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Resumen

En esta memoria de tesis doctoral presentamos un formalismo para estudiar perturba-
ciones a altos 6rdenes de espaciotiempos esféricos. Proporcionamos un método recursivo
para construir variables invariantes gauge a cualquier orden perturbativo. En particular,
a segundo orden construimos explicitamente los objetos invariantes gauge y sus ecuaciones
de movimiento. Seguidamente, aplicamos este formalismo general a los espaciotiempos de
fondo (backgrounds) especificos correspondientes a la solucion de Schwarzschild y a un flui-
do perfecto. También analizamos las condiciones perturbativas de ensamblaje (matching) a
través de una superficie temporal que separe una estrella de fluido perfecto del vacio. Estas
investigaciones tienen como resultado un marco completo para estudiar varios problemas de
relevancia astrofisica, desde el acoplo de modos cuasinormales en la fase ring-down de una
binaria de agujeros negros, hasta la evolucion de segundas perturbaciones de una estrella

esférica en colapso.

Motivados por la biisqueda de una descripcion més sencilla de la radiacion gravitatoria,
también estudiamos con un tratamiento hamiltoniano las perturbaciones lineales de un
espaciotiempo esférico con un contenido material de campo escalar. Tras realizar varias
transformaciones canénicas, conseguimos definir, por primera vez para un fondo dinamico,
dos variables master, en el sentido de que obedecen ecuaciones de evolucion sin ligaduras y

que la métrica perturbada completa se puede reconstruir a partir de ellas exclusivamente.

Asimismo, durante el transcurso de la realizacion de esta tesis, hemos disenado varios
modulos de computacion algebraica para manejar las complejas ecuaciones del formalismo.
Dichos modulos, que estan accesibles en internet, se distribuyen libremente, y han sido

utilizados ya por otros autores.
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Abstract

We present a complete formalism to deal with high-order perturbations of spherical
spacetimes. A method to construct gauge-invariant variables at any perturbative order
is given. In particular, the gauge-invariant metric perturbations and their equations of
motion are explicitly obtained at second order. This general formalism is then applied to
a Schwarzschild background and to a perfect-fluid spacetime. The high-order perturbative
junction conditions across a timelike surface separating a fluid star from pure vacuum are
also analyzed. These investigations give rise to a complete framework for the study of
a series of astrophysically relevant scenarios, ranging from quasi-normal mode coupling
in the ring-down phase of a binary black hole collision, to the evolution of second-order

perturbations of a spherical collapsing star.

Motivated by the search of simpler descriptions of gravitational radiation, we also study
linear perturbations of a spherical spacetime containing a real massless scalar field, in a
Hamiltonian setting. After several canonical transformations, we succeed in defining, for
the first time for a dynamical background, two master variables, in the sense that they obey
unconstrained evolution equations and the whole perturbed metric can be reconstructed in
terms of them.

During the course of this thesis, several computer algebra tools have been designed to
handle the intrincated equations of the formalism. These tools are now freely distributed,

and are already being used by other authors.






Chapter 1

Introduccion

Hoy en dia, la Relatividad General se considera la mejor teoria fisica diponible para
dar cuenta de la interaccion gravitacional clasica (en contraposicion a la cuéntica). Las
primeras confirmaciones experimentales de la teoria, ya predichas por Einstein, fueron la
deflexion de la luz y el avance del perihelio de Mercurio. No fue hasta el comienzo de la
década de 1960 cuando los descubrimientos astronomicos (como los cuésares o los pulsares)
ofrecieron nuevas observaciones con las que comprobar la validez de la Relatividad General
en el régimen de gravedad débil. Una de las més conocidas es el decrecimiento del periodo
orbital del piulsar binario Hulse-Taylor [1]|, por el que ambos investigadores recibieron el
premio Nobel [2,3]. Esta observacion se ajustaba perfectamente a las predicciones tedricas
de la Relatividad General y sirvi6 para excluir varias teorias alternativas [4, 5]. Desde los
anos ochenta, la atencion se ha centrado principalmente en encontrar observaciones en el
régimen de campo fuerte que puedan corroborar o contradecir las predicciones de Relativi-
dad General en dos extremos diferentes. Por un lado esta el limite asociado con la fisica
de la escala de Planck. Existen procesos con distancias caracteristicas muy pequenas que
producen interacciones gravitatorias fuertes, hasta cierto régimen en el que se supone que
la Relatividad General fallard debido a la fenomenologia cuantica. Por otro lado esta el
limite astrofisico, que involucra objectos muy densos de gran masa, los cuales producen tam-
bién interacciones gravitacionales fuertes. Se espera que varios fenénemos astrofisicos, tales
como colisiones de agujeros negros y/o estrellas de neutrones, emitan suficiente radiacion

gravitatoria como para ser detectada desde la Tierra en un futuro cercano.

En este contexto astrofisico, la deteccion de ondas gravitatorias se considera uno de
los problemas abiertos mas importantes de la fisica experimental. Aparte de proporcionar
un test de la Relatividad General en el régimen de campo fuerte, podria abrir una nueva

ventana para la observacion astrofisica, dando lugar a una era de astronomia de ondas
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gravitatorias. Varios detectores de ondas gravitatorias se encuentran actualmente tomando
datos (tales como GEO [6], LIGO [7] o VIRGO [8]) y existen misiones espaciales (la mas
notable LISA [9]) planeadas para los cercanos anos 2020.

La senal que se pretende detectar es muy pequena, y esta enterrada bajo varias fuentes
de ruido de origen diverso. Se han desarrollado potentes técnicas estadisticas para ayudar
en la recuperacion de la senal de los datos recogidos. Sin embargo, atin es esencial disponer
de antemano de un catalogo de patrones con posibles senales que observar (para poder
utilizar, de esta manera, las técnicas de filtro adaptado). Estos patrones solamente pueden
obtenerse resolviendo las ecuaciones de Relatividad General: las ecuaciones de Einstein.
Estas diez ecuaciones en derivadas parciales forman un sistema, no lineal y acoplado, que
resulta muy dificil de resolver. Por consiguiente, no se espera construir un catalogo con
soluciones analiticas que describa el perfil de las ondas gravitatorias emitidas en tales acon-
tecimientos astrofisicos. Solamente las situaciones con una gran simetria permiten obtener
explicitamente la solucion, y s6lo unas pocas de ellas son relevantes desde el punto de vista
astrofisico [10]. Por lo tanto, como es habitual en fisica cuando un problema no se puede
resolver de manera exacta, se recurre a métodos aproximados. Aqui mencionaremos las tres
técnicas que mejor han funcionado hasta el momento, y que se pueden considerar comple-
mentarias en el analisis de la dindmica de Relatividad General en este contexto: métodos

post-newtonianos, Relatividad Numérica y teoria de perturbaciones.

Los métodos post-newtonianos estan basados en la combinacién de una aproximaciéon de
gravedad débil (es decir, teoria de perturbaciones alrededor del espaciotiempo de Minkowski,
también conocida como aproximacion post-minkowskiana) y una expansion de las soluciones
en serie de potencias del parametro v/c, donde c es la velocidad de la luz y v una velocidad
tipica de la materia del problema en cuestion [11]. Por ejemplo, esta aproximacion es valida
para modelar las ondas gravitatorias generadas por una fuente de movimiento interno lento
y auto-gravedad débil. Truncando las mencionadas expansiones a altas potencias de v/c,
es posible considerar fuentes altamente relativistas (en la actualidad los resultados a orden
seis se utilizan sisteméaticamente [12]), y normalmente la aproximacion post-newtoniana se
comporta mejor de lo esperado. El limite newtoniano (1/¢ — 0) ya fue considerado por
Einstein [13] y por Landau y Lifshitz [14]| para derivar la famosa formula del cuadrupolo,
que permite obtener la potencia total emitida en forma de ondas gravitatorias en funcion
de la derivada temporal del momento cuadrupolar de la fuente. De hecho, esta relacion fue

suficiente para explicar el decrecimiento del periodo del pulsar binario Hulse-Taylor [15,16].

Actualmente, la Relatividad Numérica se considera, por derecho propio, una rama de la
Relatividad General [17]. Cualquier intento de resolver las ecuaciones de Einstein utilizando

métodos numéricos se podria incluir en esta area, pero aqui nos referiremos solamente



a aquellas simulaciones que traten con las ecuaciones de Einstein completas; quiza bajo
cierta reduccion de simetria (incluso trabajando con métodos post-newtonianos o teoria de
perturbaciones, es habitual tener que integrar algunas otras ecuaciones numéricamente.) Se
pueden utilizar diferentes formulaciones de las ecuaciones de Einstein para su discretizacion
en un ordenador, dependiendo de como se describa el espaciotiempo. La manera més
sencilla de hacerlo esta basada en el tratamiento hamiltoniano debido a Arnowitt, Deser y
Misner (ADM) [18,19], en el que se exfolia el espaciotiempo en una familia de superficies
espaciales tridimensionales. Otras formulaciones estan basadas en el uso de superficies
nulas, lo que ofrece un marco méas adecuado para tratar la radiacion. Hubo ya algunos
intentos de resolver numéricamente las ecuaciones de Einstein en dos dimensiones espaciales
en los anos sesenta y setenta [20,21|. Sin embargo, en aquella época los ordenadores no
tenian la suficiente capacidad para obtener resultados tridimensionales de relevancia, y las
formulaciones que se utilizaron no eran matematicamente consistentes, como se demostré
posteriormente. Laa simulaciones de binarias de agujeros negros es uno de los problemas
clave en esta area. El desarrollo de lo métodos ntiimericos y analiticos para resolverlo tuvo
lugar durante la década de los noventa. En 2005, Pretorius logr6 por vez primera evolucionar
el sistema de una manera estable [22|. Desde entonces, varios grupos de investigacion
han publicado un extenso nimero de articulos, documentando interesantes propiedades del
mencionado sistema y aportando patrones muy fiables del perfil de las ondas gravitatorias
emitidas. Ademaés del caso particular de vacio, se ha invertido un gran esfuerzo en la
simulacion de espaciotiempos con fluidos, y mas recientemente fluidos acoplados al campo
electromagnético, para modelar el colapso del niicleo estelar y la colision de estrellas de

neutrones, también fuentes importantes de radiacion gravitatoria [23].

La teoria de perturbaciones proporciona otro tratamiento aproximado, permitiendo una
descripcion en términos de pequenas desviaciones alrededor de una solucién exacta de fondo.
En el contexto de la Relatividad General, la teoria de perturbaciones ha desempenado un
papel destacado en el andlisis de la estabilidad de ciertas soluciones y en la comprension de
los procesos dindmicos en términos de simples “modos de oscilacién”, siendo actualmente un
complemento natural y eficiente de las simulaciones completas de Relatividad Numeérica [24].

En las proximas secciones la describiremos con més detalle.

Las tres técnicas aproximadas tienen sus propios dominios de validez, que normalmente
son complementarios y, por lo tanto, la mejor estrategia suele ser una combinacion de todos
ellos. Por ejemplo, las tres fases de una colisién de agujeros negros, inspiral, mergery ring-
down, se pueden describir adecuadamente mediante métodos post-newtonianos, Relatividad
Numeérica y teoria de perturbaciones, respectivamente. Durante la fase inicial, los agujeros

negros se encuentran lejos y la interaccion gravitatoria mutua es débil. En consecuencia,
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esta situacion puede describirse practicamente mediante gravedad newtoniana. Este es el
escenario perfecto para los métodos post-newtonianos. A medida que los agujeros negros
se acercan, debido a la pérdida de energia, radiada en forma de ondas gravitatorias, la inte-
raccion gravitacional mutua ird aumentando. En este punto, los métodos post-newtonianos
necesitan mas términos en sus expansiones para seguir las trayectorias con suficiente pre-
cision. Cuando los dos agujeros estan muy cerca, las no-linealidades crecen y es necesario
recurrir a la Relatividad Numérica completa para trazar las trayectorias. Al final, ambos
agujeros se fusionan en un tinico agujero negro, que sigue radiando ondas gravitatorias hasta
convertirse en un agujero negro estacionario de Kerr o Schwarzschild. Durante esta etapa
final de la evolucion dinamica, el espaciotiempo puede aproximarse mediante la mencionada
solucion de fondo més una pequena desviacion, lo que puede describirse adecuadamente a
través de la teoria de perturbaciones. A continuacion, centraremos nuestra atencion en la
teoria de perturbaciones, describiendo detalladamente su historia y logros en el contexto de
la Relatividad General.

1.1 Aplicaciones de la teoria de perturbaciones lineal

La teoria de perturbaciones puede utilizarse para estudiar la estabilidad de las soluciones
a las ecuaciones de Einstein. En particular, una considerable cantidad de trabajo se ha
dedicado a discutir la estabilidad de los agujeros negros [25] y las soluciones cosmologicas

[26], dado el interés fisico de estos espaciotiempos.

Ademés, el anélisis perturbativo nos permite comprobar la presencia de inestabilidades
gauge [27], la violacion de la ligaduras [28|, y otro tipo de inestabilidades en la imple-
mentacién numeérica de las ecuaciones de Einstein, debido a que los errores numéricos pueden

considerarse distorsiones de la solucion que se esta calculando.

Otra importante aplicacion es el estudio de la produccion y propagacion de ondas en un
determinado espaciotiempo curvo. La teoria de perturbaciones proporciona estimaciones de
la cantidad de radiacion gravitatoria y el perfil de la senal emitida en procesos astrofisicos
tales como las oscilaciones de una estrella de neutrones [29], el colapso gravitatorio de una
estrella [30], una binaria de cociente de masas extremo (extreme mass ratio binary) [31], o

una colision frontal de dos agujeros negros en el limite cercano (close limit) [32].

La teoria de perturbaciones también ha sido reconocida como una herramienta muy
util en cosmologia. Basandose en los trabajos pioneros debidos a Bardeen [33] y a Ko-
dama y Sasaki [34], se ha utilizado esta teoria para estudiar la evolucion de pequenas

inhomogeneidades en el Universo Primitivo, proporcionando una comprensiéon detallada de
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la dependencia angular del espectro de potencias en el fondo césmico de microondas. Es-
tas desviaciones de la homogeneidad han sido medidas por los experimentos COBE [35] y
WMAP [36]. La formacion de estructuras a grandes escalas también se explica mediante

perturbaciones inicialmente pequenas que han crecido con el paso del tiempo.

Existe una extensa literatura sobre perturbaciones de estrellas, debido a su enorme
relevancia astrofisica. Aqui solamente mencionaremos los articulos més importantes en los
que hemos basado nuestra extension a segundo orden de la teoria lineal de perturbaciones
de estrellas en colapso. En particular, nos centraremos en perturbaciones alrededor de
fondos esféricos, aunque se permitira que sean estaticos o dindmicos y que tengan diferentes

ecuaciones de estado.

En lo que respecta a fondos estaticos, el trabajo de Chandrasekhar a mediados de los
anos sesenta fue pionero en el analisis de las perturbaciones radiales de estrellas esféricas en
Relatividad General [37,38|. En una serie de articulos [39-43], Thorne y sus colaboradores
se ocuparon de las perturbaciones no-radiales de estrellas compuestas por fluido perfecto,
estableciendo la base tedrica para tratar dicho problema. Esta base se desarroll6 y ampli6

en otras referencias, tales como [44] y [45].

La investigacion de fondos no estaticos comenzo a finales de los anos setenta, cuando
Cunningham et al. [46,47| utilizaron un formalismo invariante gauge para evolucionar las
perturbaciones no-radiales de polvo en colapso esférico. Seidel y sus colaboradores [48-50]
aplicaron el formalismo de Gerlach y Sengupta (GS) [51-54], que es valido para cualquier
fondo esféricamente simétrico con cualquier tipo de contenido material, para evolucionar las
perturbaciones de un fluido perfecto dependiente del tiempo con una ecuaciéon de estado méas
genérica. Basandose en estas referencias, Gundlach y Martin-Garcia [55] desarrollaron un
marco covariante e invariante gauge para analizar una perturbaciéon arbitraria de un fluido
perfecto esféricamente simétrico. Dicho marco fue utilizado posteriormente por Harada et

al. [30] para analizar las perturbaciones axiales del colapso estelar.

En paralelo, la teoria de perturbaciones ha sido una de las herramientas més importantes
para el andlisis de las propiedades de los agujeros negros. El primer articulo en el que se
estudiaron perturbaciones de un agujero negro data de 1957 [56]. En esta época, los agu-
jeros negros no estaban atn aceptados como entidades fisicas. La soluciéon de Schwarzschild
a las ecuaciones de campo de Einstein era conocida, pero la vision mas aceptada era que
esta exotica solucion, constituida del campo de Finstein sin masa [56|, existia debido a la
gran (e ideal) simetria que se le presuponia. Para analizar la estabilidad de este objeto,
Regge y Wheeler (RW) estudiaron pequenias perturbaciones que se desviaban de la esfe-
ricidad. Dichas perturbaciones se clasifican en dos polaridades diferentes (polar y axial),

que corresponden a los dos grados de libertad de las ondas gravitatorias. Encontraron una
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ecuacion de onda, que hoy en dia se conoce como la ecuaciéon de Regge-Wheeler, para una
de las polaridades. Varios anos después, Zerilli obtuvo la ecuaciéon de onda correspondiente
a la otra polaridad [57]. Estas ecuaciones tienen un potencial que depende de la masa
del agujero negro de fondo y del niimero entero [, que procede de los harmoénicos esféricos

utilizados para descomponer la dependencia angular de las perturbaciones en cuestion.

Haciendo uso de estas ecuaciones, Vishveshwara encontré una respuesta convincente a la
estabilidad de la métrica de Schwarzschild [58|. Definiendo una integral de energia que debe
mantenerse constante a lo largo de la evolucion, dio una cota para la derivada temporal de la
perturbacion, excluyendo soluciones que crecieran exponencialmente. Esto parecia indicar
la inexistencia de modos inestables. Sin embargo, habia algunos vacios en el razonamiento
que posteriormente fueron completados por Kay y Wald [59]. Demostraron que cualquier

perturbacion con datos iniciales suaves y acotados permaneceria acotada puntualmente.

Otras dos propiedades sorprendentes de los agujeros negros que fueron descubiertas en
los anos setenta con métodos perturbativos fueron los modos cuasinormales y las colas con
ley de potencias power-law tails. Los modos cuasinormales son soluciones a las ecuaciones
de Regge-Wheeler y Zerilli con condiciones de contorno puramente salientes (outgoing); es
decir, en el horizonte son ondas planas dirigidas hacia el interior del horizonte, mientras que
en el infinito nulo son ondas planas dirigidas hacia fuera. Estos modos cuasinormales son los
equivalentes a los modos normales de los sistemas mecénicos convencionales en situaciones
donde existe disipacion de energia (en nuestro caso las ondas gravitatorias son las encargadas
de extraer energia del sistema). Estos modos han sido ampliamente estudiados [61], incluso
para estrellas y agujeros negros en rotacion, y su principal interés estriba en el hecho de que
sus frecuencias dependen de la masa y del momento angular del agujero negro (o estrella)
que ha sido perturbado. Por lo tanto, a través de la deteccion de los modos cuasinormales

es posible obtener informacion directa de las propiedades del objeto emisor.

Las power-law tails fueron calculadas por primera vez por Price [62,63]. Dado un radio
fijo, a tiempos altos, una perturbacion de Schwarzschild con nimero harménico [ decae como
t=2+3) " independientemente del tipo de pertubacion estudiada (escalar, gravitatoria,...).
Estas colas estan presentes también en los infinitos futuro y nulo, donde decaen siguiendo
leyes de potencias particulares [64,65]. De manera intuitiva, normalmente se interpretan

como resultado del backscattering de las ondas con el potencial de curvatura efectivo.

El andlisis se complica en lo que respecta a los agujeros negros en rotacion (Kerr). En
el caso sin rotacion se utilizan los harmonicos esféricos para descomponer la dependencia
angular de las perturbaciones y, a nivel lineal, cada multipolo evoluciona de manera indepen-
diente. Pero en el caso con rotacion los diferentes multipolos se acoplan. Sin embargo, atn

existen ciertas simetrias (axisimetria y estacionariedad) que permiten desacoplar las depen-
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dencias temporales y axiales. Utilizando la formulacion en tétradas de Newmann-Penrose
para las ecuaciones de Einstein, Teukolsky reescribi6 las ecuaciones de movimiento para las
perturbaciones lineales de un agujero negro de Kerr como dos ecuaciones desacopladas [66].
La estabilidad fue probada por Whiting [67], tras complicadas transformaciones de coorde-
nadas, utilizando el mismo método de Vishveshwara para el caso sin rotacion [58]. Debido
a que no se dispone de una nocién invariante de coordenadas de multipolo para el fondo
Kerr, las leyes de potencias para las tails dependen de la exfoliacion [68,69]. Incluso se ha

argumentado que el decaimiento no es universal y que depende del campo perturbativo.

1.2 Teoria de perturbaciones a altos 6rdenes

1.2.1 Motivacién

Existen diferentes razones que justifican la importancia de ir mas alla del primer orden en
teoria de perturbaciones. Una primera motivacion es el deseo de alcanzar mayor precision
en los resultados. Por ejemplo, esto es un punto crucial en la construccién de patrones
realistas para la detecciéon de ondas gravitatorias. Una segunda razon es que los célculos a
altos 6rdenes deberian proporcionar una manera de establecer el rango de aplicabilidad de
los resultados de primer orden, estimando erores cuantitativos y dando limites de validez
para la aproximacion de primer orden. Estos limites de validez serian muy ttiles, ya que
habitualmente el interés radica no ya en perturbaciones despreciables, sino en situaciones
més generales para las que la extrapolacion de los resultados perturbativos puede ponerse
en duda. Ademaés, a segundo orden y superiores, aparecera el acoplo entre los modos
perturbativos. Dicho acoplo incorporara la no-linealidad de la Relatividad General completa
en la teoria aproximada y podria dar lugar a la aparicion de escalas propias en ciertos
problemas.

Por ejemplo, el acoplo entre los modos de oscilacion de un agujero negro con frecuencias
w1 ¥ wo puede generar sobretonos de frecuencia wy+w, a través de la teoria de perturbaciones
a segundo orden, o desplazamientos en la frecuencia a tercer orden [14]. Durante la fase
de ring-down en la colision de agujeros negros supermasivos, dichos sobretonos podrian
ser detectados por LISA con una buena relacion senal-ruido a una distancia de 1Gpc. Sin
embargo, las simulaciones numéricas actuales no han podido atin proporcionar indicaciones
claras sobre tales sobretonos, ya que su tamano es similar al del ruido numérico. Este es
un problema para el que la teoria de perturbaciones a segundo orden esta perfectamente
adaptada.
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1.2.2 Historia

Hasta hace poco, la mayoria de las investigaciones perturbativas habian sido llevadas
a cabo a primer orden. Por lo que conocemos, la primera aplicaciéon de la teoria de per-
turbaciones a segundo orden en el contexto de la Relatividad General fue el estudio de
perturbaciones cosmolégicas alrededor del fondo de Friedmann-Robertson-Walker realizado
por Tomita en 1967 [71], y posteriormente el estudio del mismo autor sobre la estabilidad

no-lineal de la solucion de Schwarzschild [72,73].

Actualmente, cada vez se proponen mas aplicaciones de la teoria de perturbaciones
a altos ordenes. En particular, los casos cosmologicos estan bajo un estudio intensivo,
como demuestran por ejemplo [74-80|. Asimismo, la colision frontal de dos agujeros ne-
gros en el régimen cercano [81] se ha interpretado como una perturbacion polar de un
tinico agujero negro [32,82-85]. Estas investigaciones tuvieron sorprendentes resultados en
los que la aproximacion a segundo orden seguia de manera muy precisa las trayectorias
obtenidas mediante las simulaciones no-lineales completas. Recientemente, también per-
turbando Schwarzschild, se han definido los modos cuasinormales de segundo orden [86,87]

y se ha deducido un formalismo para tratar las eztreme mass ratio inspirals [88].

El espaciotiempo de Kerr también ha sido analizado a segundo orden [89], generalizando
el formalismo de Teukolsky [66] para perturbaciones lineales. El exponente critico del
escalado del momento angular de un campo escalar se ha predicho utilizando argumentos
perturbativos de segundo orden [90|. El problema general del matching a través de una

superficie también se ha analizado a segundo orden [91].

