High Electrical Conductivity of Single Metal–Organic Chains

Biblos-e Archivo/Manakin Repository

Show simple item record

dc.contributor.author Ares, Pablo
dc.contributor.author Amo-Ochoa, Pilar
dc.contributor.author Soler, José M.
dc.contributor.author Palacios, Juan José
dc.contributor.author Gómez-Herrero, Julio
dc.contributor.author Zamora, Félix
dc.contributor.other UAM. Departamento de Física de la Materia Condensada es_ES
dc.contributor.other UAM. Departamento de Química Inorgánica es_ES
dc.date.accessioned 2019-09-23T08:52:59Z
dc.date.available 2019-09-23T08:52:59Z
dc.date.issued 2018-05-21
dc.identifier.citation Advanced Materials, 30(21): 1705645 en_US
dc.identifier.issn 0935-9648 es_ES
dc.identifier.uri http://hdl.handle.net/10486/688654
dc.description This is the peer reviewed version of the following article: Ares, P., Amo‐Ochoa, P., Soler, J. M., Palacios, J. J., Gómez‐Herrero, J., & Zamora, F. (2018). High electrical conductivity of single metal–organic chains. Advanced Materials, 30(21): 1705645, which has been published in final form at https://doi.org/10.1002/adma.201705645. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions en_US
dc.description.abstract Molecular wires are essential components for future nanoscale electronics. However, the preparation of individual long conductive molecules is still a challenge. MMX metal–organic polymers are quasi-1D sequences of single halide atoms (X) bridging subunits with two metal ions (MM) connected by organic ligands. They are excellent electrical conductors as bulk macroscopic crystals and as nanoribbons. However, according to theoretical calculations, the electrical conductance found in the experiments should be even higher. Here, a novel and simple drop-casting procedure to isolate bundles of few to single MMX chains is demonstrated. Furthermore, an exponential dependence of the electrical resistance of one or two MMX chains as a function of their length that does not agree with predictions based on their theoretical band structure is reported. This dependence is attributed to strong Anderson localization originated by structural defects. Theoretical modeling confirms that the current is limited by structural defects, mainly vacancies of iodine atoms, through which the current is constrained to flow. Nevertheless, measurable electrical transport along distances beyond 250 nm surpasses that of all other molecular wires reported so far. This work places in perspective the role of defects in 1D wires and their importance for molecular electronics en_US
dc.description.sponsorship This work was supported by MINECO projects Consolider CSD2010‐00024, MAT2016‐77608‐C3‐1‐P and 3‐P, FIS2012‐37549‐C05‐03, FIS2015‐64886‐C5‐5‐P, and FIS2016‐80434‐P. J.S., J.J.P., J.G.H., and F.Z. acknowledge financial support through The “María de Maeztu” Programme for Units of Excellence in R&D (MDM‐2014‐0377). The authors thank A. Gil for insightful discussions. J.J.P. also acknowledges the European Union structural funds and the Comunidad de Madrid under Grant Nos. S2013/MIT‐3007 and S2013/MIT‐2850; the Generalitat Valenciana under Grant No. PROMETEO/2012/011, and the computer resources and assistance provided by the Centro de Computación Científica of the Universidad Autónoma de Madrid and the RES en_US
dc.format.extent 27 pag. es_ES
dc.format.mimetype application/pdf en
dc.language.iso eng en
dc.publisher Wiley-VCH Verlag en_US
dc.relation.ispartof Advanced Materials en_US
dc.rights © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim en_US
dc.subject.other MMX en_US
dc.subject.other Molecular electronics en_US
dc.subject.other Molecular wires en_US
dc.subject.other Single-molecule conductivity en_US
dc.title High Electrical Conductivity of Single Metal–Organic Chains en_US
dc.type article en
dc.subject.eciencia Física es_ES
dc.subject.eciencia Química es_ES
dc.date.embargoend 2019-05-21
dc.relation.publisherversion https://doi.org/10.1002/adma.201705645 es_ES
dc.identifier.doi 10.1002/adma.201705645 es_ES
dc.identifier.publicationfirstpage 1705645-1 es_ES
dc.identifier.publicationissue 21 es_ES
dc.identifier.publicationlastpage 1705645-6 es_ES
dc.identifier.publicationvolume 30 es_ES
dc.relation.projectID Gobierno de España. CSD2010‐00024 es_ES
dc.relation.projectID Gobierno de España. MAT2016‐77608‐C3‐1‐P es_ES
dc.relation.projectID Gobierno de España. FIS2012‐37549‐C05‐03 es_ES
dc.relation.projectID Gobierno de España. FIS2015‐64886‐C5‐5‐P es_ES
dc.relation.projectID Gobierno de España. FIS2016‐80434‐P es_ES
dc.relation.projectID Gobierno de España. MDM‐2014‐0377 es_ES
dc.relation.projectID Comunidad de Madrid. S2013/MIT‐3007/MAD2D es_ES
dc.relation.projectID Comunidad de Madrid. S2013/MIT‐2850/NANOFRONTMAG-CM es_ES
dc.type.version info:eu-repo/semantics/acceptedVersion en
dc.rights.accessRights openAccess en
dc.authorUAM Ares García, Pablo (260701)
dc.authorUAM Amo Ochoa, María Pilar (261554)
dc.authorUAM Soler Torroja, José María (260580)
dc.authorUAM Palacios Burgos, Juan José (262184)
dc.authorUAM Gómez Herrero, Julio (260232)
dc.authorUAM Zamora Abanades, Félix Juan (258846)

Files in this item


This item appears in the following Collection(s)

Show simple item record