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Abstract

Class imbalance is a common problem when dealing with real life classification problems. Sup-

port Vector Machines, a well-known family of learning algorithms is prone to produce a skewed

classification function when the training patterns of one class are outnumbered by the quantity of

samples of the other classes. In this work we study methods available in the literature to alleviate

this skewness, concretely those relating the technique of using conformal transformations of the

kernel function to adapt the feature space in a data-dependent way. After that, we propose two new

methods (MDT and TSVT) as an addition to the previous ones, and compare the obtained results

between both some of the reviewed and proposed methods.



Chapter 1

Introduction

Quite often in the area of machine learning we find problems difficult to solve due to the great

differences in the frequency of appearance of the classes of objects we would like to classify. This

phenomenon is known as class imbalance, and is rather natural in a wide range of classification

problems, e.g. in medical diagnosis problems the number of patients suffering the disease is smaller

than the number of healthy ones. Or, in credit card fraud detection, legal transactions are much more

common than those from stolen cards.

Unfortunately, usually the class with small probability of appearance (the minority class) is the

one we are more eager to classify correctly, as a good accuracy can be obtained for the majority

class by just predicting every object as belonging to that class. Even when using more complex ma-

chine learning methods it is not uncommon to only obtain slight improvements in the classification

accuracy. For example, if a neural network is used in order to minimize the squared mean error in

the predictions, it is highly probable – again – for the network to classify almost every pattern as

belonging to the majority class, hence providing little improvement over the simple classifier stated

before. This is due to the fact that the low number of available patterns of the minority class has a

small influence in the error criterion used. Other criterions to take into account this imbalance may

be used, but they are not always applicable over any learning algorithm.

Among the well-known machine learning algorithms the Support Vector Machines (SVMs)

[1, 2] have shown to have good generalization abilities in classification problems. However, they

are not free from the difficulties created by class imbalance, although a wide number of proposals

have appeared in the literature to try to overcome this problem. Some of the most promising are

those known as conformal transformation methods. These methods pursue the finding of an adapted

high dimensional “feature space” in which the SVM is trained. The adaption is made through

one or more transformations of a basic kernel function, aimed at obtaining a better classification

accuracy. Despite the method was originally proposed to obtain a data-dependent kernel function,

some authors have modified it to deal with imbalanced datasets.

1



Chapter 1. Introduction 2

In this work we shall present the results of our studies in the use of conformal transformation

methods to improve classification accuracy with SVMs over imbalanced datasets. The work is

divided as follows. In chapter 2 we will present a review of the theory of SVMs and CH-SVMs

to provide a basis for the following chapters (readers with knowledge in this area may skip some

sections). In chapter 3 we show the effect of imbalance on SVMs and some basic methods to

overcome it, as well as an introduction to conformal transformations. In chapter 4 we review the

proposed conformal transformations methods available in the literature. In chapter 5 we explain

our proposals of conformal transformation methods. We will show the experimental results of

these methods in chapter 6. Finally we will conclude in chapter 7 that although the theory under

these methods seems to provide a powerful way to obtain a data-dependent kernel function, more

work would be required to obtain practical improvements. Additionally we include at the end an

appendix presenting other related works done during the Master course, and another one detailing

the notation used in this work.



Chapter 2

Review of SVMs

2.1 Support Vector Machines for classification

2.1.1 SVMs as an improvement over the perceptron algorithm

Support Vector Machines (SVMs) are a well-known algorithm in the machine learning theory [1,

2], which can be thought as an improvement of the classic perceptron algorithm. The original

perceptron algorithm proposed by Rosenblatt [3, 4] pursues finding a hyperplane such that, given

data belonging to two different classes, it splits the input space in two regions that only contain data

points of one of the classes. In other words, the perceptron looks for any separating hyperplane.

An illustrative example is shown in figure 2.1.1.

In a formal way, a valid perceptron solution must satisfy the restrictions

(w · xi + b)yi ≥ 0 ∀i, (2.1.1)

wherew stands for the normal vector of the hyperplane, b for its bias, xi for each of the training data

points belonging to a set X , yi for their respective class labels (coded as {−1,+1}), and · denotes

the dot product between two vectors. It can be easily seen that when the classification made by the

hyperplane (w · x0 + b) for a data point x0 gives the same sign as the point’s label y0, the obtained

value for (w ·x0 +b)y0 must be≥ 0. So, the restrictions in (2.1.1) ensure that all the training points

are correctly classified by the perceptron.

On the other hand, a SVM tries to find the “best” separating hyperplane. By “best” we mean

that it looks for an hyperplane that is placed as far as possible from the data points. Intuitively,

one can see that this kind of hyperplane may have some better generalization abilities because the

training data could be noisy. If that is the case we will make wrong classifications with unseen data

if the hyperplane is too close to the training points, as points of the same class would easily appear

on both sides of the hyperplane. An illustrative example is shown in figure 2.1.2.

3
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Figure 2.1.1: An example of a separating hyperplane obtained by the Rosenblatt’s perceptron algorithm.

This intuitive idea can be formally expressed in the following way: we define a margin m as

the distance from the hyperplane to the nearest data point

m = min
i

(w · xi + b)yi

‖w‖
. (2.1.2)

We would like to maximize this margin while, at the same time, we obtain a separating hyper-

plane. This aim can be formally expressed as a constrained optimization problem in the form

max
w,b

m

s.t. (wxi+b)yi

‖w‖ ≥ m ∀i, (2.1.3)

which is similar to the perceptron constraints in (2.1.1) but with the aim of maximizing m. A

strong statistical theory [2] confirms that this approach is able to reduce an upper bound on the

generalization error of the classifier. But usually an alternative formulation of the problem is used,

which can be shown to be equivalent [1]:

min
w,b

‖w‖2

s.t. (w · xi + b)yi ≥ 1 ∀i. (2.1.4)

Here we attempt to minimize the norm of the weight vector (‖w‖2) while maintaining a margin

of at least 1. Note that the norm has been dropped out of the margin’s expression in this alternative

formulation, so it no longer stands for a “strict” geometrical distance.
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Figure 2.1.2: An example of a separating hyperplane obtained by a SVM. m denotes the margin of the

SVM.

The minimization problem proposed in (2.1.4) belongs to the family of the quadratic program-

ming problems, and therefore can be solved using any of the available quadratic programming

packages. Alas, solving this problem directly is costly and computational problems may arise, so

generally another point of view is used.

2.1.2 The Karush-Kuhn-Tucker conditions

When dealing with constrained optimization problems, if only equality constraints appear, the La-

grange multipliers can be used to easily find the optimum. But when inequality constraints are

present (like in (2.1.4)), a generalization of this method must be used instead: the Karush-Kuhn-

Tucker conditions (KKT) [5]. We will first explain the general scenario of this technique, and after

that we will show how they can be useful for solving the SVM problem.

A general optimization problem can be described as

min
W

F (W )

s.t.

{
gi(W ) ≤ 0 (i = 1, ...,m)

hj(W ) = 0 (j = 1, ..., l)

}
, (2.1.5)

where F is the function to optimize, W is a vector containing its arguments, gi are the inequality

restrictions imposed over the values of W , and hj are the equality restrictions. F and every gi

and hi are all functions <N −→ <. We will focus on the particular case where the optimization

problem is convex: that is, when F is a convex function and the restrictions gi and hj are affine
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functions. If this is the case and if certain conditions are met, then the optimum of the function is

obtained. But before detailing such conditions, we first define the Lagrangian of an optimization

problem of this kind, which will prove to be a useful expression. The Lagrangian L(W ) has the

form

L(W ) = F (W ) +
m∑

i=1

αigi(W ) +
l∑

j=1

βjhj(W ), (2.1.6)

where αi, βj stand for the Lagrange multipliers. Now, a parameter vector W ∗ would be the opti-

mum of F under the given restrictions if

• F is a convex function.

• All the restrictions gi, hj ∀ i,j are affine functions.

• W ∗ is a feasible choice (satisfies the restrictions gi, hj ∀ i,j).

• The gradient of the Lagrangian (2.1.6) in W ∗ equals the zero vector ~0, that is:

∇WL(W ∗) = ∇WF (W ∗) +
∑m

i=1 αi∇W gi(W ∗) +
∑l

j=1 βj∇Whj(W ∗) = ~0 .

• Lagrange multipliers meet αi ≥ 0, βj free, ∀i = 1, ...,m and ∀j = 1, ..., l .

• αigi(W ∗) = 0 ∀ i (KKT conditions).

In this way, these conditions provide a sufficient condition for a parameter vector W ∗ to be

optimal. By applying this method to the SVM optimization problem stated before in (2.1.4), we

could find the optimal parameters W ∗ = (w∗, b∗). In that problem the function F to optimize is

clearly convex, as well as the inequality restrictions gi are affine (there are no equality restrictions).

So, the Lagrangian of the SVM problem would be

Lp =
1
2
‖w‖2 +

N∑
i=1

αi(1− yi(xi · w + b)). (2.1.7)

We shall call this expression Lp because, as we will see later, is the Lagrangian of the primal

formulation of the SVM. Observe that the derivatives of this Lagrangian respect to the parameters

w and b take the form

∇wLp = w −
∑N

i=1 αiyix
i, (2.1.8)

∂Lp

∂b = −
∑N

i=1 αiyi. (2.1.9)

In this way, an optimal (w∗, b∗) choice for the SVM will be obtained if
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• (w∗, b∗) is a feasible choice, that is, (w · xi + b)yi ≥ 1 ∀i ,

• ∃ Lagrange multipliers αi ≥ 0, ∀i = 1, ...,m , in which the remaining restrictions are based,

• w =
∑N

i=1 αiyix
i ,

• 0 =
∑N

i=1 αiyi ,

• αi(1− yi(w · xi + b)) = 0 ∀i (KKT conditions).

Hence, we have cast the original SVM problem (2.1.4), which was a quadratic optimization

problem, into a constraint satisfaction problem. However, this problem is also difficult to solve

since these restrictions do not give a closed expression for the optimum. Nevertheless, they provide

a good procedure to check if the optimum has been reached, which is used as a stopping criterion

in some well known SVM training algorithms, like SVMLight [6]. Furthermore they will provide

a way to cast once again the problem into its called “dual formulation”, which will provide an

efficient method for solving the problem.

2.1.3 Dual formulation of the SVM

We can define another problem based in an original quadratic programming problem (which we

shall call “primal problem” from now on) in the form

max
α,β

Θ(α, β) = infW L(W,α, β)

s.t. αi ≥ 0 ∀i. (2.1.10)

In this new problem, we try to find a maximum of the function Θ, which only depends on the

Lagrange multipliers α and β. Θ is, in fact, the infimum of the Lagrangian with respect to the

parameter vector W . This particular problem, which we shall call “dual problem”, meets some

special qualities that are useful in the task of solving the primal problem. The first one, named the

“Weak duality theorem”, is as follows.

Theorem 1 (Weak duality theorem) Given a primal optimization problem in the form (2.1.5) and

a dual defined as in (2.1.10), if Ŵ is a feasible solution of the primal problem and (α̂,β̂) are a

feasible solution of the dual problem, then the following relationship holds:

Θ(α̂, β̂) = inf
W

L(W, α̂, β̂) ≤ L(Ŵ , α̂, β̂)

= F (Ŵ ) + α̂g(Ŵ ) + β̂h(Ŵ ) ≤ F (Ŵ ) (2.1.11)
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Proof Since Θ(α̂, β̂) is the infimum of L(W, α̂, β̂), inequality Θ(α̂, β̂) ≤ L(W, α̂, β̂) must hold

for any W . On the other hand, since Ŵ is a feasible solution of the primal problem, it must satisfy

its constrains, so gi(Ŵ ) ≤ 0 and hj(Ŵ ) = 0 ∀i, j. Then, as (α̂,β̂) are a feasible solution of the

dual problem, the restrictions α̂ ≥ 0 ∀i are meet. In this way, the term α̂g(Ŵ ) can not be positive,

and the term β̂h(Ŵ ) = 0, and so the theorem is proved. �

This result is useful in the sense that it gives a relationship between the objective function of

the primal and dual problems. Observe the following corollary:

Corollary 1 The value of the dual is upper bounded by the value of the primal:

sup
α̂,β̂

Θ(α̂, β̂) ≤ inf
Ŵ
F (Ŵ ). (2.1.12)

So, by maximizing the dual problem one cannot surpass the value obtained by minimizing the

primal one. From this fact we can state another corollary:

Corollary 2 If some values (W ∗, α∗, β∗) are such that W ∗ is a feasible solution of the primal

problem and (α∗, β∗) are a feasible solution of the dual problem, and F (W ∗) = Θ(α∗, β∗), then

(W ∗, α∗, β∗) is the optimum solution for both problems.

Proof As by corollary 1 the value of the dual is bounded by the primal, if we have obtained the

same value in both problems then it is impossible to increment the value of the dual, nor to decrease

the value of the primal. And so both the dual maximization problem and the primal minimization

one are solved. �

However, this is not enough to be able to solve one of the problems and obtain the solution in

the other. Observe that, for any feasible solution, the values of the objective functions are related

via the inequality 2.1.11. In this way, both problems may arrive at different objective function

values at their optimums and so the conditions of Corollary 2 might not be met. This difference in

these values at the optimum is called the dual gap.

Nevertheless, it can be shown [7] that if the constraints of the primal problem are affine func-

tions (as is the case in SVM) another theorem can be stated:

Theorem 2 (Strong duality theorem) Given a primal optimization problem in the form (2.1.5) and

a dual defined as in (2.1.10), if the constraints of the primal are affine functions, then the dual gap

is 0. That is,

F (W ∗) = Θ(α∗, β∗), (2.1.13)

where W ∗ stands for the optimal solution of the primal problem, and (α∗, β∗) for the optimal

solution of the dual problem.
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Figure 2.1.3: A depiction of the primal and dual optimization problems. While the former minimizes a

convex function, the latter maximizes a concave one, arriving at the same value at their optimums due to the

nonexistence of dual gap.

We can depict the general idea of these results in figure 2.1.3. By corollary 1 the possible

values of the primal are always bigger than those of the dual, and by the strong duality theorem

both problems converge at the same value.

Summing up, we could just forget about the primal problem and solve the dual one, knowing

that we will obtain the same value at the optimum. The caveat of this procedure is that we originally

wanted to obtain the optimal values for the parameters W of the primal problem, not the value of

f(W ∗) at the optimum W ∗. If we solve the dual we will instead obtain the optimal values of the

parameters of the dual, (α∗, β∗), so it may seem that there is no point in doing this. But in fact

there is a way in the SVM case to obtain the optimal primal problem values from the dual ones, as

we will see in the next subsection.

2.1.4 Computing the dual of the SVM

As explained in the previous subsection, a dual problem can be formulated and solved instead of

the primal optimization one, arriving at the same objective value. But if we want to obtain the

optimal values of the parameters of the primal problem, we must transform the obtained solution

of the dual into a solution of the primal. In order to do this, first consider the way the dual problem

is constructed (2.1.10). The infimum of L with respect to the parameters W can be obtained by

computing ∇WL = 0 and substituting the obtained expression back into L. But the interesting fact

is that the expression obtained by computing that derivative will also give us a relationship between

the parameters of the primal and dual problems. This is clearly seen when applying this theory

to the SVM optimization problem (2.1.4). Since in the SVM the parameters of the problem are
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W = (w, b) we compute the derivatives of the SVM Lagrangian (2.1.7) with respect to them:

∇wLp = 0 −→ w =
∑N

i=1 α
iyix

i, (2.1.14)
∂Lp

∂b = 0 −→
∑N

i=1 αiyi = 0. (2.1.15)

Now substituting back the obtained expression (2.1.14) for w and using the one in (2.1.15) for

b to perform some simplifications, the obtained dual of the SVM takes the form

maxα LD = −1
2

∑N
i=1

∑N
j=1 αiαjyiyjx

i · xj +
∑N

i=1 αi

s.t.

{
αi ≥ 0 ∀i∑N
i=1 αiyi = 0

}
. (2.1.16)

Observe that an additional constraint has appeared, due to (2.1.15). The derivative with respect

to w does not appear as a constraint because it has been substituted in the main expression, and w

no longer exists as a parameter in the dual problem.

