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Chapter 1

Introduction

This thesis deals with four-dimensional Supergravity theories and solutions thereto.
Supergravities are very interesting theories for many reasons. In this introduction we
shall give a short overview of the main motivations for introducing Supersymmetry,
Supergravity and, last but not least, Superstring Theory. We will briefly describe how
supersymmetry might help to address some “problems” of the Standard Model, then
we shortly summarize some basic facts about Superstring Theory and its low energy
limit, Supergravity. In the second part of this introduction we will discuss gaugings
of Supergravity and its implications, focussing on the so-called tensor hierarchy. In
the section 1.3 we will describe schematically how to find supersymmetric solutions
to a given Supergravity theory. The outline of this thesis is given in the last section
of this introduction.

1.1 Supersymmetry, Supergravity and Superstring
Theory

In the last decades of the past century a new theory, Superstring Theory, arose.
There are two basic ingredients of Superstring Theory. First, there is the assumption
that the fundamental constituents of matter are not pointlike particles, but oscillating
one-dimensional objects: strings. The second basic ingredient of Superstring theory is
Supersymmetry (SUSY). We start by giving an overview of some open open questions
which supersymmetry, especially in the framework of Superstring Theory, might help
to answer.

The Standard Model (SM) of elementary particle physics is a spectacularly suc-
cessful theory of the known particles and their electroweak and strong interactions [1].
Experiments have verified its predictions with incredible precision, and all the parti-



2 Introduction

cles predicted by this theory have been found apart from the Higgs boson, which is
expected to be detected soon at particle accelerators, such as e.g. at LHC at CERN.
However, the Standard Model does not explain everything. For example, gravity is
not included in the Standard Model of particle physics. Due to its weakness (at
a typical energy-scale of particle physics, it is about 1072° times weaker than the
weak force and 1072® times than the strong nuclear force!) gravity is irrelevant for
describing the interactions of the matter studied by particle physicists.

While the electroweak and strong forces are transmitted by spin-1 particles, gravity
is supposed to be transmitted by a particle which carries spin 2, and in contrast to the
other forces, it acts on every particle. On the one hand, Quantum Field Theory is used
to explain the fundamental interactions at small distances, while on the other hand the
large scale structure of the universe is governed by gravitational interactions described
accurately by Einstein’s General Relativity. Trying to add gravity to the Standard
Model and in particular to combine General Relativity with Quantum Mechanics
leads to inconsistencies [2]. From a theoretical and conceptual point of view this is
fairly unsatisfactory since we assume that there should be a way to describe the four
fundamental forces within the framework of a unique underlying theory. The biggest
problems of the Standard Model, as recognized by its practitioners, are:

e The SM is a Yang-Mills gauge theory, in which the gauge group SU(3). x
SU(2)r, x U(1l)y is spontaneously broken to SU(3). x U(1)gam by the non-
vanishing vacuum expectation value (VEV) of a fundamental scalar field, the
Higgs field. Phenomenologically, the mass of the Higgs boson associated with
electroweak symmetry breaking must be in the electroweak range (h) ~ 246
GeV. However, the contribution of radiative corrections to the Higgs boson mass
is monzero, divergent and positive. While the corrections to the electron mass
are themselves proportional to the electron mass and quite small, even if we use
the Planck scale as cut-off the mass of Higgs particles is very sensitive to the
scale.the (mass)? of the Higgs boson receives radiative corrections from higher-
order terms in perturbation theory and a fine tuning of 28 orders of magnitude
is necessary in order to obtain a phenomenologically viable Higgs mass. This
is possible but very unnatural. This is the so-called hierarchy problem and it is
the main motivation for introducing supersymmetry at the weak scale.

The best studied way of achieving this kind of cancellation of quadratic terms
(also known as the cancellation of the quadratic divergencies) is supersymmetry
(SUSY) [3]. Supersymmetry is a symmetry relating bosons and fermions: it
relates particles with integer spin to those of half-integer spin and vice versa,
thus assigning every particle a “superpartner” with spin differing by % This
essentially means that the two basic groups of particles of the Standard Model of

1The exact strengths depend on the particles and energies involved.
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Figure 1.1.1: Left: A Higgs boson dissociating into a virtual fermion-
antifermion pair in the Standard Model. Right: A Higgs boson dissociating
into a virtual sfermion-antisfermion pair. This diagram cancels the one on the
left.

Particle Physics, namely matter constituents (those with half-integer spin) and
intermediate particles, which carry the forces (those whose spin is an integer),
become related to each other. In principle every fermion is accompanied by a
bosonic superpartner with the same mass? and vice versa for the bosons. For
example, the quarks, which are fermions, are accompanied by squarks, which are
bosons. Similarly, the gluons, being bosons, are accompanied by gluinos, which
are fermions [2]. Thus, supersymmetric theories are characterized by equal
numbers of bosonic and fermionic degrees of freedom. In the supersymmetric
extension of the Standard Model the quadratic corrections to the Higgs boson
mass are automatically canceled to all orders in perturbation theory. This is due
to the contributions of superpartners of ordinary particles. The contributions
from bosonic loops cancel those from the fermionic ones because of an additional
factor -1 arising from Fermi statistics, as shown in Fig.1.1.1.

e The Standard Model cannot describe accurately the unification of the gauge
couplings in the framework of a The Standard Model fails to deliver gauge
coupling unification as envisaged by the paradigm of a Grand Unified Theory
(GUT). Supersymmetric extensions of the Standard Model do a far better job.

The philosophy of Grand Unification is based on a hypothesis: gauge symmetry

2Since at today’s particle accelerators none of the predicted superpartners has been found yet, if
Supersymmetry is a symmetry of Nature, it must be broken (at least at low energy scale) by some
appropriate mechanism.
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increases with energy in the sense that at high energies all (mass)? become negli-
gible. Bearing in mind the unification of all forces of Nature on a common basis
and, neglecting gravity for the time being, the idea of GUTs is the following:
all known interactions are different branches of a unique interaction associated
to a simple (in the mathematical sense) gauge group.

Low energy —> High energy
SUB)e ® SU(2)L ® Ull)y — Gour
g3 92 91 - geur

Table 1.1.1: Unification of gauge couplings in a Grand Unified Theory.

1
a

My meur "
Figure 1.1.2: Coupling constant unification in supersymmetric theories [4]. The
constants ag, a2 and oy correspond to the three factors in SU(3) x SU(2) xU(1).

Although there is a big difference in the values of the coupling constants at
low energies of strong, weak and electromagnetic interactions, a unification is
possible at high energy [3]. The crucial point is the running of the coupling
constants. Their values depend on the energy scale at which they are measured
as well as on the particle content of the theory. After the precise measurement
of the SU(3) x SU(2) x U(1) coupling constants, it has become possible to
test the unification numerically. Using their values measured at low energies
one can extrapolate them to higher energies. It turns out that if one does so
in the framework of the Standard Model of particle physics the three coupling
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constants do not meet in one point, whereas when taking the Minimal Super-
symmetric Standard Model (MSSM) they indeed do unify in one point Mgy,
as schematically shown in Fig. 1.1.2 (supposing that the SUSY masses are of
the order of 1 TeV [3]).

e Many attempts have been made to make General Relativity consistent with
Quantum Field Theory, especially within the framework of a theory which com-
bines gravity with the strong and electroweak interactions. It is interesting
that in some of the most successful attempts Supersymmetry is used, either as
a global symmetry or as a local symmetry, therefore containing Supergravity.
“Super”-symmetry is a special instance of a Lie superalgebra, which roughly
speaking is a Lie algebra containing anticommutators as well as commutators.

The simplest four-dimensional Supersymmetry algebra is the so-called N = 1
SUSY algebra. It the simplest extension of the Poincaré algebra obtained by
adding one fermionic chiral generator @), also called supercharge, with commu-
tation relation. The N =1 SUSY algebra can be written as [5]

{Q.Q} = 2"P,, (1.1.1)
{(Q,Q} = {QQ}=0. (1.1.2)

The commutator of two infinitesimal SUSY transformations is
[£Q. Q] = 260" TP, (1.1.3)

with anti-commuting, also called Grassmann, parameters £ and 7. In the case
of global SUSY this describes a translation along the vector £o#7. Choosing
the parameters £ and 1 to be local, i.e. functions of a space-time point, one
finds that the right-hand side of Eq. (1.1.3) becomes 2¢(x)o*7(x) P, which can
be understood as a local coordinate transformation. We see that SUSY is not
an internal symmetry, but a spacetime symmetry related through the SUSY
algebra to spacetime translations. The theory which is invariant under a gen-
eral coordinate transformation (GCTs) is General Relativity. Thus, making
SUSY local, one obtains General Relativity, or a supersymmetric generalization
thereof, Supergravity. In this sense Supergravity is the (non-Abelian) gauge
theory of Supersymmetry. After the construction of rigid Supersymmetry in
the early 1970’s, Supergravity was constructed in 1976 [6,7]. Note that the
SM does include Special Relativity, but does not include General Relativity or
gravity. Therefore we are led to look for extensions of it and it seems natural
to include supersymmetry.

e With only the ingredients of the Standard Model of particle physics we cannot
understand why its particle content is the way it is. The existence of three
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families, for example, is an experimental fact and is built into the Standard
Model. The couplings of the Higgs field to fermions generate masses of quarks
and leptons, however their values are free parameters of the SM. There seems to
be no reason why the mass spectrum of quarks and leptons should stretch over
six orders of magnitude between the masses of the electron and the top quark.

e Other evidence for the existence of Physics Beyond the Standard Model is the
cold dark matter (CDM) of the universe, because the Standard Model does
not provide a viable candidate for it. Under certain assumptions the lightest
supersymmetric particle (LSP) is neutral and stable and hence provides an
excellent candidate for CDM.

Thus, despite its spectacular success, the Standard Model of particle physics is not
“The End of Science” [2], but should be the low energy limit of some more fundamental
underlying theory.

Apart from the arguments given above, there are also more theoretical motivations

to study supersymmetry. The first to be mentioned is the Haag-Lopuszanski-Sohnius
theorem [8], which states that supersymmetry is the most general extension of the
Poincaré and Yang-Mills-type symmetries of the S-matrix. Another reason why Su-
persymmetry is believed to play an important role in particle physics is that it yields
non-renormalization theorems which work to all orders in perturbation theory. This
is due to the fact that many divergences in fermionic and bosonic loop diagrams
cancel, as is shown in Fig. (1.1.1) for the quadratic divergences for the Higgs mass.
Non-renormalization theorems avoid a mixing between low and high energy mass
scales, thus solving the hierarchy problem (see above). Furthermore, supersymmetry
often makes it possible to extrapolate results from weak coupling to strong coupling,
thereby providing information about strongly coupled theories:
Hitherto we restricted ourselves to the NV = 1 Supersymmetry algebra. Although this
seems to be the only phenomenologically viable option, it is very interesting to study
extended Supersymmetry algebras, i.e. Supersymmetry algebras with more than one
supercharge (N > 2). They play for example an important role in the study of the
properties of String Theory. The main implication of including N supercharges Q%
(A = 1...N) is the modification of the anticommutators Eqgs. (1.1.1) and (1.1.2),
which for extended Supersymmtry take the form [5]

{Q*,Qp} = 26%po"P,, (1.1.4)
{Q1,Q°) = 2777, (1.1.5)

where Z4B is referred to as a central charge, since it commutes with everything.
Extended supersymmetry algebras with central charges have special representations,
so-called short multiplets. The states in these representations, the BPS states, are
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annihilated by some of the generators of the supersymmetry algebra. They are charac-
terized by the fact that they saturate the Bogomolny’i bound M < |Z], an inequality
between its mass and its charge. Even though both mass and charge may undergo
renormalization, this definite mass-charge relationship for BPS states is expected to
be protected from quantum corrections, since it is a consequence of the supersymme-
try algebra assuming that the full theory is supersymmetric.? If it were violated, then
new states would appear out of nowhere and quantum corrections are not expected
to produce these new degrees of freedom. This property of BPS states means that
supersymmetry plays a crucial role in the theory of supersymmetric black holes. It
turns out that unbroken supersymmetry is an important ingredient in the stringy cal-
culation of the black hole entropy by the counting of microstates of supersymmetric
black holes.

String Theory originally arose as an attempt to understand the strong nuclear
force between hadrons. It turns out that if one wants String Theory to include
also spacetime fermions, one needs to include Supersymmetry, which lead to Super-
string Theory. According to String Theory, different kinds of particles (with different
charges, masses ...) correspond to the same fundamental object, the string, in differ-
ent exitation modes. Since the strings are of length of the order of the Planck scale
(10735m) they are far too small to be identified as extended objects at today’s parti-
cle colliders. During the First Superstring Revolution in the 1980s it was found that
there are actually five different spacetime supersymmetric Superstring Theories, each
of them living in ten spacetime-dimensions: type I, type ITA, type I1B, heterotic
SO(32) and heterotic Eg x Eg, which, as was discovered later, are related to each
other by dualities (see below). All these five theories live in ten spacetime dimensions
and seem to be just special limits of a single underlying eleven-dimensional theory
called M-Theory. This immediately leads to the idea of compactification, in order
to make contact with our four-dimensional world. One of the problems arising in
String Theory is the so-called vacuum selection problem: compactification of Super-
string Theory down to four dimensions may lead to very different physics described by
the four-dimensional effective theory, because the spectrum (and gauge group) of the
four-dimensional theory depends on the choice of six-dimensional internal manifold.
Supersymmetric compactifications provide a promising setting for obtaining realistic
supersymmetric models of particle physics: by compactifying down to four spacetime
dimensions, one might hope to make contact with particle physics phenomenology.

There is only one fundamental (dimensionful) constant in String Theory, which
governs the scale of the massive string excitations. This constant can be expressed
in terms of the Regge slope parameter o’ (which has mass dimension —2), the string

3Thus the equality of mass and charge of BPS states is protected against quantum corrections,
but mass and charge separately may receive corrections, which depend on the particular theory one
is dealing with, especially on the number of supercharges.
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Figure 1.1.3: Figure 1.1.4: Figure 1.1.5:

Worldline vs world-sheet g = 1 surface g = 2 surface
tension (energy per unit length) T = 27710/ or in terms of the string length scale

12 =2

Massive string excitations have masses of the order M ~ —

Va'
of the order of the Planck mass. By definition, the low-energy limit of string theory

only involves processes at an energy scale F far below the Planck scale, i.e.

which are typically

E?d <« 1. (1.1.6)

This means that in the low-energy approximation one can restrict the analysis to
the massless modes only and describe them by an effective theory. The massive
states of String Theory become important only at energy scales that are currently
out of reach. The low-energy effective theories of spacetime supersymmetric String
Theories always contain in their spectra a massless spin-2 particle (together with its
corresponding spin-3/2 superpartner) and consistency requires that these theories are
Supergravity (SUGRA) theories. As indicated above this is a good approximation, as
long as one considers processes with energies far below the Planck mass. At energy
scales much lower than the Planck scale, that is at length scales much larger than the
string length I, = v/o/, the string behaves like a pointlike particle. Effects due to the
extension of the string are hidden in stringy o/-corrections.

Superstring Theory is well-suited to the construction of a quantum theory that
unifies the description of gravity and the other fundamental forces of nature. One
of the most important feature of Superstring Theory is that gravity is automatically
incorporated in the theory. The theory gets modified at very short distances/high
energies but at ordinary distances and energies gravity is present in exactly the form
proposed by Einstein. While ordinary Quantum Field Theory does not seem to be
compatible with gravity, String Theory requires gravity.

Supergravity plays for many reasons a key role in our understanding of String
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Theory. It is very difficult to study full string theories, but studying its low-energy
effective theory, i.e. Supergravity, can give an insight in concepts such as string
dualities, which for instance can relate strong and weak coupling regimes in String
Theory.

All five String Theories contain a massless scalar field, the dilaton ¢, whose vacuum
expectation value ¢y = (¢) determines the string coupling constant gg = e®°. Just as
Feynman diagrams in Quantum Electro Dynamics, in Superstring Theory one can do
a power series expansion in the dimension-less string coupling constant. The String
Theory Feynman diagram is represented by a 2-dimensional Riemann-surface (see
Fig.1.1.3), i.e. an orientable and closed surface of genus g (a surface with g handles),
which comes along with an factor g?gg [4]. As an example the world-sheet in Fig.1.1.4
is of genus 1, the one in Fig.1.1.5 is of genus 2. However, there is a priori no reason
why the string coupling constant gs should be small. For this reason a lot of effort is
made to understand non-perturbative aspects of string theory. After the discovery of
dualities in the last decade of the past century (Second Superstring Revolution) it was
deduced that Superstring Theory contains, apart from the 1-dimensional strings, also
higher-dimensional objects with p > 2 spacial dimensions, referred to as p-branes. Of
special interest is a subclass thereof, the so-called D-branes: p-branes on which open
strings can end. One of the most important applications of D-brane physics is the
counting of black hole microstates. According to the Bekenstein-Hawking formula
the entropy of a (classical) black hole is given by Sy = %A, where A denotes the
area of the black hole event horizon. The Bekenstein-Hawking entropy plays the role
of the macroscopic or thermodynamical entropy. Considering, then, the macroscopic
Supergravity description of a black hole to be an effective description of an underlying
microscopic quantum theory, the macroscopic Bekenstein-Hawking entropy should
match the microscopic entropy

SBH = Smicros (1.1.7)

where the microscopic or statistical entropy is given by
Smicro = In N(M, J, Q), (1.1.8)

and where N is the number of different microstates of a black hole characterized by
the macroscopic variables M, J and Q.

D-brane techniques can be used to count the black hole microstates and it turns
out that the macroscopic and microscpic entropies of supersymmetric or “near super-
symmetric” black holes indeed agree. This was done first for a class of 5-dimensional
extremal black holes by Strominger and Vafa [9] and later on for other kinds of black
holes.

In this thesis we deal with different kinds of Supergravity theories in four spacetime
dimensions. Some, but not all d-dimensional Supergravities can be obtained as the
low-energy limit of some Superstring Theory compactified on a (10 — d)-dimensional
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manifold (we will discuss this in some more detail in Section 1.2). But there is also
another point of view, not taking into account any relation to (higher-dimensional)
String Theory, to study Supergravity for its own sake. The basic ingredients of Su-
pergravity are General Relativity (GR) and Supersymmetry. General Relativity is a
purely bosonic theory. Making GR supersymmetric then means introducing fermionic,
anti-commuting coordinates, thus generalizing the standard bosonic spacetime to su-
perspacetime. Depending on the dimension of the spacetime, one can introduce dif-
ferent kinds of Supergravity theories.

1.2 Gauged Supergravity and the p-form hierarchy

Gauged Supergravities can be considered as deformations of the ungauged theories.
While the undeformed theories by definition do no include a potential for the scalar
fields nor a cosmological constant, gauging Supergravity introduces a scalar potential
and the theory is no longer determined through its kinetic terms only. The gauge
coupling constant plays the role of the deformation parameter. However, there are also
other types of deformations, which are not due to gaugings. In N = 1 Supergravity,
for example, one can always introduce a superpotential, independently of making some
global symmetry group local or not. Another way to deform supergravities are massive
deformations, see e..g. Romans’ massive N = 24 d = 10 Supergravity [10]. There
are two ways of obtaining gauged Supergravity from the ungauged theory: on the one
hand one can consider the higher dimensional origin of gaugings by compactification
of ten or eleven-dimensional Supergravity on manifolds with fluxes; or, on the other
hand, one can deform the four-dimensional theory. If, for example, we compactify ten-
dimensional Supergravity on a six-torus 7', we obtain maximal N = 8 Supergravity in
four dimensions (see Chapter 2.2.1). Note that compactification on a torus does not
break any supersymmetry, such that the lower-dimensional theories are maximally
supersymmetric. If one compactifies on a manifold which allows for some of the
higher dimensional p-form fields to acquire background fluxes or a manifold provided
with torsion etc., one generically ends up with a gauged Supergravity theory in lower
dimensions. In this thesis we will focus our attention on the first approach and
shall discuss how to obtain the gauged version of a given four-dimensional theory by
promoting some subgroup G of the global symmetry group H to a local symmetry.

The first examples of gauged Supergravity were constructed in the early 1980’s,
and recent research has shown that gauged Supergravities can be constructed in a
systematic way by means of the so-called embedding tensor formalism [11]. This
formalism is independent of the dimension and the number of supersymmetries of the
respective theory. Furthermore, from the higher-dimensional point of view, it allows
us to encode some, but not obligatorily all [12], the flux/deformation parameters in
a single tensorial object, the embedding tensor [13].
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We will denote collectively the electric and magnetic vector fields by the symplec-
tic vector AM | because the global symmetry group G will always act on AM as a
subgroup of Sp(2n,R), where n denotes the number of (electric) vector fields appear-
ing in the theory, even though G can be a larger group than Sp(2n,RR) and/or not be
contained in it (see Section 3.2.1). The fact that one can always dualize the electric
vectors appearing in the standard formulation of four-dimensional Supergravity into
magnetic vectors, is a property of the four-dimensional theory. We will see in the
following chapters how this works in detail. These Abelian vector fields are invariant
under the Abelian gauge transformations

SaAM, = —9,AM | (1.2.1)

where AM (z) is a symplectic vector of local gauge parameters.

As mentioned before, we are going to construct gauged Supergravity as a deforma-
tion of the ungauged theory, thus our starting point will be the ungauged theory with
global symmetry group G. The generators T4 of the Lie algebra g of the symmetry
group G satisfy the commutation relations

[Ta, Tg] = —fas“Tc - (1.2.2)

where f4p® are the structure constants of g.
Under this non-abelian global symmetry the vectors of the theory transform as

0o AM = o ATy M AN (1.2.3)

where T4 3N are the components of the matrices Ta, Taar™ = (Ta)ar”, that gener-
ate the Lie algebra g.

In order to gauge the symmetry group G we must promote the global parameters
a? to arbitrary spacetime functions a(z) and make the theory invariant under these
new transformations. This is achieved by identifying these arbitrary functions with a
subset of the (Abelian) gauge parameters of the vector fields, AM and subsequently
using the corresponding vectors as gauge fields. This identification is conveniently
made through the use of the embedding tensor 64, [11,14-17]

oz) = AM(z)9? . (1.2.4)

The embedding tensor approach provides a systematic way to study the most
general gaugings of a Supergravity theory and is a powerful technique to construct
gauged Supergravity theories for different gauge groups in a unified way. The embed-
ding tensor indicates what vector fields (electric or magnetic) gauge what symmetry.,
allowing us to treat all vector fields, gauged or not, on the same footing. Symplec-
tic invariance can, thus, be formally preserved after the gauging. This is one of the
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main virtues of this formalism. The choice of the embedding tensor 4, determines
completely a particular gauging of the theory, i.e. it determines G.

The embedding tensor is not completely arbitrary, but must satisfy a number
of constraints which guarantee the consistency of the theory. In the case discussed
in this thesis, namely the four-dimensional one, the embedding tensor has to fullfill
three different constraints: two quadratic constraints and one linear one, the so-
called representation constraint. In the gauged theory, we then have to replace partial
derivatives by covariant derivatives, schematically:

d— D =d+T(Ta)0* yy AM . (1.2.5)

Here no gauge coupling constant g appears explicitly, but it is contained in the
embedding tensor, taking into account that different choices of the embedding tensor
correspond to different gaugings and thus describing in a natural and unified way
multiple gauge groups.

When constructing a matter-coupled Supergravity theory one usually concentrates
on the lowest rank fields that describe the physical states of the theory in question.
Generically the bosonic states are represented by the graviton, and a set of matter
fields that generically are differential forms of low rank (d —2)/2 > p > 0 for d even
and (d —3)/2 > p > 0 for d odd, respectively. To describe the coupling to branes one
is naturally led to consider the dual (d — p — 2)-form potentials as well. For p # 0
and at leading order, the construction of the dual potentials is rather straightforward
as the original low-rank differential form fields always occur via their curvatures.
However, it might not always be possible to eliminate the original potentials from the
action in favour of their (magnetic) duals, since the bosonic gauge transformations
of the (d — p — 2)-forms might become rather complicated and involve the gauge
transformations of their dual p-form fields. The first example for this was found in [18],
where the 3-form potential of eleven-dimensional Supergravity was dualized into a 6-
form potential, which turned out to transform under the gauge transformations of
the 3-form. In [19] a democratic formulation of ten-dimensional type IT Supergravity
was achieved, i.e. a formulation of ITA/B Supergravity where all R-R potentials
C® (p = 0...9) are treated in a unified way (p odd in case of ITA and p even
for 11B, respectively). By virtue of the Bianchi identities of the curvatures of the
electric and magnetic potentials, the second-order equations of motion can be derived
as integrability conditions of the duality relations:

Bianchi identities & duality relations < equations of motion. (1.2.6)
For instance, in the case of IIA/IIB Supergravity the supersymmetry algebra can

be realized on all p-forms (0 < p < 10) with p odd (ITA) or p even (IIB). The
Bianchi identities and duality relations then lead to all equations of motion (except
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the Einstein equation, which is, however, duality invariant). This is often referred to
as the democratic formulation of IIA /IIB Supergravity [19].

The idea of deriving the equations of motion of Supergravity from an underlying set
of Bianchi identities and first-order differential equations has been pursued in several
contexts in the Supergravity literature. It already occurs in the work of [18] for the
case of maximal Supergravity including massive ITA Supergravity [20]. Similar duality
relations are natural in the Ej;i-approach to Supergravity [21-24]. Duality relations
also play an important role in encoding the integrability of a system, for instance in
maximal two-dimensional Supergravity [25].

The most important physical application of introducing all higher degree dual po-
tentials is related to the fact that, just as pointlike particles naturally couple to 1-
form potentials), higher degree p-forms couple naturally to objects with p — 1 spatial
dimensions. Part of this thesis is dedicated to the study of string-solutions of four-
dimensional N = 2 Supergravity [26] [27] and their coupling to 2-form potentials,
which are obtained when dualizing the scalars of the theory [28]. We will show how,
once the supersymmetry transformation law for the 2-form is known, to construct
the most general space-time supersymmetric worldsheet-action for the supersymmet-
ric string solutions. In four dimensions, apart from 2-forms, one can construct 3
and 4-form potentials, to which domain-walls and space-filling branes, respectively,
couple.

Before discussing the introduction of all possible p-form potentials in four dimensions,
let us consider the bosonic fields which appear in the standard formulation of four-
dimensional Supergravity. The basic constituent is the Supergravity multiplet, which
contains at least the graviton and a certain number N of gravitini (this is what
we will refer to as N-extended Supergravity). Further it contains w vectors
(graviphotons) for N > 2 and scalars for N > 4. The gravitino has spin 3/2 and
plays the role of the gauge field for Supersymmetry. The maximal number of gravitini
depends on the dimension of space-time. In 4 = 3 + 1 dimensions one can have
N =1 upto N = 8 gravitinos, for larger values of N one would need particles with
spin larger than 2 and no consistent interacting theories exist for these cases [29].
The field content of four-dimensional Supergravity multiplets for different numbers of
supersymimetries is given in table 1.2.1.

A Supergravity whose field content is contained exclusively in the gravity multiplet,
is referred to as pure or minimal Supergravity. Further, for N < 4, one can couple
different kinds of matter to the pure Supergravity theories. The kind of matter
which can be added depends on the number of supersymmetries. In Table 1.2.2
possible mattermultiplets are summarized for four-dimensional Supergravities. V
denotes possible vector multiplets, S multiplets whose bosonic content is only scalar
fields.

Vector multiplets are those containing as highest spin fields s = 1 fields (vectors),
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s|[N=1 N=2 N=3 N=4 N=5 N=6 N=38
2 1 1 1 1 1 1 1
C | 2 3 4 5 6 8
1 1 3 6 10 16 28
i 1 4 11 26 56
0 2 10 30 70

Table 1.2.1: Pure Supergravity multiplets in four dimensions according to spin s

susy

32 24

20 16

12

W~

N=2 | N=1
V, V,

S S

Table 1.2.2: Possible types of matter multiplets in four-dimensional Supergravity

s|N=1 N=2 N=34
1 1 1 1

1

TR 2 4

0 2 6

O Nol=

Table 1.2.3: Field content of matter multiplets in four dimensions
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and the multiplets for N < 2 with spin < % are called hypermultiplets for N = 2 and
chiral multiplets for N = 1, respectively. Their fields are given in Table 1.2.3. An
arbitrary number of these matter multiplets can be used for rigid supersymmetry or
can be added to the gravity multiplet in local supersymmetry (Supergravity).

The vectors in the matter multiplets and those possibly contained in the gravity
multiplet can be used to gauge a (possibly non-Abelian) gauge group. As can be seen
in Table 1.2.1, apart from N = 1 there is always at least one vector in the gravity
supermultiplet, which means that for N > 2 one can gauge pure Supergravity, i.e.
without coupling it to additional ”external” matter.

One of the aims in this thesis is to study the extension of the set of standard bosonic
fields of four-dimensional Supergravity. We are going to show that we can consistently
add, by which we mean that we can define supersymmetry transformations for them
such that the local supersymmetry algebra closes on-shell, dual magnetic vectors,
2-forms, 3-forms and 4-forms to the standard set of bosonic fields, which we were
discussing in the previous paragraph. First we are going to consider the ungauged
theory. The inclusion of magnetic vector fields and 2-forms B was worked out in detail
in [28] and [30] for N = 2 and N = 1 ungauged Supergravity, respectively. It turns
out that gauging the theory leads to an entanglement between higher degree forms,
which does not appear in the ungauged case. Although 3-form and 4-form fields need
not appear in the ungauged theory, since for vanishing coupling constant the hierarchy
can be consistently truncated, they appear naturally in the gauged theory.

Our starting point will be the generalization of electromagnetic duality in four di-
mensions. While the standard electric vector fields appear in the action and carry
propagating degrees of freedom, the dual magnetic vectors are defined as their on-shell
Hodge duals. Let us consider the magnetic vector fields in the ungauged theory first.

The bosonic action of four-dimensional Supergravity generically takes the form

S = /d4x 9 [R + 2Gij-0, Zi0m 27"
(1.2.7)

+SMM s FAWEFE , — %eMAzFAW*FZW] ;

where Z% denote the complex scalars of the theory which parameterize a Kéhler
manifold* and

*F= FEro (1.2.8)

py = 2\/m Qv po
The metric on the Ké&hler manifold is denoted by G;;«, where the index (j*) ¢ is a
(anti-)holomorphic index. The field strengths of the ny (Abelian) vectors A%, (A =

4For N = 1 the scalars parameterize a Kdhler-Hodge manifold, for N = 2 a special Kdhler
manifold. This will be discussed in detail in Chapter 2.
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1...ny) are F' A — @AM, The scalars couple to the vectors via some scalar-dependent
complex matrix My (Z¢, Z*"). Moreover, the matrix SmM,y must be negative-
definite to ensure the right sign of the vector kinetic term. Note that for constant
Mas, the last term in (1.2.7) is just a total derivative, while for Max(Z%, Z*") a
function of the scalars, it describes a non-trivial coupling of the scalars to the vector
fields.

The action may contain more terms (e.g. due to more matter scalars) but for our
purpose let us restrict for the moment to gravity, the complex scalars and the vector
fields.

The field strengths F* of the vector potentials A* satisfy the Bianchi identity

*BY = —dFt =0, (1.2.9)

and the equations of motion have the form

*EN = —dFj, (1.2.10)

where we defined the dual field strength Fi

o 158
A = e
4/]g] 9% FA

The Maxwell equations can be interpreted as Bianchi identities for the dual field
strengths, F), ensuring the local existence of n dual vector potentials Ay such that

(1.2.11)

Fp =dAy . (1.2.12)

It is convenient to combine the standard, electric, field strengths and potentials
and their duals Eq. (1.2.11) into a single 2ny-dimensional symplectic vector

F A
M _ M _
P = ( r )—dA _d( >, (1.2.13)

which allows us to write the Maxwell equations and Bianchi identities in the compact

form
dFM = . (1.2.14)

This set of extended equations of motion (Maxwell equations plus Bianchi identi-
ties) is invariant under general linear transformations

FA / AEA BEA FE
(2 ) (at By (e, a2
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However, consistency with the definition of F Eq. (1.2.11) requires that the kinetic
matrix M appearing in the action Eq. (1.2.7) transforms at the same time and then
one finds that the Maxwell equations and Bianchi identities are formally invariant
under the transformations

F'M = MyMFN | (1.2.16)

with M € Sp(2ny,R) [31].

Note that the fact, that the vectors A* and A, appear in pairs is a special property
of four-dimensional Supergravity, since only in four dimensions are vectors dual to
vectors. In general in even dimensions d = 2k there is a duality between (k — 1)-forms
and (k — 1)-forms.

In the gauged theory the story is slightly more complicated. It turns out that for
general gaugings, i.e. using electric as well as magnetic vectors as gauge fields, one
needs to introduce a set of 2-forms in F™ | in order to have a covariantly transforming
field strength for the vector fields

FM = dAM + X npMAN N AT + ZMAB, (1.2.17)

where Xj; denote the generators of the gauge group and ZM4 is essentially the

embedding tensor. It can be shown then that in order to have a covariant field
strength for the 2-form fields one needs to introduce 3-forms and so on. This bootstrap
procedure ends with the introduction of the top-form potentials. In this way one
obtains a complete tensor-hierarchy, i.e. a set of p-form fields, with 1 < p < 4,
which realizes an off-shell algebra of bosonic gauge transformations. Schematically
the covariant field strengths F{, 1) of the p-form field A, take the form

Foprny = DAg) + -+ YAy (1.2.18)

where the constants Y{,;1) depend on the embedding tensor, showing clearly that in
the ungauged theory the hierarchy decouples.

The only input required for this construction is the number of electric p > 1-form
potentials, the global symmetries of the theory and the representations of this group
under which the p-forms transform. Changing these data leads to different theories
that can be seen as different realizations of the low-rank sector of the same tensor
hierarchy.

The magnetic (d — p — 2)-forms do not introduce any new degrees of freedom.
As we just saw in the example of the vector field strength, this is ensured by first-
order duality-relations, which generically relate the electric p-forms to the magnetic
(d — p — 2)-forms.

Dual potentials are not only relevant to describe the coupling to branes but play
also a crucial role in the construction of a supersymmetric action for certain gauged
Supergravity theories.
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Although usually supersymmetric actions involve, apart from the metric, only elec-
tric potentials, using the embedding tensor approach, we are going to show that the
action must also contain a dual 2-form potential via a Chern-Simons-like topological
coupling®, if one wants to consider a magnetic gauging in d = 4, i.e. a gauging involv-
ing a magnetic vector field. In general dimensions, p-form potentials of even higher
rank are introduced. For instance, the action corresponding to certain gaugings in
d = 6 requires magnetic 2-form and 3-form potentials [32]. This leads to the notion of
a tensor hierarchy, which consists of a system of potentials of all degrees (p =1,...,d)
and their respective curvatures, which are related by Bianchi identities [17,33].

1.3 Supersymmetric configurations and solutions of
Supergravity

Supersymmetric classical solutions of Supergravity theories have played, and continue
to play, a key role in many of the most important developments in string theory.
They are an important tool in the current research on many topics in superstring
theory, ranging from the AdS/CFT correspondence to stringy black-hole physics.
Not all locally supersymmetric solutions are necessarily interesting or need be useful
in the end, but it is clearly important to find and classify them all for every possible
Supergravity theory.

This goal has been pursued and reached in several lower-dimensional theories and
families of theories. The pioneering work was done in 1983 by Tod [34] in pure,
ungauged, N = 2,d = 4 Supergravity. It was subsequently extended to the gauged
case in Ref. [35], to include the coupling to general (ungauged) vector multiplets and
hypermultiplets in Refs. [26] and [27], respectively and some partial results on the
theory with gauged vector multiplets have been recently obtained [36]. Research on
pure N = 4,d = 4 Supergravity was started in Ref. [37] and completed in Ref. [38].

In d = 5, the minimal N = 1 (sometimes referred as N = 2) theory was worked
out in Ref. [39] and the results were extended to the gauged case in Ref. [40]. The
coupling to an arbitrary number of vector multiplets and their Abelian gaugings was
considered in Refs. [41,42]%. The inclusion of (ungauged) hypermultiplets was con-
sidered in [45]7 and the extension to the most general gaugings with vector multiplets
and hypermultiplets was worked out in [49].

The minimal d = 6 SUGRA was dealt with in Refs. [50,51], some gaugings were
considered in Ref. [52] and the coupling to hypermultiplets was fully solved in Ref. [53].

5In the context of N = 2,d = 4 Supergravity it has been shown how the local supersymmetry
algebra can be closed on some of these dual 2-form fields [28].

6Previous work on these theories can be found in Refs. [43,44].

"Previous partial results on that problem were presented in Refs. [46-48].
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All these works are essentially based on the method pioneered by Tod and made
more accessable by Gauntlett et al. in Ref. [39] using non-4d-specific techniques, which
we will use here. An alternative method is that of spinorial geometry, developed in
Ref. [54]. Some further works on this subject in 4 or higher dimensions are Refs. [55].

Another motivation to study supersymmetric solutions of Supergravity theories
is their importance for black hole thermodynamics: a microscopic interpretation of
black hole entropy in String Theory is best understood for supersymmetric black holes,
and various kinds of supersymmetric solutions have transformed our understanding
of quantum field theory via the AdS/CFT correspondence and its generalizations. In
general we are looking for classical configurations with vanishing fermions.

Let us denote symbolically by B and F' the bosonic and fermionic fields of the the-
ory, respectively. Then, the Supersymmetry transformations of the fields are schemat-
ically of the form

5.B ~ eF (1.3.1)
0cF ~ Oe + Be,

where €(x) denotes a spinorial parameter. A classical bosonic configuration (i.e. a
configuration B = {metric g,., vectors A,,, scalars ¢ and possibly higher-degree form
fields}, depending on the specific Supergravity theory, with vanishing fermionic fields
F = 0) is invariant under the infinitesimal supersymmetry transformation generated
by e if it satisfies

0F ~ Oe+ Be = 0. (1.3.3)

These equations are called Killing Spinor Equations (KSEs) and an e(z) satisfying
the KSEs is accordingly called a Killing spinor. In Supergravities (which may have
one or more than one supercharge, N > 1) a configuration is called supersymmetric if
there is at least one Killing spinor. It is essential for the understanding of what follows
to distinguish between supersymmetric configurations and supersymmetric solutions
of a theory. A set of bosonic fields which admits a Killing spinor is called a super-
symmetric configuration and does not obligatorily fullfill the equations of motion.
By supersymmetric solution we mean some bosonic field configuration, which leaves
unbroken at least some amount of supersymmetry and fullfills the bosonic equations
of motion. We will see what Supersymmetry can tell about solutions of the field
equations and how it restricts the number of independent equations of motion, in the
sense that once dealing with a supersymmetric configuration one does not have to
impose all of the equations of motion, but only a subset of them, in order to be sure
that all the equations of motion are satisfied.

Therefore, to achieve our goal of finding all the supersymmetric solutions of a
given Supergravity theory, it is in general much simpler to start with finding super-
symmetric configurations, since the equations of motion are second order differential
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equations, whereas the KSEs are only of first order. Further, the supersymmetric
field configurations satisfy the so-called Killing Spinor Identities (KSIs), which can
be derived from the integrability conditions of the KSEs. These equations relate the
different (bosonic) equations of motion and their content is highly non-trivial, even
if each term vanishes separately on-shell. Since in this way they reduce the number
of independent equations that need to be imposed, they are of great avail in finding
supersymmetric solutions. This is reflected by the fact that supersymmetric solutions
are generically given in terms of a very small number of independent functions. This
strategy, to exploit the KSIs in order to find supersymmetric solutions of a Supergrav-
ity theory, was first applied in [39,55] in the context of minimal five-dimensional and
eleven-dimensional Supergravity, respectively. However, the general Killing Spinor
Identities, which the bosonic equations of motion have to satisfy in supersymmetric
theories if the solutions admit Killing spinors, were found in [56] and applied to the
problem of finding the minimal set of equations of motion in [57].

The Killing spinor identities can be derived from the supersymmetry variation of
the action in the following way [57]: demanding invariance of a generic action S under
supersymmetry transformations means

0.8 = /ddaz(cSBSéeB + 0pS0.F) + surface terms = 0, (1.3.4)

where S,p= dpS = % is the equation of motion of the fermion field B and analo-
gously for the fermions. Summation over the indices F', B is understood. Now we
vary this equation w.r.t. the fermionic fields

{S7BF2 65B + S?B (65B)7F2 +SvF1F2 6EF1 + SvFl (6EF)7F2 }|F:O - O (135)

Since we are only interested in bosonic backgrounds, we are now going to set the
fermionic fields to zero, F' = 0. The bosonic equations of motion S,5 and the super-
symmetry variations of the fermions §.F are necessarily even in fermions and thus
vanish for vanishing fermions, but on the first and the fourth term in Eq. (1.3.5) we

have to impose:
S.BFR, |F=0 =0, (0cF),m,=0. (1.3.6)

This leaves us with
{S.B (0eB),r, +S.7 7, 0eF1 } [ p=0 = 0. (1.3.7)

This equations is valid for arbitrary values of the bosonic fields and the supersymmetry
parameter €. We are interested in supersymmetric bosonic configurations, i.e. field
configurations which admit (at least) one Killing spinor . In our schematic way of
writing the KSE, Eq. (1.3.3), is written as

8. F|p_o =0, (1.3.8)
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which implies tha a supersymmetric configuration always satisfies the Killing spinor
identities (KSIs)
S.p (6xB),F [p=0 = 0. (1.3.9)

Written in this form it is easy to see that the KSIs relate the bosonic equations of
motion of the theory, as already mentioned in the previous paragraph. In this sense
the KSIs help us to remarkably reduce the amount of work one needs to do in order to
verify that a supersymmetric configuration is also a solution to the classical equations
of motion. Note that while Eq. (1.3.4) relates bosonic equations of motion to fermionic
ones, the KSIs relate bosonic equations of motion to bosonic ones.

Observe that the Bianchi identities (involving vector fieldstrengths, in the case
treated in this thesis, or p + 1-form field strengths in the general case) do not appear
in the Killing spinor identities because the procedure used to derive them assumes the
existence of the potentials and, therefore, the vanishing of the Bianchi identities. Since
it is convenient to treat Maxwell equations and Bianchi identities on equal footing
to preserve the electric-magnetic dualities of the theory, it is sometimes convenient
to have the duality-covariant version of the above KSIs. These can be found by
performing duality rotations of the above identities or from the integrability conditions
of the KSEs.

How to find supersymmetric solutions?

Since one of the purposes of this thesis is to systematically find all the super-
symmetric solutions of d = 4 Supergravity, we should say a few words about what
we mean by ”finding solutions” and how we are going to proceed in order to find
all of them. Finding supersymmetric configurations of the theory means expressing
the bosonic fields of the theory in terms of a minimal set of independent variables
and/or structures in such a way that they admit Killing spinors, i.e. the Killing spinor
equations are sastisfied for at least one Killing spinor whose existence is to be proved.
The next step is to check which of these field configurations fullfill the equations of
motions, viz. to find supersymmetric solutions.

The basic strategy to find supersymmetric solutions of a given Supergravity theory
is to assume the existence of at least one Killing spinor, and to derive consistency
conditions (necessary conditions) in terms of bilinears constructed out of the Killing
spinor(s). In more detail:®

I Translate the Killing spinor equations and KSIs into tensorial equations.

Depending on the theory under consideration out of the Killing spinor € one can
construct scalar, vector, and p- form bilinears M ~ €, V), ~ €y,e, -+ that

8We follow the procedure of [58], which we rewrite here for the sake of completeness.
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are related by Fierz identities. These bilinears satisfy certain equations because
they are made out of Killing spinors, for instance, if the KSE is of the general
form

Setby =Due=[Vu+Qule=0, = V,M+2Q0,M =0, (1.3.10)

The set of all such equations for the bilinears should be equivalent to the original
spinorial equation or at least it should contain most of the information contained
in it (but not necessarily all of it).

One of the vector bilinears (say V) is always a Killing vector which can be
timelike or null. These two cases are treated separately and are called timelike
case and null case, respectively.

One can get an expression of all the gauge field strengths of the theory using
the Killing equation for those scalar bilinears: €1, is usually of the form F,, V"
and, then Eq. (1.3.10) tells us that F,,, V¥ ~ V, log M. When V is timelike this
determines F' completely and, when it is null, it determines the general form of
F. Of course, Eq. (1.3.10) is an oversimplified KSE and in real-life situations
there are additional scalar factors, SU(N) indices etc.

Up to now we found expressions for the bosonic fields of the theory which fullfill
certain conditions, which we derived from the KSEs as necessary conditions for
supersymmetry. The next step is to prove their sufficiency, that is we have to
show the existence of the Killing spinor(s) we assumed to exist. This may lead
to additional conditions on the Killing spinors, which may tell us the minimal
amount of unbroken supersymmetry in the most general setup. Once the ex-
istence of the Killing spinor(s) is ensured, we have found all supersymmetric
configurations of the theory.

The KSIs relate the Maxwell equations, Bianchi identities and the other bosonic
equations of motion and guarantee that these sets of equations are combinations
of a reduced number of simple equations involving a reduced number of scalar
unknowns. solutions of the theory. The tricky part is, usually, identifying
the right variables that satisfy simple equations and finding these equations as
combinations of the Maxwell, Einstein etc. equations.

The equations of motion have to be imposed in order to find the supersymmetric
solutions of the theory. As outlined above, the KSIs are of great help at this.

Find interesting examples
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1.4 Outline of this thesis

In Chapter 2 we are going to introduce the ungauged Supergravity theories we are
going to work with in this thesis. We describe the action, symmetries, bosonic equa-
tions of motion and supersymmetry transformations rules for ungauged N = 1,2
Supergravities. Our next step will be to gauge these four-dimensional theories.

In Chapter 3 we are first going to introduce the embedding tensor formalism in
order to study the most general gaugings of four-dimensional Supergravity in a uni-
fied way. Then we compute the complete 4-dimensional tensor hierarchy, i.e. a set of
p-form fields, with 1 < p < 4, which realize an off-shell algebra of bosonic gauge trans-
formations. We show how this tensor hierarchy can be put on-shell by introducing a
set of duality relations, whereby introducing additional scalars and a metric tensor.
This so-called duality hierarchy encodes the equations of motion of the bosonic part
of the most general gauged Supergravity theories in four dimensions, including the
(projected) scalar equations of motion. We construct the gauge-invariant action that
includes all the fields in the tensor hierarchy and elucidate the relation between the
gauge transformations of the p-form fields in the action and those of the same fields
in the tensor hierarchy. The content of Chapter 3 is based on ref. [33].

After having introduced the gaugings of a generic four-dimensional Supergravity
theory, we are going to apply our results to N = 1,2 Supergravity in Chapter 4.
We discuss N = 1 matter-coupled Supergravity with electric and magnetic gaugings
and N = 2 Einstein-Yang-Mills Supergravity. There we study the closure, up to
duality relations, of the N = 1 supersymmetry algebra on all the bosonic p-form
fields of the hierarchy, applying the results about the general four-dimensional tensor
hierarchy from the previous chapter, which was purely bosonic, including fermions.
The content of Chapter 4 is based on ref. [59,60].

In Chapter 5 we will use the procedure described in section 1.3 in order to find
supersymmetric solutions to N = 2 Supergravity. In section 5.1 we will consider
ungauged d = 4, N = 2 Supergravity coupled to vector and hypermultiplets and do a
complete classification of all its supersymmetric solutions. In section 5.2 we discuss
the solutions to N = 2 Einstein-Yang-Mills (EYM) Supergravity. This chapter is
based on refs. [27,36,59,61].

In the last Chapter of this thesis we extend the system of ungauged N =2, d =4
Supergravity coupled to vector multiplets and hypermultiplets with 2-form potentials
and show that the local supersymmetry algebra can be closed on them. We will
discuss the coupling of the 2-forms to the 1/2 BPS 1-brane solutions (stringy cosmic
strings) found in Chapter 5. Further we construct the half-supersymmetric bosonic
world-sheet actions for these strings and discuss the properties of the corresponding
stringy cosmic string solutions. Chapter 6 is based on [28].

A complete list of the publications which lead to this thesis can be found in
Appendix G.






Chapter 2

Ungauged N =1,2
Supergravity in four
dimensions

In this chapter we are going to describe briefly ungauged four-dimensional Super-
gravity with four and eight supercharges, respectively, in order to introduce the basic
concepts needed for the investigations in the following chapters. We will consider
possible matter couplings, i.e. coupling to chiral and vector-multiplets for N = 1 Su-
pergravity and to vector- and hypermultiplets for the N = 2 case (see Section 1.2).
In Section 2.2.1 we will address the question of how matter-coupled four-dimensional
N = 2 Supergravity is obtained when compactifying ten-dimensional type II Sugra
on a Calabi-Yau threefold. Gaugings of N = 1,2 d = 4 Supergravity theories will be
considered in Chapter 4.

2.1 Ungauged matter coupled N =1 Supergravity

The basic' field content of any N = 1,d = 4 ungauged supergravity theory is a
supergravity multiplet with one graviton e, and one chiral gravitino? ¥, nc chiral
multiplets with as many chiralinos x* and complex scalars Z%, i = 1,---,n¢ that
parametrize an arbitrary Ké&hler-Hodge manifold with metric G;;-, and ny vector

n the ungauged classical theory (this work is only concerned with the classical theory) linear
multiplets can always be dualized into chiral multiplets and so we do not need to deal with them.
After the gauging, this is not possible in general, but the embedding tensor formalism will allow us
to introduce the 2-forms in at a later stage in a consistent form.

2The conventions used here are essentially those of Refs. [30] and [62].
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multiplets with as many Abelian vector fields A* with field strengths F* = dA* and
chiral gauginos A*, A=1,--- ,ny.

