfolios

that are optimal (i.e. that minimize the risk) for fixed values of the expected return R∗,

where R∗ is allowed to vary in the interval [Rmin, Rmax] is the efficient frontier. Each

point in the efficient frontier is said to be Pareto efficient. Points on the efficient fron-

tier correspond to minimum-risk portfolios for a given expected return, or, alternatively,

portfolios that have the largest expected return from a family of portfolios with equal

risk.

7.3.2 Constraints in Portfolio Selection Problems

There are several ways of refining the standard Markowitz model to incorporate con-

straints that are commonly used in real-world portfolio selection problems. These re-

strictions are a consequence of market rules and conditions for investment or simply

reflect different investor profiles and preferences. For instance, constraints can be in-

cluded to specify the amount of diversification; e.g., by establishing lower and upper

bounds on the investment on an individual asset or on a group of assets. An investor

may also want to limit the maximum number of assets included in her portfolio, either

to simplify the management of the portfolio or to reduce transaction costs.

In this section, we assume that the investor constructs a portfolio from scratch

assuming that there are no transaction costs. The constrained optimization problem

Chapter 7. Optimal Portfolio Selection 95

is

min
z,w

Var(rP) = w[z]T ·Σ[z,z] ·w[z] (7.8)

s.t. w[z]T · r̂[z] = R∗ (7.9)

a[z] ≤ w[z] ≤ b[z], a[z] ≥ 0, b[z] ≥ 0 (7.10)

l ≤ A[z] ·w[z] ≤ u (7.11)

zT · 1 ≤ K (7.12)

wT · 1 = 1, w ≥ 0. (7.13)

The elements of the binary vector z specify whether product i is included in the final

portfolio (zi = 1) or not (zi = 0). The column vector w[z] is obtained by removing from

w components i for which wi = 0. Similarly, matrix A[z] is obtained by eliminating the

i-th column of A whenever zi = 0. Finally, Σ[z,z] is obtained by removing from Σ the

rows and columns for which the corresponding indicator is zero (zi = 0). The symbols

0 and 1 denote vectors whose entries are all equal to 0 or to 1, respectively.

Minimum and maximum investment constraints, which set a lower and an upper

bound on the investment of each asset in the portfolio are captured by (7.10). Vectors a

and b areN×1 column vectors with the lower and upper bounds on the portfolio weights,

respectively. The inequality (7.11) reflects the M concentration of capital constraints.

Them-th row of theM×N matrixA is the vector of coefficients of the linear combination

that defines the constraint. The M × 1 column vectors l and u correspond to the

lower and upper bounds of the M linear restrictions, respectively. Concentration of

capital constraints can be used, for instance, to limit the amount of capital invested in

a group of assets, so that investor preferences on certain asset classes can be formally

expressed. Since these constraints are linear, they do not increase the difficulty of the

problem, which can still be efficiently solved by quadratic programming. Expression

(7.12) corresponds to the cardinality constraint, which sets a bound on the number of

assets that can be included in the final portfolio. This constraint transforms the problem

into a mixed-integer quadratic programming problem, which is no longer convex. Finally,

equation (7.13) is a budget constraint that ensures that the whole amount of capital is

invested in the portfolio. Note that the portfolio selection problem with the cardinality

constraint as an inequality (7.12) can be solved by selecting the best of the optimal

solutions of a collection of problems that use equality cardinality constraints
∑N

i=1 zi = k,

for k = 1, 2, . . . ,K.

7.3.3 Hybrid approaches to optimal portfolio selection

In this section we review various hybrid metaheuristic approaches to solve the prob-

lem. Specifically we consider genetic algorithms, simulated annealing and estimation

of distribution algorithms. As discussed in Subsection 2.2.1, these metaheuristics are

used to explore the combinatorial search space of subsets of the given cardinality. For

each subset, a quadratic solver (for instance, the one described in Gill et al. (1991)) is

used to address the problem (7.8)-(7.13); that is, the risk of the optimal portfolio that

Chapter 7. Optimal Portfolio Selection 96

invests only in the products present in the subset proposed by the metaheuristic is cal-

culated. The dimensionality reduction techniques described in Section 2.4 are applied in

a preprocessing step and their impact on the performance of the algorithms is evaluated.

7.3.3.1 Genetic algorithms

We apply genetic algorithms with binary and set encoding as introduced in Chapter 6

for the index tracking problem. As crossover operators for the set encoding, we use RER

(Algorithm 13), RRR (Algorithm 12), RAR (Algorithm 14) and TransRAR (Algorithm

15).

7.3.3.2 Simulated Annealing

The simulated annealing metaheuristic is used as defined in Subsection 2.3.1 and in

Algorithm 1. Candidate solutions are represented by sets of fixed cardinality as in

Chapter 6. The neighborhood operator is defined as the exchange of a product in the

portfolio with another one not included in it. Note that this is the mutation operator

of the set-based genetic algorithm. The comparison of the performance of SA and GA

with sets should therefore reveal to what extent the use of crossover contributes to the

efficacy of the algorithm. The free energy function is the risk of the optimal portfolio

that invests only in the products included in the set that defines the candidate solution.

7.3.3.3 Estimation of Distribution Algorithms

We apply the estimation of distribution algorithms UMDA, PBIL, PBILc and EMNA,

which were described in Section 2.3.3. Individuals of a specified cardinality are sampled

using Algorithm 4. The objective of using EDAs for portfolio selection is to determine

whether this family of algorithms can be effective in a complex combinatorial optimiza-

tion task such as portfolio selection with cardinality constraints. As will be illustrated

by the experiments performed, algorithms of the EDA type have difficulties for problems

in which the search takes place in a high-dimensional space. To overcome this limitation,

the pruning heuristics outlined in Section 2.4 play a central role.

7.3.4 Empirical evaluation

In this section we analyze the performance of the different portfolio selection methods

in terms of optimality of the selected portfolio and computational cost. Experiments

are performed on data from the OR-Library (Beasley (1990)), which includes a variety

of benchmark problems in the field of Operations Research. For portfolio selection, the

data consist in expected returns and covariances of returns for assets included in five

major world stock indices. Namely, Hang Seng (Hong Kong, N = 31), DAX (Germany,

N = 85), FTSE (United Kingdom, N = 89), Standard & Poor’s (United States, N = 98)

and Nikkei (Japan, N = 225). The weekly returns are estimated from the series of stock

Chapter 7. Optimal Portfolio Selection 97

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014

ex
pe

ct
ed

 r
et

ur
n

risk = variance of portfolio returns

unconstrained
K = 2
K = 3
K = 4
K = 5
K = 6
K = 7
K = 8
K = 9

K = 10

Figure 7.1: Comparison of constrained and unconstrained minimum risk portfolios
for different values of the expected return in the Nikkei index problem

prices from March 1992 to September 1997. Stocks with missing values are not consid-

ered. This is the reason why, for instance, 89 products are considered for the FTSE index

whereas this index is actually composed of 100 assets. The optimizations are performed

considering a lower bound for the investment weights (li = 0.01∀i) and with a maximum

cardinality constraint of K = 10. For each of the hybrid optimization methods the val-

ues of the hyperparameters, including the maximum number of generations needed for

convergence in the evolutionary algorithms, are determined in exploratory experiments.

For the unconstrained problem, an efficient frontier of NF = 100 points is calculated.

These points correspond to optimal portfolios without cardinality or lower bound con-

straints, whose expected returns are evenly spaced between the largest and the smallest

values that can be achieved by portfolios on the efficient frontier. For each of the values

of the expected return considered, the minimum risk portfolios for various cardinality

constraints (K = 2, 3, . . . , 10) are also computed. To reduce the probability of getting

trapped in a subpotimal solution, each point is computed by selecting the best of 5

executions of the hybrid optimization algorithm analyzed.

Figures 7.1, 7.2 and 7.3 show a detailed comparison between the minimum risk

portfolios obtained with different values for the cardinality constraint K = 2, . . . , 10,

and the unconstrained efficient frontier in the Nikkei index problem using a RAR-GA

algorithm with parameter w = 1 for the RAR crossover operator. In general, the

higher the value of K the closer are the solutions of the cardinality-constrained and the

unconstrained problems.

When cardinality constraints are considered, the optimization problem is no longer

convex. As a consequence, the solutions identified by minimizing the risk for a fixed

value of the expected return need not be Pareto optimal. That is, it may be possible

to build portfolios with the same risk and a higher expected return. This could in-

troduce discontinuities in the shape of the efficient frontier (Jobst et al. (2001)). The

Chapter 7. Optimal Portfolio Selection 98

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.00035 0.0004 0.00045 0.0005 0.00055 0.0006 0.00065 0.0007 0.00075

ex
pe

ct
ed

 r
et

ur
n

risk = variance of portfolio returns

unconstrained
K = 2
K = 3
K = 4
K = 5
K = 6
K = 7
K = 8
K = 9

K = 10

Figure 7.2: Detailed comparison of minimum risk portfolios for different values of the
expected return in the Nikkei index problem

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0.0018

 0.002

 0.0022

 0.00031 0.00032 0.00033 0.00034 0.00035 0.00036 0.00037 0.00038 0.00039

ex
pe

ct
ed

 r
et

ur
n

risk = variance of portfolio returns

unconstrained
K = 2
K = 3
K = 4
K = 5
K = 6
K = 7
K = 8
K = 9

K = 10

Figure 7.3: A more detailed comparison of minimum risk portfolios for different values
of the expected return in the Nikkei index problem

anomalies are specially pronounced for small values of K, the upper bound in the car-

dinality constraint. To see how this phenomenon can occur, consider a problem with

K = 2. The efficient frontier can be obtained by performing the union among the effi-

cient frontiers corresponding to all possible pairs of assets. The union operation is not

meant in the set-theoretical sense, but in the portfolio-dominance sense: the set of all

non-dominated portfolios forms the final efficient frontier. This operation removes any

non-convex regions from the efficient frontier (i.e. all dominated portfolios) and as a

result discontinuities can appear. These regions correspond to portfolios that no ratio-

nal investor would choose, because there is at least one portfolio with a higher value of

expected return for the same risk. For instance, consider the curve depicted in Figure

7.3 for K = 3. If we would trace a vertical line for the risk value σ2 = 0.00039 two

Chapter 7. Optimal Portfolio Selection 99

intersections would be obtained. These intersections represent two portfolios with the

same risk value, but one of them has higher expected return than the other. Therefore,

a rational investor would only consider the portfolio with the higher expected return.

The second portfolio does not belong to the efficient frontier. Nevertheless, for the pur-

pose of comparing the performance of the different algorithms it is useful to consider all

the portfolios identified by the optimization algorithms, even if they do not belong to

the efficient frontier: For a given value of the expected return, portfolios with a more

stringent constraint (that is, with a smaller value of K) necessarily have a higher risk,

independently of whether they are Pareto optimal or not. In particular, better solutions

of the constrained problem will be closer to the unconstrained efficient frontier, even if

they do not belong to the efficient frontier of the constrained problem.

For the GA, a steady state substitution scheme is used in each generation. No

elitism is used, since this generally leads to premature convergence to local optima. The

probabilities of crossover and mutation are pC = 1.0 and pM = 0.01, respectively. The

populations evolved are composed of 100 individuals.

For SA, a geometrical cooling scheme with coefficient α = 0.9 is used. The initial

temperature is chosen following the recommendations in Crama and Schyns (1999): The

initial temperature is such that χ0, the probability of acceptance of new configurations,

is sufficiently high. In our experiments the value χ0 = 0.8 is chosen. The average

increase ∆ in the objective function value is calculated for L = 300 iterations and the

initial temperature T0 is then estimated as

T0 =
−∆
lnχ0

(7.14)

For the EDA family, population sizes are generally higher than in the case of the GA.

This is because larger samples are needed for an accurate estimation of the distribution

parameters in EDA. The population size chosen for the experiments is 300. The fraction

of individuals considered to estimate the parameters is 10% of the population in all cases

except for EMNA, where larger samples (15% of the original population) are needed for

the accurate estimation of the distribution parameters.

The quality of the solutions is measured in terms of the relative distances between

the unconstrained solutions (without cardinality and bound constraints) and the corre-

sponding constrained solution with the same expected return

D =
1

NF

NF∑
i=1

σc,i − σ∗i
σ∗i

, (7.15)

where σc,i is the risk of the best known solution in the constrained problem for the

i−th frontier point, and σ∗i is the optimal risk for the unconstrained problem, obtained

by quadratic optimization. All the cardinality-constrained minimum risk portfolios are

considered, independently of whether they belong to the efficient frontier or not. In

this manner, the results for different algorithms with cardinality constraints can be

meaningfully compared. Note that every term in D is greater than or equal to zero

because the unconstrained problem is a relaxation of the constrained one.

Chapter 7. Optimal Portfolio Selection 100

Table 7.1 summarizes the results of the GA approaches. Clearly, the poor results

of the GA with binary encoding and linear penalties indicate that this technique is

not adequate for handling unfeasible individuals. In contrast, algorithms in which the

generated individuals are always feasible perform better. The best results are obtained

by the GA with set encoding that employs either the RAR (w = 1) or the TransRAR

(p = 1/2) crossover operators. Between these two algorithms, the lowest computational

cost corresponds to the one that uses the TransRAR crossover. The algorithm using

RAR with w = 3 obtains solutions of comparable quality to RAR with w = 1 except

in one case. However, the execution times are higher in all cases. The heuristic repair

procedure also obtains results comparable to RAR, but the computational costs are

higher. This is because more quadratic optimizations have to be performed by the

repair mechanism. As can be seen, the total number of quadratic optimizations required

by the GA with the heuristic repair mechanism is always higher than the number of QP

optimizations needed by the other GAs.

The results of the SA and EDA approaches are shown in Table 7.2. For SA the

results obtained are of comparable quality as those achieved by the set GAs, although

for the FTSE problem the best solution reached is of slightly inferior quality. The overall

performance of the EDAs is rather poor. These types of algorithms obtain good results

only in the easier problems (Hang Seng and DAX). In the other problems the results

obtained by EDAs are rather poor. The reason is that the performance of the EDAs is

more sensitive to the dimensionality of the problem than GAs and SA. Specifically, the

estimation of the probability distribution becomes much more difficult as the dimension

of the search space increases. Among the different variations of EDAs the best results

are obtained with PBIL.

Next, we apply the dimensionality reduction techniques introduced in Section 2.4 as

preprocessing step. The performance of the pruning heuristics strongly depends on the

values chosen for the parameters: In the block pruning heuristic, the threshold ϵ; for

the greedy backward and forward selection heuristics the amount of additional products

T . The parameter ϵ for the block pruning heuristic is set to li/2. The reason for this

choice is that products whose weights in an unconstrained optimization are under their

lower bound li can be assumed to have a lower probability of being included in the

final cardinality-constrained solution. The parameter T is chosen after performing ex-

ploratory tests with several values in the range T ∈ [0, 12]. After pruning, an exhaustive

search is performed in the pruned universe with a cardinality constraint of K = 10. The

results for these experiments are shown in Figure 7.4. In general, for low values of T

(T ≤ 3) the performance of backward selection is better than forward selection. Above

this value, the results for the Hang Seng (7.4(a)) and Nikkei (7.4(e)) index problems

do not show significant differences. For the other problems, the quality of the results

obtained by both heuristics is similar for values above T = 8. For the DAX (7.4(b))

and the FTSE (7.4(c)) problems greedy forward selection is slightly better for the range

3 < T < 8, while the opposite is true for the S&P problem (7.4(d)). Therefore the value

T = 8 is chosen for the final experiments.

Tables 7.3, 7.4 and 7.5 display the results of the experiments using exhaustive search

and exact optimization on the pruned universes. In these experiments, pruning is first

Chapter 7. Optimal Portfolio Selection 101

Table 7.1: Results for portfolio selection using the different GA approaches.

Algorithm Index Best D Success Time (s) Optimizations
rate

Hang Seng 0.00321150 0.87 808.1 1.35 · 107
DAX 2.53807879 0.70 3235.8 4.60 · 107

Linear penalty FTSE 1.93268316 0.53 3855.2 5.81 · 107
S&P 4.69373181 0.77 4922.3 7.03 · 107
Nikkei 0.22223473 0.42 5064.4 6.48 · 107

Hang Seng 0.00321150 1.00 1171.7 2.18 · 107
DAX 2.53162860 1.00 4878.6 7.45 · 107

Heuristic Repair FTSE 1.92150019 0.96 6485.6 9.70 · 107
S&P 4.69373181 0.98 8226.3 11.42 · 107
Nikkei 0.20197748 0.99 9658.3 11.47 · 107

Hang Seng 0.00321150 0.93 802.7 1.40 · 107
DAX 2.77353490 0.36 1915.2 2.83 · 107

GA-RER FTSE 2.00581544 0.39 3653.4 5.52 · 107
S&P 4.81011478 0.39 3938.1 5.90 · 107
Nikkei 1.00264537 0.25 3321.0 5.11 · 107

Hang Seng 0.00321150 0.93 802.7 1.40 · 107
DAX 2.83690197 0.40 1628.9 2.81 · 107

GA-RRR FTSE 1.97722629 0.40 3252.6 5.50 · 107
S&P 4.76271495 0.41 3597.2 5.97 · 107
Nikkei 1.03869098 0.25 3045.5 5.20 · 107

Hang Seng 0.00321150 1.00 539.1 8.59 · 106
DAX 2.53162860 1.00 2368.6 3.12 · 107

GA-RAR FTSE 1.92150019 0.95 4716.3 6.09 · 107
w = 1 S&P 4.69373181 0.99 4931.9 6.25 · 107

Nikkei 0.20197748 1.00 7537.7 7.18 · 107
Hang Seng 0.00321150 1.00 884.4 1.41 · 107

DAX 2.53162860 1.00 2977.2 3.89 · 107
GA-RAR FTSE 1.92158975 0.96 4736.8 6.09 · 107
w = 3 S&P 4.69373181 0.99 5013.9 6.25 · 107

Nikkei 0.20197748 1.00 7812.9 7.18 · 107
Hang Seng 0.00321150 1.00 497.6 8.56 · 106

DAX 2.53162860 1.00 1966.2 3.11 · 107
GA-TransRAR FTSE 1.92150019 1.00 3731.2 6.07 · 107

S&P 4.69373181 1.00 3912.8 6.22 · 107
Nikkei 0.20197748 1.00 4710.5 7.15 · 107

Chapter 7. Optimal Portfolio Selection 102

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 2 4 6 8 10 12

A
ve

ra
ge

 R
el

at
iv

e
D

is
ta

nc
e

(D
)

Pruning Parameter (T)

Greedy Backward Selection
Greedy Forward Selection

(a)

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 2 4 6 8 10 12

A
ve

ra
ge

 R
el

at
iv

e
D

is
ta

nc
e

(D
)

Pruning Parameter (T)

Greedy Backward Selection
Greedy Forward Selection

(b)

 1.5

 2

 2.5

 3

 3.5

 4

 0 2 4 6 8 10 12

A
ve

ra
ge

 R
el

at
iv

e
D

is
ta

nc
e

(D
)

Pruning Parameter (T)

Greedy Backward Selection
Greedy Forward Selection

(c)

 4

 5

 6

 7

 8

 9

 10

 0 2 4 6 8 10 12

A
ve

ra
ge

 R
el

at
iv

e
D

is
ta

nc
e

(D
)

Pruning Parameter (T)

Greedy Backward Selection
Greedy Forward Selection

(d)

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0 2 4 6 8 10 12

A
ve

ra
ge

 R
el

at
iv

e
D

is
ta

nc
e

(D
)

Pruning Parameter (T)

Greedy Backward Selection
Greedy Forward Selection

(e)

Figure 7.4: Results of experiments using exhaustive search and greedy backward and
forward selection. Above the chosen value T = 8 the results for both heuristics are very
similar. 7.4(a) Hang Seng, 7.4(b) DAX, 7.4(c) FTSE, 7.4(d) S&P, 7.4(e) Nikkei.

Chapter 7. Optimal Portfolio Selection 103

Table 7.2: Results for the SA and EDA approaches.

Algorithm Index Best D Success Time (s) Optimizations
rate

Hang Seng 0.00321150 1.00 1499.9 3.87 · 107
DAX 2.53162860 0.98 2877.3 7.63 · 107

SA FTSE 1.92205745 0.92 3610.4 8.87 · 107
S&P 4.69373181 0.91 3567.8 9.54 · 107
Nikkei 0.20197748 0.95 4274.5 9.25 · 107

Hang Seng 0.00321150 1.00 1021.6 2.83 · 107
DAX 5.05951251 0.43 2450.2 4.69 · 107

UMDA FTSE 3.55519141 0.33 2483.5 4.90 · 107
(EDA) S&P 8.16812536 0.35 2701.3 5.17 · 107

Nikkei 6.97027831 0.25 2530.4 3.70 · 107
Hang Seng 0.00321150 1.00 2292.8 5.55 · 107

DAX 2.53162860 0.94 4489.1 7.70 · 107
PBIL FTSE 1.92208910 0.85 4782.3 8.06 · 107
(EDA) S&P 4.69570006 0.88 5100.2 8.28 · 107

Nikkei 0.30164777 0.43 7486.5 8.21 · 107
Hang Seng 0.00321150 1.00 3095.7 5.58 · 107

DAX 2.53162860 0.80 8122.6 7.71 · 107
PBILc FTSE 1.92670560 0.65 8735.1 8.02 · 107
(EDA) S&P 4.70389481 0.67 9659.7 8.27 · 107

Nikkei 0.36541190 0.32 17569.5 7.39 · 107
Hang Seng 0.00321150 1.00 9892.6 16.72 · 107

DAX 2.56612811 0.48 38667.6 22.37 · 107
EMNA FTSE 2.00176394 0.41 42505.9 23.15 · 107
(EDA) S&P 4.91456924 0.35 49267.4 23.57 · 107

Nikkei 743.55201383 0.26 68726.9 9.08 · 107

applied to eliminate assets that are not likely to appear in the globally optimal solution.

Then, the exact cardinality constrained optimal solution (with K = 10) of the reduced

problem is obtained by exhaustive search. This establishes a benchmark with which to

compare the effectiveness of the proposed metaheuristics in the reduced problem. The

best solutions are obtained using block pruning. Since block pruning does not set an

upper bound on the maximum number of variables, it may be the case that not many

variables are discarded. For instance, this is what actually happens in the S&P index.

Nonetheless, it is remarkable that, in the problems investigated, the heuristic with the

lowest computational cost performs best. Greedy forward and backward selection attain

more regular execution times, but they clearly prune too many products that do in fact

appear in the optimal solutions.