La teoria de perturbaciones a altos 6rdenes solamente se ha aplicado a fondos de flui-
do para modelar las perturbaciones de estrellas en rotaciéon lenta. Para ello, se toma la
rotaciéon como una perturbaciéon axial a primer orden de una estrella esférica de fondo. Uno
de los primeros trabajos en este contexto es, de nuevo, uno de los articulos de la serie de
Cunningham et al. [92], donde las perturbaciones de segundo orden de una bola de polvo
fueron estudiadas incluyendo el matching a través de la superficie estelar para las pertur-
baciones interiores y exteriores. La misma idea se ha utilizado frecuentemente en fondos
estaticos [93,94], para modelar estrellas estacionarias en rotacion lenta. También existen
estudios [95, 96| de rotacion diferencial, donde es necesario considerar méas de una pertur-
baciéon de primer orden para describir la rotacion, pero se suele utilizar la aproximacion
Cowling, que desprecia todas los acoplos espaciotemporales. Sin la aproximacion Cowling

solo se han considerado modos radiales [97].
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1.3 Libertad gauge

Uno de los problemas centrales en la teoria de perturbaciones en Relatividad General,
heredado de la invariancia bajo difeomorfismos de la teoria completa (pero no equivalente),
es el de aislar los grados de libertad fisicos de la informacién dependiente gauge. Esto
se puede realizar imponiendo condiciones de fijaciéon de gauge sobre las perturbaciones,
tal y como Regge y Wheeler [56] originalmente hicieron en su estudio de perturbaciones
del agujero negro de Schwarzschild. Como ya se ha comentado, ellos y posteriormente
Zerilli [57] lograron aislar los dos grados de libertad fisicos del campo gravitatorio alrededor
de un vacio esférico, tomando convenientes combinaciones lineales de las perturbaciones y
sus derivadas radiales. Estas dos variables se desacoplan entre si debido a sus diferentes
comportamientos bajo cambio de paridad: la variable de Regge-Wheeler es axial y la de

Zerilli es polar.

Una alternativa a la fijacion de gauge fue dada por Sachs en 1964 (98|, y posteriormente
mejorada por Stewart y Walker [99], introduciendo el concepto de invariantes gauge para
teoria de perturbaciones a primer orden. Estos autores ya obtuvieron el resultado de que la
invariancia gauge, como ellos la definieron, era bastante restrictiva y sélo aplicable a fondos
con gran simetria. Bruni y colaboradores [100] mostraron que este enfoque geométrico se

vuelve aiin mas restrictivo a altos 6rdenes.

Un tratamiento més util de la libertad gauge para la teoria de perturbaciones en Re-
latividad General fue elaborado por Moncrief [101]| en su estudio hamiltoniano sobre las
perturbaciones no-esféricas de Schwarzschild. En este contexto hamiltoniano, las cuatro
ligaduras que obedecen las doce variables gravitacionales dindmicas forman los generadores
de las transformaciones gauge. Moncrief consigui6 utilizar esta informacion para realizar
varias transformaciones candnicas que reorganizaran los seis pares candnicos de variables
iniciales en dos pares fisicos sin ligaduras (equivalentes a las variables de Regge-Wheeler y
Zerilli y sus momentos conjugados) y otros cuatro pares, cada uno de los cuales esta for-
mado por una variable invariante gauge obligada a anularse por las ligaduras y su momento
conjugado puro gauge. La misma técnica se aplico a otros fondos esféricos con simetrias
adicionales, como Reissner-Nordstrom [102, 103|, Oppenheimer-Snyder [46] o Friedmann-
Robertson-Walker [104], pero nunca ha sido utilizada para fondos generales con simetria
esférica, permitiendo que la dependencia temporal tenga una considerable relevancia fisica.
La teoria de perturbaciones hamiltoniana se ha utilizado recientemente en Gravedad Cuan-
tica con un fondo cosmolégico [105,106]. Uno de los inconvenientes del enfoque hamiltoni-
ano es que, en principio, esté ligado a una foliacion particular del espaciotiempo de fondo

y, por consiguiente, las propiedades geométricas de las variables invariantes gauge bajo
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transformaciones de coordenadas que involucren el tiempo no son triviales en absoluto.

Gerlach y Sengupta introdujeron un formalismo lagrangiano [51] para estudiar per-
turbaciones alrededor de espaciotiempos esféricos generales. Este es un marco altamente
geométrico, en el que el significado de las perturbaciones es transparente, y que también
permite la construccion de variables invariantes gauge. En el caso axial ha sido posible
aislar el grado de libertad gravitacional en un tnica variable escalar master que obedece
una ecuacion de onda y puede acoplarse a cualquier tipo de materia, tanto en el fondo
como en las perturbaciones. Este escalar master generaliza la variable de Regge-Wheeler
al problema axial perturbativo alrededor de simetria esférica para cualquier tipo de mate-
ria razonable, y por lo tanto se puede considerar como el marco de trabajo 6ptimo para
un estudio perturbativo. Desafortunadamente, en el caso polar no hay un escalar master
véalido para un fondo general con simetria esférica, aunque existen resultados para algunos
casos particulares. Por ejemplo, un escalar master de tipo Zerilli fue introducido por Sar-
bach y Tiglio [107] para un fondo de Schwarzschild, que posteriormente fue generalizado a
electrodindmica no-lineal [108]|. En las referencias [109,110] se incluyen las combinaciones

invariante gauge del tensor energia-momento, pero atin en un fondo de vacio.

Ambos tratamientos de la teoria de perturbaciones métrica son complementarios: el
formalismo hamiltoniano ofrece un marco de trabajo mejor para tratar la invariancia gauge,
mientras que el andalisis lagrangiano da una imagen més clara de la estructura geométrica

que se esta perturbando. Ambos han sido ampliamente utilizados en la literatura.

1.4 La necesidad del algebra computacional

En general, la teoria de perturbaciones a altos 6rdenes involucra ecuaciones de com-
plejidad y tamano creciente. Debido a este hecho, el anélisis a cualquiera de esto 6rdenes
ha sido impracticable hasta hace poco, excepto para algunos casos particulares en situa-
ciones con gran simetria. No obstante, las actuales técnicas de algebra computacional han
sido desarrolladas hasta un grado en el que se puede afrontar ya problemas mas realistas y

genéricos con garantia de éxito.

Por lo tanto, para intentar sobrellevar la complejidad de los calculos, utilizaremos inten-
sivamente herramientas de algebra computacional. En particular, haremos uso del paquete
zTensor, que es parte del marco mas general llamado zAct [111], que actualmente es el ma-
nipulador de expresiones tensoriales méas rapido para Mathematica. Con el paquete zTensor
se pueden definir variedades que contengan campos tensoriales con simetrias arbitrarias,

conexiones de cualquier tipo, métricas y otros objetos. zTensor se basa en la notacion de
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indices abstractos de Penrose y tiene un tinico canonicalizador que simplifica completamente
todas las expresiones utilizando eficientes técnicas de teoria de grupos computacional. Im-
plementaremos todas las ecuaciones con estas herramientas, tanto para producirlas como
para comprobarlas, y para construir un eficiente marco de trabajo computacional capaz de

tratar futuras aplicaciones del formalismo de teoria de perturbaciones a alto orden.

1.5 Objetivos

Este trabajo se divide en dos lineas de investigacion principales con sus correspondientes
objetivos. Por un lado, construiremos un formalismo general para analizar las perturba-
ciones a altos 6rdenes sobre espaciotiempos esféricos y trataremos su aplicacion al vacio y a
un fluido perfecto. Por otro lado, utilizaremos un tratamiento hamiltoniano para perturba-
ciones lineales sobre un espaciotiempo esférico, pero dindmico, para buscar variables master
que obedezcan ecuaciones de movimiento sin ligaduras y que contengan toda la informaciéon

fisica del problema.

La primera linea de investigacion se puede considerar como una continuacién del trabajo
debido a Gerlach y Sengupta a primer orden [51,54| y su aplicacion a fondos de fluido
perfecto [55,112]. El formalismo GS esta basado en cuatro ingredientes bésicos: i/ una
descomposicion 2-+2 del espaciotiempo, que separa las érbitas esféricas S? de una variedad
general 1+1 Lorentziana M?; ii/ una descripciéon covariante en la variedad Lorentziana;
iii/ la descomposicién de las perturbaciones de S? en harmoénicos tensoriales; y iv/ el uso
de variables perturbativas invariantes gauge. La notacién covariante es particularmente
conveniente: por un lado, permite formular todas las ecuaciones sin escoger coordenadas
en M?, algo que resulta muy util en fondos dindmicos; por otro lado, extrae todos los
factores trigonométricos de las ecuaciones de movimiento, factores que no contienen ninguna

informacion relevante y habitualmente oscurecen la interpretacion geométrica del resultado.

Mostraremos que es posible extender el analisis alrededor de espaciotiempos con simetria
esférica a cualquier orden en teoria de perturbaciones en Relatividad General. Construi-
remos un método general y calcularemos las férmulas exactas para las perturbaciones a
cualquier orden de las cantidades geométricas relevantes. Con este objetivo, introduciremos
una base de tensores harmoénicos bien adaptada, que resulta especialmente apropiada para
el estudio de la radiacion gravitatoria y consiste esencialmente en la generalizacion de los
harmoénicos de Regge-Wheeler-Zerilli (RWZ). Ademas, para tratar satisfactoriamente las
perturbaciones a altos 6rdenes, necesitaremos derivar expresiones cerradas para el producto

de estos harmoénicos. También proporcionaremos un procedimiento iterativo para construir
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cantidades invariantes gauge hasta el orden deseado. Obtendremos explicitamente todas las
fuentes cuadraticas para los objectos invariantes gauge de segundo orden y sus ecuaciones

de movimiento.

Aplicaremos este formalismo de segundo orden a los fondos correspondientes al vacio y
a un fluido perfecto. En el caso del vacio obtendremos la potencia radiada, hasta cualquier
orden en teoria de perturbaciones. A segundo orden, las fuentes que definiremos ad hoc
para las variables de Regge-Wheeler y de Zerilli no decaeran con el radio al tender al in-
finito nulo y habra que regularizarlas. Esta aplicacion dara lugar a un formalismo capaz de
describir perturbaciones de segundo orden arbitrarias del agujero negro de Schwarzschild.
En el caso de fluido perfecto, daremos los términos de fuente que proceden de expresar
las perturbaciones del tensor energia-momento en funcién de las variables del fluido. Sim-
plificaremos las ecuaciones de movimiento utilizando el sistema de referencia (frame) que
proporciona la velocidad del fluido de fondo. Ademas, especificaremos las condiciones de
matching de segundo orden para unir el fluido perfecto y el vacio a través de una supeficie
temporal. Aclararemos qué objetos deben ser continuos a cualquier orden perturbativo a
través de la mencionada superficie. En realidad, este anélisis de las condiciones de matching
sera valido para cualquier espaciotiempo de fondo. De esta forma, esta memoria de tesis
doctoral proporciona un formalismo completo y consistente para estudiar perturbaciones de
segundo orden generales de una estrella esférica, pero posiblemente dependiente del tiempo,

formada por fluido perfecto.

La segunda linea de investigacion se puede considerar como una generalizacion de los
trabajos de Moncrief [101,102] al caso de fondos dindmicos. En sus investigaciones, Mon-
crief construyo6 las llamadas variables master para los fondos de Schwarzschild y Reissner-
Nordstrém en un marco canénico. Estas variables master son invariantes gauge, obedecen
ecuaciones de movimiento sin ligaduras y contienen toda la informacion fisica del problema,
en el sentido de que el resto de las perturbaciones se pueden reconstruir en términos de

ellas.

También nos restringiremos a fondos esféricos, pero podran ser altamente dindmicos. La
dindmica serd introducida utilizando un campo escalar real sin masa, pero podria hacerse
igualmente a través de cualquier otro tipo de materia que admita una descripcion hamil-
toniana. En el caso axial, la solucion es el escalar GS [51], previamente encontrado uti-
lizando solamente métodos lagrangianos. Mostraremos como el marco hamiltoniano permite
una derivacion mas sisteméatica de este objecto, y cudl es la relacion mutua entre ambos
tratamientos. Maéas importante resultard la aplicacién de la mismas técnicas al caso po-
lar, mediante lo que encontraremos una variable de Zerilli para este escenario dindmico.

Esta es la primera vez que se presenta una variable master para un caso dindmico. Esta
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investigacion abre el camino para una busqueda sitematica de variables polares master.

Como ya se ha explicado, la computacién algebraica resulta necesaria para tratar este
tipo de problemas. Por ello, otro de los objetivos principales de este trabajo es construir un
sistema de computacion algebraica que sea capaz de manejar las ecuaciones que el forma-
lismo de teoria de perturbaciones (a altos 6rdenes) involucra. En particular escribiremos
dos modulos dentro del entorno zAct [111], para éalgebra computacional de tensores en
Mathematica, llamados zPert v Harmonics. El primero permite tratar la teoria de per-
turbaciones a altos 6rdenes sobre cualquier fondo. Estd basado en una combinacion de
algoritmos combinatorios adaptados y potentes técnicas de dlgebra computacional de ten-
sores. El segundo implementa la simetria esférica a través de diferentes harmonicos esféricos
tensoriales. zPert ha sido utilizado ya en varios proyectos de investigacion, que van desde
teoria de perturbaciones en Relatividad General [113,114] hasta problemas del transporte

de la radiacion en fondos curvos [115-117] o perturbaciones cosmologicas [118,119].

1.6 Organizaciéon

Esta tesis describe el trabajo contenido en las referencias [113, 114, 120-125] y esta
organizado en seis partes. En lo que sigue, remarcaremos especialmente las partes de la

tesis que contienen trabajo original.

En la Parte [l se introducen los conceptos bésicos y ecuaciones de la teoria de pertur-
baciones. En la Seccion se presentan formulas cerradas para la enésima perturbacion
de las cantidades geométricas de interés (formulas que son nuevas, hasta donde nosotros
sabemos). Se analizan las transformaciones gauge a altos 6érdenes y se explica la invariancia
gauge. En la Subseccion introducimos un método para construir objectos invariantes

gauge a cualquier orden perturbativo sobre espaciotiempos genéricos.

La Parte[[lse ocupa del tratamiento de la simetria esférica y esta divida en dos capitulos.
El analisis y la notacion que se utilizard para un espaciotiempo esférico general se explican
en el Capitulo En el Capitulo Bl se presenta una revision de los diferentes tipos de
harmonicos esféricos tensoriales junto con sus propiedades mas relevantes. También se
obtiene la formula del producto entre cualquier par de harmoénicos. Este es un resultado
de particular importancia de esta tesis, que nos permite ir a segundo orden perturbativo y
superiores, y esta detallado en la segunda parte del Capitulo [l (Secciones B3, 6.6, y 7).

En la Parte[[Ill presentamos la bisqueda de variables master en un espaciotiempo esférico
con un campo de materia escalar. El Capitulo [ recupera el conocido escalar master de

GS desde un punto de vista can6nico. Siguiento las mismas técnicas hamiltonianas, en el
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Capitulo Bl damos una generalizacion de la variable de Zerilli a este escenario dindmico.
Esta es la primera vez que se encuentra una variable polar master invariante gauge para un

fondo dindmico y toda esta parte (Capitulos [y Bl) es nueva.

Las perturbaciones no esféricas se discuten en la Parte [Vl En el Capitulo [ se realiza la
descomposicion harmoénica de las perturbaciones y se construyen las cantidades invariantes
gauge a cualquier orden perturbativo. Este es un resultado importante de esta tesis y esta
contenido en las Subsecciones y 23 El Capitulo [ es un repaso del formalismo GS
de primer orden, introduciendo la notacién que se utilizard posteriormente, excepto por la
Subseccion 32 que completa el analisis realizado en la Parte [Tl En el Capitulo [l se
presenta, por primera vez en la literatura, un conjunto completo de invariantes gauge de
segundo orden de manera explicita, asi como las fuentes para las ecuaciones de evolucion
de dichos invariantes y para las ecuaciones de conservacion de energia-momento. Todo el
material contenido a partir del Capitulo [l es original exceptuando las cuestiones a primer

orden perturbativo.

Las aplicaciones del formalismo GS de segundo orden que hemos desarrollado estan
contenidas en la Parte [Vl Méas concretamente, en el Capitulo [[2 presentamos las ecuaciones
de RW y de Zerilli de segundo orden regularizadas. La potencia emitida en forma de ondas
gravitatorias también se expresa en términos de las mencionadas variables master. FEl
Capitulo desarrolla la aplicacion a un fluido perfecto. Las ecuaciones de movimiento
de segundo orden se obtienen explicitamente y se simplifican. El Capitulo [[4 estudia las
condiciones de matching perturbativas a altos 6rdenes y las particulariza para unir los dos

espaciotiempos previos: vacio y fluido perfecto.

La Parte [Vl contiene detalles sobre el procedimiento empleado para implementar nues-
tros calculos en Mathematica, utilizando el paquete zTensor. Consiste de un tnico capitulo
que presenta los dos modulos (zPert y Harmonics) que hemos construido durante el curso

de esta investigacion.

Finalmente, se anaden cuatro apéndices. Los dos primeros apéndices explican diferentes
aspectos de la definicion de las funciones esféricas y la manera de construir la parte simétrica
y sin traza de un tensor dado. El Apéndice [ presenta las fuentes regularizadas para las
ecuaciones de RW y de Zerilli de segundo orden para un caso particular. Por tltimo, el
Apéndice [Dl contiene las fuentes correspondientes a las ecuaciones de segundo orden de las

perturbaciones del fluido para diferentes niimeros harmonicos.
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Introduction

Nowadays, General Relativity is considered to be the best available theory that describes
the classical (non-quantum) gravitational interaction. The first experimental confirmations
of the theory, already predicted by Einstein, were the deflection of light and the perihelion
advance of Mercury. It was not until the beginning of the 1960s that astronomical discoveries
(like quasars or pulsars) provided new observations to confront General Relativity in the
weak gravity regime. One of the best known is the decrease in the orbital period of the
Hulse-Taylor binary pulsar [1]|, for which they both received the Nobel prize [2,3]|. These
observations agreed very well with the theoretical predictions of General Relativity and
excluded several alternative theories [4,5]. Since the 1980s attention has been mainly
focused on finding strong-field regime observations that could corroborate or contradict
the predictions of General Relativity in two extremes. On the one hand there is the limit
associated with the Planck scale physics. There are processes with very small characteristic
distances which produce strong gravitational interactions up to some point where General
Relativity is assumed to fail due to quantum phenomenology. On the other hand there
is the astrophysical limit, which involves very dense objects with large masses, that will
also lead to such strong gravitational interactions. It is expected that several scenarios,
like black hole and/or neutron star collisions, will produce enough gravitational radiation

emission to be detected from Earth in the near future.

In this astrophysical context, the detection of gravitational waves is considered to be one
of the most important open problems in experimental physics. Apart from providing a test
of General Relativity in the strong-field regime, it may open a new window for astrophysical
observation, giving rise to an era of gravitational-wave astronomy. Several ground-based
gravitational wave detectors are already taking data (such as GEO [6], LIGO [7] or VIRGO
[8]), and space-missions (most notably LISA [9]) are planned for the early 2020s.

15
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The signal to be detected is very small, and buried under a number of different types
of noise. Powerful statistical techniques have been developed to help in the recovery of the
signal from the data measured. However, it is still essential to have in advance a catalogue
of templates for the possible signals to be observed (matched filtering technique). These
templates can only be obtained by solving the equations of General Relativity, the Einstein
equations. These are a system of ten non-linear coupled partial differential equations and
have proven very difficult to solve. There is no hope of constructing a catalogue of exact
analytical solutions describing the gravitational waves profiles emitted in such astrophysical
scenarios. Only situations with very high symmetry allow us to write down explicitly the
solution, and only a few of them are relevant from an astrophysical point of view [10]. Hence,
as it is usual in physics, when a physical problem cannot be solved exactly, one resorts to
approximate methods. Here we will mention the three techniques that have worked best so
far, and which can be considered complementary in the analysis of the dynamics of General
Relativity in this context: post-Newtonian methods, Numerical Relativity and perturbation

theory.

Post-Newtonian methods are based on the combination of a weak-gravity approximation
(i.e., perturbation theory around Minkowski, also known as post-Minkowskian approxima-
tion) and an expansion of the solutions of the equations into a power series with parameter
v/c, where ¢ is the speed of light and v a typical matter velocity of the problem in ques-
tion [11]. Therefore, this approximation is valid to model the gravitational waves generated
by a source with slow internal motion and weak self-gravitation. By going up to high
powers of v/c it is possible to consider relativistic sources (results at order 6 are now used
systematically [12]), and actually the post-Newtonian approximations typically behave bet-
ter than expected. The Newtonian limit (1/¢ — 0), was already considered by Einstein [13]
and Landau and Lifshitz [14] to derive the famous quadrupole formula, which gives the
total emitted power in form of gravitational waves in terms of the time derivatives of the
quadrupole moment of the source. In fact, this relation was enough to explain the decrease

of the period in the Hulse-Taylor binary pulsar [15,16].

Numerical Relativity is nowadays a branch of General Relativity in its own right [17].
Any attempt at solving Einstein equations using numerical methods could be included in
this area, but here we will refer only to those simulations dealing with the full Einstein
equations, perhaps under some symmetry reduction. (Even working with post-Newtonian
methods or perturbation theory we are typically led to integrate some other equations
numerically.) Many different formulations of the Einstein equations can be used for their
discretization in a computer, depending on how the spacetime is described. The simplest

way to do it is based on the Hamiltonian approach by Arnowitt, Deser and Misner (ADM)
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[18,19], which foliates the spacetime in a family of three-dimensional spacelike surfaces.
Other frequent approaches are based on the use of null surfaces, which offer a better way
of dealing with radiation. There were some attempts already in 1960s and 70s to solve
numerically the Einstein equations in two spatial dimensions [20,21]. But at that time
the computers were not powerful enough to obtain relevant three-dimensional results, and
the formulations used were not mathematically consistent, as was later realized. In the
problem of simulating a binary black hole, of key importance in this area, progress in both
the numerical and the analytic sides took place during the 1990s, until Pretorius [22] in
2005 was able to evolve the system in a stable way for the first time. Since then, a large
number of articles by several groups have been published, reporting on interesting features
of this system, and providing reliable gravitational wave templates. Apart from the special
problem of pure vacuum, much effort has also been invested in the simulation of spacetimes
containing fluid matter, and more recently fluid matter coupled to the electromagnetic field,
to model stellar core-collapse and the collisions of neutron stars, other important sources

of gravitational radiation [23].

Perturbation theory provides another approximate approach, allowing a description in
terms of small departures around an exact solution. In the context of General Relativity,
perturbation theory plays a prominent role in analyzing the stability of particular solutions,
and in understanding dynamical processes in terms of the behaviour of simple “oscillation
modes”, being today an efficient and natural complement to full Numerical Relativity sim-

ulations [24]. We will describe it in depth in the following sections.

The three approximation techniques have their own domains of validity, which are fre-
quently complementary, and so their combined use is usually the best strategy. For example,
the three phases of a binary black hole collision, inspiral, merger and ring-down, can be ad-
equately described with post-Newtonian methods, Numerical Relativity and perturbation
theory, respectively. During the initial inspiral phase the black holes are far apart and the
mutual gravitational interaction is weak. Hence one can almost approximate the picture
by Newtonian gravity. This is the perfect arena for post-Newtonian methods. As the black
holes get closer due to the energy radiated in form of gravitational waves, their mutual
gravitational interaction will be stronger. At this point, the post-Newtonian methods need
more terms in their expansion to accurately follow the trajectories. When the two holes
are very close, the nonlinearities become very large and this is the phase when one needs
full Numerical Relativity to follow the evolution. At the end both holes merge in a unique
black hole, which goes on radiating gravitational waves until it becomes a stationary Kerr
or a Schwarzschild black hole. During this final part of the dynamical evolution, the space-

time can be approximated by the mentioned known solution plus some small deviations,
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which can be properly described by perturbation theory. In the following, we will center
our attention in perturbation theory, describing more deeply its history and achievements

in the context of General Relativity.

