Show simple item record

dc.contributor.authorMuzas, Alberto S.
dc.contributor.authorJuaristi, J. Iñaki
dc.contributor.authorAlducin, Maite
dc.contributor.authorKroes, Geert Jan
dc.contributor.authorDíaz Oliva, Cristina 
dc.contributor.authorMuiño, R. Díez
dc.contributor.otherUAM. Departamento de Químicaes_ES
dc.date.accessioned2015-03-10T13:14:45Z
dc.date.available2015-03-10T13:14:45Z
dc.date.issued2012-08-14
dc.identifier.citationJournal of Chemical Physic 137.6 (2012): 064707en_US
dc.identifier.issn0021-9606 (print)es_ES
dc.identifier.issn1089-7690 (online)es_ES
dc.identifier.urihttp://hdl.handle.net/10486/664454
dc.descriptionThe following article appeared in Journal of Chemical Physic 137.6 (2012): 064707 and may be found at http://scitation.aip.org/content/aip/journal/jcp/137/6/10.1063/1.4742907en_US
dc.description.abstractWe have studied survival and rotational excitation probabilities of H2(vi = 1, Ji = 1) and D2(vi = 1, Ji = 2) upon scattering from Cu(111) using six-dimensional (6D) adiabatic (quantum and quasi-classical) and non-adiabatic (quasi-classical) dynamics. Non-adiabatic dynamics, based on a friction model, has been used to analyze the role of electron-hole pair excitations. Comparison between adiabatic and non-adiabatic calculations reveals a smaller influence of non-adiabatic effects on the energy dependence of the vibrational deexcitation mechanism than previously suggested by low-dimensional dynamics calculations. Specifically, we show that 6D adiabatic dynamics can account for the increase of vibrational deexcitation as a function of the incidence energy, as well as for the isotope effect observed experimentally in the energy dependence for H2(D2)/Cu(100). Furthermore, a detailed analysis, based on classical trajectories, reveals that in trajectories leading to vibrational deexcitation, the minimum classical turning point is close to the top site, reflecting the multidimensionally of this mechanism. On this site, the reaction path curvature favors vibrational inelastic scattering. Finally, we show that the probability for a molecule to get close to the top site is higher for H2 than for D2, which explains the isotope effect found experimentallyen_US
dc.description.sponsorshipThis work has been financially supported by the DGI (Project Nos. FIS2010-15127 and FIS2010-19609-C02-02), the CAM (Project No. 2009/MAT1726), the Basque Dpto. de Educación, Universidades e Investigación, and the UPV/EHU (Project No. IT-366-07)en_US
dc.format.extent9 pag.en
dc.format.mimetypeapplication/pdfen
dc.language.isoengen
dc.publisherAmerican Institute of Physicsen_US
dc.relation.ispartofJournal of Chemical Physicsen_US
dc.rights© 2012 American Institute of Physicsen_US
dc.titleVibrational deexcitation and rotational excitation of H2 and D2 scattered from Cu(111): Adiabatic versus non-adiabatic dynamicsen_US
dc.typearticleen
dc.subject.ecienciaQuímicaes_ES
dc.relation.publisherversionhttp://dx.doi.org/10.1063/1.4742907es_ES
dc.identifier.doi10.1063/1.4742907es_ES
dc.identifier.publicationfirstpage064707es_ES
dc.identifier.publicationissue6es_ES
dc.identifier.publicationlastpage064707es_ES
dc.identifier.publicationvolume137es_ES
dc.relation.projectIDComunidad de Madrid. S2009/MAT-1726/NANOBIOMAGNETes_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.accessRightsopenAccessen
dc.facultadUAMFacultad de Ciencias


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record