In Table 7.6 we show the results obtained by RAR-GA, TransRAR-GA, SA and the

EDA approaches with a block pruning preprocessing step. This table includes a column

labeled Speed-up factor that displays the improvements in the times of computation

achieved. Speed-up factors are calculated as the ratio of execution times without and

with pruning. The corresponding tables for greedy forward and backward selection are

included in Appendix B for completeness. The improvements in efficiency are fairly

Chapter 7. Optimal Portfolio Selection 104

Table 7.3: Results for block pruning and exhaustive search.

Index D Time (s) Optimizations

Hang Seng 0.00321150 1.06 2.27 · 104
DAX 2.53162860 3643.6 6.69 · 107
FTSE 1.92152413 16136.5 2.90 · 108
S&P 4.69373181 79746.2 1.24 · 109
Nikkei 0.20197748 47.8 4.17 · 105

Table 7.4: Results for greedy backward selection and exhaustive search.

Index D Time (s) Optimizations

Hang Seng 0.00321150 1.05 2.29 · 104
DAX 2.53162860 270.05 5.49 · 106
FTSE 1.92152413 265.8 5.56 · 106
S&P 4.71092502 300.72 6.35 · 106
Nikkei 0.20197748 115.5 4.27 · 105

Table 7.5: Results for greedy backward selection and exhaustive search.

Index D Time (s) Optimizations

Hang Seng 0.00321150 5.44 1.04 · 105
DAX 2.53162860 211.55 4.62 · 106
FTSE 1.92152413 163.4 3.67 · 106
S&P 4.72021851 175.1 4.01 · 106
Nikkei 0.20197748 102.4 3.28 · 106

large, especially for the Hang Seng index. In this case, the use of block pruning already

yields fewer than K products in many cases, so that no combinatorial search is needed.

The speed-up factors range from ≈ 9 (UMDA, Nikkei) to ≈ 650 (SA, Hang Seng).

Regarding the quality of the solutions, in the case of the RAR-GA approach, the best

solution is also reached (i.e., no product appearing in a best known solution is pruned),

except in the case of the FTSE index, where a single product that is included in the

best known solution is actually pruned. Nonetheless, in this case, the difference between

the best known result and the result obtained after pruning is almost negligible. The

success rates remain of the same order in all cases. The improvements in performance

are particularly significant in the EDA-based approaches. When the investment universe

is pruned, PBIL achieves the same quality as RAR-GA, although the execution times

are higher. Even the worst-performing algorithm of the EDA family, EMNA, identifies

fairly good solutions with a reasonable computational cost when pruning is used: For

the Nikkei index, the best known solution is reached with a 99% success rate and a lower

execution time. Pruning also significantly improves the quality of the solutions obtained

with UMDA.

Chapter 7. Optimal Portfolio Selection 105

Table 7.6: Results for the RAR-GA, TransRAR-GA, SA and EDA approaches with
block pruning

Algorithm Index Best D Success Time(s) Speed-up Opt.
rate factor

Hang Seng 0.00321150 1.00 3.81 315.17 4.92 · 104
DAX 2.53162860 1.00 142.5 22.31 1.96 · 106

RAR-GA FTSE 1.92152413 0.94 211.5 30.19 2.88 · 106
(w = 1) S&P 4.69373181 0.99 205.8 31.95 2.76 · 106

Nikkei 0.20197748 1.00 241.5 40.97 2.75 · 106
Hang Seng 0.00321150 1.00 3.14 158.47 4.84 · 104

DAX 2.53162860 1.00 117.1 16.79 1.92 · 106
TransRAR FTSE 1.92152413 1.00 175.3 21.28 2.82 · 106

GA S&P 4.69373181 1.00 167.9 23.30 2.70 · 106
Nikkei 0.20197748 1.00 202.5 23.26 2.70 · 106

Hang Seng 0.00321150 1.00 2.31 649.31 3.85 · 104
DAX 2.53162860 0.96 17.3 166.32 3.17 · 105

SA FTSE 1.92270249 0.88 22.2 162.63 4.33 · 105
S&P 4.69759052 0.85 21.9 162.91 4.03 · 105
Nikkei 0.20197748 0.99 47.0 90.95 2.61 · 105

Hang Seng 0.00321150 1.00 24.0 42.57 5.19 · 105
DAX 2.53162860 0.97 211.4 11.59 4.02 · 106

UMDA FTSE 1.92639746 0.84 243.9 10.18 4.47 · 106
(EDA) S&P 4.71355872 0.77 237.9 11.35 4.28 · 106

Nikkei 0.20197748 0.99 274.9 9.20 3.43 · 106
Hang Seng 0.00321150 1.00 22.9 100.12 4.92 · 105

DAX 2.53162860 0.99 203.0 22.11 3.81 · 106
PBIL FTSE 1.92152413 0.91 237.4 20.14 4.24 · 106
(EDA) S&P 4.69373181 0.93 226.8 22.49 4.06 · 106

Nikkei 0.20197748 1.00 263.1 28.45 3.26 · 106
Hang Seng 0.00321150 1.00 19.1 162.08 3.72 · 105

DAX 2.53162860 0.99 164.9 49.26 2.88 · 106
PBILc FTSE 1.92396198 0.87 190.8 45.78 3.21 · 106
(EDA) S&P 4.69373181 0.87 196.2 49.23 3.07 · 106

Nikkei 0.20197748 1.00 183.7 95.64 2.46 · 106
Hang Seng 0.00321150 1.00 28.2 350.80 6.20 · 105

DAX 2.53517771 0.71 259.1 149.24 4.81 · 106
EMNA FTSE 1.94102813 0.60 302.6 140.47 5.35 · 106
(EDA) S&P 4.74273727 0.55 311.8 158.01 5.12 · 106

Nikkei 0.20197748 0.99 232.4 295.73 4.11 · 106

Chapter 7. Optimal Portfolio Selection 106

7.3.5 Discussion

The method that uses SA to solve the combinatorial part of the optimization prob-

lem identifies portfolios that are almost as good as those obtained by RAR-GA and

TransRAR-GA at a similar or lower computational cost. The portfolios obtained by

the GA with binary encoding and heuristic repair are also very good, but require longer

computations because of the costs of the repair mechanism. In contrast, EDA algorithms

on their own are not competitive and perform poorly. The algorithms of the EDA family

have difficulties with high-dimensional problems: When the number of products in the

universe of the optimization increases, sampling and estimation of the evolved probabil-

ity distributions becomes increasingly difficult. A possible solution to this shortcoming

is to identify the assets that are not likely to be included in the optimal portfolio and

remove them from the investment universe. These assets are identified by solving a re-

laxed optimization problem. The efficiency of the search performed by the metaheuristic

methods in the reduced space is significantly improved. In particular, the EDA algo-

rithms (especially PBIL) become competitive with SA, RAR-GA and TransRAR-GA.

Pruning can in fact be so effective that, in some cases (e.g. for the Hang Seng and the

Nikkei problems), the exact solution of the reduced optimization problem by exhaustive

search in the pruned space can be found at a lower computational cost than using GA,

SA or EDAs.

7.4 Portfolio Selection with Transaction costs

Consider the problem of managing a portfolio that invests in a set of N assets and can

be rebalanced at times t = 1, . . . , T . Let
{
{Si(t)}Ni=1; t = 1, . . . , T

}
be the time series of

the asset prices. The composition of the portfolio in the interval [t− 1, t) is given by the

vector

x(t− 1) = {xi(t− 1)}Ni=1, (7.16)

where xi(t−1)Si(τ) is the amount of capital invested in asset i, at time τ in the interval

t− 1 ≤ τ < t. The value of the portfolio is

P (τ) =
N∑
i=1

xi(t− 1)Si(τ), t− 1 ≤ τ < t. (7.17)

Let

P (t−) =

N∑
i=1

xi(t− 1)Si(t). (7.18)

be the value of the portfolio at the end of the interval [t−1, t). At time t the portfolio is

rebalanced with the goal of maximizing the expected return in the interval [t, t+1) while

minimizing the associated risk. The investment decision is made based on the available

information up to t. The new portfolio has a different composition x(t) = {xi(t)}Ni=1

Chapter 7. Optimal Portfolio Selection 107

that is held constant during the period [t, t+ 1). Its value is

P (τ) =

N∑
i=1

xi(t)Si(τ), t ≤ τ < t+ 1. (7.19)

An alternative way of specifying the composition of the portfolio is to use the vector of

weights w(τ) = {wi(τ)}Ni=1. The components of this vector are the fraction of P (t−),

the wealth available for investment at time t−, allocated to each of the assets in the

period [t, t+ 1)

wi(τ) =
xi(t)Si(τ)

P (t−)
=

xi(t)Si(τ)∑N
j=1 xj(t− 1)Sj(t)

, t ≤ τ < t+ 1. (7.20)

If there are transaction costs these weights satisfy the inequality constraint

N∑
i=1

wi(t) ≤ 1, (7.21)

with equality only if the transaction costs are zero.

The rebalancing is made with the restriction that the portfolio is self-financing

P (t−) = Φ(x, t) + P (t), (7.22)

where P (t−) is the value of the portfolio before rebalancing, P (t) the value of the port-

folio after rebalancing and Φ(x, t) are the costs incurred in the transactions that are

needed to rebalance the portfolio. In this work we assume piecewise linear transaction

costs

Φ(x, t) =
N∑
i=1

κi |xi(t)Si(t)− xi(t− 1)Si(t)| , (7.23)

where κi is the fee associated with buying or selling one dollar worth of asset i. The

generalization of (7.23) to consider different selling and buying costs is straightforward.

Using the explicit form of the transaction costs (7.23) the self-balancing constraint

(7.22) becomes

P (t−) =

N∑
i=1

xi(t)Si(t) +

N∑
i=1

κi |xi(t)Si(t)− xi(t− 1)Si(t)| . (7.24)

Dividing both sides by P (t−) one obtains

1 =

∑N
i=1 xi(t)Si(t)∑N

j=1 xj(t− 1)Sj(t)
+

N∑
i=1

κi

∣∣∣∣∣ xi(t)Si(t)∑N
j=1 xj(t− 1)Sj(t)

− xi(t− 1)Si(t)∑N
j=1 xj(t− 1)Sj(t)

∣∣∣∣∣ . (7.25)

Chapter 7. Optimal Portfolio Selection 108

In terms of w(t) = {wi(t)}Ni=1 the self-financing constraint is

N∑
i=1

wi(t) +
N∑
i=1

κi

∣∣∣wi(t)− w(0)
i (t)

∣∣∣ = 1, (7.26)

where the vector of weights immediately before rebalancing is

w
(0)
i (t) ≡ xi(t− 1)Si(t)∑N

j=1 xj(t− 1)Sj(t)
, i = 1, . . . , N,

N∑
i=1

w
(0)
i (t) = 1. (7.27)

The goal of the optimization is to minimize the risk of the portfolio and maximize the

expected return. In terms of the returns of the individual assets in the period [t, t+ 1)

ri(t) =
Si(t+ 1)

Si(t)
− 1, i = 1, . . . , N, (7.28)

the return of the portfolio in that interval is

rP (t) =

∑N
i=1 xi(t)Si(t+ 1)∑N
i=1 xi(t− 1)Si(t)

− 1 =
N∑
i=1

wi(t)
Si(t+ 1)

Si(t)
− 1 =

=

N∑
i=1

wi(t)ri(t) +

N∑
i=1

wi(t)− 1 =

N∑
i=1

wi(t)ri(t)− κi
∣∣∣wi(t)− w(0)

i (t)
∣∣∣ .
(7.29)

The expected value of the portfolio return is

E [rP (t)] =

N∑
i=1

wi(t)r̂i −
N∑
i=1

κi

∣∣∣wi(t)− w(0)
i (t)

∣∣∣ , (7.30)

where {r̂i = E [ri(t)]}Ni=1 are the expected returns of the individual assets, which are

assumed to be constant by stationarity.

The risk associated with the investment is quantified in terms of the variance of the

portfolio

Var [rP (t)] = wT(t) ·Σ ·w(t), (7.31)

where Σ is the N × N covariance matrix of the asset returns. Since the optimization

period is fixed, we drop the time index and simply use w(0) for the vector of portfolio

weights prior to rebalancing and w for the vector of portfolio weights immediately after

rebalancing.

To encode the cardinality constraints it is convenient to introduce an N -dimensional

vector of binary variables z. The ith component of this vector specifies whether product

i is included in the final portfolio (zi = 1) or not (zi = 0). Using these conventions, the

Chapter 7. Optimal Portfolio Selection 109

optimal portfolio is the solution of the constrained minimization problem

min
z,w

[
w[z]T ·Σ[z,z] ·w[z] − α

(
w[z]T · r̂T − κT ·

∣∣∣w −w(0)
∣∣∣)] (7.32)

w[z]T · 1+ κT ·
∣∣∣w −w(0)

∣∣∣ = 1 (7.33)

a[z] ≤ w[z] ≤ b[z], a[z] ≥ 0, b[z] ≥ 0 (7.34)

l ≤ A[z] ·w[z] ≤ u (7.35)

zT · 1 ≤ K (7.36)

wi ≥ w(0)
i + Pi or wi ≤ w(0)

i − Si or wi = w
(0)
i

i = 1, . . . , N. (7.37)

The column vector w[z] is obtained by removing from w those components i for which

zi = 0. Similarly, the matrix A[z] is obtained by eliminating the i-th column of A

whenever zi = 0. Finally, Σ[z,z] is obtained by removing from Σ the rows and columns

for which the corresponding indicator is zero (zi = 0). The symbols 0 and 1 denote

vectors whose components are all 0 or all 1, respectively.

The objective function consists of three terms: The first one is the variance of the

portfolio, which is to be minimized. The second corresponds to the expected return of the

portfolio, which we wish to maximize and is therefore included with a negative sign. The

last one corresponds to the adjustment of the expected returns due to transaction costs.

The positive constant α > 0 determines the importance of the terms corresponding to

the cost-adjusted expected return in the objective function.

Equation (7.33) reflects the self-financing constraint, which ensures that the value

of the portfolio before rebalancing is equal to the value of the portfolio after rebalancing

plus the transaction costs incurred. Minimum and maximum investment constraints,

which set a lower and an upper bound on the investment of each asset in the portfolio,

are encoded in the restriction (7.34). In this constraint a and b are N × 1 column

vectors whose components are the lower and upper bounds on the portfolio weights,

respectively. Inequality (7.35) corresponds to capital concentration constraints. The

m-th row of the M ×N matrix A is the vector of coefficients of the linear combination

that defines this constraint. The M × 1 column vectors l and u correspond to the

lower and upper bounds of theM linear restrictions, respectively. Capital concentration

constraints can be used, for instance, to limit the amount of capital invested in a group

of assets, so that investor preferences for certain asset classes can be taken into account

in the optimization. Expression (7.36) is the cardinality constraint, which sets a bound

on the maximum number of assets that can be included in the final portfolio. Finally,

the investor can impose trading size or turnover constraints (7.37). These constraints

reflect the fact that the investor may not wish to modify the portfolio by buying or selling

small quantities of assets (Crama and Schyns (1999)). Market restrictions that specify

minimal trading volumes can be handled in a similar way. Trading size constraints are

difficult to handle because they are disjunctive. The solution space is partitioned into

multiple feasible regions that are separated by forbidden regions. Specifically, for each

asset, only one out of three mutually exclusive alternatives can occur: (i) The change

Chapter 7. Optimal Portfolio Selection 110

is greater or equal than Si ≥ 0 when selling, (ii) an amount of product greater or equal

than Pi ≥ 0 is purchased, (iii) the product is neither sold nor purchased.

7.4.1 Lasso penalties

The term corresponding to transaction costs in the objective function (7.32) can be seen

as a lasso penalty term. The lasso (”least absolute shrinkage and selection operator”)

is a statistical technique for regression in which a penalty term proportional to the

L1 norm of the vector of regression coefficients is included in the objective function to

be minimized (Tibshirani (1996)). Norm-constrained portfolios in which the standard

Markowitz framework is extended by including a penalty term proportional to some

norm of the portfolio weight vector ||w||1 in the cost function have been investigated

in DeMiguel et al. (2009a). If an L1 norm is used, provided that the strength of the

the penalty is sufficiently large, some coefficients in w are forced to be zero (Tibshirani

(1996)). Therefore, increasing the weight of this penalty in the cost function tends to

reduce the cardinality of the portfolio.

The L1 penalty associated with transaction costs is of a different type. It is propor-

tional to ∣∣∣w −w(0)
∣∣∣ . (7.38)

This term penalizes deviations from the initial portfolio w(0). The sparsifying effect

of this L1 penalty favors the selection of portfolios in which some of the components

of w − w(0) are exactly zero. This means that there is a tendency not to perform

transactions unless they lead to large expected returns with a low risk. The result is a

regularization effect that avoids large fluctuations in the composition of the portfolio.

Note that such fluctuations are undesirable because they result in large transaction costs,

which reduce the net return of the portfolio. As shown in DeMiguel et al. (2009a) the

out-of-sample performance of a non-regularized portfolio can be very poor. The main

reason is that the inputs of the optimization model (the means and the covariance matrix

of the asset returns) are estimated from historical data, which can be a poor predictor

of future behavior. Furthermore, small changes in these estimates can produce large

modifications of the estimated optimal portfolio, which is an undesirable instability.

This lack of stability and sensitivity to the model inputs generally results in poor out-

of-sample performance. Several authors have pointed out that regularization techniques

can be a way to avoid overfitting and improve the generalization performance of the

portfolios selected (DeMiguel et al. (2009a); Jagannathan and Ma (2003)). Including

this L1 penalty can also be seen as a form of regularization that is expected to improve

the out-of-sample performance of the portfolio.

The observation that transaction costs in the portfolio selection problem can have a

regularization effect suggests the possibility of minimizing a modified objective function

min
z,w

w[z]T ·Σ[z,z] ·w[z] − αwT · r̂+ γT ·
∣∣∣w −w(0)

∣∣∣ , (7.39)

Chapter 7. Optimal Portfolio Selection 111

in which γ represents the strength of the regularization term, which can be set inde-

pendently of the actual transaction costs. In subsection 7.4.3 we perform experiments

in which this cost function is minimized with γ = γ1. The value of γ is selected by cross

validation. Typically, a large value is chosen, which means that the portfolios selected

tend to be very stable. We will refer to this portfolio selection strategy as the lasso

approach.

7.4.2 Hybrid Approach to Portfolio Selection under Transaction Costs

The portfolio selection problem without transaction costs and without the constraints

(7.36) and (7.37) can be solved in polynomial time using standard quadratic optimization

techniques (for instance, the one used in Gill et al. (1991)). These techniques guarantee

that the global optimum is reached, provided that some standard assumptions on the

objective function and the constraints (positive-definiteness of the Hessian, continuous

derivatives, quadratic or linear constraints) hold. However, the piecewise linear transac-

tion costs cannot be handled by a standard QP solver because they are non-differentiable.

Furthermore, the optimization problem with cardinality or turnover constraints becomes

NP-Complete (Moral-Escudero et al. (2006)). Specifically, the inclusion of cardinality

constraints means that one needs to solve the combinatorial optimization problem of

selecting the optimal subset of k ≤ K products from the original investment universe,

where K is the upper bound on the number of products that can be included in the final

portfolio. Finally, the restrictions on the minimum trading size introduce further combi-

natorial complexity in the problem: one needs to know whether the portfolio rebalancing

process involves buying, selling or holding the position in each of the assets.

In this section, we propose a memetic algorithm to address this hybrid optimization

problem. Memetic algorithms (Moscato and Cotta (2003)) are a specific kind of hybrid

metaheuristic techniques (Raidl (2006)) in which evolutionary algorithms are combined

with specific knowledge of the problem at hand. As expressed by the No-Free-Lunch

theorems for optimization (Wolpert and Macready (1997)), no general-purpose algorithm

can perform better than random search when averaged over all classes of optimization

problems. Therefore, to design effective algorithms, it is necessary to introduce some

kind of bias that incorporates in the search specific knowledge of the problem to be

solved. A simple way of incorporating this knowledge is to perform a local optimization

step right after mutation or recombination. In combinatorial problems, hill climbing

heuristics are frequently used to improve the offspring (Moscato and Cotta (2003)).

The memetic approach proposed in this section handles the problem by treating the

combinatorial and the continuous aspects of the optimization task separately. A genetic

algorithm with an extended set representation is used to address the combinatorial aspect

of the problem. This algorithm generates candidate solutions that specify the subset of

assets of the specified cardinality that should be included in the portfolio and the type of

trades to be made when rebalancing the current portfolio. The fitness of this candidate

solution is the optimal value of the portfolio selection problem in the restricted universe of

investment specified by the candidate solution proposed by the genetic algorithm. This

Chapter 7. Optimal Portfolio Selection 112

subordinate optimization problem does not have cardinality or turnover constraints,

which means that it can be solved using standard QP solvers.

In the extended set encoding the candidate solutions are represented as a subset of

the appropriate cardinality. Assets that belong in this set are included in the rebalanced

portfolio. There are transaction costs associated with the asset trades that are needed

to build the new portfolio, characterized by the vector of weights w, from the original

portfolio, characterized by the vector of weights w(0). For each element in the set we

include an additional attribute that specifies whether the corresponding asset is sold,

purchased or is left unchanged in this portfolio rebalancing operation. Including the

information in the chromosome is advantageous for two reasons: First, it is a way of

directly handling the turnover constraint (7.37). Once the information of the presence

or absence of a trade and its direction for each asset is known, only one of the three

inequalities in (7.37) is relevant. Since each of the inequalities is linear when considered

in isolation, the selected inequality can be included in the set of linear constraints of the

subordinate optimization problem. Second, the absolute values in the objective function

and in the budget constraint (7.33) can be eliminated once this attribute is known by

making the substitution

∣∣∣w −w(0)
∣∣∣ = ∑

i∈Sold

(
w

(0)
i − wi

)
+

∑
i∈Purchased

(
wi − w(0)

i

)
. (7.40)

In this manner, these terms become differentiable. Furthermore, there is no need to

increase the number of variables from N to 3N as is usually done to eliminate the ab-

solute values. Therefore, the simplifications that result from using the information pro-

vided by the candidate solutions in the extended set encoding allow the use of standard

QP solvers to address the subordinate optimization problem. Note that this approach

remains valid even if the transaction costs take a more complicated form (e.g., if they

are different for buying and selling).

The combinatorial search takes place in the space

Θ = {(s, t) : s ∈ ∪Kk=1Ck(N), t ∈ T } (7.41)

where Ck(N) is the subset of all subsets of {1, . . . , N} with cardinality k and T =

{’buy’, ’hold’, ’sell’} is the set of values of the attributes that determine the trade that

is made in the portfolio. The size of the search space is exponential in N

|Θ| = 3
K∑
k=1

(
N

k

)
. (7.42)

The GA encodes the candidate solutions as sets of fixed cardinality. In this extended

representation, each element in the set has an additional attribute whose value is in T .
The mutation operator exchanges a randomly selected product in the portfolio encoded

by the candidate solution with another product that is not present in the portfolio.