2.1 Applications of linear perturbation theory

Perturbation theory can be used to study the stability of solutions of the Einstein equa-
tions. A considerable amount of work has been devoted to the discussion of the stability of
black-holes [25] and cosmological solutions [26], given the physical interest in these space-

times.

In addition, perturbative analyses allow us to check the presence of gauge instabilities
[27], constraint violations [28], and other type of instabilities in numerical implementations
of the Einstein equations, since numerical errors can be considered themselves as distortions

of the solution that one is computing.

Another important application is the study of the production and propagation of waves
in a certain curved spacetime. Perturbation theory can provide us with estimates of the
amount of gravitational radiation and of the signal profiles emitted in astrophysical scenarios
like an oscillating neutron star [29|, the gravitational collapse of a star [30], an extreme

mass-ratio binary [31], or a close limit head-on collision of two black holes [32].

Perturbation theory has been recognized as a powerful tool in cosmology, as well. Fol-
lowing the pioneering works by Bardeen [33] and Kodama and Sasaki [34], it has been
used to study the evolution of small inhomogeneities in the early Universe, giving a precise
understanding of the angular dependence of the power spectrum in the cosmic microwave
background. These departures from homogeneity have been measured by the COBE [35]
and WMAP [36] experiments. Large scale structure formation in the Universe is also ex-

plained by initial small perturbations that grew with time.

There is extensive literature on perturbations of fluid stars, due to its enormous relevance
in astrophysics. Here we will simply mention the most relevant articles on which we have
based our extension to second-order perturbation theory of collapsing stars. In particular
we will concentrate on perturbations around spherical backgrounds, though they can be

static or time-dependent, and can have various equations of state.

On static backgrounds the work by Chandrasekhar [37, 38| pioneered the analysis of
radial perturbations of spherical stars in General Relativity, in the middle sixties. In a
series of papers, Thorne and collaborators [39-43| dealt with non-radial perturbations of

perfect fluid stars, establishing the theoretical basis to treat the problem. This basis was
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further developed in other references, such as [44] and [45].

Research on non-static backgrounds began in the late seventies, when Cunningham et
al. [46,47] used a gauge-invariant formalism to evolve non-radial perturbations of a spherical
collapsing dust. Seidel and coworkers [48-50] applied the formalism of Gerlach and Sengupta
(GS) [51-54], valid for any spherically symmetric background with any matter content, to
evolve the perturbations of a time-dependent perfect fluid with a more general equation of
state. Building on these references, Gundlach and Martin-Garcia [55] developed a covariant
and gauge-invariant framework to analyze an arbitrary perturbation of a spherical perfect
fluid. This framework was latter used by Harada et al. [30] to analyze axial perturbations

of stellar collapse.

In parallel, perturbation theory has been one of the most relevant tools in the analysis
of the properties of black holes. The first article that studied perturbations of a black hole
dates from 1957 [56]. At this time black holes were not still accepted as physical entities.
The Schwarzschild solution to the Einstein field equations was known but the most accepted
belief was that this exotic solution, built out of the mass-free Einstein field [56], existed due
to the high (and ideal) symmetry assumed. In order to analyze the stability of this object,
Regge and Wheeler (RW) studied small perturbations departing from sphericity. These
perturbations are classified in two different polarities (polar and axial), corresponding to
the two degrees of freedom of the gravitational wave. They found a wave equation, which
is nowadays known as the Regge-Wheeler equation, for one of the polarities. Several years
later, Zerilli wrote down the wave equation corresponding to the other polarity [57|. These
equations have a potential that depends on the mass of the background black hole and the
integer [, that comes from the spherical harmonic function used to decompose the angular

dependence of the perturbation in question.

Making use of these equations, Vishveshwara found a convincing answer to the stability
of the Schwarzschild metric [58|. Defining an energy integral that should be kept constant
through evolution, he gave a bound for the time derivative of the perturbation, excluding
exponentially growing solutions. This seemed to indicate the nonexistence of unstable
modes. However, there were some gaps in the reasoning that were later filled by Kay and
Wald [59]. They proved that any perturbation with smooth and bounded initial data will

remain bounded pointwise.

Another two surprising properties of the black holes that were discovered in the 1970s
with perturbative methods were quasinormal modes and power-law tails. The quasinormal
modes are solutions to the Regge-Wheeler and Zerilli equations [60] with purely outgoing
boundary conditions, that is, at the horizon they are plane waves directed inside the horizon

whereas at null infinity they point outwards. These quasinormal modes are the equivalent
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to the normal modes in standard mechanical systems for situations where there is energy
dissipation (in our case the gravitational waves remove energy out of the system). These
modes have been widely studied [61], also for stars and rotating black holes, and their main
interest lies in the fact that their frecuencies depend on the mass and angular momentum
of the black hole (or star) being perturbed. Hence, through the detection of quasinormal
modes one could obtain direct information about the properties of the radiating object.

Power-law tails were first computed by Price [62,63]. At a fixed radius, for large times,

a perturbation of Schwarzschild with harmonic label I, decays like ¢~(+3)

, regardless of
the kind of perturbation (scalar, gravitational,...). These tails are also present at both null
and future infinities obeying particular power-law decay rates |64, 65]. Intuitively they are
usually understood as arising from the backscattering of the waves off the effective curvature

potential.

Regarding rotating (Kerr) black holes everything gets more complicated. In the non-
rotating case one uses the spherical harmonics to decompose the angular dependence of the
perturbations and, at linear level, each multipole evolves independently. But in the rotating
case the different multipoles are coupled. However, there are still some symmetries (ax-
isymmetry and stationarity) that allow the decoupling of the time and axial dependencies.
Making use of the Newmann-Penrose tetrad formulation of Einstein equations, Teukolsky
rewrote the equations of motion for the linear perturbations of a Kerr black hole as two
decoupled equations [66]. The stability was proven by Whiting [67] after some intrincate
coordinate transformations following the same method as Vishveshwara for the non-rotating
case [58|. Since there is no known coordinate-independent notion of multipole on a Kerr
background, the power laws for the tails depend on the foliation [68,69]. Even more, it has

been argued that the decay is not universal and depends on the perturbative field.

2.2 High-order perturbation theory

2.2.1 Motivation

Different reasons justify the importance of going beyond first order in perturbation the-
ory. A first motivation is the desire to reach better accuracy in the results. For instance,
this is a decisive point in the construction of sufficiently realistic templates for the detection
of gravitational waves. A second reason is that high-order calculations would provide a way
to establish the range of applicability of the first-order results, estimating the quantitative

errors and leading to validation limits for the first-order approximation. These validation
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limits would be very useful, because one is usually interested not just in negligible per-
turbations, but in more general situations for which the extrapolation of the perturbative
results can be casted into doubt. In addition, at second and higher orders, coupling between
perturbative modes will appear. This coupling will bring the nonlinearity of full General
Relativity to the approximate theory and could result in the appearance of proper scales of

certain problems.

For instance, the coupling among oscillation modes of black holes with frequencies wy
and w, can generate overtones with frequency w; 4+ wy through second order perturbation
theory, or shifts in the frequency in third order perturbation theory [70]. During the ring-
down phase of the merger of supermassive black holes, those overtones could be detected
by LISA with good signal-to-noise-ratio at a distance of 1Gpc. However, current numerical
simulations have not yet been able to provide clear indications of the presence of such
overtones, because their size is approximately that of the numerical noise. This is a problem

for which second-order perturbation theory is best suited.

2.2.2 History

Until recently, most perturbative investigations had been carried out at first order. As
far as we know, the pioneering application of second-order perturbation theory in a Gen-
eral Relativity context was the study of cosmological perturbations around a Friedmann-
Robertson-Walker background by Tomita [71] in 1967, and later the study by the same
author of the nonlinear stability of the Schwarzschild solution 72, 73].

At present, more and more applications of high-order perturbation theory are being
proposed. In particular, cosmological scenarios are under intensive studies, see for instance
[74-80] and references therein. In addition, the head-on collision of two black holes in the
close-regime approach [81] has been interpreted as a quadrupolar perturbation of a single
black hole [32,82-85]. These investigations led to surprising results where the second-order
approximation follow very accurately the full non-linear numerical simulations. Recently,
also perturbing Schwarzschild, second-order quasinormal modes have been defined [86, 87|

and a formalism to deal with extreme mass ratio inspirals deduced [88].

The Kerr spacetime has also been analyzed at second order [89], generalizing the Teukol-
sky formalism [66] for linear perturbations. The critical exponent of angular momentum
scaling has been predicted for scalar field collapse using second-order perturbation argu-
ments [90]. Second-order perturbations of the general problem of a matching through a

surface have been analyzed in [91].
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To our knowledge, high-order perturbation theory has only been applied on fluid back-
grounds to model the perturbations of a slowly uniformly rotating star. This is done by
taking the rotation as an axial first-order perturbation of the background spherical star.
One of the pioneering works in this context is again one paper in the series by Cunningham
et al. [92], where the second-order nonspherical perturbations of a collapsing ball of dust
were studied including the matching of the internal and external perturbations through the
surface of the star. The same idea has been applied frequently on static backgrounds [93,94],
to model slowly rotating stationary stars. There are also studies [95,96| of differential ro-
tation, where more than one first-order perturbation is needed to describe the rotation,
but they make use of the Cowling approach, which neglects all the spacetime couplings.

Without the Cowling approach only radial modes have been considered [97].

2.3 Gauge freedom

A central problem in General Relativity perturbation theory, inherited from the diffeo-
morphism invariance of the full theory (but not equivalent to it), is that of isolating the
physical degrees of freedom from the gauge-dependent information. This can be done by im-
posing convenient gauge fixing conditions on the perturbations, as Regge and Wheeler [56]
originally did in their study of perturbations of a Schwarzschild black hole. As we have al-
ready commented, they and later Zerilli [57] succeeded in isolating the two physical degrees
of freedom of the gravitational field around spherical vacuum, by taking suitable linear
combinations of the perturbations and their radial derivatives. These two variables fur-
ther decouple due to their different properties under parity inversion: the Regge-Wheeler

variable is axial and the Zerilli variable is polar.

An alternative to gauge-fixing was given by Sachs in 1964 [98], later improved by Stewart
and Walker [99], introducing the concept of gauge-invariants for first-order perturbation
theory. These authors already obtained the result that gauge-invariance, as defined by
them, was rather restrictive and only applicable on highly symmetric backgrounds. Bruni
and collaborators [100] have shown that this geometrical approach becomes even more

restrictive at higher orders.

A more useful treatment of the gauge freedom in General Relativity perturbation theory
was pioneered by Moncrief [101] in his Hamiltonian study of the nonspherical perturbations
of Schwarzschild. In a Hamiltonian context the four constraints obeyed by the twelve dy-
namical gravitational variables are the generators of the gauge transformations. Moncrief

was able to use this information to perform several canonical transformations which reor-
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ganized the original six canonical pairs of variables into two physical unconstrained pairs
(equivalent to the Regge-Wheeler and Zerilli variables and their canonical momenta) and an-
other four pairs, each of them composed by a gauge-invariant variable constrained to vanish
and its conjugated pure-gauge momentum, without any gauge fixing. The same technique
was later applied to other spherical backgrounds with additional symmetries, like Reissner-
Nordstrom [102,103|, Oppenheimer-Snyder [46] or Friedmann-Robertson-Walker [104], but
has never been applied to general spherically symmetric backgrounds, possibly highly time
dependent. Hamiltonian perturbation theory has also been recently revisited in Quan-
tum Gravity with a cosmological background [105,106]. A drawback of the Hamiltonian
approach is that, in principle, it is tied to a particular foliation of the background space-
time, and hence the geometric properties of the gauge-invariant variables under coordinate

transformations involving time are far from obvious.

A Lagrangian formalism was introduced by Gerlach and Sengupta [51] to study per-
turbations around generic spherical spacetimes. This is a highly geometrical framework,
in which the meaning of the perturbations is transparent, and which also allows the con-
struction of gauge-invariant variables. In the axial case it has been possible to isolate
the gravitational degree of freedom in a single scalar master variable which obeys a wave
equation and can be coupled to any kind of matter, both in the background and the pertur-
bations. This master scalar generalizes the Regge-Wheeler variable to the axial perturbative
problem around spherical symmetry for any reasonable matter model, and hence can be
considered as the optimal framework for a perturbative study. Unfortunately, in the polar
case there is not a master scalar valid for a generic spherical background and any matter
model, though there are results for some particular cases. For instance, a master Zerilli
scalar has been introduced by Sarbach and Tiglio [107] for a Schwarzschild background,
which was later generalized to nonlinear electrodynamics [108]. In references [109,110] the
gauge-invariant combinations of the stress-energy tensor were also included but still on a

vacuum background.

Both approaches to metric perturbation theory are complementary: the Hamiltonian
approach offers a better framework to handle gauge-invariance, while the Lagrangian ap-
proach gives a clearer picture of the geometrical structures being perturbed. Both are

extensively used in the literature.

2.4 The need for computer algebra

Perturbation theory at second and higher orders involves in general increasingly large
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and complicated equations. Because of this fact, the analysis at any of these orders has been
impracticable until recently, except for particular cases in situations with a high symmetry.
However, current computer algebra techniques have been developed to a point in which one

can face more realistic, generic problems with a warranty of success.

Hence, to cope with the complexity of the calculations, we will intensively use computer
algebra tools. In particular, we will make use of zTensor, that is part of the general frame-
work zAct [111] and is now the fastest manipulator of tensor expressions for Mathematica.
With this package, one can define manifolds containing tensor fields with arbitrary symme-
try, connections of any type, metrics and other objects. xzTensor is based on the Penrose
abstract-index notation and has a single canonicalizer which fully simplifies all expressions,
using efficient techniques of computational group theory. We will encode all the equations
with these tools, both to produce and check them, and to construct an efficient computer

framework to deal with future applications of the formalism of high-order perturbations.

2.5 Goals

This work can be separated in two major lines of research with corresponding objectives.
On the one hand, we will construct a generic framework to analyze second and higher-
order perturbations of spherical spacetimes and deal with its application to vacuum and
perfect fluid matter. On the other hand, we will use a Hamiltonian framework for linear
perturbation theory on a spherical, but dynamical, spacetime to look for master variables
that obey unconstrained equations of motion encoding the physical information of the

problem.

The first line of research can be considered as a continuation of the work by Gerlach
and Sengupta at first order [51,54] and its application to fluid background [55,112]. The
GS formalism is based on four basic ingredients: i/ a 2+2 decomposition of the spacetime
separating the spherical S? symmetry orbits from a general 1+1 Lorentzian manifold M?;
ii/ the use of a covariant description on the Lorentzian manifold; iii/ the decomposition of
the perturbations in S? tensor harmonics; and iv/ the use of gauge-invariant perturbation
variables. The use of a covariant notation is particularly convenient: on the one hand, it
allows us to formulate all equations without choosing coordinates on M?, something that
becomes very useful on dynamical backgrounds; on the other hand, it removes all trigono-
metric factors from the equations of motion, factors which do not contain any relevant

information and typically obscure the geometrical interpretation of the results.

We will show that it is possible to extend the analysis around spherical spacetimes to all
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orders in perturbation theory for General Relativity. We will construct a general method
and calculate exact formulas for the perturbation of the relevant geometric quantities at any
order. With this purpose we will introduce a well-adapted basis of tensor harmonics, which
is specially suitable for the study of gravitational radiation and consists essentially of a
generalization of the Regge-Wheeler-Zerilli (RWZ) harmonics. In addition, to satisfactorily
deal with high-order perturbations, we will need to derive closed expressions for the products
of these harmonics. We will also give an iterative procedure to construct gauge-invariant
quantities up to the desired order. We will explicitly obtain all first-order quadratic sources

for second-order gauge invariant quantities and their equations of motion.

This second-order formalism will be applied to vacuum and perfect fluid backgrounds.
In the case of vacuum we will obtain the radiated power up to any order in perturbation
theory. At second-order, the sources we will define ad hoc for the Regge-Wheeler and Zerilli
variables will not decay with radius at null infinity and we will regularize them. This
application will lead to a formalism able to describe arbitrary second-order perturbations
of a Schwarzschild black hole. In the case of the perfect fluid, we will give the source terms
coming from expressing the perturbations of the energy-momentum tensor in terms of the
fluid variables. The equations of motion will be simplified by making use of the frame
provided by the background fluid velocity. The second-order matching conditions will also
be investigated, to match the perfect fluid and vacuum spacetimes across a timelike surface.
We will clarify which objects are continuous at any perturbative order through that surface.
This analysis of the matching conditions will also be valid for any background spacetime.
In summary, this thesis provides a complete and consistent formalism to study generic

second-order perturbations of a spherical, but possibly time-dependent, fluid star.

The second subject of research can be considered as a generalization of Moncrief’s results
[101,102| to the case of dynamical backgrounds. In his investigations Moncrief constructed
the so-called master variables for a Schwarzschild and Reissner-Nordstrom backgrounds in
a canonical framework. These master variables are gauge-invariant, obey unconstrained
equations of motion and contain all the physical information of the problem in the sense

that the rest of the perturbations can be reconstructed in terms of them.

We will also restrict ourselves to spherical backgrounds, but these can be highly dynam-
ical. For definiteness, the dynamics will be introduced using a real massless scalar field, but
could similarly be done through any other matter model admitting a Hamiltonian descrip-
tion. In the axial case, the sought solution is the Gerlach and Sengupta master scalar [51],
previously found using the Lagrangian method only. We will show how the Hamiltonian
formalism allows a more systematic derivation of this object, and how both approaches

mutually relate. Most importantly, we will apply the same techniques to the polar case
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and find a generalization of the Zerilli variable to this dynamical scenario. This is the first
time that a gauge-invariant master variable is presented for a dynamical scenario. This

investigation paves the way for a systematic search for master polar variables.

As we have explained, algebraic computation turns out to be necessary to cope with this
kind of problems. That is why another important goal of this work is to construct an efficient
computer algebra framework that is able to handle the calculations involved in the formalism
of (high-order) perturbation theory. In particular we will write two modules inside the
general framework zAct [111], for tensor computer algebra in Mathematica, named zPert and
Harmonics. The first one is for high-order metric perturbation theory on any background.
It is based on the combination of adapted combinatorial algorithms and powerful techniques
of tensor computer algebra. The later implements the spherical symmetry through different
kind of tensor spherical harmonics. zPert has been already used in several research projects,
ranging from perturbation theory in General Relativity [113,114] to problems in radiation

transport in curved backgrounds [115-117| or cosmological perturbations [118,119].

2.6 Outline

This thesis describes the work contained in references [113,114,120-125] and is organized
in six parts. In the following, we will particularly remark those parts of this thesis containing

original work.

Part [l introduces the basic concepts and equations of perturbation theory. Closed
formulas for the nth-order perturbations of the geometric quantities of interest (formulas
that are new in the literature to the best of our knowledge) are presented in Section
High-order gauge transformations are analyzed and gauge invariance is explained for latter
use. We introduce a method to construct gauge invariant objects at any perturbative order
in T2

Part [ develops a number of tools for our later work on spherically symmetric back-
grounds, and is divided in two chapters. The notations used for a general spherical space-
time are explained in Chapter Bl A review of the different kinds of tensor spherical har-
monics with all their properties is presented in Chapter @ A product formula for any pair
of tensor spherical harmonics is also obtained. This is an important result of this thesis,
that allows us to go to second and higher perturbative orders, and it is contained in the
second part of Chapter B (Sections 63, .6, and B7).

In Part [Tl we present a combination of Hamiltonian and covariant methods to search

for master variables on a dynamcial spherical spacetime (for definiteness, we use a scalar
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field as matter content). Chapter [0 shows that our method reobtains the well-known GS
master scalar for the axial sector. Following the same techniques, in Chapter B we give a
generalization of the Zerilli variable to dynamical scenarios. This is the first time that a

gauge-invariant master variable is found for a dynamical background and this whole part
(Chapters [M and B) is new.

The general theory of nonspherical perturbations is discussed in Part [Vl In Chapter
we decompose general perturbations in tensor harmonic bases, and then we introduce
gauge-invariant combinations of those perturbations for arbitrary perturbative order, never
given before. This is an important result of the thesis, and it is contained in Sections
and Chapter [[M is mainly a review of the first-order GS formalism, introducing the
notation used later, except for [ML32, which finishes the analysis of Part [IIl In Chapter
[T, for the first time in the literature, a complete set of second-order gauge invariants is
explicitly presented, as well as sources for the evolution equations of these invariants and
for the energy-momentum conservation equations. All the material included from Chapter

[[T on is original with the exception of issues at first order in perturbation theory.

We have applied this general second-order GS formalism to three different problems, as
described in Part [Vl We first study perturbations of vacuum in Chapter [[2 presenting the
regularized second-order Regge-Wheeler and Zerilli equations. The power emitted in form
of gravitational waves is also given in terms of those master variables. Second, Chapter
develops the application to perfect-fluid matter. The second-order equations of motion are
explicitly obtained and simplified. Third, Chapter [[4l studies the high-order perturbative
matching conditions and particularize them to match the previous two systems: vacuum

and perfect fluid.

Part [V contains details about the procedure employed to implement our calculations in
Mathematica, using the tensor system zAct. It consists of a single chapter that presents the
packages (zPert and Harmonics) we have constructed in the course of this investigation,
and which are distributed as free software. zPert has been already used by other authors

in independent investigations in perturbation theory.

Finally, four appendices are given. The first two appendices explain different aspects
of the definition of spherical functions and how to construct the symmetric trace-free part
of a given tensor. Appendix [ presents the regularized sources for the second-order RW
and Zerilli equations for a particular case. Finally, Appendix [D contains the sources cor-

responding to equations for the second-order fluid perturbations for the different harmonic
labels.



28

Chapter 2. Introduction




Part 1

High-order perturbation theory

29






Chapter 3

Perturbation theory in General

Relativity

3.1 General considerations

The Einstein equations are a system of ten coupled nonlinear partial differential equa-
tions for the metric. Perturbation theory reformulates them as an infinite set of linear partial
differential equations for the deviation of the metric with respect to a known solution. This
infinite set is organized into hierarchies labelled by power orders of a dimensionless param-
eter . Furthermore, in this hierarchy of equations, the principal parts are always given
by the same linear differential operator acting on a perturbative correction of increasing
order. In this way, one translates the difficulty from nonlinearity to the infinite number of
equations. The key assumption of the perturbative scheme is that one can truncate the

problem at a finite order and still obtain an approximate solution to the original system.

As starting point we will suppose a family of spacetimes depending on the dimensionless
parameter . Each spacetime consists in a four dimensional Lorentzian manifold M (&) with
a metric g,,(¢) and some matter fields which will be described by the stress-energy tensor
t.(2). The objects with ¢ = 0 will form the background spacetime and be denoted without
tilde, that is, {M(0), G, (0),,,(0)} = {M, gu,, . }. This background metric g,, will be
assumed to be a known solution of the Einstein equations for the stress-energy tensor .

Our aim is to compare perturbed tensors (7'(¢)) with their background counterparts
(T(s = 0) = T). But, since these tensors live in different manifolds and there is no
available preferred structure to relate them, we are forced to arbitrarily choose a mapping
from M(e) to M. This mapping will generate a pull-back (push-forward) between the

31
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tangent (cotangent) spaces; in this way, the pull-back of a tensor f(&?) will be defined on
the background manifold M. The freedom in the choice of that mapping is the gauge
freedom that will be analyzed in the following chapter. For the moment being, we will not
introduce any explicit mapping to keep the notation simple, but from now on T(s) has to
be understood as the pull-back (push-forward) of that tensor to the background manifold.
Hence, all objects considered will be tensors on the manifold M and their indices will be

lowered or raised with the background metric g, or its inverse g”.

3.2 Notation

In order to introduce the perturbative hierarchy, now that all tensors are defined in
the same manifold, we will Taylor expand the perturbed tensors around their background
counterparts. For that, the dependence on € will be supposed smooth, or at least C™ if we

want to work only up to order n in perturbation theory.