In the ungauged theory the couplings between the above fields are determined
by the Kihler metric® G;;«, an arbitrary holomorphic kinetic matrix fan(Z) with
positive-definite imaginary part and an arbitrary holomorphic superpotential W (Z)
which appears through the covariantly holomorphic section of Kéhler weight (1,—1)
L(Z,Z%):

L(Z,2%) =W (Z)er?, (2.1.1)

so its Kéhler-covariant derivative given in Eq. (B.0.19) for § = —1is Dj« £ = eX/20, W =
0. In absence of scalar fields, it is possible to introduce a constant superpotential
L=W=w.

The chirality of the spinors is related to their Kihler weight: 1, A* and x* have
the same chirality and 1, \* and x**" have the same Kihler weight (1/2, —1/2) so
their covariant derivatives take the form of Eq. (B.0.21) with ¢ = 1/2.

The action for the bosonic fields in the ungauged theory is

S, = / [*R — 2Gij-dZ' AN*dZ*T" — 23m fas FN A +F> 4 2Refas FA A FT — *Vu} ,
(2.1.2)
where the scalar potential V;, is given by
V(Z,Z*) = —24|L|* + 8G9 D, LD;- L7 . (2.1.3)

In absence of scalar fields the constant superpotential L = W = w leads to an
anti-de Sitter-type cosmological constant

Vi = —24|w|?*. (2.1.4)

The supersymmetry transformation rules for the fermions (to first order in fermions)
are

Sty = Due+ilye™ = [V, +LQu] e+ ily,e”, (2.1.5)
S AN = 1 FMe, (2.1.6)
ox! = iQZie +2GY Dy Lre. (2.1.7)

3The elements of Kihler geometry needed in this paper are reviewed in Appendix B.
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The last terms in Egs. (2.1.5) and (2.1.7) are fermion shifts associated to the super-
potential which contribute quadratically to the potential V.

In absence of scalar fields and with constant superpotential £L = W = w the
fermion shift in Eq. (2.1.5) can be interpreted as part of an anti-de Sitter covariant
derivative

0ty = Ve +iwy,e”. (2.1.8)

The supersymmetry transformation rules for the bosonic fields (to the same order
in fermions) are

by = =i +cc., (2.1.9)
S AN, = LNy +cc., (2.1.10)
628 = iyle. (2.1.11)

Note that N =1 d = 4 Supergravity can be obtained by truncation of the N = 2
d = 4 theory [30].

2.1.1 Perturbative symmetries of the ungauged theory

The possible matter couplings of N = 1,d = 4 supergravities are quite unrestricted.
As a result, the global symmetries of these theories can be very different from case to
case: depending on the couplings it is possible to have, at the same time, symmetry
transformations that only act on certain fields and not on the rest and symmetry
transformations that act simultaneously on all of them. Thus, it is not easy to describe
all the possible global symmetry groups in a form that is at the same time unified
and detailed without introducing a very complicated notation with several different
kinds of indices. We are going to try to find an equilibrium between simplicity and
usefulness.

Therefore, we are going to denote the group of all the global symmetries of the
theory we work with? by G and its generators by T4 with A, B,C =1,--- ,rankG.
They satisfy the Lie algebra

[Ta, Tg] = —fap“Tc - (2.1.12)

4In this section we will use this notation only for the perturbative symmetries and later on we
will use the same notation for all symmetries. It should be easy to recognize from the context which
case we are talking about.
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We denote by Ghos the subgroup of transformations of G that act on the bosonic
fields and its generators by T, with a,b,c =1, .- ,rank Gy,,s < rank G. They satisfy
the Lie subalgebra

[Ta, Tb] = — fabTe - (2.1.13)

In N = 1,d = 4 supergravity we have G = Gpos X U(1) g and rank Gy,os = rank G — 1.
We split the indices accordingly as A = (a, ). We may introduce a further splitting
of the indices of Ghos, @ = (a,a) to distinguish between those that act on the scalars
(holomorphic isometries, belonging to the group® Giso C Ghes) and those that do
not. These will be the subgroup Gy C Gpes of those that only act on the vector
(super)fields and leave invariant the kinetic matrix fax, as we will see. We have,
then, Gbos = Giso X Gv.

Let us describe the U(1)g transformations first. Under a U(1)g transformation
with constant parameter af, objects with Kéhler weight ¢ are multiplied by the phase
e~#2*  All the fermions Yy, A2 x*%" have a non-vanishing Kéhler weight 1/2, though.
All the bosons have zero Kéhler weight and do not transform under U(1)x.

The superpotential £ has a non-vanishing Kahler weight and therefore transforms
under U(1) g in spite of the invariance of the scalar fields. As a general rule, in presence
of a non-vanishing superpotential, U(1)r will only be a symmetry of N = 1,d = 4
supergravity if the phase factor acquired by £ in a U(1)gr transformation can be
compensated by a transformation of the scalars that leaves invariant the rest of the
action. These transformations, which are necessarily isometries of the Kéhler metric
will be described next, but we can already give two examples to clarify the above
statement.

1. Let us consider the case with no chiral superfields and, therefore, no scalars and
a constant £ = W = w giving rise to the potential Eq. (2.1.4) and the gravitino
supersymmetry transformation Eq. (2.1.8). In this case U(1)g transforms the

complex constant w into e~y and, therefore it is not a symmetry since sym-

metry transformations act on fields, not on coupling constants. Certainly, we

can never gauge these transformations since the local phases would transform a

constant into a function which is not a field.

2. Let us consider a theory with just one chiral supermultiplet, with Kahler po-
tential KX = |Z|? and superpotential W(Z) = wZ where w is some complex

constant so £ = wZelZ*/2. In this case U(1)g transforms £(Z,Z*) into

5Not all the isometries of the metric will be perturbative or even non-perturbative symmetries
of the full theory. They have to satisfy further conditions that we are going to study next. It is
understood that, in order not to have a complicated notation, we denote by Gjs, only those isometries
which really are symmetries of the full theory and not the full group of isometries of G;;« (although
they may eventually coincide).
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L£N(Z,Z2*) = we=" ZelZ°/2 . This transformation can be seen as a transfor-
mation of the scalar Z’ = e~®*Z which happens to leave invariant the Kahler
potential, metric etc. In this case U(1)g is a symmetry when combined with
the transformation of the scalar.

The Gig, transformations with constant parameters a® act on the complex scalars
Z" as reparametrizations

VAN VAR (2.1.14)

If these transformations are symmetries of the full theory they must, first, preserve
the metric G;;~ and its Hermitean structure, which implies that the ka’s are the
holomorphic components of a set of Killing vectors {Ka = ka'd; + k;lal} that
satisfy the Lie algebra of the group Giso

[K37 Kb] = _fabCKc . (2115)

The holomorphic and antiholomorphic components satisfy, separately, the same Lie
algebra.

We can formally add to this algebra, vanishing “Killing vectors” K, associated to
the transformations that do not act on the scalars (but do act on the vectors), so we
have the full algebra of Gpes

[KauKb] = _fabCKc- (2116)

Further, we can also add another vanishing Killing vector K3, formally associated to
U(1)r and write the full Lie algebra of G

[Ka, Kpl = —fas“Kc, (2.1.17)

so the reparametrizations of the scalars Z% can be written

0aZ' = o’ kAN (Z). (2.1.18)

The Killing property of the reparametrizations only ensures the invariance of the
kinetic term for the scalars. In order to be symmetries of the full theory they must
preserve the entire Kahler-Hodge structure and leave invariant the superpotential and
the kinetic terms for the vector fields.

1. Let us start with the Kahler structure. The reparametrizations must leave the
Kahler potential invariant up to K&hler transformations, i.e., for each Killing
vector K 4

£4K = £, K = kA'0,K + k5T 0K = Aa(Z) + N5y (Z7). (2.1.19)
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This relation is consistent for A = a, f, if

Reda =RNe Ay =0. (2.1.20)

Furthermore, the reparametrizations must preserve the Kahler 2-form 7

£a4T =0. (2.1.21)

The closedness of 7 implies that £ 47 = d(ir,J) and therefore the preservation
of the Kéahler structure implies the existence of a set of real functions P4 called
momentum maps such that

ik, J =dPa, (2.1.22)

which is also consistent for A = a, § if the corresponding

Pa =Py = constant. (2.1.23)

There is a further constraint that the momentum map has to satisfy (equivari-
ance): Eq. (B.1.34)

It implies that these constant momentum maps can only be different from zero
for Abelian factors. These constants will be associated after gauging to the D-
or Fayet-Iliopoulos terms.

A local solution to Eq. (B.1.29) is provided by
iPa=ka'0;K — Aa, (2.1.24)
which, on account of Eq. (B.1.26) is equivalent to
iPy=—(k5" 0K — N\Yy), (2.1.25)
which implies, for A = a,
A = —iPa, A = —iPy . (2.1.26)

where P, and Py are real constants (Eq. (2.1.23)).

The momentum map can be used as a prepotential from which the Killing
vectors can be derived:
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ks = i0-Pa. (2.1.27)

Observe that this equation is consistent with the triviality of the “Killing vec-
tors” Ky, Ky and the constancy of the corresponding momentum maps Eq. (2.1.23).

2. If the K&hler-Hodge structure is preserved, any section ® of Kahler weight (p, q)
must transform as®
5a® = —a(Ly — K4)®, (2.1.28)
where L4 stands for the symplectic and Kéhler-covariant Lie derivative w.r.t. K4
and is given by
La® = {£a+[Ta+ 2(pAa+a\3)]}O, (2.1.29)

where the T4 are the matrices that generate G in the representation in which
the section transforms and satisfy the Lie algebra Eq. (B.1.37). This means that
the gravitino v, transforms according to

Sathy = —5a*Sm A, . (2.1.30)

For A = a,f we have just U(1)r transformations for each component P,, Pj
different from zero. For A = a the transformations are still global but the
Sm Ags are in general functions of Z, Z*. These cannot be compensated by
U(1)g transformations.

The chiralinos x* transform according to

Sax' = a®{0jka™’ + 1Sm Aax'}, (2.1.31)

and the transformations of the gauginos will be discussed after we discuss the
transformations of the vector fields.

3. Let us now consider the invariance of the superpotential W. We can require,
equivalently, that the section £ be invariant up to Kéhler transformations. A
Kihler-weight (p, q) section ® will be invariant if”

La® =0, = £a®=—[Ta+ 3(pha+q)\))]®. (2.1.32)

SWe do not write explicitly any spacetime, target space etc. indices.
"This condition only makes sense for transformations Ka that really act on the scalars.
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Therefore, we must require for all A = a

K. L=—iSmAL, = 0.L=—1a*SmN\.L, (2.1.33)

but we cannot extend straightforwardly the same expression for all A since, as
discussed at the beginning of this section, the corresponding transformations
(constant phase multiplications) are only symmetries when £ = 0 or when they
are associated to transformations of the scalars and this is, by definition, not
the case when A = a, f.

We, therefore, write

6ol = —ia*SmAAL, (2.1.34)

imposing at the same time the constraint®

(a23m \, + a*Im M) L = (0P, + oFPy)L = 0. (2.1.35)

. The kinetic term for the vector fields A in the action will be invariant? if

the effect of a reparametrization on the kinetic matrix fpx is equivalent to a
rotation on its indices that can be compensated by a rotation of the vectors, or
a constant Peccei-Quinn-type shift i.e.

Safas = —a*Lafas = a*[Tars — 270 0" fryal, (2.1.36)
S AN = AT, A%, (2.1.37)

where the shift generator is symmetric T, As; = T, sa to preserve the symmetry
of the kinetic matrix.

Observe that for a = a, £afax = 0, and, for consistency, we must have
Ta( A8 fsya = 0, i.e. the transformations T, are those that preserve the kinetic
matrix. This is why we call the group generated by T, the invariance group Gv
of the complex vector kinetic matrix.

8This constraint should be understood as a way to consider the cases £ = 0 and £ # 0 simulta-

neously: when £ # 0 the symmetry transformations must satisfy (a2P, + oMDﬁ) = 0 and they are
unrestricted when £ = 0.

9Tt is at this point that the restriction to perturbative symmetries (symmetries of the action) is
made.
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The iteration of two of these infinitesimal transformations indicates that they
can be described by the 2ny x 2ny matrices'®

Ton® 0
T, = , R (2.1.38)
Tans Tuls

satisfying the Lie algebra

[Ta7 Tb] = _fabCTc . (2139)

As we have discussed some of the transformations generated by the K, may only
act on the scalars and not on the vectors, for instance, because the kinetic matrix
does not depend on the relevant scalars. We assume that the corresponding
subset of 2ny X 2ny matrices T, are identically zero. On the other hand, we
can formally add to these matrices another identically vanishing 2ny x 2ny
matrix Ty so we have a full set of 2ny X 2ny matrices Ty satisfying the Lie
algebra of G, Eq. (B.1.37).

Combining all these results we conclude that the gauginos transform according to

5o AT = —aA [T o™ A + 13m A A" (2.1.40)

At this point there is no restriction on the group G nor on the ny X ny matrices
T4 A%, although one can already see that the lower-triangular 2ny x 2ny matrices T4
are generators of the symplectic group.

2.1.2 Non-perturbative symmetries of the ungauged theory

The new, non-perturbative symmetries to be considered are symmetries of the “ex-
tended” equations of motion of the ungauged theory which are the standard equations
of motion plus the Bianchi identities of the vector field strengths:

dF* =0. (2.1.41)

The Maxwell equations that one obtains from the action Eq. (2.1.2) can be written
as Bianchi identities for the 2-forms G

100Observe that this group is the semidirect product of the group that rotates the vectors, generated
by the matrices Tp s and the Abelian group of shifts generated by the matrices T, o5;. Evidently,
some of these matrices identically vanish. This is the price we have to pay to use the same indices
a,b,c,... for the generators of both groups.
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dGp =0, GAT = fax(Z2)FF T, (2.1.42)

where F>F = 1 (F¥ +ix F*).
This set of extended equations of motion (Maxwell equations plus Bianchi identi-
ties) is invariant under general linear transformations

AN/ A A )
A Y =) (2.1.43)
Ga Csan D) Gs
However, consistency with the definition of G, Eq. (2.1.42) requires that the
kinetic matrix transforms at the same time as

f'=(C+Df)A+Bf)~ . (2.1.44)
Then f’ will be symmetric if

ATc-cTA=0, B"D-D'B=0, ATD—CTB =€, xny , (2.1.45)

where £ is a constant whose value is found to be £ = 1 by the requirement of invariance
of the Einstein equations.

These conditions can be reexpressed in a better form after introducing some nota-
tion. We define the contravariant tensor of 2-forms G, the symplectic metric Qp/n
and its inverse Q¥ which we will use to, respectively, lower and raise indices

A
GM:<2A >, QMN—<_I[ 0>< ]Invg)(nv ) , QMNQNP:_5MP-
ny Xny
(2.1.46)

Then, the Maxwell equations and Bianchi identities are formally invariant under the
transformations

G = MyMGN M= (My™M) = ( a0 ) , (2.1.47)

satisfying

MTQM =Q. (2.1.48)
i.e. M € Sp(2ny,R) [31]. Infinitesimally*!

11We include identically vanishing generators associated to U(1)g etc. On the other hand, it is
clear that the index A refers now to more symmetries than in the perturbative case.
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TAEA TAEA
MNM ~ Tony xony +a*Tan™ = a? N (2.1.49)
Tasa Ta™a

and the condition M € Sp(2ny,R) reads

Tapen) = Tap” Qvip = 0. (2.1.50)

These transformations change the kinetic matrix and will only be symmetries of all
the extended equations of motion if they can be compensated by reparametrizations,
i.e. fax has to satisfy

aka’Oifas = @ {~Tans +2Ta 2 fryo — Ta™ foafrs} (2.1.51)

The subalgebra of matrices that generate symmetries of the action (perturba-

tive symmetries) are those with T4>* = 0, i.e. the lower-triangular matrices of
Eq. (2.1.38).

Observe that the transformations acting on the vectors are constrained to belong
to Sp(2ny,R). This does not mean that the global symmetry group G C Sp(2ny,R),
but that the group that we can gauge must be contained (embedded) in Sp(2ny,R).
The generators T4 corresponding to non-symplectic symmetries (in particular U (1) g),
must necessarily vanish.

The transformation rule of the kinetic matrix fas, = Ras + ilan Eq. (2.1.44) can
be alternatively expressed using the Sp(2ny,R) matrix

IAE IAQRQE
(MMN) = : "oy =6y, (2.1.52)
Rl Ins + RaoI*T Rrs,

which transforms linearly

M = MMMT. (2.1.53)

2.2 Ungauged matter coupled N =2 Supergravity

In this paper we are considering the coupling of N = 2, d = 4 supergravity to ny
vector multiplets and ngy hypermultiplets, thus we are dealing with the following
fields:
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Gravity multiplet

e Graviton ey*

e A pair of gravitinos Wy,, [ =1,2
e Vector field A4,

ny Vector multiplets, i =1...ny
e Complex scalar Z*

e A pair of gauginos \'*, I = 1,2

e Vector field A7,

ng Hypermultiplets
e 4 real scalars ¢, u=1...4ng

e 2 hyperinos (%, a=1...2ny

In the coupled theory we denote the vector fields collectively by A% wA=1...n
where n = ny + 1.

The action of the bosonic fields of the theory is

S = /d4:c |g| [R+2gij*8#2i8”Z*7* +2huvaﬂquauqv
(2.2.1)

+2SmNA s FAMEE , — 2ReNpas FARFE ]

The coupling of scalars to scalars is described by a non-linear o-model with K&hler
metric G« (Z, Z*) (see Appendix B), and the coupling to the vector fields by a com-
plex scalar-field-valued matrix NMyx(Z, Z*). These two couplings are related by a
structure called special Kéahler geometry, described in Appendix C. The symmetries
of these two sectors will be related and this relation will be discussed shortly. The
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4dng hyperscalars parameterize a quaternionic Kéhler manifold (defined and studied
in Appendix D) with metric hy,(q) [63]. Observe that the hypermultiplets do not
couple to the vector multiplets.

For convenience, we denote the bosonic equations of motion by

EM = L5 &= L 95 (2.2.2)

C2lglden, T 2y /Jgloz

z o5 gr= 1 puwS (2.2.3)

1
E\l= ———— =
YT 8l 04N, /gl o0

and the Bianchi identities for the vector field strengths by

BAr =V, *FAve, (2.2.4)

The explicit forms of the equations of motion can be found to be
Ewr = Gu +2G,-[0,2'0,2%7 — 19,,0,2'00 2%

—i—éS%rI],/\f/\gFAJFHPFZ “up+ 2hy, [0,9"0,q" — %gu,,a,,qua,,qv] (2.2.5)

E = Vu(Giy0"Z* ) = 0iGip-0,Z70° Z* % 4+ ;[ FAM N ), (2.2.6)
E\F = V,UERM, (2.2.7)
Y = D,0"¢" = V,0"q" + T "0"¢"0,q" (2.2.8)

where we have defined the dual vector field strength Fj by

1 S N
Frw = _4—|g|m = %QNAzFEHV + SmMNps FEH,,. (2.2.9)

Note that the Bianchi identities Eq. (2.2.4) and the Maxwell equations Eq. (2.2.7),
respectively, can be written using differential form notation in the following way:

*BY = dF, (2.2.10)

*EAn = dFy. (2.2.11)
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The equation of motion (2.2.7) can be interpreted as a Bianchi identity for the dual
field strength Fj,

dFy =0, (2.2.12)

implying the local existence of ny +1 dual vector fields Ay, i.e. locally Fy = dAx. The
equation of motion and Bianchi identity for A*, Eqs. (2.2.7) and (2.2.4), respectively,
can be summarized as

dF =0, (2.2.13)

The symmetries of this set of equations of motion are the isometries of the Kahler
manifold and those of the quaternionic manifold. A prerequisite to understand the
following development is a study of the symplectic transformations. These are duality
symmetries of four dimensions, which are a generalization of electromagnetic duality
[64]. The Maxwell and Bianchi identities can be rotated into each other by GL(27,R)
transformations under which they are a 2n-dimensional vector:

BAK A B BAK

I

en , (2.2.14)

EaM ¢ D EaH

where A, B, C and D are n x n matrices. These transformations act in the same form
on the vector of 2n 2-forms

FA
F = — F' = SF where S C GL(2n,R. (2.2.15)
Fa

The (2ny + 2)-dimensional vector of potentials

A= < ﬁi ) : (2.2.16)

whose local existence is implied by Eqs. (2.2.13), transforms in the same way. How-
ever, since the dual potentials, Ay, depend in a non-local way on the ‘fundamental’
ones, A, these transformations are non-local and are not symmetries of the action,
which only depends on the fundamental potentials, but only of the Maxwell equations
and Bianchi identities. Now we are going to see, that consistency of this transforma-
tion rule with the definition of F Eq. (2.2.9) requires the matrix

D C
S = (2.2.17)
B A
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to belong to the symplectic subgroup of the general linear group:
S e Sp(2n,R) C GL(2n,R), (2.2.18)

or, which es equivalent,

STOS =0  with Q= ( ' ](1) ) . (2.2.19)

While the duality rotation Eq. (2.2.15) is performed on the field strengths and their
duals, also the scalar fields are transformed (since they belong to the same multiplets)
by a diffeomorphism of the scalar manifold and, as a consequence, the matrix NMpx
changes. By definition it is

Ff = ReNjs F'™™ + SmN o F'™> (2.2.20)

and for the transformations to be consistently defined, they must act on the period
matrix A according to

N' = (DN +C)BN + A =N(Z',2'). (2.2.21)

Furthermore, the transformations must preserve the symmetry of the period matrix,
which requires

D'B=B"D, CTA=ATC and DTA-B'C=1, (2.2.22)

i.e. the transformations must belong to Sp(27, R) and only this subgroup of elements
S € GL(2ny +2,R) can be a symmetry of all the equations of motion of the theory!?2.
The above transformation rules for the vector field strength and period matrix imply

SmN’ = (BN* + A) TSN (BN + A)~, FAT = (BN* + A)anFE T,
(2.2.23)
so the combination SmAs FA+,PFA+, , that appears in the energy-momentum ten-
sor is automatically invariant. These transformations have to be symmetries of the
o-model as well, which implies that only the isometries of the special Kdhler manifold
which are embedded in Sp(2n,R) and those of the quaternionic manifold parameter-
ized by the hyperscalars are symmetries of all the equations of motion of the theory
(dualities of the theory).
For vanishing fermions, the supersymmetry transformation rules of the fermions are

12This, in fact, is the largest possible electro-magnetic duality group of any Lagrangian depending
on Abelian field strengths, scalars and derivatives of scalars as well as spinor fields [31].
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Setbrp = Duer+ers TTun" e, (2.2.24)
SN = i 9zt + @t ey (2.2.25)
6eCa = —iCop UL, cry Pg" €, (2.2.26)

Here © is the Lorentz and K&hler-covariant derivative of Ref. [26] supplemented by
(the pullback of) an SU(2) connection A;” described in Appendix D, acting on objects
with SU(2) indices I, J and, in particular, on €; as:

Duer=(Vy + £ Q) e + Aur’ ey (2.2.27)

UAT, is a Quadbein, i.e. a quaternionic Vielbein, and C,s the Sp(m)-invariant metric,
both of which are described in Appendix D.
From this point on we will refer to the upper case Greek indices as symplectic

indices and to vectors X given by
XA
X = ( X, ) (2.2.28)

as symplectic vectors. Given two symplectic vectors X and Y we define the symplectic-
invariant inner product, (X | Y), by 13

(X|Y)=-XTQy = X, YA - X2y, (2.2.30)

When writing forms inside a symplectic inner product we will implicitly assume
that we are taking the exterior product of both. One should then keep in mind
that <X(p) | T}/(q)> = (—1)P4 <}/(q) | TX(p)>, where X(p) and }/(q) are p- and g-forms,
respectively. Note that in the variation of the gravitini the hyperscalars only appear
via the SU(2) connection A, 17, while in the variation of the gaugini the hyperscalars
do not appear at all.

The supersymmetry transformations of the bosons are

I3Note that when dealing with gauged supergravities, we were using a slightly different notation.
Here we suppress the index M in the symplectic vector X, which in the previous sections we referred
to as XM. The symplectic-invariant inner product could equivalently written, using our former
notation, as

(XY)==-XMQunYYN =X, Y™ = _xMy,, . (2.2.29)
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ey = —1(r,ne + Ty er), (2.2.31)
5€AA# _ i(ﬁA*EIJJ)I‘u €5 + LAEU&I# eJ)

+L(fPiera N yue” + AN ) (2.2.32)
520 = IN'ep, (2.2.33)
5eq" = Uar"(C%’ + CPel {gey). (2.2.34)

Observe that the fields of the hypermultiplet and the fields of the gravity and vector
multiplets do not mix in any of these supersymmetry transformation rules. This
means that the KSIs associated to the gravitinos and gauginos will have the same
form as in Ref. [26] and in the KSIs associated to the hyperinos only the hyperscalars
equations of motion will appear.

For convenience, we denote the bosonic equations of motion by

1 4 1 45

S 1
Ef=——e——, &= EnM
2+/]gl 0e®p

1

and the Bianchi identities for the vector field strengths by

4V/lg|
(2.2.35)

BAr =v, *FAve (2.2.36)

Then, using the action Eq. (2.2.1), we find that all the equations of motion of
the bosonic fields of the gravity and vector supermultiplets take the same form as if
there were no hypermultiplets, as in Ref. [26], except for the Einstein equation, which
obviously is supplemented by the energy-momentum tensor of the hyperscalars

Ew = Ewlg= 0) + 2Huy [auquauqv - %gu,,(?pquapq”], (2.2.37)

Furthermore, the equation of motion for the hyperscalars reads

&' =9,0"q" =V ,0"¢" + ' 0"¢"0uq" , (2.2.38)
where I',,,* are the Christoffel symbols of the 2" kind for the metric Hy,.
The symmetries of this set of equations of motion are the isometries of the Kéhler

manifold parametrized by the 77 — 1 complex scalars Z%s embedded in Sp(27,R) and
those of the quaternionic manifold parametrized by the 4m real scalars ¢*.
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2.2.1 N =2, d=4 Supergravity from String Theory

In this chapter we are going to review the higher-dimensional origin of N =2, d =4
Supergravity, i.e. how it arises from compactification of ten-dimensional Superstring
Theory.

Type II Supergravity theories, being the low energy limits of type II superstring
theory, live in ten dimensions. To recover the four-dimensional spacetime of everyday
experience, we have to compactify the ten-dimensional theory on a six-dimensional in-
ternal manifold. The four-dimensional theory obtained upon compactification heavily
depends on the topology of the internal manifold (see below). If we compactify ten-
dimensional type II String Theory, which has 32 supersymmetries, on a six-torus 7
for example, we are left with N = 8 supersymmetry in four dimensions because, due
to its trivial holonomy, a torus does not break any supersymmetry. If, on contrary,
one compactifies on a Calabi-Yau manifold** CY,,, which by definition has SU(n)
holonomy, some fraction of the available amount of supersymmetry is broken. In case
of compactification on a Calabi-Yau threefold C'Y3 three quarters of the supersym-
metries are broken. Schematically this can be explained in the following way: for an
orientable six-dimensional manifold parallel transport of a spinor along a closed curve
generically gives a rotation by a SO(6) ~ SU(4) matrix, this is the generic holonomy
group. The 16 Weyl representation of the ten dimensional Lorentz group SO(1,9)
decomposes with respect to SO(1,3) ® SO(6) as

16 = (21,4) + (2R, 4) (2.2.39)

The largest subgroup of SU(4) for which a spinor of definite chirality can be invariant
is SU(3). The reason is that the 4 has an SU(3) decomposition

4=301, (2.2.40)

i.e. it decomposes into a triplet and a singlet, which is invariant under SU(3). Since
the condition for N = 1 unbroken supersymmetry in four dimensions is the existence
of a covariantly constant spinor on the internal six-dimensional manifold, and only
the singlet pieces of 4 and 4 in Eq. (2.2.40) lead to covariantly constant spinors,
compactification on a manifold with SU(3) holonomy breaks 3/4 of the original su-
persymmetries. Imposing the Majorana condition in ten dimensions, it follows that
type II supergravity on a C'Y3 leads to IV = 2 supergravity in four dimensions. Thus,
from the 32 supercharges we have in ten dimensions in case of type II supergravities,
we are left with 8 in four dimensions. In this way CY3 compactification of type II
supergravity leads to N = 2, d = 4 supergravity coupled to ny vector and ngy hyper-
multiplets, where the numbers of multiplets is given in terms of topological invariants
of the Calabi-Yau manifold one is compactifying on.

14A compact Kihler manifold with vanishing first Chern class is called a Calabi- Yau manifold.
For details about Kéahler geometry see Appendix B.
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The massless Kaluza-Klein modes associated with various fields in ten dimensions,
compactified on a Calabi-Yau space are given in Table 2.2.1. Let us see in some more
detail how the massless scalars in four dimensions are related to the ten-dimensional

theory, taking IIB as example. The bosonic fields of IIB supergravity are:'°

Gun, Bun, ¢, C, Cun, Cunpq - (2.2.41)

Additionally the supergravity multiplet contains 2 gravitini and two dilatini with the
same chirality. The metric Gy, the dilaton ¢ and the two-form Bj;n come from
the NS-NS sector, whereas the axion C, the 2-form and 4-form Cyy and Cyrnpg
come from the R-R sector.

The axion, the dilaton and the duals of By, and C,,, lead to 4 real scalars, com-
bined in the so-called wuniversal hypermultiplet, independently of the specific choice
of Calabi-Yau manifold; the topological origin of this fact is that h%° = 1 for any
Calabi-Yau threefold, where h?'? are the Hodge numbers of the Calabi-Yau. The
Hodge numbers of a generic Calabi-Yau threefold are conveniently displayed in the
so-called "Hodge diamond”:

h3:3 1
h3:2 h?3 0 0
B3l B2 B3 0 Bl 0
1,30 B2l B2 03 _ 1 B2 B1:2 1
720 Bl 1,0:2 0 Bl 0
B0 01 0 0
ho:0 1

Now let us consider metric deformations of the Calabi-Yau manifold. After fixing
the diffeomorphism invariance and taking into account the Ricci-flatness of Calabi-
Yau manifolds, the deformations dg;; and dg;; decouple and thus can be considered

151n the following upper case Latin indices M, L . .. denote ten-dimensional indices, while Greek in-
dices p, v . .. live in four dimensions and lower case Latin indices 7, j ... in the internal six-dimensional
space.
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separately. The purely holomorphic or anti-holomorphic components g;; and g5, re-
spectively, are zero. However, one can consider variations to non-zero values, thereby
changing the complex structure!®.

Thus metric deformations of the Calabi-Yau manifold give two types of moduli
[66], [67]:

e Kihler moduli: h"! real scalars due to deformations of g;;:

Bl
Sgiz= Y 10, (2.2.42)
a=1

where we expanded dg;; in a basis of real (1, 1)-forms, which we denoted by b*,
a=1...hY" and t* are the Kdhler moduli, and

e Complex structure moduli: h*? complex scalars due to the deformations of dg;;:

h2,1
Qijrdghp =D b1 (2.2.43)
a=1

where a complex (2, 1) form is associated to each variation of the complex struc-
ture. Here b®, a = 1...h%!, denote a basis of harmonic (2,1)-forms and the
complex parameters t* are called the complex structure moduli. §2 denotes the
unique holomorphic (3, 0)-form of Calabi-Yau threefolds. It turns out that the
metric on the complex structure moduli space is Kahler with Kahler potential
given by [67]

K=- log(i/Q A Q). (2.2.44)

The 2-forms lead to 2 h'! scalars B;; and Cj; and taking into account the self-
duality of the 5-form field-strength of the 4-form, there are h*? = h!! scalars C;;z;
arising from Cpnpg. These 4h!! scalars are part of h''! additional hypermultiplets.
Finally the h'? complex scalars (complex structure moduli) are associated to h':?
vector multiplets.

Further, the spectrum of the low dimensional theory contains h*° (= 1) vectors
Clijr in the gravity multiplet and h%' = h12 vectors C.i;k associated to the vector
multiplets.

In the case of the type IIA theory the massless bosonic fields in ten dimensions
are

GuN, Bun, ¢, Cu, Cunp - (2.2.45)

16Since a Calabi-Yau manifold is a Kahler manifold it admits by definition a complex structure.
A complex structure is a (1, 1)-tensor J that satisfies J2 = —1 (for more details see [65]).
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A B field spin-2 | spin-1 spin-0

1 1 JMN 1 0 A1 real + hY2 complex
1 2 é 0 0 1

1 0 An 0 1 0

12 Ay 0 0 (h*! +1) real

1 0 Aypnp 0 htt (h%2 + 1) complex

0 1] [Aunpql. 0 | Ar'2+1 h'?! real

Table 2.2.1: Massless Kaluza-Klein modes associated with various fields in ten dimen-
sions, compactified on a Calabi-Yau space. The first two columns specify the number
of these fields contained in ITA or I1IB supergravity in ten space-time dimensions [68].

Additionally the supergravity multiplet contains 2 gravitini and two dilatini with
opposite chiralities. Note that just as for type IIB Gasn, By, and ¢ arise from the
NS-NS sector, whereas in the case at hand the R-R fields are forms of odd degree.

The NS-NS fields give the same number of massless scalars as in the IIB case,
namely one real scalar from the dilaton, 2h'2 + h':! real scalars from the metric and
h'! 41 real scalars from the NS-NS 2-form. Now the R-R 3-form leads to h?! = h!:2
complex scalars C;;; and h*° = 1 complex scalar Cijp,.

The 1-form leads to one vector field C,, (which will be contained in the supergrav-
ity multiplet) and the 3-form to h''! vectors C,;j, contained in the vector multiplets.
Grouping all these fields again into multiplets, one obtains gravity coupled to h':!
vector multiplets and k"2 hypermultiplets in four dimensions. With these results it
is easy to count the number of bosonic massless states that emerge in the compacti-
fication of ITA and IIB supergravity on a Calabi-Yau manifold [69]:

1 spin-1 + 1 spin-2 gravity multiplet
h'! spin-1

At complex spin-0
h%2 4+ 1 quaternionic spin-0  h'2 + 1 hypermultiplets

Type ITA Sugra : hY1 vector multiplets (2.2.46)

1 spin-1 + 1 spin-2 gravity multiplet
h'2 spin-1

h'? complex spin-0
h'! + 1 quaternionic spin-0  h'' + 1 hypermultiplets

Type IIB Sugra : h*2 vector multiplets (2.2.47)
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The field content of four-dimensional supergravity associated to the field content of
ten-dimensional type ITA/B supergravity is summarized in Table 2.2.1.

The total target manifold parameterized by the various scalars factorizes as a
product of vector and hypermultiplet manifolds:

Mscalar = SM® HM,
dimc SM ny,
dimg HM = 4ng,

where SM, HM are respectively special Kdhler and quaternionic Kdhler and ny,
ny are respectively the number of vector multiplets and hypermultiplets contained in
the theory. The direct product structure Eq. (2.2.48) imposed by supersymmetry
precisely reflects the fact that the quaternionic and special Kéhler scalars belong to
different supermultiplets [70].

An important implication is the following: since the string coupling constant is
given by the vacuum expectation value of the dilaton g = e~%/2 and the the four-
dimensional reduction of the dilaton always belongs to a hypermultiplet, the hyper-
multiplet sector receives both perturbative and non-perturbative gy corrections [71].
Non-perturbative corrections arise from instantons and/or branes wrapping cycles in
the Calabi-Yau. The vector multiplet geometry remains unaffected.

Up to now we were only considering the higher dimensional origin of the massless
states in four dimension. However, also the coupling of the vector multiplet scalars to
the vectors is encoded in the Calabi Yau geometry, namely in a holomorphic function
called the prepotential (see also Appendix C.1). To start with we introduce a real
symplectic basis (an, 57) [72] of 3-forms of H3(CY) = HGO o HZD g H12) @ H0:3),
ar € HG9 @ HZY and g* € H®3) @ HM2) | chosen such that they satisfy

/ [ /Oéz; A\ 6A = 6AZ , (2248)
AA

62

Ba

/aA Nay = /6“ ABE =0, (2.2.50)

/52 Aoy =—=6") (2.2.49)

where (A%, Bsy) denotes the dual homology basis of 3-cycles 17 with intersection num-
bers

AMN By = —BynA* =6y, and  A*NA®=B,NBx =0, (2.2.51)

170Observe that the 3-form ay is the Poincaré dual of the 3-cycle By and 8> of A%, respectively.
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and A,¥ = 0...h%!. Now we can define coordinates on the moduli space'® by the
periods of the holomorphic 3-form 2

xh = /AA Q= /Q/\BA. (2.2.52)

In this way we define one more coordinate than we have moduli fields, but the addi-
tional degree of freedom is killed by fixing the U(1) gauge freedom, as described in
Appendix C.1. In order not to have more independent variables, the B periods

Ba

must be functions of X', whence €2, which is just a 3-form, can be expanded in the
basis of 3-forms
Q= X%y — Fapt. (2.2.54)

Using Eq. (2.2.44) the Kahler potential takes the form
K = —log (i(X**Fp — X2F*y)) . (2.2.55)

As under a change of the complex structure Eq. (2.2.43) dz becomes a linear combi-
nation of dz and dz, the holomorphic (3, 0)-form 2 becomes a linear combination of
(3,0) and (2, 1)-forms [66]

e H®O ¢ gD, (2.2.56)

it follows
QANONQ=0. (2.2.57)

Integrating the last equation over the Calabi-Yau threefold and taking into account
the basic properties of the basis of 3-forms, Egs. (2.2.48)-(2.2.50), this implies

Fa=XZ0\Fs, (2.2.58)

where

F=1x2F,. (2.2.59)

This function is exactly the prepotential of N = 2 supergravity in four dimensions
(Appendix C.1).

Notice that the results in case IIA/B are the same upon the exchange hP? «—
h3=P-4. This phenomenon for Calabi-Yau threefolds is part of what is called mirror
symmetry: type IIA theory compactified on a Calabi-Yau threefold M is equivalent

18T, 00sely speaking, we mean by moduli space the scalars in the lower-dimensional theory which
encode the geometric properties, such as shape and size, of the internal manifold.
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to type IIB compactified on the mirror Calabi-Yau threefold W. The mirror map
associates to a Calabi-Yau threefold M another one W such that

R (M) = B3P YW). (2.2.60)

This means that mirror symmetry maps the complex structure moduli space of type
IIB compactified on M to the Kéhler structure moduli space of type ITA on W. But
apart from the fact that the low energy spectrum of type ITA on M and IIB on the
mirror manifold W are the same (up to now we were only considering the massless
Kaluza-Klein modes), the mirror symmetry proposal implies much more. Actually
mirror symmetry claims the two theories to be exactly equivalent to all orders of o,
i.e. including stringy effects . The o’ corrections are controlled by the Kahler moduli,
which for type ITB(ITA) appear in the lower-dimensional theory through the scalars
in a hypermultiplet (vector multiplet). This implies that the result obtained for
type IIB on M, the vector multiplet moduli space, i.e. the complex structure moduli
space, does not suffer from o’ corrections, and the result obtained in the supergravity
approximation is exact to all orders in o’. Mirror symmetry thus allows us to obtain
information about the o’-corrections of the hypermultiplet sector in type IIA on the
mirror manifold W, which are highly non-trivial.

Thence mirror symmetry is a very useful concept, e.g. to compute the holomorphic
prepotential of the effective action, although it has not been proven yet [73].



Chapter 3

Gauging Supergravity and
the four-dimensional tensor
hierarchy

In this section we will construct the complete D = 4 tensor hierarchy. We use as our
starting point Ref. [15]. We use the same formalism, impose the same constraints on
the embedding tensor and follow the same steps up to the 2-form level reproducing
exactly the same results, but we carry out the program to its completion, determin-
ing explicitly all the 3- and 4-forms and their gauge transformations. Here we find
already a surprise in the sense that in D = 4 we find more top-form potentials than
follow from the expectations formulated in Refs. [17,74]. Our results and the general
results and conjectures of these references? cannot be straightforwardly compared,
though, since in these works on the general structure of tensor hierarchies only one
possible constraint on the embedding tensor (the standard quadratic constraint) is
considered, while in the 4-dimensional setup of Ref. [15] the embedding tensor is sub-
ject to two additional constraints, one quadratic and one linear. They are ultimately
responsible for the existence of additional 4-forms, which we find to be in one-to-one
correspondence with the constraints?.

1For instance, we find in D = 4 not only top-forms that correspond to quadratic constraints of
the embedding tensor but also top-forms that are related to certain linear constraints, see subsection
3.2.4.

2There are no direct computations of tensor hierarchies up to the 4-form level in the literature.
All we know about them, up to now, is based on general arguments.

3Note added in proof: it has recently been shown in Ref. [60] that the introduction of these
additional 4-forms is consistent with N = 1, D = 4 supergravity. Furthermore, it has been shown
that the gauging of particular classes of theories (e.g. N = 1, D = 4 supergravity with a non-vanishing
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Next, we will make precise how a set of dynamical equations can be defined by
the introduction of first-order duality relations. Besides the p-form potentials these
duality relations also contain the scalars and the metric tensor defining the theory.
The set of dynamical equations not only contains the equations of motion putting
all electric potentials on-shell but it also involves the (projected) scalar equations of
motion. The tensor hierarchy supplemented by this set of duality relations will be
called the duality hierarchy. This set of duality relations cannot be derived from an
action, though the relation to a possible action will be elucidated in a last step.

For the readers’ convenience we briefly outline our program, which can be sum-
marized by the following 3-step procedure. The first step consists of the general
construction of the tensor hierarchy, which is an off-shell system. The structure in
generic dimension has been given in [16,17]. The explicit form, however, of the com-
plete D = 4 tensor hierarchy is not available in the literature since it was constructed
in [15] only up to the 2-form level. (For the construction of the tensor hierarchy
of maximal and half-maximal 4-dimensional supergravities, see [75] and references
therein.) The complete D = 3 tensor hierarchy has been discussed in [16,76]. To
construct the tensor hierarchy one usually starts from the p-form potential fields of

all degrees p = 1,..., D and then constructs the gauge-covariant field strengths of
all degrees p = 2,...,D. These field strengths are related to each other via a set of
Bianchi identities of all degrees p = 3,..., D. Usually, one starts with the construc-

tion of the covariant field strength for 1-form potentials which, for general gaugings,
requires the introduction of 2-form potentials. The corresponding 3-form Bianchi
identity relates the 2-form field strength to a 3-form field strength for the 2-form po-
tential, whose construction requires the introduction of a 3-form potential, etc. This
bootstrap procedure ends with the introduction of the top-form potentials. The only
input required for this construction is the number of electric p > 1-form potentials,
the global symmetries of the theory and the representations of this group under which
the p-forms transform. Changing these data leads to different theories that can be
seen as different realizations of the low-rank sector of the same tensor hierarchy.

A trick that simplifies the construction outlined above and which makes the con-
struction of the complete D = 4 tensor hierarchy feasible is to first construct the set
of all Bianchi identities relating the (p + 1)-form field strengths to the (p + 2)-field
strengths. This systematic construction of the Bianchi identities can be carried out
even if we do not know explicitly the transformation rules of the potentials. These
can be found afterwards by using the covariance of the different field strengths. The
resulting gauge transformations form an algebra that closes off-shell: at no stage of
the calculation equations of motions are involved.

The second step is to complement the tensor hierarchy with a set of duality re-

superpotential) may require additional constraints on the embedding tensor, which lead to extensions
of the tensor hierarchy and, in particular, to additional 4-forms related to the new constraints.
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lations and as such to promote it to what we have called duality hierarchy. The
duality relations contain more ‘external’ information about the particular theory we
are dealing with. It will introduce the scalars and the metric tensor field that were
not involved in the construction of the tensor hierarchy*. More precisely, some of the
duality relations contain the scalar fields via functions that define all scalar couplings,
i.e. the Noether currents, the (scalar derivative of the) scalar potential and functions
that define the scalar-vector couplings. In this way the duality hierarchy contains
all the information about the particular realization of the tensor hierarchy as a field
theory.

The duality hierarchy leads to a set of dynamical equations that not only contains
the equations of motion for the electric potentials but it also involves the (projected)
scalar equations of motion according to the rule:

Tensor hierarchy & duality relations < dynamical equations. (3.0.1)

The gauge algebra of the tensor hierarchy closes off-shell even in the presence of the
duality relations. However, in the context of the duality hierarchy this is a basis-
dependent statement. We are free to modify the gauge transformations by adding
terms that are proportional to the duality relations. Of course, in this new basis the
gauge algebra will close on-shell, i.e. up to terms that are proportional to the duality
relations. We will call the original basis with off-shell closed algebra the off-shell basis.

The last and third step is the construction of a gauge-invariant action for all p-
form potentials, scalars and metric.® In this last step we encounter a few subtleties
that we will clarify. In particular, we will answer the following questions:

1. How are the equations of motion that follow from the gauge-invariant action
related to the set of dynamical equations defined by the duality hierarchy?

2. How are the gauge transformations of the p-form potentials occurring in the ac-
tion related to the gauge transformations that follow from the tensor hierarchy?

It turns out that the construction of a gauge-invariant action requires that the gauge
transformations of the duality hierarchy are given in a particular basis that can be
obtained from the off-shell basis by a change of basis that will be described in this
paper. To be specific, the two sets of transformation rules (those corresponding
to the off-shell tensor hierarchy and those that leave the action invariant) differ by
terms that are proportional to the duality relations. It is important to note that
once a gauge-invariant action is specified the gauge transformations that leave this
action invariant are not anymore related to the off-shell basis by a legitimate basis
transformation from the action point of view. This is due to the fact that from the

4The dual scalars, i.e. the (D — 2)-form potentials, are included in the tensor hierarchy.
5Strictly speaking, in D = 4 not all 2-forms enter the action, see sec. 3.4.
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action point of view one is not allowed to remove terms that are not proportional
to one of the equations of motion that follow from this action®. However, although
some projected duality relations follow by extremizing the action, this is not the case
for all duality relations of the duality hierarchy. Therefore, from the action point of
view, the gauge transformations that leave the action invariant are not equivalent to
the gauge transformations of the duality hierarchy in the off-shell basis. Indeed, the
gauge transformations in the off-shell basis do not leave the action invariant.

3.1 The embedding tensor formalism

We start by giving a brief review of the the embedding tensor formalism [11,14,16,17].
Readers familiar with this technique may skip this part.

The embedding tensor formalism is a convenient tool to study gaugings of super-
gravity theories in a universal and general way, that does not require a case-by-case
analysis. This technique formally maintains covariance with respect to the global in-
variance group G of the ungauged theory, even though in general G will ultimately be
broken by the gauging to the subgroup that is gauged. It turns out that all couplings
that deform an ungauged supergravity into a gauged one, as Yukawa couplings, scalar
potentials, etc., can be given in terms of a special tensor, called the embedding ten-
sor. Thus, gauged supergravities are classified by the embedding tensor, subject to
a number of algebraic or group-theoretical constraints, some of which we will discuss
below.

To be more precise, the embedding tensor ©,;% pairs the generators ¢, of the
group G with the vector fields A, used for the gauging. The indices a, 3, ... label
the adjoint representation of G and the indices M, N, ... label the representation Ry
of G, in which the vector fields that will be used for the gauging transform. Thus,
the choice of ©);%, which generally will not have maximal rank, determines which
combinations of vectors

A,U.M@Ma7 (311)

can be seen as the gauge fields associated to (a subset of) the generators t,, of the group
G, and, simultaneously, or alternatively, which combinations of group generators
Xy = Op%t, (3.1.2)

can be seen as the generators of the gauge group. Consequently, the embedding tensor
can be used to define covariant derivatives

60ne may only change the gauge transformations by adding so-called “equations of motion sym-
metries”.
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D, = 0, —-AMOeyu"ty = 0,—AM Xur, (3.1.3)

which shows that the embedding tensor can also be interpreted as a set of gauge
coupling constants” of the theory. Even though ©,,* has been introduced as a tensor
of the duality group G, it is not taken to transform according to its index structure,
i.e. in the tensor product Ry ® Adj*, but must be inert under G for consistency.
This requirement leads to the so-called quadratic constraints, which state that the
embedding tensor is invariant under the gauge group. If we denote the generators of
G (with structure constants f,57) in the representation Ry by (to)a”, this amounts
to the condition

5pOM® = OpPtanNON + 057 f5,%00 = 0. (3.1.4)

Therefore, seemingly G-covariant expressions actually break the duality group to the
subgroup which is gauged.
In the next sections we will frequently make use of the objects

Xun" = O tan” = Xpum" + 2 un , (3.1.5)

with Z ;v denoting the symmetric part of Xj/n', in terms of which the quadratic
constraints read

0p°“Zyn = 0. (3.1.6)

Thus, the antisymmetry of the ‘structure constants’ of the gauge group holds only
upon contraction with the embedding tensor. Similar relations, that are familiar from
ordinary gauge theories but hold in the present context only upon contraction with ©,
will be encountered at several places in the next sections. Note that standard closure
of the gauge group follows from (3.1.4) in that

[(Xu, Xn] = —Xun"Xp = —Xun" Xp (3.1.7)

by virtue of (3.1.6).

So far, the discussion has been quite general. In the remaining part of this paper
we are going to discuss the D = 4 and D = 3 tensor hierarchies in full detail. For these
cases the embedding tensor can be specialized according to the known representation
of the vector fields. Also, our notation for the indices will slightly differ from the

7@ may have a product structure and each factor may have a different coupling constant, which is
contained in the embedding tensor. We, therefore, do not write any other explicit coupling constants
apart from Ops*.
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general case to accord with the literature. In the D = 4 case we will work with
electric vectors AA#, with A = 1,...,n, and magnetic vectors Ap,,. Together, these
vectors will be combined into a symplectic contravariant vector AM , with M labeling
the fundamental representation of Sp(27,R). Also the adjoint index of the global
symmetry group will be denoted by A instead of a. This leads to the following
notation for the D = 4 embedding tensor:

D=4: on® — Oyt (3.1.8)

We now discuss the D = 4 tensor hierarchy in sections 3.2, 3.3 and 3.4.

