Photon statistics in collective strong coupling: Nanocavities and microcavities

Biblos-e Archivo/Manakin Repository

Show simple item record

dc.contributor.author Sáez-Blázquez, R.
dc.contributor.author Feist, Johannes
dc.contributor.author García-Vidal, F. J.
dc.contributor.author Fernández-Domínguez, A. I.
dc.contributor.other UAM. Departamento de Física Teórica de la Materia Condensada es_ES
dc.contributor.other Centro de Investigación en Fisica de la Materia Condensada (IFIMAC) es_ES
dc.date.accessioned 2018-11-27T18:11:51Z
dc.date.available 2018-11-27T18:11:51Z
dc.date.issued 2018-07-25
dc.identifier.citation Physical Review A 98.1 (2018): 013839 en_US
dc.identifier.issn 2469-9926 (print) es_ES
dc.identifier.issn 2469-9934 (online) es_ES
dc.identifier.uri http://hdl.handle.net/10486/685752
dc.description.abstract There exists a growing interest in the properties of the light generated by hybrid systems involving a mesoscopic number of emitters as a means of providing macroscopic quantum light sources. In this work, the quantum correlations of the light emitted by a collection of emitters coupled to a generic optical cavity are studied theoretically using an effective Hamiltonian approach. Starting from the single-emitter level, we analyze the persistence of photon antibunching as the ensemble size increases. Not only is the photon blockade effect identifiable, but photon antibunching originated from destructive interference processes, the so-called unconventional antibunching, is also present. We study the dependence of these two types of negative correlations on the spectral detuning between cavity and emitters, as well as its evolution as the time delay between photon detections increases. Throughout this work, the performance of plasmonic nanocavities and dielectric microcavities is compared: despite the distinct energy scales and the differences introduced by their respectively open and closed character, the bunching and antibunching phenomenology presents remarkable similarities in both types of cavities en_US
dc.description.sponsorship This work has been funded by the European Research Council under Grant Agreements No. ERC-2011-AdG 290981 and No. ERC-2016-STG-714870, the EU Seventh Framework Programme (Grants No. FP7-PEOPLE-2013-CIG-630996 and No. FP7-PEOPLE-2013-CIG-618229), and the Spanish MINECO under Contracts No. MAT2014-53432-C5-5-R and No. FIS2015-64951-R, as well as through the “María de Maeztu” programme for Units of Excellence in R&D (Grant No. MDM-2014-0377). en_US
dc.format.extent 16 pag. es_ES
dc.format.mimetype application/pdf en
dc.language.iso eng en
dc.publisher American Physical Society en_US
dc.relation.ispartof Physical Review A en_US
dc.rights © 2018 American Physical Society en_US
dc.subject.other Light sources en_US
dc.subject.other Photon en_US
dc.subject.other Spectral en_US
dc.subject.other Plasmonic nanocavities en_US
dc.subject.other Microcavities en_US
dc.title Photon statistics in collective strong coupling: Nanocavities and microcavities en_US
dc.type article en
dc.subject.eciencia Física es_ES
dc.relation.publisherversion https://doi.org/10.1103/PhysRevA.98.013839 es_ES
dc.identifier.doi 10.1103/PhysRevA.98.013839 es_ES
dc.identifier.publicationfirstpage 013839-1 es_ES
dc.identifier.publicationissue 1 es_ES
dc.identifier.publicationlastpage 013839-16 es_ES
dc.identifier.publicationvolume 98 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/290881 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/714870 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/630996 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/618229 es_ES
dc.relation.projectID Gobierno de España. MAT2014-53432-C5-5-R es_ES
dc.relation.projectID Gobierno de España. FIS2015-64951-R es_ES
dc.type.version info:eu-repo/semantics/publishedVersion en
dc.rights.accessRights openAccess en
dc.authorUAM Feist, Johannes Maximilian (264839)


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record