Show simple item record

dc.contributor.authorFente, A.
dc.contributor.authorHerrera Vasco, Edwin 
dc.contributor.authorGuillamón Gómez, Isabel 
dc.contributor.authorSuderow Rodríguez, Hermann Jesús 
dc.contributor.authorMañas-Valero, S.
dc.contributor.authorGalbiati, M.
dc.contributor.authorCoronado, E.
dc.contributor.authorKogan, V. G.
dc.contributor.otherUAM. Departamento de Física de la Materia Condensadaes_ES
dc.date.accessioned2017-02-28T15:17:18Z
dc.date.available2017-02-28T15:17:18Z
dc.date.issued2016-07-29
dc.identifier.citationPhysical Review B - Condensed Matter and Materials Physics 94.1 (2016): 014517en_US
dc.identifier.issn2469-9950 (print)es_ES
dc.identifier.issn2469-9969 (online)es_ES
dc.identifier.urihttp://hdl.handle.net/10486/677276
dc.description.abstractWe study the spatial distribution of the density of states (DOS) at zero bias N(r) in the mixed state of single and multigap superconductors. We provide an analytic expression for N(r) based on deGennes' relationship between DOS and the order parameter that reproduces well scanning tunneling microscopy (STM) data in several superconducting materials. In the single gap superconductor β-Bi2Pd, we find that N(r) is governed by a length scale ξH=φ0/2πH, which decreases in rising fields. The vortex core size C, defined via the slope of the order parameter at the vortex center, C (dΔ/dr|r→0)-1, differs from ξH by a material dependent numerical factor. The new data on the tunneling conductance and vortex lattice of the 2H-NbSe1.8S0.2 show the in-plane isotropic vortices, suggesting that substitutional scattering removes the in-plane anisotropy found in the two-gap superconductor 2H-NbSe2. We fit the tunneling conductance of 2H-NbSe1.8S0.2 to a two gap model and calculate the vortex core size C for each band. We find that C is field independent and has the same value for both bands. We also analyze the two-band superconductor 2H-NbS2 and find the same result. We conclude that, independently of the magnetic field induced variation of the order parameter values in both bands, the spatial variation of the order parameter close to the vortex core is the same for all bandsen_US
dc.description.sponsorshipThe work was supported by the Spanish Ministry of Economy and Competitiveness (FIS2014-54498-R, MAT2014-56143-R, MDM-2014-0377, and MDM2015-0538, Network of Excellence in Molecular Nanoscience MAT2014-52919-REDC), by the Comunidad de Madrid through program Nanofrontmag-CM (S2013/MIT- 2850), the Generalidad Valenciana through program Prometeo, and by EU (Cost MP-1201 and COST CA-15128). E.H. acknowledges support of COLCIENCIAS Programa Doctorados en el Exterior Convocatoria 568-2012 and S.M. of MECD: FPU14/04407. M.G. acknowledges the European Union Horizon 2020 Marie Curie Actions under the project SPIN2D (H2020/2014-659378). We acknowledge SEGAINVEX workshop of UAM and Banco Santander. The work of I.G. receives support from Axa Research Fund, FP7-PEOPLE-2013-CIG 618321 and the European Research Council (Grant No. 679080). Work of V.K. was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. The Ames Laboratory is operated for the U.S. DOE by Iowa State University under Contract No. DE-AC02-07CH11358en_US
dc.format.extent9 pag.es_ES
dc.format.mimetypeapplication/pdfen
dc.language.isoengen
dc.publisherAmerican Physical Societyen_US
dc.relation.ispartofPhysical Review B - Condensed Matter and Materials Physicsen_US
dc.rights© 2016 American Physical Societyen_US
dc.subject.otherVortex core sizeen_US
dc.subject.otherScanning tunneling microscopyen_US
dc.titleField dependence of the vortex core size probed by scanning tunneling microscopyen_US
dc.typearticleen
dc.subject.ecienciaFísicaes_ES
dc.relation.publisherversionhttp://dx.doi.org/10.1103/PhysRevB.94.014517es_ES
dc.identifier.doi10.1103/PhysRevB.94.014517es_ES
dc.identifier.publicationfirstpage014517es_ES
dc.identifier.publicationissue1es_ES
dc.identifier.publicationlastpage014517es_ES
dc.identifier.publicationvolume94es_ES
dc.relation.projectIDGobierno de España. FIS2014-54498-Res_ES
dc.relation.projectIDGobierno de España. MAT2014-56143-Res_ES
dc.relation.projectIDGobierno de España. MDM-2014-0377es_ES
dc.relation.projectIDGobierno de España. MDM2015-0538es_ES
dc.relation.projectIDGobierno de España. MAT2014-52919-REDCes_ES
dc.relation.projectIDGobierno de España. FPU14/04407es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/659378/EU//SPIN2Des_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/618321es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/679080/EU//PNICTEYESes_ES
dc.relation.projectIDComunidad de Madrid. S2013/MIT-2850/NANOFRONTMAG-CMes_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersionen
dc.rights.accessRightsopenAccessen
dc.authorUAMGuillamón Gómez, Isabel (264115)
dc.authorUAMSuderow Rodríguez, Hermann Jesús (281163)
dc.facultadUAMFacultad de Ciencias
dc.institutoUAMInstituto Universitario de Ciencia de Materiales Nicolás Cabrera (INC)
dc.institutoUAMCentro de Investigación en Física de la Materia Condensada (IFIMAC)


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record