3.2 The D =4 tensor hierarchy

3.2.1 The setup

The (bosonic) electric fields of any 4-dimensional field theory are the metric, scalars
and (electric) vectors. Only the latter are needed in the construction of the tensor
hierarchy. We denote them by AA# where A, ... = 1,--- 7. In 4-dimensional
ungauged theories one can always introduce their magnetic duals which we denote by
a similar index in lower position A .

The symmetries of the equations of motion of 4-dimensional theories that act on
the electric and magnetic vectors are always subgroups of Sp(27,R) [31] . Thus, it is
convenient to define the symplectic contravariant vector

A
AM = <ﬁAi ) . (3.2.1)

It is also convenient to define the symplectic metric Qs n by

(0 Taxa
Qun = ( L 0 ) , (3.2.2)
and its inverse QMY by
OMNQnp = —Mp. (3.2.3)

They will be used, respectively, to lower and raise symplectic indices, e.g.®

Ay = Qun AN = (A, —A"), AM = ANQNM (3.2.4)

The contraction of contravariant and covariant symplectic indices is, evidently, equiv-
alent to the symplectic product: AM By = AMQynBYN = —ABM.

8In what follows we will mostly use differential-form language and suppress the spacetime indices.
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We denote the global symmetry group of the theory by GG and its generators by
Ty, A,B,C,...=1,--- ;rank G. These satisfy the commutation relations

[Ta, Tg] = —fap“Tc - (3.2.5)

G can actually be larger than Sp(2n, R) and/or not be contained in it?, but, according
to the above discussion, it will always act on AM as a subgroup of it, i.e. infinitesimally

S AM = aATy yMAN | baArr = —a Ty N AN | (3.2.6)

where

Tapan) = Tap” Onip = 0. (3.2.7)

This is an important general property of the 4-dimensional case. It is implicit in this
formalism that some of the matrices T 37 may act trivially on the vectors, i.e. they
may vanish. Otherwise we could only deal with G C Sp(2n,R).

Apart from its global symmetries, an ungauged theory containing 7 Abelian vector
fields will always be invariant under the 21 Abelian gauge transformations

SAAM, = —9,AM, (3.2.8)

where AM(z) is a symplectic vector of local gauge parameters.

To gauge a subgroup of the global symmetry group G we must promote the global
parameters o to arbitrary spacetime functions a () and make the theory invariant
under these new transformations. This is achieved by identifying these arbitrary
functions with a subset of the (Abelian) gauge parameters A of the vector fields
and subsequently using the corresponding vectors as gauge fields. This identification
is made through the embedding tensor ©,,4 = (O,4,044):

o (z) = AM(2)0). (3.2.9)

The embedding tensor allows us to keep treating all vector fields, used for gaugings
or not, on the same footing. It hence allows us to formally preserve the symplectic
invariance even after gauging.

As discussed in section 3.1 the embedding tensor must satisfy a number of con-
straints which guarantee the consistency of the theory. Some of these constraints have
already been discussed in section 3.1. In total we have three constraints which we
list below. First of all, in the D = 4 case we must impose the following quadratic
constraint

Q4P =1leMlte, Pl =0, (3.2.10)

9The symmetries of a set of scalars decoupled from the vectors are clearly unconstrained.
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which guarantees that the electric and magnetic gaugings are mutually local [15].
Observe that the antisymmetry of QMY and the above constraint imply ©M 40,5 =
0. This constraint is a particular feature of the 4-dimensional case.

As mentioned in section 3.1 there is a second quadratic constraint which encodes
the fact that the embedding tensor has to be itself invariant under gauge transfor-
mations. If the gauge transformations of objects with contravariant and covariant
symplectic indices are

5A§M — AN@NATAPM§P7 5AnM — —AN("')NATA MP§P7 (3211)

and the gauge transformations of objects with contravariant and covariant adjoint
indices are written in the form

(SATFA = AM@MBfBCATFC . 5A<A == _AMeMBfBACCCa (3212)
then
oAOM" = AN Qnu?, Qnm? = ON TanT0p? —ONn 00 fap?,
(3.2.13)

and the second quadratic constraint reads

Qnut=0. (3.2.14)

The third constraint applies to all 4-dimensional supergravity theories that are
free of gauge anomalies [77] and can be expressed using the X generators introduced
in section 3.1, see Eq. (3.1.5):

X =03 Ty, Xunt =0yu2Tan?. (3.2.15)

This constraint (the so-called representation constraint) is linear in © ;4 and reads
as follows [15]:

Lunp = Xunp) = Xun?Qp)g = 0. (3.2.16)

The three constraints that the embedding tensor has to satisfy are not indepen-
dent, but are related by

Quumy™ = 3Lnnp 2™ = 2Q* Ty = 0. (3.2.17)

This relation can be used to show that the constraint Q4% = 0 follows from the
constraint ¢ MN)A = 0 when the linear constraint Ly;nyp = 0 is explicitly solved,
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whenever the action of the global symmetry group on the vectors is faithful. We will
neither solve explicitly the linear constraint by choosing to work only with represen-
tations allowed by it, nor we will assume the action of the global group on the vectors
to be faithful, since there are many interesting situations in which this is not the case
and we aim to be as general as possible. In (half-) maximal supergravities, though,
the global symmetry group always acts faithfully on the vector fields.

These two choices, which differ from those made in the explicit examples found
in the literature (see e.g. Ref. [75]) will have important consequences in the field
content of the tensor hierarchy and are the reason why our results also differ from
those obtained in them.

Before we go on we wish to collect a few properties of the X generators X/ n* in a
separate subsection.

The X generators and their properties

We first discuss the symmetry properties of the X generators. By their definition,
and due to the symplectic property of the T y¥ generators, see Eq. (2.1.50), we have

Xmnp =XmpN - (3.2.18)
From the definition of the quadratic constraint Eq. (3.2.14) it follows that

Xoun) 0r% = Qum© (3.2.19)

and so it will vanish!?, although, in general, we will have

Xaum" #0. (3.2.20)
This implies, in particular
Xump = —3Xpun + $Lune = Xoun)® = 254 Tann + 3Lun" . (3.2:21)
where we have defined
+3004
2 )
zPA = —LoNPeoyt = . (3.2.22)
_%GAA )

ZP4 will be used to project in directions orthogonal to the embedding tensor since,

due to the first quadratic constraint Eq. (3.2.10), we find that

10Here we will keep the terms proportional to constraints for later use, including the linear con-
straints in (3.2.21).
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zMA9 P = 145 . (3.2.23)
We next discuss some properties of the products of two X generators. From the
commutator of the Ty generators and the definition of the generators X, and the
matrices Xyt we find the commutator of the Xy generators to be
[Xar, Xn] = QunTo — Xun"Xp . (3.2.24)
This reduces to (cf. to Eq. (3.1.7))

(X, Xn] = —Xun " Xp, (3.2.25)

upon use of the above constraint and Q¢ = 0. From the commutator Eq. (3.2.24)
one can derive the analogue of the Jacobi identities

Xumn *Xip)™ + Xivp 2 X + Xipn “Xivg) ™ =
= =5 {Xun X (p) " + Xivp P X ) + Xipa X vg) ™}

—Quun T p) ™.
(3.2.26)
We finally present two more useful identities that can be derived from the com-
mutators:

X ?Xpo" — Xpn9X o) — Xpn®Xvg)® = —Qpan“Ton3,2.27)
Xun?Xp" = Xpn X + Xpn®Xivg™ = Qpu“To v (3.2.28)

3.2.2 The vector field strengths '

We now return to the construction of the field strengths of the different p-form po-
tentials. In what follows we will set all the constraints explicitly to zero in order to
simplify the expressions. In this section we consider the vector field strengths.

To construct the vector field strength it is convenient to start from the covariant
derivative. This derivative acting on objects transforming according to d¢ = AM ¢
is defined by

Dp=dp+ AMbp¢p. (3.2.29)

For instance, the covariant derivative of a contravariant symplectic vector
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DM = aeM  XnpMANEP (3.2.30)

transforms covariantly provided that

SAM = —DAM 4 AAM | OuAAM = 0. (3.2.31)

The Ricci identity of the covariant derivative on AV can be written in the form

DDAM = XnpMFNAP, (3.2.32)

for some 2-form F. Since this expression is gauge-covariant, F*, contracted with
the embedding tensor, will automatically be gauge-covariant, whatever it is and it
is natural to identify it with the gauge-covariant vector field strength. The above
expression defines it up to a piece AFM which is projected out by the embedding
tensor, just like AAM in §AM. An explicit calculation gives

FM = dAM + X np M AN N AP + AFM Oou*AFM =0. (3.2.33)

The possible presence of AFM is a novel feature of the embedding tensor formal-
ism. Its gauge transformation rule can be found by using the gauge covariance of
FM_ Under Eq. (3.2.31), using ©y*AFM =0, we find that

SEM = APXpNyMEN +DAAM —2X (v pyM (AN FP + AN ASAT)+AFM | (3.2.34)
so that F'M transforms covariantly provided that we take

SAFM = —DAAM 4+ 2ZMAT, Np(ANFF + AN A 5AT), (3.2.35)

where we have used Eq. (3.2.21). Since both AAM and AF™ are annihilated by
the embedding tensor, we conclude that in the generic situation we are considering
here'* AFM = ZMAB, where B, is some 2-form field in the adjoint of G and

AAM = _ZMAN , where A 4 is a 1-form gauge parameter in the same representation.
Then

11 The only information we have about the embedding tensor in a generic situation is provided by
the three constraints Qnp® =0, QA8 =0, Ly np = 0. There is only one which we can write in
the form ©3;4 x Something™ = 0, which is the constraint Q4B = 0 and that uniquely identifies
SomothingM = ZMB yp to a proportionality constant.
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M = dAM + LX(npMAN N AP + ZMABy (3.2.36)
SAM = _DAM _ ZMApN | (3.2.37)
6By = DAs+2Tanp[ANFFY +1AN NSA”] 4+ ABy, (3.2.38)

where AB, is a possible additional term which is projected out by ZM4 i.e. ZMAAB, =
0, and can be determined by studying the construction of a gauge-covariant field
strength H 4 for the 2-form By.

3.2.3 The 3-form field strengths H4

We continue to determine the form of H, using the Bianchi identity for FM just as
we used the Ricci identity to find an expression for FM. An explicit computation
using Eq. (3.2.36) gives

OFM = ZMY DB + Taps A" N[dAS + 1 XnpT AN N AT} (3.2.39)

It is clear that the expression in brackets must be covariant and it defines a 3-form

field strength H4 up to terms AH 4 that are projected out by ZM4  i.e.
oFM = zMAQg,. (3.2.40)
Hy = DBasa+Ty RsAR A [dAS + %XNPSAN A AP] + AHy (3.2.41)

with ZMAAH 4 = 0. Both AB4 and AH 4 are determined by requiring gauge covari-
ance of H4. An explicit calculation gives

SHy = —AMoeyPfpaCHe
—YAMC[AMHC — §AM A B¢ — M A Ac — %TC NPAM ANAN A 6AP]
+DABs+0AH,.
(3.2.42)
We have defined the Y-tensor as

Yan© =00 B fap® — TanNONC . (3.2.43)
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and it satisfies the condition

ZMAY O = 10FPMQpNC = 0. (3.2.44)

The 3-form field strengths H4 transform covariantly provided that the last two
lines in Eq. (3.2.42) vanish. A natural solution is to take

ABA = —YAMCACM N AHA = YAMCCCM N (3.2.45)

where AcM is a 2-form gauge parameter and Cc™ is a 3-form field about which we
will not make any assumptions for the moment. In particular, we will not assume
it to satisfy any constraints in spite of the fact that we expect it to be “dual” to
the embedding tensor, which is a constrained object. We are going to see that,
actually, we are not going to need any such explicit constraints to construct a fully
consistent tensor hierarchy. On the other hand, we are going to find Stiickelberg
shift symmetries acting on Cc™ whose role is, precisely, to compensate for the lack of
explicit constraints and, potentially, allow us to remove the same components of Cc™
which would be eliminated by imposing those constraints. We anticipate that those
Stiickelberg shift symmetries require the existence of 4-forms in order to construct
gauge-covariant 4-form field strengths Go™. It should come as no surprise after this
discussion, that the 4-forms are in one-to-one correspondence with the constraints of
the embedding tensor. Working with unconstrained fields is simpler and it is one of
the advantages of our approach.

We then, find
Hy = DBs+TapsA®N[dA® + 2 Xnp AN N AP) + YA ©Cc™(3.2.46)
6Ba = DAs+2Tanp[ANFT + AN ANSAT] - Yan“AM, (3.2.47)
Cc™M = DAM + AMHe — 5AM ABe — FM A Ao

—3TonpAY NAN A GAY + ACM (3.2.48)
where we have introduced a possible additional term ACc™ analogous to AAM and
AB 4 which now is projected out by Y,¢

YauCACHM =0, (3.2.49)

and which will be determined by requiring gauge covariance of the 4-form field
strength Go™.
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3.2.4 The 4-form field strengths G

To determine the 4-form field strengths Gc™ we use the Bianchi identity of Ha. We
can start by taking the covariant derivative of both sides of the Bianchi identity of
FM Eq. (3.2.40) and then using the Ricci identity. We thus get

ZMADH, = XNpMFN ANFP = ZMAT, npFN AN FP (3.2.50)

This implies that DHy = TayunFM A FN + ADH 4 where ZMAADH 4 = 0, sug-
gesting that ADH ~ Y “Ge™. A direct calculation yields the result

GeM = DCM+ FM ABe —12M4AB4 A Be
+%TCSQAM N AS A (FQ — ZQABA)
(3.2.51)
—%TC SQXNTQAM ANASANAN A AT
+AGM
where
YanuCAGM =0. (3.2.52)
The Bianchi identity then takes the form
DHy = Yau°Ge™ + TaunFM AFY . (3.2.53)

ACcM and AGc™ must now be determined by using the gauge covariance of the
full field strength Gc™. It is tempting to repeat what we did in the previous cases.
However, the calculation is, now, much more complicated and it would be convenient
to have some information about the new tensor(s) orthogonal to Y4 m© that we may
expect.

Given that the projectors arise naturally in the computation of the Bianchi identi-
ties, we are going to “compute” the Bianchi identity of Go™ obviating the fact that it
is already a 4-form, and in D = 4 its Bianchi identity is trivial. We have not used the
dimensionality of the problem so far (except in the existence of magnetic vector fields
that gives rise to the symplectic structure and in the assignment of adjoint indices to
the 2-forms) and, in any case, our only goal in performing this computation is to find
the relevant invariant tensor(s).

Thus, we apply @ to both sides of Eq. (3.2.53) using the Bianchi identity of FM
Eq. (3.2.40) and the Ricci identity. This leads to the following identity

Yau{0GcM — FM A HeY =0, (3.2.54)
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from which it follows that

DGcM = FM AN He + ADGM Yan ¢ ADGM =0. (3.2.55)

Acting again with ® on both sides of this last equation and using the Ricci and
Bianchi identities, we get in an straightforward manner

@A@GCM = WCMABHA NHp
+WenpMFN ANFPAFQ (3.2.56)

+WCNPEMFN N GEP ,

where

WeMAB = —zMIA5 P (3.2.57)
Wene™ = Towrig™, (3.2.58)
WCNPEM = 6NDfCDE(SPI\/[ + XNPM5CE — chE(SNM . (3.2.59)

We thus found the desired new tensors. The Y-tensor annihilates the three new W
tensors in virtue of the 3 constraints satisfied by the embedding tensor

Yan CWeM 4P = Yau “Wenp™ = Yau“Wonp™ =0, (3.2.60)

as expected. Note that the first and third W-tensors are linear in © but that the
second W-tensor is independent of ©. Other important sets of identities satisfied by
these W-tensors can be found in Appendix E.2.

Coming back to our original problem of determining the form of AGc™ and
ACcM | we conclude from the previous analysis that

ACHM = —WeMABA p — WenpgMANT? — WenpPMARNT | (3.2.61)

AGM = WeMABDap + WenpM DV + Wenp"M DT, (3.2.62)

where Aap, ANPQ ApNP are 3-form gauge parameters and Dap, DVPQ DN are
possible 4-forms whose presence will be justified in G if their gauge transformations
are non-trivial in order to make the 4-form field strengths gauge covariant. Taking
into account the symmetries of the W-tensors, it is easy to see that Dap = Diap,
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DNPQ = DINPQ) and analogously for the gauge parameters Aag, ANPQ. DpNF and
AgNP have no symmetries.

We observe that the three 4-form D-potentials seem to be associated to the three
constraints Q4. Lypg, QnpP given in Egs. (3.2.10), (3.2.14) and (3.2.16) in the
sense that they carry the same representations. Only the last one was expected
according to the general formalism developed in Ref. [16] and the specific study of
the top forms performed in Ref. [17,74]. We find that in 4 dimensions there are more
top-form potentials due to the additional structures (e.g. the symplectic one) and
properties of 4-dimensional theories.

Knowing the different W tensors it is now a relatively straightforward task to ob-
tain by a direct calculation the expression for G, collect the terms proportional to
the three W-structures and determine the gauge transformations of the three different
4-form D-potentials by requiring gauge-covariance of Go™. An explicit calculation
gives

6Dap = DAap+aBuAYgpPAp” + DA ABg —2A4 A Hp
+2T 4 np[ANEY — LAN ANSAP] A B, (3.2.63)
DN = DANT — [FN - 11— a)ZVNABA A AT + CpT A 5AN
+ 5 TporAN N AP NAC N SAR + ANGE", (3.2.64)
SDNPQ — ANPQ _ g AN A (FP _ ZPAB ) A §AD

+1XpsWAPIAN AR AN AT NSAID —3ANFP AFQ | (3.2.65)

where « is an arbitrary real constant. We hence find that there is a 1-parameter family
of solutions to the problem of finding a gauge-covariant field strength for the 3-form.
The origin of this freedom resides in the presence of a Stiickelberg-type symmetry
which we discuss in the next subsection.

Stiickelberg symmetries

Differentiating (3.2.17) with respect to ©g¢ using Egs. (E.2.7)-(E.2.9) gives the fol-
lowing identity among the W tensors:

Wemn 2 — 3Wennp? 204 — 2We 9B T v = SLyn9oc? . (3.2.66)
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The relation (3.2.66) gives rise to symmetries under Stiickelberg shifts of the 4-forms
in the 4-form field strength Go™

5DENP — EE(NP),
0Dap = —2E[AMNTB]MN ) (3.2.67)
SDNPQ = _3zWNIAZ,IPQ)

This shift symmetry, which allows us to remove the part symmetric in NP of Dg™NF,
also leaves the 4-form field strengths G invariant.

If we multiply (3.2.17) by ZV¥ we find another relation between constraints

Q*PYppt — LZN4QnpF = 0. (3.2.68)

Differentiating it again with respect to the embedding tensor we find the following
relation between W-tensors'2:

WCMABYBPE _ %ZNAWCNPEM _ %QJWPEéCA _ QAB[éPMfBCE _ TBP]W(SCE] ,

(3.2.69)
which implies that the Stiickelberg shift
5DENP — %ZNBEBEP7
(3.2.70)
6Dap = Y pr"Epe’,

leaves invariant the 4-form field strength G¢™ up to terms proportional to the
quadratic constraints, which are taken to vanish identically in the tensor hierar-
chy. This shift symmetry is associated to the arbitrary parameter « in the gauge
transformations of Dap and Dg™¥¥. Observe that, even though it is based on the
identity Eq. (3.2.69) which we can get from Eq. (3.2.66), this symmetry is genuinely
independent from that in Eq. (3.2.67).

This finishes the construction of the 4-dimensional tensor hierarchy. The field
strengths, Bianchi identities and gauge transformations of the hierarchy’s p-form fields
are collected in Appendix E.3. By construction the algebra of all bosonic gauge
transformations closes off-shell on all p-form potentials. No equations of motion are
needed at this stage.

12This identity can also be obtained multiplying Eq. (3.2.66) by ZVE.
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3.3 The D = 4 duality hierarchy

In this section we are going to introduce dynamical equations for the tensor hierarchy
via the introduction of first-order duality relations, see Eq. (3.0.1). This promotes
the tensor hierarchy to a duality hierarchy. We will see that the dynamical equations
will not only contain the equations of motions of the p-form potentials but also the
(projected) scalar equations of motion. These scalars, together with the metric, will
be introduced via the duality relations. In particular, the scalar couplings enter into
the duality relations via functions that can be identified with the Noether currents,
the (scalar derivative of the) scalar potential and the kinetic matrix describing the
coupling of the scalars to the vectors. In this way the duality hierarchy puts the
tensor hierarchy on-shell and establishes a link with a Yang-Mills-type gauge field
theory containing a metric, scalars and p-form potentials. This field theory can be
viewed as the bosonic part of a gauged supergravity theory. We stress that at this
point we only compare equations of motion. It is only in the last and third step that
we consider an action for the fields of the hierarchy. We will assume that the Yang-
Mills-type gauge field theory has an action but we will only consider its equations
of motion in order to properly identify in the duality relations the Noether current,
scalar potential and the scalar-vector kinetic function.

In the next subsection we will first consider a Yang-Mills-type gauge field theory
with purely electric gaugings, i.e. only electric 1-forms are involved in the gauging.
In particular we will compare the equations of motion of this field theory with the
dynamical equations of the duality hierarchy. This example shows us how to introduce
the metric and scalars in the duality hierarchy. In the next subsection we will first
consider a formally symplectic-covariant generalization of the equations of motion
with purely electric gaugings. This generalization necessarily involves electric and
magnetic gaugings. We will see that this generalization does not lead to gauge-
invariant answers unless we also include the equations of motion corresponding to the
magnetic 2-form potentials. In this way we recover the observation of [15-17,78,79]
that magnetic gaugings require the introduction of magnetic 2-form potentials in the
action of the field theory.

3.3.1 Purely electric gaugings

Having N = 1,D = 4 supergravity in mind, we consider complex scalars Z¢ (i =
1,---,n) with K&hler metric G;;» admitting holomorphic Killing vectors K4 = kalOi+
c.c.. The index A of the Killing vectors must be associated to those of the generators
of the global symmetry group G. In general, not all the global symmetries will act on
the scalars. Therefore, we assume that some of the K4 may be identically zero just
as some of the matrices Ty prN can be zero for other values of A. The action for the

electrically gauged theory is
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Sereclg, 28, AN = / {*R —2G,j+DZ ANKDZ* +2FE NGy — *V} . (3.3.1)

where DZ° is given by

D7 =dZ' + A0, kA", (3.3.2)

and where Gz denotes the combination of scalars and electric vector field strengths
defined by

GAT = fax(Z)F> T, (3.3.3)

where F*+ = %(F Y +ix F¥). It is assumed that the scalar-dependent kinetic matrix
fas(Z) is invariant under the global symmetry group, i.e.!3

Lafas =2Tan " fo)a, (3.3.4)

where £ 4 stands for the Lie derivative with respect to K 4, since this is a pre-condition
to gauge the theory. However, the potential needs only be invariant under the gauge
transformations, because the gauging usually adds to the globally-invariant potential
of the ungauged theory another piece. Thus, we must have

c OV _
90,0’

where Y42 ¢ is the electric component of the tensor defined in Eq. (3.2.43). Indeed,
using this property, one can show that under the gauge transformations

LAV =Yap (3.3.5)

870 = AMOp kLT,

(3.3.6)
SAN = —DAN,
the scalar potential V' is gauge invariant:
ov
OV = A0 £,V = ABQAC =0, (3.3.7)

00,4
on account of the quadratic constraint.

The equations of motion (plus the Bianchi identity for F*) corresponding to the
action (3.3.1) are given by

13Here we are only considering a restricted type of perturbative symmetries of the theory, excluding
Peccei-Quinn-type shifts of the kinetic matrix for simplicity. We will consider these shifts together
with the possible non-perturbative symmetries in the general gaugings’ section.
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Ew = —% 5‘;% = Gy +2Gi+[0,2'0,2*7" — 19,,0,2"0° 2"
—ASmfps FAYPEE T, + 49,V (3.3.8)
& = %% =G DxDZ* —9;Get NFET — 510V, (3.3.9)
En = —i*% = DG — 10" ¥ ja,
er = pFh, (3.3.10)

where

ja=2k3D7 +c.c., (3.3.11)

is the covariant Noether current.

According to the second Noether theorem there is an off-shell relation between
equations of motion of a theory associated to each gauge invariance. For instance,
associated to general covariance we find the well-known identity

VHE — (D26 +c.c) +2F2, ,(xEA)" =0, (3.3.12)

which implies the on-shell covariant conservation of the energy-momentum tensor.
Similarly, the identity associated to the Yang-Mills-type gauge invariance of the theory
is given by

DEN + 2004 (ka'E; + c.c.) = 0. (3.3.13)

Using the Ricci identity for the covariant derivative and Eqgs. (3.3.4) and (3.3.5) we
find that this equation is indeed satisfied because the Noether current satisfies the
identity

ov
00,¢ "

Dxja= —Q(kAiEi +c.c.)+4Ta EFFZ AN Gr + *YAAC (3.3.14)

We are now going to establish a relation between the tensor hierarchy and the
equations of motion for the vector fields, their Bianchi identities and the following
projected scalar equations of motion:
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DGr — 10, xja = 0, (3.3.15)
OFY = 0, (3.3.16)
kat|Gij®xDZ* — 9,Get NF™T — 510,V | +cc. = 0. (3.3.17)

Note that, unlike the tensor hierarchy, these equations contain not only p-form po-
tentials but also the metric and scalars.

In order to derive the above equations of motion from the tensor hierarchy we
must complement the tensor hierarchy with a set of duality relations that reproduces
the scalar and metric dependence of these equations. Besides the usual ©2Z term in
the last equation the scalar dependence of (3.3.15)-(3.3.17) resides in the magnetic
2-forms G, the Noether currents j4 and the derivatives 9;V of the scalar potential V.
The latter derivative is equivalently represented, via the invariance property (3.3.5),

ov
by the derivative 704 of the scalar potential with respect to the embedding tensor.
A

These are precisely the objects that occur in the following set of duality relations that
we introduce:

Grn = Fy,
ja = —2xHa, (3.3.18)
oV
= _9 A
00,7 FGats

where the magnetic 2-form field strengths Fj, the 3-form field strengths H4 and the
4-form field strengths G 4™ are those of the tensor hierarchy. The tensor hierarchy,
together with the above duality relations, forms the duality hierarchy. Upon hitting
the duality relations (3.3.18) with a covariant derivative and next applying one of the
Bianchi identities of the tensor hierarchy we precisely obtain the equations of motion
(3.3.15)-(3.3.17). In the case of the scalar equations of motion we first obtain the
identity

o OV
90,4

Next, by comparing this equation with the Noether identity (3.3.14) we derive the
projected scalar equations of motion (3.3.17), i.e.

Dxja—ATax" F* AGr —*Yan =0. (3.3.19)
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kaA'Ei 4+ c.c. = 0. (3.3.20)

It also works the other way around. By substituting the duality relations into
the equations of motion the scalar and metric dependence of these equations can
be eliminated and one recovers the hierarchy’s Bianchi identities for a purely electric
embedding tensor ©%4 = 0. To be precise, Egs. (3.3.15) and (3.3.16) are mapped into
the 3-form Bianchi identities (3.2.40). Furthermore, Eq. (3.3.19), which is equivalent
to (3.3.17) upon use of the Noether identity (3.3.14), is mapped into the 4-form
Bianchi identities (3.2.53).

We conclude that, at least in this case, the duality hierarchy encodes precisely
the vector equations of motion and the projected scalar equations of motion via the
duality rules (3.3.18).

3.3.2 General gaugings

In this subsection we wish to consider the more general case of electric and magnetic
gaugings. Our starting point is the formally symplectic-covariant generalization of
the equations of motion (3.3.15)-(3.3.17)

Ew = Gu+ 26 [@#Ziggyz*j* - %gwgpzi@pz*ﬁ] - GM(u\p * GMIV)/J + %ngv
& = Gip@xDZ* —9,Gyt AGMT — %19,V (3.3.21)
Em = DGy — 10" xja,

where we have defined

(GM) = ( gz ) ; Gt = for(Z2)F', (3.3.22)

and where the electric and magnetic field strengths F™M are defined as in the tensor hi-
erarchy, i.e. including the 2-form B4 for which we do not want to have an independent
equation of motion to preserve the original number of degrees of freedom.

The requirement that the kinetic matrix is invariant under the global symmetry
group G and that the potential is gauge-invariant leads to the conditions

14The Einstein and scalar equations of motion are just a rewriting of the original ones, which are
already symplectic-invariant.
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Lafas = —Taas +2Tanfeyo — Ta™ foafrs, (3.3.23)
oV

£4V = Yau© 3.3.24

A AM 8@]\40 ) ( )

from which it follows that

kAiaiGM+ AGMT = kAiaingFAJr AP = —Ts MNGM AGN . (3.3.25)

A direct computation using the above properties leads to the following identity for
the covariant Noether current:

) ov
Dxja=—2ka'E +cc) —2Ta unGM AGYN 4 %Y, AC : (3.3.26)
00, ¢
On the other hand, the Ricci identity gives
@@GM:—XNMPFN/\GPZXNPMFN/\GP. (3327)

Taking the covariant derivative of the full £y, and using Eqgs. (3.3.26) and (3.3.27) we
find

DENV + %@MA(kAi&' +c.c.) = XNPM(FN — GN) ANGE = GZA(FZ —Gs)ATa pMGP .

(3.3.28)
This is the gauge identity associated to the standard electric and magnetic gauge
transformations of the vectors and scalars

571 = AMOyAk,l,
(3.3.29)
SAM = _DAM

provided that the right-hand side of the equation vanishes. Since this is not the case
we conclude that the equations of motion are not gauge-invariant. Hence, a naive
symplectic covariantization of the electric gauging case is not enough to obtain a
gauge-invariant answer involving magnetic gaugings.

In order to re-obtain gauge invariance we extend the set of equations of motion,
adding, arbitrarily, as equation of motion of the 2-forms B

EA = OMA(Fy — Gyy) = —0%4(Fy — Gy), (3.3.30)
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so that the above identity becomes again a relation between equations of motion

DEM + 3O (ka'Es + c.c) + TanpEA ANGF =0, (3.3.31)

that we can interpret as the gauge identity associated to an off-shell gauge invariance
of the extended set of equations of motion.

The price we may have to pay for doing this is the possible modification of the
equations of motion of the vector fields: the above gauge identities are associated to
the gauge transformations of Ba

0By = 2T 4 pypAMGP + 2R 5 pr NSAM | (3.3.32)

where R4 ps is a 1-form that is cancelled in the above gauge identity by an extra term
in the equation of motion of the vector fields:

Ehg=Em + RapEANAM. (3.3.33)

The 1-forms R4 pr must be such that the infinitesimal gauge transformations form a
closed algebra. The gauge identity takes now the form

DE + 3O (ka'&s + cc) + TanpEA ANGF —D(RamEANAM)=0. (3.3.34)

In order to make contact with the tensor hierarchy we take R4 = %XPMNAN A
(Fp — Gp)
We observe that the equations of motion also satisfy the relation

DA — 1T ynOFAAN N EP 4 0MAgy =0, (3.3.35)
which can be interpreted as the gauge identity associated to the symmetry
SAM = ZMAp
(3.3.36)
0By = DAy — %TAMNGNBAM ANAp.

As we did in the electric gauging case, we are now going to establish a relation
between the tensor hierarchy and the following equations of motion:

E = DGy — L0y xja+ 3TaunAN ANOTA(Fp — Gp) =0,(3.3.37)

&4 = OMA(Fy —Guy) =0, (3.3.38)

ka'€s = ka'|Gip@xDZ" —9,GyT AGMT — %19,V =0.  (3.3.39)
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These equations are invariant under the gauge transformations

6aZt = 0p7°, (3.3.40)
S AM = 5, AM (3.3.41)
8aBa = 0pBa—2TanpAN(FP —GT), (3.3.42)

where we have denoted by J, the gauge transformations that leave this system of
equations invariant and by d; those derived in the construction of the 4-dimensional
tensor hierarchy (summarized in Appendix E.3). §,Bj4 is, therefore, just 65 B4 with
FP replaced by GF.

Following the electric gauging case, in order to derive the above equations of
motion from the tensor hierarchy, we introduce the following set of duality relations:

GM = FM,

ja = —2xHy, (3.3.43)
ov
= 2% GaM,
FENE > G

We note that the gauge-covariance of the first duality relation is more subtle in that
GM transforms not only covariantly, but also into GM — FM see [77]. Note that
the equation of motion of the magnetic 2-form potentials, £4 = 0, is identified as a
projected duality relation. To recover the other equations of motion we have to again
hit the duality relations (3.3.43) with a covariant derivative and next apply one of the
Bianchi identities of the tensor hierarchy. To derive the projected scalar equations of
motion we first obtain the identity

Dxjat 2annG¥ ACN —syr Vg (3.3.44)
HOLA

from the duality hierarchy and, next, apply the Noether identity (3.3.26).

The gauge identities guarantee the existence of a gauge-invariant action from which
the equations of motion &, and £ can be derived. This action has actually been
constructed in Ref. [15]. In our conventions, it is given by
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Slguw, 2, AM Bs] = / {¥R—2G;j»DZ AN¥DZ*7" +2F* NGy —+V
—4Z%ABA A (Fs — 32525 Bp)
— 3 XN AM N AN A (F® - Z¥BBg)
—Z2Xun T AM A AN A (dAs — 2 X (pgim AT A AQ) Y

3
(3.3.45)
A general variation of the above action gives

oS .05 oS oS
_ iy 7 _ M
4S /{69 Sgi + (5Z 57 —l—c.c.) 0A A*(SAM 4+ 26Ba /\*5BA} ,
(3.3.46)
where
oS
69'“’1’ = *Hg;,uj 9 (3347)
0S
_1 — )
257 &, (3.3.48)
LSy, 340
oS A
*E = &°. (3.3.50)

3.3.3 The unconstrained case

In this subsection we briefly comment on the meaning of the top-form and next
to top-form potentials. Experience shows that these higher-rank potentials can be
related to constraints: the constancy of ©,;4, DO,4 = 0, can be associated to the
3-form potential, and the quadratic and linear constraints Qnp? = 0, Q4F = 0,
Lxpg = 0 can be associated to the 4-form potentials DgNP Dap, DVNPQ that we
have providentially found. We would like to stress, however, that prior to relaxing
the constraints one is forced to introduce these potentials if one requires that the field
equations are derivable as compatibility conditions from the duality relations, as we
showed in the previous section.
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In view of the discussion of an action principle with Lagrange multipliers in the
next section, we reconsider the gauge identities of the equations &}, E4 defined in
the previous subsections assuming that those constraints are not satisfied. We then
denote the embedding tensor by =0 MA(x) in order to indicate that it is now
space-time dependent. Evidently, we are going to get extra terms proportional to
the constraints which we will reinterpret as equations of motion of the 3- and 4-
form potentials, obtaining new gauge identities that involve the equations of motion
of all fields. Thus, off-shell gauge invariance will have been preserved by the same
mechanism used in the previous case. The price that we will have to pay is the same:
modifying the gauge transformations and the equations of motion.

This procedure is too complicated in this case, though. As an example, let us take
the covariant derivative of £4:

DEA = —DIyA N (FM — G + IMADEFy — DGhy). (3.3.51)

The unconstrained Bianchi identity for FM is

DFM = ZMB[Hp —Ypn©CoN] 4+ LM gs[3AR N dAS + 5 X ypS AR N AN A AP

+DINA N [FOVM B + LTa pM AN N AP+ LQNpETe M AN N AP N AR
(3.3.52)

and, using the equation of motion &), we can write the following gauge identity

DEA — LT unIMAAN N EB + 9MALL + QAP[2(Hp + § * jB) — 2YenC™]
+D9y P A [3IMABE + 1Tp pQUgHAM N AP + 654 (FM — GM)]
+LprsMA[-3 AR NdAS — X NpS AR N AN A AP

—3QNPETE RMOIMAAN NAP NAR = 0.

(3.3.53)

It is very difficult to infer directly from this and similar identities all the gauge trans-
formations of the fields and the modifications of the equations of motion. Thus, we
are going to adopt a different strategy in the next section: we are going to construct
directly a gauge-invariant action.
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3.4 The D =4 action

In this section we perform the third and last step of our procedure: the construction
of an action for the fields of the tensor hierarchy!®. Our starting point is the action
Eq. (3.3.45), which we will denote by Sp in what follows and which includes, besides
the metric, only scalars, 1-forms and 2-forms and which is invariant under the gauge
transformations Eqs. (3.3.40)-(3.3.42). We now want to add to it 3- and 4-forms
as Lagrange multipliers enforcing the covariant constancy of the embedding tensor
(which we promote to an unconstrained scalar field ©,,4(x)) and the three algebraic
constraints Q45 Lnpg, Qnp? that we have imposed on the embedding tensor.
The new terms must be metric-independent (“topological”) and scalar-independent
in order to leave unmodified the scalar and Einstein equations of motion (3.3.21)
which are derived from the action Sy given in Eq. (3.3.45).

Thus, we add to Sp the following piece AS given by'6

AS = /{QﬁMA ANCAM + QnpP D™ + Q*PDap +LNPQ1~)NPQ} - (340)

The tildes in C’CM, DAB, DNPQ and DENP indicate that these 3- and 4-form fields
need not be identical to those found in the hierarchy, although we expect them to be
related by field redefinitions.

The action Sy is no longer gauge invariant under the gauge transformations in-
volving 0- and 1-form gauge parameters AM, A 4, without imposing any constraints
on the embedding tensor, but the non-vanishing terms in the transformation can only
be proportional to the Lh.s.’s of the constraints D95, = 0, Qnp? =0, Q48 =0
and Lypg = 0 and, by choosing appropriately the gauge transformations of CeM,
f)AB, DNPQ and DNFP we can always make the variation of the action S = Syo+ AS
vanish. Having done that we would like to relate the tilded fields with the untilded
ones in the hierarchy.

Let us start by computing the general variation of the action. Taking into account
the fact that the fields g,,,,, Z° and B4, only occur in Sy, that the field AMH occurs

in Sp and in the term DIy ACa™ in AS and that the new fields C'CM, f)AB, DNPQ
and Dg™F only occur in AS, we find

15 Actually, not all the 2-forms B will appear in the action but only OMBy.
160bserve that D04 = dOy? — Qa2 AN and, therefore, the covariant constancy of the
embedding tensor plus the quadratic constraint Qxp¥ = 0 imply dO4 = 0.
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0Sg .0Sp 650 0Sg
Nz ) _
58 /{59 S + (62 37 +c.c.) §AM /\*5 o7 +20Ba /\*5 A

+2090 A N CAM + QnpE(6DENP — AN A CpP) + QAB6DAp

~ 68
L DNPQ 4 59,4 .
+ NPQ5 + 0 519MA}
(3.4.2)

The scalar and Einstein equations of motion are as in Egs. (3.3.21) and (3.3.47),(3.3.48).
The variations of the old action Sy with respect to AM and B4 are modified by terms
proportional to the constraints. We can write them in the form

—i*é‘f& = DFy — 2 xja — 2dXpoin A AT A AP — LQnanPAN A Bp
—LyunpAY A (dAT + 2X(rg)" AR A A%) + 2Qnp Taqu AN A AT A A
—d(Fy — Gur) — Xpuwy P AN A (Fp — Gp), (3.4.3)
*% — 9PA(Fp—Gp)+ QP By (3.4.4)

In deriving these equations we have used the unconstrained Bianchi identity for FA,
given by the upper component of Eq. (3.3.52), to replace H 4 in the equation of motion
of Ax. This has allowed us to write a symplectic-covariant expression for the equation

of motion of AM.
The only non-trivial variation that remains to be computed in Eq. (3.4.2) is the
equation of motion of the embedding tensor. We get

05 _ ~ M MB M M ov
304 = DCsM+ 272 Bp AN By 2(F G )/\BA *319MA

AWanpPMDNP + W4 BM Do + WanpM DNPQ ( )
3.4.5

+AM A {— *ja +YanCCeN — TanP AN A (Fp — Gp)

—3TANRAN A [dAR + 2Xpg)RAP N AQ + 3ZRBBg] Y
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We are going to use this equation to find the relation between the tilded fields and
the hierarchy fields. Using Eqs. (3.3.43) and the definitions of the tensor hierarchy’s
field strengths H4 and G AM | we are left with

C'AM — CAM — AM /\BA)

= D(-

N[

+YAPCAM N (%écp + CCP + AP A Bc) + WABCM(%f)BC — Dpc)
+WANPEM(%.DENP — DENP + %AN A AP A BE)

+WANPQM(%DNPQ — DNPQ)y,

(3.4.6)
which is satisfied if we identify
CaM = —2(CaM + AM A By), DpNP = 2DpNP — AN A AP A B,
Dpc = 2Dgpc, DNP@ = opNPQ,
(3.4.7)

Using these identifications AS reads

AS = / {20004 A (Ca™ + AM A Ba) +2Qnp"(De™NF — AN A AP A Bg)

+2Q4BDap 4+ 2LnpoDNT9}

(3.4.8)
and a general variation of the total action S = Sy + AS is given by
450 0.5 450 S0
— nv 1 _ M
58 /{59 5 + (62 570 +c.c.) 5A A*aAM +20By4 /\*5 .

+D9p A N [=20C4M — 206AM A By — 2AM A GBA) 4+ QAP[26D 4]

+QnpT[20DENT + 26 AN A CpT + 26AN A AP) A Bp — AN A AP A §Bg]

0S
NPQ A
+LNPQ[25D ]+519M 519]\4‘4} .

(3.4.9)
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The first variation of the total action S with respect to ¥;* can be written in the
form

155 = (GaM —gx0V/90u?) = AM A (Ha+ 5 % ja)
M (3.4.10)

—%TANPAM ANAN A (FP - Gp) — (F]w — G]w) ANBy.

We can now check the gauge invariance of the total action S. We are going to
use for the gauge transformations of all the fields (except for the scalars and vectors)
the Ansatz §, = 6, + A where A is a piece to be determined. If we assume that the
embedding tensor is exactly invariant'?, i.e. 9,4 = 0, we find

ABy = —2TanpAN(FF -GP), (3.4.11)
ACAM = AsANFM - GM) - AM(Hu + 5 xja), (3.4.12)
ADap = 2A A (Hp + 2 *jp)) — 204 np AV (FF — GP) A By (3.4.13)

ADENP = —AN(GgP — 1% 0V/09pT) + (FN — GN) AAE", (3.4.14)
ADNPR = _35AN A AP A (FQ) — GD) + 6ANFP A (FP — G9)
—3AN(FP —GPYAN(FQ —G9)), (3.4.15)

where we have used in this calculation the non-trivial Ricei identities!®

170ne could also allow 19]’31 to transform according to its indices as 694, = —QnarAAYN. This is
like adding a term proportional to an equation of motion, that of D AN  to the zero variation.

181f the constraints are satisfied, 93/ DDAcM = DD (I Ac™M) = dd(9pC Ac™) = 0. There-
fore, when they are not satisfied, I CDDAM must be proportional to them.
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InCDDAHM = DI N (~YapPAM AAET) + QnpP[(FN — ZN4Ba) A ART
— 1Yo AN A AP AN, (3.4.16)

DOFy = XnpuFNANFP —2Q4PTapyFP NBp +dXnpu ANAN AFP
—2QnpP"TE AN N AP NF9 (3.4.17)

and the variations of the kinetic matrix and the potential Egs. (3.3.23) and (3.3.24).

We observe that all terms in the extra variations A vanish when we use the duality
relations (3.3.43). Actually, all of them, except for just one term in ADNF@ | are such
that the variations J, are obtained from the tensor hierarchy variations d;, simply by
replacing the scalar-independent field strengths FM, H,, G 4™ by the corresponding

scalar-dependent objects GM, j4, via the duality relations (3.3.43).

A9z A

Finally, we note that the Variation% 0, and &, are equivalent from the point of view
of the duality hierarchy. The two sets of transformation rules differ by terms that
are proportional to the duality relations. The only difference is that the commutator
algebra corresponding to dp, closes off-shell whereas the algebra corresponding to 4,
closes up to terms that are proportional to the duality relations. The two sets of
transformation rules are not equivalent from the action point of view in the sense that
only one of them, the one with transformation rules J,, leaves the action invariant,
whereas the other, with transformations 4, does not.



Chapter 4

Applications: Gauging
N = 1,2 Supergravity

In this Chapter we are going to apply the general results of Chapter 3 to specific
Supergravity theories, i.e. N =1 (section 4.1) and N = 2 (section 4.2) Supergravity.
We start with electric gaugings of the perturbative symmetries of matter coupled
N = 1 Sugra in section 4.1.1 Our next step will be to consider the most general
gauging of N = 1,d = 4 supergravity, using perturbative and non-perturbative global
symmetries and using electric and magnetic vectors. Do do so, we introduce magnetic
vector fields and magnetic gauginos, in oder to have well-defined covariant derivatives
acting on the bosonic fields. As was discussed in Chapter 3, general gaugings of four-
dimensional Supergravities imply the existence of a complete hierarchy of p-form fields
with degrees p > 1. We are going to find the hierarchy fields predicted by the general
4d tensor hierarchy for N = 1 Supergravity and their supersymmtry transformations
in section 4.1.3. However, we will find some more fields, not predicted by the hierarchy
and discuss their origin. We will show that the local supersymmetry algebra closes
on all these “extensions” of N = 1 Supergravity. In section 4.2 we are going to study
N = 2 d = 4 Einstein-Yang-Mills (EYM) Supergravity, i.e. the gaugings of N = 2
d = 4 Supergravity coupled to non-Abelian vector supermultiplets.

4.1 Gauged N =1 Supergravity

4.1.1 Electric gaugings of perturbative symmetries

We are now going to gauge the symmetries described in the previous subsection using
as gauge fields the electric 1-form potentials A*. This requires the introduction of the
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(electric) embedding tensor Ia? to indicate which global symmetry T4 is gauged by
which gauge field A* and, equivalently, to identify the parameters of global symme-
tries a that are going to be promoted to local parameters with the gauge parameters
A®(z) of the 1-forms:

oA(z) = A (z)0s? . (4.1.1)
We will write now the constraint Eq. (2.1.35) in the form®
(952P, + ngﬁpu)ﬁ =0. (4.1.2)

Taking into account Eq. (2.1.18) and this definition, the gauge transformations of
the complex scalars will be

07" = AZ0s kA" . (4.1.3)

The embedding tensor cannot be completely arbitrary. To start with, it is clear
that it has to be invariant under gauge transformations, which we denote by d:

SIAY = —ATQua? Qea® = 0sPTp Ao — 95P06 foc? . (4.1.4)
Then, the embedding tensor has to satisfy the quadratic constraint

Qsa™ =0. (4.1.5)
The gauge fields A® effectively couple to the generators

Xso' =95 Taa", Xsar = 95" Taar, Xy =05"Ta. (4.1.6)
From the definition of the quadratic constraint Eq. (4.1.5)

Xz Mot =0, (4.1.7)

and so it will vanish, although, in general, we will have

Xyt #0. (4.1.8)

From the commutator of the matrices T4 and using the quadratic constraint we find
the commutator of X generators

L Again, this constraint and other constraints of the same kind that will follow, should be under-
stood as a way to consider the cases £ = 0 and £ # 0 simultaneously: when £ # 0 the embedding
tensor must satisfy (952Pa + Is#Py) = 0 and it is unrestricted when £ = 0.
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(XA, X5] = —Xax"Xq, (4.1.9)

from which we can derive the analogue of the Jacobi identities.

We are now ready to gauge the theory. We will not attempt to give the full
supersymmetric Lagrangian and supersymmetry transformation rules, but only those
elements that allow its construction to lowest order.

First, we have to replace the partial derivatives of the scalars in their kinetic term
by the covariant derivatives

DZ'=dZ" + ANz kA, (4.1.10)

where the gauge potentials transform according to

0AT = —DAT = —(dA® + XpoTAMAY). (4.1.11)

We also replace in the action the vector field strengths by the gauge-covariant field
strengths

F¥ = dA” + L X o"AM N AR (4.1.12)

Observe that we have not introduced a coupling constant g as it is standard in
the literature since the embedding tensor already plays the role of coupling constant
and even of different coupling constants if we deal with products of groups. Observe
also that 19,1‘4 does not appear in any of these expressions because Ky = T = 0.

We have to replace the (Kéhler- and Lorentz-) covariant derivatives of the spinors
in their kinetic terms by gauge-covariant derivatives:

53”% = {Du - %AAuﬁAAPA}Q/JVa (4-1-13)

Dy DX+ D' DZIx" — AN 20ka'x + 54N, Pax’, (4.1.14)

DA*

{D — LAMINAPAINT — X AMND . (4.1.15)

The components 94 occur in all these covariant derivatives. The components 1,2
only occur in the last term of DA,

The supersymmetry transformations of the bosonic fields do not change with the
gauging, but those of the fermions do by the addition of a new fermion shift term in
the gauginos supersymmetry transformation rule. To first order in fermions, we have
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Setpy = Dpe+ilryue”, (4.1.16)
5N = F[Ft+iD”]e, (4.1.17)
bx! = iPZIe +2GY D L, (4.1.18)
where
DA = —Sm fAR9pPa. (4.1.19)

where we use the notation

Sm A% = (Sm f)7HAE, (4.1.20)

The new term leads to corrections of the scalar potential of the ungauged theory V4,
given in Eq. (2.1.3), which now takes the form

Vg = Vi = DMIAP4 = Vi + 13m A2, 295 B PAPE . (4.1.21)

The action for the bosonic fields of the N = 1,d = 4 gauged supergravity of
the kind considered here is obtained by replacing the partial derivatives and field
strengths by gauge-covariant derivatives and field strengths, replacing the potential
Vi by Veg above and by adding a Chern-Simons term [80,81] which is necessary to
make the action gauge invariant

Seg = / {*R —2G;;+DZ' AN+DZ*7" — 2Smfas FA AF® + 2Refos FN A FE
— % Veg — %XAEQAA A AZ A [dAQ + %XFAQAF A AA]} .
(4.1.22)
Gauge-invariance can be achieved only if
Xaso) =0, (4.1.23)

which is a constraint that also follows from supersymmetry.
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4.1.2 General gaugings of N = 1,d = 4 supergravity

We now want to consider the most general gauging of N = 1, d = 4 supergravity, using
perturbative and non-perturbative global symmetries and using electric and magnetic
vectors, to be introduced next. In the ungauged theory we can introduce ny 1-form
potentials Ay and their field strengths Fy = dAx. The Maxwell equations can be
replaced by the first-order duality relation

Gp = Fh, (4.1.24)

since now the Bianchi identity dF,y = 0 implies the standard Maxwell equation dG =
0. The magnetic vectors Ax will be introduced in the theory as auxiliary fields and
we will study them from the supersymmetry point of view later on. The electric A*
and magnetic A, vectors will be combined into a symplectic vector AM

A
AM = ( A ) : Ay = Qun AN = (Ap, —AY), AM = ANQNM

(4.1.25)

and used as the gauge fields of the symmetries described in the previous subsection.