If the new product was not in the original portfolio, which is characterized by the

vector of weights w(0), the value of the trading attribute is set to ’buy’. Otherwise, a

Chapter 7. Optimal Portfolio Selection 113

random value in T for the trading direction attribute is assigned to this new element. A

separate optimization is carried out for every possible value of the cardinality constraint

in the range k = 1, . . . ,K. The best among the solutions obtained for the different

optimizations is finally selected.

In Ruiz-Torrubiano et al. (2010), the performance of genetic algorithms that use dif-

ferent crossover operators specially designed for set encodings were compared in several

cardinality constrained optimization problems. These included portfolio selection with-

out transaction costs. The best overall results in this study were obtained by Random

Assortment Recombination (RAR) (Radcliffe (1993)). In this section we propose to

adapt this operator so that it can be applied to chromosomes with an extended set en-

coding. The resulting algorithm is referred to as extended RAR (eRAR). This extended

version of RAR is detailed in Algorithm 16. The operator includes a positive integer

parameter w that controls the amount of common information from the parents retained

by the offspring. The RAR operator makes use of six sets: Set A is the intersection set,

which contains products that appear in both parents. Set B includes the products not

present in any parent. Sets C and D contain the products present in only one parent.

Set E is initially empty (E = ∅). An additional set G is then created with w copies of the

products from A and B and one copy from the products in C and D. The elements in G

retain the label of the set from which they originate. A child chromosome is generated

by selecting a product at random from G in each iteration. If the product originally

comes from A or C and is not in E, then it is included in the child. Otherwise, if it

originated in B or in D, then it is included in set E.

Algorithm 16 Extended Random Assortment Recombination algorithm (eRAR)

1. Create auxiliary sets A,B,C,D,E:

• A = elements present in both parents.

• B = elements not present in any of the parents.

• C ≡ D elements present in only one parent.

• E = ∅.

2. Build set G with w copies of elements from A and B, and 1 copy of the elements
in C and D.

3. Initialize child chromosome ϕ = ∅.

4. While |ϕ| < n and G ̸= ∅:

• Extract g ∈ G without replacement.

• DetermineAttribute(g).

• If g ∈ A or g ∈ C, and g /∈ E, ϕ = ϕ ∪ {g}.
• If g ∈ B or g ∈ D, E = E ∪ {g}.

5. If |ϕ| < n, add elements not yet included chosen at random until chromosome is
complete.

Chapter 7. Optimal Portfolio Selection 114

The process is terminated when the child has the specified cardinality or when G = ∅.
If the latter happens, then the child is completed with assets selected at random from

those which have not been included up to that moment. Note that this step allows the

introduction in the child of products not present in any parent. The extended version

eRAR handles the additional attribute that specifies the direction of the trade for each

asset in the rebalancing operation by means of the function DetermineAttribute(g),

which is described in Algorithm 17.

Algorithm 17 DetermineAttribute(g): Extended attribute selection in eRAR

1. If the product g is not present in the original portfolio, which is characterized by
the weight vector w(0), then the value of the attribute is ’buy’.

2. Otherwise

(a) If the product g is not present in any parent, then the trading direction
attribute is selected with equal probability in the set T .

(b) If the product g is present in only one parent, then the trading direction
attribute of g in the child is set to the same value as in the parent.

(c) If product g is present in both parents:

• If the trading direction attribute in both parents is equal, the child has
the same value of this attribute as its parents.

• If the trading direction attribute is different in the parents the combina-
tion of attributes with the highest fitness is chosen.

When there is a disagreement between the attributes that determine the type of trade

for that asset in the parents, we consider two strategies (i) Either we pick the one that

has the highest fitness among all possible combinations of attributes or (ii) the value of

the attribute in which the parents disagree is selected at random. The best performance

corresponds to (i). However, the computations are unfeasible for large values of the

cardinality constraint. Therefore, in the implementation of the algorithm procedure (ii)

is used for values of the cardinality constraint higher than 15.

The fitness of the candidate solution is defined in terms of the solution of the sub-

ordinate optimization problem (7.32)

Fitness(z) = −min
w

(
w[z]T ·Σ[z,z] ·w[z] − α

(
w[z]T · r̂[z] − κT ·

∣∣∣w −w(0)
∣∣∣)) (7.43)

subject to (7.33)-(7.35), and one of the inequalities of (7.37) for each included product.

A standard QP solver (Gill et al. (1991)) is used to address this subordinate optimization

problem.

In the next section the effectiveness of this approach is illustrated in a series of

experiments on actual financial data. In this empirical study the hybrid method is

compared with a number of standard and advanced strategies. The main conclusion

of the study is that cardinality constraints and transaction costs act as regularization

Chapter 7. Optimal Portfolio Selection 115

terms that allow the selection of sparse portfolios that are stable, robust and generally

exhibit good out-of-sample performance.

7.4.3 Empirical evaluation

In this section we present the results of an empirical evaluation of the proposed hy-

brid method. The performance of this algorithm is compared with reference strategies

for portfolio selection and management. Special attention is given to the effects of

transaction costs and of cardinality constraints in both the in-sample and the out-of-

sample performance of the portfolio. The experiments are carried out on three different

datasets compiled by Fama and French2. These data consist of time series of non-

annualized monthly returns from June 1971 until December 2009. The first dataset

(FF48) includes 48 industry portfolios. The second one (FF100) is the intersections

of 10 portfolios formed on size (market equity, ME) and 10 portfolios formed on the

ratio of book equity to market equity (BE/ME). The 10 portfolios formed on size are

constructed by ranking assets from small to large ME values and defining 10 deciles. A

similar ranking is constructed based on the BE/ME values and, again, 10 deciles are

defined. For each decile, a portfolio is constructed with the assets in that decile. Then,

100 portfolios are formed by constructing portfolios for all possible combinations of each

decile of ME and BE/ME portfolios. In other words, one portfolio is formed by combin-

ing the decile i size portfolio with the decile j BE/ME portfolio, where i, j = 1, . . . , 10.

The third dataset (FF38) contains 38 industry portfolios different from those included

in FF48.

The first part of the empirical study is devoted to in-sample evaluation. The goal of

in-sample evaluation is to determine the quality of the memetic algorithm as an opti-

mization method. The question is how close is the portfolio selected by this algorithm

to the globally optimal portfolio. Given that the cardinality constrained portfolio op-

timization problem is NP-hard, only results relative to the best known solution can be

given in most cases. Several studies have shown that portfolios that are optimal in-

sample can have poor out-of-sample performance (see e.g. DeMiguel et al. (2009b)).

The reason is that the inputs for the optimization are based on estimations that are

insufficient or inadequate for prediction. In machine learning this discrepancy between

in-sample (training) and out-of-sample (test) performance is referred to as overfitting.

It is a result of erroneously identifying regularities in the data that are used to estimate

the inputs to the optimization problem (training data) as patterns that are relevant to

make predictions on an independent test set. The reliance on this spurious patterns

is misleading and hinders the generalization capacity of the system (Bishop (2006)).

For this reason, the second part of this subsection is devoted to the assessment of the

out-of-sample performance of the hybrid method proposed in this research.

2http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html

Chapter 7. Optimal Portfolio Selection 116

7.4.3.1 In-sample evaluation

The in-sample performance is assessed using all the available data (approximately 400

monthly returns) to estimate the vector of expected returns

r̂i =
1

T

T∑
t=1

ri(t), i = 1, . . . , N (7.44)

and the covariance matrix of these returns

Σ̂ij =
1

T − 1

T∑
t=1

(ri(t)− r̂i) (rj(t)− r̂j) ∀i, j. (7.45)

The hybrid metaheuristic introduced in the previous subsection is used to solve the

optimization problem (7.32)-(7.37) with the sample estimates of the expected value

(7.44) and the covariance matrix of the returns (7.45) as inputs. The GA uses a steady-

state population of 100 individuals. Crossover is always performed. A child is generated

by applying the eRAR operator to two parents selected in separate binary tournaments.

In each binary tournament two individuals are picked at random. The best one is then

selected for crossover. The newly generated offspring replaces the worst individual of

the original population. The mutation operator described in the previous subsection is

applied with probability 10−2.

A first set of optimizations is made to calculate the efficient frontier of Pareto optimal

portfolios. The efficient frontier is the collection of portfolios whose returns have the

lowest possible variance for a fixed value of the expected portfolio return. From the

dual perspective, Pareto optimal portfolios have a maximum expected return for a fixed

value of the variance. These portfolios are the solution of the collection of optimization

problems obtained by using in (7.32)-(7.37) as objective function

(1− λ)w[z]T ·Σ[z,z] ·w[z] − λ(w[z]T · r̂[z] − κT ·
∣∣∣w −w(0)

∣∣∣). (7.46)

The efficient frontier is parameterized in terms of λ ∈ [0, 1]. For the sake of simplicity,

we assume equal transaction costs for all the assets {κi = κ, i = 1, . . . N}. Taking into

account different costs for different products is straightforward and does not increase the

difficulty of the problem. The efficient frontiers are then computed for several values of

the transaction costs as given by the value κ: 0, 10, 50 and 100 basis points3. In all cases,

the portfolios are restricted to invest in at most K = 10 different products. We compute

NF = 100 portfolios in the efficient frontier by taking a grid of equidistant values of λ

in the range [0, 1]. The efficient frontier that would be obtained if all the constraints

were removed is also computed for reference. The efficient frontier for the FF48 dataset

is displayed in Figure 7.5(a) and, in more detail in Figure 7.5(b). As expected, the

solutions that are optimal when transaction costs are considered are dominated by the

solutions on the unconstrained efficient frontier: the higher the transaction costs, the

more distant is the efficient frontier from the unconstrained one. When low-to-moderate

31 basis point (bps) = 0.001%

Chapter 7. Optimal Portfolio Selection 117

 0.13

 0.14

 0.15

 0.16

 0.17

 0.18

 0.19

 0.2

 0.21

 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

E
xp

ec
te

d
R

et
ur

n

Risk = Variance of portfolio returns

Unconstrained
TC=10 bps
TC=50 bps

TC=100 bps

(a) Comparison of efficient frontiers in the FF48 dataset for different values of the transaction costs.

 0.146

 0.148

 0.15

 0.152

 0.154

 0.185 0.19 0.195 0.2 0.205 0.21 0.215 0.22

E
xp

ec
te

d
R

et
ur

n

Risk = Variance of portfolio returns

Unconstrained
TC=10 bps
TC=50 bps

TC=100 bps

(b) Detailed comparison of efficient frontiers in the FF48 dataset for different values of the transac-
tion costs.

Figure 7.5: In 7.5(a) the whole efficient frontier is represented. In 7.5(b) a detailed
comparison shows that the distance to the unconstrained efficient frontier increases
with higher transaction costs.

Chapter 7. Optimal Portfolio Selection 118

Table 7.7: Comparison of in-sample results in the FF48 dataset using different values
of the transaction costs.

Transaction Best D Success Time (s) Optimizations
costs rate

0 bps 0.01378271 1.00 4262.4 7.64 · 107
10 bps 0.13378017 1.00 4564.5 8.91 · 107
20 bps 0.18238682 1.00 4487.2 8.96 · 107
30 bps 0.27143231 1.00 4374.0 9.05 · 107
40 bps 0.31587304 1.00 4379.6 9.00 · 107
50 bps 0.36184243 1.00 4272.5 8.95 · 107
100 bps 0.61696361 1.00 3920.7 8.67 · 107

transaction costs are considered (10 and 50 bps), the efficient frontiers obtained are fairly

close to the unconstrained one. Higher transaction costs tend to produce more distant

frontiers, as can be seen in the 100 bps case.

Table 7.7 presents a number of measures that characterize the results of this opti-

mization. In this table, we give results for transaction costs values κ = 0, 10, 20, 30, 40,

50 and 100 bps. The second column of this table displays the values of

D =
1

NF

NF∑
i=1

σci − σ∗i
σ∗i

, (7.47)

which is a measure of the average relative distance between the actual and the uncon-

strained efficient frontiers. The value of σci in (7.47) is the standard deviation achieved

for the ith point on the actual efficient frontier, which is obtained considering all the con-

straints and transaction costs, and σ∗i is the corresponding value on the unconstrained

efficient frontier. The third column in Table 7.7 presents the success rate obtained by

the algorithm. The success rate is the fraction of runs of the algorithm in which the best

known solution at each point in the frontier is found. In our experiments, the algorithm

is executed 5 times for each point on the frontier. The run-time measured on an Intel

Core Duo machine with 2 GHz clock speed and 2 GB RAM is given in the next column.

Finally, the last column shows the total number of quadratic optimizations performed.

The results in Table 7.7 confirm that increasing the transaction costs results in larger

differences with the unconstrained efficient frontier, as measured by (7.47). The success

rates, times and number of optimizations are similar in all cases. This means that, in

the range of values considered, the difficulty of the optimization problem seems to be

fairly independent of how large the transaction costs are.

In a second set of experiments we solve the optimization problem (7.32)-(7.37) using

(7.44), (7.45) as inputs. The optimization is carried out with α = 2 in (7.32). Similar

conclusions are reached for other values of this parameter. The equally weighted 1/N

portfolio is used as the initial portfolio in all cases

w(0) = {1/N, 1/N, . . . , 1/N}. (7.48)

Chapter 7. Optimal Portfolio Selection 119

The goal is to rebalance this portfolio so that it satisfies the specified constraints and

has the best performance in one investment period, which in the experiments carried

out has a duration of one month.

The performance is measured in terms of the expected return of the portfolios selected

by the optimization procedure, taking into account the transaction costs

Rexp =
N∑
i=1

wir̂i −
N∑
i=1

κi

∣∣∣wi − w(0)
i

∣∣∣ (7.49)

where w = {wi}Ni=1 is the composition of the portfolio after rebalancing and r̂i are

computed using (7.44). The in-sample Sharpe ratio (without taking into account the

risk-free rate) is

SR =
Rexp
σ

=

∑N
i=1wir̂i −

∑N
i=1 κi

∣∣∣wi − w(0)
i

∣∣∣√∑N
i=1

∑N
j=1wiΣ̂ijwj

, (7.50)

in terms of the sample estimate of the covariance matrix of the returns (7.45).

The performance of the portfolio selected by the GA algorithm with an extended

set encoding is compared to several portfolios that have been built using standard in-

vestment strategies. To analyze the effect of transaction costs on a general portfolio,

assume that the composition of the portfolio immediately before rebalancing at time

t is
{
w

(0)
i (t), i = 1, . . . N

}
, as in (7.27). The portfolio identified by strategy s after

rebalancing at t is characterized by the weights

w
(s)
i (t), i = 1, . . . N, (7.51)

which are assumed to be normalized

N∑
i=1

w
(s)
i (t) = 1. (7.52)

Assuming linear transaction costs, the self financing constraint is

P (t−) = P (t) +

N∑
i=1

κi

∣∣∣w(s)
i (t)P (t)− w(0)

i (t)P (t−)
∣∣∣ . (7.53)

This implicit nonlinear equation can be solved to obtain P (t), the value of the portfolio

obtained by means of the investment strategy considered, as a function of the value of

the portfolio before rebalancing P (t−). Taking into account the transaction costs, the

expected return is

R(s)
exp(t) =

P (t)

P (t−)

(
N∑
i=1

w
(s)
i (t)r̂i + 1

)
− 1 =

P (t)

P (t−)

(
N∑
i=1

w
(s)
i (t)r̂i −

(
P (t−)

P (t)
− 1

))
.

(7.54)

Chapter 7. Optimal Portfolio Selection 120

From the form of this expression, one can see that the effect of the transaction costs is,

on the one hand, to lower the returns and, on the other hand, to reduce the amount of

capital that is available for investment. The Sharpe ratio is

S
(s)
R (t) =

∑N
i=1w

(s)
i (t)r̂i −

(
P (t−)
P (t) − 1

)
√∑N

i=1

∑N
j=1w

(s)
i Σ̂ijw

(s)
j

. (7.55)

In the next series of experiments, the performance of the proposed eRAR strat-

egy, taking into account transaction costs, is compared to the following five benchmark

portfolios:

1. 1/N : The näıve diversified portfolio in which all N products are given the same

weight 1/N . The transaction costs are ignored in the portfolio selection. As in all

the cases considered the performance evaluation is made taking into account the

actual transaction costs.

2. MinVar: The minimum variance portfolio. This portfolio is constructed by drop-

ping the expected return constraint in the standard Markowitz model. The trans-

action costs are ignored in the portfolio selection.

3. NoCard: A portfolio built without the cardinality constraint but taking into

account transaction costs. The problem can be formulated as a quadratic program

in 3N dimensions by including two additional variables per asset: d+i , d
−
i ∈ R+ ∪

{0}, i = 1, . . . , N . Two new linear constraints per variable need to be included:

wi − d+i ≤ w
(0)
i (7.56)

d−i + wi ≥ w(0)
i . (7.57)

The terms corresponding to the transaction costs in the objective function and in

the constraint (7.33) are replaced by

N∑
i=1

κi(d
+
i + d−i). (7.58)

This strategy is referred to as the standard Markowitz portfolio in the discussion.

4. Lasso: This type of portfolio is obtained using the lasso approach described in

Subsection 7.4.1 without the cardinality constraint. The value of γ∗ used in the

final evaluation is estimated by leave-one-out cross-validation: Let the training

period be [Ti, Tf]. For each t = Ti, . . . , Tf we leave the t-th return out and use

the resulting training set to select an optimal portfolio according to those data.

The portfolio wγ(t), obtained using the value γ for the lasso penalty, is held on

[t, t + 1). Its out-of-sample return in that period (rγout(t)) is then recorded. As a

result of this process, we have a time series {rγout(t)}
Tf
t=Ti

. We then calculate the

mean return of this series r̂γout and choose γ∗ = maxγ r̂
γ
out. Using the returns in

Chapter 7. Optimal Portfolio Selection 121

Table 7.8: Comparison of expected in-sample returns for the different strategies in
the FF48 dataset.

TC 1/N MinVar No Card. Lasso eRAR eRAR
Ignore TC Ignore TC With TC γ = 3300 bps Ignore TC With TC

0 0.0150000 0.011891 0.015951 0.014763 0.014812 0.014812
10 0.015000 0.010860 0.014456 0.014693 0.013038 0.012797
20 0.015000 0.009830 0.012975 0.014622 0.011267 0.010786
30 0.015000 0.008800 0.011510 0.014551 0.009500 0.008779
40 0.015000 0.007770 0.010060 0.014480 0.007737 0.006776
50 0.015000 0.006740 0.008624 0.014409 0.005977 0.004777

the first 60 months as training set, the value selected was γ∗ = 3300 bps for the

FF48 dataset, γ∗ = 3550 bps for FF100 and γ∗ = 250 bps for FF38.

5. IgnoreTC: A portfolio constructed taking into account the cardinality constraint

but ignoring transaction costs. The portfolio optimization is performed with zero

transaction costs. However, the evaluation of the portfolio is made using the actual

transaction costs. The proposed hybrid GA approach is used for this strategy.

In the tables in which the results of this empirical evaluation are presented, the best

value is highlighted in boldface and the second best value is underlined.

The in-sample results for the FF48 dataset are shown in tables 7.8 and 7.9. In the

absence of transaction costs, the strategy that obtains the best in-sample expected re-

turn is the standard Markowitz mean-variance portfolio (column ”No Card”). When

nonzero transaction costs are considered, the 1/N strategy, which does not incur trans-

action costs, has the best expected return. The second best expected returns without

transaction costs correspond to the 1/N strategy. However, when transaction costs are

considered, the second best results are obtained by the lasso strategy. This should be

expected because the value of γ = 3300 bps estimated by cross-validation is quite large,

which means that the the lasso and the 1/N portfolios are very similar. In terms of

Sharpe ratios, the best results are obtained by the portfolios selected by eRAR without

taking transaction costs into account. With transaction costs up to 20 bps, the No Card.

strategy performs best. Above that value, the lasso strategy obtains the best results.

Note that, in terms of expected returns, the strategy without cardinality constraints (No.

Card.) always obtains better results than the cardinality-constrained eRAR strategies.

This should be expected because the removal of a constraint necessarily improves the

value of the optimum of the objective function.

Tables 7.10 and 7.11 summarize the in-sample results for the FF100 dataset. Without

transaction costs, the standard Markowitz portfolio obtains the best in-sample returns,

followed by the eRAR strategies. The lasso strategy is the best one when transaction

costs are considered. The second best strategy is in this case the No Card. strat-

egy, which, as in the previous case, obtains better results than the eRAR cardinality-

constrained portfolios. In terms of Sharpe ratios, the best results for low transaction

cost values are achieved by the eRAR strategies. However, the lasso strategy obtains

the best Sharpe ratios with higher transaction costs

Chapter 7. Optimal Portfolio Selection 122

Table 7.9: Comparison of in-sample Sharpe ratios for the different strategies in the
FF48 dataset.

TC 1/N MinVar No Card. Lasso eRAR eRAR
Ignore TC Ignore TC With TC γ = 3300 bps Ignore TC With TC

0 0.018795 0.019705 0.026014 0.019448 0.026185 0.026185
10 0.018795 0.018016 0.023637 0.019357 0.023089 0.022658
20 0.018795 0.016324 0.021270 0.019265 0.019989 0.019127
30 0.018795 0.014628 0.018916 0.019173 0.016883 0.016222
40 0.018795 0.012929 0.016574 0.019080 0.013773 0.012053
50 0.018795 0.011227 0.014243 0.018988 0.010659 0.008510

Table 7.10: Comparison of in-sample expected returns for the different strategies in
the FF100 dataset.

TC 1/N MinVar No Card. Lasso eRAR eRAR
Ignore TC Ignore TC With TC γ = 3550 bps Ignore TC With TC

0 0.007800 0.007800 0.012575 0.011759 0.012435 0.012435
10 0.007800 0.007800 0.010994 0.011714 0.010584 0.010847
20 0.007800 0.007800 0.009460 0.011669 0.008716 0.009362
30 0.007800 0.007800 0.007953 0.011624 0.006863 0.007881
40 0.007800 0.007800 0.006487 0.011579 0.005013 0.005827
50 0.007800 0.007800 0.005055 0.011534 0.003167 0.005215

Table 7.11: Comparison of in-sample Sharpe ratios for the different strategies in the
FF100 dataset.

