Show simple item record

dc.contributor.authorMolina-Mendoza, Aday J.
dc.contributor.authorGiovanelli, Emerson
dc.contributor.authorPaz, Wendel S.
dc.contributor.authorNiño, Miguel Ángel
dc.contributor.authorIsland, Joshua O.
dc.contributor.authorEvangeli, Charalambos
dc.contributor.authorAballe, Lucía
dc.contributor.authorFoerster, Michael
dc.contributor.authorRubio Bollinger, Gabino 
dc.contributor.authorAgrait de la Puente, Mario Nicolás 
dc.contributor.authorPalacios Burgos, Juan José 
dc.contributor.authorPérez, Emilio M.
dc.contributor.authorCastellanos-Gómez, Andres
dc.contributor.authorVan der Zant, Herre S.J.
dc.contributor.otherUAM. Departamento de Física de la Materia Condensadaes_ES
dc.date.accessioned2017-07-04T08:06:54Z
dc.date.available2017-07-04T08:06:54Z
dc.date.issued2017-02-13
dc.identifier.citationNature Communications 8 (2017): 14409en_US
dc.identifier.issn2041-1723 (online)es_ES
dc.identifier.urihttp://hdl.handle.net/10486/678866
dc.description.abstractThe fabrication of van der Waals heterostructures, artificial materials assembled by individual stacking of 2D layers, is among the most promising directions in 2D materials research. Until now, the most widespread approach to stack 2D layers relies on deterministic placement methods, which are cumbersome and tend to suffer from poor control over the lattice orientations and the presence of unwanted interlayer adsorbates. Here, we present a different approach to fabricate ultrathin heterostructures by exfoliation of bulk franckeite which is a naturally occurring and air stable van der Waals heterostructure (composed of alternating SnS 2-like and PbS-like layers stacked on top of each other). Presenting both an attractive narrow bandgap (<0.7 eV) and p-type doping, we find that the material can be exfoliated both mechanically and chemically down to few-layer thicknesses. We present extensive theoretical and experimental characterizations of the material's electronic properties and crystal structure, and explore applications for near-infrared photodetectorsen_US
dc.description.sponsorshipA.C.-G. acknowledges financial support from the BBVA Foundation through the fellowship ‘I Convocatoria de Ayudas Fundacion BBVA a Investigadores, Innovadores y Creadores Culturales’ (‘Semiconductores ultradelgados: hacia la optpelectronica flexible’), from the MINECO (Ramón y Cajal 2014 program, RYC-2014-01406), from the MICINN (MAT2014-58399-JIN) and from European Commission under the Graphene Flagship, contract CNECTICT-604391. E.M.P. acknowledges financial support from the European Research Council (MINT, ERC-StG-307609) and from the MINECO of Spain (CTQ2014-60541-P). E.G. gratefully acknowledges the AMAROUT II fellowship program for receiving a grant for transnational mobility (Marie Curie Action, FP7-PEOPLE- 2011-COFUND (291803)). A.J.M.-M., G.R.-B. and N.A. acknowledge the support of the MICCINN/MINECO (Spain) through the programmes MAT2014-57915-R, BES-2012-057346 and FIS2011-23488 and Comunidad de Madrid (Spain) through the programme S2013/MIT-3007 (MAD2D). J.O.I. and H.S.J.v.d.Z. acknowledge the support of the Dutch organization for Fundamental Research on Matter (FOM) and by the Ministry of Education, Culture, and Science (OCW). M.A.N. acknowledeges the support of the MICCINN/MINECO (Spain) through the programmes MAT2013-49893-EXP and MAT2014-59315-R. Authors M.A.N., A.J.M.-M. and A.C.-G. acknowledge the support from ALBA Synchrotron for the experiments performed at Circe beamline (BL24-CIRCE) at ALBA Synchrotron with the collaboration of ALBA staff (proposal ID 2015091399). W.S.P. acknowledges CAPES Foundation, Ministry of Education of Brazil, under grant BEX 9476/13-0. W.S.P. and J.J.P. acknowledge MICCINN/MINECO (Spain) for financial support under grant FIS2013-47328-C02-1; the European Union structural funds and the Comunidad de Madrid MAD2D-CM programme under grant nos. P2013/MIT-3007 and P2013/MIT-2850; the Generalitat Valenciana under grant no. PROMETEO/2012/011en_US
dc.format.extent9 pag.es_ES
dc.format.mimetypeapplication/pdfen
dc.language.isoengen
dc.publisherNature Publishing Groupen_US
dc.relation.ispartofNature Communicationsen_US
dc.rights© 2017 The Author(s)en_US
dc.subject.otherCrystal structureen_US
dc.subject.otherDopingen_US
dc.subject.otherInfrared radiationen_US
dc.subject.otherTheoretical modelen_US
dc.titleFranckeite as a naturally occurring van der Waals heterostructureen_US
dc.typearticleen
dc.subject.ecienciaFísicaes_ES
dc.relation.publisherversionhttp://dx.doi.org/10.1038/ncomms14409es_ES
dc.identifier.doi10.1038/ncomms14409es_ES
dc.identifier.publicationfirstpage14409es_ES
dc.identifier.publicationlastpage14409es_ES
dc.identifier.publicationvolume8es_ES
dc.relation.projectIDGobierno de España. RYC-2014-01406es_ES
dc.relation.projectIDGobierno de España. MAT2014-58399-JINes_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/307609es_ES
dc.relation.projectIDGobierno de España. CTQ2014-60541-Pes_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/291803es_ES
dc.relation.projectIDGobierno de España. MAT2014-57915-Res_ES
dc.relation.projectIDGobierno de España. BES-2012-057346es_ES
dc.relation.projectIDGobierno de España. FIS2011-23488es_ES
dc.relation.projectIDComunidad de Madrid. S2013/MIT-3007/MAD2Des_ES
dc.relation.projectIDGobierno de España. MAT2013-49893-EXPes_ES
dc.relation.projectIDGobierno de España. MAT2014-59315-Res_ES
dc.relation.projectIDGobierno de España. FIS2013-47328-C02-1es_ES
dc.relation.projectIDComunidad de Madrid. S2013/MIT-2850/NANOFRONTMAG-CMes_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersionen
dc.rights.ccReconocimientoes_ES
dc.rights.accessRightsopenAccessen
dc.authorUAMRubio Bollinger, Gabino (258732)
dc.authorUAMEvangeli , Charalambos (264392)
dc.facultadUAMFacultad de Ciencias
dc.institutoUAMCentro de Investigación en Física de la Materia Condensada (IFIMAC)


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record