In order to use all the 1-forms AM as gauge fields we need to add a magnetic
component to the embedding tensor, which becomes a covariant symplectic vector

It = (08,044, (4.1.26)

where the index A ranges over all the generators of G = Gpos X U(1)R, so we have
now

o (z) = AM(z)9y?, (4.1.27)

and the gauge transformations of the complex scalars, for instance, take the form

07 = AMYp k4t (4.1.28)

The embedding tensor, then, provides an embedding of the gauge group into the
group Sp(2ny,R) which acts on the vectors. If the global symmetry group is bigger
than Sp(2ny,R) we will not be able to gauge it completely. Further constraints will
decrease the rank of the group that we can actually gauge.

For instance, we must impose the constraint

QB = LyAMyBl, — 0, = 9 My, P =0, (4.1.29)

which guarantees that the electric and magnetic gaugings are mutually local [15] and
we can go to a theory with only purely electric gaugings by a symplectic transforma-
tion.
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The embedding tensor must satisfy further conditions. We define the matrices

Xunt =9 Tan”®, (4.1.30)
which satisfy

Xmnp =XMPN (4.1.31)

on account of Eq. (2.1.50). Observe that the components 9% are no present in the
Xunp tensors. Further, we impose the quadratic constraint?

QNMA = 19NATA MP19PA — ﬁNAﬁMBfABA = 0, (4132)

to ensure invariance of 9,4 and the representation constraint [15]

Lunpe = Xunp) = Xun?Qpyg = 0. (4.1.33)

This constraint is required by gauge invariance and supersymmetry®. It implies
Eq. (4.1.23) and also

Xunyp =—3Xpun = Xuwn) = Z" Tamw, (4.1.34)

where we have defined

ZP4 = 1aNPyyA. (4.1.35)

This definition and that of the other projectors that appear in the 4-dimensional

hierarchy are collected in Appendix E.1. The tensor Z4 will be used to project

in directions orthogonal to the embedding tensor since, due to the first quadratic

constraint Eq. (3.2.10)

ZMAY B =0. (4.1.36)

Finally, it should be clear that the constraint Eq. (4.1.2) on the triple product of
embedding tensor, momentum maps and superpotential should be generalized to

(902P, + ﬁMﬂpﬁ)L =0. (4.1.37)

With these properties we can define gauge-covariant derivatives of objects trans-

forming according to d¢ = AM§y¢ by

Dp=dp+ AMép¢p. (4.1.38)

20bserve that 9! does not occur in Qnps# either.
3In Ref. [77] it has been shown how this constraint gets modified in the presence of anomalies
and the modifications can cancel exactly the lack of gauge invariance of the classical action.
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if the gauge fields transform according to
SAM = —DAM + AAM = —(dAM + XypM ANAT) + AAM (4.1.39)
where AAM is a piece that we can add to this gauge transformation if it satisfies

It AAM = 0. (4.1.40)

The covariant derivatives of the scalars, gravitino and chiralinos read

D70 = dZ'+ AM9y kAt (4.1.41)
Dy = {Du— 1AM W Paty, (4.1.42)
DX = DY+ T D20\ — AMYy A0k X + EAM 9N APax' . (4.1.43)

Observe that AAM drops automatically from the gauge transformations of these
expressions because AM always comes projected by ;4.

It is clear that we need to introduce auxiliary “magnetic gauginos” A in order to
construct a symplectic vector of gauginos A whose covariant derivative is

DN = {D — IANINAPAINM — X pM ANNE (4.1.44)

The magnetic gauginos are the supersymmetric partners of the magnetic 1-forms. We
will discuss their supersymmetry transformation rules later.

So far, to introduce the general 4-dimensional embedding-tensor formalism we have
introduced magnetic 1-forms Ax and gauginos Ap. As discussed at the beginning of
this section, we have to find supersymmetry transformations for them and check the
closure of the local N = 1,d = 4 supersymmetry algebra.

4.1.3 Supersymmetric tensor hierarchy of N =1, d = 4 super-
gravity

Before we deal with the supersymmetry transformations of the magnetic 1-forms
that we have introduced, we take one step back and study the closure of the local
N =1,d = 4 supersymmetry algebra on the 0-forms.
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The scalars Z*

Their supersymmetry transformations are given by Eq. (2.1.11), which we rewrite
here for convenience:

52" = 1x'e. (4.1.45)
At leading order in fermions,
6n6eZ" = (8,x")e, (4.1.46)

and all we need is the supersymmetry transformation for x?. This is given in Eq. (4.1.18),
which we also rewrite here

SoX' =i P2 + 269 Dy L7, (4.1.47)

where we have to take into account that the covariant derivative ®Z* is now given by
Eq. (4.1.41). We get

[0y, 02" = bg.ct. Z' + 612", (4.1.48)

where 5gvcvt,Zi is a g.c.t. with infinitesimal parameter &*

Oyt 2’ £eZ' = +£"9,7", (4.1.49)

3 @ —myter), (4.1.50)

and where 0, 2" is the gauge transformation Eq. (4.1.28) with gauge parameter AM

67" = AMOyAkat, (4.1.51)

AM = grAM (4.1.52)

This is just a small generalization of the standard result in which electric and
magnetic gauge parameters appear. As expected, no duality relations are required to
close the local supersymmetry algebra on the Z°.
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The 1-form fields AM

As we have mentioned before, to define supersymmetry transformations for the mag-
netic vectors A, it is convenient to introduce simultaneously magnetic gauginos* A4.
This is equivalent to introducing ny auxiliary vector supermultiplets. Symplectic
covariance suggests that we can write the following supersymmetry transformation
rules for the electric and magnetic 1-forms and gauginos:

g
b
S
=
Il

—gey A + e, (4.1.53)

s AM = LMt +iDM]e, (4.1.54)

where '™ is the gauge-covariant 2-form field strength of AM to be defined shortly.
and where we have defined the symplectic vector

(DAY DA
DM = ( Dy > = ( FasD” > , (4.1.55)

where now, the electric D* has been redefined, with respect to the purely electric
gauging case, to include a term with the magnetic component of the embedding
tensor ¥AA:

DA _ —C\\ymfAE (,ﬂEA + f;;QﬁQA)PA- (4156)

Although at this point we do not need it, it is important to observe that there is
a duality relation between the magnetic gauginos and the electric ones

A = fasA®. (4.1.57)

The gaugino duality relation is local and takes the same form as the duality relation
between the magnetic and the electric vector field strengths:

FAT = fax P&, (4.1.58)

which is obtained from the duality between electric and magnetic vectors Fy = Gj,
combined with Eq. (2.1.42). These duality relations relate the supersymmetry trans-
formation § A to S An.

Now we can check the closure of the local supersymmetry algebra on AM. It is,
however, convenient to know which kind of gauge transformations with should expect
in the right hand side. The gauge transformations of AM are given in Eq. (3.2.31)
up to a term AAM which is determined in the construction of its gauge-covariant

4Magnetic gauginos have also been introduced in Ref. [79].
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field strength F™. This term is also needed to have well-defined supersymmetry
transformations for all the gauginos.

As shown in Ref. [15], this requires the introduction of a set of 2-forms B4 in FM,
which takes the form

FM = dAM + 1X\npM AN N AP 4+ ZMABy (4.1.59)

and is gauge-covariant under the transformations®

oAM= _DAM _ ZMAN (4.1.60)

onBa = DA+ QTANP[ANFP + %AN N 5hAP] + ABjy4, ZMAABA &.0.61)

Let us now compute the commutator of two supersymmetry transformations on
AM_ To leading order in fermions, Eq. (4.1.53) gives

50 AM = — L&y, 6, 0M + c.c. (4.1.62)
Using Eq. (4.1.54) with the parameter 7, we find

[0, 0JAM = ¢vFM 4+ ZMADP ¢, (4.1.63)

where & is given by Eq. (4.1.50) and we have used

SmDPM = 27MAPp, | (4.1.64)

which follows from the definitions Eqs. (4.1.55), (4.1.56) and (E.1.1). We always
expect a general coordinate transformation on the right hand side of the form

Sgen AM = LeAM | = 19, AM |+ 0,6m AM . (4.1.65)
Using the explicit form of the field strength F' Eq. (3.2.36) we can rewrite it as

Sgen AM, = ¢"FM 4D, (AM €) + ZMA B, € — TanpAN AT €], (4.1.66)

Using this expression in the commutator and the definition Eq. (4.1.52) of the
gauge parameter AM | we arrive at

[577 ) 5€]A]W = 5g.c.t.AM + 6hA]w ; (4167)

5The label h in the gauge transformations will be explained soon.
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where, in complete agreement with the tensor hierarchy, 8, AM is the gauge transfor-
mation in Eq. (4.1.60) with the 1-form gauge parameter A4 given by

Ay = —TA]\/[NANA]w +ba — Pa&, (4168)

bA,u = BAM/gV . (4169)

Observe that no duality relation has been needed to close the local supersymmetry
algebra on the magnetic vector fields. This result is a consequence of using fully
independent magnetic gauginos as supersymmetric partners of the magnetic vector
fields, i.e. transforming as . Ay, ~ Fx T instead of d: As ~ s ™. In the later case we
would have gotten additional Gy — Fx; terms to be cancelled by using the duality
relation.

The 2-form fields By

In order to have a gauge-covariant field strength F™ for the 1-forms we have been
forced to introduce a set of 2-forms B, and now we want to study the consistency
of this addition to the theory from the point of view of supersymmetry and gauge
invariance. We will first study the closure of the supersymmetry algebra on the 2-
forms B, without introducing its supersymmetric partners and, later on, we will
introduce the 2-forms as components of linear supermultiplets. In the first case, the
local N = 1,d = 4 supersymmetry algebra will close up to the use of duality relations
while in the second case it will close exactly.

It is useful to know beforehand what to expect in the right hand side of the
commutator of supersymmetry transformations acting on the 2-forms B 4. The gauge
transformations of the 2-forms are given in Eq. (4.1.61) up to a term AB4 which is
constraint to satisfy ZMAAB, = 0. In Ref. ( [33]) it was found that, in general,

ABy = —Yau“AcM, (4.1.70)

for some 2-form parameters Ac™. Y5, is the projector given in Eq. (3.2.43) and is
annihilated by ZV4 in virtue of the quadratic constraint Eq. (4.1.5) (see Eq. (E.1.6)),
as required by the gauge-covariance of FM. Y4, is the only tensor with this property
in generic 4-dimensional theories in which we can only use the constraint Qxp¥ = 0.
At this point we have to remind ourselves that in N = 1,d = 4 supergravity there is
another constraint that may be used, given in Eq. (4.1.37). To confirm it we need to
compute the commutator of supersymmetry transformations on By4.

In any case, the generic tensor hierarchy prediction is that, with the gauge trans-
formations Eq. (E.3.2), which we rewrite here
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onBa =DA4+2T4 NP[ANFP + %AN N 5hAP] - YAMCACM , (4.1.71)

the gauge-covariant field strength of By is as given in Eq. (E.3.7)

Hpa=DBy+T4 RsAR AN [dAS + %XNPSAN A AP] + YAMCCCM , (4.1.72)

where Cc™ is a 3-form whose gauge transformations are determined to be

5,Cc™ = DA —FM AN =6, AM ABe—3Tc np AM NAN NS, AT +AM Ho+ ACCY
(4.1.73)

where

YanCACHM =0. (4.1.74)

Another constraint would mean that one more 2-form shift can be added to 6, B4
and, correspondingly, another 3-form C' must appear in H 4. We are going to see that
this is indeed what supersymmetry implies.

Inspired by the results of Ref. [28], we found that, for the 2-forms B4, the super-
symmetry transformation is given by

5eBA;w = %[@’PAE’}/HVXZ.—FC.C.]—i—%['PAE*’)/[#wU] —C.C.]+2TAMNAM[#66ANU] . (4.1.75)

The commutator of two of these supersymmetry transformations closes up to a
duality relation to be described later on a general coordinate transformation plus a
gauge transformation of the form

61, Ba = 01,Ba — (642Pa + 04*Py)A, (4.1.76)

where §, B4 is the standard hierarchy’s gauge transformation Eq. (E.3.2) with the
2-form parameters A and Ac™ given by
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AcM = —AMBe —cc™ — $ToqpAPAM A A9, (4.1.77)
A = —c+2Re(oL), (4.1.78)

v = €V =N Yuve”, (4.1.79)
ccuw = CcMupe?, (4.1.80)
i = Cupt’, (4.1.81)

and where the parameters A and A4 are, again, given by Egs. (4.1.52) and (4.1.68)
respectively. We have introduced the anticipated 3-form C' with the gauge transfor-
mation

5,C = —dA, (4.1.82)
to take care of the Stiickelberg shift parameter A. Strictly speaking we only need
to introduce C' when £ # 0, so, according to the constraint Eq. (4.1.37) (Ua2Ps +
Iar*Py) = 0. We can express this as a “constraint”

(90 *Pa 4+ In*P)C = 0. (4.1.83)

SO

(O02Py + 90 PHA =0, (4.1.84)

This constraint and Eq. (4.1.37) ensure that ZM4AB4 = 0 and FM remains gauge-
covariant under 7, B4.

The hierarchy’s gauge-covariant field strength H4 given in Eq. (E.3.7) has to be
modified:

H)\ = Ha — (64%Pa + 04"P;)C, (4.1.85)

and the duality constraint that has to be imposed in order to close the local super-
symmetry algebra reads

Ha=—1xja, (4.1.86)

where
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ja=2k4,DZ" +c.c., (4.1.87)

is the covariant Noether current 1-form. Observe that it vanishes for A = a,§. For
these case we expect to have currents bilinear in fermions which cannot appear at the
order in fermions we are working at.

Technically, the difference between the cases A = a and A = a,{f lies in the fact
that the identity

0" PaDis L* — PaL* =0, (4.1.88)

which is crucial to cancel terms coming from the supersymmetry variation of the first
and second terms of Eq. (4.1.75) cannot be extended to the cases A = a,f in which
we have introduced fake (vanishing) Killing vectors.

The supermultiplet of By

We are now going to show that if we add to the tensor hierarchy full linear multiplets®
{Bauv,pa,Ca} where p4 is a real scalar and (4 is a Weyl spinor, instead of just
the 2-forms Ba, as in the preceding section, we can close the local N = 1,d = 4
supersymmetry algebra on the 2-forms exactly without the use of the duality relation
Eq. (4.1.86).

We will construct the supersymmetry rules of the linear supermultiplet first for
the case A = a after which this result will be generalized to include also the cases
A = a,. The above supersymmetry transformation rule Eq. (4.1.75) suggests the
fermionic duality rule

Ca = 0iPax’ =ik}, X', (4.1.89)
so we would have
SeBapw = 2[EvunCa + c.c] + [Pyt — c.c] + 2Ta v AM 6. AN . (4.1.90)
The supersymmetry transformation rule of (, follows from the above duality rule:

0cCa = ik: 0’ = =K, DZ'e* +20,PaGY Dy L¥e. (4.1.91)
Using next the duality rule Eq. (4.1.86) ja = 4Re(k,DZ") = —2x H, we find

beCa = —i[i5 Ha + Sm(k:,;D,2")y")€" + 2PaLe. (4.1.92)

6Similar supermultiplets have been introduced in electro-magnetically gauged globally supersym-
metric N = 2,d = 4 field theory [79].
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To make contact with the standard linear multiplet supersymmetry transforma-
tions we should be able to identify consistently

Sm(k,DZ") = Dy, (4.1.93)

for some real scalar ¢,. The integrability condition of this equation can be obtained
by acting with © on both sides. Using on the l.h.s. the property

kL, = D7 V- ki (4.1.94)

ai)

and the Killing property, the integrability condition takes the form

—iFM 00k k) = fan FM I e (4.1.95)

which is solved by

—ikiy kb’ = fab e - (4.1.96)

[ali

Given that the Killing vectors can be derived from the Killing prepotential P, which
is equivariant, it follows that

Kajikib)' = 5£aPb = —5 fabPe, (4.1.97)

[al
and we can finally identify
Sm(k;,DZ") = —1DPa. (4.1.98)

The supersymmetry transformations of the linear multiplet {Ba .1, ¥a, (a} are given
by

0eCa = —z[% Hat Dpale™ —dpale, (4.1.99)
0eBayw = %[Evu,,(a +c.c.] = i[pa€ yuthy) — c.c.] + 2T, unAM [#5€AN(A].1.1OO)
Sepa = —2lactcec.. (4.1.101)

The duality relations needed to relate these fields to the fundamental fields of the
N =1,d = 4 gauged supergravity are
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Ca = O0Pax’, (4.1.102)
Ha = —3%ja, (4.1.103)
Ya = —3Pa. (4.1.104)

The supersymmetry algebra closes on all the fields of the linear multiplet without
the use of any duality relation.

Now that we know the supersymmetry transformation rules for A = a we will
generalize them to all values of A. The supersymmetry transformations of the linear
multiplet {Ba ., 0a,Ca} are given by

0eCa = —z[% Wi+ Boale’ — 4642 pale, (4.1.105)
6EBAW, = i[E’YMUCA =+ C.C.] — i[(pAE*’}/[#wy] — C.C.] + 2Ty MNAM[#&A]@:,]LJOG)
Sepa = —zlactcec.. (4.1.107)

The duality relations that project these fields onto those of the physical one are

o = OPax’,, (4.1.108)
H) = —3xja, (4.1.109)
pa = —iPa. (4.1.110)

Observe that some terms on the right hand side are zero for A = a, f, at least to
leading order in fermions.

Now the gauge parameters that appear on the right hand side of the commutator of
two supersymmetry transformations are different from those we found in the previous
section and, therefore, do not match with those we found in the case of the 1-forms. To
relate the parameters of the supersymmetry algebra in the case with and without the
linear supermultiplets we also need to use the above duality relations. For instance,
A4 is given by Eq. (4.1.68) with P4 replaced by —2p4. This means that, in order
to supersymmetrize consistently the tensor hierarchy we also must replace P4 by
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—2¢ 4 in the supersymmetry transformation rules of the gauginos Eq. (4.1.54) (i.e. in
the definition of D Egs. (4.1.55) and (4.1.56)). There are furthermore also 3-forms
contained in the transformations rule for (4. Thus, if we continue this program we
need to find a way to close the algebra on all the 3-forms without using any duality
relations.

However, we will not pursue here any further the supersymmetrization of the
tensor hierarchy for the higher-rank p-forms but we think that the above results
strongly suggest that an extension with additional fermionic and bosonic fields of the
tensor hierarchy on which the local supersymmetry algebra closes without the use of
duality relations must exist. The duality relations must project the supersymmetric
tensor hierarchy on to the N = 1 supersymmetric generalization of the action which
will be given later in Eq. (3.3.45).

As we have seen in the vector and 2-form cases, the duality relations among
the additional fields (fermionic Ax;, ¢ and bosonic ¢4 ) are local as opposed to those
involving the original bosonic ones, which are non-local and related via Hodge-duality.

The 3-form fields C4M

We will be brief here because the construction of the field strength and the determi-
nation of the gauge transformations of the 3-forms C4™ are similar to those of the
other fields.

We first remark that, in order to make the standard hierarchy’s field strength
GcM gauge-invariant under the new gauge transformations, we must modify it as
follows:

GM = Ge™ + (542P, + 64" P,) DM (4.1.111)

where G is given in Eq. (E.3.8) and DY is a 4-form transforming as

s, DM =2xM 4+ (FM — LZMAB, ) A A, (4.1.112)

and where we must also modify the gauge transformation rules of the 3-forms Cc™
to be

SHCAM = 6,CA™M — (542Py + 54" Py)DEM . (4.1.113)

In order to prove this result we have made use of the constraint Eq. (4.1.37) and
also of the fact, mentioned in Section 2.1.1, that the directions A = a for which P, # 0
must necessarily be Abelian, so

You™ (04%Pa+ 64" PHL =0, (4.1.114)

etc.
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Then, the supersymmetry transformations of the 3-forms C4™ are given by

5ECAM#VP = —é[PAg*"ym,p)\M - C.C.] — 3BA [MU‘(LAMM - 2TA pQAM[HAPH(SeAQ‘p] .

(4.1.115)

The local N = 1,d = 4 supersymmetry algebra closes on C4™ upon the use of a

duality relation to be discussed later. The gauge transformations of C'4™ that appear
on the right hand side are the ones described above with

Ape = dBC-i-B[B/\bc] +2T[B‘NPAPAN/\Bc] s (41116)
ANPQ = gNFPQ L aAPAN AN(FD — Z99Bc) — 1 Xpg QAP AN A AR (4.2917)
ApNP = dpT — ANCET + LTporACAN N AR A AT (4.1.118)

where dpcuvp = DBCuwps€”, and similarly for dNPQ and dpVP. The gauge transfor-
mation parameters AM . A, and A, are, again, given by Eqgs. (4.1.52), (4.1.68) and
(4.1.77), respectively.

In the closure of the local supersymmetry algebra we have made use of the duality
relation

G, M = =1 x Re(PADV). (4.1.119)
According to the results of Ref. [33], the duality relation has the general form
ov
M
GyM =1+ FoA (4.1.120)

Comparing these two expressions and using the relation between the potential of
the supergravity theory and the fermion shifts, we conclude that, after the general
electric-magnetic gauging the potential of N = 1,d = 4 supergravity is given by

Vecmg = Va — 3Re DMy APy =V + MM N9 AN APAPE, (4.1.121)
where M is the symplectic matrix defined in Eq. (2.1.52). It satisfies

Ve g/ = —Re(DMPy). (4.1.122)

There may exist a supermultiplet containing the 3-forms C4™ such that the su-
persymmetry algebra closes without the need to use a duality relation. We leave it
to future work to study its possible (non-)existence.
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The 3-form C and the dual of the superpotential

We have seen that the consistency of the closure of the local supersymmetry algebra
on the 2-forms B, and By requires the existence of a 3-form field that we have denoted
by C, whose gauge transformation cancels the Stiickelberg shift of those 2-forms.

An Ansatz for the supersymmetry transformation of C' can be made by writing
down 3-form spinor bilinears that have zero Kéhler weight and that are consistent
with the chirality of the fermionic fields. Further, from Eq. (4.1.78) it follows that
there will be no gauge potential terms needed in the Ansatz. We thus make the
following Ansatz

8eChuvp = =3iLE VPl — 1DiLE Y uwpX' + c.c., (4.1.123)

where 7 is a constant to be found. It turns out that the local supersymmetry algebra
closes for two different reality conditions for 7, which leads to the existence of two
different 3-forms that we will call C' and C".

1. For n = —i the algebra closes into the gauge transformations required by the 2-
forms B, and By provided that the field strength G = dC vanishes. As discussed
earlier there may be non-vanishing contributions if we were to construct the
supersymmetry algebra at the quartic fermion order.

2. For n € R the algebra closes into the following gauge transformation

5gaugec/ = _dA/7 (41124)

where the 2-form A’ is given by

N = —2nSm(Le), o =Cp,870, (4.1.125)

wvp

provided the field strength G’ = dC’ satisfies the duality relation

G = xn(—24|L)* + 8GY D,LD;- L*) . (4.1.126)

Observe that the right hand side is nothing but the part of the scalar potential
Eq. (4.1.121) that depends on the superpotential. Actually, if we rescale the super-
potential by £ — nL, then we can rewrite the above duality relation in the standard
fashion

" 8‘/cfmg

P 1
G =1 TR

(4.1.127)
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and, therefore, we can see the 3-form C’ as the dual of the deformation parameter
associated to the superpotential, just as we can see the 3-forms C 4™ as the duals of
the deformation parameters ;4.

Observe that, had we chosen to work with a vanishing superpotential we would
have found the duality rule G’ = 0. This suggests a possible interpretation of the 3-
form C' to be explored: that it may be related to another, as yet unknown, deformation
of N = 1,d = 4 supergravity which has not been used. The full supersymmetric action
is needed to confirm this possibility or to find, perhaps, a term bilinear in fermions
which is dual to C.

Finally, observe that neither of the 3-forms C,C’" was predicted by the standard
tensor hierarchy. C, though, is predicted by the extension associated to the constraints
Egs. (4.1.37) and (4.1.114).

The 4-form fields DN, D g, DNPQ DM

In the previous sections we have introduced four 4-forms DgN? Dap, DNPQ DM
in order to close the local supersymmetry algebra and have fully gauge-covariant
field strengths. We thus expect that we can also find consistent supersymmetry
transformations for all these 4-forms.

For the three 4-forms DN, Dag, DNPQ there is a slight complication that has
to do with the existence of extra Stiickelberg shift symmetries. There are two such
shift symmetries and in Appendix E.3 they correspond to the parameters Ap(NP)
and Aggp”. The origin of these symmetries lies in the fact that the W tensors that
appear in the field strengths of the 3-forms are not all independent. The symmetries
result from the identities E.1.10 and E.1.11 together with the constraints Lypg =
Q4P = Qnu®? = 0. This means that if we want to realize N = 1 supersymmetry on
the 4-forms DgNP Dap, DNPQ the parameters ApP) and Agp? will appear on
the right hand side of commutators as part of the local algebra.

Most of these features are already visible in the simpler case of the ungauged
theory”, i.e. for 95,4 = 0 and even when the ungauged case has no symmetries that
act on the vectors, i.e. when all the matrices Ty = 0. We will restrict ourselves to
realizing the supersymmetry algebra on the 4-forms for the ungauged theory with
T4 = 0 for all A for simplicity. The 4-form supersymmetry transformations in this
simple setting are given by

"Note that the hierarchy remains non-trivial for Iy =0.
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6Dap = —%*PudiPpéx’ +c.c.— By AdcBp), (4.1.128)
6.DNPR = 10AN AFP A AD (4.1.129)
6.DpNT = Cpf Ans.AN . (4.1.130)

5.DM = —Lxrre\M +cc.+CASAY. (4.1.131)

When 95,4 = 0 and T4 = 0 the only place where there still appears a Stiickelberg
shift parameter is in the gauge transformation of Dg™¥*. From the commutators we
find that

AgNP) — _oA(NEP) A By (4.1.132)

4.1.4 The gauge-invariant bosonic action

It turns out that in order to write an action for the bosonic fields of the theory with
electric and magnetic gaugings of perturbative and non-perturbative symmetries it is
enough to add to the fundamental (electric) fields just the magnetic 1-forms Ap and
the 2-forms B 4. The gauge-invariant action takes the form

Se—mg = / {¥R —2G;j»DZ' A+DZ*I" — 23mfas FA AxF® + 2Re fas P A F

— 5 Veemg —4Z%4By N (Fe — 5255 Bg) — 3 Xmns AM N AN A (F® — Z¥B Bp)

—%X[MN]EAM ANAN A (dAE — %X[pQ]ZAP A AQ)} .
(4.1.133)
The scalar potential Vo_p,g is given by Eq. (4.1.121). Furthermore, the gauge transfor-
mations that leave invariant the above action (J,) are those of the extended hierarchy
(6} except for the 2-forms®:

6aBa = 0, Ba — 2Ta npAYN (FP - GT). (4.1.134)

8The piece AB4 in the gauge transformation of the B s does not play any role here because the
Bgs always appear projected with zZMA
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The action contains the 2-forms B4 always contracted with ZM4 so that we do not

need to worry about the different behavior of B, and B,, By under gauge transfor-
mation due to the extra constraint Eq. (4.1.84).
A general variation of the above action gives

) 208 0S 0S
_ iy et _ M e
68 /{59 5o + <5Z 57 +c.c.> 5A /\*5AM +26B4 /\*5BA ,
(4.1.135)

where the first variations with respect to the different fields are given by

58 o o
~H g = O+ 205 (0,202 — 59D, 202" ]
—GM (" * Gty + 2900 Vermeg » (4.1.136)
1 05 *j" + oA M+ 1
-3 57 = gij*g*fDZ - 0;GyT NG —*§ai‘/;_mg, (41137)
55 |
_i*—éAM = SGM_iﬁMA*-]A+%TAMNAN/\19PA(FP—GP)(41138)
= PR - Gr). (4.1.139)
0Ba

The above equations are formally symplectic-covariant and, therefore, electric-
magnetic duality symmetric. Both the Maxwell equations and the “Bianchi identities”
have now sources to which they couple with a strength determined by the embedding
tensor’s electric and magnetic components.

It is expected to be possible to find a gauge-invariant action in which all the
hierarchy’s fields appear (as was done in [33]) if one assumes that none of the con-
straints on the embedding tensor is satisfied. Then, the 3-forms C4™ and the 4-forms
DpNP Dup, DNPR DM are introduced as Lagrange multipliers enforcing the con-
stancy of the embedding tensor and the algebraic constraints Qnp” = 0,Q45 = 0,
Lypg = 0 and (9p2Py + ﬁMuPﬁ)E = 0, respectively, but we will not study this
possibility here.

It should be stressed that, even though the action Eq. (3.3.45) contains 2ny vectors
and some number np of 2-forms B, it does not carry all those degrees of freedom.
To make manifest the actual number of degrees of freedom we briefly repeat here
the arguments of [15] regarding the gauge fixing of the action (3.3.45). First, we
choose a basis of magnetic vectors and generators such that the non-zero entries of
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Y% arrange themselves into a square invertible submatrix 9%, We split accordingly
Anp = (Ary, Auy). It can be shown by looking at the vector equations of motion
that the Lagrangian does not depend on the Ay, i.e. d£/6Ay, = 0. Further, the
electric vectors A! » that are dual to the magnetic vectors Ar,, which are used in
some gauging, have massive gauge transformations, A7, = —©,A’ —9?A;, and can
be gauged away. The np 2-forms B; can by eliminated from the Lagrangian by using
their equations of motion Eq. (4.1.139). The 2-forms appear without derivatives in
Eq. (4.1.139) so that it is possible to solve for them and to substitute the on-shell
expression back into the action. This is allowed as the 2-forms appear everywhere
(up to partial integrations) without derivatives. One then ends up with an action
depending on np magnetic vectors Ay, and ny — np electric vectors AY e

4.1.5 Possible couplings of the hierarchy p-form fields to (p—1)-
branes

Some, but not all, of the p-forms in the hierarchy may be associated to dynamical
supersymmetric branes. In order to construct a k-symmetric action for a (p — 1)-
brane that couples to a certain p-form, two necessary conditions are that the p-form
transforms under no Stiickelberg shift and that under supersymmetry it transforms
into a gravitino multiplied by some scalars may couple to branes. In N = 1,d =
4 supergravity the p-forms that satisfy this condition are the (subset) of 2-forms
B, whose gauge transformations are massless. These are the 2-forms whose field
strengths are dual to ungauged isometry currents. From the analysis of [28,30] we
know that these couple to strings (one-branes that have been referred to as stringy
cosmic strings). Another form which satisfies the criteria is the 3-form C’ which is a
natural candidate to describe couplings to domain walls. We note that there are no
1-forms and 4-forms that can couple to a massive brane. There are thus no 1/2 BPS
black holes in the theory and no 1/2 BPS space-time filling branes. The latter fact
may be qualitatively understood from the fact that one cannot truncate the minimal
N = 1,d = 4 supersymmetry algebra to a supersymmetry algebra with half of the
original supercharges.

4.2 N = 2 Einstein-Yang-Mills Supergravity

In this section we will describe the theory of N = 2 d = 4 supergravity coupled to
non-Abelian vector supermultiplets to which we will refer to as N = 2 Einstein-Yang-
Mills (EYM). These theories can be obtained from the ungauged theory with vector
supermultiplets by gauging the isometries of the special-K&hler manifold parametrized
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by the scalars in the vector supermultiplets®. Some definitions and formulae related
to the gauging of holomorphic isometries of special Kidhler manifolds are contained in
Appendix C.2.

The action restricted to the bosonic fields of these theories is

S = /d4a: 9] [R+2Gij=D,Z'DHZ*T" + 2SmN s FAWFE
(4.2.1)
—2ReNps FAMWAFE,, -V (Z,27)] ,
where the potential V(Z, Z*), is given by
V(Z,2%) = 2G;;- W'W*I" | (4.2.2)
where
Wi = Lo k" (4.2.3)

In these expressions g is the gauge coupling constant, the kx?(Z) are holomorphic
Killing vectors of G;;» and © the gauge covariant derivative (also Kahler-covariant
when acting on fields of non-trivial Kihler weight) and is defined in Appendix C.2.

This is not the most general gauged N = 2,d = 4 supergravity: if the sp(2n)
matrices Sp that provide a representation of the Lie algebra of the gauge group Gy,
see Eq. (B.1.37), are written in the form

GAQE bAQE
Sy = , (4.2.4)
cros  dao®

we are then considering only the cases in which b = 0, so that only symmetries of
the action are gauged, and ¢ = 0. This last restriction is only made for the sake of
simplicity as theories in which symmetries with ¢ # 0 are gauged have complicated
Chern-Simons terms.

Within this restricted class of theories, then, we can use Eqgs. (C.2.16) and (C.2.18)
to rewrite the potential as

V(2,2%) = L2 A 2 PaPs = — 103 (SmN) THAE P, Py (4.2.5)

Then, since SMAN,y is negative definite and the momentum map is real, the po-
tential is positive semi-definite V(Z,Z*) > 0. For constant values of the scalars

9For a more detailed description see Refs. [62] or [82], the review Ref. [83], and the original works
Refs. [80,84]. Our conventions are contained in Refs. [26,27].
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V(Z,Z*) behaves as a non-negative cosmological constant A = V(Z, Z*)/2 which
leads to Minkowski (A = 0) or dS (A > 0) vacua. The latter cannot be maximally
supersymmetric, however.

For convenience, we denote the bosonic equations of motion by

1 68 : G S 1 48
Ef =, =L ft=——— . (4.2.6)
2y/lgl ¢y 2\/1g] 027 8v/lg] 9A%
and the Bianchi identities for the vector field strengths by
BM =, « FAvr BA = —DFM, (4.2.7)
Then, using the action Eq. (4.2.1), we find
Eu = G +26[0,2'9,2°7 — 19,,0,2'0° 77"
+8SMNp e FA T PFE T, + 1g,,V(2,27), (4.2.8)
EaM = D,k FAM A+ LgRe(kp D127, (4.2.9)
& = DZHIFNAFN,, +L0'V(Z2,27). (4.2.10)
In differential-form notation, the Maxwell equation takes the form
—xEr =DFp — g« Re (k}y,02") . (4.2.11)

For vanishing fermions, the supersymmetry transformation rules of the fermions
are

54/’]# = 9#61 + EIJTJF,LW'YVGJ ) (4212)

S = i@z @+ Wiey (4.2.13)

D €5 is given in Eq. (C.2.11).
The supersymmetry transformations of the bosons are the same as in the ungauged
case
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a
dee”y,

S AN,

VA

—5@rpytel 90y, (4.2.14)

i(ﬁA “e"prues + L b ue’)

_|_
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(fhiersMiyue? + 2 e A yues) (4.2.15)
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Chapter 5

Supersymmetric solutions

In this part of the thesis we are going to study the supersymmetric solutions of N = 2
Supergravity in four dimensions'. We confine ourselves to the study of the ungauged
theory with the most general matter couplings, section 5.1, and N = 2 Einstein-Yang-
Mills theory, which is done in section 5.2.

5.1 Ungauged N =2 SUGRA coupled to vector and
hypermultiplets

In what follows we are going to study the supersymmetric solutions of ungauged N = 2
SUGRA coupled to vector and hypermultiplets. The solutions to N = 2 ungauged
Supergravity coupled to only vector- multiplets were studied in ref. [26]. Among these
solutions we will find supersymmetric 1-brane solutions, which wew refer to as stringy
cosmic strings in analogy with the terminology in ref. [85].

5.1.1 Supersymmetric configurations: generalities

As we mentioned in Section 2.2 the supersymmetry transformation rules of the bosonic
fields indicate that the KSIs associated to the gravitinos and gauginos are going to
have the same form as in absence of hypermultiplets. This is indeed the case, and
the integrability conditions of the KSEs d.4r, = 0 and S Y = 0 confirm the results.
Of course, now the Einstein equation includes an additional term: the hyperscalars
energy-momentum tensor. In the KSI approach the origin of this term is clear. In

1Using the same formalism as we are going to use in what follows, the solutions of N =1 d = 4
Supergravity were found in [30] and the supersymmetric configurations for the N = 4 d = 4 case
were classified in [38]
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the integrability conditions it appears through the curvature of the SU(2) connection
and Eq. (D.0.27). The results coincide for A = —1.
There is one more set of KSIs associated to the hyperinos which take the form

E U, e =0, (5.1.1)

and which can be obtained from the integrability condition ®J.(, = 0 using the
covariant constancy of the Quadbein, Eq. (D.0.21).

The KSIs involving the equations of motion of the bosonic fields of the gravity
and vector multiplets take, of course, the same form as in absence of hypermultiplets.
Acting with €/ from the left on the new KSI Eq. (5.1.1) we get

Xewuel, = o0, (5.1.2)

which implies, in the timelike X # 0 case, that all the supersymmetric configurations
satisfy the hyperscalars equations of motion automatically:

£U=0. (5.1.3)

In the null case, parametrizing the Killing spinors by e€; = ¢re, we get just

g Ul ¢re = 0. (5.1.4)

As usual, there are two separate cases to be considered: the one in which the vector
bilinear V# = i€l y*¢r, which is always going to be Killing, is timelike (Section 5.1.2)
and the one in which it is null (Section 5.1.3). The procedure we are going to follow
is almost identical to the one we followed in Ref. [26].

5.1.2 The timelike case

As mentioned before, the presence of hypermultiplets only introduces an SU(2) con-
nection in the covariant derivative ®,er in 6.7, = 0 and has no effect on the KSE
5\ = 0. Following the same steps as in Ref. [26], by way of the gravitino super-
symmetry transformation rule Eq. (2.2.24), we arrive at

9,X = —iT*, V", (5.1.5)

DV, = i (XT* L — X TT ) — (e 5T =, k57, — egx T, H57).6)

The SU(2) connection does not occur in the first equation, simply because X =
1l My is an SU(2) scalar, but it does occur in the second, although not in its
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trace. This means that V* is, once again, a Killing vector and the 1-form V= Vdz#
satisfies the equation

dV = 4i(XT*~ — X*T). (5.1.7)

The remaining 3 independent 1-forms?

Ve = S(ow)r” Vil dat (5.1.8)

however, are only SU(2)-covariantly exact
dV® + %V AV ATE = 0. (5.1.9)

From 6. \*Y = 0 we get exactly the same equations as in absence of hypermultiplets.
In particular

Vo Zt = 0, (5.1.10)
2iX*0, 7" + 4iG' T, V" = 0. (5.1.11)

Combine Egs. (5.1.5) and (5.1.11), we get
VVEAY, = LD, X + X* 0,20 = LD, X + XD, L0, (5.1.12)

which, in the timelike case at hand, is enough to completely determine through the
identity

CA, =VVFM,, = FAM =V 2V ACMT iV ACA ). (5.1.13)

Observe that this equation does not involve the hyperscalars in any explicit way,
as was to be expected due to the absence of couplings between the vector fields and
the hyperscalars.

Let us now consider the new equation §.(, = 0. Acting on it from the left with
eX and €%+, we get, respectively

Uy ers V7" 0ug* = 0, (5.1.14)

X*UK, ,q" + U, ery 57,0 0,4 = 0. (5.1.15)

26, 71, (x=1,2,3) are the Pauli matrices satisfying Eq. (D.0.12).
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Using €15 Vi = exs V?r + erx V in the first equation we get

uel, v7 ot — U, Vgt = 0. (5.1.16)

It is not difficult to see that the second equation can be derived from this one

using the Fierz identities that the bilinears satisfy in the timelike case (see Ref. [38]),
whence the only equations to be solved are (5.1.16).

The metric

If we define the time coordinate ¢t by

VHD, = V20, (5.1.17)

then V2 = 4| X|? implies that V must take the form

V = 2V2|X2(dt + w), (5.1.18)

where w is a 1-form to be determined later.
Since the Vs are not exact, we cannot simply define coordinates by putting
* = dx®. We can, however, still use them to construct the metric: using

G =2V 2V, = Vi Vi), (5.1.19)

and the decomposition

Vil = Vi ds' + 5 (00)s" Vo0, (5.1.20)
we find that the metric can be written in the form

1 . 1 N
VoV - —&, V' aVy. (5.1.21)

ds* = ———
* T AXP 2|X 2

The V* are mutually orthogonal and also orthogonal to V, which means that they
can be used as a Dreibein for a 3-dimensional Euclidean metric

Sy VERVY = ~ppda™da™ (5.1.22)

and the 4-dimensional metric takes the form

ds® = 2|X*(dt + w)?* — dzdz"™ . (5.1.23)

1
oIX 2 T

The presence of a non-trivial Dreibein and the corresponding 3D metric 7Yy, iS
the main (and only) novelty brought about by the hyperscalars!
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In what follows we will use the Vierbein basis

o 1 - 1.

=V, e = Ve, (5.1.24)
21 X| V2|X]|
that is
1
. V2IX| V2[X|wm . V21X —V2[X|w,
(¢",) = o =

0 AxV'm 0 V2IX[V,m

(5.1.25)

where V™ is the inverse Dreibein V,22V¥,, = ¢Y, and w, = V;2w,,. We shall also
adopt the convention that all objects with flat or curved 3-dimensional indices refer
to the above Dreibein and the corresponding metric.

Our choice of time coordinate Eq. (5.1.10) means that the scalars Z% are time-
independent, whence 1y Q@ = 0. Contracting Eq. (5.1.5) with V# we get

VFD, X =0, = VF0,X =0, (5.1.26)

so that also X is time-independent.

We know the V7s to have no time components. If we choose the gauge for the
pullback of the SU(2) connection A*; = 0, then the SU(2)-covariant constancy of
the V* (Eq. (5.1.9)) states that the pullback of A*, the Vs and, therefore, the 3-
dimensional metric 7y, are also time-independent. Eq. (5.1.9) can then be interpreted
as Cartan’s first structure equation for a torsionless connection w in 3-dimensional
space

dV® — ™ AVY =0, (5.1.27)

which means that the 3-dimensional spin connection 1-form w,¥ is related to the
pullback of the SU(2) connection A* by

o™ = A7, O, (5.1.28)

implying the embedding of the internal group SU(2) into the Lorentz group of the
3-dimensional space as discussed in the introduction.

The su(2) curvature will also be time-independent and Eq. (D.0.27) implies that
the pullback of the Quadbein is also time-independent and its time component van-
ishes:

ul, vro,g" =0. (5.1.29)
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Let us then consider the 1-form w: following the same steps as in Ref. [26], we
arrive at

i * z z *
(dw)ey = —Wswz(x DX — XD*X*). (5.1.30)

This equation has the same form as in the case without hypermultiplets, but now the
Dreibein is non-trivial and, in curved indices, it takes the form

ey (XTDEX — XDRXY) . (5.1.31)

C2lX [/

Introducing the real symplectic sections Z and R

(dw)m =

R=Re(V/X), I=3m(V/X), (5.1.32)
where V is the symplectic section
A w\ _ pxA A g :
b

we can rewrite the equation for w to the alternative form

(dw)zy = 2€4y:(T | O°T), (5.1.34)

whose integrability condition is

(T| V™) =0, (5.1.35)

and will be satisfied by harmonic functions on the 3-dimensional space, i.e. by those
real symplectic sections satisfying V,,0™Z = 0. In general the harmonic functions will
have singularities leading to non-trivial constraints like those studied in Refs. [86,87].

Solving the Killing spinor equations

We are now going to see that it is always possible to solve the KSEs for field con-
figurations with metric of the form (5.1.23) where the 1-form w satisfies Eq. (5.1.30)
and the 3-dimensional metric has spin connection related to the SU(2) connection by
Eq. (5.1.28), vector fields of the form (5.1.12) and (5.1.13), time-independent scalars
Z' and, most importantly, hyperscalars satisfying

U, (o2)sF = 0, u*’, = V,29,,q" U7, , (5.1.36)

which results from Egs. (5.1.16), (5.1.29) and (5.1.20).
Let us consider first the d.(, = 0 equation. Using the Vierbein Eq. (5.1.25) and
multiplying by Y it can be rewritten in the form
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Uazz 7% €l = 0, (5.1.37)

which can be solved using Eq. (5.1.36) if the spinors satisfy a constraint

m;’e; =0 , 0% = ol 67 — 0@ (a(m))IJ] (no sum over ),
(5.1.38)
for each non-vanishing U,s,. These three operators are projectors, i.e. they satisfy
(II*)? = II*, and commute with each other. From (0(,))/% I® g/ ¢; = 0 we find
(2)

(0@)i’es = 7" Per, (5.1.39)

which solves §.(, = 0 together with Eq. (5.1.36) and tells us that the embedding of
the SU(2) connection in the Lorentz group requires the action of the generators of
su(2) to be identical to the action of the three Lorentz generators %705” on the spinors.
When we impose these constraints on the spinors, each of the first two reduces by a
factor of 1/2 the number of independent spinors, but the third condition is implied
by the first two and does not reduce any further the number of independent spinors.

Observe that

me!; = @*;7)y = - gl ep;. (5.1.40)

Let us now consider the equation 6. A/ = 0. It takes little to no time to realize
that it reduces to the same form as in absence of hypermultiplets

ST =i @7 (¢l +inpe el ey ) =0, (5.1.41)

the only difference being in the implicit presence of the non-trivial Dreibein in §JZ?.
Therefore, as before, this equation is solved by imposing the constraint

el + e e ey = 0, (5.1.42)

which can be seen to commute with the projections IT* since, by virtue of Eq. (5.1.40),

II* K] (61 + i’}/oe_iQEIJEJ) = (Hm K[EI) + i’}/oe_iaEKJ (HwJLEL) . (5143)

Let us finally consider the equation 5 A = 0: in the SU(2) gauge A%, = 0 the
0th component of the equation is automatically solved by time-independent Killing
spinors using the above constraint. Again, the equation takes the same form as
without hypermultiplets but with a non-trivial Dreibein. In the same gauge, the
spatial (flat) components of the 5. A"/ = 0 equation can be written, upon use of the
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above constraint and the relation Eq. (5.1.28) between the SU(2) and spatial spin
connection, in the form

XY20,(X 71V 2r) + AT [(0u)r7es —7"er] = 0, AT, = A%, 0nq" V™,
(5.1.44)
which is solved by

e1 = XY2%epy, Ouero =0, €10+ ivoerse’o =0, ;7 e;0=0,
(5.1.45)
where the constraints Eq. (5.1.38) are imposed for each non-vanishing component of
the SU(2) connection.

Equations of motion

According to the KSIs, all the equations of motion of the supersymmetric solutions
will be satisfied if the Maxwell equations and Bianchi identities of the vector fields
are satisfied. Before studying these equations it is important to notice that super-
symmetry requires Egs. (5.1.36) to be satisfied. We will assume here that this has
been done and we will study in the next section possible solutions to these equations.

Using Eqgs. (5.1.12) and (5.1.13) we can write the symplectic vector of 2-forms in
the form

1

F=——
2| X2

{VAA|XPPR] = *[V ASm(V*DX + X*DV)]}, (5.1.46)
which can be rewritten in the form

F = —L{d[RV] +*[V A dI]}. (5.1.47)

The Maxwell equations and Bianchi identities dF = 0 are, therefore, satisfied if

d[VAIL =0, = V02T =0, (5.1.48)

i.e. if the 2n components of Z are as many real harmonic functions in the 3-dimensional
space with metric Y.

Summarizing, the timelike supersymmetric solutions are determined by a choice
of Dreibein and hyperscalars such that Eq. (5.1.36) is satisfied and a choice of 27
real harmonic functions in the 3-dimensional metric space determined by our choice
of Dreibein Z. This choice determines the 1-form w. The full V/X is determined in
terms of Z by solving the stabilization equations and with V/X one constructs the
remaining elements of the solution as explained in Ref. [26].
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The cosmic string scrutinized

It is always convenient to have an example that shows that we are not dealing with an
empty set of solutions. As mentioned in the introduction we can find relatively simple
non-trivial examples using the c-map on known supersymmetric solutions with only
fields in the vector multiplets excited. A convenient solution is the cosmic string for
the case n = 1 with scalar manifold SI(2,R)/U(1) and prepotential F = —2x°X1.
Parametrizing the scalars as A° = 1 and X! = —ir, we find from the formulae
in appendix (D.2.1) that the only non-trivial fields of the c-dual solution are the
spacetime metric

ds* = 2du dv — 2 TIm(7) dzdz* , (5.1.49)

with 7 = 7(2), and the pull-back of the Quadbein is given by

o O O

al —3/2
Y™ = [2Im(7)] . * (5.1.50)

*

0
0
0 Qe T* 7y

From this form, then, it should be clear that the hyperscalar equation (2.2.26) is
satisfied by

z z

ve® = ’YZ*El =0 — Yea =1 *62 =0, (5.1.51)

so that we have to face the fact that this solution can be at most 1/2-BPS.

