Show simple item record

dc.contributor.authorFernández, M. A.
dc.contributor.authorSabater, C.
dc.contributor.authorDednam, W.
dc.contributor.authorPalacios Burgos, Juan José 
dc.contributor.authorCalvo, M. R.
dc.contributor.authorUntiedt, C.
dc.contributor.authorCaturla, M. J.
dc.contributor.otherUAM. Departamento de Física de la Materia Condensadaes_ES
dc.date.accessioned2017-03-22T15:39:29Z
dc.date.available2017-03-22T15:39:29Z
dc.date.issued2016-02-26
dc.identifier.citationPhysical Review B - Condensed Matter and Materials Physics 93.8 (2016): 085437en_US
dc.identifier.issn2469-9950 (print)es_ES
dc.identifier.issn2469-9969 (online)es_ES
dc.identifier.urihttp://hdl.handle.net/10486/677687
dc.description.abstractThe conductance across an atomically narrow metallic contact can be measured by using scanning tunneling microscopy. In certain situations, a jump in the conductance is observed right at the point of contact between the tip and the surface, which is known as "jump to contact" (JC). Such behavior provides a way to explore, at a fundamental level, how bonding between metallic atoms occurs dynamically. This phenomenon depends not only on the type of metal but also on the geometry of the two electrodes. For example, while some authors always find JC when approaching two atomically sharp tips of Cu, others find that a smooth transition occurs when approaching a Cu tip to an adatom on a flat surface of Cu. In an attempt to show that all these results are consistent, we make use of atomistic simulations; in particular, classical molecular dynamics together with density functional theory transport calculations to explore a number of possible scenarios. Simulations are performed for two different materials: Cu and Au in a [100] crystal orientation and at a temperature of 4.2 K. These simulations allow us to study the contribution of short- and long-range interactions to the process of bonding between metallic atoms, as well as to compare directly with experimental measurements of conductance, giving a plausible explanation for the different experimental observations. Moreover, we show a correlation between the cohesive energy of the metal, its Young's modulus, and the frequency of occurrence of a jump to contacten_US
dc.description.sponsorshipW. Dednam thanks Dr. A. E. Botha for helpful discussions and acknowledges support from the National Research Foundation of South Africa through the Scarce Skills Masters scholarship funding programme (Grant Unique Number 92138). This work is supported by the Generalitat Valenciana through Grant Reference PROMETEO2012/011 and MINECO under Grant No. FIS2013-47328, by European Union structural funds and the Comunidad de Madrid Programs S2013/MIT-3007 and P2013/MIT-2850. This work is also part of the research programme of the Foundation for Fundamental Research on Matter (FOM), which is financially supported by the Netherlands Organisation for Scientific Research (NWO)en_US
dc.format.extent10 pag.es_ES
dc.format.mimetypeapplication/pdfen
dc.language.isoengen
dc.publisherAmerican Physical Societyen_US
dc.relation.ispartofPhysical Review B - Condensed Matter and Materials Physicsen_US
dc.rights© 2016 American Physical Societyen_US
dc.subject.otherMetallic nanocontactsen_US
dc.subject.otherAtomistic simulationsen_US
dc.titleDynamic bonding of metallic nanocontacts: Insights from experiments and atomistic simulationsen_US
dc.typearticleen
dc.subject.ecienciaFísicaes_ES
dc.relation.publisherversionhttp://dx.doi.org/10.1103/PhysRevB.93.085437es_ES
dc.identifier.doi10.1103/PhysRevB.93.085437es_ES
dc.identifier.publicationfirstpage085437es_ES
dc.identifier.publicationissue8es_ES
dc.identifier.publicationlastpage085437es_ES
dc.identifier.publicationvolume93es_ES
dc.relation.projectIDGobierno de España. FIS2013-47328es_ES
dc.relation.projectIDComunidad de Madrid. S2013/MIT-3007/MAD2Des_ES
dc.relation.projectIDComunidad de Madrid. S2013/MIT-2850/NANOFRONTMAG-CMes_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersionen
dc.rights.accessRightsopenAccessen
dc.facultadUAMFacultad de Ciencias
dc.institutoUAMInstituto Universitario de Ciencia de Materiales Nicolás Cabrera (INC)
dc.institutoUAMCentro de Investigación en Física de la Materia Condensada (IFIMAC)


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record