TC 1/N MinVar No Card. Lasso eRAR eRAR
Ignore TC Ignore TC With TC γ = 3550 bps Ignore TC With TC

0 0.010900 0.010900 0.022150 0.016730 0.022714 0.022714
10 0.010900 0.010900 0.019420 0.016667 0.019350 0.019818
20 0.010900 0.010900 0.016761 0.016604 0.015981 0.017104
30 0.010900 0.010900 0.014135 0.016541 0.012605 0.014395
40 0.010900 0.010900 0.011561 0.016477 0.009225 0.010659
50 0.010900 0.010900 0.009033 0.016414 0.005838 0.009518

The in-sample results for the FF38 dataset are summarized in tables 7.12 and 7.13.

As in the previous cases, the best strategy with zero transaction costs is the No Card.

strategy. For higher values of the transaction costs, the 1/N strategy has the best ex-

pected returns. The lasso strategy, which is again very similar to the 1/N strategy is

the second best for higher transaction costs. The same observation as in the previous

cases holds for the No Card. and the eRAR strategies: The model with no cardi-

nality constraints obtains better expected returns. In terms of Sharpe ratios, the No

Card. portfolios obtain the best results without transaction costs, followed by the eRAR

strategies.

7.4.3.2 Out-of-sample evaluation

The out-of-sample performance of the different strategies is evaluated in a simulated

investment exercise. We are given a collection of N assets from which an investment

portfolio can be built. As in the in-sample case, the data available consist of time series

of returns for each of these assets
{
{ri(t)}Tt=1 ; i = 1, . . . , N

}
. We fix a time horizon

Chapter 7. Optimal Portfolio Selection 123

Table 7.12: Comparison of in-sample expected returns for the different strategies in
the FF38 dataset.

TC 1/N MinVar No Card. Lasso eRAR eRAR
Ignore TC Ignore TC With TC γ = 250 bps Ignore TC With TC

0 0.014690 0.010892 0.015055 0.014611 0.014144 0.014144
10 0.014690 0.009579 0.013615 0.013447 0.012424 0.012752
20 0.014690 0.008267 0.012207 0.012284 0.010708 0.011166
30 0.014690 0.006955 0.010824 0.011123 0.008996 0.009011
40 0.014690 0.005645 0.009466 0.009964 0.007287 0.009524
50 0.014690 0.004336 0.008120 0.008805 0.005581 0.008522

Table 7.13: Comparison of in-sample Sharpe ratios for the different strategies in the
FF38 dataset.

TC 1/N MinVar No Card. Lasso eRAR eRAR
Ignore TC Ignore TC With TC γ = 250 bps Ignore TC With TC

0 0.018516 0.019355 0.025376 0.024823 0.025366 0.025366
10 0.018516 0.017044 0.022996 0.022871 0.022320 0.022957
20 0.018516 0.014728 0.020658 0.020918 0.019270 0.020197
30 0.018516 0.012408 0.018353 0.018962 0.016216 0.016222
40 0.018516 0.010084 0.016080 0.017005 0.013158 0.017063
50 0.018516 0.007755 0.013822 0.015045 0.010095 0.015245

ttr ≤ T that determines the amount of training data. The expected returns used as

input in the optimization are estimated from these training data

r̂i =
1

ttr

ttr∑
t=1

ri(t) i = 1, . . . , N. (7.59)

The sample estimate of the covariance matrix of these returns is

Σ̂ij =
1

ttr − 1

ttr∑
t=1

(ri(t)− r̂i) (rj(t)− r̂j) ∀i, j. (7.60)

The equally weighted portfolio

w(0)
s (t−tr) = {1/N, 1/N, . . . , 1/N} (7.61)

is the initial portfolio for all strategies s that are analyzed. For simplicity, equal trans-

action costs are assumed for all assets {κi = κ; i = 1, . . . , N}. We then select a portfolio

ws(ttr) using each of the strategies considered. The composition of this portfolio is then

held fixed for the period [ttr, ttr + 1). Even if the composition of the portfolio does not

change, the portfolio weights evolves during this period because of changes in the market

prices of its constituents. The training data window is then shifted by one month. The

portfolio that results from the evolution of the market prices of the constituent assets

is rebalanced using as inputs the expected means and covariance matrix of the asset

returns estimated on the data from the shifted time window. The process is repeated

until the last period of data available.

Chapter 7. Optimal Portfolio Selection 124

Consider the portfolio selected by strategy s after rebalancing at time t, which is

characterized by the vector of weights w(s)(t) =
{
w

(s)
i (t); i = 1, . . . , N

}
. When no

transaction costs are considered to compute these weights the cost-adjusted return of

the portfolio in the period [t, t+ 1) is

R(s)(t) =
P (t)

P (t−)

(
N∑
i=1

w
(s)
i (t)ri(t)−

(
P (t−)

P (t)
− 1

))
,

where ri(t) are the actual returns for the ith asset in that period, P (t−) is the value of the

portfolio before rebalancing at t, and P (t) is the value of the portfolio after rebalancing.

The procedure for the computation of P (t) from P (t−) and w(s)(t) has been described

in the section on in-sample evaluation.

When the portfolio weights w(s)(t) are computed taking into account transaction

costs, the portfolio return in [t, t+ 1) is

R(s)(t) =
N∑
i=1

w
(s)
i (t)ri(t)−

N∑
i=1

κi

∣∣∣w(s)
i (t)− w(0)

i (t)
∣∣∣ , (7.62)

where w
(0)
i (t) are the (normalized) portfolio weights immediately before rebalancing at

time t. Note that w
(0)
i (t) will in general be different from w

(0)
i (t − 1). These weights

evolve during the period [t− 1, t) because of changes in the market prices of the assets

in the portfolio.

The accumulated return in the testing (out-of-sample) period [ttr + 1, T] is

R(s)
acc(ttr + 1, T) =

E [P (T)]

P (ttr)
− 1 =

T∏
t=ttr+1

(1 +R(s)(t))− 1. (7.63)

The average Sharpe ratio is

S(s)
av (ttr + 1, T) =

Av
[{
R(s)(t)

}T
t=ttr+1

]
Stdev

[{
R(s)(t)

}T
t=ttr+1

] . (7.64)

In this expression the numerator represents the sample average and the denominator the

sample standard deviation of the time series of portfolio returns. To quantify the amount

of trading that is performed, the average turnover in terms of normalized weights

T s(ttr + 1, T) =
1

T − ttr + 1

T−1∑
t=ttr

N∑
i=1

∣∣∣∣∣ w
(s)
i (t+ 1)∑N

j=1w
(s)
j (t+ 1)

−
w

(s)
i (t)∑N

j=1w
(s)
j (t)

∣∣∣∣∣ (7.65)

is also computed.

In the experiments performed, 5 years of data are used for training. The first training

period is from June 1971 until July 1976. The testing period runs up to December 2009,

the last month for which data are available. The performance of the portfolios selected

by the genetic algorithm with set encoding, cardinality constraints and transaction costs,

Chapter 7. Optimal Portfolio Selection 125

are compared with the five benchmark portfolios described in the section on in-sample

results. We also report the results for a Passive strategy, in which the composition

of the portfolio is not changed with time. Initially the N assets have the same weight

(1/N). Even though the composition of the portfolio does not change, the asset weights

change because of the evolution of their market prices. It is interesting to benchmark

against the passive strategy because it does not involve any rebalancing and therefore

does not incur transaction costs.

The parameters used in the GA optimizations are the same as those used for in-

sample evaluation (Section 7.4.3.1). Table 7.14 displays the accumulated returns for the

different strategies in the FF48 dataset. The corresponding average Sharpe ratios are

shown in Table 7.15. The values reported correspond to an investment period from June

1976 until December 2009. The accumulated returns should therefore be interpreted as

the accumulated profit (final minus initial portfolio wealth) at the end of December 2009

that results from an investment of 1$ at the beginning of June 1976. The results are

calculated for transaction costs that range between 0 and 50 bps.

The first important observation is that the portfolio built using the eRAR strat-

egy but without taking into account transaction costs when rebalancing the portfolio

has in most cases a lower accumulated return than the same strategy with transaction

costs, which also has smaller values of the average turnover. In fact, this strategy has

larger accumulated return than all the portfolios that are selected using strategies that

ignore transaction costs. The minimum variance portfolios are always better than 1/N

portfolios both in terms of accumulated return and of average Sharpe ratios. The pas-

sive portfolio has fairly high expected returns, better than the standard mean-variance

optimal, the min-variance and the 1/N portfolios, and only slightly worse than the

Lasso portfolio. Another important observation is that including cardinality constraints

improves the out-of-sample performance in most cases. Nonetheless, the cardinality con-

straint by themselves are not sufficient. One also needs to take transaction costs into

account. The eRAR strategy that considers transaction costs has the best accumulated

return in most cases.

The average values of the Sharpe ratios are presented in Table 7.15. Despite the

differences in accumulated returns, all the portfolios, except for the passive and the

1/N strategies, have similar values of this performance measure. Despite their lower

accumulated return, portfolios that do not have a cardinality constraint generally have

lower variances, as a result of diversification. The best values of the average Sharpe ratio

correspond to the MinVar strategy. This means that minimizing the variance in-sample

is an effective strategy to minimize the out-of-sample variance. The second largest values

of the Sharpe ratios are achieved by the eRAR strategy with transaction costs.

The values of the average turnover of the different portfolios is shown in table 7.16.

The 1/N strategy has the largest overall turnover: the portfolio needs to be continuously

rebalanced to compensate the changes in portfolio weights resulting from the changes

in the prices of the assets in the portfolio. This explains the poor performance of this

portfolio when transaction costs are taken into account. The passive strategy, which does

not involve any rebalancing, has zero turnover. The lasso strategy, in which trades are

penalized, has a small turnover. As expected, in the strategies that take into account

Chapter 7. Optimal Portfolio Selection 126

Table 7.14: Accumulated returns for the different strategies in the FF48 dataset.

TC Passive 1/N MinVar No Card. Lasso eRAR eRAR
No TC Ignore TC Ignore TC With TC γ = 3300 bps Ignore TC With TC

0

95.670663

86.276413 89.350936 86.813818 97.189846 128.155098 128.155098
10 73.408415 88.132098 83.336660 97.104098 119.855927 125.369070
20 62.436569 86.929599 80.114928 97.018307 112.087376 109.483665
30 53.081622 85.743219 77.145857 96.932477 104.365905 111.592719
40 45.105426 84.572742 74.190147 96.846614 98.009242 105.724173
50 38.304883 83.417955 71.356740 96.760665 91.178698 99.803953

Table 7.15: Average Sharpe ratios for the different strategies in the FF48 dataset.

TC Passive 1/N MinVar No Card. Lasso eRAR eRAR
No TC Ignore TC Ignore TC With TC γ = 3300 bps Ignore TC With TC

0

0.263390

0.269102 0.364336 0.322772 0.304987 0.346159 0.346159
10 0.260463 0.363313 0.320258 0.304931 0.341792 0.344805
20 0.251818 0.362288 0.317803 0.304874 0.337416 0.338135
30 0.243168 0.361262 0.315423 0.304818 0.332688 0.339387
40 0.234514 0.360235 0.312971 0.304761 0.328638 0.335418
50 0.225856 0.359207 0.310449 0.304704 0.323845 0.330935

Table 7.16: Average turnover for the different strategies in the FF48 dataset.

TC Passive 1/N MinVar No Card. Lasso eRAR eRAR
No TC Ignore TC Ignore TC With TC γ = 3300 bps Ignore TC With TC

0

0.000000 0.474748 0.044916

0.092204

0.002220 0.188056

0.188056
10 0.088368 0.139953
20 0.085043 0.123841
30 0.082032 0.106235
40 0.079307 0.100318
50 0.076869 0.092705

transaction costs in the selection of optimal portfolio weights (No Card., eRAR with

TC), the average turnover decreases with increasing transaction costs.

To investigate the regularization effects of cardinality constraints and of L1 penalties

proportional to the absolute value of the difference between the weights of the rebal-

anced portfolio and of the original portfolio, we compare the out-of-sample accumulated

returns for lasso portfolios with cardinality constraints K = 10, K = 20 and without a

cardinality constraint. Figure 7.6 displays the accumulated return of these lasso port-

folios as a function of the value of γ used to train the model. Using either cardinality

constraints or high lasso penalties (γ ≈ 2500 bps) are useful strategies that can be used

to select portfolios with good out-of-sample performance. However, using both cardinal-

ity constraints and a high lasso penalty seems to be detrimental for the out-of-sample

performance. From these results we conclude that including both types of regularization

is not an effective strategy in the problems investigated.

To illustrate the evolution of the porftolios that are selected when both transaction

costs and cardinality constraints are considered, we present results in an investment

universe of N = 3 assets. The portfolio is restricted to have at most K ≤ 2 assets at

a given instant. Figure 7.7 displays the evolution of the portfolio for transaction costs

κ = 0, 25, 50, 75, 150, 250 bps. Several features of the evolution of the investment are

Chapter 7. Optimal Portfolio Selection 127

 60

 65

 70

 75

 80

 85

 90

 95

 100

 105

 0 500 1000 1500 2000 2500 3000 3500 4000

A
cc

um
ul

at
ed

 r
et

ur
n

TC Train

With cardinality K=10
With cardinality K=20

Without cardinality
Passive portfolio

Figure 7.6: Accumulated returns as a function of the transaction costs used for train-
ing. Transaction costs in test are set to 50 bps.

noteworthy: For low costs the assets included in the portfolio change often to take ad-

vantage of local trends. For larger transaction costs, the changes in the weights of the

portfolio are smaller and the positions in a given asset are held longer. The composition

is modified only if the trend detected is strong. In the experiments performed this is

illustrated by the fact that the composition of the portfolios changes when the transac-

tion costs are low (0-75 bps). In contrast, the when the transaction costs are higher (150

and 250 bps), the portfolios invest in the same two assets during the whole investment

period.

The out-of-sample performance measures for the FF100 dataset are presented in

Tables 7.17, 7.18 and 7.19. Since the number of assets is much higher in this case,

we use a cardinality constraint of K = 25. The best results are obtained by the lasso

and the passive strategies. From the remaining strategies, the eRAR portfolios with a

cardinality constraint show a good overall performance, although clearly inferior to the

passive or the lasso strategies. Portfolios that do not consider transaction costs have

lower accumulated returns. The fact that these portfolios have lower variance (because

they are more diversified) means that the average Sharpe ratios are only slightly inferior.

From the results one also concludes that it is crucial to take into account the effects of

transaction costs in the optimization. The performance obtained by portfolios that

are selected by strategies that ignore transaction costs significantly deteriorates with

increasing transaction costs. The eRAR portfolios with transaction costs exhibit a good

overall performance.

Out-of-sample performance measures for the dataset FF38 are given in tables 7.20,

7.21 and 7.22. The conclusions are similar to the ones obtained from the results in

the FF100 dataset. The lasso strategy is the best strategy in terms of accumulated

Chapter 7. Optimal Portfolio Selection 128

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60

W
ei

gh
ts

Time

Product 1
Product 2
Product 3

(a) 0 bps

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60

W
ei

gh
ts

Time

Product 1
Product 2
Product 3

(b) 25 bps

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60

W
ei

gh
ts

Time

Product 1
Product 2
Product 3

(c) 50 bps

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60

W
ei

gh
ts

Time

Product 1
Product 2
Product 3

(d) 75 bps

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60

W
ei

gh
ts

Time

Product 1
Product 2
Product 3

(e) 150 bps

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60

W
ei

gh
ts

Time

Product 1
Product 2
Product 3

(f) 250 bps

Figure 7.7: Evolution of the weights for different transaction costs in a 3 product
universe.

Table 7.17: Accumulated returns for the different strategies in the FF100 dataset.

TC Passive 1/N MinVar No Card. Lasso eRAR eRAR
No TC Ignore TC Ignore TC With TC γ = 3550 bps Ignore TC With TC

0

110.500376

48.913566 48.913595 58.043442 116.864211 65.097650 65.097650
10 41.973967 48.471808 55.467468 116.820847 57.519813 60.885255
20 35.998316 48.033867 53.010446 116.777430 50.858165 60.464414
30 30.852828 47.599738 50.854126 116.733955 44.951999 60.337586
40 26.422274 47.169388 49.061071 116.690428 39.715959 62.201936
50 22.607402 46.742783 47.423537 116.646838 35.074299 59.685210

Chapter 7. Optimal Portfolio Selection 129

Table 7.18: Average Sharpe ratios for the different strategies in the FF100 dataset.

TC Passive 1/N MinVar No Card. Lasso eRAR eRAR
No TC Ignore TC Ignore TC With TC γ = 3550 bps Ignore TC With TC

0

0.301013

0.253470 0.253470 0.276608 0.320164 0.278596 0.278596
10 0.244719 0.252947 0.273972 0.320139 0.270960 0.274496
20 0.235964 0.252424 0.271277 0.320115 0.263753 0.273100
30 0.227206 0.251901 0.268755 0.320091 0.256527 0.274703
40 0.218443 0.251377 0.266597 0.320066 0.249285 0.277696
50 0.209678 0.250854 0.264584 0.320042 0.242025 0.276162

Table 7.19: Average turnover for the different strategies in the FF100 dataset.

TC Passive 1/N MinVar No Card. Lasso eRAR eRAR
No TC Ignore TC Ignore TC With TC γ = 3550 bps Ignore TC With TC

0

0.000000 0.444945 0.024699

0.122999

0.001260 0.334983

0.334983
10 0.116488 0.256403
20 0.110776 0.214784
30 0.105754 0.188396
40 0.101169 0.159414
50 0.097206 0.154017

Table 7.20: Accumulated returns for the different strategies in the FF38 dataset.

TC Passive 1/N MinVar No Card. Lasso eRAR eRAR
No TC Ignore TC Ignore TC With TC γ = 250 bps Ignore TC With TC

0 85.489189 88.216696 83.930429 68.433229 108.195586 100.819826 100.819826
10 85.489189 87.358726 82.615493 65.320255 107.987756 95.417455 96.622172
20 85.489189 86.508980 81.320665 62.357596 107.780255 90.300079 91.269580
30 85.489189 85.667380 80.045640 59.576223 107.573084 85.452748 86.713065
40 85.489189 84.833848 78.790119 57.023553 107.366241 80.861293 86.898443
50 85.489189 84.008308 77.553806 54.635601 107.159726 76.512285 80.780989

Table 7.21: Average Sharpe ratios for the different strategies in the FF38 dataset.

TC Passive 1/N MinVar No Card. Lasso eRAR eRAR
No TC Ignore TC Ignore TC With TC γ = 250 bps Ignore TC With TC

0

0.257746

0.269579 0.384662 0.317762 0.349240 0.342409 0.342409
10 0.269058 0.383389 0.314790 0.349106 0.338656 0.339036
20 0.268536 0.382114 0.311862 0.348972 0.334895 0.335146
30 0.268014 0.380837 0.308960 0.348838 0.331126 0.331543
40 0.267493 0.379557 0.306183 0.348703 0.327351 0.333211
50 0.266971 0.378275 0.303434 0.348568 0.323569 0.326676

out-of-sample returns. The portfolio selected by eRAR with transaction costs also has

large accumulated returns, although they are inferior to the lasso. As in the previous

cases eliminating the cardinality constraint or ignoring transaction costs leads to the

selection of unregularized portfolios that have lower accumulated returns. In contrast,

the average Sharpe ratios do not exhibit this effect. As a matter of fact, the minimum

variance portfolio has the best average Sharpe ratio. This is because these types of

portfolio are more diversified, and, in consequence, tend to have a lower variance.

Chapter 7. Optimal Portfolio Selection 130

Table 7.22: Average turnover for the different strategies in the FF38 dataset.

TC Passive 1/N MinVar No Card. Lasso eRAR eRAR
No TC Ignore TC Ignore TC With TC γ = 250 bps Ignore TC With TC

0

0.000000 0.027791 0.050512

0.059326

0.005024 0.159599

0.119182
10 0.047544 0.089804
20 0.038947 0.080920
30 0.032244 0.073050
40 0.027461 0.070214
50 0.023389 0.066470

7.4.3.3 Discussion

When transaction costs are not considered, the näıvely diversified (1/N) portfolio has

good out-of-sample performance (DeMiguel et al. (2009b)). However, the performance

of the 1/N portfolio quickly deteriorates when transaction costs are considered. The

reason is that a very active trading strategy is needed to compensate for the changes in

portfolio weights that result from the evolution of the market prices of the assets in the

portfolio. This strategy has large turnover rates and incurs high transaction costs. A

better benchmark when transaction costs are considered is the passive strategy. Since no

rebalancing is performed, one does not incur any transaction costs. Asymptotically, for

long investment periods, the portfolio is dominated by the best performing assets. This

means that, in practice, the expected return from this investment is large. However, the

variance of the portfolio returns also tend to be large because of the lack of diversification.

From the results of the empirical study carried out, the observation that in-sample

performance is not necessarily a good estimate of the out-of-sample performance is

confirmed. To obtain good out-of-sample performance one needs to include some form of

regularization in the optimization. This regularization can be in the form of terms in the

objective function that penalize excessive portfolio rebalancing in response to spurious

trends in the training data, or of cardinality constraints. Exploratory experiments show

that including both types of regularization does not seem to be an effective strategy.

Nonetheless a more extensive evaluation should be carried out to provide further evidence

of this observation. Besides the passive strategy, the best out-of-sample returns are

obtained by portfolios that are built using regularization: the lasso strategy and the

eRAR strategy that takes into account the actual transaction costs and also considers

cardinality constraints.

In terms of Sharpe ratios, the differences between regularized and non-regularize

strategies are smaller. In particular, the average Sharpe ratios of minimum variance

portfolios are generally among the best. These portfolios are well diversified and their

out-of-sample returns have in general low variance. The standard mean-variance optimal

portfolio, which has an excellent in-sample performance has a poor out-of-sample per-

formance in all the cases investigated. This can be ascribed to some form of overfitting

to the training data (DeMiguel et al. (2009b)).

Chapter 7. Optimal Portfolio Selection 131

7.5 Summary and Discussion

In this chapter we have presented several metaheuristics for the problem of optimal

portfolio selection with cardinality constraints. Additionally, an adaptation of the RAR

crossover operator that operates with extended sets has been used to solve an extension

of the problem that takes into account transaction costs and turnover constraints. It has

been shown that a preprocessing step that discards products with a low probability of

being present in the optimal solution is a useful way to drastically improve performance.

Another conclusion is that GAs with a set encoding and specially designed mutation

and crossover operators generally performs better than a GA with binary encoding and

standard genetic operators. This illustrates that the use of forma theory is useful to

design genetic representations and operators with improved performance. Regarding

EDAs, the difficulties in exploring high-dimensional search spaces suggests that their

practical applicability to real portfolio selection problems is very limited. EDAs require

the application of preprocessing steps in which the dimensionality of the problem is

reduced to be competitive with GAs or SA.