3 =",

Guw(e) = gﬂy+zg“hw, (3.1)
n=1

- s en

fw(e) = tuy+zg”tw. (3.2)
n=1

The perturbations "'h,, and ', are then defined as e-derivatives evaluated in the back-
ground and, of course, are tensors of the background manifold. Hence, we introduce a

formal “perturbation” operator A,

d"T(e)

AT = :
=278 (3.
e=0
so that any object T'(¢) can be expanded as
~ i en n
TE) =T+ — AT, (3.4)
n=1
For instance, Alg,,| = "h,, and A["h,, ]| = " *Yh,,. In this notation, the brackets are

intended to avoid confusion with index positioning because, e.g., for a given vector v*,
Alv,] = Alguwv”] = guwA”] + Whv” # g, A7, (3.5)

so the notation Av, might be misleading.

An important variation of the general perturbative formalism explained in this chapter

is frequently used in quantum field theory in curved backgrounds. It is usually called
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‘background field method’ and decomposes the full metric g as g, = ¢, + hy [126]. Other
objects depending nonlinearly on g are later truncated at a given order in powers of h. This
can be considered as a particular case of the general formalism used here, in which all but
the first perturbation of the covariant metric are defined to be zero: ’h,, =0 for n > 2.
All formulas in this chapter can be translated to the background field method using such a

simple restriction.

3.3 Perturbative formulas for different objects

An important consequence of the derivative character of A is that it obeys the Leibnitz

rule, whose n-th order generalization on the product of m tensors is

" n!
ATy T =) WM [T1] ... AR [T,], (3.6)
bl k]

where the notation {k;} means that the sum extends to all sorted partitions of n in m
nonnegative integers (that is, including zero) obeying k; + ... + k,, = n. For instance, for
the case n = 3 and m = 2, the corresponding partitions would be {(3,0), (0,3),(2,1),(1,2)}.
For the particular but important case of two objects (m = 2), the above formula takes the

simpler form

([ n

AT =Y ( . ) AT AR [T). (3.7)
k=0

The Leibnitz formula (BX) can be understood as a particularization of the Faa di Bruno

formula [127] (the n-th order chain rule), that gives the expansion of A"[F((i, ..., ()] for

an arbitrary function F' of m scalar arguments (q, ..., .

3.3.1 Perturbations of derivatives

There are several types of derivatives which may appear in a perturbative computation.

We will study here three of those types: partial, covariant and Lie derivatives.

Partial derivatives are associated to coordinate systems and hence do not change under
perturbations of the metric. Therefore, by construction, they commute with the A operator:
A™T,] = A™[T] , for any tensor field T of any rank.

General covariant derivatives can be perturbed. For instance, the Levi-Civita connec-
tion of a metric will change when its associated metric is perturbed. The question arises

then about what is the perturbation of the covariant derivative of a tensor. Transforming
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to partial derivatives and Christoffel symbols, perturbing and coming back to covariant

derivatives, we get, for an arbitrary tensor density 7" of weight w,
An[Tul'"Mmyl...uk;a] - An[Tulmumm...uk];a (38)

+ > {ATDE Tt ] = TR AT b, T

i=1
k

. Z {An[PaayjTMI---MmVI_“a_”Vk] — FaayjAn[TMl---Mmylmamyk]}
j=1

- w {An[raaaTulmumul...uk] - PaaaAn[Tulmumul...uk]}7

which can be rewritten applying the Leibnitz rule ([B) as

n m
el i n Ui L[, m
An[Tul a V1...Vk;t7] = AN[TIH a V1---Vk]§a+z< l >{ZA [PM Ua]An [Tﬂl oo Vl---Vk]
=1 i=1
k
DA AT T A DA T, TL(3.9)
j=1
Note that this expression does not involve the metric directly. That is, it only contains
the background connection V, and the perturbations of its Christoffel symbols, without
assuming that either the background or the perturbed connections derive from a metric.
Hence, it can be applied to perturb a manifold without defining a metric on it, for example to
the Palatini equations. Nevertheless, for the cases that the connection arises from a metric,
in the following subsection we will relate the perturbations of the Christoffel symbols to

the perturbations of the mentioned metric.

Finally, the perturbation formula for the Lie derivative along the vector field v of a
tensor 1" of any rank can be computed by intermediate transformation to partial or covariant
derivatives,

AL, =Y ( " ) L s A" [T, (3.10)

o \ F
This expression bears an obvious similarity with the Leibnitz rule, reflecting the fact that
both v and T are being perturbed but not the Lie structure itself, which is directly given

by the differential structure of the manifold and thus remains unperturbed.

3.3.2 Perturbations of the curvature tensors

The expansion for the inverse metric can be obtained by iteration of the matricial
identity
7 = 0" = 9 (G — 9207 (3.11)
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or, equivalently, by repeated perturbation of the relation

Alg"] = =g"*Algaslg™ . (3.12)
Up to third order this leads to
2
G = g e %( @ _ o ippe Gy vy (3.13)
3
_ %( Ippr 3 ppe iy v 3RIppe 0y Y 4 6 e g RY L O(eY).
In order to obtain the general term of that series, let us define h,, = g, — g, and

temporarily obviate the indices. With this notation, we have
g =(g+h), (3.14)

which can be Taylor expanded around h = 0 as

o0

=97 (0" (3.15)

m=0

Substituting there the decomposition of A in power series of ¢ and displaying again the

indices,
~ uv aoo m Ooekl{k} B Oong{k} Ooekm{k} v
7 =gy (-1) ZF Ihe Zp The | ) — )L (3.16)
m=0 k=11 ko=1 "2 k=1 "
which can be organized to provide the general term
vV m n! (0% v
A [g) = D (D) gy T e e o (3.17)

where the notation in round brackets (k;) stands for extending the sum to the 2"~ sorted
partitions of n in m < n positive integers (not including zero) k; + ... + k,, = n. For
example, for n = 3 there are four partitions {(3), (1,2), (2,1) and (1,1, 1)}, which generate
the four terms appearing in the second line of the formula (BI3).

With the expansions of the metric and its inverse at hand, we can obtain the Christoffel

symbols in the usual way,

aled 1 ~a ~ ~ ~
T = 59" (Ouvs + OuGup — OsGw)- (3.18)

Displaying it up to third order, this leads to

N 2
FQW _ Fij +e {1}haw/ + % ({2}haW _ g tupeB mhﬁw) (3.19)

3
£
i E( {B}hfa,uu _3 {1}haﬁ {Q}hﬁwf -3 {2}haﬁ {1}h'5wf 16 {l}haﬁ {l}hﬁW {l}hww) —+ O(g4>’
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where we have defined the three-indices tensor perturbation

{n}ha,uz/ = ({n}hfau;u + {n}hau;u - {n}h;u/;a> ) (320)

N | —

which is symmetric in its last two indices and satisfies “h,,,, = 0. The covariant derivative
in (B20) is that associated with the background metric. Higher-order terms of the expansion

can be easily computed noting that
A o] = " — "he Phg,, (3.21)
which leads to

n (6% m n! « 1 2 1
AMI,] = Z(—l) Hm end g (hmsdpy o Akabpy e (3.22)

Here, the sum extends again to all sorted partitions of n. For the case n = 1 this formula
must be understood as A[I'“,, ] = h%,,. Note that each term in the above expression

contains one and only one tensor *!h but a variable number of metric perturbations.

pvs
In order to obtain the general perturbative term for the Riemann tensor, we can start with

its definition in terms of the Christoffel symbols
RW/PJ = &,F"W - @F",,p + Fauprgau - Faﬂﬁraam (3'23)

and use the perturbation operator A" on it. This leads to the general term

A"[Ryuy?) = 0, (A", = 30 ( . ) AME AT HD7,,] — (e v). (3.24)

To make transparent the tensorial character of this object, we can rewrite it as

n—1

ARy, = Vo, (A7 ]) — Z ( : ) A* [Pan]An_k[Paau] —(pev). (3.25)

k=1

If the background connection comes from a metric, (BET9HE2Z) ensure that the perturbed
connection also derives from a metric. Then, the (implicit) triple sum in (B23) can be
rearranged as follows,
n o m n! m},OAm 2} AsA2 {k1
A'[Ru,) = Y (=1 m[{k oA R (3.26)
(ki)

+ E {km}hcﬁ\m._. {ks+1}h>\s+2>\s+1 {kS}hASAsHu {ks—l}h)‘SAS—l {k2}h>\3>\2 {kl}h)\2yp]

— (pe ).
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If we display this formula up to second order we obtain

R},LVO')\ = R;,LVO')\ + 2¢ {1}h)\0'[u;u} (327)
+ & (O opun) = 2 Dhagpun) + 2 Phap PhT ) + O(E7).

Formula (B26]) is surprisingly simple because all covariant derivatives of the metric
perturbations are grouped in terms of the form B20). It is clear that the explicit sum in
(BZ3) contains only that kind of terms; however the derivatives of the perturbations of the
Christoffel symbols give rise to isolated covariant derivatives of the metric perturbations.

Nonetheless, because of formula ([B3), they can be combined to obtain the displayed result.

It is straightforward to compute the general perturbation for the Ricci tensor from
[B23) if we want to express it in terms of the perturbations of the background connection,
or from (B20) if we want it in terms of the perturbations of the metric. As there is no
metric contraction involved in the passage from the Riemann to the Ricci tensor, it is clear
that

A"(R,) = AR, (3.28)

The resulting expression is symmetric in g and p owing to the identity
H O = HP O s (3.29)

valid for any symmetric tensor H*? such that H*® *hgt is also symmetric in o and .

When considering the Ricci scalar, one has to take into account that there is a metric

contraction,

R = g*" R, (3.30)

which will have a non-zero contribution when the perturbation operator is applied. Using

formula ([B), it is easy to compute the general perturbative term,

NEEDS ( . ) AM[g A" H Ry, (331

k=0 k
3.3.3 Perturbations of the metric determinant

As will be made explicit in the following section, when making perturbative calculations
in a canonical framework, one frequently finds the perturbation of the determinant of the
metric. This is a basis-dependent concept, in the sense that what we are computing is the
determinant of the components of the metric in a given basis and the result depends on
the basis we have chosen. Under a change of basis the determinant changes with a squared

Jacobian and it is, hence, a density of weight +2.
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The determinant of the metric g,3 of a N-dimensional manifold, can be defined as

1 ~x (07 ~
ﬁ U nﬁlmﬁN Ja181 -+ - JanBys (332)

using the upper antisymmetric density 7%~ (the over-tilde denotes weight +1), whose

det(gag) =

components in the chosen basis are 41, —1 or 0. This object, as well as its lower counterpart

Nai..ax of weight —1, stays invariant under the A perturbation. Therefore, the Leibnitz
rule (B6) implies

n L o an ~8, n!
A"[det(gag)] = ~i N BN {z:} T S g B g (3.33)
ki

Finally, this can be simplified using the well known relation

galﬁl o galﬁN

ﬁal...aN 7761...[31\/ — det(gag) X (334)
gaN51 .. gaNﬁN

We conclude that the n-th order perturbation of the determinant of the metric is always
the product of the determinant itself times a scalar formed by contraction of metric per-
turbations. It is interesting to note that such a scalar factor contains the product of at
most N metric perturbations, and not n, as we might have anticipated by inspection of
the formulas in the previous subsections. This is actually the only place in this chap-
ter in which the dimension of the manifold being perturbed plays a role. With this for-
mula at hand it is straightforward to give the n-th order perturbation of the volume form
€ar..ay = |det(g)|1/2

Tay...an-

It is worth emphasizing that the combinatorial formulas for the perturbations of the
curvature tensors at a general order achieved in this section are extremely useful for com-
putational purposes. Essentially, the problem of perturbations is reduced to that of listing
the sorted partitions of a given number, which can be done very fast in any computer-algebra
system. This fact simply reflects the recursive differential origin of the perturbation pro-
cess. The formulas in this section have been implemented in the free package zPert that
will be explained in Chapter [[3

3.4 Equations of motion

We will do perturbations in the context of standard General Relativity. Hence, in order
to obtain the perturbed equations of motion one has two different alternatives. It is pos-

sible to perturb the Einstein equations directly, which is the most commom approach to
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perturbation theory in General Relativity. But there is another choice, that is perturbing
the Hilbert-Einstein action in a Hamiltonian setting. This last approach will be very illumi-
nating when discussing the gauge freedom in the next chapter. In the following subsections

we explain both approaches in more detail.

3.4.1 Covariant framework

In the covariant framework we proceed by perturbing the Einstein equations directly.
The formulas from the previous section allow us to obtain the general perturbative term of

the Einstein tensor

1
G;u/ = R;,LV - iguugaﬁRaﬁa (335)

where again Leibnitz formula (B) is applied, since the second term of the equation is the

product of three objects. It is straightforward to rearrange labels and write

AiGn) = MR = 5 305 i A I R (3

It is not worth writing this equation in a more explicit form. The most important point
to notice is that, as already explained in the introduction of this chapter, the full Einstein
equations are equivalent to an infinite hierarchy of linear differential equations. In order to
make this explicit, it is enough to take the Einstein equations and replace the tensors by

their expansions in power series of €, which gives
A"[G] = 8r ™Mt for all n. (3.37)

In order to close this system of equations, the linearized matter evolution equations are
necessary. We can separate the n-th order perturbation of the Einstein tensor into a part
that is linear in the n-th perturbation of the metric and a source that will be composed of
products of lower order perturbations. Then equation (B3D) can be written, for every n,

in a schematic form
L[™h,,] + ™8, [Wh. "= h] =8r ", (3.38)
where (™S is the source term and L is a linear differential operator that only depends on

the background geometry. In general it can be written as

1 « n « n « n
L") = 5lguw (R "Rag + "% — "R g) = "y R

F2 090 e — IR ] (3.39)
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There are two special cases which deserve attention. If the background is a vacuum
(t, = 0), the background Ricci tensor will cancel out simplifying the expression. Besides
that, if we suppose that all the perturbations of the stress-energy tensor are zero ( ¢, = 0)
then (B39) reduces to

1 1
L["h,,] = —59m S [ Wh. "= YR + RS, — 3 TR - (3.40)
In order to see this, take the trace of (B38), obtaining h%g2, = Mpel 5 — (G o
Replacement in (B339) provides then the commented result.

3.4.2 Canonical framework

In this subsection we provide a very brief summary of the canonical formalism for
General Relativity developed by Arnowitt, Deser and Misner [18,19]. We will also analyze
how it can be used to obtain the perturbative equations of motion.

Since this is a Hamiltonian approach, we need to specify the matter model to explicitly
carry out the calculations. We will suppose a massless scalar matter field ®. The case of
a vacuum is included just by letting ® vanish. This matter model will be later used in
spherical symmetry to make the background dynamical and find a master equation.

Given the four-dimensional spacetime (M*,%g,,), we introduce a foliation of three-
dimensional spacelike slices ¥; as level surfaces of the time field ¢(z). The orthogonal vector
u* defines the projected metric ®g ,, = “g,, +wu,u, on the slices. We introduce coordinates
(t,2°) adapted to the foliation, and work with three-dimensional objects. Greek and Latin
indices denote four- and three-dimensional tensors respectively. A left-superindex indicates

dimensionality when confusion may arise.

The conjugated momentum of the Klein-Gordon field ® is defined as,
My = —/—®g Y™, (3.41)

where g denotes the determinant of the four-metric. In terms of this pair of variables the

action corresponding to the matter reads,
1 v
Ske = 3 / dz'y/=g g e .0, (3.42)
a (112 g A
= /dt/ d[L‘g |:H<I>(I)7t — 5 (— +,ugg”(I>,i<I>7j) - ﬁz (H<I>(I),z):| . (343)
S Hg

Following ADM decomposition, the four-metric is expressed in terms of the lapse func-

tion, the shift vector and the spatial metric on the slices

Oé72 = _(4)gtt7 ﬁl = (4)gti7 gl] = (4)91‘]‘7 (344)
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with inverse
g7 =97 + a7, (3.45)

with Latin indices always raised and lowered with ¢¥ and g;;. The gravitational dynamical

variables in the ADM Hamiltonian formalism are g;; and their conjugated momenta
7 = p, ("K' — K7), (3.46)

where K% is the extrinsic curvature and p, = /| det g;;| is the determinant of the metric

of the foliation hypersurfaces.

In this way, the complete action of the system, with coupling constant 167Gy = 1, is

given by
§=38¢+Ske = / dt / &Pz (Y gijy + Mo ®, — aH — B°H,) . (3.47)
¢

Taking the variation of last expression with respect to Lagrange multipliers o and 3¢ one
obtains the constraints of the background spacetime,
1 . 1 2 1 /112 .
— HUHZ" — = Hll :| — W (3)R+ - <_¢ +M g”<1>,~<1> ) = O, (348)
Hg { T2 ( ) ! 2\ g ! Y
—2D;I17 + 1@ ; = 0, (3.49)

H

Hi

where D is the covariant derivative associated to g;;. Variation of the action (BZ1) with re-
spect to g;;, II;;, ® and Ilg gives the evolution equations for their corresponding conjugated

variables.

In order to obtain the perturbed equations of motion, one can follow the method used
by Taub [128] and Moncrief [101] at linear order. Here we generalize that method to any
perturbative order. The idea is that if one wants to obtain the equations of motion at order
n, it is necessary to construct an effective action quadratic in the mentioned variables. This
can be achieved just by perturbing the action (BZD) up to order 2n. The general term of
such a perturbation will be composed by products of factors of order k£ < 2n. We will keep
only those terms that have at least one of the factors of order n. These are the meaningful
terms since the physical equations will be obtained by variation of the resulting action with
respect to variables of the mentioned order n. Therefore, the rest of the terms will not

contribute. Defining the following shorthand,

"o = Ao, B = AP, (3.50)
= A"[a), vl = A"[Ilg), (3.5
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we can schematically write down the effective action,

! 5 A
AZ[S] = @ /d:p4[{”}plj My, 4+ Ty ICATH] — MBIANH,]
n.
B nzl n!? { {k}CAQn—k‘[H] + {k}BA%_k[H']}] (3 53)
2 (20 — k)] n no Pl | |

The subindex in the operator A, means to keep only those terms which have at least one
of the factors of order n. For instance, compare the following expression for the third-order

perturbation of the inverse metric with the full perturbation presented in equation ([BI3),

A3[gh] = 3 gk i Y g g ippe (g v, (3.54)

Hence, it is sufficient to take variations of the effective action ([BL3) with respect to
different nth-order variables to obtain the equations of motion at that order. In the next
chapter we will analyze the structure of the effective action ([B53)) since it will be very

illuminating in the context of gauge freedom.



Chapter 4

Gauge freedom

In this chapter we will analyze the problem of recognizing the actual physical degrees
of freedom of the perturbations. We will encounter again the two different approaches to
analyze this problem: the canonical and covariant frameworks. In General Relativity the
former has been used more frequently. Even though, as we will explain below, the latter
has its own advantages when dealing with the gauge freedom since it also considers the
dynamics of the system. The problem is that, as far as we know, the interpretation of the

gauge freedom at second and higher order has not yet been developed in a canonical setting.

4.1 Covariant framework

As we have explained in the introduction to the previous chapter, in perturbation theory
we consider a family of spacetimes {M(¢), §,u,(€),%,,, } in which associated families of tensor
fields T'(c) are defined. All manifolds M(e) are assumed to be diffcomorphic. The main
issue in perturbation theory is comparing tensor fields for a given nonzero value of ¢ with
their background counterparts (¢ = 0). There exists diffeomorphism invariance on each
of the manifolds M(z—:) but, in addition, there is no preferred point-to-point identification
mapping between any two such manifolds, so that the comparison of two tensor fields with
different values of € is not an invariantly defined concept. This is the origin of the so-called

gauge freedom in perturbation theory [99].

4.1.1 Gauge transformations

Let us call a gauge ¢. a family of point-to-point identification diffeomorphisms from the

43
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background manifold M to M(e):
¢e: M — Mle). (4.1)

Given a gauge ¢. we can now pull-back a generic tensor T'(¢) on M (e) to a tensor ¢*T'(¢) on
M. This latter tensor can be compared with the background member T' (at each point in
M), resulting in a ¢-dependent concept of what a perturbation means. Assuming smooth

dependence of all structures in €, we can define the perturbative expansion
*7 — = " n
GiT(e) =T+ AT, (4.2)
n=1

where all terms of the equation are defined at the same point of the background manifold
M. Tn particular the perturbations AZ[T] are tensor fields on M. The explicit notation Ay
(that we will only use in this chapter) stresses the fact that, in general, it is not possible to
define a perturbation without explicitly indicating which gauge ¢ is used. For instance, the
statement that a perturbation vanishes is generically meaningless unless one specifies the
gauge in which this occurs. Note also that the infinite series in equation (2)) arises from

the simultaneous dependence on ¢ of both T'(¢) and ¢..

One then has to face the question of how the perturbations AZ[T] vary under a change

of gauge from ¢. to, let’s say, 1. while keeping unaltered the family of tensors T'(¢). Such a

gauge transformation will be described by a family x. of diffeomorphisms on the background
manifold

Xe = gba_l oY.: M — M, (4.3)

which clearly satisfy
VT (e) = xz 9T (e). (4.4)
We emphasize that x. is not a gauge, but a gauge transformation.

Flows are families of diffeomorphisms €2, that form a group under the composition
operation, that is, if Q. o Q. = €. ;.. These flows are well known and are used, for
example, to define the Lie derivative [129]. In fact, from the very definition of the Lie
derivative it is straightforward to find the Taylor expansion for the pullback X generated
by the flow (). acting on a generic tensor 7T,

* = " n
0T = —LeT. (4.5)
n=0
But flows are a very special kind of families of diffeomorphisms, so that the above result is

far from being directly useful in our discussion.
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The expansion of a general family of diffeomorphisms is much more difficult. In fact
there were some partial results up to second-order [130-132], but the formalism to deal with
the high-order expansions of families of diffeomorphisms was developed recently in [100].

The most important result from that article is that, given any one-parameter family of

diffeomorphisms y., there always exists an infinite set of flows {le), .. Qg,f)/m,,. .}, such
that

— ..o Q 0% oW 4.6

XE .0 am/ ! .0 2/20 e ( . )

In this way, any one-parameter family of diffeomorphisms is equivalent to an infinite set of
flows and, hence, to an infinite set of vector fields (the generators of the flows). The special
combination of flows appearing in () is called a family of knight diffeomorphisms. This
terminology is inspired in the similarity of their action with the movement of the knight in

the chess game.

With relation (E6) at hand, formula () turns out to be very useful for our purposes.
Applying it repeatedly, we attain a power series expansion for the right-hand side of equation

(A, so that two gauge choices are related by

kl +2k2+...+mkm+...

DI Z T £ L g L g 0T (E)- (47

k1=0 ko=0

The vectors { (0¢r, @gn  tmgr Y} generate the respective flows {Q, ..., Qim/mla ..}. Up
to third order, relation (EZ7) reads explicitly

PTE) = () +eLomgdtT(E) + (Lome + L) :T(C) (43)

e
+ (5{3}5 +3L L+ L {1}5) ¢:T(e) + O(e").

In order to obtain the action of the gauge transformation at each order, we just replace
expansion (IL2) in the above equation and get [133]

n

n n! 1 k km n—m
AglTl = Zl (n—m)! ; 2k2  (m!)km k). Ky, 'ﬁ{ll}f Limehs T (4:9)
m= km
where we have defined [k,,] = {(k1,..., k) € N/ > " ik; = m}. Expanding this relation
up to third order we obtain
Ay[T] = Ag[T] = LT, (4.10)
AT) = A3(T) = (Lo + L) T+ 2L crAlT), (4.11)
ASIT) - AB[T] = (z e + Lo + 3L el {2}5) T (4.12)

+ 3 (Lomg+ L) AIT]+ 3L AT
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These formulas describe the effect of general gauge transformations on any high-order per-
turbation of a generic background tensor 7. They contain all the information needed to

analyze the issue of gauge transformations in perturbation theory.