The obtained dual problem is far easier to solve, since the restrictions are simpler. Many of the

most popular methods in SVM training solve this dual to obtain the optimum, such as SMO [8] or

SVMLight [6]. However we have not yet explained how to recover the primal problem solution

(w∗, b∗) from the dual one α∗. The method for w∗ is simple: just using the expression (2.1.14) we

can computew∗ as a weighted sum of the training patterns, with α∗ as the weights vector. To obtain

b∗ we should recall one of the KKT conditions that had to be met at the optimum, in particular

α∗i (1− yi(w∗ · xi + b∗)) = 0 ∀i. (2.1.17)

By using some pattern xi with α∗i > 0 and (2.1.17), b∗ can be obtained as

b∗ = yi − w∗ · xi = yi −
N∑

j=1

α∗i yix
j · xi, (2.1.18)

and so the solution of the primal problem is fully obtained by only solving the dual one.

A final remark that should be made about the dual problem is that some of the αi may be 0.

These patterns xi with αi = 0 do not make any difference when classifying an unseen pattern x, as

the classification function of the SVM hyperplane can be expressed as

f(x) = w · x+ b =
N∑

i=1

αiyix
i · x+ b, (2.1.19)

where patterns with αi = 0 can be removed from the summation. After this removal, only patterns

with αi > 0 are left, and thus the SVM is represented in a sparse way based on the relevant training
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patterns. Those patterns are called the “Support Vectors”, and they comprise the information about

the trained SVM model. The support vectors will form the base of the conformal transformation

methods explained in this work.

2.1.5 Dealing with noisy and overlapping data

Unfortunately, in real world problems we cannot aim to find a perfect classification, since the

training data may be noisy and the classes may overlap, or even they could overlap anyway due

to the nature of the problem. As far as explained, the SVM tries to maximize tha margin while

classifying all the training points perfectly, so the SVM optimization problem can not be solved

when the classes overlap. Fortunately, an extension to the SVM can overcome this caveat, by using

the known as “slack variables”.

The main idea is to keep the aim of the SVM of maximizing the margin, but this time allowing

some patterns to be misclassified or not beyond the margin. However, in order to maintain a good

accuracy level, these misclassifications are penalized, and the SVM will try to keep these penalties

low. Formally, the SVM problem is reformulated as

min
w,b,ξ,µ

‖w‖2 + C
(∑

xi∈X+
ξi +

∑
xi∈X−

µi

)
s.t.

{
w · xi + b+ ξi ≥ 1 ∀ xi ∈ X+

w · xi + b− µi ≤ −1 ∀ xi ∈ X−

}
, (2.1.20)

where X+ stands for the set of patterns with yi = 1, X− for the set of patterns with yi = −1,

ξ for the slack variables of patterns in X+, µ for the slack variables of patterns in X−, and C

for a SVM parameter that controls the tradeoff between maximizing the margin and reducing the

allowed errors. While usually no distinction is used between the slack variables of both classes,

we will adopt here this more general notation. Observe that the slack variables are compensating

the violation of the restrictions by adding or subtracting a value to the “margin” w · xi + b of the

patterns. A graphical example of this type of SVM is shown in figure 2.1.4.

Again, this problem is hard to solve, and so we are willing to obtain a dual formulation. The

good news are that all the preceding theory can be applied again in this kind of SVM, since the

function to minimize is still convex and the constraints are affine. Therefore the dual problem

expression can be obtained in the same way, resulting in

max
α

LD = −1
2

∑N
i=1

∑N
j=1 αiαjyiyjx

i · xj +
∑N

i=1 αi

s.t.

{
0 ≤ αi ≤ C ∀i∑N

i=1 αiyi = 0

}
. (2.1.21)
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Figure 2.1.4: A typical example of a SVM with slack variables. The patterns that are misclassified or not

beyond the margin have slack variables > 0 in order to meet the constraints.

We will not show explicitly how to obtain this expression, as essentially we follow the same

procedure that in the “no slacks” case. Once the dual problem is solved we can obtain the SVM

parameters in a similar fashion. The only difference is that the KKT conditions are not the same in

this case, and so b∗ must be computed using the following ones:

αi(1− w · xi − b− ξi) = 0 ∀xi ∈ X+,

αi(1 + w · xi + b− µi) = 0 ∀xi ∈ X−. (2.1.22)

It can be shown (via KKT conditions) that if a support vector xi has αi < C, then it lies on

the margin, an so its associated slack variable has value 0. Therefore from the above conditions the

value of b∗ can be obtained using a pattern xi with 0 < αi < C. Generally, all the patterns which

meet those conditions are used to compute estimates of b∗ and a mean is used.

In this way a SVM can deal with a broader range of problems without losing its dual problem

properties. Alas, another extension is required to be capable of working with real world problems.

2.1.6 The kernel trick

In the previous section an extension to the SVM was introduced in order to deal with overlapping

data. However, the decision function of the SVM, that is, the separating boundary found between

both classes had to be necessarily a hyperplane. Hence, a SVM of the explained form will not be
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Figure 2.1.5: An illustrative example of the kernel trick. The original problem has only one input variable,

and a linear classifier is unable to solve it. However, by using a suitable mapping function to 2-dimensional

space we can find a line that makes a perfect classification.

able to correctly classify problems that are not linearly separable. In the real world problems this is

not due to happen, and so another extension to allow a non–lineal SVM should be introduced: the

kernel trick.

The kernel trick is based on the idea that, when a suitable transformation of the input variables

is made, we could obtain a new set of variables that express the original patterns in a new space,

and in this new space the classes might be linearly separable. More formally, suppose we have a

function Φ(xi) such that it receives a pattern xi with d input variables, and returns another vector

of D variables, D >> d. We can think of this function as a mapping from the input space (a d-

dimensional space) to a wider “feature space” (aD-dimensional space). If we appropriately choose

Φ we can obtain a linearly separable problem in the feature space, even if it was not separable in

the input space. An illustrative example is shown in figure 2.1.5, where a 1-dimensional problem

can be linearly solved in a 2-dimensional space.

Problems arise if we try to compute the explicit value of Φ(xi) for all the training patterns, since

the feature space could have a really high dimensionality (even infinite). But the fact is that we will

not need to compute them explicitly, and that is the main advantage of the kernel trick. Observe

that if we substitute xi with Φ(xi) in the SVM dual 2.1.16 we obtain the following optimization

problem:

max
α

LD = −1
2

∑N
i=1

∑N
j=1 αiαjyiyjΦ(xi) · Φ(xj) +

∑N
i=1 αi

s.t.

{
αi ≥ 0 ∀i∑N
i=1 αiyi = 0

}
. (2.1.23)

We find that the mapped patterns Φ(xi) only appear in pairs, combined by an inner product.

This is relevant, as in the end we will only need to know the inner product of pairs of Φ(xi), not
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their explicit values. Therefore, a “kernel function” k is defined as

k(xi, xj) = Φ(xi) · Φ(xj), (2.1.24)

and so the problem can be stated as

max
α

LD = −1
2

∑N
i=1

∑N
j=1 αiαjyiyjk(xi, xj) +

∑N
i=1 αi

s.t.

{
αi ≥ 0 ∀i∑N
i=1 αiyi = 0

}
. (2.1.25)

So we do not really need to know how the function Φ(xi) is computed, but only k. In fact, the

usual approach is to just choose some function k and forget about the underlying Φ(xi). But not

any function can be chosen as k, because it may not be possible to break it down into the inner

product of two Φ functions. Fortunately, the Mercer’s Theorem states what kind of functions could

be used for this purpose.

Theorem 3 (Mercer’s theorem) If a scalar function k(x, x′) is positive semi-definite, then it can

always be decomposed as an inner product k(x, x′) = Φ(x) · Φ(x′) where Φ(x) are vectors which

potentially may have infinite dimensions.

Definition 1 (Positive semi-definite kernel) A kernel function k(x, x′) is positive semi-definite if for

any other function f ∈ L2(X ) it meets∫
X×X

k(x, x′)f(x)f(x′)dxdx′ ≥ 0, (2.1.26)

where X is the set of all possible x. Alternatively, a kernel function is positive semi-definite if for

any x 6= 0

xTKx ≥ 0, (2.1.27)

where K stands for the kernel matrix containing all the possible kernel products of the training

patterns

Kij = k(xi, xj). (2.1.28)

Definition 2 (Lp space) A Lp space is a mathematical space containing all the functions that are

p times integrable.

We will not prove this theorem here (for more details, see [9]). Although we could design some

kind of adapted kernel to each problem, generally the Gaussian or RBF kernel is used:

k(xi, xj) = e

„
− ‖xi−xj‖2

2σ2

«
, (2.1.29)
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where σ is a parameter which controls the width of the kernel function. As we will show later,

this parameter actively modifies the shape of the feature space, and so the classification accuracy

will heavily depend on it. Nevertheless, it is usually chosen by cross-validation techniques. Other

common kernel function is the inhomogeneous polynomial kernel:

k(xi, xj) = (xi · xj + c)p, (2.1.30)

with c and p parameters of the kernel, although usually c is fixed to 1.

As the dual problem can be solved using the kernel trick, we can obtain the optimal sup-

port weights α∗. However, we can not compute w∗ explicitly, as it would take the form w∗ =∑N
i=1 αiyiΦ(xi) and Φ(xi) is not known. But in fact, now that we have found α∗ and the training

is finished, we only need to evaluate the decision function of the SVM, which we can manipulate

in the following way:

f(x) = w · Φ(x) + b =
N∑

i=1

αiyiΦ(xi) · Φ(x) + b =
N∑

i=1

αiyik(xi, x) + b, (2.1.31)

and again we only need to compute the kernel function. Hence, we can effectively train and classify

with a SVM in the feature space without computing explicitly the patterns in this space. Even if

we are performing a linear classification in the feature space, the separating boundary in the input

space would be non-linear.

2.1.7 The full SVM

Finally, the kernel trick can be applied along the slack variables extension, and so the full SVM

formalization is obtained. In this way the following primal problem appears as

min
w,b,ξ,µ

‖w‖2 + C
(∑

xi∈X+
ξi +

∑
xi∈X−

µi

)
s.t.

{
w · Φ(xi) + b+ ξi ≥ 1 ∀xi ∈ X+

w · Φ(xi) + b− µi ≤ −1 ∀xi ∈ X−

}
, (2.1.32)

whose dual problem is

max
α

LD = −1
2

∑N
i=1

∑N
j=1 αiαjyiyjk(xi, xj) +

∑N
i=1 αi

s.t.

{
0 ≤ αi ≤ C ∀i∑N

i=1 αiyi = 0

}
. (2.1.33)

We will not enter in further details here, as a different point of view will be used, which we

explain in the following section.
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2.2 Nearest Points in Convex Hulls Problem

In the previous section the formalization of the SVM was explained up to some detail, as it will be

necessary in the following chapters. However, the point of view we will take at the training time of

a SVM will be quite different, and so in this section we explain it.

2.2.1 A geometrical alternative: CH-SVM

Although the solving of the dual problem of the SVM is usually performed directly, other alterna-

tives exist. One of those alternatives is to solve the SVM in a geometrical way, that is, creating

algorithms that can train the SVM using geometrical notions about the problem. To explain this,

we will first show some geometrical intuitions that seem to follow the SVM philosophy, and then

we will prove that this geometrical point of view is in fact equivalent to the original.

To start, we first define the convex hull of a set of points

Definition 3 We call C(X) the convex hull of the set of points X , and is defined as the minimum

convex polyhedron such that all the points in X are inside it. An alternative definition states that a

point x0 belongs to C(X) only if it can be expressed as a convex combination of the points in X ,

that is:

x0 =
∑N

i=1 cix
i,∑N

i=1 ci = 1,

ci ≥ 0 ∀i.

Now, in a linearly separable problem where the classes do not overlap, we can construct the

convex hulls of both classes (C(X+) and C(X−)) and they will not overlap. If we look for the

nearest points of both convex hulls, which we would call ŵ+ and ŵ−, we can see that we can obtain

a separating hyperplane by joining both points with a line and tracing the hyperplane bisecting it.

Formally, the normal vector of this hyperplane is

ŵ = ŵ+ − ŵ−, (2.2.1)

and the bias b̂ should be such that the hyperplane is located in the middle point between ŵ+ and

ŵ−, so

0 = f̂

(
ŵ+ + ŵ−

2

)
0 = ŵ ·

(
ŵ+ + ŵ−

2

)
+ b̂

b̂ = −1
2
(ŵ · ŵ+ + ŵ · ŵ−) (2.2.2)
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Figure 2.2.1: In this example the convex hulls of both classes are shown. By finding the nearest points and

the bisecting hyperplane between them, the solution of the SVM is found.

What is more, this hyperplane (ŵ, b̂) looks quite similar to the solution that would be obtained

by a SVM. In fact it can be proved that the obtained hyperplane is the same that the one that solves

the “classic” dual problem, up to some rescaling. An example is shown in figure 2.2.1.

The problem of finding the closest points can be formally stated as an optimization problem:

min
ŵ+,ŵ−

‖ŵ‖2

s.t. ŵ+ ∈ C(X+) , ŵ− ∈ C(X−). (2.2.3)

In order be sure that neither ŵ+ nor ŵ− are outside their respective convex hulls, we should

keep track of the coefficients that can express them as a convex combination. If we call α̂i the

convex coefficient provided by the i-th point of the dataset, we can write ŵ+ and ŵ− as

ŵ+ =
∑

xi∈X+

α̂ix
i , ŵ− =

∑
xi∈X−

α̂ix
i. (2.2.4)

Also, as the α̂i are coefficients of a convex combination, they should meet the constraints
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∑
i|xi∈X+

α̂i = 1 ,
∑

i|xi∈X−

α̂i = 1 , α̂i ≥ 0 ∀i. (2.2.5)

Hence the problem of finding the closest points in the convex hulls, which we shall call CH-

SVM, can be written in terms of these convex coefficients, as

min
α̂i

‖
∑

xi∈X+
α̂ix

i −
∑

xi∈X−
α̂ix

i‖2

s.t.


∑

i|xi∈X+
α̂i = 1∑

i|xi∈X−
α̂i = 1

α̂i ≥ 0 ∀i.

 , (2.2.6)

Again, we have a quadratic programming problem. But this time it is not necessary to find

a dual or to use a quadratic optimizer, as we can use geometric notions to tailor an algorithm to

solve it. In fact in the geometry literature one can find some algorithms which find the closest point

to the origin inside a polyhedron, like the Gilbert-Schlesinger-Kozinec (GSK) algorithm [10] or

the Mitchell-Dem’yanov-Malozemov (MDM) [11]. These algorithms can be adapted to solve this

nearest points problem, therefore obtaining a separating hyperplane. They also can be adapted in

order to perform the kernel trick, and to include slack variables (as we will see later); for more

details about them look for instance [12].

2.2.2 Equivalency of SVM and CH-SVM

As stated in the previous subsection, solving a CH-SVM we obtain a hyperplane (ŵ, b̂) that can be

proved to be equivalent to the hyperplane (w, b) obtained by solving a SVM, up to some rescaling.

This result was first shown by Bennet and Bredensteiner [13], although alternative proofs have been

developed, like in our previous work [14]. Since the demonstration is not useful for the purpose of

this work, we just state its results.

Suppose that the optimal solution for a SVM (2.1.16) is obtained as (w∗, b∗), and the optimal

solution for the CH-SVM (2.2.6) is obtained as (ŵ∗, b̂∗). Then these optimal solutions are related

by

w∗ =
2

‖ŵ∗‖2
ŵ∗ , b∗ =

2
‖ŵ∗‖2

b̂∗; (2.2.7)

that is, they are equivalent under a normalization. Although usually the original approach is used,

we shall follow in this work this geometric approach, as it gives a better intuition of the “behaviour”

of the algorithms.
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2.2.3 CH-SVM with slack variables and the kernel trick

Although the SVM is equivalent to the CH-SVM, the nearest points problem only makes sense

when the two convex hulls are linearly separable, that is, when they do not overlap. If overlapping

appears then the nearest points would be, in fact, the same point, and so ŵ = 0, which is not a real

solution.