One of the main contributions of this chapter is the adaptation of the RAR crossover

operator to manipulate the additional attributes in the genetic representation that spec-

ify the trade direction during rebalacing. This extended RAR crossover (eRAR) allows

to handle the transaction costs, cardinality constraints and minimum trading size re-

strictions in such a way that the offspring generated are always feasible. Analyzing the

results of the extensive empirical evaluation performed, we conclude that it is important

to incorporate transaction costs explicitly in the optimization to obtain portfolios that

have good in-sample, but specially out-of-sample performance.

In summary, the conclusions of this chapter are:

• Hybrid methods based on a set-encoding for the candidate solutions (RAR-GA,

TransRAR-GA and SA) are effective and efficient methods for solving the port-

folio selection problem with cardinality constraints. The performance of these

algorithms does not deteriorate with the size of the problems in the cases investi-

gated. These methods have been used to identify near-optimal portfolios even in

problems with hundreds of assets.

• EDA approaches, which are based on estimating the distribution of a population

of individuals, perform poorly when the universe of assets available for investment

is very large, due to the curse of dimensionality : As the number of variables in the

problem increases, the estimation and sampling of the probability distributions is

not accurate enough to provide reliable guidance to the search.

• The efficiency and accuracy of the different hybrid approaches to portfolio selection

with cardinality constraints considered can be significantly improved when pruning

techniques are used to reduce the number of variables in the problem. These

pruning heuristics work by eliminating products that have zero or low weights in

optimal solutions to relaxed versions of the problem that can be solved numerically

in an exact manner.

Chapter 7. Optimal Portfolio Selection 132

• Another important conclusion is that including a cardinality constraint can also

improve the out-of-sample performance of the portfolio. In general, portfolios with

cardinality constraints have better out-of-sample performance than portfolios that

invest in all assets. In summary, both transaction costs and cardinality constraints

can be seen as regularization strategies that allow the identification of stable and

robust portfolios with good out-of-sample performance.

CHAPTER 8

THE CONSENSUS TREE PROBLEM

Phylogenetic trees are hierarchical structures that reflect the relations among a set of

taxa based on their evolutionary proximity. Different phylogenetic trees can be obtained

from the same genetic information using different methods. The Consensus Tree Problem

consists in building a single tree that optimally summarizes the information in these

phylogenetic trees. Obtaining this optimal consensus tree is a complex combinatorial

optimization problem for which both exact and metaheuristic approaches exist. We

present dimensionality reduction techniques and hybrid metaheuristic approaches that

can be used to obtain high quality consensus trees with a reduced computational cost.

8.1 Introduction

The goal of phylogenetics is to determine the relations between groups of organisms in

terms of their genetic proximity, usually expressed by phylogenetic trees. A phylogenetic

tree captures information on the evolutionary history of a set of taxa. Taxa can either

be a group of species, populations of the same or distinct species, or homologous genes

in populations of different species (Andreatta and Ribeiro (2002)). This information

is represented in the phylogenetic tree by the evolutionary distance among the set of

taxa under consideration. An example of a phylogenetic tree with 12 taxa is given in

Figure 8.1. From this tree we can infer, for instance, that the taxa labeled as ”Homo

sapiens” and ”Hylobates” are believed to be more closely related than ”Homo sapiens”

and ”Lemur catta”. The problem of phylogeny consists in building phylogenetic trees

from molecular information, such as DNA sequences (Holmes (1999)). Several criteria

can be used to build phylogenetic trees (Kim and Warnow (1999)). For instance, one

can formulate a stochastic evolution model. The maximum likelihood criterion selects

the tree that maximizes the likelihood of the model given the data. The maximum

parsimony criterion minimizes the number of evolutionary changes needed to explain

the observed data. The distance-based criterion uses a distance matrix to create the

tree which best represents the degree of closeness between any pair of taxa. All of these

133

Chapter 8. The Consensus Tree Problem 134

Figure 8.1: A phylogenetic tree with 12 taxa representing the relations among several
species of primates.

Lemur catta

Tarsius syrichta

Saimiri sciureus

Hylobates

Pongo

Gorilla

Homo sapiens

Pan

M. sylvanus

M. fascicularis

Macaca fuscata

M. mulatta

approaches can be proven to yield NP-complete problems (Foulds and Graham (1982),

Day et al. (1986)).

Using the different criteria different phylogenetic trees can be built. Each of these

trees may reveal particular features of the true underlying solution. Our objective is to

obtain the consensus tree, the tree that best integrates the information and structures

present in the available trees. Since these trees have been generated from the same

genetic information, they are unlikely to have common structures that are spurious.

Chapter 8. The Consensus Tree Problem 135

Figure 8.2: A schematic representation of the Consensus Tree Problem. From molec-
ular genetic information (i.e. DNA sequences) several phylogenetic trees are produced.
The consensus tree is obtained from the input tree collection by solving a combinatorial
optimization problem.

Therefore it is likely that these common structures are also a part of the true solution

(Swofford (1991)). Figure 8.2 displays a schematic representation of the process: The

consensus tree condenses the information present in the collection of phylogenetic trees

obtained from the original molecular information.

In this chapter, we propose several exact and hybrid approaches to address the

consensus tree problem. Based on its formulation as an integer linear program (ILP),

solution methods from the branch-and-bound family are considered. These are com-

bined with heuristics and metaheuristics to obtain high-quality consensus trees. The

effectiveness of the different techniques analyzed is evaluated in synthetic and actual

phylogenetic trees.

This chapter is organized as follows: In Section 8.2, several criteria that can be used

to build consensus trees are introduced. Section 8.3 describes different strategies that

can be used to obtain a solution to the problem. These include dimensionality reduc-

tion techniques (pruning of variables), using lazy constraints, improving of incumbent

solutions for the branch-and-bound method using metaheuristics and heuristic column

generation. Extensive computational tests are detailed in Section 8.4. A summary of

the results and conclusions for this chapter is given in Section 8.5.

Chapter 8. The Consensus Tree Problem 136

Figure 8.3: Two equivalent representations for a tree: rooted triplets and UpDown
matrix.

D

C

B

A

A B C D

A

B

0 1 2 3

1 0 2 3

1 1 0 2C

0111D

8.2 Optimization model

A phylogenetic tree can be modeled by a rooted binary tree and described in terms of

rooted triplets: Let L = {1, . . . , n} be the set of taxa. A rooted triplet (a, b|c) ∈ L×L×L
represents the fact that the least common ancestor of a and b is a descendant of the

least common ancestor of a, b and c. Consider, for instance, the tree in figure 8.3. This

tree has four taxa: A, B, C and D. It can be represented by three rooted triplets:

(A,B|C), (A,B|D), (B,C|D). An alternative representation of a rooted tree is the

UpDown matrix. This structure is composed of two matrices, the Up matrix and the

Down matrix. The Up (Down) matrix contains, for each pair of taxa, the number of up

(down) branches that need to be traversed to go from one taxon to the other. In the

tree depicted in figure 8.3, two up branches need to be traversed to go from B to C and

three up branches to go from A to D. Since the information from one of the matrices

is enough to completely determine the tree, the Up matrix U ≡ {uab; a, b ∈ L} will be
used henceforth.

Different criteria can be used to build an optimal consensus tree from a set of input

phylogenetic trees T = {T1, . . . , TK}. A possible objective function is the TreeRank

(TR) measure (Wang et al. (2003))

TR(T, T) = 1

K

K∑
k=1

(
1−

∑
a,b∈L |uab − ukab|∑

a,b∈L uab

)
, (8.1)

where {uab; a, b ∈ L} are the elements of the up matrix of the consensus tree and{
ukab; a, b ∈ L

}
are the elements of the up matrix of the k-th input tree. This func-

tion has the disadvantage that it is very non-linear because of the normalization factor.

Therefore, it can be difficult for mathematical programming techniques to reach a solu-

tion.

The Inverse TreeRank measure avoids this complexity by using a normalization factor

with respect to the input trees instead

Chapter 8. The Consensus Tree Problem 137

TRI(T, T) = 1

K

K∑
k=1

(
1−

∑
a,b∈L |uab − ukab|∑

a,b∈L u
k
ab

)
. (8.2)

Both eq. (8.1) and (8.2) are based on the measurement of the (mean) absolute (L1)

distance between the up matrices of the obtained tree and the input trees. Removing

the normalization factor, one obtains the UpDown distance

UD(T, T) = 1

K

K∑
k=1

∑
a,b∈L

|uab − ukab|, (8.3)

which is a simpler measure that is easier to optimize.

Another measure proposed in the literature (Bryant (2003)) defines the consensus

tree as the tree that maximizes the number of common rooted triplets. Let R(T) be the

set of rooted triplets defining tree T . The Weighted Triplet measure is

WT (T, T) =
K∑
k=1

|R(T) ∩R(Tk)| =
∑

ta,b|c∈R(T)

wT
a,b|cta,b|c, (8.4)

where the coefficients wT
a,b|c are defined as the number of input trees in which triplet

(a, b|c) is present. The binary variables ta,b|c indicate whether triplet (a, b|c) is present

(ta,b|c = 1) or not (ta,b|c = 0). This measure is linear and easy to calculate. Moreover,

it allows to use weights in the objective function that represent the confidence on the

phylogenetic inference method used to generate the input trees.

Using one of these objective functions, the consensus tree problem can be formulated

as a constrained integer optimization problem. We now introduce different ways in which

the problem can be formulated.

8.2.1 The UpDown Matrix Model

The UpDown Matrix Model (UDMM) is formulated in terms of both {uab; a, b ∈ L}, the
elements in the UpDown matrix, and ta,b|c, the variables that indicate the presence or

absence of every possible triplet. The purpose of this is to allow the use of an objective

function based on the values of the UpDown matrix, which is more fine-grained, and at

the same time obtain the tree defined by the triplet variables to avoid the transformation

from one representation to another, which can be very costly.

A number of remarks are useful in defining and implementing this model. First, to

define all triplets of a tree, some elements of the UpDown matrix are unnecessary. This

can be stated more formally using the following lemma:

Lemma 8.1. Let U be an UpDown matrix. The triplet of taxa (ab|c) belongs to the

tree if and only if for the submatrix Uabc composed of the rows and columns of a, b and

c, there exists a permutation π of rows and columns such that the following inequalities

hold:

uab < uac (8.5)

Chapter 8. The Consensus Tree Problem 138

uba < ubc (8.6)

uca = ucb (8.7)

uac − uab = ubc − uba. (8.8)

The proof of this lemma is included in Appendix C.

In summary, the first row of every appropriately permuted feasible 3 × 3 UpDown

submatrix is sufficient to define the triplets that make up the tree (uab < uac). Nonethe-

less, the other rows in the matrix need to be considered as well to ensure feasibility; i.e.,

if triplet ab|c is selected then uac − uab = ubc − uba and uca = ucb.

Taking into account these observations, the consensus tree problem can be formulated

as the integer linear program

min
t,u

f(t, u) =
K∑
k=1

∑
a,b∈L

|uab − ukab| (8.9)

s.t. uaa = 0 ∀a ∈ L (8.10)

1 ≤ uab ≤ n− 1 ∀a, b ∈ L (8.11)

uab < uac +M(1− ta,b|c) ∀{a, b, c} ⊂ L (8.12)

uba < ubc +M(1− ta,b|c) ∀{a, b, c} ⊂ L (8.13)

uca ≤ ucb +M(1− ta,b|c) ∀{a, b, c} ⊂ L (8.14)

ucb ≤ uca +M(1− ta,b|c) ∀{a, b, c} ⊂ L (8.15)

uac − uab ≤ ubc − uba +M(1− ta,b|c) ∀{a, b, c} ⊂ L (8.16)

ubc − uba ≤ uac − uab +M(1− ta,b|c) ∀{a, b, c} ⊂ L (8.17)

min{uab | b ∈ L \ {a}} = 1 ∀a ∈ L (8.18)

ta,b|c + tb,c|a + ta,c|b = 1 ∀a < b < c ∈ L (8.19)

ta,b|c + ta,d|c − tb,d|c ≤ 1 ∀{a, b, c, d} ⊂ L (8.20)

ta,b|c + ta,c|d − ta,b|d ≤ 1 ∀{a, b, c, d} ⊂ L (8.21)

tab|c = tba|c ∀a < b, c ∈ L. (8.22)

The meaning of the restrictions is: The distance from a taxa to itself is zero (8.10).

The distance between two different taxa is at least 1 and at most the number of taxa

minus 1 (8.11), since the latter is the maximum depth of a binary tree composed of

n leaves. Expression (8.19) ensures that only one triplet ab|c, bc|a or ac|b is possible

and expressions (8.12)-(8.17) that the UpDown matrix is consistent, where M is a large

positive constant. Equations (8.16)-(8.17) are referred to as path constraints. They

ensure that the values of the UpDown matrix, and not only the relative distances, are

consistent. The row-min constraints (8.18) ensure that no “artificial” inner nodes can be

added to lower specific taxa, which might otherwise happen, depending on the objective

function used. The inequality (8.20) expresses the transitivity property, which ensures

that if triplets ab|c and ad|c are present, then bd|cmust be present as well. The telescopic

Chapter 8. The Consensus Tree Problem 139

condition is expressed by (8.21): if triplets ab|c and ac|d are part of the tree, then it

must be the case that ab|d is also in the tree. Finally, equality (8.22) states that triplets

ab|c and ba|c are equivalent. As a consequence of Theorem 8.1 no additional inequalities

are needed. This model involves Θ(n3) variables and Θ(n4) constraints. The main

advantage of this model is that by using redundant variables (the elements of the uab for

the UpDown matrix and the triplet variables ta,b|c) it is possible to formulate a convenient

objective function in terms of the elements of the UpDown matrix and restrictions based

on both types of variables. Furthermore, it is not necessary to perform costly conversions

between the two types of representations.

8.2.2 The Triplet Model

The Triplet Model (TM) is a modification of the UDMM where the variables uab are

eliminated and the objective function is formulated in terms of the ta,b|c variables only.

Using, for instance, the WT score this model can be expressed as follows

max
t

f(t) =
∑

ta,b|c∈R(T)

wT
a,b|cta,b|c (8.23)

s.t. ta,b|c + tb,c|a + ta,c|b = 1 ∀a < b < c ∈ L (8.24)

ta,b|c + ta,d|c − tb,d|c ≤ 1 ∀{a, b, c, d} ⊂ L (8.25)

ta,b|c + ta,c|d − ta,b|d ≤ 1 ∀{a, b, c, d} ⊂ L (8.26)

tab|c = tba|c ∀a < b, c ∈ L. (8.27)

8.3 Solution methods

In this section, different methods that can be used to solve the problem are detailed.

The use of additional techniques that can improve the efficiency of the solution methods,

such as lazy constraints, variable pruning, incumbent improving heuristics and column

generation, are also discussed.

8.3.1 Preprocessing step

In practice, the phylogenetic trees generated by different methods are often similar to

each other. A reasonable assumption is that common subtrees should be part of the final

consensus tree. Therefore, these common subtrees can be eliminated from the input trees

and, later, directly included in the final solution. The complexity of this preprocessing

step depends on the number of taxa n and the number of input trees K. The subtrees

of a tree can be obtained in O(n) time, since the number of internal nodes is O(n). The

number of possible comparisons is O(nK), since all possible trees must be compared

(i.e., all possible K−tuples must be generated). Assuming that each comparison can be

done in O(n) time, the total complexity is O(nK+1).

Chapter 8. The Consensus Tree Problem 140

8.3.2 Using lazy constraints

We say that a constraint is lazy if the solver has delayed considering it until the constraint

is violated by the current (not necessarily integer) solution. The use of lazy constraints

allows to begin with a reduced problem formulation, in which some constraints are dis-

carded. This means that less time needs to be spent in LP relaxations of the problem

because feasible solutions should be easier to obtain when some constraints are not con-

sidered. In particular, the constraints (8.20)-(8.21) are unlikely to be violated, because

they just ensure feasibility of the obtained tree and the input trees already satisfy these

constraints. These initially discarded constraints are then incorporated as soon as the

algorithm detects that they are not satisfied by the current solution. This results in

general in large improvements in efficiency in both the UDMM and TM formulations

because of the large number of constraints that need to be considered (Θ(n4)).

8.3.3 Reduction of dimensionality

Triplets that do not appear in any input tree are not likely to be included in the optimal

solution. Therefore, our pruning method discards triplets that are not present in any

input tree. More formally, the set of variables considered is limited to t′ = {ta,b|c :

(a, b|c) ∈ R(Tk), k = 1, . . . ,K}. Clearly, the possibility that some eliminated triplet

actually belongs to the optimal solution cannot be discarded, and therefore the obtained

solution will not be optimal in general. However, we expect to greatly improve the

efficiency of the branch-and-cut algorithm with only a small deterioration of the quality

of the solutions obtained.

8.3.4 Refinement of incumbents

An important part of the branch-and-bound algorithm is the search for new incum-

bent (integer-feasible) solutions. These solutions are obtained at those nodes of the

branch-and-bound tree in which the LP relaxation is close to or already integer feasible.

Obtaining good incumbents improves the bounds on the problem (if a minimization is

performed, the upper bound), increasing the probability of fathoming nodes by bounds

(that is, if the LP relaxation of the problem in a given node has an optimal value which

is greater than the upper bound, that node and all of its descendants can be pruned from

the search tree). Therefore, the efficiency of the algorithm improves if better incumbents

are found, because the branch-and-bound tree tends to be smaller. A possible approach

is to apply a general metaheuristic (in our case, Variable Neighborhood Search (VNS)

(Hansen and Mladenovic (2003)) together with Variable Neighborhood Descent (VND)

as local search heuristic) to improve the incumbents obtained, thus improving the upper

bound. The question is whether the computational effort spent by the metaheuristic ac-

tually pays off with respect to the algorithm without heuristic incumbent improvement.

The use of VNS seems to be appropriate for this problem because several types of tree

neighborhoods can be easily defined (Andreatta and Ribeiro (2002)). In the following

section, fast and incremental formulations of algorithms to update the UpDown matrix

are given (Pirkwieser and Ruiz-Torrubiano (2007)).

Chapter 8. The Consensus Tree Problem 141

8.3.4.1 SWAP

This operator simply swaps two taxa. The UpDown matrix can be modified efficiently

by just interchanging the rows and columns i and j. The computational cost of this

operation is linear Θ(n). Since the topology of the tree remains the same, not every tree

in the search space can be reached starting from a given tree. The number of possible

SWAP moves is n(n− 1)/2.

8.3.4.2 STEP

A STEP move (Algorithm 18) removes a taxon and inserts it at a random position. This

modification is the smallest possible change in the topology of the tree.

The worst-case complexity of this algorithm is O(n2). The algorithm has two sepa-

rate phases: deletion and insertion. In the deletion phase, all the distances are updated

so that the node which is the nearest ancestor of a is deleted. In the insertion phase,

two cases must be considered. First, if a is added above b, then the nearest ancestor of a

is also the nearest ancestor of the nearest ancestor of b. If a is added beneath b, then a

and b have the same ancestor. All distances must be updated accordingly. The number

of possible STEP moves is 2n(n− 1).

8.3.4.3 NNI or ROTATE

Nearest neighbor interchange (NNI) or rotations within the tree (ROTATE) define the

same neighborhood. A ROTATE move, as the name suggests, rotates either the left or

right subtree to the left or to the right. Therefore, there are four possible moves (in list

preorder notation):

• R1
R[(h, (h

′, TLL, TLR), TR)] = (h, TLL, (h
′, TLR, TR)).

• R2
R[(h, (h

′, TLL, TLR), TR)] = (h, TLR, (h
′, TLL, TR)).

• R1
L[(h, TL, (h

′, TRL, TRR))] = (h, (h′, TL, TRL), TRR).

• R2
L[(h, TL, (h

′, TRL, TRR))] = (h, (h′, TL, TRR), TRL).

The incremental change of the UpDown matrix is given in Algorithm 19 for the R1
R

case, but can be performed in an analogous way for the other moves. The number of

possible ROTATE moves is 2n− 4.

8.3.4.4 SPR

A subtree prune and regraft (SPR) move deletes an internal branch of the tree and

regrafts it elsewhere in the remaining tree. We proceed by selecting the smallest subtree

containing a given taxon A. Then we select another taxon B, which is not included in

this subtree, and choose whether to add this subtree beneath or above B. An incremental

algorithm for updating the UpDown matrix is given in Algorithm 20.

Chapter 8. The Consensus Tree Problem 142

Algorithm 18 An efficient version of the STEP operator.

• Choose randomly taxon a ∈ L to be removed.

• Choose randomly taxon b ̸= a ∈ L as the new nearest neighbor of a.

• (Deletion phase) Let Ta = {c : uac = 1} be the minimum subtree containing a.
Let T ′

a = L − Ta − {a}.

• For each c ∈ Ta, d ∈ T ′
a, ucd := ucd − 1.

• Choose randomly to add a above or beneath b.

• (Insertion phase) If a must be added above b:

– uab = 1; uba = 2.

– Let Tb = {c : ubc = 1}, and T ′
b = L − T ′

b − {a, b}.
– For each c ∈ Tb,
∗ uac := ubc.

∗ uca := ucb + 1.

– For each c ∈ Tb, d ∈ T ′
b,

∗ ucd := ucd + 1.

– For each c ∈ T ′
b,

∗ ubc := ubc + 1.

∗ uac := ubc − 1.

∗ uca := ucb.

• If a must be added beneath b:

– uab = 1; uba = 1.

– Let Tb = {c : ubc = 1}, and T ′
b = L − T ′

b − {a, b}.
– For each c ∈ Tb,
∗ ubc := ubc + 1.

∗ uac := ubc.

∗ uca := ucb.

– For each c ∈ T ′
b,

∗ ubc := ubc + 1.

∗ uac := ubc.

∗ uca := ucb.

Chapter 8. The Consensus Tree Problem 143

Algorithm 19 The ROTATE operator.

• remove inner node I ′:

– lift taxa in TLL:

∀a ∈ TLL, ∀b ∈ L \ {TLL ∪ TLR} : uab := uab − 1

• insert new inner node I ′′

– lower taxa in TLR relative to TLL:

∀a ∈ TLR,∀b ∈ TLL : uab := uab + 1

– lift taxa in TLR relative to TR:

∀a ∈ TLR, ∀b ∈ TR : uab := uab − 1

– lower taxa in TR relative to all others but TLR:

∀a ∈ TR, ∀b ∈ L \ {TR ∪ TLR} : uab := uab + 1

Algorithm 20 The SPR algorithm.

• Choose randomly a taxon a which defines the subtree that will be pruned and
regrafted as Ta = {c : uac = 1}.

• Choose randomly taxon b as the new nearest neighbor of a outside Ta. If b ∈ Ta,
repeat until {b} ∩ Ta = ∅.