It is interesting to ask ourselves whether it is possible to perform gauge transformations
and combine them working purely at a given order m. In practical applications we can
keep terms only up to a finite order £", which projects the full group G of gauge trans-
formations into a truncated group ™G of nth-order gauge transformations. Each of these
transformations is described by a collection of n vector fields { *%¢, ..., ("¢}, and we will say
that it is pure mth-order if all those vectors are zero except for ™¢. The important point
is that, in general, composition of pure mth-order transformations is not pure mth-order,
unless m = n. For example, the composition of two generic second-order transformations

described by { ¢, 3¢} and {{1}5, {2}5} is described by the pair
(O 4 0, OF 4 g 4 [g, ) (1.13)

and hence the subset of pure first-order transformations { /¢, 0} is not a subgroup of *'G.
In fact, the group G is not equivalent to this subset, but only to a truncated form of it,
and therefore it is important to distinguish between first-order transformations { ¢} and
pure first-order transformations { (¢, 0,...0}. In general, the set G of all nth-order gauge
transformations is a group, but the subset of all pure mth-order transformations is not.
The only exception is the reduced case m = n of transformations of the form {0, ..., 0, "¢},
in which only a single linear term in equations (EL3) survives (this includes first-order
perturbation theory as the case m = n = 1). There are more general subgroups of a given
@G, like the subgroup of transformations of the form {0,...,0, tmi¢ tm+te L but

they have less interest for our discussion and will not be considered in this work.

4.1.2 Gauge invariants

Once we have defined the concept of gauge transformation in equation ([E3), we discuss
now the associated notion of gauge invariance of a family of tensors T(e) under a group of
gauge transformations. We will then find the inherited gauge invariance of the perturbations

AZ[T] under the respective truncated version of that group.

The most natural definition of gauge invariance was given by Sachs [98]: A tensor
family T'(¢) is identification gauge invariant (IGI) if the pull-back of its members to the
background manifold is independent of the gauge, though the result still depends on €. That
is, (bZT(&T) = Q/J:T(E) for all gauges ¢.,1.. This can also be interpreted as the invariance

under the full group G of gauge transformations. Perturbatively, a tensor family T'()
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is IGI up to order n if and only if AP[T] = AR[T] for all m < n and all gauges ¢,
Y [100]. Again, this is equivalent to the requirement of invariance under the truncated
group ™G defined above. This definition turns out to be too restrictive because, as it is
well known [98,99], only perturbations of vanishing tensors, constant scalars, or constant
linear combinations of products of delta tensors can be IGI in first-order perturbation
theory, since these are the only tensors with zero Lie derivative along every vector field.
For higher, nth-order perturbations the problem becomes even worse because, apart from
the background quantities, all of the mth-order perturbations with m < n must also be
of the form that we have commented [100]. In principle, this restricts to a very narrow

physical scenario the possibilities that are left.

Other forms of gauge invariance can be defined using subgroups of G or "G. For
example invariance with respect to the reduced subgroup of pure nth-order transformations
has been used in the past [92|, by fixing the gauge perturbatively at all orders 1,....n — 1,

but not at order n.

Only perturbations of highly symmetric backgrounds admit a complete description in
terms of IGI variables. Even at first order, significant limitations have been found: Stewart
and Walker showed that, for vacuum spacetimes, only backgrounds with Petrov type D are
possible [99], which fortunately includes the Kerr spacetime. In cosmology, only perturba-
tions of static Friedman-Robertson-Walker (FRW) backgrounds can be described in terms
of IGI variables [134]. For spherical backgrounds with matter, only first-order perturbations
with axial polarity admit such a description [135,136], but not the complementary set of
polar perturbations. This latter result is specially relevant for us, because we want to con-
struct high-order gauge invariants of a spherical spacetime and, as we will see in Chapter
[T, the polarities mix already at second order: hence there is no hope of getting a purely
IGI description in general. Note that vacuum [101] and electro-vacuum [102]| spacetimes
with spherical symmetry are very special cases (in particular included in the cited result
for type D spacetimes), for which the programme of construction of gauge invariants can
be further developed [107].

On the other hand, when describing gravitational radiation in a vacuum, the Weyl
tensor provides all the relevant geometrical information, and therefore many investigations
employ it as the basic object to be perturbed. Furthermore, the Weyl tensor defines a set
of principal null directions, so that it becomes natural to decompose it using the Newman-
Penrose formalism. The analysis of IGI is then simplified, but an additional type of gauge
invariance is introduced, called tetrad gauge invariance, which requires invariance under
(the 6-parametric Lorentz group of) transformations among null tetrads [89,99, 136]. We

will not use this approach in this paper, but instead appeal to a different and more general
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notion of gauge invariance in which one makes use of an additional geometrical structure:
a privileged gauge ¢.. The basic idea is that, given a family of tensors T(&?), one can select
a privileged gauge to extract the physical information contained in this family and express
this information in terms of the pull-back of T'(¢) in an arbitrary gauge. In other words, the
gauge invariant is defined as the function(al) that provides the value of $ZT(5) in a generic
gauge:

.T(e) = F 7)) (4.14)

So, the gauge invariant is now supplied by the function(al) F rather than by the family of

tensors T(¢) itself, as was the case for IGT.

This notion of gauge invariants is similar to that of the constants of motion defined in
Mechanics by the particular values that the variables of the system take at some fixed instant
of time [137], or even to the notion of evolving constants of motion recently introduced in
Quantum Gravity [138] (although in that case one ought to consider a family of privileged
gauges parameterized by a set of real numbers, rather than just one of them ¢_). In spite
of appearing counterintuitive at first, this notion can be very useful in those cases in which
the computations can be carried out to completion, i.e. when one can obtain the explicit
expression of the invariants in terms of gauge-dependent quantities, in our context, or in
terms of time-dependent variables, in Mechanics. In other words, we need to determine the
explicit form of the gauge transformation F' = y* = ¢-! o ¢, for arbitrary ¢.. Whether this

is possible or not essentially depends on the choice of gauge ¢..

In practice, the privileged gauge is defined by imposing some conditions R. on the pull-
back $:T(6) of a particular tensor T'(¢). Therefore, ¢_ will be characterized as the gauge
in which the tensor ¢_.7'(c) satisfies some specific requirements. For this method to work
satisfactorily, this privileged gauge choice has to be rigid. This means that the conditions
R.[6.T(¢)] = 0 must fix uniquely the gauge ¢, and so any further gauge transformation

will violate those conditions.

In perturbation theory, the invariants will then be the combinations "F[{AZ[T]}]
obtained by performing a gauge transformation from the perturbations defined on a generic
gauge AZ'[T] to those defined in the rigid gauge A;{L[T]. This kind of combination of
perturbations have been characteristic of this approach to gauge invariance, starting with
the pioneering work of Moncrief [101] for non-spherical perturbations of Schwarzschild,
where the Regge-Wheeler gauge was implicitly used as the privileged gauge. His work was
later generalized by GS [51] to non-spherical perturbations of any spherical background, also
implicitly using the RW gauge. The same procedure has been employed by Bardeen [33],
Stewart [134], and many other authors in their study of perturbations of FRW cosmologies.

It can also be found in several recent investigations of second-order perturbations of vacuum
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[89,139,140] or cosmological backgrounds [141].

For instance, the first-order gauge invariants of a generic tensor 7" will be given by
F[A[T]] = Ay[T) + L,T, (4.15)

where p* is the vector field generating the first-order gauge transformation from ¢ to ¢, so
that this vector contains now information about our choice of privileged gauge ¢. Again, in
practical applications the gauge ¢ is selected by imposing some rigid conditions R on the
perturbations AJ)[T] for some specific tensor 7', and such that no residual freedom is left in
the choice of gauge:

R [A&[T]] ~0. (4.16)

In this way we get the equations
R|Ay[T]+ £,T] =0 (4.17)

which must be solved for p# in terms of Ay[T]. Substituting the vector p* obtained in this
way, expressions (ELIH) provide gauge invariants by construction. Note that when 7 = T,
some of those expressions (or combinations of them) are trivial identities [equivalent to the
requirements (EZI)|. This method for the determination of invariants can be straightfor-

wardly generalized to higher perturbative orders, as we will see in the following case.

Since metric perturbations play a central role in our analysis, we choose the background
metric g, as the tensor T on which one imposes the conditions to fix the privileged gauge.

We introduce the following compact notation for the perturbations of the metric:

M = A2lgu), (4.18)
I, = A%[g“yL (4.19)

for a generic gauge ¢ and our privileged one ¢, respectively. At first order we have that

expressions (EE10) for the metric become
K = hyw + Lpgu- (4.20)

The vector p* is determined by demanding some conditions R[/C,,] = 0 which characterize
the gauge ¢ at first order. Then, the vector p* is determined in terms of the components

of h,, by solving the equations
Rlhuw + L,g,,] = 0. (4.21)

This completes the definition ([Z20) of the gauge invariant K, as a function of h,,.
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Nonetheless we note that, owing to the presence of the Lie derivative, equations (2
contain derivatives of the vector p#, so that their solution will involve in general integrals
of the metric perturbations. Only when p* can be determined explicitly in an amenable
way from the metric perturbations we will have a useful form of gauge invariants. This
fact will depend on the choice of the privileged gauge. In particular, we will see later
that around spherical backgrounds the requirement of getting explicit and non-integral
expressions for the harmonic components of the vector p* will almost uniquely single out
the RW gauge. We also point out that the same vector p*, obtained by solving equations
(EZT)), can now be employed to define the gauge invariants associated with any other tensor
T as in equation (EEIH). In addition, note that we can still interpret &, as (the value of)
the metric perturbations expressed in the rigid gauge ¢ which satisfies conditions ([EZT]).

At higher orders, and once a rigid gauge is chosen via some conditions ™R for all

m < n, one can obtain the nth-order metric invariants as
U = Whyw + Lty + T (4.22)

Since this equality reflects the effect of a gauge transformation, the source .7, is explicitly
given by equation (EJ) and depends on lower-order vectors "'p# and perturbations h,,
with m < n, but not on p#. Besides, we remember that the source vanishes at first order
(t"YH,, = 0). On the other hand, the equation that one has to solve iteratively in order to

determine the gauge vectors pt, from m = 1 to m = n, takes now the expression
IRy + L G + ] = 0. (4.23)

In particular, when all the conditions ™R have the same linear functional dependence on
their arguments (for instance because they arise from the perturbative expansion of just
one set of exact linear gauge conditions on the metric), equation ([EZ3)) will have the form
[EZT) but with the source term ™R[t"7,,]. Therefore, the solutions of these equations

will be constructed essentially in the same way.

Nakamura has suggested a similar approach [142, 143] to construct high-order gauge
invariants. He starts from the basic assumption that a splitting equivalent to equation
[E22) is given from the outset, separating the metric perturbation th,, into its gauge-
invariant part K, and gauge-variant part (containing the vectors p*), with the vectors
{mipt satisfying some set of requirements. No proposal is made, however, on how such a
splitting can be attained. Our scheme goes beyond that proposal, giving a constructive and
general prescription to generate the vectors p* from the choice of a rigid gauge, in such

a way that the requirements imposed on ™p* are automatically fulfilled.

After determining the vectors { "p#(h), ..., *"p#(h)}, the perturbations of any tensor

field, and in particular those of the stress-energy tensor ", can be taken to its gauge-

ns
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invariant form W, just by applying a gauge transformation parameterized by the above
vectors:

n

n! 1
{n} o k1 km {n —m}
Vi = Z (n—m)! Z 2k2...(m!)kMk:1!...k:m!£mpmﬁ{m}p by

m=0 o]

In this way we will get a tensor W, (¢, h) whose dependence on the perturbations ¢,
and h,, (m < n) will not change when any gauge transformation is applied to them. In
Chapter @ we will use these techniques to compute the metric and matter gauge invariants

for perturbations of a spherical background spacetime.

4.2 Canonical framework

In this section we follow again the ADM formalism explained in Subsection ([BZ2) to

analyze the issue of gauge freedom from a canonical perspective.

4.2.1 Gauge transformations

In General Relativity the Poisson brackets among the constraints H and H; vanish
on shell. In terms of the terminology introduced by Dirac [144-146| they are first-class
constraints, and hence generators of gauge transformations on the constraint surface in
phase space. The action of a generic transformation (diffeomorphism) for a functional
F(gi;,117) in phase space is parameterized by the lapse o and shift 5. The infinitesimal

form of this transformation is given by,
3¢
where we have made use of the standard Poisson brackets,

{gi(2), T"(y)} = 6"8'56°(x — ), (4.25)
{2(2),T(y)} = &(z—y), (4.26)

for any two points (x,y) in the hypersurface 3;, namely, a section of constant time.

This identifies the gauge orbits, but in general it is not possible to invert relations
BZ]B19) and explicitly separate the four gauge-invariant functions that would contain the
physical degrees of freedom from the four gauge variables and the four constrained variables

in g;; and IT¥. This is exactly the task we plan to do in the perturbative approach.
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Since it will be the basis of the following discussion, we display here again the effective

action for the perturbative problem at order n (B23),

AZ[S] = / dt / 4z [ O iy P, — PICAMH] — CBA ]

n'2

{k} 2n—k {k} 2n—k[qy
Z o 2n_ CAZF[H] + IBA2 [Hz]}]. (4.27)

In this action there are three kinds of terms. First we have the kinetic terms containing
time derivatives of *'h;; and J¢. Second, the terms in the summation symbol form a
Hamiltonian that do not vanish on shell. These terms will generate the evolution equations
for the gauge-invariant degrees of freedom. And finally, we have the nth order perturbations
of the background constraints that, under a variation of the effective action ([E27) with
respect to B and (', give the constraints that must be obeyed by the nth order
variables,

A"[H] =0, A"[H;] = 0. (4.28)

These constraints contain the gauge freedom of the system and are the generators of the per-
turbative gauge transformations. The perturbation of the lapse and the shift { (C, ("B}
parameterize the gauge transformation. They are the equivalent of the four-dimensional
gauge vectors (™¢&# in the covariant approach of the previous section. In principle one could
explicitly obtain the nth order gauge transformation with this approach finding the formula
equivalent to ({EJ) in the canonical world. But this is not a trivial task and we leave it for

future research.

For the rest of this thesis we will use the Hamiltonian approach only in the context
of linear perturbation theory. For this case it is possible to go further in the explicit
calculations. For instance, in the case n = 1 the effective action ([EZ17) takes the following
simpler form,

Lo 3 ) ij i @ 2 L
§A18:/dt /Etd:c {pfhij,t Fpps— CA[H) ~ BA] — SA%[H] - EAl[Hi]} (4.29)

The perturbation of the background constraints are given by,

1 R .
A = - (Hij - §ginll) <2p“ + 201 ITH — §hkknlﬂ)
g

1

1 H2 i qu> 1 ij

+ thk (——‘D + pg® ;P ) + =+ pgp P — /,cgh D, (4.30)
Hg Hg

AlH;| = —QDk(hszJk + gijp]k> + Hleihjl +p@,; +1sp,, (4.31)
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AjH] = @{SpQ + 812 UG (hijhy* — 2h*hyy,) + 16 P;PY — 8P Py
g

+ 207 [RM(8T0 01y — AlL;T0y) + hiy (TG — 202 @R + 210,11 — 11, FIT,)

—  8u(D;D;hi* — D;Dyhi* — DyD;h* + Dy D*hyj) — 811" Py + 321LF Py,
— 8P + hi' [hy (113 + 20 IT* — I + 202 9R) + 8h7% (T,I1,!
—  2I0;'My) — 8u2(Dp D" — D D*h;7) — 8llep — 161" Py, + 8117 ¥

+ p2[8D;pD'¢ + hi D;®(8D"p + hy* D'®) + 2h ;. D'®(4h,* D’ ® — h7*D;®)

+ 4D;h D7hi' — 4hij(4D'p + h* D'®) DI ® + 16(D;hY — DIh;") Dyh*

+ 4(2Djhgy, — 3Dyhi;) DY RV}, (4.32)
AlH] = 2ppi+ 20""(Dihjy — 2Dyhij) — 4hy; Dip’™, (4.33)

where we have not written explicitly the perturbative order of each object since all of
them are of first order. In this linearized situation, a gauge transformation of a first-order

functional F'(h;;,p”) is given by,

F(hij,p?) — {F(hz‘jap“),/

3t

&’z (CA[H] + B'A[H,)) } : (4.34)

Comparing this last expression with the formula (ZZ3) that accounts for the infinitesimal
gauge transformation of the background geometry, we can realize again that the origin of
both gauge freedoms is different since the generators and parameters of each transformation

are not the same and could be independently chosen.

4.2.2 Gauge invariants

In order to explain how to construct gauge invariants in this Hamiltonian setting, we
will discuss a general example without considering the perturbations of the matter field
(¢,p). The addition of these perturbations to the general procedure is straightforward.
Let us suppose that the initial perturbative variables (h;;, p”/) are decomposed into some
coordinates or, as we will do in spherical symmetry, in spherical harmonics. Then we will
have six pairs of conjugated variables (hr,py), for I = 1,...,6. The idea is to make a
canonical transformation from this initial set of perturbative variables to another new set

(hy,pr) with the requirement that,
A[H,y] = hy. (4.35)

The subindex takes the values J = 1,2, 3,4 and we have defined, in order to have a compact

notation for this section, A[H,] = A[H]. In this way, the variables A ; will be gauge invariant
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but constrained to vanish by equations [E28). Whereas their conjugated momenta p; will
be pure gauge, so that their initial value can be arbitrarily chosen. In addition, the evolution
equations for these momenta will contain the free functions B* and C, since they will be
obtained by variation of the action with respect to the linearized constraints (E3H). This
permits us to choose also the time derivatives of the pure-gauge momenta p;. Then, if
we are able to follow this procedure completely, we will have isolated the non-physical
information (gauge as well as constraints) in the four pairs of conjugated variables (A, p;).
The remaining variables [(hs, s ), (he, Pg)] will be the so-called master variables, which are
gauge invariant and obey non-constrained equations of motion. These master variables are
the two degrees of freedom of the gravitational wave and contain all physical information
of the problem. The initial variables (hr,p;) can be reconstructed in terms of the master
variables in any gauge just by applying the inverse of the canonical transformation. We

will see that examples of such equations are the RW and Zerilli equations [101].

The situation in the linearized theory is simpler than in the general non-linear case, but
still only highly symmetric background scenarios allow the construction of gauge-invariant
algebraic combinations of perturbations and their derivatives containing the physical infor-
mation in the linearized approximation. As we will show in Chapters [d and B, one of such

background scenarios are spherically symmetric spacetimes with a massless scalar matter
field.

The gauge invariants constructed with this procedure are of the same kind as the ones
explained in the covariant approach. The canonical transformations we make to convert
four of the new variables (h,, ) into the constraints (A[H], A[H,]), are equivalent to the
gauge transformation we made in the previous section from a generic to the particular rigid
gauge. But there are two great advantages in working in this Hamiltonian setting. On the
one hand, the constraints serve as a guideline to choose the most convenient transformations,
whereas in the covariant approach one has to guess the rigid gauge. On the other hand,
in the canonical approach, apart from constructing gauge invariants, the constraints (as
equations of motion) are also automatically solved and one ends up with useful master

equations.

In order to clarify the relation between the two approaches let us compare and count
the different degrees of freedom. As usual, we define a degree of freedom as a function that
obeys a second-order in time equation of motion. In the covariant approach we start with
ten degrees of freedom contained in the symmetric tensor f,,. Once we removed the four
gauge dependences, that are encoded in the vector £#, by constructing the gauge invariant
objects I,

freedom in the canonical approach contained in twelve variables; namely, the two canonical

we have six degrees of freedom. There are also six gauge-invariant degrees of
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pairs [(hs, ps), (he, Ps)], the four constraints h;, the Lagrange multipliers (C, BY) and their
conjugated (vanishing) momenta. The advantage of the Hamiltonian framework is that it
also provides the dynamical role of each object. More precisely, (C, BY) are non-dynamical
functions since their momenta vanish, h; are constrained to vanish and the canonical pairs

[(hs,Ps), (he, Pe)] describe the two gauge-invariant physical degrees of freedom.
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Chapter 5

Spherical spacetimes

The content of this chapter is well-known and we have included it to fix the notation
and make this thesis self-contained. It is divided into two main sections that impose spher-
ical symmetry to the spacetime under consideration, after performing one of two different
splittings. The first section deals with a 2 + 2 block diagonal splitting of the metric, which
separates it into the trivial geometry of the two-sphere and that of its orthogonal part. This
splitting is well suited to spherical symmetry and will be used in Part [V of this thesis to
generalize the Gerlach and Sengupta formalism to second order. The second section follows
the 3 + 1 decomposition required by the Hamiltonian or canonical approach to General
Relativity that divides the metric into a time and a spatial part. This splitting will be used
in Part [Tl to find the master equations for the perturbations of a spherical but dynamical
background spacetime. For future convenience, we will analyze different matter models in
each splitting: in the 2 + 2 splitting we will deal with a vacuum as well as a perfect fluid
matter content. Whereas in the 3 + 1 splitting we develop the equations for a massless
scalar field. The notation will overlap in some cases. For instance, the vector u will be used
to denote both the velocity of the perfect fluid and the orthogonal vector to constant time
slices in the 3+ 1 decomposition. But since both (covariant and canonical) approaches will

not be mixed, the meaning of each object should be always clear form the context.

5.1 242 splitting of the spacetime

In the following chapters we will consider spherically symmetric spacetimes. This means
that its isometry group contains a subgroup isomorphic to the group SO(3), and the orbits

of this subgroup (i.e., the sets of points resulting from the action of the subgroup on a given

59
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point) are two-dimensional spheres. So those isometries may then be physically interpreted

as rotations.

Because of spherical symmetry, M can globally be decomposed as M? x S?, where
M? is a two-dimensional Lorentzian manifold with boundary, to be associated with the
centre of symmetry, and S? is the two-sphere. Following Gerlach and Sengupta we choose
a coordinate system o = (24, 2%) adapted to this decomposition. Uppercase Latin indices
denote arbitrary coordinates on the manifold M?, z#, whereas lowercase Latin indices label
the spherical coordinates on the sphere, ¢ = (22 = 0,23 = ¢). The idea is that, in spite of

fixing coordinates on the sphere, we are going to work covariantly in the manifold M2

The four dimensional metric g,, will induce a metric on each orbit two-sphere, which,
because of the rotational symmetry, must be a multiple of the round (unit Gaussian cur-
vature) metric v, and will be completely characterized by the total area A(z?) of the

two-sphere at the point . We introduce the nonnegative scalar 7(z*) on M?2, defined by

A(z?)
2/, A
= . 5.1
Pt = S (51)
Thus, the induced metric on each sphere is

(2N ywdr®dz® = r?(z*)(d6? + sin 6%d¢?). (5.2)

In this way, the four-dimensional metric g,, and the stress-energy tensor of the back-

ground ¢,, can always be written as

G (2N)datdz” = gap(zP)dztdz® + v (2P) v (2?)da da’, (5.3)

1
tw (oM dotde” = tap(zP)detda® + 57’2(1’1)) Q(2”) Yoy (2 dxd?, (5.4)

where @ is a scalar on the manifold M? and g4 is an arbitrary Lorentzian metric tensor
on M?. There is no inconsistency in using the same symbol g for both the metrics on M?
and M because they indeed coincide on M?2. However, the same does not happen with the

round metric, since
1
Gab = Tz%b and gab = ﬁVab- (5.5)
Using this decomposition it is possible to express all four-dimensional curvature tensors in
terms of the curvature tensors corresponding to g and v and derivatives of the scalar r. In

doing so, it is useful to define a vector field

)

v4 = TTA =(Inr).a (5.6)

to avoid working with explicit logarithms of 7.
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The notation used for the covariant derivatives associated to each metric is
Gux =0, gasp =0, Yab:a = 0. (5.7)

The Levi-Civita tensors € obey the conventions € p.q = T€ap€.q With €y; and es3 being
positive on M? and S2, respectively. The non-null components of the four dimensional

Riemann tensor (4)R;wp>\ are

1
@DRupep = §(QACQBD — gapysc)R, (5.8)
DRapca = —(vave + VA|C) Gbds (5.9)
1
(4)Rabcd == (p - UAUA) (gacgbd - gadee)u (510)

where R is the Ricci scalar of gap.

