Show simple item record

dc.contributor.authorRodríguez-Bolívar, Salvador
dc.contributor.authorGómez-Campos, Francisco M.
dc.contributor.authorFuentes, Noelia
dc.contributor.authorCárdenas Morales, Diego Jesús 
dc.contributor.authorBuñuel Magdalena, María Elena 
dc.contributor.authorCarceller, Juan E.
dc.contributor.authorParra, Andrés
dc.contributor.authorCuerva Carvajal, Juan Manuel
dc.contributor.authorÁlvarez de Cienfuegos, Luis
dc.contributor.otherUAM. Departamento de Química Orgánicaes_ES
dc.date.accessioned2015-05-27T15:28:46Z
dc.date.available2015-05-27T15:28:46Z
dc.date.issued2011-03-25
dc.identifier.citationPhysycal Review B 83.12 (2011): 125424en_US
dc.identifier.issn1098-0121 (print)es_ES
dc.identifier.issn1550-235X (online)es_ES
dc.identifier.urihttp://hdl.handle.net/10486/666434
dc.description.abstractWe propose that a pair of organic molecules can mimic the behavior of a macroscopic fuse at nanoscale, one component of the pair being the on state and the other the off state. For this task wemake use of density-functional theory to calculate the physical properties of selected molecules, which have also been synthesized by our team. By this means we obtain the transmission spectra and the current of the proposed devices, which allows us to compare the behavior of the on and off states.Of particular interest is the on/off switch ratios, defined as the current ratios of the on and off structures at the corresponding bias voltage. In a first stage, we examine the best linker between the device and the electrode for high on/off switch ratios. Once this is determined, we test the influence of the electron richness of the system to provide a high on/off switch ratio. The entire analysis is also supported by the molecular projected self-consistent Hamiltonian, which provides a good way of understanding the molecular behavior. All the calculations support that interesting on/off switch ratios of two orders of magnitude could be obtained with these prototypical nanofusesen_US
dc.description.sponsorshipWe thank the Regional Government of Andalucía for financial support (Projects No. P06-FQM-01726 and No. P09-FQM-04571), the “Centro de Supercomputación de la Universidad de Granada,” and the “Centro de Computación Científica-UAM” for computation time. The authors are also grateful to the Spanish Secretaría de Estado de Universidades e Investigación, Ministerio de Educación y Ciencia, for financial support within research projects TEC2007-66812 and TEC2010-16211. N.F. thanks the Regional Government of Andalucía for her research contract, and LAC thanks the University of Granada for his research contracten_US
dc.format.extent11 pag.es_ES
dc.format.mimetypeapplication/pdfen
dc.language.isoengen
dc.publisherThe American Physical Societyen_US
dc.relation.ispartofPhysical Review B - Condensed Matter and Materials Physicsen_US
dc.rights© 2011 American Physical Societyen_US
dc.titleConductance and application of organic molecule pairs as nanofuseses_ES
dc.typearticlees_ES
dc.subject.ecienciaQuímicaes_ES
dc.relation.publisherversionhttp://dx.doi.org/10.1103/PhysRevB.83.125424es_ES
dc.identifier.doi10.1103/PhysRevB.83.125424es_ES
dc.identifier.publicationfirstpage125424es_ES
dc.identifier.publicationissue12es_ES
dc.identifier.publicationlastpage125424es_ES
dc.identifier.publicationvolume83es_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersionen
dc.rights.accessRightsopenAccesses_ES
dc.authorUAMCardenas Morales, Diego Jesús (259091)
dc.authorUAMFuentes Romero, Noelia (264880)
dc.facultadUAMFacultad de Ciencias


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record