• (Deletion phase) Let T ′ = T − Ta.

• For each c ∈ Ta, d ∈ T ′, ucd := ucd − 1.

• Choose randomly to add Ta above or beneath b.

• Let Tb = {c : ubc = 1}, and let T ′′ = T − Tb − {a}.

• (Insertion phase) If Ta must be added above b:

– uab := 1, uba := 2.

– For each c ∈ Tb, c ̸= a, uac := 1, uca := ucb + 1.

– For each c ∈ Tb, c ̸= a, d ∈ T ′′, ucd := ucd + 1.

– For each d ∈ T ′′, uad := ubd, ubd := ubd + 1, uda := udb.

• Else if Ta must be added beneath b:

– uab := 1, uba := 1.

– For each c ∈ Tb, c ̸= a, ubc := ubc + 1, uac := ubc, uca := ucb.

– For each d ∈ T ′′, ubd := ubd + 1, uad := ubd, uda := udb.

Chapter 8. The Consensus Tree Problem 144

In this algorithm, we differentiate between a deletion and an insertion phase. The

deletion phase simply updates the distances so that Ta is removed from the tree, elim-

inating the inner node that is the least ancestor of the root of Ta. Then the algorithm

proceeds with the insertion phase: If the insertion is to be performed above b, then

the distances between a and b are updated accordingly. The distance from a to every

element of Tb is 1, because Ta is inserted above b. The distance from every element of

Tb to a is now 1 more than the distance to b. All the remaining distances are updated

accordingly, taking into account that a new inner node has been introduced (the inner

node which is the least ancestor of the root of Ta). If Ta must be inserted beneath b,

then the distances between a and b are updated similarly. Now the distances from b to

the elements of Tb is 1 more, since a new inner node has been introduced, so that Ta
can be inserted. The rest of the distances are now updated taking this new inner node

into account. The worst-case complexity of this algorithm is O(n2).

The number of possible unrestricted SPR moves is in the order of 2n(n − 1). Note

that by implementing the algorithm this way, not every possible subtree can be pruned,

since we are restricting ourselves to the minimum subtrees containing a given taxa.

Nonetheless, the most general moves can be achieved by several applications of this

algorithm.

8.3.5 Generating new variables

The use of exact column generation techniques is an efficient approach to solve large

scale integer linear problems (Lübbecke and Desrosiers (2005)). The principal idea is to

begin with a reduced number of variables and add new ones as soon as they are needed

in the optimization problem. Since in the ILP formulation of the consensus tree problem

a large number of variables are needed, a column generation approach seems to be an

appropriate technique to solve the problem. Consider an ILP problem of the form

min
λ

∑
j∈J

cjλj (8.28)

s.t.
∑
j∈J

ajλj ≥ b (8.29)

λj ≥ 0 j ∈ J, (8.30)

in which the set J represents a meaningful set of the original problem variables (or

columns). This problem is referred to as the master problem. We begin therefore with

this reduced problem and add new variables as soon as they are needed. It is possible

to determine the optimal column that should be included in the problem formulation

by solving the pricing problem: Consider the dual formulation of the master problem

(8.28)-(8.30). Let u ≥ 0 be the vector of dual variables. Adding the variable with the

minimum negative reduced cost c̄j = cj − uTaj ≤ 0 improves the objective value the

most. The pricing problem can be stated as follows

Chapter 8. The Consensus Tree Problem 145

min c(a)− ūTa (8.31)

s.t. a ∈ A. (8.32)

If the optimal solution value is non-negative, the solution to the master problem is

optimal. Since for the consensus tree problem it is natural to begin with the reduced

set of triplets t′, and add new variables as needed, a column generation (or branch-

and-price) algorithm could be appropriate. Unfortunately, in some cases the pricing

problem is difficult to solve and the benefits obtained by solving it do not compensate

the computational effort. To reduce the cost of solving the associated pricing problem,

we introduce a heuristic to identify the triplets that should be added to improve the ob-

jective value. This algorithm is a greedy rounding heuristic (see Algorithm 21), which is

executed at selected nodes of the branch-and-bound search tree. The heuristic produces

a feasible solution from the current LP relaxation.

Algorithm 21 Greedy rounding heuristic

For each set of triplets {ta,b|c, tb,c|a, ta,c|b}:

• Select the triplet t∗ with the maximum relaxed value t̂a,b|c.

• Set t∗ = 1, and the other two triplets to 0.

If the obtained solution is not feasible, then repair constraints:

• If tT1 + tT2 − tT3 > 1 then:

– Set triplet tT3 = 1.

– Set complementary triplets to 0.

Until a feasible tree is obtained.

Once this feasible solution is obtained, we compare it to the current incumbent. If

it is better, the triplets that are included in this solution but are not present in the

master formulation are added, and the current incumbent is updated. Note that in this

problem reduced costs of single variables do not make much sense: other variables can

also be needed, and therefore the reduced cost of a subset of variables and not only of

a single variable should be taken into account (that is, the reduced cost of the set of

triplets which are needed in order to obtain a feasible tree). For instance, see constraint

(8.24). If triplet ta,b|c is added, triplets tb,c|a and ta,c|b are needed as well. We refer to

this procedure as heuristic column generation.

8.4 Results

In this section we present an empirical evaluation of the methods and auxiliary tech-

niques described in the previous section. The formulation of the consensus tree problem

Chapter 8. The Consensus Tree Problem 146

that is considered is (8.23)-(8.26). If a similarity measure based on the values of the

Up-Down matrix is used, the complete model (8.9)-(8.22) should be used instead.

The comparisons carried out involve the following techniques

1. Using lazy constraints.

2. Using input triplets only.

3. VND/VNS incumbent improving heuristic.

4. Heuristic column generation.

The ILP solver CPLEX was used for the first, second and third approaches. The open-

source application COIN-BCP1 was used for column generation, because this approach

is not implemented in CPLEX. The following measures are used for evaluation of the

different methods

• Best solution found.

• Total execution time.

• Total execution time without solver initialization.

• Total lazy constraints (when possible).

• Used lazy constraints (when possible).

• Amount of pruning (when possible).

• Amount of added variables (when possible).

The methods are evaluated using both synthetic (instancex r) and actual phylo-

genetic data (mammals20 and mammals34). The size of the problems considered range

from 9 to 34 taxa. The input trees from the synthetic problems generally are rather

dissimilar. By contrast, in real instances the input trees present more similarities.

Table 8.1 shows that the performance of the solver that uses lazy constraints is

generally efficient. The largest problem that uses actual genetic data (34 taxa) is solved

in less than eight seconds. The largest synthetic problem (25 taxa) is solved in less than

nine seconds. Nonetheless, problems with larger number of taxa are not necessarily

more difficult to solve. For instance, more than fifty seconds are required to solve

instance7 r, which includes 20 taxa. There are several possible explanations for this

behavior. First, it takes longer (88 nodes must be visited) to find the first integer feasible

solution. By contrast in the other problems with 20 taxa, the first feasible solution is

already found in the root node. Second, 4182 lazy constraints had to be considered in

the initial formulation to find the optimal solution. In the other problems with 20 taxa

it was sufficient to include around 2000 lazy constraints.

1https://projects.coin-or.org/Bcp

Chapter 8. The Consensus Tree Problem 147

CPLEX + lazy constraints
Instance Taxa Best Best (TR) Best (TR) In Time Time (w.o. init) Total lazy Used lazy

instance1 r 9 141 57.51 66.32 0.06 0.04 4536 202

instance2 r 12 367 44.30 57.57 5.47 5.4 17820 1374

instance3 r 12 392 51.38 60.88 0.17 0.1 17820 288

instance4 r 15 819 48.75 56.73 12.25 12.06 49140 2994

instance5 r 15 1014 68.73 75.90 0.23 0.04 49140 1073

instance6 r 15 1088 72.94 74.29 0.25 0.05 49140 433

instance7 r 20 2113 52.94 69.84 53.81 53.11 174420 4182

instance8 r 20 2397 60.67 69.75 1.62 0.91 174420 1993

instance9 r 20 2275 54.89 69.34 1.36 0.69 174420 2080

instance10 r 25 4719 62.56 68.54 8.89 7.13 455400 2659

mammals20 r 20 3186* 91.60 91.60 0.79 0.1 174420 0

mammals34 r 34 16552 86.20 86.72 7.97 1.24 1669536 0

Table 8.1: Results obtained with lazy constraints

A similar phenomenon can be observed in the problems with 15 taxa. Problem

instance4 r requires much more time than the other two problems with 15 taxa. It is

necessary to explore 48 nodes (about 3000 lazy constraints) to find the first incumbent

solution. In the other two cases instance5 r and instance6 r (about 1000 and 500

lazy constraints applied, respectively) a feasible solution is found in the root node.

It is remarkable that in problems with actual genetic data, no lazy constraints were

necessary. Since the input trees are quite similar, the LP relaxations directly yield a

solution satisfying the lazy constraints.

The column “Best (TR)” stands for the TreeRank value of the optimal solution with

respect to the WT score. The column labeled “Best (TR) In” shows the TreeRank

measure of the best input tree. The WT score and the TreeRank measure are largely

uncorrelated: the best WT tree in most cases is worse than the best input tree with

respect to TreeRank, except in the case of the mammals20 instance where the optimal

tree with respect to both measures is one of the input trees.

Table 8.2 shows the results obtained after pruning the triplets that do not appear

in any input tree. The values obtained are therefore not necessarily optimal, because

the discarded triplets could appear in the optimal solution. Nonetheless, the solutions

obtained seem to be near-optimal. Note that no lazy constraints are used in the experi-

ments shown in this table. Unfortunately, only in five out of the twelve problem instances

the total execution time is improved. A possible explanation is that the pruned problems

are more difficult for CPLEX, possibly because the constraints are not sufficiently tight.

However, in the instances with actual genetic data the optimal solution is found with the

reduced set of triplets. This is also the case in two synthetic instances (instance3 r and

instance4 r). The column labeled “Pruning” shows the percentage of the remaining

variables after pruning. More pruning takes place in the instances with actual data than

in the random instances. This is mainly due to the larger similarity among the input

trees.

The results obtained when the VNS heuristic is used to improve the incumbent

solutions are shown in Table 8.3. It is clear from the table that using this procedure

does not pay off in terms of execution time. The heuristic does find new incumbents

Chapter 8. The Consensus Tree Problem 148

CPLEX pruning
Instance Taxa Best Pruning (%) Time Time (w.o. init)

instance1 r 9 140 71.43 0.68 0.67

instance2 r 12 366 71.97 7.95 7.93

instance3 r 12 392 69.70 0.33 0.31

instance4 r 15 819 69.52 24.12 24.06

instance5 r 15 1003 57.95 0.21 0.17

instance6 r 15 1086 52.31 0.20 0.16

instance7 r 20 2071 66.49 207.57 207.4

instance8 r 20 2390 60.70 2.03 1.89

instance9 r 20 2265 63.95 2.44 2.28

instance10 r 25 4712 61.77 6.21 5.85

mammals20 r 20 3186 40.18 0.15 0.08

mammals34 r 34 16552 40.91 2.61 1.88

Table 8.2: Results obtained with pruning

CPLEX + VND/VNS
Instance Taxa Best Time Time (w.o. init)

instance1 r 9 141 0.41 0.39

instance2 r 12 367 3.89 3.85

instance3 r 12 392 1.69 1.65

instance4 r 15 819 206.72 206.61

instance5 r 15 1014 0.6 0.48

instance6 r 15 1088 0.64 0.52

instance7 r 20 2113 5982.76 5982.38

instance8 r 20 2397 6.16 5.79

instance9 r 20 2275 3.41 3.04

instance10 r 25 4719 40.71 39.79

mammals20 r 20 3186 2.23 1.87

mammals34 r 34 16552 22.93 22.56

Table 8.3: Results obtained with VNS incumbent improving

earlier (for example, the first incumbent in instance7 r is found at the root node, while

without the heuristic is found at node 88). However, the application heuristic dominates

in the computational cost of the branch-and-bound algorithm.

Table 8.4 shows the results using the heuristic column generation approach with

BCP. The times obtained by CPLEX are better by several orders of magnitude. Since it

would not be fair to compare against CPLEX, an additional column labeled Time BCP

shows the total time required without column generation by the standard BCP solver.

Most of the execution time is spent in this case in the initialization phase. In general,

using this approach entails an improvement in efficiency when compared to normal BCP.

The quality of the solution also improves when compared to the quality of the solutions

obtained by pruning alone. However, the number of added variables is relatively low.

This has two possible explanations: Either few variables need to be added to find a

solution of reasonably good quality, or the greedy rounding heuristic is not effective in

the identification of the variables that need to be added to find the optimal solution.

Given the results obtained the second explanation seems to be more likely. Therefore,

more effort should be devoted to investigating new variable generation heuristics that

yield better results.

Chapter 8. The Consensus Tree Problem 149

BCP + Heur. col. gen.
Instance Taxa Best Pruning Added vars Time Time (w.o. init) Time BCP

instance1 r 9 140 71.43 4 1.24 0.32 1.04

instance2 r 12 367 71.97 5 29.00 13.74 119.12

instance3 r 12 392 69.70 11 24.07 8.87 20.15

instance4 r 15 819 69.52 10 131.14 10.48 238.04

instance5 r 15 1003 57.95 2 117.12 1.33 121.64

instance6 r 15 1086 52.31 18 116.48 2.35 121.40

instance7 r 20 2079 66.49 31 20853.27 19270.70 2725.15

instance8 r 20 2390 60.70 0 1515.83 7.7 1533.81

instance9 r 20 2267 63.95 1 1611.59 20.66 1521.89

instance10 r 25 4712 61.77 0 10331.13 15.92 10409.24

mammals20 r 20 3186 40.18 0 1423.38 0.96 1528.80

mammals34 r 34 16552 40.91 0 130323.55 11.27 139226.51

Table 8.4: Results obtained with heuristic column generation

8.5 Summary and Conclusions

In this chapter, several methods for solving the consensus tree problem have been pro-

posed and analyzed. We have first introduced a new formulation in terms of an ILP

optimization that involves both the variables corresponding to the entries of the Up-

Down matrix and the triplet variables. The use of a redundant representation means

that it is not necessary to perform costly conversion procedures between both represen-

tations. The objective function can be formulated in terms of UpDown distances. The

constraints involve both types of variables. Alternatively an objective function that uses

triplet variables only can be used to address the problem. Second, we have proposed

various methods to improve the performance of branch-and-bound approaches to solve

the problem. These methods include the use of lazy constraints, pruning of the input

variables, metaheuristic incumbent solution improving and heuristic column generation.

In general, the use of lazy constraints is the most successful approach among the

techniques considered. Discarding triplets that do not appear in any input tree does not

significantly deteriorate the quality of the solution. Therefore, these triplets are not likely

to appear in the optimal solution. Finally, the use of the incumbent improving heuristic

is not effective, at least when used together with CPLEX. The high computational cost

of the heuristic dominates the computational cost of the solver. The main difficulty

in the search for new incumbents is to improve the current upper bound which is the

objective value of the best incumbent solution found so far. If these incumbent solutions

are good enough, more nodes can be fathomed by bounds and the search tree becomes

more tractable. Finally, the use of heuristic variable generation is clearly beneficial in

this problem both in terms of the quality of the final solutions and the improvements in

efficiency obtained.

As future work, new and efficient heuristics are needed to identify the variables that

should be included in the problem. Additionally, a more exhaustive evaluation is needed

to determine if using a heuristic column generation approach, instead of the exact one,

is advantageous. More efficient metaheuristics could be used to improve the incumbent

solutions. A possibility would be SA with one of the neighborhood operators described

Chapter 8. The Consensus Tree Problem 150

in Section 8.3. This simpler metaheuristic should introduce less overhead than VNS for

this problem.

CHAPTER 9

CONCLUSIONS AND FUTURE WORK

In this thesis we have investigated the design of hybrid methods that can be used to

efficiently find near-optimal solutions of problems with cardinality constraints. Meta-

heuristics have been used to address numerous optimization problems of practical inter-

est. However, the standard formulations of these metaheuristics have difficulties when

additional restrictions are considered, especially in domains with both continuous and

discrete aspects. Moreover, as expressed by no-free lunch theorems in optimization,

general metaheuristic approaches cannot perform better than random search when av-

eraged over all problem instances. The hybrid optimization methods proposed in this

thesis have been designed taking into account these issues. By separating the problem

into a discrete and a subordinate continuous optimization task, the metaheuristic can

be specifically designed to address the combinatorial part of the search efficiently. In

this manner, the choice of representation for the candidate solutions and of successor

operators is not complicated by the entanglement of different aspects of the problem.

In particular, the design of the metaheuristic does not need to take into account the

continuous constraints and can focus on the discrete ones. One of the important char-

acteristic shared by the most successful metaheuristics designed is that only feasible

candidate solutions are generated in the search. The candidate solutions proposed by

the metaheuristic are evaluated in terms of the solution of a subordinate optimization

problem. In the cases investigated this subordinate problem can be efficiently solved

using standard continuous optimization techniques. Specific knowledge of the structure

of the problem can be incorporated in the form of a meaningful genetic representation.

In particular, using the concepts of forma theory, we have defined a genetic set represen-

tation that makes explicit the basis of equivalence relations that appropriately reflects

the structure of optimization problems with cardinality constraints. In the experimental

evaluation performed, genetic algorithms that use this encoding generally outperform

standard genetic algorithms that employ a binary encoding.

In the second part of this thesis, we have carried out a comparison of the solutions

obtained using genetic algorithms, simulated annealing and EDAs in different applica-

tion domains: the knapsack problem, sparse PCA, index tracking and optimal portfolio

151

Chapter 9. Conclusions and Future Work 152

selection. In most of the problems investigated, simulated annealing generally obtains

slightly worse solutions than the genetic algorithm, despite the fact that the same type

of set encoding is used in both cases. The neighborhood operator in simulated anneal-

ing is the same as the mutation operator in the set GA. From these observations, one

concludes that the crossover operator plays an important role in improving the efficacy

of the optimization process. Estimation of distribution algorithms rely on the accurate

estimation of the probability distribution of the genes from the current population of

individuals. In high-dimensional problems the estimation and sampling from the prob-

ability distribution becomes increasingly difficult. The experiments performed confirm

this analysis: algorithms of the EDA family do not converge to good solutions in the

problems investigated with a large number of variables. In summary, the best overall

results both in terms of quality of the solutions and of computational efficiency in the

problems investigated are obtained by the GA with set encoding. The use of specially

designed mutation and genetic operators that work on sets that encode the candidate

solutions has been found to be the most appropriate approach to solving problems

with cardinality constraints. The results obtained also highlight the importance of the

crossover operator in improving the efficiency of the search.

Besides standard cardinality-preserving crossover operators that have been intro-

duced in previous work by other authors, such as RRR or RAR, in this thesis we have

introduced the TransRAR crossover operator. The design of the TransRAR operator in-

corporates a number of desirable properties identified by the theory of formae in a novel

way. Specifically, it provides a good balance between the properties of assortment, which

tends to enhance exploration, and transmission, that is related to exploitation in the

search. In the problems to which it has been applied, the use of the TransRAR crossover

in the set GA consistently outperforms the GA with the RAR operator. TransRAR fo-

cuses on enforcing transmission (the offspring is constructed using alleles present in at

least one of the parents) instead of respect (the common information in the parents

is always present in the offspring, but information not present in any parent may be

used as well), which is one of the properties favored by RAR. Transmission seems to be

preferable to respect because it enhances the exploitation of useful information identified

in the search.

Another important contribution of this thesis is to analyze the effectiveness of dimen-

sionality reduction techniques when used in combination with metaheuristics to address

large-scale problems with cardinality constraints. In standard optimization problems,

discarding variables will in general lead to a deterioration of the solutions. This need not

be the case in cardinality-constrained problems. Because of the cardinality constraints

some of the original variables do not appear in the optimal solution. If those variables

are eliminated from the problem the quality of the solution will not be affected. The di-

mensionality reduction is implemented in a preprocessing step using pruning heuristics.

Pruning heuristics have been designed that attempt to identify and eliminate variables

that are not likely to be included in the optimal solution. Three different heuristics are

analyzed. They are based on solving relaxed versions of the problem and performing

the selection according to the results of these auxiliary optimizations. This procedure

Chapter 9. Conclusions and Future Work 153

is practicable only if the relaxed optimizations can be efficiently solved. In the exper-

iments performed we show that the dimensionality of the problem can be significantly

reduced with only a minor deterioration of the quality of the final solutions. Pruning

can therefore be used to reduce the computational cost of the optimization in all the

metaheuristics investigated, and specially for EDAs.

Cardinality constraints are useful because they allow the identification of sparse solu-

tions, which are more stable to the inputs of the optimization. This property is illustrated

in the portfolio selection problem with piecewise linear transaction costs. Standard port-

folios selected using the classical Markowitz framework, which are optimal in-sample,

often exhibit poor out-of-sample performance. The inclusion of transaction costs and

cardinality constraints in the optimization model has a regularization effect that allows

the selection of portfolios that are more robust, stable and, in general, have better out-

of-sample performance. A lasso-based strategy, which penalizes large fluctuations in the

composition of the portfolio, and the strategy with cardinality constraints were found

to obtain the best overall results in the experiments performed. Combining cardinality

constraints with a lasso-type penalty results in too much regularization in the problems

analyzed and the composition of the portfolios obtained are too static and do not achieve

good out-of-sample performance.

In the consensus tree problem, the performance of a branch-and-cut based approach

to solve the problem can be improved by eliminating variables (triplets) that do not

appear in any input tree. The use of lazy constraints and the heuristic generation of

new variables as soon as they are needed in the search process were identified as effective

procedures to obtain high quality consensus trees.

9.1 Future Work

There are several directions in which the investigations carried out in this thesis can be

extended. Specifically, the strategies that have used to address optimization problems

with mixed discrete and continuous aspects need to be extended and improved. The

design principles used in this thesis can also be used to address problems in other areas

of application of current interest. The following is a non-exhaustive list of future work

along these lines:

• Genetic representations and operators: Forma theory was shown to be a use-

ful framework for the design of meaningful genetic representations and operators.

However, more work needs to be done to improve the understanding of desirable

properties of crossover operators. Specifically, the role of the parameter p in the

TransRAR crossover operator should be investigated in detail so that it can be

selected in a more principled manner.

• New heuristics for dimensionality reduction: An important task is the de-

sign of accurate pruning heuristics to identify the relevant variables in cardinality-

constrained problems. A possible approach is to use Bayesian networks to model

dependencies among the variables. Bayesian networks can be used to incorporate

Chapter 9. Conclusions and Future Work 154

available domain knowledge, or, if the structure of the network is learned, to infer

which are the relevant variables.