Hence, we should use the slack variables and the kernel trick of the SVM in CH-SVM in order

to assure we deal with a linearly separable problem. However, it is not easy to deduce at first glance

how to introduce these extensions into CH-SVM. In spite of this, in fact the answer is fairly simple,

and it involves the use of a special kernel function, but to arrive at it we must first make some

considerations.

Firstly, we define some extended patterns xi and weight vector w as

w = (w,
√
Cξ1, . . . ,

√
CξN ,

√
Cµ1, . . . ,

√
CµN ),

xi
+ = (xi, 0, . . . , 1√

C
, . . . , 0, 0, . . . , 0),

xj
− = (xj , 0, . . . , 0, 0, . . . , −1√

C
, . . . , 0), (2.2.8)

where xi
− is the extension for patterns in the negative class and xi

+ is the extension for patterns in

the negative class. The extra attributes that are introduced in the patterns are all zero except one

that has value yi√
C

. This non-zero attribute depends on the pattern itself: for the first pattern of the

positive class, the first extra attribute is non-zero, for the second one, the second extra attribute is

non-zero... and so on, proceeding with the patterns of the negative class when there are no more

patterns of the positive one. Therefore, N extra attributes are added.

By using these extended vectors in the SVM primal problem (2.1.4) we obtain

min
w

‖w‖2 = ‖w‖2 + C
∑N

i=1(ξ
2
i + µ2

i )

s.t.

{
w · xi + b = w · xi + ξi + b ≥ 1 ∀xi ∈ X+

w · xi + b = w · xi − µi + b ≤ −1 ∀xi ∈ X−

}
. (2.2.9)

The optimization problem that appears is quite similar to the SVM with slacks (2.1.20), but

with squared penalties in the objective function. This is in fact another possible way of introducing

slacks into the SVM. Therefore we can see that if squared penalties are used, we can avoid solving

an optimization problem with slacks by extending the patterns and the weights vector in this way.

What is more, in fact we do not really need to perform this extension. Observe that the dual problem

would be
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max
α

LD = −1
2

∑N
i=1

∑N
j=1 αiαjyiyjx

i · xj +
∑N

i=1 αi

s.t.

{
αi ≥ 0 ∀i∑N
i=1 αiyi = 0

}
. (2.2.10)

In the dual only the extended patterns appear, but due to the nature of this extension note that

xi · xj = k(xi, xj) = xi · xj +
δij
C
, (2.2.11)

where δij is the Kronecker’s delta function, which is defined as

δij =

{
1 , i = j

0 , i 6= j

}
. (2.2.12)

Through this simple kernel function k we are able to solve the dual of a SVM with slacks as

if it did not have them. Furthermore if we are wishing to use another kernel function k in order to

compute the SVM in a higher dimensional space, we can do the following

k̂(xi, xj) = Φ̂(xi) · Φ̂(xj)

= (Φ(xi), 0, · · · , yi

C
, · · · , 0) · (Φ(xj), 0, · · · , yj

C
, · · · , 0) (2.2.13)

= k(xi, xj) +
δij
C
. (2.2.14)

And so we solve the dual problem

max
α

LD = −1
2

∑N
i=1

∑N
j=1 αiαjy

iyj k̂(xi, xj) +
∑N

i=1 αi

s.t.

{
αi ≥ 0 ∀i∑N
i=1 αiyi = 0

}
.

Summing up, if we use squared penalties and a special kernel function k̂ we can solve a SVM

as if it had no slacks. The advantage of this approach is that in the corresponding CH-SVM the

classes will not overlap, and so a solution is possible. Hence, solving a CH-SVM with a kernel in the

form k̂ we can obtain the solution for an equivalent SVM with both the slacks and the kernel trick

extension. Therefore, both SVM and CH-SVM have the same generalization capability. However

in this work we will use the second approach, as it is easier to understand due to its geometrical

interpretation.



Chapter 2. Review of SVMs 21

Figure 2.2.2: An example of the support hyperplanes obtained in a CH-SVM problem.

2.2.4 Support hyperplanes

The main reason of explaining the CH-SVM concepts in this work is the useful definition of sup-

port hyperplanes that arises under this point of view. In a linearly separable problem the support

hyperplanes are defined as those which are the farthest away from the separating hyperplane and,

at the same time, would perform a correct classification (although not with the best margin). These

support hyperplanes must be parallel to the separating hyperplane found by the SVM. An example

is shown in figure 2.2.2.

Another definition could be that the support hyperplanes are those which intersect the nearest

points w+ and w− (one each) and are parallel to the SVM separating hyperplane. In this way w+

and w− determine the location of the support hyperplanes. This observation will prove to be useful

when trying to move these hyperplanes, as we will do in our proposed methods for imbalance

correction.





Chapter 3

Imbalanced datasets and SVMs

3.1 The problem of imbalanced datasets

In real world problems where we have to perform a binary classification it is quite common that the

number of available patterns for training belonging to one of the classes outnumbers significantly

the other. This is known as class imbalance, or we talk about imbalanced datasets. When this situ-

ation arises most of the common machine learning methods will perform poorly when attempting

to classify new patterns of the minority class. This is mainly due to the fact that these methods

usually pursue the minimization of an error measure, such as the misclassification error or mean

squared error. With almost no effort, any machine learning method could simply classify all the

points as if they belonged to the majority class, and nevertheless obtain a good error measure, since

there are very few patterns of the minority class in the training or the validation set. However, when

attempting to classify new, unseen patterns, the model will perform poorly [15].

A usual measure to overcome this problem is to use an asymmetric error function; asymmetric

in the way that it uses different weights to penalize errors from one or the other class. In the context

of classification tasks, a possible error function could be:

E = R+

∑
i|yi=1

(1− ŷi) +R−
∑

i|yi=−1

(1 + ŷi), (3.1.1)

where the ŷi stand for the classifications made by the model, the yi for the actual classes, R+ for

the risk factor of misclassifying an instance of X+, and R− for the risk factor of misclassifying

an instance of X−. Supposing that X+ is the minority class, we would like to have R+ > R−

in order to “force” the learning method to focus on those data points. Another error function that

is commonly used in imbalanced problems is the Kubat’s g-means accuracy measure. It takes the

form

23
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g =
√
a+a−, (3.1.2)

where a+ and a− are the obtained accuracies for the patterns inX+ andX−, respectively. However

it is not possible to use these kind of error functions on all the machine learning methods; for ex-

ample it is not possible (up to our knowledge) to use the g criterion to train a multilayer perceptron

or a SVM. Therefore, other techniques should be used to correct the method itself in order to avoid

this problem.

An artificial example of an imbalanced problem, which is used in [15], is the checkers board

problem. In it a squared region is divided into four smaller subregions, arranged as tiles in a

checkers or chess board. While the upper-left and lower-right tiles contain patterns of the negative

class, scattered uniformly, the upper-right and lower-left have patterns of the positive class, also

generated uniformly but in much smaller number. A depiction of the layout of this problem is

shown in figure 3.1.1.

Figure 3.1.1: Layout of the checkers board problem. X− points are randomly generated in the upper-left

and lower-right areas, while X+ points are generated in the upper-right and lower-left areas

As an example, we create a training dataset for this problem in where the ratio of class instances

is 1:100, with 20 instances of the minority class. The obtained dataset is shown in figure 3.1.2.

When training a SVM in which parameters are chosen by cross-validation techniques in order to

reduce misclassification error the separating frontier depicted in figure 3.1.3 is obtained. It can be

observed that the frontier is biased towards the minority class region, and thus in a balanced test

set a considerable amount of misclassifications is made when dealing with patterns of the minority

class.

In the particular case of using a SVM, there are three main reasons that explain why the frontier

is biased [16, 17]:

1. As there are few instances of the minority class, it is unlikely that one of them appears near

the “true” class frontier, so it is impossible for the SVM to infere where that real frontier is
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Figure 3.1.2: Training set of the checkers board problem. The patterns belonging to the positive class (in

red) are heavily outnumbered by the patterns of the negative class (in blue).

located. Hence, as the SVM selects the frontier such as to maximize the margin, it would

be biased towards the minority class because the respective support hyperplane is badly esti-

mated.

2. Even if some data points are near the true frontier, the SVM may treat them as noise, using

a non-zero slack in them, so as to obtain a larger margin. An example of this is depicted in

figure 3.1.4.

3. Again, because of the low number of instances in the minority class, a little number of support

vectors appear in this class. Even if they have a bigger weight, as for any point in the real

frontier there will be a much larger number of negative support vectors, the SVM is prone to

classify the point as belonging to the negative (majority) class.

Some methods have been developed in order to overcome this problem. We will briefly review

some of them in the next section to provide a general idea of the standard techniques used.

3.2 Basic methods for imbalance correction in SVMs

In this section we will briefly explain three methods widely used to alleviate the problem of imbal-

anced datasets in SVMs: boundary movement, biased penalties and kernel modification.
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Figure 3.1.3: The results of training a SVM over an imbalanced dataset. The correctly classified region is

depicted in blue, while the wrongly classified is depicted in red. As it can be seen, the separating frontier is

biased towards the minority class, producing a region of error.

3.2.1 Boundary movement

Boundary movement is a naive method that tries to correct the biased separating frontier by moving

it through the bias term b. An additional term ∆b is added to the SVM function, in the form

f(x) =
N∑

i=1

yiαik(x, xi) + b+ ∆b. (3.2.1)

Tuning ∆b provides a tradeoff between false positives and false negatives. If the orientation (w)

of the hyperplane is correct, it may work up to some point, but generally this will not be the case.

Additionally and as we shall explain later, boundary movement can be regarded as just shifting

the whole frontier along w, support hyperplanes included. This is not generally a good idea, since

the negative support hyperplane is likely to be well estimated and by moving it we are losing this

estimation.

3.2.2 Biased penalties

A strategy that sounds similar to using an error function with risk factors is the one proposed in

[18], where different SVM penalty factors C+ and C− are used for the points in X+ and X−

respectively. In this way the SVM problem appears as
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Figure 3.1.4: An example of a dataset where the SVM finds a biased classification frontier. Even if two

data points of the minority class are in the real support hyperplane, the SVM regards them as noise, taking a

farther hyperplane.

min
w,b,ξ,µ

‖w‖2 + C+
∑

i∈X+
ξi + C−∑

i∈X−
µi

s.t.

{
w · Φ(xi) + b+ ξi ≥ 1 ∀i ∈ X+

w · Φ(xi) + b− µi ≤ −1 ∀i ∈ X−

}
, (3.2.2)

and the dual problem takes the form

max
α

LD = −1
2

∑N
i=1

∑N
j=1 αiαjyiyjk(xi, xj) +

∑N
i=1 αi

s.t.


0 ≤ αi ≤ C+ ∀i ∈ X+

0 ≤ αi ≤ C− ∀i ∈ X−∑N
i=1 αiy

i = 0

 .

In our case, we would choose C+ >> C−, since we want to give a bigger penalty for misclas-

sified points in the minority class. However, as stated in [15] this method does not help as much

as expected. By looking at the constraints of the dual problem we realize that incrementing C+

does not necessary mean that an increase in the value of the support weights will appear, since the

C+ only acts as an upper bound. Moreover, the third constraint means that some increase in the
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support weights of points in X+ will also increase the weights in some points of X−. This means

that in the end the support vectors of the minority class will have more or less the same influence

over the decision boundary than the support vectors of the majority class, so no improvement may

be obtained.

3.2.3 Kernel modification

The kernel function directly affects the way the SVM is built, as the geometry of the feature space

is a consequence of it. If a non-suitable kernel function is chosen the dataset might not be linearly

separable in the feature space (up to the use of slacks), and a poor model would be obtained. Usually

a kernel function adjustable through parameters is used, such as the Gaussian kernel (2.1.29), in

which the kernel width 2σ2 has to be chosen. This choice is generally made via cross-validation

techniques in order to reduce the misclassification error over a validation dataset. By doing this we

are implicitly adapting the feature space induced by the kernel function in order to obtain a better

model. But more advanced methods exist for this purpose.

In this work we shall focus on this kind of methods, specifically on those who make use of

conformal transformations in order to obtain a more suitable feature space. We will introduce the

general theory of conformal transformations in the next section.

3.3 Adapting the feature space

In this section we will show how the choice of a kernel function induces a particular geometry

in the feature space that can be understood under the theory of Riemaniann manifolds, which we

will introduce up to some point. We will also see how we can modify a given kernel function via

conformal transformations in order to modify the structure of the feature space, and so make it

more suitable for our problem.

3.3.1 Riemannian geometry

Before explaining how the geometry in the feature space depends on the kernel function, some

theory about Riemaniann geometry should be introduced, as this feature space follows a Non-

Euclidean geometry. We will start introducing some mathematical concepts regarding the topic.

Please note that we do not pretend to explain Riemannian geometry in detail, and so some of the

following definitions may not be complete, as they are only intended to provide a basis for further

reasoning.

One way to describe complex geometrical structures is using topological manifolds. A topolog-

ical manifold is an abstract mathematical space in which, for every point, a neighbourhood could be
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defined such as ∃ an homeomorphism that maps it into an open interval in Rn that is an Euclidean

space; however, the global structure could be more complex. An homeomorphism is a continuous

bijective function with a continuous inverse.

A simple example of a manifold is a circle 1, which can be regarded as a one-dimensional

manifold embedded in a two-dimensional space. To understand why it is in fact a one-dimensional

space, suppose we are constrained to move only in the space defined by the circle. Then the only

feasible movements are clockwise or counterclockwise displacements along the circle, which are

in fact movements along opposite directions. That is, only movements along one dimension are

allowed. What is more, this space is Non-Euclidean, since we cannot measure the distance between

one point of the circle and another by using an Euclidean distance (i.e. a straight line), because we

can not exit the circle. A suitable measure of distance would be the arc formed by the two points,

but obviously this is not an Euclidean distance. A depiction of this example is shown in figure

3.3.1.

Figure 3.3.1: The circle is a simple example of a Riemannian manifold. Even if the circle is embedded

in a two-dimensional space, it is in a fact a one-dimensional manifold. Distances between points can not

be measured using an Euclidean distance, but a Riemannian one. Under a suitable mapping function ψ the

neighbourhood of a point in the circle can be regarded as an euclidean space.

If we are able to map the neighbourhood of a point into an Euclidean space Rn then we would

be able use the tools provided by the Euclidean geometry to obtain measures in that neighbourhood.

Unfortunately there might not be a way to generalize this local measures to the whole geometry of

the manifold, so more characteristics are needed in order to make measurements along the manifold.

One of those characteristics is the requirement of having a differentiable manifold. A topolog-
1By circle we refer to the mathematical space of points that meet the formula (x− a)2 + (y− b)2 = r2. In this way

the points “inside” the shape of the circle (the disk) do not belong to the circle.
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ical manifold is differentiable if the mapping functions of the homeomorphisms are all differen-

tiable. If the manifold is differentiable we would be able to use tools from calculus to propagate

the results obtained in the mapped Euclidean spaces to the manifold. But we will focus on the

particular case of the Riemannian manifolds.

A differentiable manifold is a Riemannian manifold if Riemannian distances can be measured

along it. The Riemannian distance is expressed as

‖dz‖2 =
∑

i

∑
j

gijdxidxj , (3.3.1)

where dz stands for a differential vector of displacement inside the manifold, dx is the correspond-

ing displacement in the mapped Euclidean space and gij is the Riemannian tensor, which defines

the structure of the distance in the manifold. This tensor may change its values depending on the

considered point of the manifold.

Therefore in a Riemannian manifold the distance between two points can be measured as some

kind of integration of differential displacements through it. The circle used as an example is, in

fact, a Riemannian manifold, as the proper distance between two points (the arc) can be measured

with infinitesimal straight displacements along the circle. Also observe that the standard Euclidean

distance is a particular case of the Riemannian distance, in which the Riemannian tensor is the

unit matrix. We will not extend further in the theory of Riemannian manifolds, as the notion of

Riemannian tensor is enough to understand the motivation under the conformal transformation

methods.