Taking the appropriate trace we obtain the Ricci tensor that, as the metric, is diagonal

by boxes due to the spherical symmetry:

1
(4)RAB = aRgAB - Q(UAUB + UA|B), (5.11)
1
DRy = (_2 — vty + UAA> Gab- (5.12)
T

The four-dimensional Ricci scalar is given by
4) 2 A A
R:R+ﬁ—6v,w —4v 4. (5.13)
The Einstein equations for a general spherically symmetric spacetime are

1
WG = (_T_2 + 3vPvp + QUDD) gap — 2(vavp +vaB) = 8mtag, (5.14)
WG = —R+ 20, +20Y4 = 87Q. (5.15)
The energy-momentum conservation leads to the nontrivial relation
Ly |B
Qua = 5 (rtas) ", (5.16)
which can be used to see that (2IH) is a consequence of (Idl). So, all the information of
the Einstein equations for a spherical spacetime is contained in (&14).

It is interesting to study the form of the Weyl tensor in spherical symmetry. If we define

1 2
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the non-vanishing components of the four dimensional Weyl tensor are proportional to this

scalar,
DWasep = (9apgse — gacgsp)U, (5.18)
1
DWapca = §QACgbdu , (5.19)
(4)Wabcd - (gadgbc - gacgbd)u- (520)

The object U is essentially the Newman-Penrose scalar W5, the only nonzero Newman-

Penrose scalar in a spherical spacetime.

5.1.1 Frames on M? manifold

The covariant notation on M? is very useful to perform abstract calculations, but when
we want to implement the formalism numerically it turns out necessary to fix a coordinate
system. An intermediate stage between those two cases would be to work with frames.
Depending on the physical problem that we are dealing with, it may happen that there
exists a preferred direction which fixes the frame in a natural way, for example the velocity
field of a fluid. Nevertheless, in the general case we can only use the derivative of the scalar

r to define a frame.

We define the orthonormal frame of vectors
Pl

rd = — and  t1 = —ePrp, (5.21)
/
where f = /g4Pr a7 p, so that
rlra=1,  tMy=-1,  rity=0. (5.22)

This frame has been chosen so that r4 points to the exterior (larger area). Thus, its
component 7' is positive. On the other hand, the timelike vector field t4 points to the

future, with t° being positive.

The Hawking mass [147] in spherical symmetry (Misner-Sharp mass [148]) is defined as
T
mla*) = L(1 - ), (5.23)

which measures the mass in the interior of the sphere at the point 4. In particular, the

r

5, indicates the appearance

condition f = 0, which implies that the Misner-Sharp mass is

of an apparent horizon. The spatial derivative of m is given by

rAm|A = 4t o gt P, (5.24)
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where t4p is the M? part of the stress-energy tensor (&d]). This relation shows why the

mass m is constant in vacuo.

We can expand the metric and the Levi-Civita tensor as

gap = —talp+rarp, (5.25)

€EAB — TAtB—’I“BtA. (526)

The covariant derivative of any tensor field 7" will be given in terms of derivatives along the

frame vectors,

,I"A:’I“ATBﬂB —tAtB,I"B. (527)

From the Einstein equation (B2I4) it is possible to obtain the covariant derivative of the

vector v,4 in terms of the vector itself and the stress-energy tensor,

1

1
VAIB = 5 (7’_2 — UDUD + 87TtDD) gAp — VAUB — 87Tf}AB. (528)

Using this expression it is easy to derive a formula for the covariant derivative of the frame

vector 74,

1 1 8
TA|B = —§TA(IH f2>|B -+ ﬂ(l — f2 -+ 87TT2tDD)gAB - %TtAB. (529)

It is interesting to note that the traces of the last two equations do not depend explicitly

on the energy-matter content,

1
v = T—2—2UAUA, (5.30)

rla = —%'f’A(lnfz)lAJr%(l—fQ)- (5.31)

In order to obtain a similar formula for the other frame vector t4, it suffices to take into
account that
tA\B = (—EAD'I’D)|B = —EADTD‘B. (532)
We will use the other Einstein equation (EXI3) to obtain the Ricci scalar of the manifold
M2
2 2
R = ﬁ(l — f) —87Q, (5.33)

which can also be written as
2
R= ;(frA)M — 87Q. (5.34)
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As M? is a two-dimensional manifold, all its curvature freedom is contained in the Ricci

scalar. The Riemann and Ricci tensors are proportional to it,

1

Rapep = §(gACgBD_gADgBC)Ra (5.35)
1

Rap = §R9AB- (5.36)

Therefore, we have totally characterized the geometry of M? in terms of the scalar f and

the components () and t4p of the stress-energy tensor.

5.1.2 Vacuum

According to Birkhoff’s theorem [149], any spherically symmetric solution to the vac-
uum field equations (YR, = 0) must be the Schwarzschild metric. This theorem has a
straightforward generalization to the Einstein-Maxwell system, that is, the unique solution

to the vacuum Einstein-Maxwell equations is the Reissner-Nordstrom metric.

For our purposes, there are two important consequences of this theorem. On the one
hand, if we have a spherically symmetric vacuum spacetime we know its exact form. On
the other hand, as the application of this theorem is local, we can have some region where
t,w is not zero but respects the spherical symmetry; then, the solution outside that region

will be Reissner-Nordstrom.

When considering Reissner-Nordstrém the scalar f introduced in the last section is

oM ¢
f=q1-224+L (5.37)

)
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where M and ¢ are the central mass and charge respectively. Whereas the Misner-Sharp

mass (B2Z3) is a combination between these both quantities,

m=M-——. (5.38)

Note that in the particular case of Schwarzschild (¢ = 0) the mass m equals the constant
M.

Using formula (E229) we obtain the covariant derivative of the frame vectors:

M q°

TAIB =-7ﬁu@+5@ﬁﬂg+mwx (5.39)
M 2

tap = ——=ratp+ —=—(ratp + rpta). (5.40)

r2f 2r3 f
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If we calculate the derivatives of the vectors fr, and fta:

2
(fra)p = (TMQ - %) JAB; (5.41)
2
(fta)p = — (% - %) €AB; (5.42)

we can see that the first one is explicitly symmetric, as it must be because it is the second
covariant derivative of the scalar field r, and the second one is a Killing vector field. In

fact, it is the time-like Killing vector field that renders our spacetime static.
It is also obvious how to compute the Ricci scalar from equation (234):

2 2
R= F(QMT—(] ). (5.43)

5.1.3 Perfect fluid

In this section we introduce the notation for the background objects when considering
a spherical spacetime with a perfect fluid. We will use the same notation as in [55] since
the formalism developed in that reference for linear perturbation theory will be generalized
to second-order in Chapter

The energy-momentum tensor for a perfect fluid with four-velocity u*, total energy

density p and pressure p is given by

tw = (p+ D)yt + PG (5.44)

Comparing with equation (B4), this makes Q = 2p. We will consider a generic equation of
state of the form p = p(p, s) with s being the entropy per particle, and define the adiabatic

speed of sound and another thermodynamic fluid property

dp 1 /0Op
2 _ (9P _1(op
= (6p)8’ ¢= p (85)0' (5.45)

There is no need to consider other thermodynamical quantities.

In spherical symmetry the four-velocity of the fluid takes the form wu, = (u4,0). This
vector defines a unique outwards pointing spacelike unit vector ny = —e gu® on M?, with
eap being the antisymmetric tensor on M?2. These two vectors define an orthonormal basis

on this manifold, which can be used to decompose all geometrical objects, like

JAB = —UAUup + Nang, €AB = NAUR — UANE. (5.46)
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Using this decomposition, the tensorial component of the energy-momentum tensor (B4
takes the following form
tap = pusup + pnang. (5.47)

While dealing with the perfect fluid background, that is, in this subsection and in Chapter

13, we will use the following frame derivatives acting on any scalar function (,
(=uQa, ¢ =n"a (5.48)
It is not difficult to find that these derivatives obey the following commutation relation,
Q) = (¢ = u¢' = vC, (5.49)

where we have defined

1= ul 4, v=n",. (5.50)

These “structure" functions are the components of the covariant derivatives of the frame

vectors in their own frame,
uap =na(npp —upv), nap=us(npp — upl). (5.51)
In order to deal only with scalar quantities, we define the following background scalars,

Q =1Inp, U =utvy, W =ntvy. (5.52)

In this notation, the four independent Einstein equations that exist in spherical sym-

metry, can be written in the following way,

U =W(u—U), (5.53)
W =Uw-W), (5.54)
W' = —drp— W24 Up+ T—B (5.55)
U = —dap— U+ Wo — T—B (5.56)
where in this case, the Misner-Sharp mass (E2Z3) takes the following form,
m = g (142U = W) (5.57)

The system of equations for the background is closed with the equations of motion of
the perfect fluid. Conservation of the energy-momentum tensor is equivalent to energy

conservation and the Euler equation, respectively,
O+ (1+]3) QU +p) = 0, (5.58)
p

A+ 8 + (1 + g) v o= 0. (5.59)
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Finally, a perfect fluid does not dissipate energy and hence the entropy of each fluid element

is conserved,

§=0. (5.60)

Equations (EB3HRGW) fully describe the dynamics of this background spacetime. In
Chapter [[3, they will be used to simplify the background dependent coefficients that will

appear in the perturbed equations.

5.2 3+1 splitting of the spacetime

In order to make explicitly the calculations in the Hamiltonian framework, we define
the generic coordinates (z° = ¢, z' = p) on the manifold M?. Thus, we can explicitly write

the background spatial three-dimensional metric as
giyda‘dz! = a*(t, p)dp* + 13 (t, p)dQ°. (5.61)

The assumption of spherical symmetry forces the lapse to depend solely on (¢, p) coordi-
nates, a = a(t, p), and the shift vector not to have angular components 3* = (3(t, p), 0,0).

Therefore, the decomposition for the four-dimensional metric is given by

Gudatdr’ = (—a’®+ a*B*)dt* + 2a°Bdtdp + gi;dx'dx’ (5.62)
= —a’dt* + a*(dp + Bdt)? + r*d?, (5.63)

which takes the following matricial form,

gAB=<‘a2”2ﬁ2 5) gABz(‘O’Z o ) (5.64)

GQﬁ a Oé_Qﬁ a—z _ &—252

The normal vector to the surfaces of constant time ¥, is u, = (—«,0,0,0) or u* =
a~(1,-0,0,0). Its orthogonal, radial vector is n* = (0,a™*,0,0) or n, = a(3,1,0,0).
Hence, in terms of this frame of vectors, the metric and the volume element of M? are
given by

gAB = —Uuup + nang, €AB = NAUR — UANE. (5.65)

In order to deal with more geometrical objects, while working in the Hamiltonian frame-
work (in this section and in Part [Tl of this thesis) we will use the following frame derivatives

that act on any scalar field (,

(=ulC, = Lﬁc” ¢'=nkC, = So (5.66)

« a
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5.2.1 Scalar field

We now derive the equations of motion for the case of a massless scalar field, that will be
later used to simplify the coefficients of the equations for the perturbations. It is convenient
to define the following momentum-like variables, which have a definite tensorial character
with respect to changes of the p coordinate,

_a’lIIee 2r211% Iy

H1 = s H2 s H3 = —. (567)
Hg Hg Hg

We can write the constraints (BZ8879) in terms of these spherical variables,

il 1
LS (71 - HQ) — R+ 5 <H32 + <1>'2> ~0, (5.68)
Hg
1H 2 2
a,u—p = —T—Z(T2H1)I + TTHQ + 139" = 0, (5-69)
g

so that the action (BZ), once integrated in angles, is

1
—S= /dt/dp ar? [2111% LA T, — b - ﬁﬂ] . (5.70)
4m a r Hg Hg
The evolution equations can be obtained by a simple variation with respect to different
variables:
1 a
— |G — ol = - Ul —1ly), .
- [ae = (Ba) ] 5 (I —II3) (5.71)
1 r
E(T7t —ﬁT7p) - —5]._[1, (572)
1
—(®,—02,) = Il (5.73)
1 32 1 ' (a®r) 1 2
(M, -pM,) = 22 D —(H2 <I>’> 5.74
a< 1o = Pll) 4 +7’2 roo?r +4 st ’ ( )
1 1 2a/r 2(ar)” 1 9
~ (Mg, — fll,,) = ~(I2+ 112 — I0II - —<H2—<I>’> 5.75
a ( 2.t /6 27P) 2( 1 + 2 1 2) + ar ar + 2 3 ) ( )
1 Hg(Hl + HQ) (Oé'f’zq)/),
E<H3’t - BH?),[)) = 2 -+ arQ . (576)

The restriction to vacuum, choosing Schwarzschild coordinates (¢, » = p), is given by
[ =0, ®R = 0 and ® = 0, that is, II; = II, = II3 = & = 0. This simplifies the previous
equations severely. In particular, the constraints (268 and (B69) are then trivially obeyed.
This was the case for which Moncrief [101] developed the analysis of constructing gauge
invariants and finding the master equations. In Part [II] of this thesis we will generalize his

study to the dynamical case.
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Tensor spherical harmonics

Expansions in spherical harmonic are frequently used in many fields of physics. When
dealing with scalar fields (Newton’s potential in Newtonian gravity, wave-function in Quan-
tum Mechanics...), one can use the scalar spherical harmonics Y;”. But when tensor fields
are involved, as it happens in General Relativity, one must use tensor spherical harmonics.
A vast literature exists about these harmonics, approaching them from different points of
view and using different conventions. In this chapter we will briefly review the most common
tensor spherical harmonics used in General Relativity and the relationship between them.
Special attention will be paid to the Regge-Wheeler-Zerilli spherical harmonics because we
will employ them in the rest of the work. We have chosen these harmonics because they
have proven to be highly convenient to study gravitational radiation, since they happen to
be tangent to the sphere and have a well-defined parity. Other harmonics will be introduced
for completeness and as a complementary tool in certain calculations, like in the case of the

pure-spin harmonics when obtaining a product formula for the RWZ harmonics.

6.1 Regge-Wheeler-Zerilli harmonics

The scalar spherical harmonics Y, are defined as the eigenfunctions of the Laplacian

operator
YOV VY = —1(l + 1)Y" (6.1)

where v is the inverse of the round metric on S? and [ is a positive integer. This label I
has a geometrical, coordinate-independent, meaning as it is defined by a tensorial equation.

After the choice of a fixed z-axis, another label m is provided:
0,Y," = 1mY;". (6.2)

69
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Each linearly independent spherical harmonic will be completely characterized by the pair
(I, m). The integer m takes the range [ > |m|, hence for a fixed [ there exist (21 + 1)

independent spherical harmonics.

These harmonics are normalized so that
/ ALY Y™ = 8 S, (6.3)

with x denoting complex conjugation and d2 being the area element on S? (dQ = sin 6 df d¢).

Some of their most important properties are their behaviour under a parity transforma-
tion,

Y™(r = 0,7+ ¢) = (=1)'Y"(0, ), (6.4)

and under complex conjugation,

Y"(0,0) =Y,7"(0,0). (6.5)

They provide an orthonormal basis of functions on the sphere S?, namely, any function
¢(0, ¢) can be expanded as

() l
B0) =3 Y G"™(0:9), (6.6)
=0 m=—1
where the coefficients (/" are defined as
i = [ aaco.onr (6.7

Starting with these scalar harmonics, Regge and Wheeler [56] defined a basis for the

vector and 2-symmetric tensor fields on the sphere as follows.

The basis for the vectors is formed by the vector fields
{Yim:aa Slma = eab’ych}m:c}~ (68)

By definition, these vectors are orthogonal and hence independent at every point of the
sphere. For the case [ = 0 both vectors are zero because this case respects the spheri-
cal symmetry and any non-vanishing vector field tangent to the sphere would break that
symmetry.

Inherited from the scalar harmonics, the vectors of this basis have a well defined parity

under inversion of axes:

Yim:a(ﬂ- — 0,7+ qb) = (_l)lY}m:a(ev ¢)’ (69)
Slta(m =0, m+¢) = (=1)7157".(0,9). (6.10)
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This property can easily be checked taking into account that the parity of the metric ~,;, and
of the Levi-Civita tensor €, are, respectively, (+1) and (-1), and realizing that covariant
derivatives do not change the parity. In this way, it is usual to separate harmonics with
momentum [ into two families of different polarity: on one hand, those with parity (—1)!
will be called polar, and on the other hand, those which change sign as (—1)! will be

called azial.

Regge and Wheeler used the adjectives even and odd instead of polar and axial, respec-
tively. Nonetheless, this terminology could be misleading, since it is common to understand

odd (even) parity the property of changing (preserving) sign under a parity transformation.

Alternatively, the polar and axial parities are sometimes called electric and magnetic,

respectively, because of the properties

e (Y"0)s = 0 — irrotational vector, (6.11)

7*(S")s = 0 — solenoidal vector. (6.12)

One must not confuse parity and polarity: whereas all equations must have a well-
defined parity at any order in perturbation theory, polarity is only useful in the first-order

theory because products of harmonics couple the two polarities, as we will see.

Using the introduced basis, any vector w, (¢, ¢) on the sphere can be decomposed as

00 l
wa(0,6) =Y Y V"™ + W] S"a). (6.13)

=1 m=—1

From now on, uppercase and lowercase letters will be employed to denote the respective

polar and axial parts of the decomposition. The normalization of these vector harmonics is

/dQ lzn/:a’YabYlm:b* = l(l+ 1)‘Sl’l Om'm, (6-14)
/dQ Slrln’a,yabslmb* = l(l + 1) 5l’l 5m’m- (615)
Thus, the coefficients of the harmonic decomposition ([EI3) are defined as
1
wr = dQ w, Y™ 6.16
1
Po= [ dQwy" S 6.17
The basis that Regge and Wheeler used for 2-tensor symmetric fields on the sphere is
formed by
1
{Yzm:abu YszYaba leab = _<Sma:b + Slmb:a)}- (618)

2
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The last harmonic is different from that used by Gerlach and Sengupta by a factor of 2. The
problem with this basis is that for the case [ = 1 we have Y".,s = —Y"Va, so that they

are linearly dependent. In order to avoid this complication, Zerilli introduced the harmonic

I(141)

Zlmab = (}/lm:ab)TF = }/lm:ab Vab}/lm, (619)

where the superscript TF means the trace-free part. Therefore, the basis for the 2-symmetric
tensor fields remain

{20 abs Y1 Yabs X[ an } (6.20)
where Z]",, and X", are trace-free, and zero for the cases [ = 0,1. Note that, while Z/"

and Y™, are polar, X", is axial. The normalization of these harmonics is:

m ac m’ * [+ 2)!
/dQZl ab”Y /deZl/ cd — _E 25'511’5771771” (621)
;ox 1(1+2)!
dOX" Y VX g = = - 22
/ 1oab Ay ed 2(1—2)!5”5 (6.22)

Therefore any symmetric 2-tensor T,,(6, ¢) can be expanded as

9] l 9] l
Tn(0,0) =Y > T Y+ Y Y (T Z a+ 17 X[ ) (6.23)

1=0 m=—1 =2 m=—1
where
~ 1
o= 3 / Ay T (6, 6)Y,™, (6.24)
(1—2)! / b
" = 2 dQUT (0, " 2
l (l+2)' ab( Qb) Cd ) (6 5)
(l 2)'/ bd *
t"h = 2 dQUT (0, ROUD ¢ 2
l (l—|—2)' Gb( gb)'y g 1 cd (6 6)

In the following, the basis of tensor spherical harmonics defined in this section will be
called the Regge-Wheeler-Zerilli basis.

6.2 Wigner matrices

There exists another basis of harmonics that is extensively used in General Relativity, the
so-called scalar spin-weighted harmonics. The adjective scalar could be misleading because
tensors can also be expanded in that basis. In fact, very recently, Newman and Silva-
Ortigoza [150] defined the tensorial spin-weighted harmonics making use of the Newman-

Penrose null basis of vectors in the four-dimensional spacetime [151]. As they showed, these
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tensorial harmonics are in a one to one correspondence with the scalar ones. The scalar
spin-weighted harmonics were defined by Newman and Penrose [151]|, making use of the
edth operator. Later, they were analized by Goldberg et al. [152| and explicitly defined as

- 20+ 1
Yir(0.6) = /2D, (0.0.9), (6.27)
T
where Dggm,(a,ﬁ, 7v) are the Wigner matrices [153] or, in other words, the irreducible rep-
resentation matrices of the rotation group SO(3). They are defined in Appendix [Alin terms

of the Euler angles («, 3,7) that parameterize any rotation.

In the particular case s = 0, we recover the usual spherical harmonics from the above
definition, that is, (Y, = Y™,

Here we list the most important properties, at least for our purposes, of the Wigner

matrices,
DY), (@, 8,7) = (=)™ ™DY), (0, 8,7), (6.28)
. 872
/dQlel) ( ﬁ /Y)D,(j;zn ( ﬁ '7) méjmz5771177125m/1m/2 (629)
with

/di’lz i/fda/;dﬁsmﬁ/:wdy (6.30)

where the integration over a and 7 go from 0 to 47 because of the double covering of
SO(3) by SU(2). The product between two Wigner matrices with the same Euler angles
R = (a, 3,7) can be decomposed as

(41) (42) _ m1mami+me ~M)mhmi+mb < (5)
’D"?Lllml <R> ,Dnian (R) o Z CJ11J22] ' 2CJ11J22J ' 2DW11+m2,m1+m2 (R)’ (631)
J
where the C™ 21+ m2 416 Clebsch-Gordan coefficients.

Ji Jz2.7

6.3 Pure-spin harmonics

The rank-two pure-spin harmonics were defined by Zerilli [154], and earlier by Mathews
[155] but only for spin two (the spin refers to the angular momentum of the vectors used
to construct them; this will be explained in the next section), embedding the sphere in the
3-dimensional Euclidean space. Here we will only consider the tangent part to the sphere

of those harmonics and generalize them to any number of indices (rank).
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Following Newman and Penrose [151], we introduce a basis of complex vectors on S?

composed by

1 1
m® = —(ep” + 1ey” and m* = —(ep® — iey”), 6.32
(g 6") \/5(9 o) (6.32)

V2

where ey® and e,* are the unit norm, with respect to the round metric, basis vectors. From
these vectors we obtain .
mm? = 5(7‘“’ + ie), (6.33)

a relation which can be inverted to get

7 = mmb + mm?, (6.34)

ab b — momb). (6.35)

€ = i(m*m
These vectors are null, y,m®m? = yum@m? = 0, and are normalized so that vy,,m®m® = 1.

Symmetric and trace-free (STF) tensors on the unit sphere can easily be constructed

from those vectors. Two independent STF tensors of rank s are

me...m* and  m*..m%, (6.36)

because of the null character of the vectors. We then define the pure-spin tensor harmonics

with s > 0 indices on S? as

Vi e = (=1)°k(L,5)DY (0,0, )y, ..., (6.37)
yosmo = Ky, S)D@s,m(o, 0,0)Ma, ... Ma, , (6.38)

with the normalization factor

25127 (1 —s)!’

KL s) = \/(zm 1(1 + s)! 6.30)

different to that used by Zerilli but very convenient for later purposes. It is interesting to

see the behaviour of those harmonics under complex conjugation: using (E28) one obtains
lsmal...as* = (_1)mylisﬁma1...as- (6'40)
In particular, when m = 0 the two harmonics are conjugate to each other.

Using the normalization of the Wigner matrices ([E29) it is easy to get

do +s,majy...as /iS,m . a = — 200 6.41
/ yl 1 1. 9s (l — S)' i 9 ( )

/dQ y[&mal...asyljs,mlal...as - 0. (642)
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In this way, a complete basis for any tensor on the sphere is provided by the pure-spin
harmonics (E3HE3Y). The basis for a tensor of rank s is composed by the two symmetric
trace-free tensors of rank s, )", . and YV, ®",, .., and products between the metric
~Ya» and the Levi-Civita tensor €., with elements of the basis for (s — 2) rank tensors. The
simplest way to show this is by noting that the Newman-Penrose vectors, m® and m®, form
a basis at generic points. Therefore a complete tensor basis can be formed by all products
of s1 vectors m® and sy vectors m® with s; + sy = s. Besides, we know from formulas
[E33H639) that products between those vectors can be transformed into the metric and the

Levi-Civita tensor.