• Applications in which the subordinate optimization problem is complex:

In this thesis, we have focused on the particular case that the subordinate problem

can be efficiently solved by standard optimization techniques. If the subordinate

problem is more complex (for instance, if the Sharpe ratio is used as the objective

function in the portfolio selection problem) one can use a non-linear solver or design

a metaheuristic approach to handle the subproblem. An alternative would be the

use of evolution strategies in case of a continuous problem. Since the subproblems

tend to have a much lower dimensionality than the master cardinality constrained

problem, continuous EDAs may be a practicable approach in this case.

• Application of the framework developed for handling cardinality con-

straints to other mixed-integer problems: The advantage of the hybrid

framework proposed in this thesis is that it disentangles the combinatorial and

the continuous aspects of the optimization. This allows to combine algorithms

that are well-suited to solve each of the parts of the problem separately, avoiding

the complications that arise when they are addressed jointly. For instance, multi-

stage scheduling is a problem in which a similar separation is possible (Harjunkoski

and Grossmann (2002)). The problem can be divided into an assignment and a se-

quencing problem. The assignment problem is discrete and involves assigning jobs

to machines. The sequencing problem is continuous. It consists in determining

the starting times for each job.

• Applications in information retrieval: The ideas used in portfolio selection

have recently been applied in the field of information retrieval in Wang and Zhu

(2009). The problem consists in retrieving the most relevant documents given a

user query. Since there are uncertainties associated with the query, a probabilistic

framework is proposed in which the relevance of the documents retrieved is max-

imized, while minimizing the uncertainty (variance) of this solution. It would be

of interest to apply the ideas and hybrid methods developed in this thesis to a

cardinality constrained version of the information retrieval problem.

• Stability of sparse solutions: More work needs to be done to investigate the

relationship between sparsity and desirable statistical properties such as robustness

against small changes in the inputs of the optimization and good out-of-sample

performance. To this end, other areas of application, especially in the area of

machine learning, should be explored as well.

CHAPTER 10

CONCLUSIONES

En esta tesis hemos investigado el diseño de métodos metaheuŕısticos que pueden ser

utilizados para encontrar soluciones cuasi-óptimas a problemas de optimización con re-

stricciones de cardinalidad de manera eficiente. Estos métodos han encontrado un amplio

abanico de aplicaciones en problemas de importancia práctica. Sin embargo, las formula-

ciones generales de estas metaheuŕısticas encuentran dificultades al ser confrontadas con

restricciones adicionales, especialmente en dominios continuos. Adicionalmente, como

expresado por los teoremas no-free-lunch en optimización, técnicas metaheuŕısticas gen-

erales no pueden funcionar mejor que búsqueda aleatoria al promediar sobre todas las

instancias posibles. Las técnicas h́ıbridas de optimización propuestas en esta tesis han

sido diseñadas para resolver estos problemas. Por medio de la separación del problema

en una parte discreta y una parte continua, la metaheuŕıstica puede ser diseñada para

tratar la parte combinatoria del problema de manera eficiente. De este modo, la elección

de la representación de los candidatos a solución y de los operadores de sucesión no se

complica por la interacción de los diferentes aspectos del problema. En particular, el

diseño de la metaheuŕıstica no necesita tener en cuenta las restricciones continuas y puede

concentrarse en las discretas. Una de las caracteŕısticas importantes que comparten las

metaheuŕısticas con mejores resultados en los problemas investigados es que únicamente

candidatos a solución que cumplen las restricciones son generados en la búsqueda. Las

soluciones candidatas propuestas por la metaheuŕıstica son evaluadas en términos de

la solución de un problema subordinado de optimización. En los casos investigados,

este problema subordinado puede ser resuelto de manera eficiente utilizando técnicas

estándar de optimización continua. Conocimiento espećıfico del problema puede ser in-

corporado en forma de una representación genética apropiada. En particular, utilizando

los conceptos de la teoŕıa de formas, hemos definido una representación genética de

conjuntos que hace expĺıcita la base de relaciones de equivalencia que refleja de manera

apropiada la estructura de problemas de optimización con restricciones de cardinalidad.

En la evaluación experimental propuesta, los algoritmos genéticos que utilizan esta cod-

ificación tienen en general mejor rendimiento que algoritmos genéticos que emplean una

codificación binaria para este tipo de problemas.

155

Chapter 10. Conclusiones 156

En la segunda parte de esta tesis hemos realizado asimismo una comparación de

las soluciones obtenidas utilizando algoritmos genéticos, temple simulado y algoritmos

de estimación de distribuciones en varios dominios de aplicación: el problema de la

mochila, análisis de componentes principales dispersas, replicación de ı́ndices y selección

óptima de carteras. En la mayoŕıa de los problemas investigados, el algoritmo de temple

simulado no es capaz de alcanzar en general la misma calidad en las soluciones que el

algoritmo genético, aunque la codificación utilizada es idéntica. El operador de vecindad

en el temple simulado es igual que el operador de mutación en el algoritmo genético. A

partir de estas observaciones, se puede concluir que el operador de cruzamiento asume

un papel importante en la eficacia de la optimización. Los algoritmos de estimación de

distribuciones dependen de una estimación lo más exacta posible de la distribución de

probabilidad de los genes en la población actual de individuos. Sin embargo, incrementar

la dimensionalidad del problema hace la estimación y el muestreo de la distribución de

probabilidad cada vez más dif́ıcil. Los experimentos realizados confirman este análisis:

los algoritmos de esta familia no son capaces de obtener buenos resultados en los prob-

lemas investigados con un gran número de variables. En resumen, el algoritmo genético

con codificación de conjuntos alcanza los mejores resultados en términos tanto de calidad

de las soluciones como de eficiencia computacional en los problemas investigados. El uso

de operadores de mutación y de cruzamiento que operan en conjuntos que codifican los

candidatos a soluciones ha sido determinado como la manera más apropiada de resolver

problemas con restricciones de cardinalidad entre las alternativas investigadas. Los re-

sultados obtenidos también resaltan la importancia del operador de cruzamiento para

mejorar la eficiencia de la búsqueda.

Además de operadores de cruzamiento estándar que ya hab́ıan sido propuestos en

trabajos previos de otros autores, como RRR y RAR, en esta tesis hemos propuesto el

operador de cruzamiento TransRAR. El diseño de este operador incorpora propiedades

deseables identificadas por la teoŕıa de formas de manera novedosa. Espećıficamente,

este operador presenta un buen equilibrio entre las propiedades de variedad, que es

responsable de la capacidad exploratoria de la búsqueda, y transmisión, responsable

de la parte de explotación. En los problemas en los que ha sido aplicado, el uso del

operador TransRAR en el algoritmo genético mejora consistentemente los resultados del

algoritmo con RAR. TransRAR otorga más importancia al concepto de transmisión (los

descendientes son construidos con alelos procedentes de algún padre) que respeto (la

información común de ambos padres es utilizada en la descendencia, pero información

que no está presente en ninguno puede ser utilizada a su vez), que es la propiedad

favorecida por RAR. Transmisión parece ser más preferible que respeto porque aumenta

la capacidad de explotación de la búsqueda.

Otra contribución importante de esta tesis es el análisis de la efectividad de técnicas

de reducción de la dimensionalidad usadas conjuntamente con metaheuŕısticas para

problemas con restricciones de cardinalidad con un elevado número de variables. En

problemas estándar de optimización, eliminar variables provoca en general un deterioro

de la calidad de las soluciones obtenidas. Sin embargo, esto no es necesariamente cierto

en problemas con restricciones de cardinalidad. Debido a las restricciones de cardinal-

idad, algunas de las variables originales no aparecen en la solución óptima. Si estas

Chapter 10. Conclusiones 157

variables se eliminan del problema, la calidad de la solución permanecerá inalterada. La

reducción de dimensionalidad se implementa en un paso de preprocesamiento utilizando

una heuŕıstica de poda. Esta heuŕıstica identifica y selecciona las variables del problema

que tienen poca probabilidad de tener un valor distinto de cero en la solución óptima.

Tres heuŕısticas de poda han sido propuestas, las cuales se basan en resolver relajaciones

del problema y realizar la selección de variables de acuerdo con los resultados de estas

optimizaciones auxiliares. Este procedimiento sólo es factible si las optimizaciones rela-

jadas se pueden resolver de manera eficiente. En los experimentos propuestos se muestra

que la dimensionalidad del problema puede ser reducida de forma significativa sin afec-

tar considerablemente la calidad de las soluciones finales. Por lo tanto, los métodos de

poda pueden ser utilizados para reducir el coste computacional de la optimización para

todas las metaheuŕısticas investigadas, especialmente para algoritmos de estimación de

distribuciones.

Las restricciones de cardinalidad son útiles porque permiten la identificación de solu-

ciones dispersas, las cuales son más estables respecto a los parámetros de entrada de la

optimización. Este efecto se ilustra en el problema de selección de carteras con costes

de transacción. Carteras estándar seleccionadas con el modelo clásico de Markowitz,

que son óptimas dentro de muestra, exhiben un rendimiento muy bajo fuera de muestra.

La introducción de costes de transacción en el modelo de optimización y la inclusión

de restricciones de cardinalidad inducen un efecto de regularización que permite la se-

lección de carteras que son más robustas, estables y tienen mejor rendimiento fuera de

muestra. Una estrategia basada en el lasso que penaliza fluctuaciones grandes en la

composición de la cartera y la estrategia con restricciones de cardinalidad obtuvieron

los mejores resultados en los experimentos realizados. Combinar restricciones de car-

dinalidad y penalizaciones de tipo lasso resulta en los problemas analizados en una

regularización excesiva y las soluciones obtenidas son demasiado estáticas para alcanzar

buenos resultados fuera de muestra.

En el problema de árboles filogenéticos de consenso se mostró que el rendimiento

de una técnica basada en branch-and-cut para resolver el problema puede ser mejorado

eliminando variables (tripletes) que no aparecen en los árboles de entrada. Adicional-

mente, generar nuevas restricciones y variables a lo largo del proceso de búsqueda se

identificaron como técnicas efectivas para obtener árboles de consenso de gran calidad.

APPENDIX A

APPENDIX FOR CHAPTER 3

A.1 Proof of Lemma 3.11

Lemma 3.11 provides a connection between the fundamental concepts of dynastic po-

tential and similarity set. A proof of this lemma follows:

Lemma. Let P ⊆ S be a given set of candidate solutions. Then their dynastic potential

is contained in their similarity set Γ(P) ⊆ Σ(P).

Proof. Let z ∈ Γ(P). By definition, ∀ξ ∋ z, ∃x ∈ P such that x ∈ ξ. We now distinguish

two cases:

• If ∃{ξ∗1 , . . . , ξ∗k} such that ∀x ∈ P , x ∈ ∩ki=1ξ
∗
i , then it holds that z ∈ ∩ki=1ξ

∗
i .

It follows that ∃Ψ∗ ⊆ Ψ such that ∀x ∈ P and ∀ψ∗ ∈ Ψ∗, xψ∗z. This implies

Γ(P) ⊆ Σ(P).

• Otherwise, it follows by definition of Σ(P) that Σ(P) = S. Therefore, Γ(P) ⊆
Σ(P), and the proof is completed.

159

APPENDIX B

APPENDIX FOR CHAPTER 7

B.1 Tables for Greedy Backward and Forward Selection

161

Appendix B. Appendix for Chapter 7 162

Table B.1: Results for the RAR-GA, SA and EDA approaches with greedy backward
selection

Algorithm Index Best D Success Time(s) Speed-up Opt.
rate factor

Hang Seng 0.00321150 1.00 3.9 307.90 4.92 · 104
DAX 2.53162860 1.00 54.5 58.32 6.97 · 105

RAR-GA FTSE 1.92152413 0.94 61.3 104.15 7.76 · 105
(w = 1) S&P 4.71092502 0.97 61.1 107.62 7.42 · 105

Nikkei 0.20197748 1.00 154.1 64.20 6.03 · 105
Hang Seng 0.00321150 1.00 3.08 161.56 4.84 · 104

DAX 2.53162860 1.00 43.9 44.79 6.87 · 105
TransRAR FTSE 1.92152413 1.00 49.6 75.26 7.64 · 105

GA S&P 4.71092502 0.99 49.7 78.73 7.30 · 105
Nikkei 0.20197748 1.00 118.6 39.72 5.94 · 105

Hang Seng 0.00321150 1.00 2.3 652.13 3.74 · 104
DAX 2.53162860 0.97 19.4 148.31 3.18 · 105

SA FTSE 1.92152413 0.88 24.7 146.17 4.21 · 105
S&P 4.71092502 0.93 25.6 139.37 4.05 · 105
Nikkei 0.20197748 0.99 111.1 38.47 2.71 · 105

Hang Seng 0.00321150 1.00 24.2 42.21 5.19 · 105
DAX 2.53162860 0.98 212.0 11.56 4.02 · 106

UMDA FTSE 1.92352385 0.90 243.6 10.19 4.47 · 106
(EDA) S&P 4.71154380 0.95 239.7 11.27 4.28 · 106

Nikkei 0.20197748 1.00 339.0 7.46 3.44 · 106
Hang Seng 0.00321150 1.00 22.9 100.12 4.92 · 105

DAX 2.53162860 1.00 203.5 22.06 3.81 · 106
PBIL FTSE 1.92152413 0.93 232.7 20.55 4.25 · 106
(EDA) S&P 4.71092502 0.98 225.8 22.59 4.06 · 106

Nikkei 0.20197748 1.00 325.9 22.97 3.27 · 106
Hang Seng 0.00321150 1.00 19.1 162.08 3.73 · 105

DAX 2.53162860 1.00 160.4 50.64 2.88 · 106
PBILc FTSE 1.92410411 0.89 181.3 48.18 3.21 · 106
(EDA) S&P 4.71092501 0.96 176.3 54.79 3.07 · 106

Nikkei 0.20197748 1.00 235.8 74.51 2.47 · 106
Hang Seng 0.00321150 1.00 28.2 350.80 6.20 · 105

DAX 2.53276344 0.85 243.4 158.86 4.81 · 106
EMNA FTSE 1.92598749 0.85 273.5 155.41 5.35 · 106
(EDA) S&P 4.71092502 0.87 266.4 184.94 5.12 · 106

Nikkei 0.20197748 0.98 294.8 233.13 4.12 · 106

Appendix B. Appendix for Chapter 7 163

Table B.2: Results for the RAR-GA, SA and EDA approaches with greedy forward
selection

Algorithm Index Best D Success Time(s) Speed-up Opt.
rate factor

Hang Seng 0.00321150 1.00 8.1 148.25 1.30 · 105
DAX 2.53162860 1.00 67.4 47.16 1.17 · 106

RAR-GA FTSE 1.92152412 0.95 75.2 84.90 1.29 · 106
(w = 1) S&P 4.72021851 1.00 75.7 86.86 1.35 · 106

Nikkei 0.20197748 1.00 144.3 68.56 3.46 · 106
Hang Seng 0.00321150 1.00 6.83 72.85 1.29 · 105

DAX 2.53162860 1.00 56.7 34.68 1.16 · 106
TransRAR FTSE 1.92152413 0.98 63.0 59.22 1.28 · 106

GA S&P 4.72021851 1.00 64.1 61.04 1.34 · 106
Nikkei 0.20197748 1.00 125.1 37.65 3.45 · 106

Hang Seng 0.00321150 1.00 6.5 230.75 1.18 · 105
DAX 2.53162860 0.98 32.4 88.81 7.84 · 105

SA FTSE 1.92152413 0.89 39.0 95.57 9.35 · 105
S&P 4.72060631 0.91 42.0 84.95 1.04 · 106
Nikkei 0.20197748 0.98 102.5 41.70 3.13 · 106

Hang Seng 0.00321150 1.00 28.2 32.23 6.00 · 105
DAX 2.53162860 0.97 225.6 10.86 4.49 · 106

UMDA FTSE 1.92336941 0.91 257.9 9.63 4.99 · 106
(EDA) S&P 4.72257456 0.96 252.6 10.69 4.89 · 103

Nikkei 0.20197748 1.00 329.4 7.68 6.30 · 106
Hang Seng 0.00321150 1.00 27.2 84.29 5.73 · 105

DAX 2.53162860 1.00 216.3 20.75 4.29 · 106
PBIL FTSE 1.92234549 0.95 250.9 19.06 4.76 · 106
(EDA) S&P 4.72021851 0.99 241.5 21.12 4.68 · 106

Nikkei 0.20197748 1.00 317.6 23.57 6.12 · 106
Hang Seng 0.00321150 1.00 23.2 133.44 4.53 · 105

DAX 2.53162860 1.00 171.9 47.25 3.36 · 106
PBILc FTSE 1.92340339 0.89 193.5 45.14 3.72 · 106
(EDA) S&P 4.72021851 0.96 188.3 51.30 3.69 · 106

Nikkei 0.20197748 1.00 224.4 78.29 5.33 · 106
Hang Seng 0.00321150 1.00 32.4 305.32 7.01 · 105

DAX 2.53162860 0.88 254.7 151.82 5.28 · 106
EMNA FTSE 1.92289840 0.88 248.2 171.26 5.87 · 106
(EDA) S&P 4.72021851 0.88 276.4 178.25 5.73 · 106

Nikkei 0.20197748 0.98 286.2 240.13 6.97 · 106

APPENDIX C

APPENDIX FOR CHAPTER 8

C.1 Proof of Theorem 8.1

Lemma. Let U be an UpDown matrix. The triplet of taxa ab|c belongs to the tree if and

only if for the submatrix Uabc composed of the rows and columns of a, b and c, there

exists a permutation π of rows and columns such that the following inequalities hold:

uab < uac (C.1)

uba < ubc (C.2)

uca = ucb (C.3)

uac − uab = ubc − uba (C.4)

Proof. We will prove first that given the triplet ab|c, the required UpDown submatrix

satisfies the relations (C.1)-(C.4). Therefore, suppose that triplet ab|c belongs to the

tree. Consider the 3× 3 matrix:  0 uab uac
uba 0 ubc
uca ucb 0


If triplet ab|c belongs to the tree, then obviously uab < uac holds. It is easy to see that

also uba < ubc holds, because since the triplet is symmetric, ab|c ≡ ba|c. We can further

state that uca and ucb must have the same value since the LCA of c and a and the LCA of

c and b are equal, therefore also the up-values. Finally it holds that uac−uab = ubc−uba,
i.e. the distance from the LCA of a and b to the LCA of a and c is the same as the one

from the LCA of b and a to the LCA of b and c since both former and both latter LCAs

are equal. On the other hand, suppose that we have an UpDown submatrix Uabc and

that (C.1)-(C.4) hold. If uab < uac, then taxa a and b are in the same partition, taking

into account the level of their least common ancestor, while c is not. If uba < ubc, then

165

Appendix C. Appendix for Chapter 8 166

the same argumentation applies for symmetry reasons and the triplet ab|c belongs to

the tree.

BIBLIOGRAPHY

Adler, I., Karmarkar, N., Resende, M. G. C., and Veiga, G. (1989). An implementation of

Karmarkar’s algorithm for linear programming. Mathematical Programming, 44:297–

335.

Amann, M. and Zimmermann, H. (2001). Tracking error and tactical asset allocation.

Financial Analysts Journal, 57(2):32–43.

Andreatta, A. A. and Ribeiro, C. C. (2002). Heuristics for the phylogeny problem.

Journal of Heuristics, 8:429–447.

Argyriou, A., Evgeniou, T., and Pontil, M. (2007). Multi-task feature learning. In

Advances in Neural Information Processing Systems 19. MIT Press.

Balas, E. and Zemel, E. (1980). An algorithm for large zero-one knapsack problems.

Operations Reserach, 28:1130–1154.

Baluja, S. (1994). Population-based incremental learning: A method for integrating

genetic search based function optimization and competitive learning. Technical Report

CMU-CS-94-163, Carnegie Mellon University.

Baluja, S. and Caruana, R. (1995). Removing the genetics from the standard genetic

algorithm. In Prieditis, A. and Russell, S., editors, Proceedings of the International

Conference on Machine Learning, pages 38–46. Morgan-Kaufmann.

Beasley, J. E. (1990). Or-library: Distributing test problems by electronic mail. Journal

of the Operational Research Society, 41 (11):1069–1072.

Beasley, J. E., Meade, N., and Chang, T. (2003). An evolutionary heuristic for the index

tracking problem. European Journal of Operations Research, 148 (3):621–643.

Best, M. and Hlouskova, J. (2008). Quadratic programming with transaction costs.

Computers and Operations Research, 25(35):18–33.

Bienstock, D. (1995). Computational study of a family of mixed-integer quadratic pro-

gramming problems. In Balas, E. and Clausen, J., editors, Integer Programming and

167

Bibliography 168

Combinatorial Optimization: 4th International IPCO Conference, Lecture Notes in

Computer Science 920. Springer-Verlag, Berlin.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science

and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Blum, C. and Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview

and conceptual comparison. ACM Computing Surveys, 35 (3):268–308.

Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University

Press.

Brodie, J., Daubechies, I., Mol, C. D., Giannone, D., and Loris, I. (2009). Sparse

and stable markowitz portfolios. Proceedings of the National Academy of Sciences,

106(30):12267–12272.

Bryant, D. (2003). A classification of consensus methods for phylogenies. In Janowitz,

M., Lapointe, F.-J., McMorris, F., Mirkin, B., and Roberts, F., editors, Bioconsensus,

DIMACS, pages 163–184. AMS.

Buckley, I. and Korn, R. (1998). Optimal index tracking under transaction costs and

impulse control. International Journal of Theoretical and Applied Finance, 1(3):315–

330.

Cadima, J. and Jolliffe, I. (1995). Loadings and correlations in the interpretation of

principal components. Applied Statistics, (22):203–214.

Carvalho, C. M., Polson, N. G., and Scott, J. G. (2009). Handling sparsity via the

horseshoe. Journal of Machine Learning Research W&CP, 5:73–80.

Chang, T. J., Meade, N., Beasley, J. E., and Sharaiha, Y. M. (2000). Heuristics for

cardinality constrained portfolio optimisation. Computers and Operations Research,

27:1271–1302.

Cormen, T. H., Leiserson, C. H., and Rivest, R. L. (1990). Introduction to Algorithms.

The MIT Press.

Cotta, C. and Troya, J. M. (2003). Information processing in transmitting recombina-

tion. Applied Mathematics Letters, 16:2003.

Crama, Y. and Schyns, M. (1999). Simulated annealing for complex portfolio selection

problems. Technical report, Groupe d’Etude des Mathematiques du Management et

de l’Economie 9911, Universie de Liege.