Since we are dealing with a situation without vector multiplets and with a van-
ishing graviphoton, the gravitino variation (2.2.24) reduces to

0=Ver + Ares. (5.1.52)

For the c-mapped cosmic string, we have from Eqgs. (D.0.10 ) and (D.2.20), that
Al = 5 Qo3 17. Also, for the metric at hand, the 4-d spin connection is readily
calculated to be 2wap7™ = iQ v (See e.g. [38]).

Due to the constraint (5.1.51), however, one can see that 7“*61 = o377 €y,
which, when mixed with the rest of the ingredients, leads to, dropping the I-indices,

Eq. (5.1.52) = de — fway®e + $Qo3ec = de, (5.1.53)

so that the c-mapped cosmic string is a 1/2-BPS solution with, as was to be expected,
a constant Killing spinor.
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5.1.3 The null case

In the null case® the two spinors €7 are proportional: e; = ¢re. The complex functions
é1, normalized such that ¢'¢; = 1 and satisfying ¢3 = ¢, carry a -1 U(1) charge
w.r.t. the imaginary connection

C=¢' Do — = —C, (5.1.54)

opposite to that of the spinor €, whence €; is neutral. On the other hand, the ¢;s are
neutral with respect to the Kéhler connection, and the Kahler weight of the spinor €
is the same as that of the spinor e, i.e. 1/2. The SU(2)-action is the one implied by
the I-index structure.

The substitution of the null-case spinor condition into the KSEs (2.2.24-2.2.26)
immediately yields

Duore+ prOue+ ;6" T e = 0, (5.1.55)
o Pzl +el oy @ite = 0, (5.1.56)
CopUl 1y @ ¢’ e = 0. (5.1.57)

Contracting Eq. (5.1.55) with ¢! results in

Dye = —¢! Dydpre «— Dye = (D, + Cu)e = 0, (5.1.58)

which is the only differential equation for e. Substituting Eq. (5.1.58) into Eq. (5.1.55)
as to eliminate the D, e term, we obtain

(Dudr) € + c1s¢” THun” & = 0, Dudr = (D, — C)br s (5.1.59)
which is a differential equation for ¢; and, at the same time, an algebraic constraint for
e. Two further algebraic constraints can be found by acting with ¢! on Eq. (5.1.56):

§z7ie = @' e = 0. (5.1.60)

Finally, we add to the set-up an auxiliary spinor 7, with the same chirality as e
but with all U(1) charges reversed, and impose the normalization condition

3The details concerning the normalization of the spinors and the construction of the bilinears in
this case are explained in the Appendix of Ref. [38], which you are strongly urged to consult at this
point.
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&n=1. (5.1.61)

This normalization condition will be preserved if and only if 7 satisfies the differential
equation

D+ a,e =0, (5.1.62)

for some a with U(1) charges —2 times those of ¢, i.e.

D,a, = (V, — 20, — iQ,) a,. (5.1.63)
a is to be determined by the requirement that the integrability conditions of the above
differential equation be compatible with those for e.
Killing equations for the vector bilinears and first consequences

We are now ready to derive equations involving the bilinears, in particular the vector
bilinears which we construct with € and the auxiliary spinor n introduced above. First
we deal with the equations that do not involve derivative of the spinors. Acting with
€ on Eq. (5.1.59) and with éy* on Eq. (5.1.60) we find

TH =G 0N =0 — FM1Y =0, (5.1.64)

which implies
R X L (5.1.65)

for some complex functions ¢*. Acting with 7 on Eq. (5.1.59) we get

D01 + V21567 TT m? =0, (5.1.66)

and substituting Eq. (5.1.65) into it, we arrive at

Dy ¢r — e ers¢” Tap™ 1, = 0. (5.1.67)

Finally, acting with € and 77 on Eq. (5.1.60) we get

"9,7" = mt 9, 2" =0 — dZ' = A"l + B'm, (5.1.68)

for some functions A* and B°.

The relevant differential equations specifying the possible spacetime dependencies
for the tetrad follow from Eqs. (5.1.58) and (5.1.62). Le.
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Vipl, = 0, (5.1.69)
Dun, = Vyn, = —a,m, — a,m, (5.1.70)
Dum, = (V, — 20 — iQu) my, = —a,l,. (5.1.71)

Equations of motion and integrability constraints

As was discussed in Sec. (3.2.1), the KSIs in the case at hand don’t vary a great deal,
with respect to the ones derived in [26], and so we can be brief: the only equations
of motion that are automatically satisfied are the ones for the graviphoton and the
ones for the scalars from the vector multiplets. As one can see from Eq. (5.1.4), the
same thing cannot be said about the equation of motion for the hyperscalar, but as
we shall see in a few pages, it is anyhow identically satisfied. The, at the moment,
relevant KSI is

(g,uz/_ %g,ul/gag) v = (&uu_%gpu&y(r) mY’ = O, (5172)

where the relation of the equation of motion with and without hypermultiplets is
given in Eq. (2.2.37).

Substituting the expressions (5.1.68) and (5.1.65) into the above KSIs we find the
two conditions

0 = [Ru + 2Hu 9uq" 9u¢°] 17, (5.1.73)

0 = [Ru + 2Hu 9u¢" 0ug"] m” — Gij« (A'l, + B'm,) B*7 (5.1.74)

Comparable equations can be found from the integrability conditions of Eq. (5.1.58),
i.€.

0 = [Ru + 2(dO)uw) I¥, (5.1.75)

0

[ Ry + 2(dQ)u] m*” — Gij=B' (A" 1, + BV m), (5.1.76)

and those of Eq. (5.1.62)
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0 = [Ru — 2(dQ)u] m” — Gij (Al + B'm,) BV + 2(Da),,It5,1.77)

0 = [Ru —2(d¢)u] n* + 2(Da),, m*Y. (5.1.78)
In the derivation of these last identities use has been made of the formulae
(dQ)w m™ = Gy B' BV m,, (dQ)w 1Y = (dQ)y n” = 0, (5.1.79)

which follow from the definition of the Kahler connection and from Eq. (5.1.68).
Comparing these three sets of equations, we find that they are compatible if

(dc)#l/ lv = Huv 3;#]“ luayqv ) (5180)
(dc)#l/ m*v = Huv 3;#]“ m*yaqu ) (5181)

and )
®a), 1" =0. (5.1.82)

Please observe that, due to the positive definiteness of H, Eq. (5.1.80) implies [0, ¢" =
0, but that Eq. (5.1.81) need not imply m*”9,¢" = 0.
A coordinate system, some more consistency and an anti-climax

In order to advance in our quest, it is useful to introduce a coordinate representation
for the tetrad and hence also for the metric. Since [ is a covariantly constant vector,
we can introduce coordinates u and v through (9, = 0, and [,dz"* = du. We can
also define a complex coordinates z and z* by

m = eV dz , m* = eV d*, (5.1.83)

where U may depend on z, z* and u, but not v. Eq. (5.1.68) then implies that the
scalars Z' are just functions of z and wu:

7' = Z"(z,u), (5.1.84)
wherefore the functions A* and B? defined in Eq. (5.1.68) are

At = 0,7°, eYB' = 0,7", = 0,-(eVB") = 0. (5.1.85)

Finally, the most general form that n can take in this case is
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A=dv+ Hdu+ o, W =wydz + wydz™, (5.1.86)
where all the functions in the metric are independent of v. The above form of the
null tetrad components leads to a Brinkmann pp-wave metric [88]4

ds* = 2du (dv + Hdu + &) — 22V dzdz*. (5.1.87)

As we now have a coordinate representation at our disposal, we can start checking
out the consistency conditions in this representation: Let us expand the connection

C as A
C =i + iGl + {uit — (ue1n", (5.1.88)

where (; and ¢, are real functions, whereas (,, is complex. Likewise expand
6= al 4 apm + ap- m* + a, 7, (5.1.89)

and
Q =9l + Qnm + Qum* + Qpn, (5.1.90)

where, due to the reality of Q, (Q;,)* = Qm+. Let us now consider the tetrad
integrability equations (5.1.69)-(5.1.71): Eq. (5.1.69) is by construction identically
satisfied. Eq. (5.1.71), with our choice of coordinate z Eq. (5.1.83), implies

= ¢ Y0,.U 4+ 2 — iQm~ , (5.1.91)
= —2i(, — iQ,, (5.1.92)
and
i = [U — 2i¢ — Q| M + al, (5.1.93)
where a; = a;(z,2*,u) is a functions to be determined and dots indicate partial

derivation w.r.t. the coordinate u. Eq. (5.1.84) implies that ¢, = Q,, = 0 and from
Eq. (5.1.91) we obtain

02+ (U + 5K) = —2¢.-. (5.1.94)

This last equation states that (;,, whence also (,,, can be eliminated by a gauge
transformation, after which we are left with

E=aal. (5.1.95)

4The components of the connection and the Ricci tensor of this metric can be found in the
Appendix of Ref. [38].
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At this point it is wise to return to Eq. (5.1.81) and to deduce

Huo Oug* m™0,¢° = (d{)w m* " = 267U(8£Q mp, by + 02+ mrull,])m*”

= e Y0,.¢1,. (5.1.96)

This equation implies that dg* ~ [ , and we are therefore obliged to accept the fact
that in the null case, the hyperscalars can only depend on the spacetime coordinate
u!

Had we been hoping for the hyperscalars to exhibit some interesting spacetime
dependency, then this result would have been a bit of an anti-climax. But then, the
fact that the hyperscalars can only depend on u, means that we can eliminate the
connection A from the initial set-up, which means that as far as solutions to the
Killing Spinor equations is concerned, the problem splits into two disjoint parts: one
is the solution to the KSEs in the null case of N = 2 d = 4 supergravity, which are
to be found in [26,34], and the solutions to Eq. (2.2.26).

In the case at hand Eq. (2.2.26) reduces to

0 = U¥ery 0ug’ v, (5.1.97)

so that either we take the hyperscalars to be constant or impose the condition
el = 0. This last condition is however always satisfied by any non-maximally su-
persymmetric solution of the null case, to wit Minkowski space and the 4D Kowalski-
Glikman wave. It is however obvious that these solutions are incompatible with
u-dependent hyperscalars, and its reason takes us to the last point in this exposition:
the equations of motion.

As far as the equations of motion are concerned, it is clear that, since we are dealing
with a pp-wave metric, the hyperscalar equation of motion is identically satisfied.
As the only coupling between vector multiplets and hypermultiplets is through the
gravitational interaction, see Eq. (2.2.37), the only equation of motion that changes
is the one in the wu-direction. More to the point, its sole effect is to change the
differential equation [26, (5.91)] determining the wave profile H in (5.1.87).

A fitting example of a solution demonstrating just this, consider the deformation
of the cosmic string solution found in Ref. [26]:

5

ds? = 2dudv — 2K dz d2*, zt = Z4z),
(5.1.98)
FA = 0, q* = const.,
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ds? = 2du (dv + H(¢,q) |2]*) — 2% dz dz~, 7t = Z4z),
FA =0, ¢" = q"(u),
(5.1.99)

which is a 1/2-BPS solution.

5.2 N = 2 Einstein-Yang-Mills Supergravity

5.2.1 Supersymmetric configurations: general setup

Our first goal is to find all the bosonic field configurations {g,.,, F* ., Z*} for which
the Killing spinor equations (KSEs):

Setbry = Duer+egTHun"e’ =0, (5.2.1)

56)\11' — i@Zi€I+61J[Gi++Wi]€J :O7 (522)

admit at least one solution.
Our second goal will be to identify among all the supersymmetric field configura-
tions those that satisfy all the equations of motion (including the Bianchi identities).
Let us initiate the analysis of the KSEs by studying their integrability conditions.

Killing Spinor Identities (KSIs)

The off-shell equations of motion of the bosonic fields of bosonic supersymmetric con-
figurations satisfy certain relations known as (Killing spinor identities, KSIs) [56,57].
If we assume that the Bianchi identities are always identically satisfied everywhere,
the KSIs only depend on the supersymmetry transformation rules of the bosonic fields.
These are identical for the gauged and ungauged theories, implying that their KSIs
are also identical. If we do not assume that the Bianchi identities are identically
satisfied everywhere, then they also occur in the KSIs, which now have to be found
via the integrability conditions of the KSEs. In the ungauged case they occur in
symplectic-invariant combinations, as one would expect, and take the form [26]

Eal el —4ie’ (€M V)ey = 0, (5.2.3)

el =27 (g UMYy = 0, (5.2.4)
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where

5(1

( Bﬁi ) . (5.2.5)

We have checked through explicit computation that these relations remain valid
in the non-Abelian gauged case at hand.

Taking products of these expressions with Killing spinors and gamma matrices, one
can derive KSIs involving the bosonic equations and tensors constructed as bilinears
of the commuting Killing spinors.® In the case in which the bilinear V* = iel v e,
is a timelike vector (referred to as the timelike case), one obtains [87] the following
identities (w.r.t. an orthonormal frame with ep” = V#/|V])

£ = o€, (5.2.6)
(V/IX| &) = X[7'€Y6%, (5.2.7)
(U | E*) = Le ™&:6%), (5.2.8)

where X = %E]JEIEJ and is non-zero in the timelike case.

As discussed in Ref. [87], these identities contain a great deal of physical informa-
tion. In this paper we shall exploit only one fact, namely the fact that if the Maxwell
equation and the Bianchi identity are satisfied for a supersymmetric configuration,
then so are the rest of the equations of motion. The strategy to be followed is,
therefore, to first identify the supersymmetric configurations and impose the Maxwell
equations and the Bianchi identities. This will lead to some differential equations
that need be solved in order to construct a supersymmetric solution.

In the case in which V# is a null vector (the null case), renaming it as [ for
reasons of clarity, one gets

6See the appendix in Ref. [38] for the definitions and properties of these bilinears.
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(Ew = 59 E" " = (Eww = 59 E"p)m” = 0, (5.2.9)
ElY =E,m” = 0, (5.2.10)

(V]ery = o, (5.2.11)

(Up | EMYl = (UL | E)yml, = 0, (5.2.12)

g =0, (5.2.13)

where I,n, m, m* is a null tetrad constructed with the Killing spinor ! and an auxil-
iary spinor n as explained in Ref. [26].

These identities imply that the only independent equations of motion that one
has to check on supersymmetric configurations are £,,n#n” and (US| €, ) nt. As
before, these are the equations that need to be imposed in order for a supersymmetric
configuration to be a supersymmetric solution.

Killing equations for the bilinears

In order to find the most general background admitting a solution to the KSEs,
Egs. (5.2.1) and (5.2.2), we shall assume that the background admits one Killing
spinor. Using this assumption we will derive consistency conditions that the back-
ground must satisfy, after which we will prove that these necessary conditions are also
sufficient.

It is convenient to work with spinor bilinears, and consequently we start by deriv-
ing equations for these bilinears by contracting the KSEs with gamma matrices and
Killing spinors.

From the gravitino supersymmetry transformation rule Eq. (4.2.12) we get the
independent equations

S,LLX = _iT+pUVV; (5214)
.V = i XT* 0 — X T ) (5.2.15)

_i[EIKT*i,upq)KJPU - EJKT+,upq)KIpy] y (5216)
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which have the same functional form as their equivalents in the ungauged case. Hence,
as in the ungauged case, V# is a Killing vector and the 1-form V = V,dx" satisfies
the equation

dV = 4i[XT* — X*T™]. (5.2.17)

The remaining 3 independent 1-forms Ve = %VIJMU”” Trdat (x = 1,2,3 and the o®

N

are the Pauli matrices) are exact, i.e.

Vs =0. (5.2.18)

From the gauginos’ supersymmetry transformation rules, Egs. (4.2.13), we obtain

VIghD, Zi 4+ 7 Op G L, + Wil T Mg, = 0(5.2.19)

iMAD, 20+ i@ D, 70 — 4i TVE G, — Wi VR = 1(5.2.20)
The trace of the first equation gives

VED,Z 4+ 2XWE =0, (5.2.21)

while the antisymmetric part of the second equation gives
2X*®, 7  + 4G,V + WV, =0. (5.2.22)
The well-known special geometry completeness relation implies that
FAY =LAt p ot Gi T (5.2.23)
which allows us to combine Egs. (5.2.14) and (5.2.22), as to obtain

VvFAt,, = acAvvTt,, 4+ 2fAvrGit,,
(5.2.24)
= LD, X+ XD, LN+ W,
Multiplying this equation by V# and using Eq. (5.2.21), we find
VD, X =0. (5.2.25)

At this point in the investigation, it is convenient to take into account the norm
of the Killing vector V#: we shall investigate the timelike case in Section 5.2.2 and
the null case in Section 5.2.3.
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5.2.2 The timelike case
The vector field strengths

As is well-known, the contraction of the (anti-) self-dual part of a 2-form with a non-
null vector, such as V* in the current timelike case, completely determines the 2-form,
1.€.

CA, = VVFAY = FA V2V ACAMT 4ix(VACAT)]. (5.2.26)

As CA *, is given by Eq. (5.2.24), the vector field strengths are written in terms of the
scalars Z*, X and the vector V. Observe that the component of C*+ « proportional
to V# is projected out in this formula: this implies that the field strengths have the
same functional form as in the ungauged case. The covariant derivatives that appear
in the r.h.s., however, contain explicitly the vector potentials.

The next item on the list is the determination of the spacetime metric:

The metric

As in the ungauged case we define a time coordinate ¢ by

VEO, =20, . (5.2.27)

Unlike the ungauged case, however, the scalars in a supersymmetric configuration
need not automatically be time-independent: with respect to the chosen ¢-coordinate
Eq. (5.2.21) takes the form

0. 2" + gANRAT + V2XW = 8,2" + g(AN + 5 X LMk = 0. (5.2.28)

It is convenient to choose a Gy gauge in which the complex fields Z¢ are time-
independent, and one accomplishing just that is

AN, = —V2Re (X L) = —V2IX|PRe (LX) (5.2.29)
This gauge choice reduces Eq. (5.2.28) to

2" = J5gX* Ly = 02" = 0, (5.2.30)

on account of Eq. (C.2.17). It should be pointed out that this gauge choice is identical
to the expression for A; obtained in ungauged case in Refs. [26,27]. Further, using
the above t-independence and gauge choice in Eq. (5.2.25), we can derive
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OX +iQ X +igANPy = 0 X + (0 Z'0,K — c.o)X +igAN Py X
= X —V2ig| X|*Re (L) X*)Pr X (5.2.31)
= X =0,

where we made use of Eq. (C.2.16) and the reality of Py. Thus, with the stan-
dard coordinate choice and the gauge choice (5.2.29) the scalars Z¢ and X are time-
independent.

Using the exactness of the 1-forms VZ to define spacelike coordinates = by

V® = do”, (5.2.32)
the metric takes on the form
1
ds* = 2|X[*(dt + ©)* - Wd:ﬂdﬂ (z,y=1,2,3), (5.2.33)

where @ = w;dz" is a time-independent 1-form. This 1-form is determined by the
following condition

. [o XDX* - X'DX
s+ |V A X7 (5.2.34)

dw =

Observe that this equation has, apart from a different definition of the covariant
derivative, the same functional form as in the ungauged case; before we start rewriting
the above result in order to get to the desired result, however, we would like to
point out that due to the stationary character of the metric, the resulting covariant
derivatives on the transverse R? contain a piece proportional to w,. The end-effect of
this pull-back is that we introduce a new connection on R3, denoted by ’i)g, which is
formally the same as ®, but for a redefinition of the gauge field, i.e.

ANy = AN —wp AN (5.2.35)

In order to compare the results in this article with the ones found in [26], we
introduce the real symplectic sections Z and R defined by

R=Re(V/X), I=%m(V/X). (5.2.36)

V is the symplectic section defining special geometry and thence satisfies

LA % * * .
V—<M2>, V|V =LAMy = LAM, = —i. (5.2.37)
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This then implies that our gauge choice can be expressed in the form

AN = —V2IXPRA, (5.2.38)
and that the metric function |X| can be written as

1

2TX = (R|T), (5.2.39)

Similar to the ungauged case, we can then rewrite Eq. (5.2.34) as

(dw)xy = 2€xyz<1 | ®z1> ) (5.2.40)

whose integrability condition reads

(T]19,9,T)=0, (5.2.41)

and we shall see that, apart from possible singularities [86,87], the integrability con-
dition is identically satisfied for supersymmetric solutions.

Solving the Killing spinor equations

In the previous sections we have found that timelike supersymmetric configurations
have a metric and vector field strengths given by Egs. (5.2.33,5.2.24) and (A.1.16) in
terms of the scalars X, Z%. It is easy to see that all configurations of this form admit
spinors €; that satisfy the Killing spinor equations (5.2.1,5.2.2). The Killing spinors
have exactly the same form as in the ungauged case [26]

er = XY %€y, Ouero =0, €ro+ivoerselo =0. (5.2.42)

We conclude that we have identified all the supersymmetric configurations of the
theory.

Equations of motion

The results of Section 5.2.1 imply that in order to have a classical solution, we only
need to impose the Maxwell equations and Bianchi identities on the supersymmetric
configurations. In this section, then, we will discuss the differential equations ar-
rising from the applying the Maxwell and Bianchi equations on the supersymmetric
configurations obtained thus far.

As we mentioned in Section 5.2.2 the field strengths of supersymmetric configu-
rations take the same form as in the ungauged case [26] with the K#hler-covariant
derivatives replaced by Kéhler- and Gy-covariant derivatives. Therefore, the sym-
plectic vector of field strengths and dual field strengths takes the form
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1

F=——0
2| X2

{VA©(|X|2R) —*[V/\%m(V*@X—i—X*DV)]}. (5.2.43)

Operating in the first term we can rewrite it in the form

. . o * *
Fe_1 {@(RV) _9VBX[PRAD + * [V p SmTOX + X w)] }  (5.2.44)

[ X2

and using the equation of 1-form &, Eq. (5.2.34), which is also identical to that of the
ungauged case with the same substitution of covariant derivatives, we arrive at

F=-1 {@(RV) (VA @I)} . (5.2.45)

In what follows we shall use the following Vierbein (e, e®) and the corresponding
directional derivatives (6o, 0,), normalized as e®(0) = 0%, that are given by

¥ = V2IX|(dt + w), 6y = %|X|f1 O
(5.2.46)
er = %|X|71 dz”® 0. = V2|X|(0r — wi0) .
With respect to this basis we
V9, = 2|X| 6o, Vo= 2|X|€, (5.2.47)
and the gauge fixing (5.2.29) and the constraint (5.2.28) read
Ay = —|X| R, X* 907" = —|X| W', (5.2.48)

The equation that the spacelike components of the field strengths F Agy satisfy can
be rewritten in the form N

Fhyy = —JpeaysD.I" (5.2.49)

where the tilde indicates that the gauge field that appears in this equation is the
combination A%, defined in Eq. (5.2.35).

This equation is easily recognized as the well-known Bogomol’'nyi equation [89]
for the connection /NlAg and the real “Higgs” field Z% on R3. Its integrability condi-
tion uses the Bianchi identity for the 3-dimensional gauge connection flAg and, as it
turns out, is equivalent to the complete Bianchi identity for the 4-dimensional gauge
connection A%, Tt takes the form
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0,90, = 0. (5.2.50)

Taking the Maxwell equation in form notation Eq. (4.2.11) and using heavily the
formulae in Appendix C.2 we find that all the components are satisfied (as implied
by the KSIs) except for one which leads to the equation

0.0.In = 1¢* [fa' fayr® T7T4] I . (5.2.51)

Plugging the above equation and the Bianchi identity (5.2.50) into the integrability
condition for w, Eq. (5.2.41), leads to

(T|DD,T) = ~I*DD,Ix = —2¢* fas" fayr? TVIPI I = 0, (5.2.52)

which is, ignoring possible singularities, therefore identically satisfied.

Construction of supersymmetric solutions of N =2,d =4 SEYM

According to the KSIs, the supersymmetric configurations that satisfy the pair of
Egs. (5.2.50) and (5.2.51), or, equivalently, the pair of Egs. (5.2.49) and (5.2.51) solve
all the equations of motion of the theory. This implies that one can give a step-by-
step prescription to construct supersymmetric solutions of any N = 2,d = 4 SEYM
starting from any solution of the YM-Higgs Bogomol'nyi equations on R3:

1. Take a solution A%, T* to the equations

FAEE = —\%emyzﬁéfl\.

As we have stressed repeatedly, these equations are nothing but YM-Higgs Bo-
gomol’nyi equations on R? and there are plenty of solutions available in the
literature. However, since in most cases the authors’ goal is to obtain regu-
lar monopole solutions on R?, there are many solutions to the same equations
that have been discarded because they present singularities. We know, however,
that in the Abelian case, the singularities might be hidden by an event horizon”.
Therefore, we will not require the solutions to the Bogomol'nyi equations to be

globally regular on R3.

2. Given the solution AAE, A, Eq. (5.2.51), which we write here again for the sake
of clarity (as we will do with other relevant equations):

"More precisely they turn out to be coordinate singularities in the full spacetime and correspond,
not to a singular point, but to an event horizon.
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0,9, In = 39° [fas" far? T7I2] Ig .

becomes a linear equation for the Zx s alone which has to be solved. For compact
gauge groups a possible solution is

Ty = JIN, (5.2.53)

for an arbitrary real constant J (the r.h.s. of Eq. (5.2.51) vanishes for this
Ansatz).

3. The first two steps provide Z = (Z%,7,) = Sm (V/X). The next step, then, is
to obtain R = (R*,Ra) = Re (V/X) as functions of Z by solving the model-
dependent stabilization equations. The stabilization equations depend only on
the specific model one is considering and does not depend on whether the model
is gauged or not.

4. Given R and Z, one can compute the metric function |X| using Eq. (5.2.39)

1

W=<R|I>;

the n physical complex scalars Z* by

s L0 LYX RUA4T
Zi= 55 = X = ROy (5.2.54)

and the metric 1-form @ using Eq. (5.2.40)

(d)zy = 2€0y=(T | D.T).

This last equation can always be solved locally, as according to Eq. (5.2.52) its
integrability equation is solved automatically, at least locally: Since the solu-
tions to the covariant Laplace equations are usually local (they generically have
singularities), the integrability condition may fail to be satisfied everywhere, as
discussed for example in Refs. [86,87,90], leading to singularities in the metric.
The solution Eq. (5.2.53), however, always leads to exactly vanishing &, whence
to static solutions.

|X| and @ completely determine the metric of the supersymmetric solutions,
given in Eq. (5.2.33)
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1
ds? = 2|X*(dt + &)* - Wd:ﬂd:ﬂ (z,y=1,2,3).

5. Once Z, R,|X| and & have been determined, the 4-dimensional gauge potential
can be found from Eq. (5.2.38)

AAt — _\/§|X|2RA ,

and from the definition of A%, Eq. (5.2.35)

AM, =AM 4w, AD, .

The procedure we have followed ensures that this is the gauge potential whose
field strength is given in Eq. (5.2.45).

In the next section we are going to construct, following this procedure, several
solutions.

Monopoles and hairy black holes

As we have seen, the starting point in the construction of N = 2,d = 4 SEYM
supersymmetric solutions is the Bogomol’nyi equation on R3. Of course, the most
interesting solutions to the Bogomol'nyi equations are the monopoles that can be
characterised by saying that they are finite energy solutions that are everywhere
regular. The fact that the gauge fields are regular does, however, not imply that
the full supergravity solution is regular. Indeed, the metric and the physical scalar
fields are built out of the “Higgs field”, i.e. Z, and the precise relations are model
dependent and requires knowing the solutions to the stabilization equation.

As the Higgs field in a monopole asymptotes to a non-trivial constant configura-
tion, it asymptotically breaks the gauge group through the Higgs effect. In fact, as
we are dealing with supergravity and supersymmetry preserving solutions, monopoles
in our setting would have to implement the super-Higgs effect as for example dis-
cussed in Refs. [91]. If we were to insist on an asymptotic supersymmetric effective
action, we would be forced to introduce hypermultiplets in order to fill out massive
supermultiplets, but this point will not be pursued in this article.

The Bogomol'nyi equations admit more than just regular solutions, and we shall
give families of solutions, labelled by a continuous parameter s > 0, having the
same asymptotic behaviour as the monopole solutions. As they are singular on R3,
however, we will use them to construct metrics describing the regions outside regular
black holes: as will be shown, the members of a given family lead to black holes that
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are not distinguished by their asymptotic data, such as the moduli or the asymptotic
mass, nor by their entropy and as such illustrate the non-applicability of the no-hair
theorem to supersymmetric EYM theories. Furthermore, in all examples considered,
the attractor mechanisms is at work, meaning that the physical scalars at the horizon
and the entropy depend only on the asymptotic charges and not on the moduli nor
on the parameter s.

The plan of this section is as follows: in section (5.2.2) we shall repeat briefly the
embedding of the spherically symmetric solutions to the SO(3) Bogomol'nyi equations

in the CP° models. In all but one of these solutions, the asymptotic gauge symmetry
breaking is maximal, i.e. the SO(3) gauge symmetry is broken down to U(1). In
section (5.2.2), we will investigate the embedding of solutions that manifest a non-
maximal asymptotic symmetry breaking: for this we take E. Weinberg’s spherically
symmetric SO(5)-monopole [92] embedded into TP". This monopole breaks the
SO(5) down to U(2) and has the added characteristic that, unlike the 't Hooft-
Polyakov monopole, the Higgs field does not vanish at the origin.

An interesting question is whether one can embed monopoles also into more com-
plicated models. This question will be investigated in Section 5.2.2, where we consider
gauged “Magic” supergravities.

Spherically symmetric solutions in SO(3) gauged cP

Before discussing the solutions we need to make some comments on the model: the
model we shall consider in this and the next section is the so-called CP" model.8
In this model the metric on the scalar manifold is that of the symmetric space
SU(1,n)/U(n) and the prepotential is given by

F o= toas XN X% g = diag(+, [-]") (5.2.55)

which is manifestly SO(1,n) invariant.
The Kahler potential is straightforwardly derived by fixing X° = 1 and introducing
the notation X* = Z%; this results in

e = P =N =1 - > (2P =1 - |Z)2. (5.2.56)
i=1 =1

Observe that this expression for the Kéahler potential implies that the Z’s are
constrained by 0 < |Z]? < 1.

8The solutions in this and the next section can also be embedded into the ST-models, with similar
conclusions. Contrary to Ref. [36], however, we have chosen not to deal with this model explicitly,
and refer the reader to Appendix C.4 for more details.
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As the model is quadratic, the stabilization equations are easily solved and leads
to

Ry = s I8, RY = -2 I (5.2.57)

With this solution to the stabilization equation, we can express the metrical factor,
Eq. (5.2.39), in terms of the 7 as

1
2|2

where in that last step we used the fact that in this article we shall consider only
purely magnetic solutions, so that Zy = 0. The fact that we choose to consider
magnetic embeddings only, implies be means of Eq. (5.2.40) that we will be dealing
with static solutions.

In order to finish the discussion of the model, we must discuss the possible gauge
groups that can occur in the CP"-models: as we saw at the beginning of this section,
these models have a manifest SO(1,n) symmetry, under which the X’s transform as a
vector. Furthermore, as we are mostly interested in monopole-like solutions, we shall
restrict our attention to compact simple groups, which, as implied by Eq. (C.2.22),
must be subgroups of SO(n). In fact, Eq. (C.2.22) and Eq. (C.2.13) make the stronger
statement that given a gauge algebra g, the action of g on the X’s must be such that
only singlets and the adjoint representation appear. For the CP"-models there is no
problem whatsoever as we can choose n to be large enough as to accomodate any Lie
algebra. Indeed, as is well-known any compact simple Lie algebra g is a subalgebra
of so(dim(g)) and the branching of the latter’s vector representation is exactly the
adjoint representation of g.

= §an IM7 + 29 NIy = § s 7T, (5.2.58)

The simplest possibility, namely the SO(3)-gauged model on @3, will be used

in the remainder of this section, and the SO(5)-gauged TP model will be used in
section (5.2.2). The SO(4)- and the SU(3)-gauged models will not be treated, but
solutions to these models can be created with great ease using the information in this
section and Appendix F.

As we are restricting ourselves to purely magnetic solutions, which are automat-
ically static, the construction of explicit supergravity solutions goes through the ex-
plicit solutions to the SO(3) Bogomol'nyi equation (5.2.49). Having applications to
the attractor mechanism in mind, and being fully aware of the fact that this class con-
sists of only the tip of the iceberg of solutions, we shall restrict ourselves to spherically
symmetric solutions to the Bogomol’nyi equations.

Working in gauge theories opens up the possibility of compensating the spacetime
rotations with gauge transformations, and in the case of an SO(3) gauge group this
means that the gauge connection and the Higgs field, Z, after a suitable gauge fixing,
takes on the form (See e.g. [93])
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Aim = _Emni " P(T) y Il = — 2.’[5Z H(’f’) . (5259)

Substituting this Ansatz into the Bogomol’nyi equation we find that H and P must
satisfy

rd,(H+P) = gr* P (H+P), (5.2.60)

ro,P + 2P = H (1+gr’P) . (5.2.61)

All the solutions to the above equations were found in Ref. [94] and all but one of
them contain singularities. Furthermore, not all of them have the correct asymptotics
to lead to asymptotic flat spaces and only part of the ones that do can be used
to construct regular supergravity solutions [36,95]. Here, by regular supergravity
solutions we mean that the solutions is either free of singularities, which is what is
meant by a globally regular solution, or has a singularity but, like the black hole
solutions in the Abelian theories, has the interpretation of describing the physics
outside the event horizon of a regular black hole. The criterion for this last to occur
is that the geometry near the singularity is that of a Robinson-Bertotti/aDS; x S?
spacetime, implying that the black hole has a non-vanishing horizon area, whence
also entropy.
The suitable solutions, then, break up into 3 classes:

(I) ’t Hooft-Polyakov monopole

This is the most famous solution and reads

H = -2 [coth(ur) — i] =L H(r) ,
gr ur gr
1 . -1 _ n =
P = T [1 — prsinh™ (ur)] = o P(r), (5.2.62)

where 1 is a positive constant. The profile of the functions P and H are given Fig. (1).
These functions are regular and bound between 0 and 1 and . Thus, we see that 7
(whence also 7% and Z,,) are regular at r = 0. The YM fields of this solution are those
of the 't Hooft-Polyakov monopole [96].

The renowned regularity of the 't Hooft-Polyakov monopole opens up the possi-
bility of creating a globally regular solution to the supergravity equations which is
in fact trivial to achieve: for the moment we have been ignoring Z°, which, since it
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Figure 5.2.1: The profiles of the functions P and H.

is uncharged under the gauge group, is just a real, spherically symmetric harmonic
function we can parametrize as

70 =V2(h +p/r). (5.2.63)

It is clear, however, that if we want to avoid singularities, we must take p = 0, so that
the only free parameter is h.

Let us then discuss the regularity conditions imposed by the metric: as was said
before, the solutions are automatically static, so that if singularities in the metric are
to appear, they arise from the metrical factor |X|?. Plugging the solution for the
Higgs field into the expression (5.2.58), we find

1 9 P —2

IXE h 7 H (r). (5.2.64)
As one can infer from its definition in Eq. (5.2.62), the function H is a monotonic,
positive semi-definite function on R* and vanishes only at r = 0, where it behaves
as H ~ ur/3 + O(r?); its behaviour for large r is given by H = 1 — 1/(ur), which
means that we should choose h large enough in order to ensure the positivity of the
metrical factor. A convenient choice for h is given by imposing that asymptotically
we recover the standard Minkowskian metric in spherical coordinates: this condition
gives h? = 1 + p?g~2 from which we find the final metrical factor and can then also

calculate the asymptotic mass, i.e.

1 w2

g

Written in this form, it is paramount that the metric is globally regular and
interpolates between two Minkowksi spaces, one at 7 = 0 and one at r = oo.
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In order to show that the solution is a globally regular supergravity solution, we
should show that the physical scalars are regular. In the CP"-models the scalars are
given by (introducing the outward-pointing unit vector 7 = &/r)

; R +iT! Tt [T
7' = ———— = — = — Hn' 5.2.66
RO1iz0 — 10 gn " ( )
so that the regularity is obvious. The scalars also respect the bound 0 < |Z]? < 1 as
can be seen from the fact that the bound corresponds to the positivity of the metrical
factor. This regularity of the scalars and that of the spacetime metric are related [87].

(ITI) Hairy black holes

A generic class of singular solutions is indexed by a free parameter s > 0, called the
Protogenov hair, and can be seen as a deformation of the 't Hooft-Polyakov monopole,
i.e.

1 — 1
H = _gﬁr coth(ur +s) — e = _gﬁr Hy(r) , P = o2 1 - ;u“sinhfl(ur—i—s)] .
(5.2.67)

The effect of introducing the parameter s is to shift the singularity of the cotangent
from r = 0 to ur = —s, i.e. outside the domain of r, but leaving unchanged its
asymptotic behaviour.® This not only means that the function H, vanishes at some
rs > 0, but also that it becomes singular at » = 0, so that in order to build a regular
solution we must have p # 0. Using then the general Ansatz for Z°, Eq. (5.2.63), in
order to calculate the metrical factor, we find in stead of Eq. (5.2.64)

1 D \2 ne =2
— = (h+ = - — H,_. 5.2.68
2[X]? (n+7) 2 (5:2.68)

As the asymptotic behaviour of H, is the same as the one for the 't Hooft-Polyakov
monopole, the condition imposed by asymptotic flatness still is h? = 14+ u2g~2. Given
this normalization, the asymptotic mass is

1
M = hp + g_z’ (5.2.69)
which should be positive for a physical solution. In this respect, we would like to
point out that the product hp should be positive as otherwise the metrical factor

would become negative or zero, should it coincide with the zero of Hj, at a finite

90ne can consider the limiting solution for s — oo, the result of which was called a black hedgehog
in Ref. [36]. This solution has, apart from not containing hyperbolic functions, no special properties
and will not be considered seperately.
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distance, ruining our interpretation of the metric as describing the outside of a regular
black hole. This then implies that the mass is automatically positive. Finally, let us
point out that neither the mass nor the modulus i depend on the Protogenov hair
parameter s.

The metrical factor is clearly singular at » = 0, but given the interpretation of the
metric this is not a problem as long as the geometry near r = 0, which corresponds
to the near horizon geometry, is that of an aDSs x S? space. This is the case if

S = lim 2 _ 1 (5.2.70)
= lim —— = - = 2.
bh 202X 2 p g2’
is positive and can thence be identified with the entropy of the black hole.
The scalars for this solution are given by
, H, ,
zi = B _T7s i (5.2.71)
gD+ hr

whose asymptotic behaviour is the same as for the 't Hooft-Polyakov monopole. Its
behaviour near the horizon, i.e. near r = 0, is easily calculated to be

lim Z' = —— n’, (5.2.72)

and does not depend on the moduli nor on the Protogenov hair, but only on the
asymptotic charges. Observe, however, that since H, = 0 at some finite 7, > 0, there
is a 2-sphere outside the horizon at which the scalars vanish, which is not a singularity
for the scalars of this model.

(III) Coloured black holes

There is another particular solution to the SO(3) Bogomol’'nyi equation that has all
the necessary properties, and this solution is given by

1 1
H=-P = pre [1+/\2J . (5.2.73)

This solution has the same r — 0 behaviour as the hairy solutions, but is such
that in the asymptotic regime it has no Higgs v.e.v. nor colour charge. Given the
foregoing discussion, it is clear that this solution can be used to build a regular black
hole solution, and we can and will be brief.

The regularity of the metric goes once again through the judicious election of h
and p: the normalization condition implies that |h| = 1 which then also implies that
the asymptotic mass of the solution is M = |p|. It may seem strange that the YM-
configuration does not contribute to the mass, but it does so, at least for a regular
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black hole solution, in an indirect fashion: the condition for a regular horizon is
clearly given by Eq. (5.2.70), which implies that |p| > 1/g. With these choices then,
the scalars Z are regular for r > 0 and at the horizon they behave as in Eq. (5.2.72).

Non-maximal symmetry breaking in SO(5) gauged cp’

In Ref. [92], E. Weinberg presented an explicit solution for a spherically symmetric
monopole solution that breaks the parent SO(5) gauge group down to U(2); in this
section we will discuss the embedding of this solution into supergravity and also
generalize it to a family of hairy black holes by introducing Protogenov hairt?.

The starting point of the derivation of Weinberg’s monopole is the explicit em-
bedding of an ’t Hooft-Polyakov monopole into an so(3) subalgebra of so(5). In
order to make this embedding paramount we take the generators of s0(5) to be J;, J;
(1=1,2,3)and P, (a = 1,...,4). These generators satisfy the following commutation
relations

i, J;) = eijr Ji, i, Pa] = P.%%,
[ji7 jj} = Eijk jk ) |:'j’La Pa] = PC Eica ) (5274)
(7, J;] = o, PP = —2J; %, -2, 5.,

where we have introduced the 't Hooft symbols ¥¢° and i?b. The % (resp. ¥) are
self-dual (resp. anti-selfdual) 2-forms on R* and satisfy the following relations

(%, 5] = ek, Z0%] = e, [Z5] = 0,
y2 - _17 T2 o= 11 v, 5 —

% 14 i 1 4> iab .
(5.2.75)

We would like to stress that ¥ is not the complex nor the Hermitean conjugate of ¥.
Following Weinberg we make the following Ansatz for the so(5)-valued connection
and Higgs field, taking T4 (A =1,...,10) to be the generators of s0(5),

Ay = A% Ta = —epi™n [rP Ji + rB Ji] + My" P, (5.2.76)
5l = —55T' Ta = rHa'J; + rK n'J; + Q" P, (5.2.77)

10Tn Ref. [97] the general equations for a spherically symmetric solution to the SO(5) Bogomol’nyi
equations were derived. This opens up the possibility of analysing the system along the lines of
Ref. [94], but for the moment this has not lead to anything new.
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where P, B, H and K are functions of r only. M and (2 are determined by the criterion
that we have an ’t Hooft-Polyakov monopole in some s0(3)-subalgebra, which we take
to be generated by the J;. One way of satisfying this criterion is by choosing

M,* = Fd& , Q¥ = —F %, (5.2.78)

which implies that the Bogomol’nyi equation in the J; sector reduce to Egs. (5.2.60)
and (5.2.61).

The analysis of the Bogomol'nyi equations in the remaining sectors impose the
constraint that K = —B and the differential equations'!

29 F? = rK' + 2K + K(1-gr’K), (5.2.79)

F' = 1gr F2P + H + K] . (5.2.80)

The final ingredient, needed for the calculation of the metrical factor, consists of
finding an expression for the SO(5)-invariant quantity ZAZ4: this is

11474 = *H? + PPK? 4+ 2 F7. (5.2.81)

In conclusion, given a solution to Egs. (5.2.60,5.2.61,5.2.79) and (5.2.80) we can

discuss their embedding into the SO(5)-gauged TP -model by means of Eq. (5.2.81).

Weinberg’s monopole in supergravity

The explicit form of Weinberg’s monopole is given by the solution in Eq. (5.2.62) and

K(r) = —P(r)L(r;a) = gﬁrf, (5.2.82)
F(’f‘) = m L1/2(T;a) = % F, (5283)

where the profile function L, given by

L(ria) = [1 + % coth (ur/2) ], (5.2.84)

depends on a positive parameter a called the cloud parameter. The cloud parameter
a is a measure for the extention of the region in which the Higgs field in the J;-

1n order to go from Weinberg’s notation [92] to ours one needs to change A — —rP, G — —rB,
H—rH, K —rK,e— —gand also F — F//2.
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Figure 5.2.2: A plot of 1 — H —K —2F: the dashed line corresponds to a = 0 and
the solid line corresponds to the maximal cloud extention, i.e. L = 1.

and the P,-directions are active: in fact when a = 0 the profile functions vanishes
identically and we are dealing with an embedding of the ’t Hooft-Polyakov monopole.
The maximal extention is for @ — oo which then means that L = 1.

As one can see from the definitions, K and F' are positive semi-definite functions
that asymptote exponentially to zero. This not only means that the gauge symmetry
is asymptotically broken to U(2), but also that K and F will not contribute to the
asymptotic mass, nor to the normalization condition. Unlike the 't Hooft-Polyakov
monopole or the degenerate Wilkinson-Bais SU (3)-monopole (F.0.11), however, the
regularity of the solution does not imply that the Higgs field vanishes at » = 0! In
fact, near r = 0 one finds that

— a — na
F~ 1./ K~ —— 5.2.85
2 l+a + ’ 3!(a+1)r+ ( )

It is this behaviour that may pose a problem for creating a globally regular solution
and is the reason for including it in this article.

Using Eqgs. (5.2.58) and (5.2.81) and choosing as in Sec. (5.2.2) p = 0, we can write
the metrical factor as

1 2 e —2
1 —[1—H—K—2F , 5.2.86
axE =T g (5:2.86)

where we already used the normalization condition h? = 1 + p2g~2. As mentioned
above, K and F asymptote exponentially to zero and cannot contribute to the mass,
which is the one for the *t Hooft-Polyakov monopole, i.e. M = pg~2.

Let us then investigate the behaviour of (5.2.86) at r = 0: a simple substitution
shows that
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1 w? 2a+1
xXE |, =1+ 7 2at D)’ (5.2.87)
which is always positive so that the non-zero value of the Higgs field at the origin is
no obstruction to the construction of a globally regular supergravity solution. The
remaining question as far as the global regularity of the solution is concerned, is
whether there are values of r for which the metrical factor (5.2.86) becomes negative.
This however never happens as one can see from Fig. (1) which shows a plot of

1 —ﬁz —?2 — 272 for the values of ¢ = 0 and a = .

Another hairy black hole

The introduction of Protogenov hair, i.e. a real and positive parameter s, in Wein-
berg’s monopole solution is trivial and leads to the following solution

—1
] . pr pr+s
Ly(r;a) = [1 + 50 coth< ) >} ) (5.2.88)
_ M= H 1/2
F = L7, L2, 5.2.89
g 2g cosh (£LE2) ( )
— 1 1
K =1trg =L - -~ |IL. (5.2.90)
gr gr |ur sinh(pr + s)

supplemented by the expression for H and P given in Eq. (5.2.67). As far as the
limiting cases of this family is concerned, it is clear that Weinberg’s monopole is
obtained in the limit s — 0; in the limit s — oo we find that F' — 0 and the solution
splits up into the direct sum of an SO(3) black hedgehog, i.e. an s — oo limit of
(5.2.67), and an SO(3) coloured black hole, Eq. (5.2.73).

As in the case of the hairy SO(3) black holes, the introduction of the hair param-
eter s preserves the asymptotic behaviour of Weinberg’s monopole and the solution
is regular for » > 0. This immediately implies that the normalization condition for
h once again reads h? = 1 + u2¢~2 and that the asymptotic mass of this solution is
given by Eq. (5.2.69), which is positive with the usual proviso that hp > 0.

As in the case of the hairy black holes in the SO(3)-gauged @3—models, the
regularity of the metric imposes the constraint that the entropy

2

Spn = p* — )
92

(5.2.91)
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‘A‘ G H H ‘GOV‘ Ho X ‘ Ho X’ ‘ 13(X7) ‘ max(G) ‘
R | Sp(3;R) U(3) 14’ 1.3 6_1 det(X)
C | SU@B,3) || STB)e@UB)] | 20 | (@,1)-5 | (3,3)_1 det(X) SU (3)diag
Q | SO (12) U(6) 32’ 13 15_1 Pf (X) SU(4)
(0) E7(,25) EG ® 80(2) 56 13 271 Tr ([QX]S) /3'

Table 5.2.1: List of characteristics of Symmetric Special Geometries; all the names of
the representations are the ones used by Slansky [98]. The meaning of the different
columns is explained in the main text.

be positive. This positivity of the entropy also ensures that the physical scalars stay
in their domain of definition at » = 0. Indeed, the physical scalars can be compactly
written as

7 R, 2
z=2Ty = B | i - 22 0T+ g, (5.2.92)
g lp+hr p+hr p+ hr
which are therefore regular for » > 0. Their value at r =0 is
Zl,— = ~ Ly (Ji + Ji), (5.2.93)
gp

which, as in the case of the SO(3) solution, depend only on the asymptotic charges.

Non-Abelian solutions in Magic models

In this section we would like to discuss the embeddings of monopole solutions into
the gauged Magic supergravity theories. We want to show that it is not always
possible to construct, given a prepotential for a theory, a globally regular solution
based on a given monopole solution. We would like to stress that this holds for a
given prepotential, as the choice of symplectic section for a given gauged model is
physical due to the breakdown of symplectic invariance.

To start looking for ways to embed monopoles into gauged magic supergravities,
we must discuss first the possible gaugings of the magic models, which boils down to
a group theory problem whose outcome is given in Table 5.2.1, which we are going to
explain now.

The scalar manifolds of the magic models are based on symmetric coset spaces
G/H, which are given in the second and the third column in the table. As the isometry-
group of the scalar manifold, which for the magic models is isomorphic to G, acts on
the symplectic section defining the model (see Appendix C.2), we should specify under
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what representation of G it transforms; this representation is given in the column
denoted as G o V. The following 2 columns determine how the isotropy subgroup H
acts on the complex scalars Z! = X?/XY; the reason why this is important will be
discussed presently.

As we are interested in monopoles, we shall restrict ourselves to compact gauge
groups G, which implies that G C H. Moreover, as we restricted ourselves to a specific
class of gaugings, i.e. gaugings that satisfy Eq. (C.2.13), we should use a prepotential
that is G-invariant. Manifestly H-invariant prepotentials for the magic models were
given in Ref. [99]. These prepotentials are of the STU-type and have the form

ls (A7)

X0 7
where |3 is a cubic H'-invariant'?, whose value for the specific magic model can be
found in the seventh column of Table 5.2.1.

Another implication of our choice of possible gauge groups is that we can only
consider G C H for which the branching of the H-representation of the X* to G-
representations contains only the adjoint representation and singlets. This is a very
restrictive property and the maximal possibilities we found are listed in the last col-
umn of Table 5.2.1.