3.3.2 Kernels and Riemannian manifolds

Now we will explain what the Riemannian geometry theory has to do with SVMs. As known, a

SVM makes use of the kernel trick to map the input space I of dimension d into a feature space F
of dimension D, with D >> d (even infinite). But in fact what the transformation function Φ is

doing is to map the points of I to a manifold of dimension d which is embedded into F . So, under

the theory of Riemaniann geometry, Φ defines the homeomorphism between the manifold in F and

an Euclidean space in I. A clear example is shown in figure 2.1.5, where a one-dimensional input

space is mapped into a parabola (a one-dimensional manifold) in a two-dimensional feature space.

We shall prove that in fact the kernel function generates a Riemannian metric in the following

theorem:

Theorem 4 A valid kernel function k(xi, xj) maps an input space I of d dimensions into a Rie-

mannian manifold of d dimensions embedded into a feature space F ofD >> d dimensions (which

may be infinite), and so a Riemannian metric in the form (3.3.1) exists, whose Riemannian tensor
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can be computed using the kernel function as

gij =
∂2

∂xi∂x′j
k(x, x′) |x′=x . (3.3.2)

A kernel function is considered valid when it meets the Mercer’s Theorem (3).

Proof First of all, consider a differential displacement vector dz in the mapped space. We have to

show that the norm of this displacement can be measured via a Riemannian metric. As a simplifi-

cation, we will assume D finite. Observe that the squared norm of that differential vector is simply

the inner product

‖dz‖2 = dz · dz. (3.3.3)

In order to express dz, we realize that any point z in the manifold is in fact obtained from a

point x in the input space through Φ(x). So, it can be shown that a differential dz can be obtained

as

z = Φ(x) , dz = ∇Φ(x)dx. (3.3.4)

Now, to compute the gradient of Φ(x), observe that we can decompose it into D functions

φi(x), each one providing the position of the mapped point of x in one of the dimensions of the

feature space:

Φ(x) =


φ1(x)

φ2(x)
...

φD(x)

 , (3.3.5)

and so the gradient would be

∇Φ(x) =


∂φ1(x)

∂x1
· · · ∂φ1(x)

∂xd
...

. . .
...

∂φD(x)
∂x1

· · · ∂φD(x)
∂xd

 . (3.3.6)

In this way dz will take the form

dz = ∇Φ(x)dx =


∑d

i=1
∂φ1(x)

∂xi
dxi

...∑d
i=1

∂φD(x)
∂xi

dxi


=

d∑
i=1

∂Φ(x)
∂xi

dxi, (3.3.7)
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because

∂Φ(x)
∂xi

=


∂φ1(x)

∂xi
...

∂φD(x)
∂xi

 . (3.3.8)

Now that we have a way to express dz as a function of Φ we can compute the norm of dz using

it:

‖dz‖2 = dz · dz =
d∑

i=1

∂Φ(x)
∂xi

dxi ·
d∑

i=1

∂Φ(x)
∂xi

dxi

=
d∑

i=1

d∑
j=1

∂Φ(x)
∂xi

· ∂Φ(x)
∂xj

dxidxj

=
d∑

i=1

d∑
j=1

gijdxidxj (3.3.9)

where

gij =
δΦ(x)
δxi

· δΦ(x)
δxj

, (3.3.10)

and so we have an expression for gij . Now, to prove the statement of the theorem we simply

substitute the expression

∂2

∂xi∂x′j
k(x, x′) |x′=x =

∂2

∂xi∂x′j
Φ(x) · Φ(x′) |x′=x

=
∂Φ(x)
∂xi

· ∂Φ(x′)
∂x′j

|x′=x

= gij . (3.3.11)

�

3.3.3 Geometry induced by the Gaussian kernel

As in this work we are going to use the Gaussian kernel (2.1.29) as a yardstick to compare the

performance of the studied methods, we will now show how to obtain the Riemannian tensor for it.

First, consider only a generic kernel in the form

k(x, x′) = f

(
1
2
‖x− x′‖2

)
. (3.3.12)

If we compute the Riemannian tensor for this kernel, we have



Chapter 3. Imbalanced datasets and SVMs 33

gij =
∂2

∂xi∂x′j
f

(
1
2
‖x− x′‖2

)
|x′=x

=
∂2

∂xi∂x′j
f

(
1
2

d∑
k=1

(xk − x′k)
2

)
|x′=x

=
∂

∂x′j
f ′

(
1
2

d∑
k=1

(xk − x′k)
2

)
(xi − x′i) |x′=x

= −f ′′
(

1
2

d∑
k=1

(xk − x′k)
2

)
(xj − x′j)(xi − x′i) |x′=x −f ′

(
1
2

d∑
k=1

(xk − x′k)
2

)
δij |x′=x

= −f ′(0)δij , (3.3.13)

where δij stands for the Kronecker’s delta (2.2.12). In the particular case of the Gaussian kernel,

we have

f(z) = e−
z

σ2 , (3.3.14)

and so the Riemannian tensor is

gij = −f ′(0)δij (3.3.15)

=
[
−e

z
σ2

1
σ2

]
|z=0 δij (3.3.16)

=
δij
σ2
. (3.3.17)

The obtained metric is Euclidean, although the image of Φ might be curved [19]. Note that the

parameter of the kernel σ heavily affects the induced geometry. In particular, if σ ' 0 then all the

points are located at large distances from each other, while on the other hand if σ −→ ∞ all the

points in the input space are mapped to the same point in the feature space. In this way the choice

of σ affects the model learnt by the SVM, as the feature space will be different. Intuitively, a good

feature space would be the one in which a large margin can be obtained, while the class points are

not very scattered; that is, we would have large class separability but small intra-class variability.

We will further explore this idea later.

3.3.4 Conformal kernel transformations

Although the parameters of a kernel function allow the manipulation of the geometry of the feature

space up to some point, greater adaptability can be obtained by applying conformal transformations.

A conformal transformation of a geometrical space could be defined as a function that maps that

space into a new one in which the angles between curves are locally preserved.
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A proper transformation could be able to turn a non–linearly separable problem into a separable

one, thus obtaining a better model. An example of a conformal transformation is depicted in figure

3.3.2 2, where a grid of lines is transformed into another space. In the new space the curves still

have angles of 90o.

Figure 3.3.2: An example of a conformal transformation. The space is adapted so that it takes a new shape,

but locally the angles between curves are still the same.

The idea is to obtain a new kernel function k̃(x, x′) by a conformal transformation of the origi-

nal k(x, x′). Specifically, we will use a k̃(x, x′) in the form

k̃(x, x′) = c(x)c(x′)k(x, x′), (3.3.18)

where c is an scalar positive function, which we will call the transformation function. k̃ is chosen

in this way in order to be able to break down the kernel function as

k̃(x, x′) = Φ̃(x) · Φ̃(x′) = c(x)Φ(x) · c(x′)Φ(x′). (3.3.19)

It can be proved that this kind of transformation is conformal, and what is more, the resulting k̃

meets Mercer’s Theorem requirements if k meets them [20].

Now we will see how the feature space is affected by the conformal transformation. If we call

g̃ij the Riemannian tensor after the transformation, we have

Theorem 5 When k is the Gaussian kernel (2.1.29) and under a conformal transformation of the

form (3.3.19), the metric in the transformed space is

g̃ij = ci(x)cj(x) + c(x)2gij(x), (3.3.20)
2Original image by Oleg Alexandrov (http://en.wikipedia.org/wiki/Image:Conformal map.svg)

http://en.wikipedia.org/wiki/Image:Conformal_map.svg
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where ci(x) = ∂c(x)
∂xi

.

Proof

g̃ij =
∂2

∂xi∂x′j
c(x)c(x′)k(x, x′)|x′=x

=
∂

∂x′j

[
ci(x)c(x′)k(x, x′) + c(x)c(x′)

∂

∂xi
k(x, x′)

]
|x′=x

= ci(x)cj(x′)k(x, x′)|x′=x + ci(x)c(x′)
∂

∂x′j
k(x, x′)|x′=x +

+c(x)cj(x′)
∂

∂xi
k(x, x′)|x′=x + c(x)c(x′)

∂2

∂xi∂x′j
k(x, x′)|x′=x. (3.3.21)

Now note that when performing the substitution x′ = x the expression is simplified in a similar

way as the one made in (3.3.13). By substituting in the first three terms we get

g̃ij = ci(x)cj(x′)× 1 + ci(x)c(x′)× 0 + c(x)cj(x)× 0 + c(x)c(x′)
∂2

∂xi∂x′j
k(x, x′)|x′=x

= ci(x)cj(x) + c(x)2gij (3.3.22)

�

Therefore the transformation function c(x) actively modifies the metric in the induced feature

space. In this way, if we have a fixed kernel function k giving poor classification results, we might

be able to improve it by selecting a suitable transformation c(x), so that the new kernel k̃ provides

a “better” feature space and hence a better classification.

Finally note that, in fact, we do not need to actually know the kernel function at training time if

we have the kernel matrix, which is defined as

Kij = k(xi, xj). (3.3.23)

Then the kernel matrix corresponding to the modified kernel function k̃ can be computed as

K̃ij = c(xi)c(xj)Kij , (3.3.24)

and a SVM could be trained by directly using this kernel matrix.

In the next chapter we will review some of the proposed transformation functions and the meth-

ods to choose them available in the literature.





Chapter 4

Previous work

In this chapter we shall review the proposed methods in the literature to conformally transform

the kernel function in order to obtain a better classification rate. While some of these proposals are

aimed to alleviate the problems produced by unbalanced datasets, other are thought to be applicable

under a general scenario. Nevertheless all these methods are based on the previously explained

theory, each one choosing a particular transformation function c(x) and showing how to choose

their parameters.

4.1 Augmenting the margin via conformal transformations through
SV

Amari and Si Wu [19] were the first to propose the use of conformal transformations to obtain a

data-dependent kernel function. The main idea in their work is that the transformation function

c(x) should augment the spatial resolution near the SVM frontier, and reduce it far away from

the frontier; in this way a better margin might be obtained by a SVM trained with the new kernel

function.

First of all, this augmentation of the spatial resolution has to be formalized in some way. For

this task, the Riemannian volume is used, which is defined as

dV (x) =
√
|g(x)|dx1 . . . dxd = V(x)dx1 . . . dxd, (4.1.1)

where g(x) is the Riemannian tensor in the point x, and | · | is the determinant. This Riemannian

volume expresses how a local area in the input space is augmented (or compressed) in the feature

space due to the transformation Φ. V(x) =
√
|g(x)| is called the magnification factor, and quanti-

fies how much the volume is augmented in the feature space. Hence it proves to be useful in order

to measure the augmentation in a particular area of the input space under the transformation given

37
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by the initial kernel k.

Now we define the magnification factor after the transformation as

Ṽ(x) =
√
|g̃(x)|, (4.1.2)

where g̃(x) is the Riemannian tensor in x after the conformal transformation. By comparing the

ratio of both magnification factors we can get a measure of the change in spatial resolution made

by the conformal transformation:

R =
Ṽ
V
, (4.1.3)

which we shall call magnification ratio. If the spatial resolution of the neighbourhood of a point x

is augmented after the conformal transformation we will have Ṽ > V → R > 1, or in the other

hand if it is reduced we will have R < 1.

As stated before, we would like to have R > 1 near the SVM separating hyperplane, so that

in the new feature space we can obtain a larger margin. But also we would like to have R < 1 far

away from the separating hyperplane, since if all the feature space is augmented in the same way

no improvements can be made, as the SVM will be working in a similar space but with a different

scaling, obtaining essentially the same separating hyperplane.

The main problem of this approach is that the separating hyperplane is not explicitly known.

Hence, Amari and Wu propose to use the support vectors as a base for the transformation function

c(x), since SVs are most likely to be located in the margins of the SVM. In this way the proposed

transformation function is

c(x) =
∑
i∈SV

αie
− ‖x−xi‖2

2τ2 , (4.1.4)

where αi are the support weights and τ is a parameter of the function. With this kind of transfor-

mation function it can be shown [19] that the magnification factor after the transformation in the

neighbourhood of a SV xi is

Ṽ(x) ' αd
i

σd
e−

dr2
i

2τ2

√
1 +

σ2

τ2
r2i , (4.1.5)

where r2i = ‖x− xi‖2, and d is the dimension of the input space. By studying the behaviour of the

derivative of Ṽ(x) the authors estimate that the optimal value for the parameter τ is

τ ' σ√
d
, (4.1.6)

which is chosen in this way in order to maximize Ṽ(x) near the support vectors, and at the same

time to keep the augmentation restricted to a local area.
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Algorithm 1 Amari’s Method
1: Train a SVM svm with kernel matrix K and the patterns in X .

2: Compute τ using (4.1.6).

3: Compute c(x) ∀ x ∈ X using (4.1.4).

4: Compute the new kernel matrix K̃ using c(x) and K.

5: Train a new SVM ˜svm with kernel matrix K̃ and the patterns in X .

6: return ˜svm.

Summing up the method, an algorithmic representation is shown in algorithm 1. Once the

“transformed” SVM is obtained after the process, predictions can be made using this SVM and

the modified kernel function k̃ (not the kernel matrix, as it only contains info about the training

patterns), as

f(x) =
N∑

i=1

α̃iyik̃(x, xi) + b̃

=
N∑

i=1

α̃iyic(x)c(xi)k(x, xi) + b̃, (4.1.7)

where the α̃i stand for the support weights of the transformed SVM and b̃ for its bias. Note that we

have to compute the transformation function for an unseen pattern x, hence all the parameters of

the algorithm (αi,α̃i,b̃,τ ) should be available at prediction time. As we will see, this subtle detail

may create difficulties in more complex algorithms.

4.2 An iterative approach

Another paper by Si Wu and Amari [21] extends the original one, proposing a generalization of

the transformation function and an iterative way to concatenate conformal transformations. First,

the transformation function is made more general by removing the support weights αi from the

expression, and by using a different τi for each support vector, resulting in

c(x) =
∑
i∈SV

e
− ‖x−xi‖2

τ2
i . (4.2.1)

The use of individual factors for each support vector is introduced to solve a pathological prob-

lem of the original method: when support vectors appear in higher density in some areas of the

space, the magnification factor after the transformation is prone to be excessively high; that is, it

is not uniform along the separating boundary as desired. These τi factors are intended to fix this

problem by choosing their values as a function of the density of support vectors:
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τ2
i =

1
M

∑
q∈αM

‖xq − xi‖2, (4.2.2)

where αM is the set of the M support vectors nearest to xi, and M is a parameter of the method.

Secondly, a way to iterate conformal transformations is proposed. This iteration is based in

training a SVM with a kernel function, modify it using c(x) and train the SVM again, until a

number of iterations is reached. The method is shown in algorithm 2.

Algorithm 2 Si Wu’s Method
1: Train a SVM svm0 with kernel matrix K0 = K and the patterns in X .

2: for t = 1 to MAX do
3: Compute τ t

i ∀i ∈ SV using (4.2.2).

4: Compute ct−1(x) ∀ x ∈ X using (4.2.1).

5: Compute the new kernel matrix Kt using ct−1(x) and Kt−1.

6: Train a new SVM svmt with kernel matrix Kt and the patterns in X .

7: end for
8: return svmMAX .

Although the training algorithm seems reasonable, problems arise at prediction time when try-

ing to classify an unseen point x as

f(x) =
N∑

i=1

αMAX
i yikMAX(x, xi) + bMAX , (4.2.3)

where the αMAX
i stand for the support weights of the SVM trained in the last iteration of the

algorithm, and bMAX for its bias. The problem in this equation is that kMAX(x, xi) is not known.

However, note that it can be obtained using

kMAX(x, xi) = cMAX−1(x)cMAX−1(xi)kMAX−1(x, xi) (4.2.4)

= cMAX−1(x) . . . c0(x)cMAX−1(xi) . . . c0(xi)k(x, xi), (4.2.5)

that is, a recursive formula for kMAX(x, xi) appears, with k0(x, xi) = k(x, xi) as the base case.