6.4 Pure-orbital harmonics

Firstly, one constructs pure-orbital vector harmonics by composing scalar harmonics
of angular momentum [ with a set of 3-dimensional vectors ¢"; which transform under a

representation of spin 1 [156]:

+1
OFmi= Y oy g (6.43)

1y
m/=—1

with j = 1 — 1,{,l 4+ 1 and |m| < j. The vectors ¢™; are defined in terms of a fixed

orthonormal Cartesian basis:

tj:l _ Feri — ieyi

7 \/§ )

(The index i is an abstract index on the manifold R* with Euclidean metric, in which

S? is embedded.) These vector harmonics O}"; transform under a representation of total
angular momentum j and their Cartesian components are eigenfunctions, with eigenvalue

[(l+ 1), of the S*-Laplacian (also called orbital angular momentum [157])
L? = —r?V? 4 8,(r%0,) = =7V, V,. (6.45)
Pure-orbital vector harmonics are however not transverse to the radial direction,
7O = —CN Y (6.46)

Therefore, one must take certain linear combinations cancelling their radial contribution to

get the pure-spin harmonics.
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Pure-orbital bases for higher-rank tensors can be constructed recursively from the above
vector basis. The basis for STF tensors with s indices and well-defined spin s can be built

by composition of the bases with s’ and s — ¢’ indices (with any 0 < ¢’ < s) as follows:

sl

m . § m' m—m'm ym/’ m—m'
t 1.0 CS’ s—s! s (il...islti5,+1___is)' (647)

m/'=—s'

From this, we construct orbital harmonics with s indices:

+s
AT D S L (6.48)
m/=—s
which are normalized so that
/ dQ OF™ L OF™ T = 610G (6.49)

The pure-orbital harmonics transform under a representation of “total angular momentum”
j, with |m| < j, and their Cartesian components are eigenfunctions of the “orbital angular
momentum” operator (E45) with eigenvalue [(I 4+ 1). This latter property becomes very
useful when solving wave equations in a 3-dimensional setting. Unfortunately, these har-
monics are not transverse to the radial direction, a fact that unnecessarily complicates the

analysis of the radiation in the far region.

The radial component of the orbital harmonics is

Aiﬁ(’)j’mi is_1i '
r l 1-ots—10s = l(](l)g]/W(S - 17 17j7 l? S, ll)oi’,milnis—l’ (650)
V(2s+1)(20+1) 7

where T is the Racah coefficient [158]. Note that this relation is a sum with only two

contributions, I’ =1 4+ 1.

Pure-spin harmonic tensors, with indices on S?, can be obtained as linear combinations
of the pure-orbital ones. We have constructed the tensors t™;, ;. with well-defined spin s.
This means that, under a rotation parameterized by the Euler angles («, 3,7), they will

transform under an irreducible representation of order s,

> DY) (o, B (6.51)

m=—s

If we consider the rotation (o = 0,3 = 6,7 = ¢) we recover the STF tensors

Maya, = (=1)* Y D) (0,0, 0)t",..a.. (6.52)
My, = D70.0,0)" s, .- (6.53)

m=-—s
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Substituting this in the definition of the pure spin harmonics [E3HE3Y) we get
y]:'t&mm...as = k(las)Dg)s,m 0 0 QZS Z Dism O 0 ¢) ai...as- (654)

Using formula (B3] for the product between Wigner matrices and the relation between
those matrices and the scalar harmonics [see equation ([E2Z1) with s = 0], one can express

the pure spin harmonics as a linear combination of the scalar harmonics with constant

coefficients
J+s
y:l:&m _ CFs +s0 cm- m'm/'m Ym m/ tm ) (6 55)
j ai...as j s l 1 s j i1...759 .
l=j—sm/=

which can be rearranged to obtain the relation between the pure-spin and the pure-orbital

harmonics
J+s
+s,m o Fs+s0 nyJj,m
Vi ey = $) Y CTHELOM,, . (6.56)
l=j—s

Employing formula (EX0) for the radial projection of the orbital harmonics, it is a
simple exercise to check that the radial part of the pure-spin harmonics indeed vanishes.
In other words, the pure-spin harmonics are just the projection of the orbital harmonics to
the sphere. Note also that, from relation (E24), the [ label of the pure-orbital harmonics
is no more well-defined for the pure-spin ones, because they get contributions from states

with different values of .

6.5 Product of harmonics

In Chapter 6 we will expand the metric perturbations A, in tensor harmonics. From
the expressions derived in Chapter 2, like equations [BI6), B2Z2), and BZ0), it is clear
that, for this aim, we need to compute products of several tensor harmonics when working
beyond linear perturbation theory. Even though those expressions contain products of many
harmonics, the problem can be dealt with recursively because the product of two tensor
harmonics can be decomposed as a series of tensor harmonics of adequate rank. In principle,
we might conclude that at perturbation order n we need to work with tensor harmonics of

rank 2n or similar, but the situation turns out to be simpler in General Relativity.

The formalism starts from perturbations of the metric, which contain tensor harmonics
on S? of rank zero, one or two, and computes the decomposition in harmonics of the

perturbations of the Einstein tensor, which also contain harmonics of those ranks. On the
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other hand, only second (at most) derivatives of the metric perturbations will appear in the
perturbations of any curvature tensor, at any order. Finally, as long as we are interested
just in perturbations of curvature tensors, only those contractions in equation (B20]) are
required. From these three observations we conclude that we only need harmonics with up
to four indices (if one works in RW gauge, to be defined below, only three-indices harmonics

are required) and formulas for their thirteen products

YY’,
YYI:aa YGY/!I)’
YY/:ab; Y:aY,:bcu Kabyl:cd7 (657)

YY/:abca Y:aY,:bcdu Kabyl:bcd7 Kabcylzdef7
YYI:abcd7 Y:aY/:bcdea }/:abYI:cdefa

where the prime denotes that Y and Y’ have different labels [ and m. Only seven of these

products are really independent because using the Leibnitz rule we have relations like

KabYI:cd - (Y:aYI:cd) b — Y:aY/:cdb- (658)

Therefore, computing the expansion formula for the canonical products Y'Y’ .. with
n = 0,...,6 would be enough to solve a general problem of non-spherical perturbations in

General Relativity.

That method would be, however, rather complicated to program for algebraic computa-
tion, because it requires expanding the products of multiple harmonics in a very particular
order, and difficult to use in any mathematical proof involving products of harmonics. It
is far more interesting and general to follow a different route: we first generalize the RWZ
harmonics to an arbitrary number of indices and then find a general formula for the prod-
uct of any two of them. This has two important advantages: first, it is more efficient and
simple for our algebraic code because all cases are considered in a single formula. Second,
the formalism is more general: it can be applied to arbitrary matter models, it is possible to
perturb objects like derivatives of the Riemann tensor, or it can be used in other problems

(for example theories of gravity with more than two derivatives in their basic equations).

6.6 Generalization of Regge-Wheeler-Zerilli harmonics

Complete bases for higher-rank tensors tangent to the sphere can be easily constructed

[113]. There always exist two nontrivial symmetric trace-free (STF) tensors

Zlmal...as = (Yim:al...as)STF - _e(ale[mbag...as)a (659)

X 10 = lma1:a2---as>STF = 6(alelmb(m...as)7 (6.60)
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valid for |m| < [ and 1 < s < [. In all other cases the harmonics are defined to be
identically zero, except for s = 0, when Z" = Y. Note that, in fact, we do not need
symmetrization on the far right-hand side because the tensors Z and X are traceless.
All other objects in the basis can be obtained from products of v, ¢ and the basis for
tensors of order s — 2. For example the basis for 3-index tensors is given by Z" e, X" abes
and six independent combinations of vu,Z"c, Yap-X]"c: €2 cs €avX["c, and their index-

permutations. The general case results from the iteration of the relations (valid for s > 2):

I+ s)(l—s+1)

Z[mal...as:b = Z[mal...asb + 9 (661)
1 m m
X §V(a1a2Z1 asz...as)b /Yb(al Zl az...as) | »
m m l+s)(l—s+1
Xl aj...as:b  — Xl ai...asb + ( )( 9 ) (662)
1 m m
X §V(a1a2X[ as...as)b ’Yb(ale az...as) | -

Appendix [B gives a different approach to expand the definitions (E5d) and (G60).
Remembering the definitions of the scalars Z;" = Y™ and X;" = 0, and those of the

vectors Z", = Y™, and X", = S]",, we obtain the three remaining special cases:
2l = Zla. (6.63)
2"y = Z"ap — l<l+1)’¥abzzma (6.64)
X = X e,z (6.65)

Formulas (E6IHEGH) for the STF tensors Z and X constitute a complete set of simplification
rules which allow us to express any derivative of a tensor harmonic field on the sphere in a

unique canonical way. Note that €,, appears only in equation (EGH).

Finally, it is important to point out that all these harmonics have a well-defined parity
under inversion of axes. This is because, as we have already commented, the parity of
Yabs €ab, and the scalar harmonics Y;™ is +1, -1 and (—1)!, respectively, and because taking
covariant derivatives does not change the parity. In this way, it is now very easy to recognize

families of harmonics with different polarity: Z;",, ,, are polar and X",, ,. are axial.

The relation between these harmonics and the pure-spin ones is rather simple:

Zlmal---as = lS7ma1...as + yl_&mal...asy (666)
_Z.Xlnlalmas = yl&mal...as - yli&mal...as- (667)

For the case s = 0, one has Z/* = Y™ = Y™,
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We can invert the previous relations to get (except for the special case s = 0)

Vi ae = (Mg Y 0y 0 (6.68)

Y = (M m? Y ey 0)) (6.69)

In fact we introduced the factor k(l, s) in the definition of the pure-spin harmonic in order to
obtain such a simple relation with the RWZ harmonics. To write the normalization of these

generalized RWZ harmonics and for future convenience, we adopt the compact notation
G20 =V e £V (6.70)
It is important to note that
O ae =L ara, and OZM = i X" 4 (6.71)

for all number of indices s except for the case s = 0, which turns out to be H)Z" = 2y;™
and (’)Zlm = 0. With that notation the normalization of these harmonics is
(£)zmaj...as(L£)zm _ -
/dQ Zl ! Zl/ ai...as — :i:28 (l — S_)!dll/(smm/ (6.72)
We do not orthonormalize these generalized RWZ tensor harmonics because the RWZ har-
monics have been frequently used in the literature and we want a generalization containing

them.

6.7 Product formula

The product of two scalar harmonics can be expanded in terms of finite sums of scalar
harmonics using Clebsch-Gordan coefficients [158]:
U+l
VY=Y B Vit (6.73)

=|ir—|

where we have defined the symbol

oim  — [QUEADRUAT) w4t ~000
EO l/m/l// pr— ¢ 47T(2l/, + 1) Cl/ l l// + Cl/l l// . (6-74)

Recall that the Clebsch-Gordan coefficient CPPY, vanishes if I’ + 1 + 1" is odd. This fact

guarantees that only scalars with parity (—1)"" = (—1)"*" are present in the expansion.



6.7 Product formula 81

In this section we will construct a generalization of equation ([EZ3) valid for any pair of
tensor harmonics on the 2-sphere. There are two main routes to find such a formula [113].
The standard route, followed by most books in Quantum Mechanics, is adapted to the
Euclidean structure of R? and uses the pure-orbital harmonics. The second route is based
on pure-spin harmonics. They are adapted to the 2-sphere, and hence are transverse to the
radial direction. Besides, they are closely related to the Wigner representation matrices of

the rotation group, for which a product formula is well known.

6.7.1 Pure-orbital harmonics

One can obtain the following multiplication rule by using equation ([E73) and the for-

mulas available in the literature for the composition of three angular momenta [156]:

U+l

. 20+ )20 +1)(2j + 1)
T : e, (6.75)
™
=|r—1|
lll+l '
<D Ws g UL O Ol

j’:l”*l

Employing this formula it is possible to compute the product of any two orbital harmonics

using the Leibnitz rule, as explained in Section B3

6.7.2 Pure-spin harmonics

Formula (E31) provides the following product of pure-spin harmonics with the same
sign:
I+l
+s' m’ +s,m § : +s'U'm/ +(s'+s),m’ +m
I ay...ag V] by...bs — Ej:s Im l//y// ay...ayby..bss (676)
|

=|1-1
where we have introduced the real coefficients

k/'(l, |S,|)k(l |8|) ’ ’ I ool
slm J— U U m o mm m S SSs S
Es’l/m/l” = k(ll/’ |S + SI‘) Cl’ L - C/ ll”jL ’ (677)

which generalize the coefficients ([EZ2]). These inherit from the Clebsch-Gordan coefficients
the symmetry properties

Bz, =BT, = (1) B (6.78)

—siml" s I — slml

Bt = pstm,,. (6.79)

slml
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From the fact that C/""%" = 0 for odd [” we also get that the E-coefficients vanish for odd

I"if I =1 and either m =m' or s = ¢'.

For the remaining products of pure-spin harmonics (those with opposite signs), we

obtain (assuming e.g. that s’ > s without loss of generality)

U+l
Fs'.m/ +s,m o s'U'm/’ $(s’fs),m’+m +s
y ay...ag ] bi...bs — E E::Es lm l” as+1---as/T a1by...asbs (680)
l// ‘l l/
where the products
S J— S, = —
T a1by...asbs — (—1) Mg, Mpy - Mg M, (681)

T_Salbl...asbs (_l)smalmbl'“masmbs (682)

must be expanded using equation (E33)). We define 7° = 1.

6.7.3 Generalized Regge-Wheeler-Zerilli harmonics

After introducing the tensors 7+ = 2(T7*£T*) and the alternating sign e = (—1)"+"~"",
the discussion of the previous subsection leads to the following formula (assuming again

that s’ > s) valid for the product of any two generalized harmonics

141
o'y zm’ o) zm o s'U'm/ coo m/+m
@) 14 al---as/( )Zl b1...bs — § Es I ml” ( )Zl” ai...ayby...bs (683)
=1
U+l

s U'm/ (eoo Yzm +m + (—eoo yzm +m —
+ : : UE—Sl m 1" < Zl// as+1---l13/7;1b1...asbs + Zl” Gs+1---as/7;1b1...asbs ?
=l

which constitutes the main result of this section. The first sum in this formula is very simple
[similar to that in equation (EXG)| and involves only harmonics with s’ 4+ s indices. The
second sum involves harmonics with s’ — s indices and has a more complicated structure in

order to include the case of products with scalar harmonics.
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Chapter 7

Axial perturbations

Here we will use the canonical approach explained in previous chapters to obtain gauge
invariants and the master equations they obey for the particular case of linear perturbations
of a spherical background with a massless scalar field. This part of the research can be
considered as the generalization of Moncrief’s work [101] for linear perturbations on a

Schwarzschild spacetime to a dynamical background.

For this and the following chapter, all perturbative objects will be of first order, and
therefore we will not include the explicit n = 1 label. The definitions used for background
objects are those presented in Section In particular, the shorthands C and (' for frame
derivatives acting on any scalar field ¢ are defined in (B.60]).

7.1 Expansion in harmonics

Following Regge-Wheeler’s notation [56] for the metric perturbations and Moncrief’s
notations [101] for the momentum and shift vector, we expand the perturbative variables

in tensor spherical harmonics,

hijdr'dy’! = {—Z(hl);” dp X["odz® + (ho)[" X" d:padxb} , (7.1)

NE
MN

o~
Il

1 m=—1

00 !
1 . . A \m m a A \m m a
opgdrdr = 373 {20 dp X dat + ()" X' datds}, (72)
g =1 m=—1
00 !
Bda' = > Y —(ho)]" X|"qda”, (7.3)
=1 m=—1
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C =0, (7.4
p = 0, (7.5
=0 (7.6)

Because of the lack of axial scalar harmonics, there are no axial perturbations of the three-
dimensional scalars a, ® and II. That means that the scalar field plays no role from the
perturbative point of view, though the background scalar field is still instrumental to allow
for a general dynamical spacetime. As we will see, this does not imply any loss of generality.
Different (I, m) harmonic components also decouple around spherical symmetry, and so for
the rest of the chapter we will drop them from the perturbative variables, assuming that
we work with a fixed pair of labels at any time. It is important to note that ho, po and
hg are scalars under changes of the p coordinate, but h; and p; behave as components of a

vector.

The variables (hq,p;) and (hg,p2) form two pairs of canonically conjugated variables,
whose evolution is partially determined by the arbitrary function hy. For example the

evolution equations for the variables h; and hs can be easily obtained by perturbation of
the definition of the momenta ([BZ6]) after introducing the expansions (CIHZG)

1 ~ T2 ho

o (g =(Bh),p) = 2p+Thh+ — {5 R (7.7)
1 R 2h
—(hae = Bha,) = 2pp+ (I — I )hy —ao. (7.8)

We will later obtain the evolution equations for more convenient momenta variables.

7.2 Effective action

The action functional for the axial perturbations is

(A28)™* = / dt / dz® [phy, — BA(H) + )™ (7.9)

DO | —

_ /dt {/dp (prhos + pohos) + Hho] + } , (7.10)

where the dots denote those terms coming from the second variation of the constraints
33T, which we do not need to consider in this subsection. The functional H will be
defined below in terms of the first variation of the constraint. We have also defined

200+1) , an .,
P11 = %pp P2 = ﬁpm (7-11)
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with (11 2)
+2)!
=- ) 7.12
2(1—2)! ( )
In term of these variables, the perturbed constraint is given by
- X, 2 IT5h 201+ 1 2L A
A[Ha]axlal _ Hg (T pl),p + 222 + A 272 + ( - ) i (713)
I(l+1) | ar? a 72 ar? a »
which in turn defines the functional
H[hy] = — / da® B' A[H,;)™! (7.14)

h h 20(1+ 1 h
= /dp [—r2 (T_g) pr+ 2hopy + Mally—3hy - %HHI (T_g) h1] (7.15)
P P

This functional is the generator of gauge transformations, as can be seen in formula
([EE34), and commutes with itself on shell,

(HIGLHIG] Y = gy [ o= ) 2] (716

I(l+1) Hg

for arbitrary scalar fields (; and (.

7.3 Gauge-invariant variables

Following Moncrief [101] we perform two canonical transformations to separate the
gauge-invariant information from the pure-gauge content in the canonical pairs (h, p;) and
(ha, p2). The first canonical transformation constructs the gauge-invariant combination ky,
also a vector component,

T’2 h2

]{31 = hl + 5 (ﬁ) p, k’g = hg. (717)

It induces the following transformation on the momenta,

(szl) p
iy 7.18
= (7.18)

™ = P1, T = P2 +

This transformation can be obtained from the generating function

r? [k
G (p1, 2, k1, ka) = prky + paks — Py <r_§> : (7.19)
P
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by direct variation,
oG b oG oG oG

hy =22 _ 0 _ e _ e
1 5]71 ) 2 5p2 ) 1 (Skl ) T2 5k2

(7.20)

In terms of the new variables we can write the first variation of the axial constraint as

2 2
rik <k1 L (k—i) )] . (7.21)
a 2 \r Ay

which does not contain 7; and therefore commutes with k;. That is, k; is gauge-invariant,

: Xa,u o sz‘z 2l(l + 1)
A axial __ g 9=
[Ha] I(l+1) a A 72 - ar?

as we had anticipated. This suggests the second canonical transformation:

Ql = kl; QQ = ]{}2, (722)

with conjugated momenta

2, [k
Po= m-li+1)t 1( 2) : (7.23)

7“2]._[1 ( 7“2 (k’g) )]
B —— (2 . (7.24)
a 2 \ r? o],

This second canonical transformation can be obtained from the generating function

2
T (ke Kk 2k
G(Py, Po, ki ks) = Piky+ Poky +al(l+1) 4 - 1( 2) AL [T (_2) ]
’ P

a r2 , @ 2a \ r?

)

A I(l+1
P, = m+ —allyky + (+1)
2r2 r2

(l-1)(1+2)
- g k3 & . (7.25)
The first canonical transformation is independent of the dynamical content of the back-
ground spacetime, in the sense that it does not contain the background momenta I1;, I, I15.
It is actually identical to that of Moncrief [101]. For the sake of clarity, we have separated
the influence of the dynamical background into the second canonical transformation, which

is trivialized for any static background.

At this point we have isolated the physical information of the axial metric perturbation
in the pair (Q1, P;) while the (Q2, P») contains the gauge subsystem. P, is the generator of
gauge transformations, . op

axial alt 2
A[H, |2 = ﬁ? (7.26)
and hence it is gauge invariant but constrained to vanish. TIts conjugate variable (s is
gauge-dependent and its time evolution is determined by the arbitrary function hg, which

can be used to set any desired value for ()2, as we will show in the following section.
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7.4 Equations of motion

After replacing the new variables and integrating by parts a number of times, we get

the following Jacobi action

% (A%S)axml :/dt/d/) [P1<Q1,t — (BQ1) ) + Po(Q2r — BQa,) + 2Pyhg — O/H(l)} , (7.27)

where we have defined the first-order quadratic Hamiltonian

2

1 r’P r2I1
HY = M(PQ = PQy) + —— ( 21+l<l+1) alQl) —1*Py|  (7.28)
P
aP? W+ (=11 +2) (M —10,) -1
I, | Q2.
D a 22 * 2 L@

The variation of the action with respect to hg gives the constraint that must be obeyed

by the perturbations. This constraint now takes the simple form
P, =0. (7.29)
This constraint is conserved in the evolution since variation with respect to Q2 gives
(rPy) s = (Br*P2) ,. (7.30)

As P, is the generator of the gauge transformations, its conjugate variable (), is pure gauge.

Its evolution equation comes from taking the variation of the action with respect to P,

2
(Q?,t — BQ27P) = —2% — HIQQ — ﬁ (T2P1 -+ l(l -+ 1) 2TaH1 Ql)w . (731)

1
a
The initial data for @)y is gauge, and its evolution is fully determined by the free function

hg. In particular it is possible to choose Qo = 0 initially and take hy so that Qo = 0 at all

times.

We can obtain the physically relevant equations by variation of the action with respect
to the variables (@1, P;). This gives rise to a system of two coupled second order equations

in p-derivatives, whose principal part is, in matricial form,

(-1(+2) 1 (2o \ [ -1, -1\ 1 (2,
- = ) = +... (1.32)
2r « Pl . Hl Hl a P1
) PP

the dots denoting lower order terms in p-derivatives of ()1 and P;. We have divided ),

by a to make it a scalar under changes of p coordinate. This is a second order in time
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evolution system, as corresponds to a single wave-like degree of freedom, but it apparently
has fourth order in p-derivatives for generic values of the background variable II;. This is
false because the 2 x 2 matrix has always vanishing square, and hence the system has third
order at most. Actually it has second order, as can be checked by taking the matrix to its

Jordan canonical form. We define the combination
211
Q=P +1(l+ 1)7%21, (7.33)

that is a scalar under change of coordinate p. Then, the system ([L32)) is equivalent to the

pair (we now use the dot and prime frame derivatives to simplify the expressions):

Q1

(2Q) = n% (7.34)
(F2) = Gfarol +Bhee- 0o o

which can be clearly combined into a single second order equation for O, the sought gener-

alization of the Regge-Wheeler equation for dynamical backgrounds.

As will be made explicit in Chapter [0, whereas the physical variables (); and P; are
not scalars in M?, the combination Q is indeed a scalar. There we will show that Q is the
particularization to this case of the GS master variable, which is valid for any spherically
symmetric background. Therefore, we have just re-deduced the GS master variable from
a canonical point of view. This was the expected result, but it is important to emphasize
that the combination of Hamiltonian gauge methods with the imposition of having a scalar

field on M? has determined uniquely the GS scalar.

When restricting to vacuum the variable rQ/\ is the Cunningham-Price-Moncrief mas-
ter function [46], which obeys the Regge-Wheeler equation, though it is not immediately
related to the Regge-Wheeler variable. Using the gauge » = p, 8 = 0 in vacuum we have
II; = 0 and hence Q = P;, while the Regge-Wheeler variable is Q;/(a?r). We have seen
that the former is easily generalizable to a dynamical situation as given in ([Z33]), but not

the latter, because it would require dividing by II;, which may vanish.
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Polar perturbations

We now reproduce the analysis of the previous chapter in the polar sector. Contrary
to the axial case, there is no known master polar scalar which can be used on all spherical
backgrounds and with any type of matter. Using again a scalar field as matter model, for
which no such master variable was known, we apply the same Hamiltonian techniques and
find master variables for the gravitational wave and the scalar field perturbation with the
expected properties. The equations obeyed, generalizing the Zerilli equation, are unfor-
tunately too complicated to be given here in full detail, and we are currently working to
reexpress them in a manageable way. The results in this chapter are new and pave the way

for a polar master equation in any dynamical spacetime.