Having discussed the possible models, we must then start discussing the actual
embedding of the magnetic monopoles. The first thing is to solve the stabilization
equation to find R in terms of Z. This is a complicated question but luckily a general
solution exists and was found by Bates and Denef [90]; this solution uses the fact
that the generic entropy functions for these models are known. For our purposes,
however, the full machinery is not needed. Instead, we shall consider the simpler
setting of embedding a purely magnetic monopole in the matter sector and only turn
on an electric component for the graviphoton. This means that we should solve the
stabilization equations,

F(Xx) = (5.2.94)

0 = %mﬁo s IQ = —Sm [lg(ﬁz)/(ﬁo)ﬂ N
(5.2.95)
Il = SmfL ., 0 = Sm [dil(LY) /L0,

where we absorbed the function X into the £’s. This system admits a solution

Ty 13(Z7)

R' =0, R" = —
Y ZO

provided that Zy I3(Z%) > 0. (5.2.96)

With this solution to the stabilization equation, it is then straightforward to use
Eq. (5.2.39) to determine

2By H’ we mean H minus the U (1)-factors.
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ﬁ NENON (5.2.97)

The C-magic model

Let us then consider the C-magic model, which allows an SU(3) gauging. The reason
why this is the case is easy to understand: as one can see from Table 5.2.1 the L’s
transform under SU(3) @ SU(3) as a (1,1) @ (3, 3) representation. Choosing to gauge
the diagonal SU(3) means identifying the left and the right SU(3) actions so that
w.r.t. the diagonal action the £’s transform as 1 ®3 ® 3 =1 ® 1 @ 8, which is just
what we wanted.

The spherically symmetric monopole solution to the SU(3) Bogomol'nyi equations
were found by Wilkinson and Bais in Ref. [100], and a discussion of these solutions
is given in Appendix F. In order to discuss the embedding of the WB-monopole, we
gather the components of the symplectic vector Z into a 3 x 3 matrix, Z1®8, and as
this matrix behaves as the sum of a singlet and the adjoint under the diagonal SU(3),
we must take it to be

T8 — 5\ — 29), (5.2.98)

where @ is defined in Eq. (F.0.2) and
A=1+L/r, (5.2.99)

is a real and spherically symmetric harmonic function. If we then also conveniently
redefine \/510 = H, where

H=h+q/r, (5.2.100)
is another real harmonic function, we can express Eq. (5.2.97) as

2|—)1(|2 =VHRX = 0) (A = d + 0)(A + 62) (5.2.101)

Given the asymptotic behaviour of the WB solution, let us for clarity discuss the
non-degenerate solution whose asymptotic behaviour is given in Eq. (F.0.10), we can
normalize the solution to be asymptotically Minkowski by demanding that

3
1=nh JJ0+m) - (5.2.102)
a=1

Using this normalization, we can then extract the asymptotic mass which turns out
to be
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3
114 -1 M3 — p1
M=y +1L ;(Hm) + 2(“”1)(“”3) : (5.2.103)
and must be ensured to be positive.

Let us then look for a globally regular embedding of the WB-monopole by tuning
the free parameters: as before, we shall take ¢ = L = 0 in order to avoid the Coulomb
singularities in the Abelian field strengths. The first obvious remark is that h is
already fixed in terms of / and the p, due to Eq. (5.2.102), so that we need to discuss
the possible values for [: a first constraint for [ comes from the positivity of the mass.
Using the facts that p; < 0 and pg > 0, which follow from the constraint and the
chosen ordering, in the mass formula (5.2.103) we see that this implies

M3 — H1
200+ pa) (L + p3)
As we are interested in finding globally regular embeddings, we should discuss the

regularity of the metric at r = 0: as the ¢;’s vanish at the origin we see that regularity
implies that

M =

>0 = I<—pszorl>—p. (5.2.104)

3 fa\ !
hi _1:[(1+ l) > 0. (5.2.105)
It is not hard to see that the above holds for the 2 bounds on [ derived in Eq. (5.2.104).
At this point then, the real question is whether, given the constraints on h and [
derived above, there are values for r other than r = 0 or » = oo for which the metrical
factor in Eq. (5.2.101) vanishes; from the monotonicity of ¢; and ¢ it is clear that
if this is to happen, then this is because the factor A — ¢2 + ¢1 vanishes. Seeing,
then, that the combination ¢; — ¢ takes values between —us and —u, we see that
Eq. (5.2.101) never vanishes if

A > max (Juil, jus]) or A < —max (|u1], |us]) - (5.2.106)

In order to finish the discussion of the regularity, we must have a look at the
physical scalars: for the above embedding they are schematically given by Z198 =
i 7198 )RV where RV is given in Eq. (5.2.96). The regularity then follows straight-
forwardly from the regularity of monopole solution and the metric.

The Q-magic model

All the embeddings of YM monopoles discussed till now, share a common ingredient,
namely the occurrence of additional Abelian fields, whose associated harmonic func-
tions can be used to compensate for the vanishing of the Higgs field at » = 0. In the
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above example, this réle is played by A and Zy and in the CP" and S87[2,n]-models
by the graviphoton. In fact, a model in which no such a compensator exists is the
@-magic model.

As displayed in Table 5.2.1, the X in the matter sector lie in the 15 of SU(6),
which corresponds to holomorphic 2-forms. As SU(6) admits an SO(6) ~ SU(4) as a
singular subgroup for which the relevant branching is 15 — 15, we can try to embed
an SU(4) WB monopole [100]. This monopole is given, as in the SU(3) case, by 3
functions ¢; (i = 1,2,3) and their embedding into the Q-model has I5(Z) = Pf(X) =
d1¢203. The asymptotic behaviour can of course be compensated for by choosing Z,
judiciously, but the real problem lies at 7 = 0. At the origin the ¢; vanish as ¢1 ~ 12,
¢ ~ r* and ¢3 ~ r? [100], which means that at the origin we have I3(Z) ~ 77 +. .. The
only freedom we then have is to use the harmonic function Zy, but it is straightforward
to see that this is of no use whatsoever, meaning that the resulting spacetime, as well
as the physical scalars, are singular at r = 0.

Growing hair on the SU(3) WB-monopole

Let us then end this section, with a small discussion of the hairy black hole version
of the SU(3)-monopole. As is discussed in Appendix (F.1), singular deformations of
the SU(3)-monopole can be found with great ease, and is determined by constants
Ba (@ =1,2,3) whose sum is zero. The hard part is to determine the values for the
B’s for which the metrical factor (5.2.101) does not vanish for » > 0. In fact, lacking
general statements about the behaviour of the ¢’s, or the @’s, for general 3, we shall
restrict ourselves to the minimal choice 8, = suq for s > 0. For this choice of 3’s,
seeing as we are only shifting the position of where the @’s vanish from r = 0 to
r = —s, the Q are monotonic, positive definite functions on RT. If we then rewrite
the ¢’s as

n 2s (r5) + 2s
— = pi(r;s
r+s r(s+r) 7

6i(r) = —0.1og(@) +> = 0, log(Qi) +

r(s+r)’

(5.2.107)
where the ; are regular and vanish only at » = —s; in fact, they correspond to
the monopole’s Higgs field, and are therefore negative definite on R*. As pointed
out in the appendix, the asymptotic behaviour of the ¢;’s remain the same as in the
monopole case, so that also the normalization condition (5.2.102) and the asymptotic
mass of the object (5.2.103) remain the same.

The negativity of the ¢; brings us to the next point, namely the absence of zeroes
of the metrical factor at non-zero r. This is best illustrated by having a look at the
function H in Eq. (5.2.101): it is clear that if H is to have no zeroes for r > 0, then
h and ¢ must be either both positive or negative, as otherwise H = 0 at |h|r = |q|.
Following this line of reasoning on all the individual building blocks of the metrical
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factor in Eq. (5.2.101), and choosing for convenience h and ¢ to be positive, shows
that we must take

A > max(|ua],|ps]) and L > 2, (5.2.108)

which automatically implies that the mass, Eq. (5.2.103), is positive.

In order to show that this solution corresponds to the description of a black hole
outside its horizon, we must show that the near origin geometry is that of a Robinson-
Bertotti/AdS, x S? spacetime. As the ¢; are regular at r = 0, the singularities in the
Higgs field come from the 1/r terms in Eq. (5.2.107); it is then easy to see that the
near-origin geometry is indeed of the required type and that the resulting black hole
horizon has entropy

Sbh = qL (L2 — ) . (5.2.109)

Of course, also in this solution the attractor mechanism is at work as one can see
by calculating the values of the scalar fields at r = 0, i.e.

lim 7168 — %diag(L—2,L,L+2). (5.2.110)

5.2.3 The null case

In the null case the two spinors €7, €5 are proportional and, following the same pro-
cedure as in Refs. [26,27], we can write'3 ¢; = ¢re where the ¢;s are normalized
¢r¢’ = 1 and can be understood as a unit vector selection a particular direction
in SU(2) or, equivalently, in S3. It is useful to project the equations in the SU(2)
directions parallel and perpendicular to ¢;. For the fermions supersymmetry trans-
formation rules we obtain the following four equations:

¢'ocbr, = Dpe, (5.2.111)
Gro N = iz, (5.2.112)
—ergptd N = (@ + Wie, (5.2.113)
—eprécy, = THue +eloroubae. (5.2.114)

13The scalars ¢; carry a -1 charge and the spinor € a +1 charge, so €; is neutral. On the other
hand, the ¢;s have zero Kihler weight and ¢ has Kahler weight 1/2.
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The first three equations are formally identical to the supersymmetry variations
of the gravitino, chiralini and gaugini in a gauged N = 1,d = 4 supergravity theory
with vanishing superpotential that one would get by projecting out the component
N = 2 gravitini perpendicular to ¢; (last equation). This is no coincidence as we
could use the Ansatz e; = ¢ye to perform a truncation of the N = 2,d = 4 theory to
an = 1,d = 4 theory'*. Thus, the N = 2 null case reduces to an equivalent N = 1 case
modulo some details (the presence of the fourth equation and the covariant derivative
f)) that will be discussed later. We shall benefit from this fact by using the results
of Refs. [30,103] in our analysis. We can also predict the absence of domain-wall
solutions in this case, since they only occur in N = 1,d = 4 supergravity for non-
vanishing superpotential.

Before proceeding, observe that the covariant derivative acting on the supersym-
metry parameter € in ¢'d.1pr,, is defined by

D= {V,+1Q,le, 0, =9, +Cu, (5.2.115)

where

W= —2i¢" 0,67, (5.2.116)

is areal U(1) connection associated to the remaining local U(1) freedom that is unfixed
by our normalization of ¢;. It can be shown, by comparing the integrability equations
of the above KSEs with the KSIs as in Refs. ( [26,27,37]), that this connection is
flat'® and can be eliminated by choosing the phase of € appropriately. We will assume
that this has been done and will ignore it from now on.

The KSEs in the null case are therefore Eqgs. (5.2.111)-(5.2.114) equalled to zero.
To analyze them we add to the system an auxiliary spinor n, with the same chirality
as € but with opposite U(1) charges and normalized as

&n=—ne=1. (5.2.117)
This normalization condition will be preserved iff n satisfies

Dun+ace=0, (5.2.118)

for some a,, with U(1) charges —2 times those of ¢, i.e.

14The Ansatz of Refs. [101,102] is recovered for the particular choice ¢; = §71.

15This can be understood as follows: except for Cu, all the objects that appear in the KSEs
are related to supergravity fields and, when working out the integrability conditions, they end up
being related to the different terms of the different equations of motion. The terms derived from ¢,
(components of its curvature) are unrelated to any fields and one quickly concludes that they must
vanish.
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Q,uau = (V,u - iQu)au s (52119)

to be determined by the requirement that the integrability conditions of this differ-
ential equation be compatible with those of the differential equation for e.
The introduction of 7 allows for the construction of a null tetrad

Ly = iV26e e,  ny =iV20 ., mu = iV26e,n, m;, = iV2Ey,m" .
(5.2.120)
I and n have vanishing U(1) charges but m (m*) has charge —1 (+1), so that the
metric constructed using the tetrad

ds? =20 @ h — 2 @ m* (5.2.121)

is invariant.
The orientation of the null tetrad is important: we choose the complex null tetrad
{e* e’ e*,e* } = {l,n,1m,m*} such that
€V = €ypane =+, v5 = —inOylyy® = =0y (5.2.122)

We can also construct three independent selfdual 2-forms'6:

oM, = eyue=2lmy, (5.2.123)
P, = e = [l +mpmi), (5.2.124)
@), = Gyun=—2npm,, (5.2.125)
or, in form language
oW = [Am*, (5.2.126)
@ = lian+mam, (5.2.127)
) = —aAm. (5.2.128)

16The expression of these 2-forms in terms of the vectors are found by studying the contractions
between the 2-forms and vectors using the Fierz identities.
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Killing equations for the vector bilinears and first consequences

Let us first consider the algebraic KSEs Eqgs. (5.2.112-5.2.114) from them one can
immediately obtain

7' = =Al+ B, (5.2.129)
Tt = lpoW, (5.2.130)
Gt o= 160W —1lwie® (5.2.131)
ordy;, = ol (5.2.132)
70 2.
where ¢, ¢*, A’ and B* are complex functions to be determined.
The last equation combined with the vanishing of ¢,, imply that
der ~1, dp ~1. (5.2.133)
The resulting vector field strengths F** are of the form
AT =100 — 1p2o®) (5.2.134)
where the ¢* are complex functions related to ¢ and ¢ by
P =il g+ 2f2 00, (5.2.135)
and we have defined
DN = —2if AW (5.2.136)
Observe that as
DA = —igfso™ L = LgSmN APy (5.2.137)
is real, we find that the field strengths are given by
FA = — (™M + i) Al — EDMi A * (5.2.138)

Let us consider the differential KSE ©,¢ = 0 and the auxiliar KSE Eq. (5.2.118):
a straightforward calculation results in
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Q,ulv = v,ulv = 07 (52139)
Qunu = vunu = _azmu - aum;, (52140)
D,m, = (Vu—iQu)m, = —a,l,. (5.2.141)

The first of these equations implies that I# is a covariantly constant null Killing
vector, Eq. (5.2.139), which tells us that the spacetime is a Brinkmann pp-wave [104].
Since {* is a Killing vector and dl = 0 we can introduce the coordinates v and v such
that

[=1l,dz" = du, (5.2.142)
0
"o, = —. 5.2.143
H v ( )
We can also define a complex coordinate z by
m=eYdz, (5.2.144)

where U may depend on z, z* and u but not on v. Given the chosen coordinates, the
most general form of 7 is

A=dv+ Hdu+ o, W =w,dz + wydz™, (5.2.145)

where all the functions in the metric are independent of v. Either H or the 1-form @
could, in principle, be removed by a coordinate transformation, but we have to check
that the tetrad integrability equations (5.2.139)-(5.2.141) are satisfied by our choices
of eV, H and &.

With above choice of coordinates, Eq. (5.2.121) leads to the metric

ds® = 2du(dv + Hdu + &) — 2¢*Vdzdz* . (5.2.146)

Let us then consider the tetrad integrability equations (5.2.139)-(5.2.141): the first
equation is solved because the metric does not depend on v. The third equation, with
the choice (5.2.144) for the coordinate z implies
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i = ntdU —iQu)m+ DI, (5.2.147)
0 = m"o,U—iQ,], (5.2.148)
0 = ["A*,Sm\,, (5.2.149)

where D is a function to be determined. The last equation can be solved by the gauge
choice

"AN, =0. (5.2.150)

In this gauge the complex scalars Z* are v-independent. The remaining components
of the gauge field A® » are also v-independent as is indicated by the absence of a Inn,
m AN or a m* An term in the vector field strength. This in its turn, implies the
v-independence of all the components of the vector field strengths, of the functions
¢' and, finally, of A* and B*.

The above condition does not completely fix the gauge freedom of the system, since
v-independent gauge transformations preserve it. We can use this residual gauge
freedom to remove the A”, component of the gauge potential by means of a v-

independent gauge transformation. This leaves us with only one complex independent
component A*,(z,2*,u) = (A*,-)* and

FAL = 0,A%, =1V, (5.2.151)

FAe = 0.4 + 3gfs A%, A%, —ce.=—52VDN. (5.2.152)

We can then treat F*,..dz A dz* as a 2-dimensional YM field strength on the
2-dimensional space with Hermitean metric 2¢?Ydzdz*, both of them depending on
the parameter u. This implies that we can always write

FA e =2i0,0,. Y, (5.2.153)

for some real YA (z,2*,u). In the Abelian, i.e. ungauged, case

AN, = —ia Y™, (5.2.154)

Using Eq (B.1.26) we can express the second of the tetrad conditions, Eq. (5.2.148),
as
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Do (U +K/2) = —gA® Ay . (5.2.155)

In the ungauged case this equation (and its complex conjugate) can be immediately

integrated to give U = —K/2 + h(u). The function h(u) can be eliminated by a
coordinate redefinition that does not change the form of the Brinkmann metric.

In the Abelian case of the pure N = 1,d = 4 theory, it is possible to have con-

stant momentum maps (D-terms), as considered in Ref. [105], and Ay = —iPy and
Eq. (5.2.154) would lead to

0.+ (U + K/2+ gV Py) =0, (5.2.156)
which is solved by U = —K/2 — gYAPx + h(u); h(u) can still be eliminated by a

coordinate transformation. In the N = 2,d = 4 theory, however, it is not possible
to use constant momentum maps to gauge an Abelian symmetry and the situation
is slightly more complicated. The integrability condition of Eq. (5.2.155) and its
complex conjugate is solved by

AD Ay = 0.4 [R(2, 2%, u) + 5% (2%, u)], (5.2.157)

where R is a real function and S(z, u) a holomorphic function of z, which then implies

U=-K/2—g(R+S+5"). (5.2.158)
Finally, the second tetrad integrability equation (5.2.140) implies

D = e Y(0.,.H—w.-), (5.2.159)
(dw)zze = 2i€”"nkQ,, (5.2.160)

whence a is given by
a=[U—Le Y (dw)oslin+ eV (0u H — o )l . (5.2.161)

Killing spinor equations

In the previous sections we have shown that supersymmetric configurations belonging
to the null case must necessarily have a metric of the form Eq. (5.2.146), vector field
strengths of the form Eq. (5.2.138), and scalar field strengths of the form Eq. (5.2.129);
they must further satisfy Eqgs. (5.2.132,5.2.148) and (5.2.160) for some SU(2) vector
¢r. We now want to show that these conditions are sufficient for a field configuration
{9, AN, FA, D7} to be supersymmetric.
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It takes little to no time to see that all the components of the KSEs are satisfied
for constant Killing spinors (in the chosen gauge, frame, etc.) that obey the condition

vel — . 5.2.162
v

This constraint, which is equivalent to y*¢! = 0, together with chirality, imply that the
Killing spinors live in a complex 1-dimensional space, whence we can write e/ = ¢/e =
0. Up to normalization, solving the KSEs requires that £/ = ¢!, where the functions
¢! are given as part of the definition of the supersymmetric field configuration. As a
result, the supersymmetric configurations of this theory preserve, generically, 1/2 of
the 8 supercharges.

Observe that in order to prove the existence of Killing spinors it has not been neces-
sary to impose the integrability conditions of the field strengths, i.e. the Bianchi identi-
ties of the vector field strengths etc., nor the integrability constraints of Eqgs. (5.2.132,5.2.148)
and (5.2.160). We are however forced to do so in order to have well-defined field con-
figurations in terms of the fundamental fields {g,,, A*, Z'}. We will deal with these
integrability conditions and the equations of motion in the next section.

Supersymmetric null solutions

Let us start by computing the Bianchi identities and Maxwell equations taking the
expression for FA% in (5.2.134) as our starting point. We find

DFA+ = {%m*“i)#qﬁ’\ — LprD, DN — iDARK[9,U — iQ#]} I A A i

+1 {m*”@MDA[A i AT+ c.c.} :
(5.2.163)

Observe that the terms in the second line are purely imaginary, so that

«BY = —2ReDFAT
) (5.2.164)
= —i {Sm(m**D ") — 1ntD, DN — DAt UV I A Ai*

A similar calculation for F leads to
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—DFy = —2ReDWNi F=T)

= — {%m (M**D,¢n) — %n“@ﬁ?eD[\ — ReDan*0,U — %mDAn”Q#} [ A1 A

+Re [m*"@“%m Dal AL A m} ,
(5.2.165)
where

on = Nisod”, Dy =NigD”, = SmDy = —1gP,. (5.2.166)

Of course we can also calculate

LgxRe (k3 ,D2°) = LgSm (0D, Z°0;Pp)l A Ain* + L gRe [m ™D, Z'0; PAl ANy A1

(5.2.167)
which means that the Maxwell equation can be expressed as
*EN = —DFp\+ %g* Re (k}, D27
= —i{%m(m*“@#qﬁ,\) — %n“@ﬂ‘ﬁe Dy — Re DATL‘“(?#U (5.2.168)

—QSm DAn“Q# - %g%m (n“i)#ZiaiPA)} I A AW*

In concordance with the KSIs, the Maxwell equations and Bianchi identities have
only one non-trivial component, wherefore all the KSIs that involve them are auto-
matically satisfied.

Finally, the only non-automatically satisfied component of the Einstein equations
is

Euu = Ruw +2Gij- ATA*T — 28mNyno* ¢ = 0. (5.2.169)
Using our coordinate and gauge choices l“AAM =AM, =0and n“AAM =Ar, =0,

we can rewrite the above Bianchi identities, Maxwell equations and Einstein equation
as



5.2 N =2 Einstein-Yang-Mills Supergravity 157

Sm®D,(V¢") = —19,(e*VDY), (5.2.170)
SmD,(eV¢pr) = —30u(e*“ReDy) — 1gSm[0,Z2°"0; (e Pa)], (5.2.171)

0.0H = 0.0, + V{0 + U — eV (dw)o- ] }U — $e72Y (dw) »2+]
+2V G (ATA* T 4207977 ) + 12U |9 (5.2.172)

where we made used of

Dz (6U¢A) =

(VM) + gfuat AT eV (5.2.173)
D.(Ypp) = eV

-(e¥0n) + gfax?A¥ eV (5.2.174)

To summarize our results, supersymmetric configurations have vector and scalar
field strengths and metric given by Egs. (5.2.138,5.2.129) and (5.2.146) and must
satisfy the first-order differential Eqgs. (5.2.160) and (5.2.155). We must also find ¢
and ¢ such that

9
9

" oronds = J5¢. (5.2.175)

If a supersymmetric configuration satisfies the second-order differential Eqgs. (5.2.170-
5.2.172) then it satisfies all the classical equations of motion and is supersymmetric
solutions.

u-independent supersymmetric null solutions

In the u-independent case the equations that we have to solve simplify considerably.
First of all, since the complex scalars Z° are u-independent, we have A’ = 0 and
(dw)..~ = 0, whence we can take @ = 0. Furthermore, ¢* = 0 (see Eq. (5.2.151)),
which implies ¢ = ¢! = 0 (see Eq. (5.2.135)) and the constancy of ¢, which is
otherwise arbitrary. We need to solve Eq. (5.2.155), which is only possible if its
integrability condition Eq. (5.2.157), which we repeat here for clarity,

AD Ay = 0.4 [R(2, 2%, u) + 5% (2%, u)], (5.2.176)

is satisfied. Then, the solution is

U=-K/2—g(R+5+S%). (5.2.177)
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We also need to find covariantly-holomorphic functions Z¢(z, 2*) by solving

0o 2" 4 gAD kAT =0, (5.2.178)

which depends strongly on the model.

Finally, the only e.o.m. need to solve is the Einstein equation Eq. (5.2.172): in this
case it reduces to the 2-dimensional Laplace equation and is solved by real harmonic
functions H on R2.

In spite of the apparent simplicity of this system, we have not been able to find
solutions different from those of the ungauged theory.



Chapter 6

Coupling of
higher-dimensional objects to
p-forms:

Cosmic strings in N =2
Supergravity

To describe the dynamics of p-dimensional extended objects, p-branes, one has to
generalize the action of a massive point-particle. While a point-particle moves along
a worldline in space-time, a p-brane sweeps out a (p + 1)-dimensional surface, the
worldvolume, parametrized by p + 1 coordinates ¢, i = 0...p. If the particle carries
an electric charge, its interaction with the electromagnetic field A, is described by
the minimal coupling

¢/dXﬂAAxxﬂ), (6.0.1)

where 7 = 0¥ is the worldline coordinate. In an analogous way, a p-brane which
carries “charge” can couple minimally to an (p + 1)-form antisymmetric tensor field
C' and the corresponding term in the action (called a Wess-Zumino term) takes the
form

Swzzq/ﬁxm.uxwﬂqmwﬁgxw». (6.0.2)
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The wordline action for a point-particle is of the form

IXI X" oxH
S_m/dr\/ e ?g#V(X(T))—Fq/dTA#?, (6.0.3)

and its generalization to extended objects

; ; oXH  QXH»tr
5= T/dpﬂa\/ lgi;| + q/dall L Ao O i doir , (6.04)

o 8Uip+l

where
oXH oXv

9i5 = Guv Do 80’7 (605)

is the world-volume metric induces by the space-time metric g,,, and 1" the p-brane
tension (which in case of a point-particle is just its mass). If one deals with D-
branes, i.e. p-branes on which open strings can end, one has to take into account an
additional world-volume vector gauge field, which is induced by the endpoints of the
string moving along the brane). The dynamics then is described by the Dirac-Born-

Infeld action
S:T/dp+10\/|gij+.7:ij|+q/C', (606)

where F;; is the generalized field strength of the gauge field A;
fij = 28[114]] (0’) + Bij (607)

and
Bij = 0;X"0; X" B,,, (6.0.8)

the pullback of a space-time 2-form gauge field B,,,. The (electric) charge ¢ of the
p-brane can be calculated in d dimensions using the higher-dimensional version of
Gauss’s law ¢ = fd7p72 *Fp,42. Note that up to now we were only considering the
purely bosonic action for a p-brane. When we are interested in supersymmetry, we
also have to take into account fermions. Thus we have to extend the set of bosonic
coordinates X# (o) by a set of anti-commuting coordinates 8*(c). A key role in
the description of supersymmetric brane actions is played by a fermionic symmetry
called k-symmetry. This symmetry implies world-volume supersymmetry with equal
number of bosonic and fermionic degrees of freedom, since half of the spinor degrees
of freedom become redundant because they may be eliminated by a gauge choice. It
further relates the brane tension T to its charge ¢, ensuring that the brane ground
states are stable, i.e. they are BPS states.

In what follows we will study the extension of N = 2 four-dimensional super-
gravity including magnetic vector fields and 2-form potentials. In four dimensions
2-form potentials are dual to those scalars which parameterize the Noether currents.
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They couple electrically to 1-dimensional branes, just like the 8-form potentials of
IIB supergravity play an important role when discussing the supersymmetry proper-
ties of 7-branes in ten dimensions [106-109]. It was shown in [110] that one cannot
in general dualize just any scalar into a 2-form potential. The objects to dualize
are those Noether currents associated with the isometries of the scalar sigma models
which extend to be symmetries of the full theory. Dualizing the Noether currents one
obtains as many 2-forms as there are isometries. In general the field strengths of these
2-forms satisfy constraints such that the number of 2-form degrees of freedom equals
the number of scalar degrees of freedom which occur in the Noether currents. We
explicitly construct the Noether currents for all the duality symmetries of ungauged
N = 2,d = 4 supergravity coupled to both vector multiplets and hypermultiplets.
Via a straightforward dualization prescription we construct the 2-form potentials
and prove that the supersymmetry algebra can be closed on them. Once we have found
the explicit supersymmetry transformations for the 2-forms we proceed to construct
the leading terms of a half-supersymmetric world-sheet effective action. Finally, we
discuss in some detail the properties of the half-supersymmetric stringy cosmic string
solutions. The above program is first performed for the duality symmetries associated
with the scalars coming from the vector multiplets and then repeated for the duality
symmetries associated with the scalars coming from the hypermultiplets.

6.1 The 1-forms

The N = 2,d = 4 supergravity theory coupled to ny vector multiplets contains
ny + 1 ‘fundamental’ vector fields A% » Whose supersymmetry transformation rules
are given in Eq. (2.2.32). The potentials A" » couple electrically to charged particles.
In the next Section we will construct the leading terms of the bosonic part of the
k-symmetric world-line effective actions for particles electrically charged under A* -

As mentioned in Section 2.2, the equations of motion of the potentials AAM,
Egs. (2.2.7), can be understood as providing the Bianchi identities for a set of dual
field strengths Fi, defined in Eq. (2.2.9). These equations imply the local on-shell
existence of ny + 1 dual potentials Aa ;. The dual potentials Aa , couple electrically
to particles which are magnetically charged under the fundamental vector fields A* -
In this Section we will derive the supersymmetry transformation rules for the dual
potentials A . This result will then be used in the next Section to construct the
leading terms of the bosonic part of the k-symmetric world-line effective actions for
particles electrically charged under the Ay .

The fundamental potentials and their duals can be seen as, respectively, the upper
and lower components of the symplectic vector A, defined in Eq. (2.2.16). Electric-
magnetic duality transformations act linearly on it. This behaviour under duality
transformations suggests the following Ansatz for the supersymmetry transformation
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rule of A:

8 A, = %Velﬂ/_)ie'] + %@iV eUS\“WeJ +c.c.. (6.1.1)

This Ansatz agrees with the supersymmetry transformation rule of the fundamental
potentials A%, as given in Eq. (2.2.32) and with the fact that the symplectic vector
of 1-forms A,, transform linearly under Sp(2ny + 2,R). The supersymmetry algebra
closes on A, with the above supersymmetry transformation rule. Indeed, we find for
the commutator of two supersymmetries acting on A,

[0, 0] Ay = Og.ct.(§) A + Ogange(A)A, - (6.1.2)

The general coordinate transformation of A, is given by

Sgen (A, = LeA, = E0,A, + (0,8") A, (6.1.3)

with £¢ denoting the Lie derivative and where the infinitesimal parameter £ is given
by
&= —%ﬁlfy“e] +c.c.,

and Jgauge(A) is a U(1) gauge transformation with parameter A*. The gauge trans-
formation of A, is given by

Sgange(A) A, = 9,A | (6.1.4)

where the gauge transformation parameter A is the symplectic-covariant generaliza-
tion of A* and is given by

=—PA, + 3 (Versn'e! +cc) . (6.1.5)

6.2 World-line actions for 0-branes

In this Section we will construct the leading terms of the bosonic part of a x-invariant
world-line effective action for O-branes that couple to the 1-form potentials A* u and
An - In doing so we will take into account the symplectic structure of the theory. The
actions will be invariant under symplectic transformations provided we also transform
an appropriate set of the charges, in the spirit of Ref. [111].

It is clear that the O-branes of N = 2,d = 4 supergravity coupled to ny vector
multiplets can carry both electric charges ga and magnetic charges p® with respect
to the fundamental potentials AAH. The couplings of the magnetic 0-branes are,
however, better described as electric couplings to the dual potentials A ,. A O-brane
with symplectic charge vector
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g= ( Zi ) , (6.2.1)

will couple electrically to the potential .A. The only symplectic-invariant coupling is
{(q | A). We thus propose the following Wess—Zumino term

/dr(q | A dj—:, (6.2.2)

where 7 is the world-line parameter and X* the embedding coordinate of the 0-brane.
This Ansatz is clearly the only one satisfying the requirements of symplectic invariance
and gauge invariance.

The corresponding kinetic term in the 0-brane action is not much more difficult to
guess. Symplectic invariance requires that the charges ga and p” appear in a symplec-
tic invariant combination with the scalars in the tension. The simplest combination
is just the central charge

Z={(ql|V), (6.2.3)

whose asymptotic absolute value is known to give the mass of supersymmetric black
holes of these theories. Then, the world-line effective action takes the form

dXH*dXv dXx*

Using the supersymmetry transformations (2.2.31), (2.2.33) and (6.1.1) we find
that the action (6.2.4) preserves half of the supersymmetries with the projector given
by

2 I g
€ +i—erg——e’ =0, (6.2.5)
121" VGrr

where the subindex 7 means contraction of a space-time index p with dX*/dr. This
is the same constraint that the Killing spinors of supersymmetric N = 2,d = 4 black
holes satisfy [26,87,112,113]. In the static gauge, XH = dX"/dr = ¢, assuming a
static metric, so that /gy = €% and denoting by e’ the phase of the central charge
Z, the above projector takes the form

er +ieeryyoe’ =0. (6.2.6)

This equation is satisfied for spinors of the form

er =|X["?e2 %y, €ro +ierr0e’® =0, (6.2.7)

in which the €7 are constant spinors and with |X| some real function.
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6.3 The 2-forms: the vector case

In this Section we will construct the most general 2-forms associated to the isometries
of the special Kéhler manifold one can introduce in N = 2,d = 4 supergravity cou-
pled to ny vector multiplets and ny hypermultiplets. The 2-forms associated to the
isometries of the quaternionic Kéhler manifold will be discussed in Section 6.6. For
the subset of commuting isometries a similar program has been performed in [114]
where also actions for the dualized scalars, which are part of so-called vector-tensor
multiplets, are given.

6.3.1 The Noether current

As explained in Section 2.2 only the group Gy of isometries of the special Kéhler
manifold which can be embedded in Sp(2ny + 2, R) are symmetries of the full set of
equations of motion and Bianchi identities. Despite the fact that these duality trans-
formations only leave invariant the equations of motion together with the Bianchi
identities, it is possible to construct a conserved Noether current associated to this
invariance [31]. This is because under variations of the scalars dzL£ + §z+ L the La-
grangian is invariant up to the divergence of an anomalous current, denoted here and
in [31] by J*. Hence, we have

0z2L 40z L = —8,(+/|g]J") . (6.3.1)

In the case of p-brane actions coupled to supergravity the Noether current associated
to the super-Poincaré invariance of the coupled system contains a similar anomalous
contribution [115], which is known to give rise to central charges in the supersymmetry
algebra.

Applying the Noether theorem we get

oL . oL .
? wi* Y& ) "
O <5Z 90,27 0z a(auz*i*)> AV 9lJ") (6.3.2)
so that the Noether current
g — ozt Ok | sy L 653

\/gaa Z7) \/ga W)

is covariantly conserved, i.e. V,Ji = 0. In this Subsection we will compute J}; for
the isometries of the Kéhler metric G;;~ which are embedded in Sp(2ny + 2,R).
Infinitesimally, the symmetries under consideration act on the complex scalars as

67" = ak Al (Z), (6.3.4)
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where the k4%(Z) are dim Gy holomorphic Killing vectors! (A = 1,--- ,dim Gy) and
where o denotes a set of real infinitesimal parameters. The Lie brackets of the
Killing vectors give the Lie algebra of Gy with structure constants f45¢,

[ka,kg] = —fap ke, (6.3.5)
where ka = ka'0; + ka*" 0;-.
On the vector field strengths the symmetries act as an infinitesimal Sp(2ny 42, R)
transformation
SF=TF, (6.3.6)

where T € sp(2ny + 2,R), i.e. TTQ + QT = 0. The matrix T can be expressed
as a linear combination of the generators of the isometry group Gy of G;;« that is
embedded in sp(2ny + 2,R). In other words,

T =0Ty, [Ta,Ts] = fas°Tc, Ta € sp(2ny +2,R). (6.3.7)

On the other hand, if

a b
T= ( e d ) , (6.3.8)
then, the condition T7Q 4+ QT = 0 implies

cF'=c, ¥'=0b, and af =—d. (6.3.9)

)

To find the current J* we start by writing the Lagrangian of (1.2.7) in the following
form

oL
_1pA
L= §F HV&F—AM/ + Einvu (6310)
where
Line = /1] [R + 2gij*a#ziaﬂz*ﬂ'*] , (6.3.11)
is the part of the Lagrangian that is invariant under (6.3.4) and where
oL
—— =—4 FpHY. 6.3.12
S = —AVlal* By (6:312)

Next we compute the variation of £ with respect to the variation of the scalars

1The holomorphicity of the components k4* follows from the Killing equation.
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Oz L+ 07+ L =0L — 6L, (6.3.13)

where dL is the total variation and dpL denotes the variation of £ with respect to
the field strength F, lﬁ,. The total variation of £ under the transformations (6.3.4) and
(6.3.6) is

5L =6 (—2\/|g|FAH,, *FA’“’) = —2+/|g| [FEA* VAR Fs y + kM ep s FE L]
(6.3.14)

where we have used Eqs. (6.3.9). The variation, 0pL, is

SpL = 0F", —— = —4V/|g| [*FA" a*s FZ,, + xFA" b Fy ] . (6.3.15)

8FA
Using once again Eqs. (6.3.9) it then follows that

5L — 8pL = 23/[g[(*F™ | TF,,) . (6.3.16)

The result Eq. (6.3.16) can be written as the divergence of an anomalous current .J
i.e. one can show, using Egs. (2.2.4) and (2.2.7), that

—0,(/g]J*) = 6L = 6r L, (6.3.17)

where J* is given by

JP = —4(xF" | TA,). (6.3.18)

At the same time we have for the right hand-side of this equation

. 0L . oL
OL—0pL=0zL+62+L=0,(02" - 07" ———— 6.3.19
e =L 4838 =0, (0 g5 408 gl ) (0319
so that the Noether current, J4;, is given by
] - A
g —ozi Ok | sy —875 +Jr, (6.3.20)

/19190, 27) 191 90, 2°7)

with J# given by Eq. (6.3.18), and satisfies

d, (\/@Jg) = 0. (6.3.21)
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Under gauge transformations of the 1-form potentials A the anomalous current
J# and hence J ' are not invariant: they transform as the divergence of an anti-
symmetric tensor. We will have to take this point into account in the next subsection
when dualizing the Noether current into a 2-form.

It will be convenient to write the scalar part of the Noether current, i.e. the part
Jn — J, in terms of the symplectic sections V instead of the physical scalars since V
transforms linearly under Sp(2ny + 2,R). This is achieved using

OV =620,V + 062" 9V, (6.3.22)
and Eqgs. (C.0.1) and (C.0.3). We have

. oc
[ = - B *
57 58,77 2i\/[g[(6V | DHV*). (6.3.23)

Hence, the Noether current (6.3.20) can be expressed in terms of V as

Jh = =2i(6V | DMV +ce. + JH. (6.3.24)

We continue to find an explicit expression for §V. The symplectic sections trans-
form under global Sp(2ny +2,R) and under local Kahler transformations. The Kéhler
potential transforms as

0k = £oap, K = a” (kAiai/c + kA*i*ai*/c) = AN(2)+X*(Z7), NZ) = a*a(Z).
(6.3.25)
It can be shown that the functions A4(Z) satisfy
kW Oidg — k0ida = —fap® Ao . (6.3.26)

When A # 0 all the objects of the theory with non-zero Kéhler weight (in particular
all the spinors and the symplectic section V) will feel the effect of the symplectic
transformation through a Kéahler transformation. Infinitesimally one has

SkanterV = —3(A — A")V, (6.3.27)

as follows from Eq. (C.0.12). Next we introduce the momentum map, denoted by P4
and defined by

PY = ika'0;K —ida. (6.3.28)

One then readily shows that 6V, given via equations (6.3.22) and (6.3.4), can be
written as
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8V =a® (ka"D;V +iPYY — 1 (A4 — A)V) . (6.3.29)

Since V only transforms under symplectic and Kéhler transformations we conclude?
that we must have

V=TV -3IA-X)V, where TV=a"(ka'D;V+iPyV), (6.3.30)

where T is a generator of sp(2ny + 2). Taking the product of the r.h.s. of the second
equation with V we get the additional condition that the generators of Gy must
satisfy:

(V[ TaV) =0. (6.3.31)

The set of generators T4 which satisfy the constraint (6.3.31) and which form a
subgroup of sp(2ny + 2,R) is sometimes referred to as the duality symmetry Lie
algebra [116].

Since, on the other hand

8V = Loap,V = o’ (kAiaiv + kA*i*ai*v) , (6.3.32)

we can write

Loap,V=TV+EA=X)V =0, (6.3.33)

as the necessary and sufficient condition for the transformation to be a symmetry of
the supergravity theory?>.

One verifies that the above way of writing the action of 7" on V, see Eq. (6.3.30),
satisfies Eq. (6.3.7). By decomposing T'V into the complete basis {V, DV, V*, ;- V*}
for the space of symplectic sections (see Appendix C below Eq. (C.0.3)) we find

PO = —(V|TaV*), and ki’ =—iGY 9;.PY. (6.3.34)

Substituting (6.3.30) into expression (6.3.24) we obtain a manifestly symplectic-
invariant expression for the Noether current

Inp =20(D,V* | TV) +cc. — 4(xFp | TAY) . (6.3.35)

2 Actually, this is a consequence of requiring that the reparametrizations generated by the Killing
vectors preserve not just the metric but the whole special Kahler geometry. This is what we are
implicitly doing here and it is a condition necessary to have symmetries of the complete supergravity
theory and not just of the bosonic equations of motion. We thank Patrick Meessen for a useful
discussion on this point.

3This condition can be read in two different ways: the Lie derivative of the section V has to vanish
up to symplectic and Kahler transformations or the symplectic- and Kéahler-covariant Lie derivative
of V has to vanish identically.
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6.3.2 Dualizing the Noether current

In form notation the conservation of the Noether current 1-form Jy is just dxJy = 0.
We can define a 3-form? G = %Jy, which satisfies dG = 0, so that locally G = dB.
Note that G is not gauge invariant because Jy is not, either, due to the term .J

(OgaugeG = Ogauge). We can write this term in the form

*xJ =—4(F|TA), (6.3.36)
where the exterior product between the forms in the symplectic inner product is
always assumed and as a result the 2-form B gauge transformation is given by

dgauge B = dA1 —4(F | TA), (6.3.37)
where the symplectic vector A is defined through Eq. (6.1.4).
We can define the following gauge-invariant 2-form field strength
H=dB+4(F|TA). (6.3.38)

It is then clear that H is dual to the scalar part of the Noether current Jy,

H=x(Jy—J). (6.3.39)

The scalar part of the Noether current is proportional to the Killing vectors. At
any given point there are only 2ny (real) independent vectors. Thus, if we allow for
Z'-dependent coefficients, in general we will find linear combinations of scalar parts
of the Noether currents. As a result, there will be as many constraints on the 2-form
field strengths H4 and, at most there will be 2ny independent real 2-forms.

6.3.3 The 2-form supersymmetry transformation

In the previous Subsection we have constructed a set of 2-forms associated to the
isometries of the special Kéhler manifold of ungauged N = 2, d = 4 supergravity and
we have found their gauge transformations. Our goal in this Section is to find their
supersymmetry transformations. The main requirement that the proposed supersym-
metry transformation of the 2-form B must satisfy is that the commutator agrees
with the universal local supersymmetry algebra of the theory given by

[677’ 65] = 5g-C-t-(€) + 5gaugc(A) ) (6340)

and which may be extended to include 2-forms to

40f course, we have dim Gy Noether currents and as many dual 3-forms G 4 but it is convenient
to work with G = a4G4.
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[0, 0e] = Og.c.t.(§) + Igauge(A) + dgauge(A1) - (6.3.41)

The expressions for ¢ and A are given by Eqgs. (6.1.4) and (6.1.5), respectively. The
2-form gauge transformation parameter A; is to be found in terms of 7 and e.

Since B is defined by dB = *J, the commutator of two supersymmetry variations
on B must close into the algebra (6.3.41). We have

5g-c-t-(€)B;w = ££B;w = fpapBW"'(8u§p)Bpu+(8v§p)Bup = §p(dB)p;w_2a[u (ngV]p) s

(6.3.42)
with £¢B,, the Lie derivative of B, with respect to . Further, dgauge(A1)Bw is
given in Eq. (6.3.37). Hence, the supersymmetry transformations of By, must lead
to the commutator

[0 0] By = §pﬁepwﬁv” — 4 Fuw | TA) + 20, (A — €°B,),) . (6.3.43)

where we have substituted the duality relation, Eq. (6.3.39), for (dB),s in (6.3.42).

We make the following Ansatz for the supersymmetry transformation of B, (up
to second order in fermions),

6B = a(DV|TV*)eryuwA! +c.c.
+O(V [ TV ) eqputon,) + c.c.
+c( Al | Té.A, ). (6.3.44)

This Ansatz is based on the requirement that all terms must have Kéhler weight zero
and that the 2-forms are real valued. The matrix T" satisfies Eq. (6.3.31).

We evaluate the commutator as follows. First we perform standard gamma ma-
trix manipulations, change the order of the spinors, evaluate the complex conjugated
terms and use relations from special geometry. Exhausting all such operations using
formulae from Appendices A and C leads to the following expression for the commu-
tator



6.3 The 2-forms: the vector case 171

(095 0] Byuw = 4ia€”ﬁ6cmup (DVITV") = (DY [TV)]

[+4ia<©iV | TVGT (D2 V" | Fo Ve iires

“(V | TV WV | Fou ) ires + e

— 8ap 0,y (V| TV*) + 4ib(V | TV )6, + e Ay, | [60, )AL )
(6.3.45)

where it has been assumed that a and ib are real parameters. The parameter &7 is
given by (6.1.4). The notation [--- + c.c.] means that one should take the complex
conjugate of whatever is written on the left within the brackets. The parameter a
has been chosen to be real in order to obtain the scalar part of the Noether current
in the first line of (6.3.45). The parameter ¢b has been chosen to be real so that the
Kahler connection 1-form Q,, appearing in 6.¥y, cancels when adding the complex
conjugated terms. We then take 2b = 4ia so that the first and the second term of the
third line of Eq. (6.3.45) combine into a 2-form gauge transformation parameter. Ex-
pression (6.3.45) is further manipulated using the completeness relation Eq. (5.2.23).
This is the step where we impose the condition that 7' must satisfy Eq. (6.3.31).
Using next the result for the 1-form commutator, Eq. (6.1.2), to write out the term
proportional to ¢ in (6.3.45), we obtain

(6, 0¢] By = 4ia§gﬁeg#yl, (DPY | TV*) = (DPV* | TV)] = 8ady, ((V | TV*)E,)

+16a(Fu | T (A+EPA,)) — £€° Jo — O (A | T(A+E°A,))

ﬁegwm’p
+ 5(Fuw | TA) + c(Fu | TEPA, ), (6.3.46)

where A is the 1-form gauge transformation parameter given in (6.1.5). This can be
seen to be equal to the desired result, Eq. (6.3.43), for ¢ = —16a and a = —1/2. We
thus obtain the following supersymmetry variation rule for B,
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6EBHV = _% < QlV | TV* > E[’)/HV)\H + c.c.
—i(V | TV*) e yuibr + c.c.

+8( Ay | TOA,) - (6.3.47)

The 1-form gauge transformation parameter A, is given by

Ay =2(V | TV, —4( A, | T(A+EPA,) ) +E°By, . (6.3.48)

6.4 World-sheet actions: the vector case

In this Section we will construct the leading terms of the bosonic part of a k-invariant
world-sheet action for the stringy cosmic strings that couple to the 2-form potentials
B that were constructed in Section 6.3. Just as in the 0-brane case of Section 6.2, we
will construct actions which are manifestly symplectic invariant.

According to the results of the previous Sections we expect to have strings which
carry charges with respect to each of the dim Gy 2-forms B4, that one can define.
We define a dim Gy -dimensional charge vector ¢, Symplectic invariance suggests a
world-sheet action with leading terms

5= qA/d2o V| TaV*)/lom| + ch/BA, (6.4.1)

where g(2) and Ba are the pullbacks of the space-time metric and 2-forms onto the
world-sheet, respectively and where ¢ is some normalization constant that will be
fixed later. The tension of the string is given by the momentum map P9 as given in
Eq. (6.3.34).

The Wess—Zumino term of this action is, however, not gauge invariant under the
gauge transformation (6.3.37) and it seems impossible to make it gauge invariant by
adding additional terms to the Wess—Zumino term without adding more degrees of
freedom to the 2-dimensional world-sheet theory.

Actually, the same problem arises in the construction of a k-symmetric world-sheet
action for the heterotic superstring in backgrounds with non-trivial Yang—Mills fields
since the NSNS 2-form transforms under Yang—Mills gauge transformations similar to
Eq. (6.3.37). In the 10-dimensional case of strings propagating in backgrounds with
non-trivial Yang-Mills fields the solution to this puzzle lies in the addition of heterotic
fermions to the world-sheet action whose gauge transformations cancel against the
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Yang—Mills part of the NSNS 2-form gauge transformation [117]. We suggest that a
similar effect could be at work here.

If this is the case, then, in checking the invariance under supersymmetry trans-
formations of the above world-sheet action we must ignore the term (A, | T9.A,)
in the 2-form supersymmetry transformation rule. This term should be cancelled by
anomalous terms in the supersymmetry transformations of the world-sheet spinors.
With this proviso we find that the above action preserves half of the supersymmetries
with the projector

1(1+4cy1)er =0 with  c= (6.4.2)

1

1
We will see in the next Section that the stringy cosmic string solutions for which

the above action provides the sources require in order to preserve half of the super-

symmetries exactly the same condition to be satisfied by the Killing spinor.

6.5 Supersymmetric vector strings

Stringy cosmic string solutions of N = 2,d = 4 supergravity coupled to vector mul-
tiplets were found in [26]°. They preserve half of the original supersymmetries and
belong to the ‘null class’ of supersymmetric solutions characterized by the fact that
the Killing vector that one can construct from their Killing spinors is null. Generically
solutions in this class have Brinkmann-type metrics

ds?® = 2du(dv + Hdu + &) — 2 *ZZ) dzdz* (6.5.1)

where K is the Kéhler potential of the vector scalar manifold and where @ is deter-
mined from the equation

(d2) e = 2ie™ " Qy, (6.5.2)

with Q,, the pullback of the Kéahler 1-form connection given in Eq. (B.0.3). The
complex scalars Z' are functions of v and z.

It is not easy to interpret physically these solutions for a generic dependence on the
null coordinate u. When there is no dependence on u we can take & = 0 and the metric
is that of a superposition of cosmic strings (described by K) lying in the direction u—v
and gravitational and electromagnetic waves (described by H) propagating along the
same direction.