Therefore a way to compute the obtained kernel function for an unseen pattern exists, but we will

have to store all the c transformation coefficients generated in the training procedure. In order to

simplify the notation, we define the cumulative transformation coefficients d as

dt(xi) =
t∏

j=0

cj(xi). (4.2.6)



Chapter 4. Previous work 41

Algorithm 3 Si Wu’s Modified Method
1: Train a SVM svm0 with kernel matrix K0 = K and the patterns in X .

2: Initialize d(x) = 1 ∀ x ∈ X .

3: for t = 1 to MAX do
4: Compute τi ∀i ∈ SV using (4.2.2).

5: Compute ct−1(x) ∀ x ∈ X using (4.2.1).

6: Compute d(x) = d(x)ct−1(x), dt−1(x) = d(x) ∀ x ∈ X .

7: Compute the new kernel matrix Kt using ct−1(x) and Kt−1.

8: Train a new SVM svmt with kernel function Kt and the patterns in X .

9: end for
10: return svmMAX .

In this way we can rewrite the method as shown in algorithm 3. With this modification now we

could classify an unseen pattern as

f(x) =
N∑

i=1

αMAX
i yidMAX(x)dMAX(xi)k(x, xi) + bMAX ; (4.2.7)

however dMAX(x) is unknown a priori, but it can be computed if all the parameters used in the

training method (τ t
i ,αt

i) are stored, using

dt(x) =
t∏

j=0

cj(x), (4.2.8)

where the cj(x) involve the mentioned parameters. As stated in the previous section, these kind of

methods are prone to present difficulties at prediction time due to the amount of parameters that

have to be stored, as in this case.

4.3 Using conformal kernel transformations to get rid of imbalanced
datasets

Gang Wu and Chang [15, 16] proposed the idea of applying Amari and Si Wu methods to imbal-

anced datasets. Their method, known as Adaptive Conformal Transformation (ACT) gives more

“radius” in the transformation to the patterns of the minority class, so that the spatial resolution

is enlarged far away from the minority class. This is consistent with the skewness of the SVM

boundary, since the ideal data boundary should be closer to the majority class. An example of how

the area of maximum spatial augmentation is not the ideal data boundary is depicted in figure 4.3.1.
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Figure 4.3.1: An example of Si Wu’s method in an unbalanced dataset. The magnitude of the τi parameters

of each SV is depicted as a radius around the SV. An schematic representation of spatial augmentation is

depicted as a gray gradient at the bottom, where darker areas are those of most augmentation (obviously

this is a simplification, since augmentation would be two-dimensional). As observed the area of maximum

augmentation is near the SVM boundary, even if the smaller density of positive SV gives them a larger τi.

To properly choose the τi coefficients in order to deal with this skewness two modifications are

introduced. The first one comes from the fact that when choosing these coefficients the density of

SV in the input space is considered, while it would be better to measure this density in the feature

space. Hence the τi are chosen as

τ2
i = AV Gj∈{‖Φ(xi)−Φ(xj)‖2<Mi , yi 6=yk}

{
‖Φ(xi)− Φ(xj)‖2

}
, (4.3.1)

with

Mi = AV Gi={SV MAX ,SV MIN}
{
‖Φ(xi)− Φ(xj)‖2

}
, (4.3.2)

where SVMAX and SVMIN are the farthest and nearest SV to xi.

The other modification explicitly tries to compensate the frontier skewness by correcting the τi
values by a quantity that depends on the class of the SV, namely
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{
τ̃2
i = η+τ

2
i , yi = 1

τ̃2
i = η−τ

2
i , yi = −1

}
, (4.3.3)

where η+ and η− stand for the correction factors, which should be taken as

η+ = O

(
|SV −|
|SV +|

)
, η− = O

(
|SV +|
|SV −|

)
,

with SV + and SV − the number of positive and negative support vectors. In this way the SV of

the minority class will have a greater radius τi in the transformation, and so the area of maximum

augmentation is more likely to be close to the ideal data frontier. An example of this method is

shown in figure 4.3.2.

Figure 4.3.2: An example of ACT in an unbalanced dataset. The magnitude of the τ̃i parameters of each SV

is depicted as a radius around the SV. An schematic representation of spatial augmentation is depicted as a

gray gradient at the bottom, where darker areas are those of most augmentation. Compared with figure 4.3.1,

the support vectors of the majority class have now a reduced influence, while those of the minority class have

a larger radius. This results in a displacement of the area of maximum spatial resolution augmentation, now

more due to lie near the ideal data frontier.

Therefore, the transformation function is modified to use these corrected factors:

c(x) =
∑
i∈SV

e
− ‖x−xi‖2

τ̃2
i . (4.3.4)
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Algorithm 4 ACT
1: Train a SVM svm0 with kernel matrix K0 = K and the patterns in X .

2: Obtain the misclassification error of svm0 over V : εnew.

3: Initialize d(x) = 1 ∀ x ∈ X , t = 1, εold = ∞
4: while εold − εnew > θ && t < MAX do
5: Compute τi ∀i ∈ SV using (4.3.1).

6: Compute τ̃i ∀i ∈ SV using (4.3.3).

7: Compute ct−1(x) ∀ x ∈ X using (4.3.4).

8: Compute d(x) = d(x)ct−1(x), dt−1(x) = d(x) ∀ x ∈ X .

9: Compute the new kernel matrix Kt using ct−1(x) and Kt−1.

10: εold = εnew.

11: Train a new SVM svmt with kernel matrix Kt and the patterns in X .

12: Obtain the misclassification error of svmt over V : εnew.

13: t+ +.

14: end while
15: return svmt−1.

The pseudocode of ACT is quite similar to one shown before for Si Wu’s method, having some

slight differences in the calculation of the τi factors, as detailed in algorithm 4. Also the stopping

criterion has been modified in order to stop when no improvement is made over a validation set

V . Again, all the training parameters and computed values must be stored in order to be able to

classify unseen patterns.

4.4 Estimating the real data boundary

In another work by Gang Wu and Chang [20] a more refined method to deal with imbalance is

proposed. This time an estimation of the location of the ideal boundary is made, and then artificial

support vectors are created along this boundary, which will be the center of the transformation

function. This method is known as the Kernel Boundary Alignment (KBA) algorithm, and we will

review how it works.

First, an estimation of the ideal boundary must be made. To do this a corrected SVM function

is created as

f̃(xi) = f(xi) + η , 0 ≤ η ≤ 1, (4.4.1)

which clearly resembles the technique of boundary movement (section 3.2.1). To choose η an error

criterion is used, in the form
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η∗ = argminη

∑
i∈E+

C+(yif̃(xi)) +
∑
i∈E−

C−(yif̃(xi)), (4.4.2)

where E+ and E− are the sets of the misclassified patterns of X+ and X− (respectively) with

−1 ≤ f(x) ≤ 1, and C+ and C− are error functions. These error functions can be chosen at will,

but with the idea of imposing a heavier penalty to misclassifications in the minority class. As an

example the authors propose using

C+(yif̃(xi)) = e−yif̃(xi),

C−(yif̃(xi)) = ln(1 + e−yif̃(xi)), (4.4.3)

which have an exponential tendency to classification error when misclassification happens in the

minority class, but a linear one when it happens in the majority class. Once η has been determined

solving this minimization problem (i.e. with gradient descent methods), an interpolation factor β is

computed:

β =
1 + η∗

2
. (4.4.4)

With this interpolation factor a new set of points Sb is created using the equation

Φ(xb) = (1− β)Φ(x+) + βΦ(x−), (4.4.5)

where (Φ(x+),Φ(x−)) are any possible pair of support vectors in the margin belonging to X+

and X−, respectively. With this procedure an artificial set of support vectors is created along the

estimated boundary, as interpolations of real support vectors. An example of this procedure is

shown in figure 4.4.1.

Once this set has been created, the transformation function will be based on it:

c(xi) =
1

|Sb(i)|
∑

xj∈Sb(i)

e
‖Φ(xi)−Φ(xj)‖2

τ2
i , (4.4.6)

where Sb(i) is the dataset of points xj ∈ Sb with ‖Φ(xi)−Φ(xj)‖2 < M , with M a parameter of

the algorithm. This time the τi factors are obtained as

τ2
i = AV Gj∈{‖Φ(xi)−Φ(xj)‖2<M}

{
‖Φ(xi)− Φ(xj)‖2

}
. (4.4.7)

Apart from the fact that the transformation function is based on the artificial support vectors,

the method is quite similar to ACT, as shown in algorithm 5.
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Figure 4.4.1: KBA estimates the ideal frontier by looking for a η that minimizes an error criterion. Once

found, artificial support vectors are created in the intersections of the estimated boundary and each line

joining opposite support vectors. In the figure one of these artificial support vectors is shown. Only the

support vectors in the margin have been drawn.

4.5 Conformal transformations using the SVM function

Taking a different approach, Williams et al. [22] propose the use of a transformation function not

based in the support vectors, but in the SVM output function itself, f(x). In the end f determines

the separating hyperplane of the SVM, and so augmenting the spatial resolution near the boundary

can be made by incorporating f in the transformation function c in the following way

c(x) = e−κf(x)2 , (4.5.1)

where κ is a parameter of the method. This transformation function has its maximum in those x

with f(x) = 0, that is, in the boundary of the SVM, and decreases in an exponential way as we

move far away from it. The recommended value for κ is

κ =
1

|f |max
, (4.5.2)

where |f |max is the maximum output value of the SVM for the training patterns, in absolute value.

This transformation function is much simpler than the previously presented ones, although it is

more costly to compute since the evaluation of f(x) in each pattern x is quite expensive. Also,
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Algorithm 5 KBA
1: Train a SVM svm0 with kernel matrix K0 = K and the patterns in X .

2: Obtain the misclassification error of svm0 over V : εnew.

3: Initialize d(x) = 1 ∀ x ∈ X , t = 1, εold = ∞
4: while εold − εnew > θ && t < MAX do
5: Compute η∗, β using (4.4.2) and (4.4.4).

6: Create the dataset of artificial support vectors using (4.4.5).

7: Compute τi ∀i ∈ Sb using (4.4.7).

8: Compute ct−1(x) ∀ x ∈ X using (4.4.6).

9: Compute d(x) = d(x)ct−1(x), dt−1(x) = d(x) ∀ x ∈ X .

10: Compute the new kernel matrix Kt using ct−1(x) and Kt−1.

11: εold = εnew.

12: Train a new SVM svmt with kernel matrix Kt and the patterns in X .

13: Obtain the misclassification error of svmt over V : εnew.

14: t+ +.

15: end while
16: return svmt−1.

this method does not deal with imbalanced datasets, and it is not thought as an iterative procedure

where several transformations may be applied; hence it is very similar to Amari’s original method.

The pseudocode for this method is shown in algorithm 6.

Algorithm 6 Williams’ Method
1: Train a SVM svm with kernel matrix K and the patterns in X .

2: Compute c(x) ∀ x ∈ X using (4.5.1).

3: Compute the new kernel matrix K̃ using c(x) and K.

4: Train a new SVM ˜svm with kernel matrix K̃ and the patterns in X .

5: return ˜svm.

4.6 Computing class separability in the feature space

Finally, Xiong et al. [23] show a novel point to define a conformal transformation. They claim that

instead of trying to maximize or minimize the spatial resolution in some areas of the space, these

methods should pursue the maximization of the class separability in the feature space. This idea is

far more intuitive than the former ones, since class separability is a well-known concept used by

popular machine learning methods such as Fisher’s Discriminant Analysis [4]. Although the feature
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space is hardly tractable due to the fact of only knowing about it through the kernel function, the

authors show that some characteristics of this space can be used to compute a separability criterion.

An alternative feature space, named “empirical feature space” can be defined in such a way

that shares some properties with the theoretical feature space induced by the kernel function, but

which can be handled more easily. First suppose that the kernel matrix K has rank r. As it is

symmetric and semidefinite positive (because the kernel function k meets Mercer’s Theorem) it

can be decomposed into

K = PΛP T , (4.6.1)

where P is an N × r matrix containing the eigenvectors of K, Λ is a r × r diagonal matrix with

the eigenvalues of K in decreasing order, and T denotes transposition. Also P is a unitary matrix,

that is, P TP = I , I the unit matrix. Now an “empirical mapping” Φe
r is defined as

Φe
r(x) = Λ− 1

2P T (k(x, x1), . . . , k(x, xN ))T . (4.6.2)

This transformation maps the points in the input space to the empirical feature space. To see

the similarity between this space and the theoretical feature space, a matrix Z is defined as

Z = KPΛ− 1
2 , (4.6.3)

which contains in each row the result of applying Φe
r(x)∀x ∈ X . Now observe that by multiplying

ZZT we would obtain the kernel matrix of Φe
r for the patterns of X:

ZZT = KPΛ− 1
2 Λ− 1

2P TKT

= PΛP TPΛ−1P TPΛP T

= PΛΛ−1ΛP T

= PΛP T

= K, (4.6.4)

that is, the kernel matrix in this empirical feature space and in theoretical one are the same. As in

SVM-like algorithms only the elements of the kernel matrix are needed to perform training, then

there is no difference in performing the training in the theoretical or in the empirical feature space.

This will allow the computation of the separability criterion in the empirical feature space, which

will remain valid for the theoretical feature space.

The separability criterion used by the authors is the Fisher’s J criterion, which is defined as

J =
tr(SB)
tr(SW )

, (4.6.5)
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where SB is the between-class scatter matrix, SW is the within-class scatter matrix, and tr is the

trace function of a matrix. To write down the expression for these matrices some definitions must

be made before. Suppose there are N1 patterns in the negative class, and N2 in the positive one.

Then we define:

zi = Φe
r(x

i), (4.6.6)

z̄ =
1
N

N∑
i=1

zi, (4.6.7)

z̄1 =
1
N1

∑
i∈X−

zi, (4.6.8)

z̄2 =
1
N2

∑
i∈X+

zi. (4.6.9)

Now the traces of the scatter matrices are defined as

tr(SB) =
1
N

2∑
i=1

Ni(z̄i − z̄)(z̄i − z̄)T , (4.6.10)

tr(SW ) =
1
N

2∑
i=1

Ni∑
j=1

(zi
j − z̄i)(zi

j − z̄i)T , (4.6.11)

where zi
j stands for the i-th pattern of class j. In order to make the notation easier, we would

assume that the patterns in X are arranged in such a way that the patterns of the negative (first)

class are first, and those belonging to the positive (second) class are after them. Then the kernel

matrix can be decomposed in blocks as

K =

(
K11 K12

K21 K22

)
, (4.6.12)

where Kij is the block of the kernel matrix which only contains the kernel products of patterns of

classes i and j. With this, the following theorem can be stated:

Theorem 6 Having a kernel matrix in the form (4.6.12), the separability induced by the kernel

function in the feature space is computed as

J =
J1

J2
=

1T
NB 1N

1T
NW 1N

, (4.6.13)

where
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B = Kintra +
1
N
K, (4.6.14)

W = diag(K)−Kintra (4.6.15)

Kintra =

(
1

N1
K11 0

0 1
N2
K22

)
(4.6.16)

with diag(A) the matrix containing the diagonal entries of A (and the rest zeros), and 1N a vector

of length N with all elements of 1 value. Furthermore, if a conformal transformation in the form

3.3.19 is applied to the kernel function, the separability in the transformed feature space can be

computed as

J̃ =
J̃1

J̃2

=
qTBq

qTWq
, (4.6.17)

where q is defined as a vector of length N containing the results of applying the transformation

function to every pattern in the training set

q =


c(x1)

...

c(xN )

 . (4.6.18)

As the proof is quite extensive and is detailed in [23] we will not repeat it here, since in this work

we will only use the consequences of the theorem. The main advantage it provides is the ability to

tune the parameters of the transformation function c(x) so as to maximize the separability J̃ . By

computing the gradient of J̃ with respect to the transformation parameters, standard optimization

techniques such as gradient ascent can be applied to obtain optimal parameters.

