Alkaline-earth (Be, Mg and Ca) bonds at the origin of huge acidity enhancements

Biblos-e Archivo/Manakin Repository

Show simple item record

dc.contributor.author Montero-Campillo, M. Merced
dc.contributor.author Sanz, Pablo
dc.contributor.author Mó, Otilia
dc.contributor.author Yáñez, Manuel
dc.contributor.author Alkorta, Ibon
dc.contributor.author Elguero, José
dc.contributor.other UAM. Departamento de Química es_ES
dc.contributor.other Instituto de Investigación Avanzada en Ciencias Químicas (IAdChem) es_ES
dc.date.accessioned 2018-08-27T13:10:35Z
dc.date.available 2018-08-27T13:10:35Z
dc.date.issued 2017-12-19
dc.identifier.citation Physical Chemistry Chemical Physics 20.4 (2018): 2413-2420 en_US
dc.identifier.issn 1463-9076 (print) es_ES
dc.identifier.issn 1463-9084 (online) es_ES
dc.identifier.uri http://hdl.handle.net/10486/684710
dc.description.abstract The interaction between alkaline-earth derivatives with the general formula X2M (X = H, F and Cl; M = Be, Mg and Ca) and a set of Lewis bases, including first and second-row hydrides, namely YHn(Y = O, N, F, S, P and Cl) hydrides, as well as other typical cyclic organic bases, such as aniline, 1H-1,2,3-triazole, 1H-tetrazole and phenylphosphine, was investigated using the G4 ab initio composite method. Contrary to what was expected, it was found that the interactions involving Mg and Ca derivatives were not necessarily weaker than those between beryllium bonds. The origin is two-fold: larger deformation of the interacting systems when Be-derivatives are involved and appearance of secondary non-covalent interactions in the formation of some of the Mg- and Ca-containing complexes. Hence, the dissociation of the latter complexes may require higher enthalpies than that of the Be complexes. These deformations are triggered by a significant redistribution of electron density of the two interacting moieties, which also result in dramatic changes in the reactivity of the interacting compounds and in particular in the intrinsic basicity of the Lewis bases investigated, to the point that conventional bases, such as ammonia or aniline, upon complexation with MCl2(M = Be, Mg and Ca), become stronger Brønsted acids than phosphoric acid, whereas other bases, such as 1H-tetrazole, become stronger acids than perchloric acid. en_US
dc.description.sponsorship This work was carried out with financial support from the Ministerio de Economía, Industria y Competitividad (projects CTQ2015-63997-C2 and CTQ2013-43698-P), by the COST Action CM1204 and Comunidad Autónoma de Madrid (S2013/MIT2841, Fotocarbon) en_US
dc.format.extent 19 pag. es_ES
dc.format.mimetype application/pdf en
dc.language.iso eng en
dc.publisher Royal Society of Chemistry en_US
dc.relation.ispartof Physical Chemistry Chemical Physics en_US
dc.rights © The Owner Societies 2018 en_US
dc.subject.other Beryllium bonds en_US
dc.subject.other Magnesium bonds en_US
dc.subject.other Calcium bonds en_US
dc.subject.other Deformation energy en_US
dc.subject.other Basicity enhancement en_US
dc.subject.other Ab initio calculations en_US
dc.title Alkaline-earth (Be, Mg and Ca) bonds at the origin of huge acidity enhancements en_US
dc.type article en
dc.subject.eciencia Química es_ES
dc.date.embargoend 2018-12-19
dc.relation.publisherversion http://doi.org/10.1039/C7CP07891A es_ES
dc.identifier.doi 10.1039/C7CP07891A es_ES
dc.identifier.publicationfirstpage 2413 es_ES
dc.identifier.publicationissue 4 es_ES
dc.identifier.publicationlastpage 2420 es_ES
dc.identifier.publicationvolume 20 es_ES
dc.relation.projectID Gobierno de España. CTQ2015-63997-C2 es_ES
dc.relation.projectID Gobierno de España. CTQ2013-43698-P es_ES
dc.relation.projectID Comunidad de Madrid. S2013/MIT2841/FOTOCARBON es_ES
dc.type.version info:eu-repo/semantics/acceptedVersion en
dc.rights.accessRights openAccess en


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record