Setting H = 0 (which generically requires that we switch off all the electromagnetic
fields) we obtain solutions that only describe cosmic strings. In order to study the

5Solutions related to these by dimensional reduction have been obtained in a 3-dimensional context
in Ref. [118].
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behavior of these solutions under the symmetries of the theory, it is convenient to
express them in an arbitrary system of holomorphic coordinates, which amounts to the
introduction of an arbitrary holomorphic function f(z) whose absolute value appears
in the metric and whose phase appears in the Killing spinors of the solution

ds?> = 2dudv —2e "% Z20)|f12dzdz*
7t = Z4z), =71z, (6.5.3)
er = (f/f) 0, Vzr€r0=0.

If we take z = w9 + ix3 then the condition v,+e79 = 0 is equivalent to Eq. (6.4.2).

The holomorphic functions Z*(z), f(z) are assumed to be defined on the Riemann
sphere @, but, generically, they will not be single-valued on it due to the presence
of branch cuts. These branch cuts are to be associated with the presence of cosmic
strings just as was done in the particular case of the SL(2,R)/U(1) special Kahler
manifold studied in Refs. [106] and [107].

As a general rule bosonic fields must be single-valued unless they are subject to a
gauge symmetry which forces us to identify as physically equivalent those configura-
tions which are related by admissible gauge transformations. In the theories that we
are considering the complex scalars Z%(z) do not transform under any gauge symme-
try. Only the global group of isometries Gy of G;;« acts on them and only a discrete
subgroup Gy (Z) C Sp(2ny + 2,Z) will be a global symmetry at the quantum level.

In the resulting theories two values of Z¢(z) may be considered equivalent if they
are related by a Gy (Z) transformation. This enables one to construct solutions in
which the scalars Z%(z) are multi-valued functions with branch cuts related to the
elements of Gy (Z). The source for a branch cut is provided by the Wess—Zumino
term of a cosmic string. This is explained in detail for the 10-dimensional case of the
7-branes in [106].

Next we discuss the emergence of axions related to the presence of Killing vectors.
For every Killing vector ak4® one can always find an adapted coordinate system
{Z%} such that the metric G;;« does not depend on the real part of the coordinate Z1,
say. In this coordinate system ak,°9; = 9; and the isometries generated by it act
as constant shifts of Z! by a real constant:

§Z' =ceR. (6.5.4)

This transformation only acts on the real part of Z!, x!, which is, then, what it is
sometimes meant by an axion: a real scalar field with no non-derivative couplings to
the other scalars and with a shift symmetry®

6A more precise definition would require x' to be a pseudoscalar too. Actually, the real and
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It is clear that we can, in principle, define as many different axion fields as there
are independent Killing vectors 7, i.e. dim Gy, i.e. as many as 2-forms, which can be
understood as their duals. Their (both those of the axions and 2-forms) equations
of motion are not necessarily independent, though, and they will satisfy a number of
constraints, as discussed before, and, at most, there can be 2ny independent axions.

We now discuss the properties of the cosmic string solutions in a local neighbor-
hood of the location zp in the transverse space of a cosmic string. Infinitesimally the
transformation of the scalars Z° when going around zg is given by Eq. (6.3.4). In
some coordinate basis, the transformation will only be an axion shift.

Besides the scalars Z* also the Killing spinors e; will undergo transformations when
going around the cosmic string at zp. This is because when the scalars transform as
in Eq. (6.3.4) the Ké&hler potential transforms as

K(Z',Z™)=K(Z,Z") + Ao (Z) + N5 (Z7) . (6.5.5)
From the fact that the Killing spinor ¢; has Kéhler weight 1/2 it then follows that

e1(2) — eira— Al ta0ae () (6.5.6)

when going around zg. The phases ¢, relate to the fact that in general the spinors
transform under the double cover of Gy®. The Killing spinor ¢; is defined in terms
of the holomorphic function f(z) via Egs. (6.5.3). The monodromy of f when going
around zg must be

f(z) = eralZGFiea () (6.5.7)

The cosmic string solutions contain information about the moduli space of the
theory, i.e. the space of inequivalent values for Z°. The classical moduli space is
defined by the requirement

imaginary parts of the complex scalars in N = 2, d = 4 vector supermultiplets have different parities,
but, in a general model with arbitrary coordinates one should look at the couplings to the vector
fields to determine the parity of x!.

On the other hand, the action of N = 2, d = 4 supergravity indicates that the axions must appear
in Re Ny, which couples to the parity-odd term FA A FZ. Under symplectic transformations
( (1) ? > Re N is shifted to e N + B, as one expects from axions. This suggests another possible
characterization of axions: x! is an axion if its shifts are embedded in the Abelian subgroup of
1 B
0 1

"However, they cannot be used simultaneously, since we can only use simultaneously adapted
coordinates for commuting isometries.

80ne can even include yet another phase factor in the transformation rule for the Killing spinors
which incorporates the fact that e; may come back to itself up to a sign, i.e. one can include nontrivial
spin structures.

symplectic transformations of the form
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Im ANy <0, (6.5.8)

in order that the kinetic terms of the 1-forms have the right sign in the action (1.2.7).
The zeros of the polynomial §Z° = a?ks® which belong to the space (6.5.8) (or
possibly on the boundary thereof) are fixed points of the monodromy and therefore
comprise the loci of the cosmic strings in the quantum moduli space:

{Z'|Im Nas < 0}/Gy(Z). (6.5.9)

Drawing from the analogy with the SL(2,R)/U(1) case studied in [107] one can
expect all physical properties of globally well-defined stringy cosmic string solutions
to be mapped into geometrical properties of the space (6.5.9). Such properties are
the total mass, possible deficit angles at the sites of the cosmic strings, orders of
monodromy transformations (the number of times the same monodromy has to be
applied in order to equal the identity), etc. Here we will not attempt to work out the
global properties of these solutions, since they are strongly model-dependent.

In the SL(2,R)/U(1) case one could have derived all geometrical properties of
the quantum moduli space SL(2,Z)\SL(2,R)/U(1) by studying the globally well-
defined supersymmetric stringy cosmic string solutions. It is therefore natural to
ask the question whether this is generally true, i.e. whether (some class of) quantum
moduli spaces of Calabi—Yau reduced supergravities can be obtained by studying the
properties of the stringy cosmic string solutions.

We leave this for a future investigation.

6.6 The 2-forms: the hyper case

If we consider N = 2, d = 4 supergravity with general matter couplings, we can have
apart from the complex scalars in the vector multiplets 4n g real scalars when coupling
gravity to ngy hypermultiplets. In the following we repeat the program of introducing
2-forms in order to dualize the hyperscalars which parameterize the Noether currents
of some isometry group of the quaternionic Kahler manifold. We first construct
the Noether currents, dualize them and subsequently construct the supersymmetry
transformation rule for the dual 2-forms. For the subset of commuting isometries
a similar program has been performed in [119] where also actions for the dualized
scalars are given.

6.6.1 The Noether current

The transformations we are dealing with are just the isometries of the quaternionic
Kéhler manifold that we write in the form
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5q" = ak4"(q), (6.6.1)

where k4" are the components of the Killing vectors k4 = k4“0, that generate the
isometry group G of Hy,. The parameters o are real parameters.

Associated to each of the isometries we can define a momentum map? P 4;7 defined
by the equation

QuPAIJ - _JIJuvava (662)

where J;7,, is the triplet complex structures of the quaternionic-Kiher manifold.
Following [120] we write the triplet of complex structures J;”7,, in terms of the
Quadbeins as follows

I ww = 3oo)r” e with 7%, = —iU ,(04) 1" Uas™ (6.6.3)

where the o,, = 1,2,3, are the three Pauli matrices. We will often write P;/ =
aA PA]J.

The Noether current associated to the these isometries, which do not act on the
vector fields, is just

i L 0L

Ok AH,,0Mq 5" 6.6.4
5] 00,0 €% (6.6-4)

and satisfies V,,J§ = 0.

6.6.2 Dualizing the Noether current

Since the isometries of the quaternionic Kéhler manifold do not act on the vectors
of the theory they are symmetries of the action and there will be no anomalous
contribution to the Noether current such as J which we encountered when discussing
the isometries of the special Kdhler manifold. We can thus immediately define the
gauge-invariant 3-form field strength H via

H=dB =+Jy, (6.6.5)

where H = a®H4 and B = a*By4.

9Momentum maps play a crucial role in the gauging of the isometries. It is therefore interesting
to note that the mathematics which governs the 2-forms is similar to that used in gauged matter
coupled N = 2, d = 4 supergravity.
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6.6.3 The 2-form supersymmetry transformation

We know that, since B is defined by dB = xJy, the commutator of two supersym-
metry variations on B must close into the algebra (6.3.41), i.e. it must lead to the
commutator

6, 0] B INT +20, (Ay) —€°By),) . (6.6.6)

_ 1
v = §pmepuua

In order to achieve this, we make the following Ansatz for the supersymmetry variation
of the 2-form (up to second order in fermions)

5€BIW = CLP]JEI’}/[HMJJ‘V] + c.c.

+0Uq s "Dy Pr/ e y,,¢* + coc., (6.6.7)
where a and b are arbitrary complex constants.

Evaluating the commutator and assuming that a and b are real parameters we
obtain

[57]7 5€]BHV = - %ib(*dqw)uupngvwéqv
+ %ibJIKvwaqva[quXM] KI

+26[# (Al,] — pr,j]p) - aJ]KUw(qua[quX#]KI s (6.6.8)
where we have defined the matrix of vector fields

XMJ = —ﬁJ”y#ej — 77[")/#6'], (6.6.9)

and where the gauge parameter A, is given by
Ay =—4X," P +¢B,,. (6.6.10)
Next we choose a = %ib and we are left with

[577, 65]B#V = —%ib(*dqw)w,p{pvaéq” + 28[# (Au] — pr,j]p) .

If we compare this expression with Eq. (6.3.43) using Eq. (6.6.4) we read off that
b= —%, so that a = —4.
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The supersymmetry transformation of the 2-forms dual to the hyperscalars pa-
rameterizing the Noether current (6.6.4) is thus

5€BHV = _4P]J€I’Y[#’Q/J,]‘y] + c.c.

+H U " DuPr e C* + e, (6.6.11)
and the 2-form gauge parameter A, is given by

A, =2X,",Pr’ +¢°B,,. (6.6.12)

6.7 World-sheet actions: the hyper case

Stringy cosmic strings in the hyper case are strings electrically charged under the
2-forms B constructed in Section 6.6. In this Section we will construct the bosonic
part of the string effective action, which preserves half of the supersymmetries of the
theory. In analogy with the Ansatz that we made for the strings in the vector case
we again express the tension of the string in terms of the momentum maps. We make
the following Ansatz

S:/d20’2'1 V109l +ch/BA, (6.7.1)

where ¢ is some real number which will be fixed later. The tension is given by

7, =+/(P*)?2  where P*=a"P"y with P;’=1P%0,)/’ (6.7.2)
and in taking the square we sum over x = 1,2, 3.
Performing a supersymmetry variation of the action (6.7.1) using the transforma-
tion rules (2.2.31), (2.2.34) and (6.6.11) we find that the string action preserves half
of the supersymmetries with a projector given by

J_ 15 J 8ci J J. I _ _ 1
;" =106,7 - _(;?I)ZP] Y01),5 ;"¢ =0, wherec=—z. (6.7.3)

An important distinction with the analogous string action constructed in Section
6.4 is that in the present case the Wess—Zumino term is gauge invariant up to a total
derivative whereas in the case of strings coupled to 2-forms dual to vector scalars
the Wess—Zumino term is not by itself gauge invariant, cf. the discussion below
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Eq. (6.4.1). In fact one may consider the action (6.7.1) as the first example of a 1/2
BPS (d — 3)-brane action which is well-defined (at the bosonic level) for all possible
(d — 2)-form potentials. In the d = 10-dimensional situation only the brane actions
related to the D7-branes are well understood. For the other 8-forms which couple to
the Q7-branes of [106] there are still open problems regarding a proper understanding
of the world-volume dynamics. The fact that in the particular case of the hyperstrings
we can construct well-defined actions supports the idea that in general one can treat
all isometries of any scalar sigma model in any supergravity on an equal footing
(provided they pertain to be discrete isometries of the quantum moduli space). This
suggests that in order to find the full spectrum of 1/2 BPS states one best considers
the same supergravity theory in various coordinate systems in which these isometries
take on a simple form.

6.8 Supersymmetric hyperstrings

In Ref. [27] it was shown that the c-map transforms supersymmetric stringy cosmic
string solutions of the vector scalar manifold into supersymmetric stringy cosmic
string solutions of the hyperscalar manifold. The latter belong to the timelike class
of supersymmetric solutions characterized by the fact that the Killing vector that one
can construct from the Killing spinors of the solution is timelike. The metric for this
class of solutions (for vanishing vector multiplets) takes the following form

ds® = dt* — yppda™da™ . (6.8.1)

The 3-dimensional spatial metric 7,,, (or its Dreibeins V?®,,) is related to the
hyperscalars ¢“(z) by two conditions. The first condition is

Vo 9g" Uy (00)5" = 0, (6.8.2)

and the second condition reads, in a given SU(2) and Lorentz gauge,

T = A%, Opg (6.8.3)

where w,,”? is the spin connection 1-form of the 3-dimensional metric and A%,0,,¢"
is the pullback of the SU(2) connection of the quaternionic-Kéhler manifold parame-
terized by the scalars ¢*. In the gauge in which Eq. (6.8.3) holds the Killing spinors
take the form

€] — €10, HIIJ €j0 = 0 with Hw]‘] = %[ 6[J — ,yO(m) (U(I))]J ] (684)

where the notation (x) in (6.8.4) means that x is not summed over so the constraints
are imposed for each non-vanishing component of the SU(2) connection.
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We now repeat for the hyperscalars parameterizing a quaternionic Kéahler manifold
with isometry group Gz the discussion of Section 6.5. The fields will only depend on
two spatial coordinates (z! and 2, say, that can always be combined into a complex
coordinate z) which parameterize the transverse space of the cosmic string. The
metric will take the form

ds? = dt* — (dz*)? — 2¢®** )V dzdz* (6.8.5)

and the hyperscalars will be real functions ¢“(z,2*). A convenient Dreibein basis is

V3i=dz®, Vi=Vdz, V¥ =V*dz*, |V]?=e2E20), (6.8.6)

In this Dreibein basis the supersymmetry conditions Egs. (6.8.2) and (6.8.3) take the
respective form

U*?,0,¢" = U*,0,-¢" = 0, (6.8.7)
wizz* = Asu 8£qu s (688)
Aty Omg" = A%, Opmg" = 0. (6.8.9)

The Killing spinors of these solutions, in this basis, are given by

€ = €10, H31J EJ():O. (6810)

It can be shown that in this gauge the pullbacks of the complex structures J!
and J? vanish while J3 remains nonzero and one recovers the projection operator
Eq. (6.7.3). As in the case of the vector scalars, it is convenient to work in a more
general coordinate system in which the metric takes the form

ds? = dt? — (dz®)? — 2e*=27) | f|2dzdz* (6.8.11)

where f(z) is a holomorphic function. The supersymmetry conditions, Eqgs. (6.8.7)
and (6.8.9), do not change and Eq. (6.8.8) is still satisfied with the old spin connection.
If the new spin connection is computed with respect to the new frame

Vi=da®, VFP=Vf'dz, V7 =V*fdz*, (6.8.12)
then, we find that

*

@, = 1w, ga+0.logf, (6.8.13)
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and then the Killing spinors take the form

er = ez 18U/ I (6.8.14)

the constant spinor €7¢ obeying the same constraints as above, Egs. (6.8.10). These
same constraints allow us to rewrite it in the equivalent form

er = exp {3 1og(f/ s}, €. (6.8.15)

The multi-valuedness of the Killing spinors e; of these solutions is related to the
U(1) C SU(2) gauge transformation where the U(1) subgroup is associated to the non-
vanishing component A2,,0,¢" of the SU(2) connection pulled back on the space-time.
The transformations of the Killing spinors determine the monodromy properties of
the holomorphic function f similarly to what happens in the case of the vector scalars.



Chapter 7

Summary

This thesis deals with four-dimensional Supergravity theories and solutions thereto.
In Chapter 1 we gave an overview of the main motivations for studying Supersymme-
try, Supergravity and Superstring Theory. We shortly described how Supersymmetry
might help to address some problems the Standard Model of Particle Physics seems
to suffer from and we summarized the most important properties of Superstring the-
ory and its low-energy limit, Supergravity. In Chapter 2 we introduced the theories
we were going to work with in this thesis, i.e. four-dimensional Supergravities with
four and eight supercharges, respectively. There we described these theories, ignoring
possible gaugings. The problem of gauging was considered in Chapter 3. We saw
how the introduction of the most general gaugings this is using electric and magnetic
vector fields as gauge fields, implies the existence of a tensor hierarchy of higher de-
gree p-forms. In Chapter 4 we applied the obtained results to N = 1 and N = 2
Supergravity. In Chapter 5 we found and classified the supersymmetric solutions to
N = 2 four-dimensional Supergravity, using the tequnique as described in the intro-
duction of this thesis, Chapter 1. In Chapter 6 we studied the coupling of extended
solutions to N = 2 d = 4 Supergravity, taking into account the “predictions” of the
four-dimensional tensor hierarchy found in Chapter 3.

This thesis is based on the publications which are listed in Appendix G.






Chapter 8

Resumen

En esta tesis hemos estudiado teorias de Supergravedad en cuatro dimensiones y
soluciones de las mismas. En elcapitulo 1 hemos dado una visién general sobre las
motivaciones principales para estudiar Supersimetria, Supergravedad y finalmente la
Teoria de Supercuerdas. Hemos descrito brevemente como Supersimetria puede fa-
cilitar soluciones a varios “problemas” que parece padecer el Modelo Estandar de las
Particulas Elementales y resumido las propriedades més importantes de la Teoria de
Supercuerdas y de su limite de bajas energfas: la teoria de Supergravedad. En el
capitulo 2 hemos introducido las teorias estudiandas en esta tesis, es decir las Super-
gravedades cuatridimensionales con cuatro y ocho supercargas. En él hemos descrito
dichas teorias ignorando posibles gaugeos de las mismas. El problema de gaugeos lo
hemos considerado en el capitulo 3. Vimos como la introduccién de los gaugeos mas
generales, es decir utilizando tanto campos vectoriales eléctricos como magnéticos
como campos gauge, implica la existencia de una jerarquia de tensores con grados
mas altos. En el capitulo 4 aplicamos los resultados obtenidos anteriormente a las
Supergravedades N = 1y N = 2. En el capitulo 5 encontramos y clasificamos las
soluciones supersimetricas de Supergravedad N = 2 cuatridimensional, utilizando el
procidimiento descrito en la introduccién de esta tesis, capitulo 1. En el capitulo 6
estudiamos el acoplo de soluciones extendidas de la teoria de Supergravedad N =2 a
p-formas, teniendo en cuenta las “predicciones” de la jerarquia general cuatridimen-
sional hallada en el capitulo 3.

Esta tesis estd basada en las publicaciones que estan listadas en el Apéndice G.






Chapter 9

Conclusions

In this thesis we studied N =1 and N = 2 Supergravity in four dimensions.

In Chapter 3 we studied the most general gaugings of four-dimensional Supergrav-
ity theories. To do so, we introduced the embedding tensor formalism. We showed
how the second-order p-form equations of motion and the projected scalar equations
of motion of general d = 4 gauged supergravity theories can be derived from a duality
hierarchy, i.e. a set of first-order duality relations between p-form curvatures. Our
starting point was the complete tensor hierarchy of the embedding tensor formalism,
which we used to derive the off-shell gauge algebra for a set of p-form potentials, not
including the scalars nor the metric tensor. Next, in a second step we put the ten-
sor hierarchy on-shell by introducing duality relations between the curvatures of the
tensor hierarchy, which leads to the desired equations of motion. In a third and final
step, we constructed a gauge-invariant action for all the fields of the tensor hierarchy.

Whilst up to this point the tensor hierarchy was studied in the most general way,
i.e. without specifying which four-dimensional Supergravity is being dealt with, the
next step was the study of the gaugings of N = 1,2 Supergravity in Chapter 4.
When studying the most general gaugings of N = 1 four-dimensional Supergravity,
we were led to considering the full hierarchy of p-form fields realized in this theory.
We constructed the supersymmetric tensor hierarchy of N=1, d=4 supergravity and
found some differences with the general bosonic construction of 4-dimensional gauged
supergravities: the extension of N = 1 d = 4 Supergravity involves additional 3-
and 4-forms which are not predicted by the general hierarchy. It turned out that
the additional 3-form is dual to the superpotential, thus not associated to any gauge
symmetry. We studied the closure of the supersymmetry algebra on all the bosonic
p-form fields of the hierarchy up to duality relations. It turned out that in order
to close the supersymmetry algebra without the use of duality relations, one must
construct the hierarchy in terms of supermultiplets.
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The solutions to four-dimensional Supergravity were studied in Chapter 5. In
Chapter 5.1 we found the complete classification of the supersymmetric solutions
of N = 2 d = 4 ungauged supergravity coupled to an arbitrary number of vector-
and hypermultiplets. We found that in the timelike case the hypermultiplets cause
the constant-time hypersurfaces to be curved with an SU(2) holonomy induced by
the quaternionic structure of the hyperscalar manifold. The solutions have the same
structure as without hypermultiplets but now depend on functions which are harmonic
w.r.t. the curved 3-dimensional space. We discussed an example obtained from a
hyper-less solution via the c-map. In the null case we found that the hyperscalars
can only depend on the null coordinate and the solutions are essentially those of the
hyper-less case.

In Chapter 5.2 we found the general form of all the supersymmetric configura-
tions and solutions of N = 2,d = 4 Einstein-Yang-Mills theories. In the timelike case
the solutions to the full supergravity equations could be constructed from known
flat spacetime solutions of the Bogomol’'nyi equations. This allowed the regular,
sometimes globally regular, supersymmetric embedding in supergravity of regular
monopole solutions (such as 't Hooft-Poyakov’s, Weinberg’s, Wilkinson and Bais’s)
but also embeddings of non-regular solutions to the Bogomol’'nyi equations, which
turned out to be regular black holes with different forms of non-Abelian hair. We
found that the attractor mechanism is realized in a gauge-covariant way. In the null
case we determined the general equations that supersymmetric configurations and
solutions must satisfy.

In the last Chapter, we studied the coupling of the one-dimensional solutions
to N = 2 d = 4 Supergravity, found in Chapter 5.1, to 2-forms as predicted by the
general four-dimensional tensor hierarchy. These 2-forms couple electrically to strings
which we refer to as stringy cosmic strings. The 1/2 BPS bosonic world-sheet actions
for these strings were constructed and its implications discussed.
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Conclusiones

En esta tesis hemos estudiado Supergravedad N =1y N = 2 en cuatro dimensiones.

En el capitulo 3 hemos estudiado los gaugeos mas generales de teorias de Super-
gravedad cuatridimensionales. Para ello hemos introducido primero el formalismo
del embedding tensor. Hemos mostrado como las ecuaciones de movimiento de las p-
formas, las cuales son ecuaciones de segundo orden, y la proyeccion de las ecuaciones
de movimiento de los escalares de Supergravedad general cuatridimensional pueden
derivarse de una jerarquia de dualidades, es decir de un conjunto de relaciones de
dualidad de primer orden entre las curvaturas de las p-formas. Nuestro punto de par-
tida ha sido la jerarquia completa de tensores del formalismo del embedding tensor,
el cual hemos utilizado para derivar el algebra gauge off-shell para un conjunto de
potenciales, p-formas, sin incluir los escalares ni el tensor métrico. En segundo lugar
hemos puesto la jerarquia de tensores on-shell introduciendo relaciones de dualidad
entre las curvaturas de la jerarquia de tensores, lo que nos llevd a las ecuaciones
de movimiento deseadas. En un tercer paso hemos construido una acciéon invariante
gauge para todos los campos de la jerarquia de tensores.

Mientras hasta este punto la jerarquia de tensores fue estudiada de la manera mas
general, es decir sin especificar de que teoria de Supergravedad cuatridimensional se
trata, el paso siguente ha sido el estudio de los gaugeos de N = 1,2 Supergravedad
en cuatro dimensiones en el capitulo 4. Al estudiar los gaugeos més generales de la
Supergravedad N = 1 cuatridimensional, fuimos llevados a considerar la jerarquia
de tensores completa, realizada en esta teoria. Hemos construido la jerarquia su-
persimétrica de tensores de la Supergravedad N = 1, d = 4 y encontrado algunas
diferencias con la construccién general bosénica de Supergravedades gaugeadas cua-
tridimensionales. Hemos estudiado el cierre del dlgebra de supersimetria en todas las
p-formas bosénicas de la jerarquia salvo relaciones de dualidad. Resulté que, para cer-
rar el algebra de supersimetria sin usar relaciones de dualidad, es necesario construir
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la jerarquia en términos de supermultipletes.

Las soluciones de Supergravedad cuatridimensional fueron estudiadas en el capitulo
5. En el capitulo 5.1 hemos hallado la clasificaciéon completa de las soluciones super-
simétricas de N = 2 d = 4 Supergravedad sin gaugear, acoplada a un numero arbi-
trario de vector- e hipermultipletes. Hemos encontrado que en el caso tipo tiempo
los hipermultipletes causan la curvatura de las hipersuperficies de tiempo constante
con holonomia SU(2) inducida por la estructura quaterniénica de la variedad de los
hiperescalares. Las soluciones tienen la misma estructura que sin hipermultipletes
pero ahora dependen de funciones que son harmdnicas con respeto al espacio curvo
tridimensional. En el caso nulo hemos encontrado que los hiperescalares solo de-
penden en la coordenada nula y las soluciones son esencialmente las del caso sin
hipermultipletes.

En el capitulo 5.2 hemos encontrado la forma general de todas las configuraciones
y soluciones de teorias N = 2 d = 4 de tipo Einstein-Yang-Mills. En el caso tipo
tiempo las soluciones de las ecuaciones enteras de Supergravedad podian construirse
partiendo de soluciones de espacio plano de las ecuaciones de Bogomol'nyi. Esto
nos permitié el embebimiento supersimétrico regular, en algunos casos regular global-
mente, dentro de Supergravedad de soluciones regulares de tipo monopolo (tales como
't Hooft-Poyakov’s, Weinberg’s, Wilkinson and Bais’s), pero tambien el embebimiento
de soluciones no-regulares de las ecuaciones de Bogomol'nyi, que resultan ser agujeros
negros regulares con diferentes formas de pelo no-Abeliano. Hemos encontrado que
la realizacion del mecanismo del atractor es invariante gauge. En el caso nulo hemos
determinado las ecuaciones generales que tienen que satisfacer las configuraciones y
soluciones supersimetricas.

En el dltimo capitulo hemos estudiado el acoplo de soluciones unidimensionales
de la Supergravedad N = 2 d = 4, encontradas en el capitulo 5.1, a 2-formas como
predice la jerarquia tensorial general cuatridimensional. Estas 2-formas se acoplan
eléctricamente a cuerdas, las cuales etiquetamos como stringy cosmic strings. Las ac-
ciones bosénicas 1/2 BPS en la hoja de universo para estas cuerdas fueron construidas
y discutidas sus implicaciones.
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Appendix A

Conventions

In this paper we use basically the notation of Ref. [82] and the conventions of Ref. [38],
to which we have adapted the formulae of Ref. [82]. The main differences between the
conventions of those two references are the signs of spin connection, the completely
antisymmetric tensor €**“? and ~5. Thus, chiralities are reversed and self-dual tensors
are replaced by anti-self-dual tensors and vice-versa. The curvatures are identical.
Finally, the normalization of the 2-form components differs by a factor of 2: for us

F =dA = 3Fdz" Adz” = F,, =20,A,, (A.0.1)

which amounts to a difference of a factor of 2 in the vectors supersymmetry trans-
formations. Further, all fermions and supersymmetry parameters from Ref. [82] have
been rescaled by a factor of %, which introduces additional factors of % in all the
bosonic fields supersymmetry transformations.

The meaning of the different indices used in this paper is explained in Table A.0.1.

We use the shorthand n =n + 1.

| Type | Associated structure
Wy Uy o Curved space
a, b, ... Tangent space
m,n,... Cartesian R3-indices
i, 5,..5 1,7, ... | Complex scalar fields and their conjugates. There are n of them.
VDI sp(n) indices (n =n + 1)
I, J,... N = 2 spinor indices

Table A.0.1: Meaning of the indices used in this paper.
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To make this paper as self-contained as possible, we proceed to review our con-
ventions in detail.

A.1 Tensors

We use Greek letters u, v, p, ... as (curved) tensor indices in a coordinate basis and
Latin letters a,b,c... as (flat) tensor indices in a tetrad basis. Underlined indices
are always curved indices. We symmetrize () and antisymmetrize [] with weight one
(i.e. dividing by n!). We use mostly minus signature (+ — ——). 7 is the Minkowski
metric and a general metric is denoted by g. Flat and curved indices are related by
tetrads eq,* and their inverses e, satisfying

e er” g = Nab e“#ebynab =G - (A.1.1)

V is the total (general- and Lorentz-) covariant derivative, whose action on tensors
and spinors (1) is given by

vugy = augu""l—‘upugpa
V£t = (9H§“+wub“§b, (A.1.2)

Vuy = @ﬂﬁ - %wuab%zb"/]u

where 74 is the antisymmetric product of two gamma matrices (see next section),
wp® is the spin connection and I',,” is the affine connection. The respective curva-
tures are defined through the Ricci identities

[Vua Vu] fp = RWU”(F) 50 + T;wgvafp )
[Vua V] € = R,uuba(w)fb ) (A.1.3)
[V,uv Vv] Y o= _%Ruvab (W)Vabd) .

and given in terms of the connections by

Ry’ () = 28[#I‘U]p" + 21—‘[#|AUFV}P>\ )
(A.1.4)
Rua’(Ww) = 20pw,00" = 20pjaC Wi’

These two connections are related by the tetrad postulate

O (A.1.5)
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by

w#ab = F#ab + ea”aﬂeyb , (A.1.6)

which implies that the curvatures are, in turn, related by

R,uupU(F) = epaeabRyvab(w) . (Al?)

Finally, metric compatibility and torsionlessness fully determine the connections
to be of the form

F,uup - %g’m {augvcr + 81/9#0’ - 80'9#1/} B
(A.1.8)
Wabe = —ave + Qpea — Qcaln Qap® = ea#ebya[uecu] .

The 4-dimensional fully antisymmetric tensor is defined in flat indices by tangent
space by
0123 — +1, = €g13 = —1, (Alg)

and in curved indices by

eMhs = \/Eeulal e .eu3a3€a3---a3 ) (AllO)

so, with upper indices, is independent of the metric and has the same value as with
flat indices.

We define the (Hodge) dual of a completely antisymmetric tensor of rank k, Fy)
by

M1 H(d—k) — 1 M1 H(d—k)H(d—k+1)"""Hd
*Fx) = /—‘g‘ﬁ Floyma—riny - pa - (A.1.11)

Differential forms of rank & are normalized as follows:

F(k) = %F(k)#l...#kdﬁtm Ao Ndxte (A.1.12)
For any 4-dimensional 2-form, we define
FE=LF+ixF), +ixF* = F*. (A.1.13)
For any two 2-forms F, G, we have

F*,GTm =0, F*,,G7,, =0. (A.1.14)
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Given any 2-form F = %Fw,dx“ A dz* and a non-null 1-form V = V,dx#, we can
express F' in the form

F=-V2EANV-xBAV)], E,=V"F,., B, =%V"F,,. (A.1.15)

For the complex combinations F* we have

F*r = V2CE AV +i+(CEAV), C*t, =V'F*,,. (A.1.16)

If we have a (real) null vector I#, we can always add three more null vectors
n* mt, m*# to construct a complex null tetrad such that the local metric in this
basis takes the form

01 0 0
10 0 0
00 0 -1 (A.1.17)
0 0 -1 0
with the ordering (I,n,m,m*). For the local volume element we obtain ™™ = .

With the dual basis of 1-forms (Z,ﬁ,m,m*) we can construct three independent

complex self-dual 2-forms that we choose to normalize as follows:

L = [Am*,
@ = L{iAn+mAm, (A.1.18)
B = —_pAm.

Any self-dual 2-form F* can be written as a linear combination of these, with
complex coefficients:

Ft =00 (A.1.19)
The coefficients ¢; can be found by contracting ' with I#, n#, m#, m**:
VEt,, = _%Cglu —camy,,
n'Ft,, = cimy, + %anu ,
(A.1.20)
m”F*W = cll#—i-%ch#,
m*”F*W = —%czmz —c3ny .
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A.2 Gamma matrices and spinors

We work with a purely imaginary representation

7=, (A.2.1)

and our convention for their anticommutator is

{(7%,7"} = +2n". (A.2.2)
Thus,

Py’ =yt =t = (A.2.3)
The chirality matrix is defined by

75 = —i7°7' "7 = Freavear* vy, (A.2.4)

and satisfies

! = =" =, (15)* = 1. (A2.5)
With this chirality matrix, we have the identity

)L
= ((4177/)' € ! nbl b47"7b1"'b4—n’y5 * (A26)

Our convention for Dirac conjugation is

=iy, (A.2.7)

Using the identity Eq. (A.2.6) the general d = 4 Fierz identity (p = +1 for
commuting spinors and p = —1 for commuting spinors) takes the form

PAMX)(Np) = F(AMN@)(x) + sAMY*No)(7ax) — §(AMAY** Nep)(yavx)

—1(AMA s N@) (ra75X) + 3 AM 5N @) ($75X) -
(A.2.8)
We use 4-component chiral spinors. In the NV = 1 theory the chirality of all spinors
is negative

%

Vst = —Yu, YA = =AY X' =—x", vse=—€, (A.2.9)

and is reversed by complex conjugation:
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Vs = vy, YA = A X = vset =", (A.2.10)

In the N = 2 theory the chirality of the spinors is related to the position of the SU(2)
index or Sp(2m) index as follows::

Vs¥ru = —Yru, s AT = 42T V5Ca = —Ca Vser = —€; .
(A.2.11)

Both (chirality and position of the index) are reversed under complex conjugation:

751/11;1 = wluv 75)\1i* =\ ) Y5¢% = +¢°, el =€l .
(A.2.12)

We take this fact into account when Dirac-conjugating chiral spinors:

el =ilen)'ho, s =+€, etc (A.2.13)
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Kahler geometry

A Kéhler manifold M is a complex manifold on which there exist complex coordinates
Z'and Z*" = (Z%)* and a function K(Z, Z*), called the Kdhler potential, such that
the line element is

ds?® = 2G- dZ°dZ*" (B.0.1)
with
Girr = 0;04 K. (B.0.2)
The Kdhler (connection) 1-form Q is defined by

Q = L(dZ'0K —dZ*" 9;-K) (B.0.3
=(0-0)K, (B.0.4)
and the Kahler 2-form J is its exterior derivative
J = dQ=iGy-dZ' NdZ*" (B.0.
100K . (B.0.
Note that this yields immediately that the Kihler 2-form is closed:!
dJ = 0. (B.0.12)

1 Actually there is an alternative way to define a K#hler manifold:
Definition: A Kéihler manifold is an Hermitean manifold whose Kéhler form is closed.
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The Levi-Civita connection on a Kéahler manifold is given by

L' =G 9;Gy, Tjope’ =G 054 Gpoi. (B.0.13)

The Riemann curvature tensor has as only non-vanishing components R;j« -, but we
will not need their explicit expression. The Ricci tensor is given by

R« = 0;0; (%logdetg) , (B.0.14)
and the Ricci 2-form by
R = iRy-dz' Adz*". (B.0.15)

The Kéhler potential is not unique: it is defined only up to Kdhler transformations
of the form

K'(Z,2%) = K(Z,Z°) + f(Z) + [*(Z7), (B.0.16)

where f(Z) is any holomorphic function of the complex coordinates Z*. Under these
transformations, the Kéhler metric and Kéahler 2-form are invariant, while the com-
ponents of the Kéhler connection 1-form transform according to

Qi =Qi—20if. (B.0.17)

By definition, objects X with Ké&hler weight (gq,g) transform under the above
Kéhler transformations like:

X' = Xe—(af+af)/2 (B.0.18)

and the Kéhler-covariant derivative D acting on them is given by

D; =V, +iqQ;, Div = Vi —igQ;n (B.0.19)

This then implies
dT = (0+8)iGi+dz' Adz*T (B.0.7)
= 0;Gurd2? Adz' Ndz* T 40052 Gy d2* T Adzt Adz* T (B.0.8)

= %(839“-* — 0iGjix )dz? N d2" A """ + %(@'*gn‘* — 0i=Gij* Ydz*" A dz2t A dz* {B.0.9)
leading to the following relations
0;Giix = 0;Gjir, 0j+Giix = Oy« Gijx, (B.0.10)

whose solutions is (locally) given by
Giix = 0;0;+ K, (B.O.ll)

and the converse is also true locally (see definition above).
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where V is the standard covariant derivative associated to the Levi-Civita connection

on M.

The Ricci identity for this covariant derivative is, on objects without vector indices
and Kéhler weight (g, q)

[D;, Dj-] = —4(q — 3)Gij» - (B.0.20)

When (¢,G) = (1,—1), this defines a complex line bundle L' — M over the
Kéhler manifold M whose first, and only, Chern class equals the Kéhler 2-form J. A
complex line bundle with this property is known as a Kahler-Hodge (KH) manifold
and provides the formal starting point for the definition of a special Kahler manifold?
that is explained in the next Appendix. These are the manifolds parametrized by the
complex scalars of the chiral multiplets of N = 1,d = 4 supergravity. Furthermore,
objects such as the sueprpotential and all the spinors of the theory have a well-defined
Kahler weight. The manifolds parametrized by the complex scalars of the vector
multiplets of N = 2,d = 4 supergravity are also KH manifolds but must satisfy
further constraints that define what is known as special Kahler geometry, described
in Appendix C.

We will often use the spacetime pullback of the Kahler-covariant derivative on
tensor fields with Kéhler weight (g, —q) (weight ¢, for short) for which it takes the
simple form

D, =V, +iqQ,, (B.0.21)

where V, is the standard spacetime covariant derivative plus possibly the pullback
of the Levi-Civita connection on M; Q,, is the pullback of the Kéhler 1-form, i.e.

Q, = %(@Ziaﬂc — oz o 9;+K) . (B.0.22)

Note that for a Kéhler manifold the torsion vanishes, and since it is proportional
to the exterior derivative of the Ricci 2-form R defined in Eq. (B.0.15), R is closed
and hence a representative of H(Y) and the first Chern class of a Kihler manifold is
given by

ci(M) = £[R). (B.0.23)

2Some basic references for this material are [121-123] and the review [83]. The definition of special
Kéahler manifold was made in Ref. [124], formalizing the original results of Ref. [80].
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B.1 Gauging holomorphic isometries of Kahler-Hodge
manifolds

We are now going to review some basics of the gauging of holomorphic isometries
of Kéhler-Hodge manifolds that occur in N = 1 and N = 2,d = 4 supergravities.
We will first study the general problem in complex manifolds. This is enough for
purely bosonic theories in which only the complex structure is relevant. The Kéahler-
Hodge structure is necessary in presence of fermions and only those transformations
that preserve it will be symmetries of the full theory that can be gauged. We will
study this problem next. The special-Kahler structure is necessary in N = 2,d = 4
supergravity and, again, only those transformations that preserve it are symmetries
that can be gauged. This problem will be studied in Appendix C.2, after which we
define special-Kéhler manifolds.

B.1.1 Complex manifolds

We start by assuming that the Hermitean metric G;;+ (we will use the Kéhler-Hodge
structure later) admits a set of Killing vectors® { K = kx'0; + kj{i* 0;+ } satisfying the
Lie algebra

[Ka, Ks) = —fas"Ka, (B.1.1)

of the group Gy that we want to gauge.

Hermiticity implies that the components kx?® and k,*\l of the Killing vectors are,
respectively, holomorphic and antiholomorphic and satisfy, separately, the above Lie
algebra. Once (anti-) holomorphicity is taken into account, the only non-trivial com-
ponents of the Killing equation are

%f/\gij* = V= k?&j + Vikpai» =0, (B.1.2)

where £ stands for the Lie derivative w.r.t. Kj.
The standard o-model kinetic term G;+8,2°'0"Z *7” is automatically invariant
under infinitesimal reparametrizations of the form

6aZ' = o k\'(Z), (B.1.3)

if the as are constants. If they are arbitrary functions of the spacetime coordinates
o’ () we need to introduce a covariant derivative using as connection the vector fields
present in the theory. The covariant derivative is

3The index A always takes values from 1 to ny (7 = ny + 1) in N = 1 (N = 2) supergravity ,
but some (or all) the Killing vectors may be zero.
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D.2" = 0,Z" + gA™ kA" (B.1.4)
and transforms as
00D, 2" = o™ (2)0kA"D, 27 = —aM(2)(£n — Kp)D, 27, (B.1.5)
provided that the gauge potentials transform as
GaAly = —g7'Dpa = —g7H(0ua" + gfrat AT 0" (B.1.6)
The gauge field strength is given by
FAW, = 28[MAAU] =+ ngQAAZ[MAQU] , (Bl?)
and transforms under gauge transformations as
6aFA = —a®(x) fro F9,, . (B.1.8)

Now, to make the o-model kinetic term gauge invariant it is enough to replace the
partial derivatives by covariant derivatives

Gij» 0, 1M 27— Giju®, Z DI 2 (B.1.9)
For any tensor field ® (spacetime u,v,..., gauge A, X, ... and target space ten-

sor i,i*,... indices are not explicitly shown) transforming covariantly under gauge
transformations, i.e. tranforming as

0a® = —a’(z)(Ly — K7)®, (B.1.10)

where we have defined the Lie covariant derivative*

Ly = £A—Sa, (B.1.11)
and Sy represents a symplectic rotation, the gauge covariant derivative is given by
0,8 ={V,+9,2T; + 0,2 T — gA» ,(Lr — Kx)}®. (B.1.12)

In particular, on @HZi

4We will extend this definition to fields with non-zero Kihler weight after we study the symmetries
of the Kahler structure. For the moment we only consider tensors of the Hermitean space with metric
Gij, possibly with gauge and spacetime indices.
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0,9,72" = V0,7 +T1'0,279,2% + gA» ,0;kp\"D,77 , (B.1.13)

[©M7©V] AR gFAquAi- (B114)

An important case is that of the fields ® which only depend on the spacetime
coordinates through the complex scalars Z% and their complex conjugates so that
V@ =0,2= 3#Zi8i<1> + auZ*i* 0;=®. @ is an invariant field if?

LA(I)E (,EA—SA)(I)ZO. (B.1.15)

Only if all the fields that occur in the theory are invariant fields, the theory
can be gauged. Only in that case V,® = 9,® = 9,2'9;0 + BMZ*i*aiﬂI) can be
true irrespectively of gauge transformations. These fields transform under gauge
transformations according to

6a® = —a’(Ly — K7)® = oK) ®, (B.1.16)
and their covariant derivative is given by
0,0 = {0, +D,ZTi +D,2" T + gA* K2}, (B.1.17)
and is always the covariant pullback of the target covariant derivative:
0,8 =9,2V,®+9,2"V;-P. (B.1.18)

Let us consider, for instance, the holomorphic kinetic matriz fax(Z)in N =1,d =
4 supergravity or the period matriz Ny (Z, Z*) in N = 2,d = 4 supergravity, both of
which are symmetric matrices that codify the couplings between the complex scalars
and the vector fields. These matrices transform under global rotations of the vector
fields

So AN, = —a” feo™ A%, (B.1.19)

according to

Safas = —aSafas = 2" foa" foym (B.1.20)

(analogously for My s1) and under the reparametrizations of the complex scalars Eq. (B.1.3).

Safrs = —aLafay — a%ka'0; fas - (B.1.21)

5 Alternatively, we could say that it is a field invariant under reparametrizations up to rotations.
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These transformations will only be a symmetry of the theory if their values coin-
cide, i.e. if

(£o = Sa)fas =Lafas =0, (B.1.22)

i.e. only if fax(Z) is an invariant field according to the above definition. Its covariant
derivative is given by

Dufas =DuZ'0; fasx, (B.1.23)

on account of its holomorphicity.

B.1.2 Kahler-Hodge manifolds

A Kahler manifold is a Hodge-Kdhler manifold if and only if there exists a line bundle
L — M such that its first Chern class equals the cohomology class of the Kahler
2-form J:

a(ll) = [J] (B.1.24)

In local terms this means that there is a holomorphic section §2(z) such that we
can write [70] ‘ ‘ B
J = iGidz' NdZ =i0ddlog || Qz) ||*. (B.1.25)

Let us now assume that the scalar manifold is not just Hermitean but Kahler-
Hodge. Let us study how the Kahler structure is preserved, first.

The transformations generated by the Killing vectors will preserve the Kéhler
structure if they leave the Kéahler potential invariant up to Kahler transformations,
i.e., for each Killing vector K

£AK = kA"OK 4+ kL 00K = A (Z) + X5 (Z7) . (B.1.26)

From this condition it follows that

£xhs — £x20 = —fasMha . (B.1.27)

On the other hand, the preservation of the Kéahler structure implies the conserva-
tion of the Kahler 2-form [J

ErT =0. (B.1.28)

The closedness of J implies that £,J = d(ig,J) and therefore the preservation
of the Kahler structure implies the existence of a set of real 0-forms P, known as
momentum maps such that

inJ = dPy . (B.1.29)
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A local solution for this equation is provided by

iPA = kpA"0:K — Aa, (B.1.30)

which, on account of Eq. (B.1.26) is equivalent to

iPa = — (k3" 0K — \}), (B.1.31)

or

,PA:ikAQ—%()\A—)\R)- (B.1.32)

The momentum map can be used as a prepotential from which the Killing vectors
can be derived:

ki i- = 03P . (B.1.33)

This is whay they are sometimes called Killing prepotentials.

The momentum maps are defined, in principle, up to an additive real constant. In
N =1,d = 4 theories (but not in N = 2,d = 4) it is possible to have non-vanishing,
constant, momentum maps with iPy, = —Ax for vanishing Killing vectors. In this case
no isometry is gauged. Instead, it is the U(1) symmetry associated to Kéhler trans-
formations (in Kéhler-Hodge manifolds) that is gauged. These constant momentum
maps are called D- or Fayet-Iliopoulos terms and appear as in the supersymmetry
transformation rules of gaugini, in the potential and in the covariant derivatives of
sections that we are going to discuss.

Using Egs. (B.1.1),(B.1.26) and (B.1.27) one finds

£7Ps = 2iki k7 Gijr = —fax”Pa. (B.1.34)

This equation fixes the additive constant of the momentum map in directions in which
a non-Abelian group is going to be gauged.
The gauge transformation rule a section ® of Kihler weight (p, ) is®

0a® = —a’(z)(Ly — K7)®, (B.1.35)

where L stands for the symplectic and Kéahler-covariant Lie derivative w.r.t. K and
is given by

La® = {£n — [Sa — 3(pAa + ¢NL)]}®, (B.1.36)

6 Again, spacetime and target space tensor indices are not explicitly shown. Symplectic indices
are not shown, either.
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where the Sp are sp(271) matrices that provide a representation of the Lie algebra of
the gauge group Gy acting on the section ®:

[Sa, Ss] = +fanSa. (B.1.37)

The gauge covariant derivative acting on these sections is given by

0,8 = {Vy+D.ZT;+D,2"Ti + 1(pka' 0K + qky* 0;-K)
‘ (B.1.38)
+g AN [Sa + L(p— )Pa — (£4 — Ka)]}®.
Invariant sections are those for which
La® =0, = £,0=[Sx— 3(pAa +qA})]P, (B.1.39)

and their gauge covariant derivatives are, again, the covariant pullbacks of the Kahler-
covariant derivatives:

0,0 =29,2D;+9,7" D;-d. (B.1.40)

The prime example of invariant field is the covariantly holomorphic section £L(Z, Z*)
of the N = 1,d = 4 theories. This is a Kéhler weight (1, —1) section related to the
holomorphic superpotential W(Z) by

L(Z,7%) =W (Z)e?, (B.1.41)

and its covariant holomorphicity follows from the holomprphicity of W:

Di- L = (0 +1Q4-)L = /20, (e77/2L) = /20, W = 0. (B.1.42)

In order for the global transformation Eq. (B.1.3) to be a symmetry of the full
theory that we can gauge £ must be an invariant section, that is

LaL={£r+3Aa —AN)IL=0, = KaL=—-3(A—A)L. (B.1.43)
Then, under gauge transformations it will transform according to

Bul = o () (0 — ARL. (B.1.44)

and its covariant derivative will be given by

DuL = (u +iQu)L =D, Z'DiL, (B.1.45)
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where we have defined

Q.= Q,+gA,Pa. (B.1.46)

Observe that this 1-form is, in general, different from the “covariant pullback” of
the Kéhler 1-form:

+9,72'9;K + c.c.. (B.1.47)

The difference between this and the correct one is

20,70,k + c.c. — Q, = gA*,.SmAy , (B.1.48)

and only vanishes when the isometries that have been gauged leave the Kahler po-
tential exactly invariant (i.e. Ay = 0).

It should be evident that D;L is also an invariant field and, therefore the part of
the N = 1,d = 4 supergravity potential that depends on the superpotential

—24|L|* + 8G9 D, LD;- L7 . (B.1.49)
is automatically exactly invariant.
On the other hand Eq. (B.1.34) proves that the momentum map itself is an in-
variant field. Then,

daPa —a®(2) fsa*Pa,

D,Px = 0,Pa+gfasA,Pa, (B.1.50)

D, Pr = ’D#Zia{PA + @#Z*i*ap'P/\ ,
and the part of the N = 1,d = 4 supergravity potential that depends on it

1 1g%(Sm f) AP Py (B.1.51)

is also automatically invariant.