The authors define a transformation function similar to (4.2.1), as

c(x) = c0 +
∑Ncore

i=1 cik1(x, ai), (4.6.19)

k1(x, ai) = e−γ‖x−ai‖2 , (4.6.20)

where ci are the parameters of the transformation, ai are the “empirical cores”, Ncore is the number

of empirical cores and γ is a free parameter. The empirical cores are some chosen points in the

input space around which the transformation will be centered. While they are randomly chosen as

some of the training patterns, the ci are found by maximizing the separability. γ is chosen using

cross–validation techniques.

As some of our proposed methods are based in this “metamodel” or technique to find the opti-

mal parameters, we will not further explain the work of Xiong et al., since the derivations are quite

similar. For more details, see [23].
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Proposed methods

After reviewing the basic concepts of SVMs, conformal transformations and the works about the

topic found in the literature, in this chapter we shall present our proposed methods. First we will

talk about the general scenario to face when dealing with conformal transformation methods, next

we will explain the “metamodels” or optimizers used to select the methods’ parameters and finally

we will show in detail our proposals.

5.1 General scenario

The core of any conformal transformation method is its transformation function c(x). As shown,

most of the authors of works in this area put a great deal of effort into finding an appropriate

function, while the main idea of the methods remains the same: train a SVM, apply the conformal

transformation and then retrain. The choosing of this function also involves defining a way to select

its parameters, as bad parameter choices may provide bad results.

Usually the value for those parameters is chosen following a more or less “heuristic” rule, where

no strictly mathematical reasons are given. Among the reviewed works, only Xiong et al. [23]

provides a framework for this parameter selection. We believe that some improvements could be

made by using a more intelligent search for their values, that is, by using a metamodel or optimizer

able to fix those parameters using some criterion to minimize/maximize. This criterion may be for

instance misclassification rate in a validation set, or class separability as in [23].

In this work shall we propose different methods which mix some of the reviewed proposals

with new ideas. To find the optimal parameters for them we will use several metamodels, which we

detail in the next section. Finally, in the next chapter, we will experimentally test these new methods

along with some of the reviewed ones in order to extract some conclusions about the methodology

of conformal transformations itself.

51
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5.2 Metamodels

In order to perform an intelligent selection of the transformation function parameters two meta-

models will be used: a deterministic one, based on Xiong et al.’s idea of maximizing the class

separability, and a stochastic one based on the genetic algorithm CMA-ES [24]. In this section we

will explain both ideas under a generic transformation c(x).

5.2.1 Gradient ascent of the class separability

Although in Xiong’s work [23] the method for the parameter selection is explained for an specific

transformation function c(x), theorem 6 in section 4.6 is applicable under any c. We detail here

how to compute the gradient of the class separability in the feature space J̃ for a generic c(x).

Firstly, recall that J̃ can be expressed as J̃ = J̃1

J̃2
. Supposing w is the vector of parameters of c(x),

the gradient would be

∇wJ̃ =
1
J̃2

2

(
J̃2∇wJ̃1 − J̃1∇wJ̃2

)
=

1
J̃2

(
∇wJ̃1 − J̃∇wJ̃1

)
. (5.2.1)

Now, the gradients of J̃1 and J̃2 are

∇wJ̃1 = ∇qJ̃1 · ∇wq

= 2qTB · ∇wq, (5.2.2)

∇wJ̃2 = ∇qJ̃2 · ∇wq

= 2qTW · ∇wq, (5.2.3)

and so the gradient of the separability depends on the gradient of the transformation function in the

following way:

∇wJ̃ =
2
J̃2

(
qTB · ∇wq − J̃qTW · ∇wq

)
. (5.2.4)

Therefore, if the selected transformation function is differentiable with respect to its parameters,

then the gradient of J̃ can be computed. However, usually the transformation function is somewhat

complex and we cannot simply compute this derivative, solve it for the parameter vector w and

hence obtain the optimal values that give the maximum separability. Even if the transformation

function is simple with respect to the parameters, like the one proposed in Xiong (4.6.19), solving

the equation requires the inversion of a matrix which is prone to be ill-posed. So, a step-wise

approach is used.
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This step-wise approach can be a gradient ascent method like the one used in [23], which

consists in iterating steps in the form

wnew = w + η∇wJ̃ , (5.2.5)

where η is a step size parameter. Although this method is fair simple, choosing η is not straightfor-

ward as large values could make it ineffective, and small values might turn it to be too slow.

Instead, we will use the Davidon-Fletcher-Powell [25] method of maximization, which esti-

mates the Hessian matrix of second derivatives of the objective function in order to have more

information about the function’s landscape. Furthermore, in each step it uses a linear maximization

algorithm in order to find the maximum along the line, so no step size parameter is used.

This method is quite fast at finding a maximum in the separability function, but it does not have

necessarily to be a global maximum. If the algorithm moves to a local maximum, the gradient of

the function will be zero (not considering second derivatives) and no further movement could be

performed. Hence, gradient ascent will find a good set of parameters to improve class separability,

but they might not be the best.

5.2.2 An evolutionary search: CMA–ES

Other possible approach when dealing with a parameter optimization problem is to use a black-box

optimizer, that is, an algorithm that does not make use of the derivatives of the objective function.

Among these kind of techniques, genetic algorithms [26] are well known methods for solving a

problem where no further information than the evaluation of the objective function at the tested

points is provided.

In this work we shall make use of the popular Covariance Matrix Adaption - Evolutionary

Strategy (CMA–ES) [24] genetic algorithm. This method generates random test points using a

multivariate normal distribution, whose covariance matrix is adapted as the algorithm evolves in

order to generate with a higher probability those points which follow the gradient of the function.

As the real gradient is not known, it is estimated through the evaluated points during the algorithm.

Although the information provided by the derivatives is not used at all, CMA–ES is able to find

directions in which the objective function is improved. The main disadvantage of this approach

is that it is slower than a gradient ascent, since ascent directions are not known and have to be

estimated. But on the other hand, CMA–ES may not get trapped inside local maxima, since the

evolutionary algorithm continues its search even if a local maximum has been reached. In spite

of not having a guarantee of reaching the global maximum in a finite number of iterations, the

probability of finding it increases with the time spent in the algorithm.

Another advantage of using a black box optimizer is that other criterions (apart from class
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separability) whose derivative can not be computed could be used. As an example, CMA-ES could

be configured to minimize misclassification error over a validation subset.

5.3 Conformal transformations along a corrected SVM boundary:
MDT

Among the reviewed conformal functions we think that the simplest of all, while promising, is

the Williams’ transformation function (4.5.1). However, this transformation does not deal with

imbalanced data sets, and then the spatial augmentation will be focused over a separating boundary

which is biased. We thus propose to combine Williams’ transformation with an skew correction

method.

5.3.1 Correction by margin displacement

While the KBA method (section 4.4) tries to correct this skew by doing a bias displacement, we

feel this approach is not appropriate. By moving the bias we are moving the whole SVM boundary

and support hyperplanes, but the support hyperplane of the majority class is most likely to be well

estimated, and hence there is no reason for moving it. A more adequate correction would be to move

the support hyperplane of the minority class (which is skewed) towards the support hyperplane of

the majority class, and then recalculate the separating boundary. A depiction of both scenarios is

shown in figure 5.3.1.

Although the obtained boundary could be the same in both methods, the distance between

the support hyperplanes can only be correctly adapted in our proposal. Hence the transformation

function will not have the same effect over a boundary movement approach than over a margin

displacement one, since the output function of the SVM will be different.

To perform this “margin displacement”, we do the following. Suppose the SVM is trained by

solving its equivalent CH-SVM problem (2.2.6). In order to clarify the notation, we will not use

here the hat marks over the terms of the CH-SVM (which nevertheless could be transformed to

its equivalent SVM). As explained in section 2.2.4 the location of the support hyperplanes is fixed

by the position of the nearest points in the convex hulls, w+ and w−. As we want to displace the

positive support hyperplane towards the negative one, we will need to move w+ towards w− as

w̃+ = w+ + (w− − w+)λ, (5.3.1)

where λ ∈ [0, 1) is a parameter that controls the displacement. The resultant boundary w̃ of the

movement can be written as
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Figure 5.3.1: An illustration of two methods for computing a corrected separating boundary for the SVM.

In the bias displacement case even if the boundary is corrected perfectly, the separating hyperplanes are not.

However, in the margin displacement case by only moving the minority class support hyperplane a good

estimation of both the boundary and the support hyperplanes could be achieved.

w̃ = w̃+ − w− = w+ + (w− − w+)λ− w−

= w+ + w−λ− w+λ− w− = (1− λ)(w+ − w−)

= γw, (5.3.2)

with γ = 1− λ. Now to calculate the bias of the new SVM frontier, b̃, we first have to define some

quantities m+ and m− related to the support hyperplanes:

m+ = w · w+, (5.3.3)

m− = w · w−. (5.3.4)

Observe that the bias can be computed using these two quantities:

b = −1
2
w · (w+ + w−) = −1

2
(m+ +m−). (5.3.5)

Now if we compute these m+ and m− quantities after the displacement, we can write:
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m̃+ = w̃ · w̃+ = γw · w̃+

= γw · (w+ + (w− − w+)λ) = γw · [w+(1− λ) + λw−]

= γ2m+ + γλm−, (5.3.6)

m̃− = γw · w− = γm−. (5.3.7)

So the new bias b̃ is expressed as:

b̃ = −1
2
(m̃+ + m̃−) = −1

2
(γ2m+ + γλm− + γm−)

= −1
2
γ(γm+ + (λ+ 1)m−) = −1

2
γ(γm+ + (2− γ)m−)

= −1
2
γ(γm+ + γm− − 2γm− + 2m−) = γ2b+ γ(γm− −m−)

= γ2b+ γ(γ − 1)m−. (5.3.8)

In this way the separating function of the “corrected” SVM will be

f̃(x) = γw · x+ γ2b+ γ(γ − 1)m− = γ(w · x+ γb+ (γ − 1)m−), (5.3.9)

which can be expressed in terms of the original f(x) as

f̃(x) = γ(f(x) + (γ − 1)(b+m−)). (5.3.10)

Considering that, once the SVM has been trained, w, b and m− can be regarded as constants,

we have obtained an expression for a new SVM that only depends on the displacement parameter

λ. This will allow us to perform the conformal transformation along the displaced boundary by

simply using f̃(x) instead f(x) in the conformal transformation function, as will be shown next.

Finally, a fast computation for m− can be made in the algorithm by observing that
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m− = w · w− =
N∑

i=1

∑
j∈C2

αiαjk(xi, xj)yiyj

=
∑
i∈C2

yiαi

N∑
j=1

yjαiαjk(xi, xj)

= −
∑
i∈C2

αi(f(xi)− b)

= −
∑
i∈C2

αif(xi) +
∑
i∈C2

αib

= b
∑
i∈C2

αi −
∑
i∈C2

αif(xi)

= b−
∑
i∈C2

αif(xi). (5.3.11)

5.3.2 Proposed method

Now that we have an estimation of the data boundary we will use Williams’ choice as the trans-

formation function, but centred on the corrected boundary instead of the standard SVM boundary,

as

c(x) = e−κf̃(x)2 = e−κ(γ(w·x+γb+(γ−1)m−))2 . (5.3.12)

c(x) has its maximum along the corrected boundary, and decreases exponentially as we move away

from it. The speed of this decrease is controlled by the parameter κ. Ideally we would like to

perform an spatial resolution increase in the area between the two corrected support hyperplanes,

and a decrease away from them, so we shall tune κ for that, but there is not an easy way to do

it. This problem is also present in Williams’ original method. Here we will find automatically the

values for κ and γ using the metamodels explained before.

We shall name this method Margin Displacement Transformation (MDT). Its pseudocode is

shown in algorithm 7.

5.3.3 Obtaining parameters values for MDT

Whenever we use gradient ascent as the metamodel for selecting the parameters, the gradients of

J̃ with respect to those parameters have to be computed. We develop their calculations in this

subsection. For the other metamodels there is no need to know these gradients, but nevertheless

some interesting facts could be extracted from their calculations.

First, for the κ parameter we have
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Algorithm 7 MDT
1: Train a SVM svm0 with kernel matrix K0 = K and the patterns in X .

2: Obtain the misclassification error of svm0 over V : εnew.

3: Initialize d(x) = 1 ∀ x ∈ X , t = 1, εold = ∞
4: while εold − εnew > θ && t < MAX do
5: Use a metamodel to obtain parameters κ and λ.

6: Compute ct−1(x) ∀ x ∈ X using (5.3.12).

7: Compute d(x) = d(x)ct−1(x), dt−1(x) = d(x) ∀ x ∈ X .

8: Compute the new kernel matrix Kt using ct−1(x) and Kt−1.

9: εold = εnew.

10: Train a new SVM svmt with kernel matrix Kt and the patterns in X .

11: Obtain the misclassification error of svmt over V : εnew.

12: t+ +.

13: end while
14: return svmt−1.

[∇κq]i =
∂c(xi)
∂κ

= −e−κf̃(xi)
2
f̃(xi)2 = −f̃(xi)2c(xi), (5.3.13)

∇κq = −


f̃(x1)2 · · · 0

...
. . .

...

0 · · · f̃(xN )2

 q. (5.3.14)

Defining

F̃ =


f̃(x1) · · · 0

...
. . .

...

0 · · · f̃(xN )

 , (5.3.15)

the gradient is compactly expressed as

∇κq = F̃ F̃ q. (5.3.16)

The gradient with respect the other parameter to optimize (γ) can be obtained following a

similar reasoning, noting that
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[∇γq]i =
∂c(xi)
∂γ

= e−κf̃(xi)
2
(−κ)2f̃(xi)(f(xi) + (γ − 1)(b+m−)) + γ(b+m−)

= e−κf̃(xi)
2
(−κ)2f̃(xi)(f(xi) + (2γ − 1)(b+m−))

= −2κ c(xi)f̃(xi)(f(xi) + τ), (5.3.17)

with τ = (2γ − 1)(b+m−). Then

∇γq = −2κ


f̃(x1)(f(x1) + τ) · · · 0

...
. . .

...

0 · · · f̃(xN )(f(xN ) + τ)

 q. (5.3.18)

Again the derivative can be expressed more compactly by defining

F̂ =


f̃(x1)(f(x1) + τ) · · · 0

...
. . .

...

0 · · · f̃(xN )(f(xN ) + τ)

 , (5.3.19)

and so we have

∇γq = −2κF̂ q. (5.3.20)

Therefore the gradients have the form

∇κJ̃ =
1
J̃2

(
Mκ −NκJ̃

)
∇γ J̃ =

1
J̃2

(
Mγ −Nγ J̃

)
, (5.3.21)

where

Mκ = 2qTBF̃ F̃ q,

Nκ = 2qTWF̃F̃ q,

Mγ = −4κqTBF̂q,

Nγ = −4κqTWF̂q. (5.3.22)

Observe that there are redundant calculations in the procedure to obtain Mκ, Mγ , Nκ and Nγ .

This is particularly evident is we write these down not using a matrix notation:
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Mκ = −2qTBF̃ F̃ q = −2
N∑

i=1

N∑
j=1

c(xi)c(xj)Bij f̃(xi)2

= −2
N∑

i=1

f̃(xi)2c(xi)
N∑

j=1

c(xj)Bij ,

Nκ = −2
N∑

i=1

f̃(xi)2c(xi)
N∑

j=1

c(xj)Wij ,

Mγ = −4κ
N∑

i=1

f̃(xi)(f(xi) + τ)c(xi)
N∑

j=1

c(xj)Bij ,

Nγ = −4κ
N∑

i=1

f̃(xi)(f(xi) + τ)c(xi)
N∑

j=1

c(xj)Wij .

We can avoid repeating the computation of some of these terms by defining

B̄i = c(xi)
N∑

j=1

c(xj)Bij ,

W̄i = c(xi)
N∑

j=1

c(xj)Wij ; (5.3.23)

then we will have

Mκ = −2
N∑

i=1

f̃(xi)2B̄i,

Nκ = −2
N∑

i=1

f̃(xi)2W̄i,

Mγ = −4κ
N∑

i=1

f̃(xi)(f(xi) + τ)B̄i,

Nγ = −4κ
N∑

i=1

f̃(xi)(f(xi) + τ)W̄i. (5.3.24)

Also observe that these quantities are helpful for computing J̃1 and J̃2 easily:

J̃1 =
N∑

i=1

B̄i,

J̃2 =
N∑

i=1

W̄i,
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which shall prove to be useful under any metamodel that needs to compute J̃ .