Dantzig, G. (1998). Linear programming and extensions. Princeton University Press.

d’Aspremont, A., Bach, F., and Ghaoui, L. E. (2008a). Optimal solutions for sparse

principal component analysis. Journal of Machine Learning Research, 9:1269–1294.

d’Aspremont, A., Ghaoui, L. E., Jordan, M., and Lanckriet, G. (2004). A direct for-

mulation for sparse PCA using semidefinite programming. In Advances in Neural

Information Processing Systems (NIPS), Vancouver, BC, December 2004.

Bibliography 169

d’Aspremont, A., Ghaoui, L. E., Jordan, M., and Lanckriet, G. (2007). A direct formu-

lation for sparse PCA using semidefinite programming. SIAM Review, 49(3):434–448.

d’Aspremont, A., Ghaoui, L. E., Jordan, M., and Lanckriet, G. (2008b). MATLAB code

for DSPCA. http://www.princeton.edu/∼{}aspremon/DSPCA.htm.

Dawkins, R. (1976). The Selfish Gene. Oxford University Press.

Day, W., Johnson, D., and Sankoff, D. (1986). The computational complexity of inferring

rooted phylogenies by parsimony. Mathematical Biosciences, 88:33–42.

DeMiguel, V., Garlappi, L., Nogales, F. J., and Uppal, R. (2009a). A generalized

approach to portfolio optimization: Improving performance by constraining portfolio

norms. Management Science, 55(5):798–812.

DeMiguel, V., Garlappi, L., and Uppal, R. (2009b). Optimal versus naive diversification:

How inneficient is the 1/n portfolio strategy? Review of Financial Studies, 5(22):1915–

1953.

DeMiguel, V. and Nogales, F. J. (2009). Portfolio selection with robust estimation.

Operations Research, 57(3):560–577.

DiGaspero, L., DiTollo, G., Roli, A., and Schaerf, A. (2011). Hybrid metaheuristics for

constrained portfolio selection problem. Quantitative Finance, 11(10):1473–1488.

DiGaspero, L., DiTollo, G., Schaerf, A., and Roli, A. (2007). A hybrid solver for con-

strained portfolio selection problems: preliminary report. In Proceedings of Learning

and Intelligent Optimization (LION2007).

Dorigo, M. and Gambardella, L. M. (1997). Ant colony system: a cooperative learning

approach to the traveling salesman problem. IEEE Transactions on Evolutionary

Computation, 1:53–66.

Eberhart, R. and Kennedy, J. (1995). A new optimizer using particle swarm theory.

In Proceedings of the Sixth International Symposium on Micromachine and Human

Science, Nagoya, Japan, pages 39–43.

Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004). Least angle regression.

Annals of Statistics, 32(2):407–451.

El-Abd, M. and Kamel, M. (2005). A Taxonomy of Cooperative Search Algorithms,

pages 32–41. Springer Verlag.

Fletcher, R. (2000). Practical Methods of Optimization. Wiley.

Foulds, L. and Graham, R. (1982). The steiner problem in phylogeny is NP-complete.

Advances in Applied Mathematics, 3.

George, E. I. and McCulloch, R. E. (1997). Approaches for Bayesian variable selection.

Statistica Sinica, 7(2):339–373.

http://www.princeton.edu/~{}aspremon/DSPCA.htm

Bibliography 170

Gill, P. E., Murray, W., Saunders, M. A., and Wright, M. H. (1991). Inertia-controlling

methods for general quadratic programming. SIAM Review, 33:1–36.

Gilli, M. and Këllezi, E. (2001a). A global optimization heuristic for portfolio choice-

with VaR and expected shortfall. In Computational Methods in Decision-Making,

Economics and Finance. Kluwer Academic Publishers.

Gilli, M. and Këllezi, E. (2001b). Threshold accepting for index tracking. Computing in

Economics and Finance, 72.

Glover, F. (1986). Future paths for integer programming and links to artificial intelli-

gence. Computers and Operations Research, 13:533–549.

Goldberg, D. (1989). Genetic Algorithms in Search, Optimization and Machine Learning.

Addison-Weasley, Reading, MA.

Han, S., Yoon, Y., and Cho, K. (2007). Inferring biomolecular interaction networks

based on convex optimization. Computational Biology and Chemistry, 31:347–354.

Hansen, P. and Mladenovic, N. (2003). A tutorial on variable neighborhood search.

Harjunkoski, I. and Grossmann, I. E. (2002). Decomposition techniques for multi-

stage scheduling problems using mixed-integer and constraint programming methods.

Comp. Chem. Engng, 26:1533–1552.

Hershenson, M., Boyd, S., and Lee, T. (2001). Optimal design of a CMOS op-amp via

geometric programming. IEEE Transactions on Computer-Aided Design, 20(1):1–21.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. University of

Michigan Press.

Holmes, S. (1999). Phylogenies: An overview, pages 81–119. Springer Verlag.

Huang, K. and Jane, C. (2009). A hybrid model for stock market forecasting and

portfolio selection based on ARX, Grey system and RS theories. Expert Systems with

Applications, pages 5387–5392.

Jacob, L., Obozinski, G., and Vert, J. (2009). Group lasso with overlaps and graph lasso.

In Proceedings of the 26th International Conference on Machine Learning (ICML).

Jagannathan, R. and Ma, T. (2003). Risk reduction in large portfolios: Why imposing

the wrong constraint helps. The Journal of Finance, 58(4):1651–1683.

Jeffers, J. (1967). Two case studies in the application of principal components. Applied

Statistics, (16):225–236.

Jeong, S., Hasegawa, S., Shimoyama, K., and Obayashi, S. (2009). Development and

investigation of efficient GA/PSO-hybrid algorithm applicable to real world design

optimization. IEEE Computational Intelligence Magazine, 4(3):36–44.

Bibliography 171

Jeurissen, R. and van den Berg, J. (2005). Index tracking using a hybrid genetic al-

gorithm. In ICSC Congress on Computational Intelligence Methods and Applications

2005.

Jeurissen, R. and van den Berg, J. (2008). Optimized index tracking using a hybrid

genetic algorithm. In Proceedings of the IEEE World Congress on Evolutionary Com-

putation (CEC2008), pages 2327–2334.

Jobst, N. J., Horniman, M. D., Lucas, C. A., and Mitra, G. (2001). Computational

aspects of alternative portfolio selection models in the presence of discrete asset choice

constraints. Quantitative Finance, 1:1–13.

Jolliffe, I., Trendafilov, N., and Uddin, M. (2003). A modified principal component

techique based on the lasso. Journal of Computational and Graphical Statistics,

(12):531–547.

Kellerer, H., Pferschy, U., and Pisinger, D. (2004). Knapsack Problems. Springer Verlag.

Kim, J., Hwang, I., Kim, Y., and Moon, B. (2011). Genetic approaches for graph

partitioning: A survey. In Proceedings of the 13th annual conference on Genetic and

Evolutionary Computation (GECCO 2011), Dublin, Ireland, pages 473–480.

Kim, J. and Warnow, T. (1999). Tutorial on phylogenetic tree estimation. In et. al.,

T. L., editor, Proceedings of the 7th International Conference on Intelligent Systems

for Molecular Biology, pages 196–205. AAAI Press.

Kirkpatrick, S., Gelatt, C. D., and M. P. Vecchi, J. (1983). Optimization by simulated

annealing. Science, 4598:671–679.

Krasnogor, N. and Smith, J. (2000). A memetic algorithm with self-adaptive local search:

Tsp as a case study. In Proceedings of the Genetic and Evolutionary Computation

Conference (GECCO-2000), pages 987–994. Morgan Kaufmann.

Ku, S. and Lee, B. (2001). A set-oriented genetic algorithm and the knapsack problem. In

Proceedings of the IEEE World Congress on Evolutionary Computation (CEC2001).

Ladanyi, L., Ralphs, T., Guzelsoy, M., and Mahajan, A. (2009). SYMPHONY. https:

//projects.coin-or.org/SYMPHONY.

Larrañaga, P. and Lozano, J. A., editors (2002). Estimation of Distribution Algorithms:

A New Tool for Evolutionary Computation. Kluwer Academic Publishers.

Larrañaga, P., Lozano, J. A., and Bengoetxea, E. (2001). Estimation of distribution

algorithms based on multivariate normal and gaussian networks. Technical report,

Department of Computer Science and Artificial Intelligence, University of the Basque

Country.

Ledoit, O. and Wolf, M. (2004). A well-conditioned estimator for large-dimensional

covariance matrices. J. Multivar. Anal., 88(2):365–411.

https://projects.coin-or.org/SYMPHONY
https://projects.coin-or.org/SYMPHONY

Bibliography 172

Leonard, T. and Hsu, J. (1992). Bayesian inference for a covariance matrix. Annals of

Statistics, (4):1669–1696.

Lobo, M., Fazel, M., and Boyd, S. (2007). Portfolio optimization with linear and fixed

transaction costs. Annals of Operations Research, special issue on financial optimiza-

tion, 152 (1):376–394.

Lübbecke, M. E. and Desrosiers, J. (2005). Selected topics in column generation. Oper-

ations Research, 53(6):1007–1023.

Markowitz, H. (1952). Portfolio selection. Journal of Finance, 7:77–91.

Markowitz, H. (1987). Mean-variance analysis in portfolio choice and capital markets.

Basil Blackwell.

Martello, S., Pisinger, D., and Toth, P. (1999). Dynamic programming and strong

bounds for the 0-1 knapsack problem. Management science, 45:414–424.

Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evolution Programs.

Springer Verlag.

Miller, R. E. and Thatcher, J. W., editors (1972). Reducibility among combinatorial

problems, pages 85–103. Plenum Press.

Mitchell, J. and Braun, S. (2004). Rebalancing an investment portfolio in the presence

of convex transaction costs. Technical report, Department of Mathematical Sciences,

Rensselaer Polytechnic Institute.

Moghaddam, B., Weiss, Y., and Avidan, S. (2005). Spectral bounds for sparse PCA. In

Advances in Neural Information Processing Systems (NIPS2005).

Moral-Escudero, R., Ruiz-Torrubiano, R., and Suarez, A. (2006). Selection of optimal

investment portfolios with cardinality constraints. In Proceedings of the IEEE World

Congress on Evolutionary Computation, pages 2382–2388.

Moscato, P. and Cotta, C. (2003). A gentle introduction to memetic algorithms. In

Handbook of Metaheuristics, pages 105–144. Kluwer Academic Publishers.

Muehlenbein, H. (1998). The equation for response to selection and its use for prediction.

Evolutionary Computation, 5:303–346.

Osman, I. H. and Laporte, G. (1996). Metaheuristics: A bibliography. Annals of Oper-

ations Research, 63 (5):513–623.

Padberg, M. W. and Rinaldi, G. (1991). A branch-and-cut algorithm for the solution of

large scale traveling salesman problems. SIAM Review, 33:60–100.

Perold, A. (1984). Large-scale portfolio optimization. Management Science, 30(10):1143–

1160.

Bibliography 173

Pirkwieser, S. and Ruiz-Torrubiano, R. (2007). Simple neighborhoods. Technical report,

Institute for Computer Graphics and Algorithms, Vienna University of Technology,

Vienna, Austria.

Pisinger, D. (2000). A minimal algorithm for the bounded knapsack problem. INFORMS

Journal on Computing, 12(1):75–82.

Pisinger, D. (2005). Where are the hard knapsack problems? Computers & Operations

Research, pages 2271–2284.

Pisinger, D. (2007). The quadratic knapsack problem - a survey. Discrete Applied

Mathematics, 155:623–648.

Pogue, G. (1970). An extension of the markowitz portfolio selection model to include

variable transactions’ costs, short sales, leverage policies and taxes. The Journal of

Finance, 25(5):1005–1027.

Poirriez, V., Yanev, N., and Andonov, R. (2009). A hybrid algorithm for the unbounded

knapsack problem. Discrete optimization, 6:110–124.

Puchinger, J., Raidl, G., and Pferschy, U. (2010). The multidimensional knapsack prob-

lem: Structure and algorithms. INFORMS Journal on Computing, 22(2):250–265.

Qaurooni, D. (2011). A memetic algorithm for course timetabling. In Proceedings of the

13th annual conference on Genetic and Evolutionary Computation (GECCO 2011),

Dublin, Ireland, pages 435–442.

Radcliffe, N. J. (1990). Genetic Neural Networks on MIMD Computers. PhD thesis,

University of Edinburgh.

Radcliffe, N. J. (1993). Genetic set recombination. In Foundations of Genetic Algorithms.

Morgan Kaufmann Pulishers.

Radcliffe, N. J. (1994). The algebra of genetic algorithms. Annals of Maths and Artificial

Intelligence, pages 339–384.

Radcliffe, N. J. and George, F. (1993). A study in set recombination. In Proceedings of

the 5th International Conference on Genetic Algorithms. Morgan Kaufmann Pulishers.

Radcliffe, N. J. and Surry, P. D. (1995). Fitness variance of formae and performance

prediction. In Foundations of Genetic Algorithms III. Morgan Kaufmann Pulishers.

Raidl, G. R. (2006). A unified view on hybrid metaheuristics. In Proceedings of the

Hybrid Metaheuristics Workshop, volume 4030 of Lecture Notes in Computer Science,

pages 1–12. Springer.

Rudolf, M., Wolter, H., and Zimmermann, H. (1999). A linear model for tracking error

minimization. Journal of Banking and Finance, 23(1):85–103.

Ruiz-Torrubiano, R., Garćıa-Moratilla, S., and Suárez, A. (2010). Optimization prob-

lems with cardinality constraints. In Computational Intelligence in Optimization:

Implementations and Applications. Springer Verlag.

Bibliography 174

Ruiz-Torrubiano, R. and Suárez, A. (2007a). A hybrid optimization approach to index

tracking. Accepted for publication in Annals of Operations Research.

Ruiz-Torrubiano, R. and Suárez, A. (2007b). Use of heuristic rules in evolutionary

methods for the selection of optimal investment portfolios. In Proceedings of the

IEEE World Congress on Evolutionary Computation CEC 2007, September 25th-28th,

Singapore.

Ruiz-Torrubiano, R. and Suarez, A. (2010). Hybrid approaches and dimensionality

reduction for portfolio selection with cardinality constraints. IEEE Computational

Intelligence Magazine, 5(2):92–107.

Ruiz-Torrubiano, R. and Suárez, A. (2011). The transrar crossover operator for genetic

algorithms with set encoding. In Proceedings of the 13th annual conference on Genetic

and Evolutionary Computation (GECCO 2011), Dublin, Ireland, pages 489–496.

Santos, A., Nogales, F., Ruiz, E., and VanDijk, D. (2012). Optimal portfolios with

minimum capital requirements. Accepted for publication: Journal of Banking and

Finance.

Schaerf, A. (2002). Local search techniques for constrained portfolio selection problems.

Computational Economics, 20:177–190.

Sebag, M. and Ducoulombier, A. (1998). Extending population-based incremental learn-

ing to continuous search spaces. Lecture Notes in Computer Science, 1498:418–427.

Seeger, M. W. (2008). Bayesian inference and optimal design for the sparse linear model.

The Journal of Machine Learning Research, 9:759–813.

Shapcott, J. (1992). Index tracking: genetic algorithms for investment portfolio selection.

Technical report, EPCC-SS92-24, Edinburgh, Parallel Computing Centre.

Simões, A. and Costa, E. (2001). An evolutionary approach to the zero/one knapsack

problem: Testing ideas from biology. In Proceedings of the Fifth International Con-

ference on Artificial Neural Networks andGenetic Algorithms ICANNGA.

Speer, N., Spieth, C., and Zell, A. (2004). A memetic co-clustering algorithm for gene

expression profiles and biological annotation. In Proceedings of the IEEE Congress on

Evolutionary Computation 2004, pages 1631–1638. IEEE Press.

Streichert, F. and Tamaka-Tamawaki, M. (2006). The effect of local search on the

constrained portfolio selection problem. In Proceedings of the IEEE World Congress

on Evolutionary Computation (CEC2006), pages 2368–2374, Vancouver, Canada.

Streichert, F., Ulmer, H., and Zell, A. (2004). Evaluating a hybrid encoding and three

crossover operators on the constrained portfolio selection problem. In Proceedings of

the Congress on Evolutionary Computation (CEC2004), volume 1, pages 932–939.

Swofford, S. (1991). Phylogenetic analysis of DNA sequences, pages 295–333. Oxford

University Press.

Bibliography 175

Tabata, Y. and Takeda, E. (1995). Bicriteria optimization problem of designing an index

fund. Journal of the Operational Research Society, 46(8):1023–1032.

Talbi, E. (2002). A taxonomy of hybrid metaheuristics. Journal of Heuristics, 8:541–564.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the

Royal Statistical Society B, 58(1):267–268.

Tipping, M. E. (2001). Sparse Bayesian learning and the relevance vector machine. The

Journal of Machine Learning Research, 1:211–244.

Turlach, B. A. (2005). On algorithms for solving least squares problems under an l1

penalty or an l1 constraint. In 2004 Proceedings of the Americal Statistical Association,

Statistical Computing Section, pages 2572–2577. Americal Statistical Association.

Vandenberghe, L. and Boyd, S. (1996). Semidefinite programming. SIAM Review, 38

(1):49–95.

Wang, J., Shan, H., Shasha, D., and Piel, W. (2003). TreeRank: A similarity measure for

nearest neighbor searching in phylogenetic databases. In Proceedings of the 15th Inter-

national Conference on Scientific and Statistical Database Management, Cambridge,

MA.

Wang, J. and Zhu, J. (2009). Portfolio theory of information retrieval. In Proceedings

of the 32nd international ACM SIGIR conference on Research and development in

information retrieval, SIGIR ’09, pages 115–122, New York, NY, USA. ACM.

Wolpert, D. and Macready, W. (1997). No free lunch theorems for optimization. IEEE

Transactions on Evolutionary Computation, 1:67–82.

Wu, M., Schlkopf, B., and Bakir, G. (2006). A direct method for building sparse kernel

learning algorithms. Journal of Machine Learning Research, 7:603–624.

Yeh, W. (2006). An efficient memetic algorithm for the multi-stage supply chain network

problem. The International Journal of Advanced Manufacturing Technology, 29:803–

813.

Yoshimoto, A. (1996). The mean-variance approach to portfolio optimization subject to

transaction costs. Journal of the Operations Research Society of Japan, 39(1):99–117.

Yu, C. and Li, H. (2000). A robust optimization model for stochastic logistic problems.

International Journal of Production Economics, 64:385–397.

Zou, H., Hastie, T., and Tibshirani, R. (2006). Sparse principal component analysis.

Journal of Computational and Graphical Statistics, 15 (2):265–286.

	Abstract
	Resumen
	Acknowledgements
	Abbreviations
	1 Introduction
	1.1 Hybrid Algorithms for Cardinality Constrained Problems
	1.2 Dimensionality Reduction
	1.3 Applications
	1.4 Contributions
	1.5 Publications
	1.5.1 Direct Work
	1.5.2 Related Work
	1.5.3 Submitted Work

	1.6 Summary by Chapter

	I Optimization Algorithms
	2 Metaheuristics and Cardinality Constrained Problems
	2.1 Introduction
	2.2 Metaheuristic Hybridization for Cardinality Constrained Problems
	2.2.1 Metaheuristic Hybridization
	2.2.2 Hybrid Approach for Cardinality Constraints

	2.3 Metaheuristics for optimal subset selection
	2.3.1 Simulated annealing
	2.3.2 Genetic Algorithms
	2.3.3 Estimation of Distribution Algorithms

	2.4 Dimensionality Reduction for Cardinality Constrained Optimization Problems
	2.4.1 Block pruning
	2.4.2 Greedy backward selection
	2.4.3 Greedy forward selection

	2.5 Summary and Discussion

	3 Design of Genetic Representations and Operators
	3.1 Introduction
	3.2 Forma Theory
	3.3 Crossover operators
	3.3.1 Random Respectful Recombination (RRR)
	3.3.2 Random Equivalence Recombination (RER)
	3.3.3 Random Assortment Recombination (RAR)
	3.3.4 Transmitting RAR (TransRAR)

	3.4 Operators for cardinality constrained sets
	3.4.1 Complexity analysis

	3.5 Summary and Discussion

	II Applications
	4 The Knapsack Problem
	4.1 Introduction
	4.2 Optimization model
	4.3 Hybrid approaches
	4.4 Results
	4.5 Summary and Conclusions

	5 Sparse Principal Component Analysis
	5.1 Introduction
	5.2 Optimization Model
	5.3 Hybrid approach
	5.4 Results
	5.5 Summary and Conclusions

	6 Index Tracking by Partial Replication
	6.1 Introduction
	6.2 Index Tracking with Cardinality Constraints
	6.3 Hybrid approaches
	6.3.1 Genetic algorithms
	6.3.2 Simulated Annealing
	6.3.3 Estimation of Distribution Algorithms
	6.3.4 Block pruning

	6.4 Empirical evaluation
	6.5 Summary and Discussion

	7 Optimal Portfolio Selection
	7.1 Introduction
	7.2 Previous Work
	7.3 Portfolio Selection with Cardinality Constraints
	7.3.1 The Markowitz Mean-variance Model
	7.3.2 Constraints in Portfolio Selection Problems
	7.3.3 Hybrid approaches to optimal portfolio selection
	7.3.3.1 Genetic algorithms
	7.3.3.2 Simulated Annealing
	7.3.3.3 Estimation of Distribution Algorithms

	7.3.4 Empirical evaluation
	7.3.5 Discussion

	7.4 Portfolio Selection with Transaction costs
	7.4.1 Lasso penalties
	7.4.2 Hybrid Approach to Portfolio Selection under Transaction Costs
	7.4.3 Empirical evaluation
	7.4.3.1 In-sample evaluation
	7.4.3.2 Out-of-sample evaluation
	7.4.3.3 Discussion

	7.5 Summary and Discussion

	8 The Consensus Tree Problem
	8.1 Introduction
	8.2 Optimization model
	8.2.1 The UpDown Matrix Model
	8.2.2 The Triplet Model

	8.3 Solution methods
	8.3.1 Preprocessing step
	8.3.2 Using lazy constraints
	8.3.3 Reduction of dimensionality
	8.3.4 Refinement of incumbents
	8.3.4.1 SWAP
	8.3.4.2 STEP
	8.3.4.3 NNI or ROTATE
	8.3.4.4 SPR

	8.3.5 Generating new variables

	8.4 Results
	8.5 Summary and Conclusions

	9 Conclusions and Future Work
	9.1 Future Work

	10 Conclusiones
	A Appendix for Chapter 3
	A.1 Proof of Lemma 3.11

	B Appendix for Chapter 7
	B.1 Tables for Greedy Backward and Forward Selection

	C Appendix for Chapter 8
	C.1 Proof of Theorem 8.1

	Bibliography

