Vibrational deexcitation and rotational excitation of H2 and D2 scattered from Cu(111): Adiabatic versus non-adiabatic dynamics

Biblos-e Archivo/Manakin Repository

Show simple item record

dc.contributor.author Muzas, Alberto S.
dc.contributor.author Juaristi, J. Iñaki
dc.contributor.author Alducin, Maite
dc.contributor.author Kroes, Geert Jan
dc.contributor.author Díaz, Cristina
dc.contributor.author Muiño, R. Díez
dc.contributor.other UAM. Departamento de Química es_ES
dc.date.accessioned 2015-03-10T13:14:45Z
dc.date.available 2015-03-10T13:14:45Z
dc.date.issued 2012-08-14
dc.identifier.citation Journal of Chemical Physic 137.6 (2012): 064707 en_US
dc.identifier.issn 0021-9606 (print) es_ES
dc.identifier.issn 1089-7690 (online) es_ES
dc.identifier.uri http://hdl.handle.net/10486/664454
dc.description The following article appeared in Journal of Chemical Physic 137.6 (2012): 064707 and may be found at http://scitation.aip.org/content/aip/journal/jcp/137/6/10.1063/1.4742907 en_US
dc.description.abstract We have studied survival and rotational excitation probabilities of H2(vi = 1, Ji = 1) and D2(vi = 1, Ji = 2) upon scattering from Cu(111) using six-dimensional (6D) adiabatic (quantum and quasi-classical) and non-adiabatic (quasi-classical) dynamics. Non-adiabatic dynamics, based on a friction model, has been used to analyze the role of electron-hole pair excitations. Comparison between adiabatic and non-adiabatic calculations reveals a smaller influence of non-adiabatic effects on the energy dependence of the vibrational deexcitation mechanism than previously suggested by low-dimensional dynamics calculations. Specifically, we show that 6D adiabatic dynamics can account for the increase of vibrational deexcitation as a function of the incidence energy, as well as for the isotope effect observed experimentally in the energy dependence for H2(D2)/Cu(100). Furthermore, a detailed analysis, based on classical trajectories, reveals that in trajectories leading to vibrational deexcitation, the minimum classical turning point is close to the top site, reflecting the multidimensionally of this mechanism. On this site, the reaction path curvature favors vibrational inelastic scattering. Finally, we show that the probability for a molecule to get close to the top site is higher for H2 than for D2, which explains the isotope effect found experimentally en_US
dc.description.sponsorship This work has been financially supported by the DGI (Project Nos. FIS2010-15127 and FIS2010-19609-C02-02), the CAM (Project No. 2009/MAT1726), the Basque Dpto. de Educación, Universidades e Investigación, and the UPV/EHU (Project No. IT-366-07) en_US
dc.format.extent 9 pag. en
dc.format.mimetype application/pdf en
dc.language.iso eng en
dc.publisher American Institute of Physics en_US
dc.relation.ispartof Journal of Chemical Physics en_US
dc.rights © 2012 American Institute of Physics en_US
dc.title Vibrational deexcitation and rotational excitation of H2 and D2 scattered from Cu(111): Adiabatic versus non-adiabatic dynamics en_US
dc.type article en
dc.subject.eciencia Química es_ES
dc.relation.publisherversion http://dx.doi.org/10.1063/1.4742907 es_ES
dc.identifier.doi 10.1063/1.4742907 es_ES
dc.identifier.publicationfirstpage 064707 es_ES
dc.identifier.publicationissue 6 es_ES
dc.identifier.publicationlastpage 064707 es_ES
dc.identifier.publicationvolume 137 es_ES
dc.relation.projectID Comunidad de Madrid. S2009/MAT-1726/NANOBIOMAGNET es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.rights.accessRights openAccess en


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record