5.3.4 Some remarks about the method

One might argue that MDT is a naive method, in the sense of that it assumes that the separating

frontier found by the SVM is parallel to the real one, which is not likely to happen. If this is not

the case, it is not clear whether the transformation could make any improvement. However, as in

the original Williams’ method [22] some improvements are claimed, we expect at least the same

accuracy level. We shall test this in the experiments chapter.

5.4 Looking for optimal SV transformation weights: TSVT

Another method is proposed in this work, in order to analyse the influence of different kinds of

transformation functions. This time an adaption of the function proposed by Gang Wu (4.2.1) is

used, in the form

c(x) =
∑
i∈SV

e−τ̄i‖x−xi‖2 , (5.4.1)

where

τ̄i =
1
τ̃2
i

. (5.4.2)

As stated before, we believe that a finer tuning of these parameters could lead to a better trans-

formation, and so we use a metamodel to adjust them. The τ̃ parameters have been inverted in the

formula in order to avoid divisions by zero in the metamodel search.

The pseudocode of this method, which we shall name Tuned Support Vector Transformation

(TSVT), is shown in algorithm 8. Although conceptually this method is simpler than MDT, in fact

it is slower to compute as the number of parameters to be tuned by the metamodel is actually the

number of support vectors, which depends on the number of patterns in the training set. However

we would expect to obtain better results from it, since it provides a more general transformation.

Similarly to the relationship between MDT and Williams’ methods, we would also expect to obtain

at least the same accuracy results with TSVT than with Gang Wu’s method.

5.4.1 Obtaining parameters values for TSVT

Analogously to the MDT case, if we want to compute the gradients of the class separability with

respect to the parameters of the transformation function of TSVT we must do some calculations.

This time we have as many parameters to optimize as support vectors, since we have a τk for each
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Algorithm 8 TSVT
1: Train a SVM svm0 with kernel matrix K0 = K and the patterns in X .

2: Obtain the misclassification error of svm0 over V : εnew.

3: Initialize d(x) = 1 ∀ x ∈ X , t = 1, εold = ∞
4: while εold − εnew > θ && t < MAX do
5: Use a metamodel to obtain parameters τ̄i for the Support Vectors.

6: Compute ct−1(x) ∀ x ∈ X using (4.2.1).

7: Compute d(x) = d(x)ct−1(x), dt−1(x) = d(x) ∀ x ∈ X .

8: Compute the new kernel matrix Kt using ct−1(x) and Kt−1.

9: εold = εnew.

10: Train a new SVM svmt with kernel matrix Kt and the patterns in X .

11: Obtain the misclassification error of svmt over V : εnew.

12: t+ +.

13: end while
14: return svmt−1.

one. The gradient of the class separability with respect to each parameter has a similar form than

the one in MDT (5.3.21), namely

∇τ̄k
J̃ =

1
J̃2

(
Mτ̄k

−Nτ̄k
J̃
)
, (5.4.3)

where

Mτ̄k
= ∇τ̄k

J̃1 = 2qTB · ∇τ̄k
q,

Nτ̄k
= ∇τ̄k

J̃2 = 2qTW · ∇τ̄k
q. (5.4.4)

Supposing we want to compute the derivative of the transformation function over a pattern xj

with respect to a parameter τk, we have

∂c(xj)
∂τ̄k

=
∑
i∈SV

∂

∂τ̄k
e−τ̄i‖xj−xi‖2

= −e−τ̄k‖xj−xk‖2‖xj − xk‖2, (5.4.5)

and so

∇τ̄k
q =


−e−τ̄k‖x1−xk‖2‖x1 − xk‖2

...

−e−τ̄k‖xN−xk‖2‖xN − xk‖2

 . (5.4.6)
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Again, the gradients can be written as in (5.3.21)

Mτ̄k
= 2qTB∇τ̄k

q

= 2
N∑

i=1

N∑
j=1

Bijc(xi)(−e−τ̄k‖xj−xk‖2‖xj − xk‖2)

= −2
N∑

j=1

e−τ̄k‖xj−xk‖2‖xj − xk‖2
N∑

i=1

Bijc(xi)

= −2
N∑

j=1

e−τ̄k‖xj−xk‖2‖xj − xk‖2 B̄j

c(xj)
,

Nτk
= −2

N∑
j=1

e−τ̄k‖xj−xk‖2‖xj − xk‖2 W̄j

c(xj)
. (5.4.7)

This time these expressions are more complex, but nevertheless the calculation of B̄ and W̄ can

be used to compute them as well as the class separability J̃ .





Chapter 6

Experiments

In this chapter we shall put under test the proposed methods, as well as some of the reviewed ones

for comparison purposes. A detail of these methods is shown in table 6.0.1. Along with the stan-

dard Support Vector Machine, three conformal transformation methods from the literature were

implemented: Amari’s original proposal, ACT and Williams’ method. Regarding the proposed

algorithms, both MDT and TSVT were implemented with three possible options for parameter se-

lection: gradient ascent of the class separability, genetic ascent (CMA-ES) of the class separability,

or genetic ascent of the g-means accuracy over a validation set.

SVM Standard Support Vector Machine, without any conformal transformation.

AMA Amari’s original method (1).

ACT Gang Wu’s Adaptive Conformal Transformation (4).

WIL Williams’ method (6).

MDT–JGRAD Margin Displacement Transformation (7) with gradient ascent on separability.

MDT–JMETA Margin Displacement Transformation (7) with genetic ascent on separability.

MDT–VMETA Margin Displacement Transformation (7) with genetic ascent on validation error.

TSVT–JGRAD Tuned Support Vector Transformation (8) with gradient ascent on separability.

TSVT–JMETA Tuned Support Vector Transformation (8) with genetic ascent on separability.

TSVT–VMETA Tuned Support Vector Transformation (8) with genetic ascent on validation error.

Table 6.0.1: Methods tested in the experiments.

We will first explain the implementations made of these methods, next we shall show which

datasets were used for the tests, and finally the results of the experiments will be presented.

65
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6.1 Methodology

All the methods were coded in the C programming language. For the standard SVM, which is also

the base of all the other methods, an implementation of the MDM algorithm for SVM classification

was made [11]. Regarding the reviewed methods of the literature, as no public implementations

are available (up to our knowledge), they were also coded along the new, proposed methods. The

only module which was not necessary to be programmed was the CMA-ES algorithm, since a good

implementation is downloadable from the author’s webpage [27].

The Gaussian kernel (2.1.29) was used in all the experiments. Its 2σ2 parameter and the SVM

penalty parameter C were chosen beforehand to a fixed value as 2σ2 = 50 and C = 10. As the

tested methods are supposed to be able to optimize the kernel, these prefixed values should not

appear as a major drawback (the values of these parameters are usually chosen by cross-validation

techniques).

Regarding the implemented MDM algorithm, in fact an accelerated version is used, which was

previously presented as part of another work. This implementation solves a Nearest Point Problem

variant of the CH-SVM, which detects the appearance of cyclic updates along training and tries to

avoid them. For further details, see [28].

About the CMA-ES algorithm, the default parameters of the implementation are used (see

[27, 29]) with a prefixed number of generations of 30. The number of offsprings in each generation

is automatically adjusted proportionally to the number of parameters to be optimized, which are

two in MDT methods but variable in TSVT. This adjustment is automatically done by the CMA-ES

formulae [24].

As we are dealing with imbalanced datasets, the g-means error criterion is used, which is more

appropriate for this kind of problems, as a perfect classification in the majority class is useless if no

pattern in the minority class is correctly classified. The g-means error is then defined in a similar

way as the g-means accuracy (3.1.2), namely

gerr = 1−
√
a+a−. (6.1.1)

Finally, all the tested conformal methods were adapted so as to be applicable in an iterative

manner. Although most of the presented methods already include this capability, Amari’s (algo-

rithm 1) and Williams’ (algorithm 6) only apply a unique transformation, and so they have been

slightly modified to obtain a fair comparison. Also, all the methods keep a subset of the training

patterns as a validation set in which to test the obtained accuracy after each transformation, in order

to decide when the algorithm should stop applying transformations; this stopping criterion was first

proposed in the ACT method (algorithm 4).
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6.2 Experimental scenarios and datasets used

Two experimental scenarios were considered in this work:

• An artificial toy dataset where the separating boundaries found by the methods could be

observed.

• Real problems datasets where class imbalance is present.

With these experiments we try to find out whether these methods are effective for alleviating

the problems induced by the class imbalance, and whether they are also effective in improving

the kernel function even if the dataset is not too much imbalanced. For the artificial scenario the

checkers board problem previously presented is used. A detailed description of the datasets is

shown in table 6.2.1. All the real problems datasets were obtained from the UCI repository [30].

For the datasets with more than two classes (Glass and Segment), the task presented to the SVM

was to classify the smallest class (7 and 1, respectively) against the rest.

Dataset N N+ N− d

Checkers board 2020 20 2000 2

Glass7 214 29 185 9

Segment1 2310 330 1980 19

Hepatitis 155 33 123 32

Sonar 208 97 111 60

Heart disease 297 137 160 13

Ionosphere 351 126 225 33

Wisconsin Breast Cancer Diagnosis 569 212 357 30

Table 6.2.1: Datesets used in the experiments. The total number of patterns (N ), positive class patterns

(N+), negative class patterns (N−) and input dimension (d) of the datasets are shown.

In the artificial scenario an instance of the checkers board problem was generated with 2000

patterns in the negative class and 20 in the positive class. This instance was used as the training set,

generating another one with 20000 patterns in each class as the test set, uniformly spaced so as to

observe the boundary computed by the methods.

On the other hand, when dealing with the real problems scenario a 7-fold cross-validation was

performed on each dataset to estimate the generalization error. The folds were generated in a

stratified manner, that is, maintaining the imbalance ratio that was present in the complete dataset.

These decisions were taken in this way so as to follow as much as possible the experimental work

presented in [15].
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6.3 Results

6.3.1 Obtained results in the checkers board problem

In the checkers board problem we can observe a noticeable improvement when applying some of the

conformal transformation methods, as is shown in table 6.3.1. However, in the remaining methods

the error rate is unchanged. Recall that these methods use a validation set to test whether applying

the transformation would produce any improvement, and they do not apply it if no advantage is

obtained. Therefore it is not strange to observe that some of them generate the same error ratio as

the standard SVM (no transformations are being applied).

Method Misclassification rate g-means error

SVM 0.45 0.69

AMA 0.15 0.16

ACT 0.14 0.16

WIL 0.45∗ 0.69∗

MDT-JGRAD 0.45∗ 0.69∗

MDT-JMETA 0.15 0.16

MDT-VMETA 0.45∗ 0.69∗

TSVT-JGRAD 0.15 0.16

TSVT-JMETA 0.14 0.15

TSVT-VMETA 0.45∗ 0.69∗

Table 6.3.1: Error levels obtained with the studied methods for the checkers board problem. Errors are

measured in g-means error. An asterisk appears when the method decided not to apply any transformation,

thus obtaining the same error rate as the SVM.

A depiction of the separating frontier found by the SVM is shown in figure 6.3.1. Observe

how it does not follow the real frontier at all, as a separating hyperplane which classifies almost

every point as belonging to the majority class has been chosen. The most reasonable explanation

for this result is one of the three we pointed out in section 3.1: the SVM is intentionally incurring

in misclassification of the points of the minority class to obtain a better margin. Thus, a model with

poor generalization ability is obtained.

However, if we depict the separating frontier obtained after using TSVT-JMETA method, a

better situation is observed (figure 6.3.2). Hence, the conformal transformation has been able to

find a feature space in which the class imbalance is alleviated.
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Figure 6.3.1: The results of training the SVM over the checkers board problem. The correctly classified

region is depicted in blue, while the wrongly classified is depicted in red. So as to obtain a better margin the

SVM is classifying mostly all the points as belonging to the majority class, placing the separating frontier in

the top-right quadrant. Hence, a bad g-means error appears.

6.3.2 Obtained results in real problems datasets

In tables 6.3.2 and 6.3.3 the g-means errors obtained in each dataset for each method are shown.

Marked in bold is the error rate of the best method. As it can be seen, results are not as promising

as the ones obtained in the checkers board problem. The SVM without transformations is the best

method in four of the seven datasets, while in the other three Amari’s method is the best two times,

while in the remaining the winner is MDT-VMETA. Regarding the magnitude of the improvement,

only in the dataset Segment1 a great advantage is obtained when applying a conformal method.

The best results on this and the Glass7 datasets are more or less in agreement with the ones per-

formed in [15]. In spite of this, when applying the same methods to the rest of datasets only small

improvements (if any) are obtained.

Analysing the obtained results in each dataset we can see the following. In Glass7 the SVM

g-means error level seems to be good; however when trying to use the conformal methods, most of

them decide not to apply any transformation. Only Amari’s and ACT methods perform transforma-

tions, nevertheless the obtained errors are worse than in the SVM case. This fact may seem strange,

as the methods do not apply any transformation if they think they will only worsen the accuracy of

the SVM. However have in mind that a separate validation set is used for this decision, so it may

well happen that a transformation which improves the accuracy on the validation set, worsens it on

the test set. In the end no method is able to obtain a better model, although applying a Wilcoxon

rank test [31] at the 10 % level shows that there is no statistical difference between them.
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Figure 6.3.2: The results of training the SVM using TSVT-JMETA method over the checkers board problem.

The correctly classified region is depicted in blue, while the wrongly classified is depicted in red. Although

the boundary is still not perfect, a noticeable improvement has been obtained comparing with figure 6.3.1.

Regarding the Segment1 dataset, this time a great improvement is obtained when using Amari’s

method, which is confirmed by the Wilcoxon test. Also ACT and MDT-VMETA obtain noticeable

improvements, although only the former has statistical significance. The remaining methods do not

apply any transformation or perform similarly to the SVM, except TSVT-VMETA, which worsens

the error rate (not significantly) by applying an inappropriate transformation. Observe also that the

SVM g-means error is quite large, so the initial SVM is probably a bad model.

About the Hepatitis dataset, a slight improvement appears when using MDT-VMETA. The

other methods that apply a transformation vary in small quantities the error level of the SVM,

either worsening or improving it. In general, no statistical difference appears.

In the Sonar dataset every method which applies a transformation only worsens the results.

This might indicate that the validation set is not representative of the problem, and so misleading

hints about what transformation to apply are followed. The only methods that do not get a worse

accuracy are those which do not apply any transformation. For the rest, the worsening showed a

significant difference in the Wilcoxon test.

On the other hand, in the Heart Disease dataset only Amari’s method applies the transformation,

and obtains a slight improvement in accuracy. This time the validation set seems to have fulfilled its

purpose, as when the decision of using a transformation is chosen no worsening appear. However,

the improvement is not statistically significant.

Again, in the Ionosphere dataset the results are quite similar to the ones obtained in the Sonar

problem, although this time only ACT and TSVT-JMETA methods apply a transformation. How-

ever, these transformations result in a worse accuracy, with statistical difference.
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Method Glass7 Segment1 Hepatitis Sonar

SVM 0.088 ± 0.100 0.703 ± 0.296 0.499 ± 0.332 0.104 ± 0.056

AMA 0.091 ± 0.097 0.168 ± 0.341 0.499 ± 0.332∗ 0.161 ± 0.042

ACT 0.129 ± 0.119 0.381 ± 0.437 0.499 ± 0.332∗ 0.161 ± 0.042

WIL 0.088 ± 0.100∗ 0.703 ± 0.296∗ 0.504 ± 0.327 0.104 ± 0.056∗

MDT-JGRAD 0.088 ± 0.100∗ 0.703 ± 0.296∗ 0.504 ± 0.327 0.104 ± 0.056∗

MDT-JMETA 0.088 ± 0.100∗ 0.703 ± 0.296∗ 0.497 ± 0.323 0.189 ± 0.090

MDT-VMETA 0.088 ± 0.100∗ 0.615 ± 0.363 0.477 ± 0.334 0.169 ± 0.035

TSVT-JGRAD 0.088 ± 0.100∗ 0.703 ± 0.296∗ 0.497 ± 0.323 0.164 ± 0.041

TSVT-JMETA 0.088 ± 0.100∗ 0.701 ± 0.390 0.492 ± 0.328 0.165 ± 0.038

TSVT-VMETA 0.088 ± 0.100∗ 0.783 ± 0.279 0.499 ± 0.332∗ 0.161 ± 0.042

Table 6.3.2: Error levels obtained with the studied methods for Glass7, Segment1, Hepatitis and Sonar

datasets. Errors are measured in g-means error. An asterisk appears when the method decided not to apply

any transformation, thus obtaining the same error rate as the SVM.