Finally, let us consider the spinor of the theory. They are not invariant fields, as
they do not depend only on te Z¢. They have a non-vanishing Kihler weight which is
(—1/2,1/2) times their chirality. For instance, for the gravitino of the N = 1,d = 4
theories we have

Sathy = —foM@)(Ax — AR)Uy
(B.1.52)

Dby {(Vu+ 10},



B.2 Kiahler weights of certain frequently used objects

B.2 Kahler weights of certain frequently used ob-
jects

The Kéahler weights (g, q) of an object as defined in Eq. (B.0.18):

€ el €r el Al 1/J]H € n
q| 1/2 | =1/2| 1/2 | =1/2 | =1/2 | 1/2 1/2 | —1/2
ql|-1/2| 1/2 | -1/2| 1/2 /2 | —=1/2 | =1/2 | 1/2
Table B.2.1: Kahler weights of certain fermionic fields
ZVIFAN | GH TV | U | TA | Ta | Nas | DUy | Dl | Ciji
g| O 0 -1 1 1 1 -1 1 0 1 1 2
G| O 0 1 -1 | -1] -1 1 -1 0 -1 -1 -2

Table B.2.2: Kahler weights of certain bosonic fields







Appendix C

Special Kahler geometry

In this appendix we shall discuss the geometric structure underlying the couplings of
vector supermultiplets in N = 2 d = 4 supergravity, which has received the name of
special Kahler geometry.

Having discussed the coordinate independent formulation of special geometry, we
shall make contact to the original formulation of Lauwers and De Wit in appendix
(C.1) by means of a function called the prepotential. Appendix (C.2) we shall discuss
the topic of isometries in special geometry and how this is used in order to construct
gauged supergravities. Finally, in appendices C.4) and (C.4) we shall discuss some
specific examples of special geometries.

The formal definition of special geometry starts off as follows: consider a flat 27-
dimensional vector bundle E — M with structure group Sp(7i; R), and take a section
VY of the product bundle E® L' — M and its complex conjugate V, which formally is
a section of the bundle E® L~! — M. Then, a special Kéhler manifold®, is a bundle
E ® L' — M, for which there exists a section V such that

VIvy = LAMy - LM =i,
EA
V= ( My ) — DV = (O + %(’“)i*IC)V =0, (C.0.1)
®@V|V) = 0.

If we then define

1Some basic references for this material are [121-123] and the review [83]. The definition of special
Kéahler manifold was made in Ref. [124], formalizing the original results of Ref. [80].
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I
Uy =9,V = ( h ! ) ) U = (Ui)*, (C.O.?)
A
then it follows from the basic definitions that
DUy = Gy V U | U*+) = Gy,
(C.0.3)
U; | vy = 0, U 1vy = 0.

Taking the covariant derivative of the last identity ({f; | V) = 0 we find immediately
that (DU, | V) = —( U; | U;). Tt can be shown that the r.h.s. of this equation is
antisymmetric while the Lh.s. is symmetric, so that

@U; | V) = U | Us) =0. (C.0.4)

The importance of this last equation is that if we group together Eo = (V,U;),
we can see that (Ex | £*5) is a non-degenerate matrix. This then allows us to
construct an identity operator for the symplectic indices, such that for a given section
of A>T (E, M) we have

A=i(A| VW —ilA| V)V +ilA| UG U* e — il A UG U; . (C.0.5)
Using {€x, %A} as a basis for the space of symplectic sections we obtain the following

completeness relation

== V)WV + VIV [ =67 | DV)(Dp V" | 4G

DVHNDV| . (C.0.6)

As we have seen ®;U; is symmetric in ¢ and j, but what more can be said about
it: as one can easily see, the inner product with V* and U*;+ vanishes due to the basic
properties. Let us then define the Kahler-weight 2 object

Cijk = <©i Uj |Uk> — ;Di Uj = Z'Cij]ggkl*u*[* s (C.0.7)

where the last equation is a consequence of Eq. (C.0.5). Since the U’s are orthogonal,
however, one can see that C is completely symmetric in its 3 indices. Furthermore
one can show that

@i* Cjk[ = O, D[l Cj]kl =0. (008)

Observe that these equations imply the existence of a function S, such that

Cijre = 00,01 S. (C.0.9)
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The function S is given by [125]

S ~ LASMNL LT, (C.0.10)

where N is the period or monodromy matrix. This matrix is defined by the relations

Ma :J\/Azﬁz, hai :./\/'*Agfzi. (C.0.11)

The relation (U; | V) = 0 then implies that A is symmetric, which then also trivializes
Ui | Uj) = 0.

From the properties, Egs. (C.0.1), one concludes that V transforms under Kéhler
transformations as

1 .
Ve 233y, (C.0.12)
From the other basic properties in (C.0.3) we find

LASMNs L = -1 (C.0.13)
LASMNy s fZ = LASmNsf*Zn =0, (C.0.14)
A SmMs f* 5 = —1G-. (C.0.15)

Further identities that can be derived are

(NA2)LE = —2iSm(N)as f55, (C.0.16)
ON*as f5; = —2CiuG" SmNas f* Zke (C.0.17)
Cijk = fhNfR0Nis, (C.0.18)
LZ0;Npys = 0, (C.0.19)
DN as [ = 2iGi-SmNysL” . (C.0.20)

An important identity one can derive, and that will be used various times in the
main text, is given by
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UAE = fA'Lg“*f* E'L* _ _%Sm(N)fl\AE _ E*AEE , (0021)

whence (UA®)* = UPA,
We can define the graviphoton and matter vector projectors

Ta = 2iLp =2iL"Im N5y, (C.0.22)

T'A = —f*A'=—-G7 f*¥,.SmNs,. (C.0.23)

Using these definitions and the above properties one can show the following iden-
tities for the derivatives of the period matrix:

OiNrs = AT Ty,
(C.0.24)
6Z*NAE = 4-C*7,*]*k}* TZ (AT‘] E) .
For further details and identities, the interested reader can consult the basic ref-
erences [82,121-123], the review [83] or Ref. [26,38] whose conventions and results we
follow.

C.1 Prepotential: Existence and more formulae

Let us start by introducing the explicitly holomorphic section Q = e~%/2V, which
allows us to rewrite the system Egs. (C.0.1) as

Q) = XAFN—XAFf=—ie X,
A
QZ(%) - 4 0-Q = 0, (C.1.1)
@921 = 0.

Observe that the first of Eqs. (C.1.1) together with the definition of the period
matrix A imply the following expression for the Kéhler potential:

e X = 2QmAs XA (C.1.2)

If we now assume that F, depends on Z! through the X’s, then from the last
equation we can derive that

O XN [2Fp — On (XFF)] =0. (C.1.3)
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If 9; X2 is invertible as an n x 7 matrix, then we must conclude that

Fa = OpAF(X), (C.1.4)
where F is a homogeneous function of degree 2, called the prepotential.
Making use of the prepotential and the definitions (C.0.11), we can calculate
C\\Ym]:AA/ XA, %Infgg/ XEI
XQ%m]:QQ/ XQ/

Having the explicit form of A, we can also derive an explicit representation for C
by applying Eq. (C.0.19). One finds

NAE:FX2+27;

(C.1.5)

Ciji = M OX0; X7 R X Fasa (C.1.6)

so that the prepotential really determines all structures in special geometry.

A last remark has to be made about the existence of a prepotential: clearly, given
a holomorphic section  a prepotential need not exist. It was shown in Ref. [123],
however, that one can always apply an Sp(7i, R) transformation such that a prepoten-
tial exists. Clearly the N = 2 SUGRA action is not invariant under the full Sp(7i, R),
but the equations of motion and the supersymmetry equations are. This means that
for the purpose of this article we can always, even if this is not done, impose the
existence of a prepotential.

C.2 Gauging holomorphic isometries of special Kahler
manifolds

By hypothesis (preservation of the special Kéhler structure), the canonical weight
(1,-1) section V is an invariant section

KAV =[Sy — 20w = M)V, (C2.1)

and its gauge covariant derivative is given by

DYV =9,72D;)V=9,7U;. (C.2.2)

Using the covariant holomorphicity of V one can write

KAV = kpa'U —iPAV — (A — A1)V (C.2.3)
Comparing with Eq. (C.2.1) we get

EA"U;(Sp +iPa)V, (C.2.4)
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and taking the symplectic product with V*, we find another expression for the mo-
mentum map

Pa=(V"[SaV), (C.2.5)
which leads, via Eq. (B.1.33) to another expression for the Killing vectors

ka' =i0"Py = i(V | SaU™) . (C.2.6)

If we take the symplectic product with V instead, we get the following condition

(V] SAV)=0. (C.2.7)

Using the same identity and G;j = —i(U; | U}, ) one can also show that

kA'ky? Gije = PaPs —i(SaAV | SxV*). (C.2.8)

It follows that
(SV [ SgV*) = =3 fas"Pa. (C.2.9)

The gauge covariant derivative of U; is

DU =D, Z"Dill; + D, 2" Dj-lh; = iCijpld D, 2% + G, VD, 2% . (C.2.10)
On the supersymmetry parameters e;, which have (1/2,—1/2) weight
Q;,LEI = {vu + %Qu} €1, (0211)

where Q is defined in Eq. (B.1.46).
The formalism developed thus far, applies to any group Gy of isometries. However,
we will restrict ourselves to those for which the matrices

Q )
apr’s  ba

Sy = , (C.2.12)
caoy  dao”
have b = ¢ = 0. The symplectic transformations with b # 0 are not symmetries of the
action and the gauging of symmetries with ¢ # 0 leads to the presence of complicated
Chern-Simons terms in the action. The matrices a and d are

arls = fas?, dro™ = —fan” . (C.2.13)

These restrictions lead to additional identities. First, observe that the condition
Eq. (C.2.7) takes the form
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fAEQ,ﬁEMQ =0, (C.2.14)
and the covariant derivative of Eq. (C.2.7) (V| Sald;) =0

fas®(fFiMa + hoiL¥) =0. (C.2.15)

Then, using Eqs. (C.2.5) and (C.2.6) and Egs. (C.2.7),(C.2.14) and (C.2.15) we find
that

LAPy = 0, (C.2.16)
LM\t = 0, (C.2.17)
LR = —ifhipy . (C.2.18)

From the first two equations it follows that

LA =0. (C.2.19)

Some further equations that can be derived and are extensively used in the calcu-
lation throughout the text are explicit versions of Egs. (C.2.5) and (C.2.6), i.e.

Pr = 2fas' Re (LM}) | kai = ifas” (fiZ7Mp+ L7ht.) . (C.2.20)
Finally, notice the identity

ka @2 — kD2 = iDPy = i(dPa + faxTATPg). (C.2.21)

The absolutely last comment in this appendix is the following: if we start from
the existence of a prepotential F(X), then Eq. (C.2.7) implies

0 = fax" X%0r F, (C.2.22)

the meaning of which is that one can gauge only the invariances of the prepotential.
To put it differently: if you want to construct a model having g as the gauge algebra,
you need to pick a prepotential that is g-invariant.

C.3 Some examples of quadratic prepotentials

In this subsection we are going to discuss some special geometries that appear in the
main text.
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The minimal special Kdhler manifold

The minimal special Kahler manifold is not really a manifold as its main aim is to
reduce the general framework of vector coupled N = 2 d = 4 sugra to the minimal
version comprising only of the gravity supermultiplet; that is to say that there are no
scalars, whence no Kéahler space.

Having said this, consider the simple prepotential?

F = -2 (x)? (a € C/0) . (C.3.1)

@
4
As there are no scalars in this setting, we take the corresponding Kéahler potential to
vanish, i.e. K =0, so that the normalisation condition in Eq. (C.1.1) together with
the usual moduli fixing X = 1 leads to

Im(a) = 1. (C.3.2)

As we are dealing with a model having a prepotential, we can calculate the 1 x 1-matrix
N using Eq. (C.1.5), which leads to

N =-% — ImW) = -1, (C.3.3)

so that as announced Im (N) is a negative definite matrix. As one can see from
Eq. (2.2.1), the real part of a corresponds to a #-term for the maxwell field; since
this is a surface term we can put Re(a) = 0 at the cost of losing manifest EM-duality
in the action. The equations of motion are however invariant under EM-duality
transformations.

Plugging the above ‘geometry’, together with vanishing hyperscalars, into the
action (2.2.1) we obtain the, up normalisation, the standard Einstein-Maxwell action

S = [d'a+/|g|[R — F?], (C.3.4)
which is invariant under the following supersymmetry transformations

56\11;,01 - vuel + i F 'YHEIJEJ N (035)

dee,* = % Re ( Efb’yaq ) . (C.3.6)

2As there is only one symplectic coordinate, namely X°, we shall not write its symplectic index
and just put X0 = X,
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The CP" models

The CP" models _are special in that the scalar manifold is a homogeneous space
SU(1,n)/U(n) ~ CP", which is a non-compact version of CP" = SU(n+1)/U(n). It
is defined by a specific quadratic prepotential, namely

F= L XTpx with g = disg(+, []") (C.3.7)
1

Using the choice X = 1 and X' = Z¢ (i = 1,...,n), we find that the Kiihler potential
is given by

e X =1 - |22, (C.3.8)
which not only implies that 0 < |Z|? < 1, but also that the Kéhler metric is the
‘standard’ Fubini-Study metric

T

5 27
1=z~ (1-1]Z]?)?

Gy = — g7 = (1-12P) |07 - Z 27| . (C39)

Also, introducing the notations Xy = naxX> and X - X = XA XA we can express the
monodromy matrix as

i XX
Npas = 3 (UAE - 2 ¥ % ) . (C.3.10)

The imaginary part of the monodromy matrix then satisfies

XXy XpXsy
Im(N),y = %<nAz -~ vx ?7), (C.3.11)

(C.3.12)

== —A
_ XAx X xE
Im (V) WA — 9 <77A2 — X+f ) )

Since we are dealing with a quadratic prepotential, the Yukawa couplings (C;;x) vanish
identically.
The explicit solution to the stabilisation equation reads

RY = M Iy 1

SXE Toas IMTF - 29" I\ Ty . (C.3.13)

Ra = 3max I”

Cobining Eq. (C.2.22) with Eq. (C.3.7), we see that in the CP" models we can gauge
an arbitrary @ = n + 1 dimensional subgroup of SO(1,n).
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C.4 The ST7[2,n] models

The ST[2,n] models have as their Kihler geometry the homogeneous space SY&4:D x 5020
which is of complex-dimension n+1, and must therefore be embedded into Sp(n+1;R).

As we are mainly interested in the solution to the stabilization equations, which for

this model were solved in Ref. [126], and also in the gaugeability of the model, it

is convenient to start with the parametrization of the symplectic section for which

no prepotential exists. One advantage of this parametrization is that the SO(2,n)
symmetry is obvious as one can see from

VI = (L%, nax SL®) where n = diag ([+]%,[-]") and £TnL = 0, (C.4.1)

where the constraint is necessary to ensure the correct number of degrees of freedom.
Also, and for want of a better place to say so, we take the symplectic indices to run
over A = (1,0,...,n).

In order to declutter the solution to the stabilization equation Z = Sm (V/X), we
absorb the X into the £ and introduce the abbreviations p* = 7% and gn = Zs. If we
then also use 7 to raise and lower the indices, we can write the stabilization equation
as

qA _ S*pA

2iph = LA—L 2t = SsLh-st ot — o =
Sm S

. (C.4.2)

The function S is then easily found by solving the constraint £, £* = 0, and gives

g_Pa V¢ — a2

— e p? ’

so that we have the constraint p?q? > (p-q)?; the sign of Sm S is fixed by the positivity
of the metrical function, which with the above sign reads

(C.4.3)

1
[ — 242 _ . 2
2|X|2 2\/p q (p q) . (044)

We would like to stress that this solution is manifestly SO(2,n) (co/in)variant
and automatically solves the constraint £7nL = 0, without any constraints on p® nor
on ga.

For our applications, namely the regularity of the embeddings of monopoles and
the attractor mechanism, it is important to to know the expression of the moduli
in terms of (n + 1) unconstrained fields, one of which should be S as it corresponds
to the axidilaton. This means that we should have n unconstrained fields Z (a =
0,1,...,n — 1) and express them in terms of p’s and ¢’s.
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One way of doing this is through the introduction of so-called Calabi-Visentini
coordinates which means that (a =1,...,n)

£h= 1y (1422) 20 = 50 (Z2-1) Lt = Y020, (CA)

which after solving for Y° means that the scalar fields are given by

qa _ S* p(l
¢t +ig® — S*(pr+ip®)
and S is given by expression (C.4.3). Observe that in this parametrization the SO(n)
invariance is manifest.

In order to discuss the possible groups that can be gauged in these models, let
us recall that a given compact simple Lie algebra g of a group G is a subalgebra of
so(dim(g)) and furthermore the latter’s vector representation branches into g’s adjoint
representation. This then implies that in an S7[2,n]-model one can always gauge a
group G as long as n > dim(g).

In Section 5.2.2 the explicit details are given for the cP" models, but at least as
far as the embedding of the monopoles are concerned, the embedding into the S7-
models is similar. In order to show that this is the case, consider the case of a purely
magnetic solution, so that ¢* = 0, and take furthermore gy = p* = 0 and normalize
g1 = 1. Using this Ansatz in Eq. (C.4.4) we obtain

7% = (C.4.6)

s = VP = P - (C47)

which, apart from the NE is just the same expression as obtained in the CP"-models
and leads to the same conditions for the global regularity of the metric. Using the
same Ansatz in Eq. (C.4.6) for the scalars, one finds

/2
z70 = i VP pe. (C.4.8)

2 + p0\/p?
This then means that as long as p° > 0 and p? is regular and positive definite, as

is the case for the solutions in section (5.2.2), the embeddings of the monopoles is a
globally regular supergravity solution.
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Appendix D

Quaternionic Kahler
geometry

A quaternionic Kdahler manifold is, to start with, a real 4m-dimensional Rieman-
nian manifold HM endowed with a triplet of complex structures J* : T(HM) —
T(HM), (z =1,2,3) that satisfy the quaternionic algebra

JTJY = 5T 4 gTYE ) (D.0.1)

and with respect to which the Riemannian metric, denoted by H, is Hermitean:

H( J*X, J*Y ) = H(X,Y), VX,Y € T(HM), 2 =1,2,3. (D.0.2)

This implies the existence of a triplet of 2-forms K*(X,Y) = H(X, J*Y) globally
known as the su(2)-valued hyperKdhler 2-forms, with components K*,, = J¥,, =
Hywd® .

The structure of quaternionic K&hler manifold also requires an SU(2) bundle
to be constructed over HM with connection 1-form A® with respect to which the
hyperKihler 2-form is covariantly constant!, i.e.

DuK%pw = VuK%pw + %% AV K? = 0, (D.0.3)

where V,, is the standard, torsionless, Riemannian covariant derivative in HM.
Then, depending on whether the curvature of this bundle

DDK?® = e™*F¥ A KZ, F* = dA” + 1™V AY AA7, (D.0.4)

1Not just covariantly closed.
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is zero or proportional to the hyperKéahler 2-form

F* = » Kz, S R/{O} s (DO5)

the manifold is a hyperKdhler manifold or a quaternionic Kdahler manifold, respec-
tively.

The SU(2) connection acts on objects with vectorial SU(2) indices, such as the
chiral spinors in this article, as follows:?

D¢ = dér+AE . Fr7 o= dAr + AfRAAKY
(D.0.7)
Dy’

dXI+BIJXJ , Gl; = dB'; + B'x ABK;.

Consistency with the raising and lowering of vector SU(2) indices by means of the es,
as specified in footnote (2), then implies that

BIJ = _AIJ = —EIK AKL ELJ » (DOS)
whereas compatibility with the raising of indices due to complex conjugation implies
B ;= (A;7)". (D.0.9)

Taking these two things together, means that A;” is an anti-Hermitean matrix whence
we expand

Al = LA" (6®)7 and By = —L AT (%), (D.0.10)

7

2 2

where for the o-matrices the indices are raised and lowered with £. At this point, there
remains a question about the normalisation of the Pauli matrices, which is readily
fixed by imposing that

Fr/ = §F° (6")7, (D.0.11)
which means that
(%) = 6V 617 — ie™* (07),”. (D.0.12)
It is convenient to use a Vielbein on HM having as “flat” indices a pair (al)
consisting of one SU(2)-index I and one Sp(m)-index a =1,--- ,2m
el = v, dgv, (D.0.13)

2 On objects with adjoint SU(2) indices, such as the hyperKahler structure, it is defined above.
Furthermore, we adopt the following convenion for raising and lowering vector SU(2) indices:

x'=xse’", gr=erse’. (D.0.6)
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where v = 1,...,4m and from now on we shall refer to this object as the Quadbein.
This Quadbein is related to the metric Hy, by

Huo = U, UPY, £1,Chs, (D.0.14)

where C,g is the 2m x 2m antisymmetric symplectic metric, and C*? is the same
matrix®, so

C"*Cyg=0%3. (D.0.16)
From this definition, it follows that

2 Ua](u UﬁJ'u) (Caﬁ = HuUEIJ . (DOl?)

Furthermore, it is required that

Uarw = (U21,)* = €75Cup UP7,,. (D.0.18)
The inverse Quadbein U",; satisfies
Uas® U, = 6%, , (D.0.19)
and, therefore,

Uar® = H* £7,Cqp U7, (D.0.20)

The Quadbein satisfies a Vielbein postulate, i.e. they are covariantly constant with
respect to the standard Levi-Civita connection I'y, ', the SU(2) connection B, ! ; and
the Sp(m) connection A,%gs:

D, U, = 9,u*, — I,," U, + B, , U, + A5 U, =0. (D.0.21)
This postulate relates the three connections and the respective curvatures, leading to
the statement that the holonomy of a quaternionic Kéhler manifold is contained in
Sp(1) - Sp(m), i.e.

Ry, Ul U, = —Gl7 ¢ — RSV = FlYcof — R 1Y (D.0.22)

where

3We adopt the following convenion for raising and lowering vector Sp(m) indices:

X* = xgCP*, o =Capt”?. (D.0.15)
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Rtsaﬁ = 28[15A5]aﬁ + 2A[t‘a,}, A‘S]’Yﬁ, (D023)

is the curvature of the Sp(m) connection.

The covariant constancy of the Pauli matrices and symplectic metric together
with the covariant constancy of the Quadbeins suggests that it should be possible to
express the hyperKéahler 2-forms in terms of them. One can check that

me, = —’L'O'IIJUOJUUQJU(CQQ 5 O'IIJ = O'IIKEJK ) (D024)

satisfies the quaternionic algebra Eq. (D.0.1) and is covariantly constant, as required.
This leads to

Ualu UﬁJU Caﬁ — %HU’UEIJ _ %Kzuvaz IJ7 ol = EKIO'IKJ. (D025)

The symmetric part of this equation is just Eq. (D.0.17) and the antisymmetric part
of this equation leads to

KIJu'U = %Kmuvom LJ = _Ual[u UBJU] (Caﬁ, (D026)

from which we get the useful relation

FM,IJ _ _%CaﬁualuuﬁJva[Hquay]q” . (D.0.27)

D.1 Gauging isometries of quaternionic Kahler man-
ifolds

We start by assuming that the metric H,, admits Killing vectors kp“ satisfying the
Lie algebra

[kas ks] = = fas®ka, (D.1.1)

where, as in previous cases, for certain values of A the vectors and the structure
constants can vanish. The metric and the ungauged sigma model are invariant under
the global transformations

0aq" = aAkA“(q) . (D.1.2)

In order to make this global invariance local, we just have to replace the standard
derivatives of the scalars by the covariant derivatives

D,q" = 0u¢" + gAA#kA“ , (D.1.3)
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which will transform according to

6aD,q" = a™(2)0,kn "D uq" (D.1.4)

provided that the gauge potentials transform in the standard form Eq. (B.1.6).

This is enough to gauge the global symmetry of the scalars’ kinetic term. However,
the isometries of the metric need not be global symmetries of the full supergravity
theory. They have to preserve the quaternionic-Kéhler structure as well, and not just
the metric. In order to discuss the preservation of this structure, we need to define
SU (2)-covariant Lie derivatives.

Let 1" (q) be a field on HM transforming under infinitesimal local SU(2) transfor-
mations according to

NPT = —e™VENYY7 | (D.1.5)

Its SU(2) covariant derivative is given by
Dy® = dyp® + e"YZAYY* | (D.1.6)
where the SU(2) connection 1-form transforms as

SAAY = DA” . (D.1.7)

To define an SU(2)-covariant Lie derivative with respect to the Killing vector kp
La, we add to the standard one £ a local SU(2) transformation whose transforma-
tion parameter is given by the compensator field W *:

LaY® = £A9" + ™ Wy Yep*, (D.1.8)
which is such that
5}\WALE — £A)\;E _ EwyZ)\yWAZ — LA)\LE . (D19)

L is clearly a linear operator which satisfies the Leibnitz rule for scalar and vector
products of SU(2) vectors. The Lie derivative must also satisfy

[La, Le] = Lk, , ke] (D.1.10)
which implies the Jacobi identity. This requires
L£AWs? — L5WAT + eV WL YWE = — fan" Wp?, (D.1.11)

where, due to the assumed linearity of Wy on ka, Wik, k) = — fax"Wr.
In order to satisfy equation (D.1.11) we introduce another SU(2) vector
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Wp* = kp“A%, — PA®, (D.1.12)

which has to satisfy the equivariance condition

DAPs® — DyPa” — 2Py YPs® — 3 kpn"ks" K¥yy = —fax' Pr”, (D.1.13)

where Dy = kp“D,, and we have used Eq. (D.0.5). PA” is going to be the triholomor-
phic momentum map when we impose the preservation of the hyperKéhler structure
K? by the global transformations Eq. (D.1.2) and this compensating SU(2) transfor-
mation with parameter Wy . This condition is expressed using IL:

LaK yy = L£AK 4o+ (ka " AY =P AY)KZ 1y = —2Dpy (ka K" o)) —"¥*PA YKy = 0.

(D.1.14)
Using the covariant constancy of the hyperKéahler structure, this condition can be
rewritten in the form

2(Viuka" )K" o) — €77 PAYK = 0, (D.1.15)
and, contracting the whole equation with K¥*? we find

K“”Vuk/\v = —2mPAI. (D.1.16)

Acting on both sides of this equations with D,, and using the Killing vector identity
v’wvukl\’u = RwruvaT we get

kA" Ruprun K®*Y = —2mD,,PA”" . (D.1.17)
Finally, using Egs. (D.0.24) in Eq. (D.0.22) we get
Ryrun K¥YY = —2mF% . = —2msc K%, (D.1.18)

and substituting above, we arrive at

DuPAI =2 Kmuvk[\v 5 (Dllg)

which can be taken as the equation that defines the triholomorphic momentum map.
From this equation we find

DsPA” = 2 ks"ka"K¥ 0 (D.1.20)
and, substituting directly in Eq. (D.1.13) we get
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LAPs” = DAPs™ — e™*PyYPy* + fasPo” =0, (D.1.21)
which says that the triholomprhic momentum map is an invariant field and

TP AYPs® — 3¢ kp ks 'Ky = faxTPo” . (D.1.22)

Now, for a field ® (possibly with spacetime, quaternionic, SU(2) or gauge indices)
which under Eq. (D.1.2) transforms according to

0a® = —a(Lpn — kp)P, (D.1.23)
we define the gauge covariant derivative

0,0 ={V, +9,¢"Tu — gA",(La — ka) + D,q"A",}D. (D.1.24)

For the triholomorphic momentum map, we have, on account of Eq. (D.1.21),
which we can rewrite in the form

kpa"0,Ps® = —e™*(kp"AY,, — PAY)Ps® — faxPq®, (D.1.25)

the following expressions for its gauge covariant derivative
D,PAT = 9,PAT 4+ ™VPAY,PA* + fax AT, Po® (D.1.26)

DuPA" = Duq"DyPr", (D.1.27)
where we have defined
AT, = 89,q"A%, + gAL PA". (D.1.28)
Under Eq. (D.1.2), spinors with SU(2) indices undergo the following transforma-
tion
Sathr = —a Wy 20" 70 (D.1.29)
Then, using the general formula, their covariant derivative is given by
D01 = Vb + A%, 107y (D.1.30)

If we take into account their Kéhler weight and possible gaugings of the isometries
of the special-Kéhler manifold, we have for the supersymmetry parameters of N =
2,d = 4 supergravity

@HEI:{vu+%QAH}6]+AwM%U$[J6J. (D.1.31)
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D.2 All about the C-map

The c-map is a manifestation of the T-duality between the type ITA and IIB theories,
compactified on the same Calabi-Yau 3-fold. Since T-duality in supergravity theories
is implemented by dimensional reduction, to be told that the c-map is derived by
dimensionally reducing an N = 2 d = 4 SUGRA coupled to n vector- and m hyper-
multiplets to d = 3, and dualizing every vector field into a scalar field, should not
come as too big a surprise.

D.2.1 Dual-Quaternionic metric and its symmetries

In order to derive the c-map, consider the, rather standard, KK-Ansatz

v = e ?e ; ey = e (dy+ A,
AN = BALCM(dy+A)  — FMN = FM 4dCMA(dy+4), (D.2.1)
FA = dBM» + CMF , F = dA,
and use it on the ungauged action (2.2.1); the resulting action reads
S = / &g [%R +d¢? — e 2Im(N)yy dCACE + GiydZidZ’ + Huvdqqu}
+/(%3T MA «F + §7 A Qde) (D.2.2)
3
where we have defined the (@ + 1)-vectors §7 = (dB*,dA) and €T = (C*,0).
Furthermore the (7 + 1) x (7 + 1)-matrices M and @ are given by
Im(N) Im(WN) - C Re(N) 0
M = 2¢*¢ ;Q = 2 .
™ Im(N) T Im(N) - C — <2 CT - Re(N) 0
(D.2.3)

The field strengths can then be integrated out by adding to the above action a La-
grange multiplier term 7 A d£, imposing the Bianchi identity dF = 0. § can then be
integrated out by using its equation of motion *F = M~1(d€ + Q d¢€), resulting in
3d gravity coupled to a sigma model describing two disconnected quaternionic man-
ifolds, one with metric Hqy,dq“dq", and the other one coming from the gravity- and
vector multiplets. Taking £ = (T, 6) we can write the metric of this 4n-dimensional
quaternionic manifold as

2 .=
dsho = d¢* — e *Im(N)ag dCNC™ + % <d9 - CAdTA> +Giy dZ' A7

— L 20 (N) AR (dTA + 2Re(W )AdeK> (de; + 2Re(W )Efdcf(p.z@
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The fact that this metric is indeed quaternionic was proven in [69]. This kind of
quaternionic manifolds is, for an obvious reason, called dual quaternionic manifolds,
and is generically characterized by the existence of at least 2(m + 1)-translational
isometries [127], about which more in a few lines.

Anyway, seeing as this dual quaternionic manifold comes from a special geometry it
is nice, and even possible, to write it in a manifestly Sp(2m; R) covariant manner: this
is achieved by doing the coordinate transformations Th — —27T and 6 — 6 — CATy
and introducing the real symplectic vector Y7 = (Y, Y)) = (C*, Th), resulting in

dsho = do* + GiydZ'dZ" + e (d) — (Y|dV))* + e 22 ayT M dy, (D.2.5)

where 9 is the 27 X 2n-matrix

Im(N) + Re(N)Im(N)~1Re(N) —Re(N)Im(N) !
m = — D.2.6)
—Im(N) " Re(N) Im(N)~!

— 20 Re (v v+ U g u}) ar, (D.2.7)

where  is the inner product left invariant by Sp(2m;R). Moreover, 9 is positive
definite and has the correct and obvious properties [128] to make the metric Sp(2m, R)-
covariant.

As mentioned above, the Dual-quaternionic metric always has 2(f7+1) translational
isometries and introducing dx = Jya and 0N = 0y, the Killing vectors for these,
obvious, isometries are given by

U = 0+ +V2n+2000 ; V. = 0,
(D.2.8)
XA = 9h 4 YAy , XA = 0Orn — YrOpg.

These vector fields satisfy the commutation relation of a Heisenberg algebra, i.e.

[UaXA} = _XA 9 [Uu XA] = _XA 3
(D.2.9)
V] = —2v . [XMXg] = 2005 V.

The automorphism group of this Heisenberg algebra is Sp(7m, R), as was to be expected.

As discussed in Appendix (C.2), the special geometry can also have isometries and
we must then ask ourselves how these manifest themselves in the Dual Quaternionic
geometry. The key to finding out how these isometries act, lies in Eq. (D.2.6) and
Eq. (C.2.1), which allows one to derive

£ = —SEom — o S . (D.2.10)
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This transformation the means that the lift of the special geometry Killing vector K
to the Dual Quaternionic metric is given by

K = K0; + K0 + fas? [V50a — Ya0¥| = K'0; + K0 + Y ST 0%, (D.2.11)

where we have defined the symplectic vector 8% = (95,9*)T. The advantage of
writing the Killing vector like this, becomes clear when we want to confirm that the
commutation relation in Eq. (D.1.1) holds for the lifted Killing vectors. In fact, using
the identity 8% YT =1, this calculation is a trifle. Of course, we can also introduce
the symplectic vector of generators

X' = (X0, XN =+ oyv o X = ol xE, (D.2.12)
then one can see that
[Ka, X7 = —ST x° | [KA,Xb} = Sy X", (D.2.13)

And the rest of the actions of K vanish. And just in case you were wondering, you
can see that this action satisfies the Jacobi identity. A useful relation is

wdy = S V. (D.2.14)

D.2.2 The universal qK-space

Let us first have a look at the case when we c-map the minimal theory. In that case
a Quadbein is easily found to be

EO FO \/§ EY = dd) + i872¢ [d@ - <y|dy>]
el = < _F0 FO > with
FO = e 2 Y|V
(D.2.15)
where we have chosen to keep V for future convenience. The needed su(2) connection
can easily be found by using Eq. (D.0.21) and leads to

Al = 2y21Im (F°)
A = —2v2Re(F%) , and A% = -2 Im(E°) o® . (D.2.16)
A3 = 21Im(E°)

The field strengths for the above su(2) connection can be compared with the triple-
Kaéhler structures defined in Eq. (D.0.24), which can be calculated straightforwardly



D.2 All about the C-map 233

to give

K! = —2Im (EO Aﬁ) . K2 = —2Re (EO Aﬁ) LK = —Im (EO ANED — FOAW)
(D.2.17)

Said comparison then shows that the connection and the triple-Kahler structure sat-

isfy Eq. (D.0.5) with s = —2, in concordance with the results obtained from the KSIs

and can be seen as a further check on the consistency of the determination of .

D.2.3 Quadbein, su(2)-connection and momentum maps

In the foregoing section we derived the su(2) connection for the simplest of dual
quaternionic spaces, and in this section we shall determine it for the general DQ-
spaces in Eq. (D.2.5). The first thing to do is to write down a suitable Quadbein
and find the the As. A convenient way to do this is by looking at the example in
the foregoing section and asking oneself what: can possibly change in the connection?
Most of the objects that enter in the general case have index properties that arrise
from special geometry and, seeing as we kept everything as symplectic invariant as
possible, we should expect the su(2) connection to be as covariant as possible. This
basically means that only the K&hler connection, Q, can appear. In fact, it must
appear as FY has a non-vanishing Kahler weight.

In order to advance, spilt the Sp(2m)-index a as (A @), with @ = 1,2 and A =
0,1,...,n, where n is the number of vector multiplets before applying the c-map.
This then enables us to write down a putative Quadbein and use it to calculate the
triple-Kéahler forms, i.e.

KI = —2Im (EAAW)

_ EA A __

yAan = (_ﬂ ﬁ) and { K2 = —2Re(EMAFY)
K3 — —Im(EA/\ﬁ — FA/\W)

(D.2.18)
where of course the expressions for the A = 0 components are the ones given in
Eq. (D.2.15). Introducing the Vielbein E;* (i,a = 1,...,n) and the tangent object
U® through the definitions

EES =G5 , U =UTE °, (D.2.19)
we see that imposing Eq. (D.0.5) with r = —2 and the choice

Al = 2v2Im (F°) , A*> = —2v2Re(F°) , A* = V2Im (E°) + Q, (D.2.20)
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which is dictated by the A = 0 sector, implies that

E° = dé + ie7??[do — (Y|dY)] FY = e~ ?dy|Vv)
\/§EA:{ i o andFA:{
E* = E;dZ’ Fe —e~ P (dYU”)
(D.2.21)
So even though it might seem strange, the index A splits as A = 0, @ and the minus-sign
in the definition of F'® in not a typo, but is necessary.
Having found the connection and the triple-K&hler forms, we are all set to start
finding the momentum maps corresponding to the isometries (D.2.8) and (D.2.11).
Let us start with the easiest ones: U and V. Their momentum maps are readily found

to be

veooP= g U P = 202 (V)
P2 = 0 P2 = —2y2e?Re((YV))
P3 — 20 P3 = 2299
XA . PAL = 22 ¢ Im(VA) Xy o PL o= —2v/2 e Im (Va)
PA2 = —2y2¢¢ Re (V) PR = 2v2e?Re(Va)
PA3 — 9,20 PA P} = —2¢720 ),
(D.2.22)

This then concludes the discussion of the momentum maps for the ever-present
Heisenberg isometries of the DQ-spaces; what remains to be done however is to find
the momentum maps for the isometries inherited from the Special Geometry, namely
the isometries displayed in Eq. (D.2.11). This can of course be calculated and results
in

PL = —2v3c Im ((V[S))))

P2 2v2e7? Re ((V|SAV))

P = Pr — e 22 (YIS\Y), (D.2.23)

where Py is the U(1)-momentum map defined in Eq. (B.1.29).
Let us end this appendix with a small remark: we derived the c-map through
dimensional reduction over a spacelike circle. Similarly one can dimensionally reduce
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the action over a timelike circle, resulting in a space of signature (27, 21) and whose
holonomy is contained in Sp(1,R) - Sp(7). In the rigid limit, 7.e. when A = 0, one
recovers the (1,2)/para-hyperKéhler structure discussed in e.g. [129,130] The para-
universal para-quaternionic manifold, i.e. the manifold one obtains by the timelike
c-map from minimal N = 2 d = 4 SUGRA, can be seen to be SU(1,2)/U(1,1).






Appendix E

Projectors, field strengths
and gauge transformations of
the 4d tensor hierarchy

E.1 Projectors of the d = 4 tensor hierarchy

The 4-dimensional hierarchy’s field strengths are defined in terms of the invariant
tensors ZMA, YamZ, WCMAB, WCNPQM, WeonpEM™ which act as projectors. In this
appendix we collect their definitions and the properties that they satisfy.

The projectors are defined by

+l19AA
2 b
zP4 = —%QNpﬁNA_{ , (E.1.1)
_%19AAa
Yan© = 9uBfap® — TanN N, (E.1.2)
WMAB = —ZM[A5CB], (E.1.3)
Wenpe™ = Towpdg)™, (E.14)

WCNPEM = ﬁNDfCDE(SPIM + XNPM5CE — YCPE(SNIM . (E15)
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They satisty the orthogonality relations

ZMAY, NG = JMMQpN© =0, (E.1.6)

Yanu S WeMAB = Yuu“Wonpo™ = Yau“WenpP* =0.  (E.1.7)

Taking the variation of the relations between constraints Egs. (3.2.10), (3.2.13)
and (3.2.16) we find

QPYppt —LZN4QnpF = 0, (E.1.8)

Q(MN)A —3LynpZPA —2Q4PTpun = 0. (E.1.9)

Differentiating these identities with respect to the embedding tensor, using Eqs. (E.2.7)-
(E.2.9) we also find the following relations among the W tensors:

1
—ZQMPEC% + QP [6Y fec” — Tep™oE] =0, (E.1.10)

WC(MN)AQ —3WemnpQZP4 — %LMNQ5CA — 2We 9B Ty =(®.1.11)

E.2 Properties of the IV tensors

The W tensors defined in Egs. (3.2.57)-(3.2.59) satisfy the following properties, which
relate them to the embedding tensor constraints:

O CWMAB = 2QAB (E.2.1)
On“Wenre™ = Lypg, (E.2.2)

O WenpfM = 20Qn5p7, (E.2.3)
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AB

gg—c WeMAB (E.2.4)
M
oL

a(ajifg = Wonpo™, (E.2.5)

o E
a%]; fc Wenp™™ . (E.2.6)

Under variations we have

5®]WCWC]WAB _ ®A4C(5WCMAB _ %6(®MCWC]WAB) _ 6QAB, (E27)
5®MCWCNPQM = 5LNPQ, (E.2.8)
50M“Wenp™™ = Ou“sWenp™ = 3604 “WenpPM) = 5QnpHE.2.9)

where Q48, Qnp” and Ly pg are the quadratic and linear constraints Eqgs. (3.2.10),
(3.2.13) and (3.2.16) imposed on the embedding tensor and where we have not used
the constraints themselves.

E.3 Transformations and field strengths in the D =
4 tensor hierarchy

The gauge transformations of the different fields of the tensor hierarchy are



Projectors, field strengths and gauge transformations of the 4d tensor

240 hierarchy
oAM= _DAM _ ZMAN (E.3.1)
6nBa = DAs+2Tanp[ANFY + AN N6, AP = Yan“AcM, (E.3.2)

5hOAM = @AAM — FM A Ay — 5hAM N By — %TANPAM A AN A 5hAP + AMHA

_WA]WABAAB _ WANPQ]WANPQ _ WANPEMAENP ,

0nDap = @AAB+OZB[A/\YB]PEAEP+®A[A/\BB]—2A[A/\HB]
+2T[A‘NP[ANFP — %AN A 5hAP] N B‘B] R (E.3.3)
DT = DANT —[FN - 1(1 - a)ZN“ Bl A A"

+Cr" AR AN + LETporAN AN AT N A NS AR + ANGEY,  (E3.4)
5 DNFC = DANFQ 24N A dAF A5, AD — 3 X pg N AP A AR A A5 A 5, A9

—3ANFP A FQ (E.3.5)

and their gauge-covariant field strengths are

FM o = dAM 4+ LX(ypM AN N AT + ZMABy, (E.3.6)
Hy = ®Bs+ TARsAR N [dAS + %XNPSAN N AP] + YAMCCCM ,(E.3.7)
G = DCM+ [FM — LZMABA A B + $Te s AM N AS A dAC

+TcsoXnrTAM A AS N AN A AT

HWeMABD op + Wenpo™ DVPQ + WonpPMDENP | (E.3.8)

These field strengths are related by the following hierarchical Bianchi identities
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OFM = ZMAg,, (E.3.9)

DHy = Yanu°GeM +TayunF™ AFN. (E.3.10)

E.4 Gauge transformations in the D = 4 duality hi-
erarchy and action

In hierarchy variables, the total action takes the form

S = /{*R—2gij*©Zi/\*©Z*j*+2FE/\GE—*V

—AZFABA N (Fs — 3255 Bp) — § XunnAM N AN A (F® — 255 Bp)
—%XUWN]EAIM ANAN A (dAE — iX[PQ]ZAP A AQ)
=209 A (CaM + AM A Ba) +2QnpP (DENT — LAN N AP A Bp)

+2Q4BDap + 2LnpoDNFC} |

(E4.1)
A general variation of this action is given by
6S S 0S 08
— nv 7 _ M
58 /{59 S + (5Z 37 +c.c.) 5A /\*MM +20By4 /\*5BA

=209 A N SCAM +2QNpPIDENT + 2Q4B6Dap + 2L pgd DNTR

+519MA

619MA} ’
(EA4.2)

where
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hierarchy

0S
dghv

L 08
2571

. 68
it

Xl {GW +26,;- [0, 20,27 — 10,,0,2'9°2°" | = GM " % Gt

+39wV} (E.4.3)
Gij D *DZ* —9,Gyt AGMT — 510V, (E.4.4)
DFy — 300 % ja — 3dX (por AN AY AN A9 + LQupPCr’ — 3Qvan" AN A Bg
—LunpAN A (dAT + 2X(pg " AR AN AS) + 2QN P TEquAN A AT A A9

—d(Fax — Gur) — Xpuny P AN A (Fp — Gp) + 200" A By, (E.4.5)
9PA(Fp — Gp) + QP Bp — DIy A AM — JQnp? AN A AT, (E.4.6)
(Ga™M — L% 0V/90u™) — AM A (Ha + S % ja)

+3Tanp A AN AN AN (FP - GP) = (FM = GM) A Ba, (E.4.7)

and vanishes, up to total derivatives, for the gauge transformations
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Sa¥nr?
A

5, AM
0aBa
5.0 4M
daDaB
5D P

5,DNFQ

0,

AMG Ak AT

o, AM 7

0nBa —2TA npAN(FF —GF),

SpCAM F Aa N (FM —GMY — AM(H4 + L % j4),

(E.4.8)
(E.4.9)
(E.4.10)
(E.4.11)

(E.4.12)

6nDap + 204 A (Hp) + 3 % jg)) — 24 np AN (FF — GP) NBi#13)

5 DN — AN(GET — L% 0V/00pE) + 2(FN — GN) A ApTE.4.14)

5, DNPR — 35 AN A AP A (FO — GD) + 6AN P A

S3AN(FP —GPYA (FP - @9y,

(FQ —G9)

(E.4.15)






Appendix F

The Wilkinson-Bais monopole

in SU(3)

In Ref. [100], Bais and Wilkinson derived the general spherically symmetric monopoles
to the SU(N) Bogomol'nyi equations. In this case we are going to discuss their

monopole for the case of SU(3) as it can be embedded into the @8, ST[2,8] and the
SU(3,3)/S[U(3) ® U(3)] model.

The derivation is best done using Hermitean generators and in the fundamental,
which means that we use the definitions

DD = db—i[A,®] , F = dA — i ANA, (F.0.1)

where A and ® are su(3)-valued, and we have taken g = 1.
The maximal form of the fields compatible with spherical symmetry are given by

© = Ldiag[ei(r) ; ¢a(r) — da(r) ; —a(r)] (F.0.2)

A = Jzcos(@)de + 4 [C—Ct] do + L[C+CT] sin(0)dp, (F.0.3)

where J3 = diag(1;0; —1) and C is the real and upper-triangular matrix

0 al(r) 0
C = 0 0 ax(r) | . (F.0.4)
0 0 0

Plugging the above Ansétze into the Bogomol'nyi equation ©® = xF, leads to the
following equations (i = 1,2)



246 The Wilkinson-Bais monopole in SU(3)

T28T¢i = a?—2 5 287«0,1 = a1 (2¢1—¢2) 5 287«0,2 = az (2¢2—¢1) . (FO5)

Following Wilkinson and Bais [100], we solve the equations for the a; by defining new
functions Q;(r) through

V@2 _ e

i = —OplogQi+2 , a1 = , a2 = ,
) gQ 1 O 2 05

r

(F.0.6)

after which the remaining equations are

Q2 = 9,Q10,Q1 — Q102Q1 , Q1 = 0,Q20,Q2 — Q20°Q> (F.0.7)

The solution found by Wilkinson & Bais for SU(3) then given by

0 = 22:1 Ha
Ql = Zi:l A, ete”
, — A = —AyAs (m_ug)z . (F.0.8)
Q2 = Do,q AgeHam Ay = —AzA (M3—M1)2
A3 = —AjA (,ul—uz)
The solution to the above equations is
Ao = [ (a =)™ (F.0.9)

b#a

Defining the useful quantity V,, = 22:1 Ao, we can see by direct inspection
that Vo = V4 = V3 = 0 and that V3 = 1. Using these quantities one can see that
around 7 = 0 we see that Q; ~ r2/2 + O(r?), which means that the ¢; ~ —Vy/3! r +
O(r?), implying that the solution is completely regular on R3. Furthermore, one can
show that the () are monotonic, positive semi-definite functions on Rt that vanish
only at r = 0, at which point also its derivative vanishes. This furthermore implies
that the ¢; are negative semi-definite functions on R*.

The asymptotic behaviour of the Higgs field is easily calculated and, choosing

w1 < po < ps, is readily seen to be

1
lim@:—%diag(u;g;ug;ul)—i—;b +... (F.0.10)

T—00

from which the breaking of SU(3) — U(1)? is paramount.
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The above solution does not admit the possibility of having degenerate u’s, but
as emphasised by Wilkinson & Bais, such a solution can be obtained as a limiting
solution. For this, define 3 = —2, uo = 1—46 and puz = 1+, for § > 0, and calculate
the solution. This solution admits a non-singular § — 0 limit, which is

Q= B[+ Grone] Q= R - @reDe] . oL

The symmetry breaking pattern in this degenerate case is SU(3) — U(2) as be-
comes clear from the asymptotic behaviour of the Higgs field, i.e.

1
lim @ = —Y + — Y where Y = 1 diag(1, 1, —2) . (F.0.12)

r—00 r

F.1 A hairy deformation of the W&B monopole

The foregoing derivation of Wilkinson & Bais’s monopole was cooked up to give a
regular solution, and we would like to have a hairy version of this monopole. This
is easily achieved by applying the Protogenov trick, which calls for adding constants
in the exponential parts of the monopole fields; in this case, we simply extend the
Ansatz for the Q;’s to

3 3
Qu =Y Ageterthe Q=% Ay e ter e, (F.1.1)
a=1 a=1

and plug it into Eq. (F.0.7). Obviously this leads to a solution if Y, p, =>.8, =0
and A, is once again given by Eq. (F.0.9). Furthermore, it is clear that the asymptotic
behaviour does not change and it is the one in Eq. (F.0.10); what does change is the
behaviour of the solution at » = 0, which is singular except when 3, = 0.

Using the above expression we can also create a hairy version of the degenerate
monopole: we have to make the same Ansatz as the one used in the derivation of
Eq. (F.0.11), and also define 32 = s + 6v/3, 03 = s — 6v/3 and ;1 = —2s, which is
the maximal possibility compatible with a regular limit. Taking then the limit § — 0
we find

Qi = 4[24 @ray—Det] L Qe = F[0T) — Bray+1)e )]
(F.1.2)

which leads to ¢;’s that are singular at » = 0 but with the asymptotic behaviour
displayed in Eq. (F.0.12).
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