Finally, in the Wisconsin Breast Cancer Diagnosis dataset most of the methods do not use any

transformation, and the ones that do (Wilsons’ and MDT-JGRAD) only attain a tiny increase in the

error rate. Therefore, as expected, the Wilcoxon test shows no differences.

To understand this results, notice first that in the datasets where a great improvement appears

(Checkers board and Segment1), the initial kernel choice seems to behave badly, as large g-means

errors are obtained. These errors suggest that the SVM is classifying most of the patterns as be-

longing to the majority class. Starting with such a bad model, the conformal methods are able to

improve the kernel function and therefore get a better error rate. However, when the base SVM

model behaves fine (such as in Sonar or Ionosphere) no improvements seem to appear. In this way,

conformal transformation methods seem to provide a way to improve bad initial kernel selections.

This phenomenon also appears up to some point in the works of Si Wu [21] and Williams [22].

However, taking again as a example the checkers board problem, compare the optimized bound-

ary obtained with TSVT-JMETA in figure 6.3.2 with the one previously shown in figure 3.1.3. In

this second one no conformal method was used, but instead a Parameter Vector Grid Search (PVGS)

method was used to find the optimal 2σ2 kernel parameter and the C penalty factor of the SVM.

This method uses cross-validation procedures to select those parameters which maximize the esti-

mated classification rate (for further details see [32]). As it can be observed, the boundary obtained

using PVGS is more similar to the ideal one than the one obtained with TSVT-JMETA, and so is

the accuracy of the model. However, it is worth noting that the computational costs of PVGS are

much larger than those related to TSVT-JMETA, as the former involves training a great number of
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Method Heart Disease Ionosphere Breast Cancer

SVM 0.201 ± 0.072 0.066 ± 0.045 0.021 ± 0.014

AMA 0.191 ± 0.068 0.066 ± 0.045∗ 0.021 ± 0.014∗

ACT 0.201 ± 0.072∗ 0.093 ± 0.054 0.021 ± 0.014∗

WIL 0.201 ± 0.072∗ 0.066 ± 0.045∗ 0.026 ± 0.014

MDT-JGRAD 0.201 ± 0.072∗ 0.066 ± 0.045∗ 0.026 ± 0.014

MDT-JMETA 0.201 ± 0.072∗ 0.066 ± 0.045∗ 0.021 ± 0.014∗

MDT-VMETA 0.201 ± 0.072∗ 0.066 ± 0.045∗ 0.021 ± 0.014∗

TSVT-JGRAD 0.201 ± 0.072∗ 0.066 ± 0.045∗ 0.021 ± 0.014∗

TSVT-JMETA 0.201 ± 0.072∗ 0.075 ± 0.053 0.021 ± 0.014∗

TSVT-VMETA 0.201 ± 0.072∗ 0.066 ± 0.045∗ 0.021 ± 0.014∗

Table 6.3.3: Error levels obtained with the studied methods for Heart Disease, Ionosphere and Wisconsin

Breast Cancer Diagnosis datasets. Errors are measured in g-means error. An asterisk appears when the

method decided not to apply any transformation, thus obtaining the same error rate as the SVM.

different SVMs in order to perform the cross-validations, while the latter only trains a SVM per

iteration (which are usually less than 3).



Chapter 7

Conclusions and discussion

In this work we have reviewed the problem of unbalanced dataset classification and the techniques

proposed in the literature to overcome it using Support Vector Machines, specifically those related

with conformal kernel transformations. Furthermore, we have proposed several variants of these

methods and tested them with artificial and real problems.

Although the theory of conformal transformations seems to provide a powerful and interesting

way of adapting a kernel function to a particular training set so as to obtain a data-dependent kernel,

our experiments show that the existing and proposed methods are quite limited. Real improvements

were only observed when a poor initial kernel parameter selection was made. Better results were

obtained in an artificial dataset by doing an “intelligent” (more or less thorough) search of those

parameters. Despite these results, we should claim that methods like ACT or those based in JGRAD

or JMETA approaches are way faster than a thorough search of kernel parameters, although their

results are worse. So that, when time restrictions exists, those methods may well provide some

improvement over just using a SVM with poor prefixed parameters.

Anyway, we must admit that these methods make some naive assumptions. As we are dealing

with Gaussian kernels, the produced feature space has (potentially) infinite dimensions. In such

a complex space, assuming that the support vectors are near the real data boundary or that the

boundary found by the SVM has a similar orientation than the real boundary of the data might

be unrealistic. In an infinite dimensional space all the training patterns may well become support

vectors, giving no clues about the area where the spatial resolution should be augmented. A similar

reasoning tells that a simple displacement of the SVM boundary does not necessarily lead us to that

“optimal augmentation area”.

Regarding the use of the separability criterion J , note that it has the same drawbacks that are

present in Fisher’s Discriminant Analysis [4], as pointed out in [33]. The J criterion assumes that

the classes are linearly separable in the feature space, which may or may not be true depending

on the chosen kernel. Also, the classes should be unimodal, other requisite which might not be
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met. Although the SVM itself assumes linear separability in the feature space, the J criterion may

provide misleading hints about what kernel function we should choose, arriving to an inappropriate

feature space.

In a nutshell, we think the geometry of the induced feature space is way too complex to make

these kind of assumptions. Other factors apart from linear separability, such as the curvature of the

manifold containing the patterns, may have a decisive role over the boundary obtained by the SVM,

although they are not considered in the shown methods. Furthermore, pursuing linear separability

in the feature space (and hence perfect classification) is not completely desirable, as overfitting is

likely to appear.

Apart from that, its noticeable that in a great proportion of the experiments the conformal

methods do not apply any transformation at all. This indicates that the stopping criterion used

(the error in the validation set) might be too strict. However, in other experiments not presented

here we have perceived that Amari’s method tends to overfitting if we apply a fixed number of

transformations (e.g. three or five). As this method increases the spatial resolution around SV and

wrongly classified patterns are all in this group, in the new feature space the SVM will pay more

attention to them, hence making efforts to classify every point correctly. We suppose that the other

methods could suffer from the same problem, as they are directly or indirectly (through the decision

function) using the information from every SV.

Concluding, we believe that the theory behind conformal transformations methods could pro-

vide ways to adapt and learn an appropriate data-dependent kernel matrix. However, more work

is needed to find more suitable transformation functions so that they only focus in relevant pat-

terns (e.g. the SV near the margin), as well as valid criterions to guide these transformations.

Additionally procedures to control overfitting should be developed in order to obtain not only a

data-dependent feature space, but also to guarantee its generalization ability.



Appendix A

Related work

During the Master course for which this thesis is presented, other works related with SVMs and

the topic of machine learning were developed, primarily in the form of papers sent to several con-

ferences. In this appendix we will briefly review those works so as to show the results of other

research activities done along the course.

A.1 Metamodels for automatic parameter tuning

In our paper Finding Optimal Parameters by Discrete Grid Search [32] we developed a metamodel

to find the optimal parameters for the training algorithm of a classification or regression model.

This metamodel (named PVGS) performs a grid search in the parameter space so as to find the

optimal choice over a discrete version of them. The grid search is dynamic in the sense that it starts

using a coarse grid which gets focused around the area where better results are observed. Although

the search cost is still exponential with respect the number of parameters, it is much smaller than

an exhaustive cross-validation search, which is the usual method.

In our posterior work Finding Optimal Parameters by Deterministic and Random Discrete Grid

Search [34] we develop further the method, describing a variant to deal with the optimization of a

larger number of parameters. This variant proceeds in a similar fashion than the original one, but

instead of evaluating all the possible points in each grid, a simulated annealing method is used to

select which of them are worth to test. A comparison with the black box optimizer CMA-ES [24]

is made, showing similar performance.

In both cases, the parameters of multilayer perceptrons and SVMs are tuned using the pro-

posed methods, and the obtained models tested with some public available datasets, showing that a

fine selection of those parameters can produce noticeable improvements in accuracy. In this work

we have used PVGS to find the optimal C and 2σ2 parameters of the SVM in the chekers board

problem, as comparison against the proposed conformal methods.
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A.2 Relationships between SVM algorithms

In another work, Square Penalty Support Vector Regression [14], we study the relationships be-

tween the SVM for regression and classification problems. In this way we provide a framework for

turning a regression task into a classification one which can be solved using CH-SVM. Although

this transformations were known in the literature [13, 35], we provide an alternative proof of them.

We also note that when using square penalties, a relationship can be established between the ob-

tained support weights and their position respect to the regression tube. Finally we test the method

in benchmark datasets and in a real wind power prediction problem.

Separately, in On the equivalence of the SMO and MDM Algorithms for SVM Training [36] we

show that the popular method SMO [8] for training a SVM is in fact closely related to the geometric

algorithm MDM [11] for CH-SVM training. Traditionally these two theoretical approaches (SVM

and CH-SVM) were known to be equivalent, but no equivalences between their algorithms were

shown.

Following a similar fashion, in Simple Clipping Algorithms for Reduced Convex Hull SVM

Training [37] we propose a modified version of GSK [12] and MDM which solves the Reduced

Convex Hulls SVM (RCH-SVM) [13], a theoretical version of the CH-SVM with linear penalties.

Although other algorithms to solve RCH-SVM have been proposed [38], they are in general more

complex than their CH-SVM counterpart, while ours are derived naturally from the original GSK

and MDM algorithms.

A.3 Improvements of SVM training algorithms

An improvement to speed up the MDM algorithm [11] for SVM training is proposed in An acceler-

ated MDM algorithm for SVM training [28]. Observing the evolution of MDM iterations, cyclical

updates are detected, which can be avoided by keeping track of the last updates and performing a

combined update when a cycle appears. Experimental results show that noticeable improvements

in both number of iterations and kernel operations are achieved when using this method. In this

work we have used this algorithm for the training of the SVMs involved in every tested method.

Also, another version of the MDM algorithm is proposed in A 4 – vector MDM Algorithm for

Support Vector Training [39] where it is modified so as to perform an update in each class per

iteration, while normally one has to choose between updating in one class or the other.

A.4 Wind Power Forecasting and Kernel Methods

As a practical application of the SVMs, a work concerning the prediction of the wind power pro-

duction of wind farms all around Spain was developed: Kernel Methods for Wide Area Wind Power
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Forecasting. Historical power production and weather prediction data provided by Red Eléctrica

Española, the European Centre for Medium-Range Weather Forecasts and the Instituto de Inge-

nierı́a del Conocimiento was used for the experiments. A multilayer perceptron (a usual predicting

method in this field) was compared against a SVM, the latter showing better results both in predic-

tion accuracy and in computational costs for training.





Appendix B

Notation glossary

For clarity, we provide here a summary of the notation used in this work. Please note that in order

to have a common notation in all the work, it may not follow the original notation of the reviewed

methods and proposals, although we have tried to be as general as possible.

αi Support weight of the i-th training pattern; i-th inequality Lagrange multiplier.

αt
i Support weight of the i-th training pattern at transformation step t.

β Interpolation factor in KBA.

βi i-th equality Lagrange multiplier.

γ Margin displacement parameter.

ε Model error.

κ Williams’ transformation function parameter.

θ Error tolerance for stopping criterion.

Θ Dual function of an optimization problem.

Φ SVM mapping function to the feature space.

σ Gaussian kernel width parameter.

τ Width parameter (unique) of the conformal transformation function.

τi i-th width parameter of the conformal transformation function.

τ t
i i-th width parameter at step t of the conformal transformation function.
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τ̃i i-th corrected width parameter of the conformal transformation function.

τ̄i i-th width parameter of the TSVT transformation function.

η Boundary displacement in KBA.

η+ Positive SV transformation correction factor.

η− Negative SV transformation correction factor.

µi Slack variable of the SVM for the i-th pattern in the negative class.

ξi Slack variable of the SVM for the i-th pattern in the positive class.

b Bias of the SVM.

b̂ Bias of the CH-SVM.

b̃ Displaced bias in MDT.

∆b Boundary movement term.

B Between-class scatter matrix in the feature space.

c Conformal transformation function.

ct(xi) Transformation coefficient in step t of the i-th pattern.

C Penalty factor of the SVM.

C+ Biased penalty factor for the positive class of the SVM.

C− Biased penalty factor for the negative class of the SVM.

CH-SVM Convex Hull - Support Vector Machine.

C(X) Convex Hull of the set of points X .

d Number of input variables of the patterns (dimension of the input space).

dx Differential displacement in the input space.

dz Differential displacement in the feature space.

dt(xi) Cumulative transformation coefficient in step t of the i-th pattern.

D Dimension of the feature space.
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f Output function of the SVM.

f̂ Output function of the CH-SVM.

f̃ Corrected output function in MDT.

F Objective function of an optimization problem.

F Feature space of the SVM.

g Kubat’s g-means error criterion value.

gi i-th inequality restriction of an optimization problem.

gij Components of the Riemannian tensor of distances in a manifold.

hi i-th equality restriction of an optimization problem.

I Input space of the SVM.

J Fisher’s separability criterion.

J1 Numerator of Fisher’s separability criterion.

J2 Denominator of Fisher’s separability criterion.

J̃ Fisher’s separability criterion after the transformation.

J̃1 Numerator of Fisher’s separability criterion after the transformation.

J̃2 Denominator of Fisher’s separability criterion after the transformation.

k Kernel function of the SVM.

k̃ Transformed kernel function of the SVM.

K Kernel matrix.

Kt Kernel matrix at step t.

K̃ Transformed kernel matrix.

KKT Karush-Kuhn-Tucker conditions.

L Lagrangian function of an optimization problem.

LD Dual function of the SVM.
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Lp Lagrangian function of the SVM.

m Margin of the SVM.

m+ Positive hyperplane “margin” in MDT.

m− Negative hyperplane “margin” in MDT.

M Distance parameter of the conformal transformation function.

MDT Margin Displacement Transformation.

N Number of patterns in the training set.

N− Number of patterns from the negative class in the training set.

N+ Number of patterns from the positive class in the training set.

q Vector containing the result of applying c to each patterns in X .

R Spatial magnification ratio.

SV Support Vector.

SV + Number of positive support vectors.

SV − Number of negative support vectors.

SVM Support Vector Machine.

Sb Interpolated artificial support vectors in KBA.

V Validation set.

V Magnification factor of the kernel function.

Ṽ Magnification factor of the transformed kernel function.

w Normal vector of the separating hyperplane.

ŵ Normal vector of the separating hyperplane found by CH-SVM.

w̃ Corrected normal vector of the separating hyperplane in MDT.

ŵ+ Nearest point in the convex hull of the positive class.

ŵ− Nearest point in the convex hull of the negative class.
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w̃+ Corrected nearest point of the positive class in MDT.

w̃− Corrected nearest point of the negative class in MDT.

‖w‖ Norm of the vector w.

W Parameters vector of an optimization problem; within-class scatter matrix in the feature space.

xi i-th training pattern of a set.

xj j-th input variable of the training patterns.

xi
j j-th input variable of i-th training pattern of a set.

X Set of training patterns.

X+ Set of training patterns belonging to the positive (minority) class (yi = +1).

X− Set of training patterns belonging to the negative (majority) class (yi = −1).

yi Class of the i-th pattern of a set, ∈ {−1, 1}.
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