8.1 Expansion in harmonics

We decompose the polar part of the metric perturbation into spherical harmonics,

hijdaids’ = Z Z (Hy)™Y™dp? + 2(hy)dp ZI" o da®
=0 m=-—I
+ 72 [K;"%bym + G Z" ] datda?, (8.1)

1 o
—pijdx’dy’ = E E 2(Pu)"Y"dp? + 2(Pu)]"dp Z;" uda®
1

9 1=0 m=—1
+ P [(Pr)"a Y™ + (Pa)[" 2" ) da®da®, (8.2)
o) l
¢ = 3 ) (5.3)
=0 m=-—1
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9] l
Bda' = > > (H)["Y"dp+ (ho)i" Z]" uda”, (8.4)
=0 m=—1
1 [e9) l
—AIL = ) > Y, (8.5)
Hg 1=0 m=-1
[eS) l
AD = D) oy, (8.6)
=0 m=—1

As we did in the previous chapter, we will remove the (I,m) labels from the harmonic
coefficients, since all perturbations are decoupled at linear order. We follow the notations
by Regge-Wheeler and Moncrief, and hence introduce geometric factors a? to compensate
the tensor character of the variables Hy and Py with respect to changes in the p coordinate.
However, additional factors of a should have been included multiplying h,, P, and Hy,
because these are vector components. We will later need explicit a factors in our formulas

to correct this problem.

8.2 Effective action

Introducing decomposition (BIHEH) into the effective action ([EZ7), one obtains

1 olar 1 ; olar
3 (AZ5)P7 = /dgﬁ’ {p7hy; + A[A[® ] — CA[H] — B'A[H,] + ... }™ (8.7)
= /d,o {prhoy + peHoy + psKzy + paG o+ po s} + Fol—ady /2]

+ Fy[H)] + Falho] + ..., (8.8)

where the dots stand for terms coming from the second perturbation of the constraints
E3AL3T), that do not enter the gauge transformations, and the functionals (Fy, F, F5)
will be defined below. The conjugate momenta are related to the harmonic coefficients

given by the expansions ([BIHEH) in the following way,

P = wp}f, (8.9)
py = ar’Pj, (8.10)
ps = 2ar*Py, (8.11)
py = Aar’Pg, (8.12)

p = ar’p. (8.13)

The polar harmonic decomposition of the perturbation of the constraints ([E3HLZT) is
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given by,
P+l+2 H r
AH] = pY {H2 lHl(Hl — 1) = ——5— — —} —2H, — + p_22(H1 —1I,)
r 2ig r
1 2 2 2 D3 (=1(+2)
+§K (117 — 115 + @"%] — Wnl — |®R+ — K
2,3 D 200+1), 4 A
_'_ﬁ(T K/)/ + q)IQOI + ans + T(T(l hl)/ — T_QG s (8.14)
1 2(a pe)  p1 2psr’ p 2,
[(l+1) I, ,
o by 2P K) + Ty (8.15)
L (p)  ps 2 p (I-1)(1+2)
A[H, P = 4= 2 £ 8 TV LG
[Ha] Ha { (+1) r2 a’r’QJrl(lel)a'r?+ 2 ?
2 (rLh
—|—H1H2 — —2 (T ! 1) + Hg@} . (816)
r a
With these relations at hand, we can write down the three generators of polar gauge trans-
formations,
Rig = [ dfcyam (8.17)
1
Rl = [ dcyiaim,) (5.13)
1
R = [ didC Zo A, (5.19)

that act on any smooth arbitrary scalar field (. It is possible to calculate the Poisson

brackets between different generators,

(RlLRGD = [ darag- e e, (5.20)
(mlal Rl = [dpad (guﬂ) (8.21)
(Rl R = -0+ [doacice (5.22)

(FlalAE) = [doartg -G,

{B[G] RG] = 0, (8.24)
(BlLEGY = 10+ [dpatag - G702,

g

all vanishing on-shell, which confirms that they are first-class constraints.
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8.3 Gauge invariant variables

Moncrief isolated the Zerilli variable after two canonical transformations on the four
pairs (hy,p1), (Ha2,p2), (K,p3), (G,ps). Here we have the additional pair (p,p) for the
scalar field, and the fact that the background is dynamical also makes the problem harder.
We will instead proceed in five steps, to clarify the role of each step and simplify the
computations. In particular we will first eliminate the two gauge degrees of freedom related
to the momentum constraint (which are rather trivial and very similar to the axial case) and
then remove the gauge degree associated with the Hamiltonian constraint, the nontrivial

step of this computation.

There are many possible transformations that implement this program, but we would like
them to they obey certain minimal criteria. First, they should be algebraic transformations
so that they do not involve any integration in the process and can be performed explicitly.
And second, they should not require dividing by any background object that could vanish,
in particular one of the background momenta (I1;, Iy, IT3). The full transformation we will
propose here fulfills the first criterion, but it is unclear whether it also satisfies the second

one, as we will explain.

The first canonical transformation is motivated by the Gerlach and Sengupta choice of

gauge-invariants, that will be presented in Chapter @,

l(l+1 2r ([ _ r?
kk = K+ ( 5 )G—T(a lhl—gG’), (8.26)
2\
]{32 = H2 -2 (a_lhl - 5G,) s (827)
r2
]{Z4 = ailhl - 5GI7 (829)
r2
ks = o— (alhl — 5G’> P, (8.30)

which requires the canonical momenta

™ = Ps, (831)
o = P2, (832)
(l+1 1
T3 = pg— ( 5 )pg — ia(TQpl)’, (8.33)
-1 / 27J /
Ty = apy —2a(a p9) + Tpg +pd, (8.34)

T o= p. (8.35)
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In terms of these new variables, we can write the perturbed momentum constraints as

1 T4 (r?ky) (r’1L) 2, , 1H
EA[HP] = pgY {W + 1, TR Il ky — 2k, 2 ﬁ(r I k) + kﬁla,u—:
(l+1 II
+ ( 2 )HQ (ky — karr') + kyI139" + k4T—22(T2)" + Hgk’é} . (8.36)
2m (r?)’ Y
AMHP™ = 1y Zy 3 o b TTy o Tgky — ~—Tloky + < Tlok
[H,] Hg {l(l+1)ar2+ olly + Lgks 2 24+l(l+1) oks
1 ks H
—— ([Mrtky) + ——£ 4. 8.37
r2( 17°ks)" + 4 Mg} ( )

We do not display the explicit form of the perturbation of the Hamiltonian constraint A[H]
in terms of these variables because it is a very lengthy expression and does not contribute

in any way to the present discussion.

We perform a second canonical transformation which converts the momentum con-
straints into canonical variables. Because of the two requirements we want to impose in all

our transformations, only the momenta 7, and 73 can replace the constraints (830) and

(B3MD) respectively,

7 = m — ar’(Ilhky), (8.38)
Ty = my+ it ;L 1)ar2H1k3 + ar’IL K, — a(r*T1,) ky, (8.39)
T3 = %l(l + 1)ar? (%) =3+ ..., (8.40)
Ty = 12 (%) =4+ ..., (8.41)
Ts = 75+ W ;r 1)a7’2H3k3 — a(r*Tlsky)’. (8.42)

The division by the tensor harmonics must be understood just as removing them from the
above expressions ([B30HEET). These last transformation for the momenta do not affect the

variables,

ky = ki, (8.43)
ky = ko, (8.44)
ks = ks, (8.45)
ky = ky, (8.46)
ks = ks. (8.47)

In terms of these last variables, the constraints take the following simpler form,

o T 9 s 2 37 (7’2)/7 -
A[H] = ,ugY {_Hlﬁ -+ (Hl — H2)W + HBW + ﬁ('f’ kll)/ - 2 ké + kgq)/
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+ {Hl(n2 —10) — W — Hg} Ky
_ {Hl(n2 —1InL) + (= 1)(ij 2+ 4} 12;2} : (8.48)
2A[Hp] = pY (8.49)
A[H P = 2 (8.50)

Lo,
Ha (14 1)ar?
We have fully isolated the gauge freedom contained in the perturbed momentum constraint.
The variables k3 and k4 are gauge dependent and non-dynamical because their conjugate

momenta 73 and 7, are constrained to vanish. We are left with a system of three degrees
of freedom (ki ko, k5) and the single constraint (B25).

Following the same procedure, at this point one should make another canonical trans-
formation and convert the Hamiltonian constraint into one of the variables. Because of
the first criterion we want to impose, we can not convert any of the variables {ky, ko, ks }
that appear in ([B48) into the full constraint. But, because of the second requirement, we
can neither do it for any of the momenta {7, 79, 75}. Therefore, the idea is to first make
a transformation that removes second order derivatives of k; from the constraint ([EZ%),
so that all the first derivatives of the perturbed objects can be absorbed in a single term.
Later, this object will be promoted to one of the variables of the problem in such a way
that the Hamiltonian constraint will have no derivatives of the rest of the variables. We

use an arbitrary but constant field x to parameterize the transformation,

which will introduce a first derivative of 75 in the Hamiltonian constraint through the

transformations of the momenta,

a Ty

1= /
%1 = 77'1+(.T—1>7_T2—0,7’< ),

§ (8.56)
T2 = T2, (8.57)
Ry o= T, (8.58)
Ty = Ty, (8.59)

(8.60)

%5 = T5.
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Now we define the 3 combination that will absorb all derivatives in the expression of the

Hamiltonian constraint,

P o, v
'3 = —Hl— —2 ko + —Pks — V. kq, (8.61)
ar? r
with the background potentials
L+1+12 R ")?

Then the Hamiltonian constraint can be written as a sum of a derivative of 3 and a linear

combination of variables k; and 7; with no derivatives,

- - , -
AR _ 3 - Hlﬂ—lz + H37T—32 + (T(Hl) — 1L =1l + 211 ) 2 — ®"ks
fgY ar ar T’ ar
3(r')?\ - r_, r? 3(r')? 1 OR 9
— — — ——=+— | -1
(V + 2 ko + T,Vx + V;,;2<7J)2 ;5 2 + 5 3
l(l+1 2 ~
+ (1 — o)y (Ily — I1y) — ( ; )(1+x)+r—2(1—x)}k1. (8.63)

As we have anticipated, this clearly motivates a fourth canonical transformation in which
3 replaces the canonical variable ks (because using k; instead would require dividing by V;,

which is a background object that could vanish),

b o=k, (8.64)
ky = 3, (8.65)
ks = ks, (8.66)
ky = ky, (8.67)
ks = ks, (8.68)
H o= %2 (8.69)
o = Z;f (8.70)
F3 = T, (8.71)
Fy o= T (8.72)
o
5 o= st o (8.73)

Now the Hamiltonian constraint does not contain 75. But, more importantly, we have

achieved what we were looking for: it neither contains derivatives of ki,

A[H] ky (V . PV .
— o H— = (=43 ) =k [+ — [ = + 3 D 74
Y s+ 1 + K+ 5 (T,+37’) %{ +5 (T,+37’)]+ ki, (8.74)
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where we have defined the background coefficient

v (;)2 lzaﬂ)

2
This fact permits us to perform the final fifth canonical transformation, which converts the

(,',.2‘/')/ ,',.2
D f—
rr! + 2(r")?

+ (I — T1,) + <3>R]—[2M + Hg} . (8.75)

r2

Hamiltonian constraint into the first of the variables of the problem,

AlH]
0 = =44 8.76
' tgY ( )
Q2 = ko, (8.77)
Qs = ks, (8.78)
Qs = ku, (8.79)
. JIE
Q5 = /{Z5—|—CLTTD7T1, (880)
T
P = 51, (8.81)
/ .
T T \%
PQ = Ty “+a <—D) — E <—/ + 3TI) s (882)
P3 = T3, (883)
P4 - ’7V'l'47 (884)
- 71:1 " (I)I V /
P = — |® — | = . .
5 W5+D[ + (T,+3r>] (8.85)

At this point we have succeeded in separating the physical degrees of freedom (Qs, P»)
and (Qs, P5) from the gauge degrees of freedom (Q1, P;), (Qs, P3) and (Q4, Py). However in
this last transformation the background object D appears as denominator and it is not yet
clear to us whether this object can vanish or not. In vacuum, for a Schwarzschild solution,
defining A = (I — 1)(I + 2)/2, we have

D 1 I(1+1)
1—=2M/r 3

(Ar+3M), (8.86)

which is always positive. It is reasonable to assume that for spacetimes close enough to the
Schwarzschild exterior (though possibly dynamical), the variable D will also be positive. If
this was the case we would have succeeded in implementing to completion the procedure
while obeying the two imposed criteria. If not, since the procedure we have followed is
more or less unique, one should interpret the result as an indication against the existence of
well behaved polar master variables for generic backgrounds. However, one perhaps could
still find master functions relaxing the first condition about the algebraic nature of the

transformations.
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8.4 Equations of motion

The variable 3 obeys a complicated equation of motion, which we handle using our
computer algebra tools. This subsection summarizes its differential structure, and shows

that it is indeed a generalization of the Zerilli equation.

In order to simplify the calculations we choose as background coordinates (¢,p = r). In
addition we will take 5 = 0 which, because of the background evolution equation (ET72),
implies also II; = 0. The equations of motion for the gauge-invariant variables are obtained

by direct variations of the action,

Py, = AVPM 4 A9QM + ADPY 4 ARQYW + .. (8.87)
Qs = Agﬁ>P”+A4)Q;V>+A§§P’”+A N (8.88)
Py, = APPY + AQQY + ALY PN + A, Q;V>+ (8.89)
Qs = AD P+ AR QY + A PM 4 AN + (8.90)

where the dots stand for lower order radial derivatives and the subindices of the background
dependent A-coefficients denote positions in a matrix. More precisely, Agf) would corre-
spond to the slot (7, j) of the matrix that multiplies the kth order radial derivatives of the

vector (P, Qq, Ps, Qs).

As expected from our experience with the axial case in the previous chapter, the equa-
tions are obtained in a form which is more complicated than expected. It turns out that it
is possible to replace equations (887) and (BBHZIN) by some linear combinations of them
with radial derivatives of equation (BR8] so that their differential order is reduced. The

new system takes the following form,

BiPyy + B2Qay,, + BsQay, = AP Py 4+ AL QN .A% P+ AP Y+, (891

(8.91)
Q= ASP)+ ALQ; g + AP+ A QY + ... (8.92)
(8.93)
(8.94)

ByPs; + BsQa,, = A5 Pz”+A;;)Q(’”> AD Py 4+ ADQY + ..., (8.93
BsQs, + BiQa,, = ADPY+ ALQY + AY) P+ AT QY + .., (8.94

where the B; coefficients are given by,

] (272
o - AT ()
By, = -2 [a 8 . ;;:] 2 (Sjg’f n2{4r3ngq>,pp o [PIR 10+ 1)] (@)
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4 2
+ @PILI + — (DIB) T + 7 [3a%(1 4 1) — 8] LI

+ %za +1) [a® (P+1+1) — 3] Hg}, (8.97)
2

B, = 4%13; (rgg) %, (8.98)
B, = 2(17“81335 (C;—QD)?HQ{ [(52 +l+2) a? +2] P I,

+ 2a* DIl + 200,11, |, (8.99)
Bs = —Bi, 8.100

- (1—=2)! /r\3 (TI5\° ( |
Br = —drag <E> (E) 1. (8.101)

For the moment being, this is the simplest way we have found to write this system of
equations. Nevertheless, we are currently working in order to give then a more manageable

form.

Let us now particularize the above equations of motion (BZARIN) to vacuum and re-
cover the results obtained in that case by Moncrief [101]. Then, all background and pertur-

bative fluid variables {II3, ®, Qs, Ps} dissapear from our problem and obviously equations
BRARTO) are empty.

At the begining of this section we have chosen coordinates (t, p = r) with 5 = 0, what
imposes II; = 0 because of equation (ZZ2). The background Schwarzschild coordinates
(t,r) are compatible with this choice and they also imply that the background momentum
I1, vanishes. Finally, from background equations (ZAE7H) one obtains the explicit form
of the metric components,

1 2M
a=—-—=1/1——. (8.102)
a r
In this way, one can solve equation (B8J) to write down the gauge-invariant momentum

P, in terms of the time derivative of its conjugate variable ()5, which is equal to the

combination 3 (BT [see transformations ([B6H) and (BZD)|,

2r A
P, =
I+ 1)(2rA+6M)?

3. (8.103)

For convenience, we also define the rescaled variable,

r3 3
__r_ 3 8.104
a 2rA +6M’ ( )
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which, inverting the canonical transformations that we have performed in the previous

section, can be expressed in terms of the initial variables as

_(r—2M)

1
2 —_—
= i e = K U+ D+ r K S+ 1)rG (8.105)

Introducing relation (BR6) in equation (B8Z) we obtain the Zerilli equation,

oM\ '/ 2z 92z

where we have made use of the tortoise coordinates (¢,7*), with 7* = r + 2M In(55; — 1),

and the potential is given by,

(1+1)  6Mr*A(A+2) +3M(r — M)

Ve = 72 73 (rA+3M)?

(8.107)

Therefore, the gauge-invariant combination Z (BI05) reduces to the Zerilli variable when
particularized to vacuum. We end this chapter emphasizing the fact that, making use of
Hamiltonian gauge techniques, we have obtained a generalization of the Zerilli variable to

dynamical scenarios.
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Part IV

Second-order Gerlach and Sengupta

formalism
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Chapter 9

Decomposition of the perturbations

In this chapter we will decompose the perturbations in a spherical harmonic expansion,
making use of the Regge-Wheeler-Zerilli harmonics and the Gerlach and Sengupta notation
for the background spherical spacetime. We will also identify the part that encodes the
gauge freedom in these decompositions. Finally we will present an iterative procedure,
applicable up to the desired order, to eliminate this freedom by constructing gauge-invariant

quantities.

9.1 Harmonic decomposition

The perturbations of the metric ’h,, are four dimensional symmetric two-tensors.
Because of the block decomposition of the background metric (E3), they can be splitted
into two by two boxes in the following way

{n}p, np,
", = < AB ‘ Ab ) : (9.1)

Sym. ‘ "o

where the GS notation for the indices has been used. From the point of view of the manifold
52, each box has a different tensorial rank, i.e., {"h,p is a scalar in S? and a symmetric two
tensor in M2, "hy, is a vector on the sphere and in M? and, finally, ", is a symmetric
two tensor in S? but a scalar in M?. We expand all of them in the RWZ basis of tensor
spherical harmonics taking into account their tensorial character:

{n}Hm Zm {n}Hm Zm {n}hm m
=3 1AB 4 , ra b+ A A (9.2)
Sym. MK ey 2+ G re 2 + TR X

Lm
In principle, the sum over [ is infinite. Through this decomposition we have therefore

converted ten functions, depending on all of the four coordinates (@II), into ten infinite

105
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collections of functions, which only depend on coordinates of M? (L.2). For each label (I,m),
the new ten functions are encoded in a symmetric two-tensor " H]"4p, the two vectors
{"H"y, "4}, and the three scalars { " K]", G, ™A™} The same decomposition is

done for the perturbations of the stress-energy tensor:

in} {n} {n}
O =3 A e . (93)
Sym. W a2t + T 2 + T X

lm

The factors 72 are introduced so that, for the case n = 1, equations ([@I2) and ([@3) reduce
to those of the references [51,54] up to the mentioned normalization of the axial tensors

X", and X", and some other small changes in the notation.

For future convenience, let us also define the decomposition in harmonics of the ten-
sors ™K, and W, that will encode, respectively, the metric and stress-energy gauge

invariants at n-th order:

{n}ICm Zm {n}/im Xm
{n},CW — Z 1 AB | l A2 b ’ (9.4)
— Sym. T oy 2
nhy Z {n}\I’;nAB Zlm {n}\I’;nA Zlmb + {n}¢;nA b (9 5)
v Sy OB g P 2 0 X

As can be seen, the tensor ), has only six degrees of freedom instead of ten. That is so
because, as it will become clear in the next section, we are going to use the perturbations

of the metric to extract the remaining four gauge-dependent degrees of freedom.

Note that in all the decompositions performed in this section the axial harmonic co-
efficients are denoted with lowercase letters and the polar ones with capital letters. This

convention will be very useful to identify the polarity of the functions under consideration.

9.2 Gauge freedom

As explained in Chapter Bl the perturbations ([@2) and ([3) contain some degrees
of freedom corresponding to a change in the definition of the perturbation owing to the
possible action of a family of diffeomorphisms. Such freedom is encoded in a gauge vector
for each perturbative order. Let us take the gauge vectors and decompose them also in

tensor spherical harmonics,

eig, = (ER 2t ER 20+ e X)) (9.6)

Lm
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For every perturbative order n and every pair (I, m), there are three polar gauge freedoms
(=4 and "Z=]") and only one that is axial (1"¢™). In order to eliminate those degrees
of freedom from the metric and keep only the physically meaningful perturbations there

are two options: fixing the gauge or looking for gauge-invariant quantities.

Fixing the gauge is just choosing the gauge vectors in any convenient way or, equiva-
lently, demanding some appropriate constraints on the harmonic coefficients of the decom-
position (). A gauge choice might be specified, for [ > 2, by the following algebraic
conditions,

MHM A =0, MaEr =0 = 0. (9.7)

For the case n = 1 this gauge was introduced by Regge and Wheeler [56]. As we will see,
this gauge can not be imposed for [ = 0, 1. Using the property (EI1]) of the tensor spherical
harmonics, it is easy to see that this gauge condition leads to a full metric g,, such that

gAb:c gbc = 07 gab - Kgaba (98)

where the four dimensional function K is just the sum

K=Y "Krzr. (9.9)

1=0
As explained in the final part of Chapter Hl, the gauge invariants we are going to consider
are conceptually quite different from those defined in [100]. They will be linear combinations
of the perturbations that functionally do not change under a gauge transformation (acting
on those perturbations), rather than the perturbations of some background tensor whose

Lie derivative vanishes along all the vector fields.

The procedure to determine them is to fix a gauge and calculate which gauge vectors take
a generic perturbation into the mentioned gauge. The arbitrariness of the process resides
in the choice of the former gauge. In our case, following GS, it will be the RW gauge, which
has a clear geometrical meaning. In this sense, these invariants can be thought of as “what
would be measured in the RW gauge", but expressed in a generic gauge. From now on we

will use the adjective gauge-invariant in this sense.

The first-order metric gauge invariants were first defined by Moncrief [101] for Schwarz-
schild background and generalized by GS [51] for any spherically symmetric spacetime.
In that paper they also introduced the matter invariants, that is, the gauge invariants
corresponding to the stress-energy tensor. Here we are going to give an iterative method to
calculate the gauge invariants up to any order and, for the second order, we will give explicit
expressions decomposed in harmonics in Chapter [[1l We will start explaining what GS did

to construct the invariants at first order and demonstrate that the procedure described
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above is equivalent to their construction. After that discussion we will deduce formulas for
the higher-order gauge invariants. We will discuss the two special cases [ = 0,1 in the last

subsection.

9.2.1 First-order gauge invariants

In the following, and except when the notation might become misleading, we remove
the harmonic labels [ and m. All equations appearing in this and the following subsections
are valid for [ > 2. As has been explained in Chapter B this is because, for [ = 0,1 there
exist several tensor spherical harmonics that are identically zero. Therefore, the equations

obtained as the harmonic coefficients of those vanishing harmonics are in fact empty.

At first order the gauge transformation of the perturbation of the metric is given by
m’ﬁw = ‘mhw, + L e (9.10)

where tH¢F is the gauge generator vector field. If we decompose this equation in harmonics,

taking into account the decompositions for the gauge vector (4) and for the perturbations

[E2), we get

WHap = WHap+ YZ45+ YZp, (9.11)
WH, = WHu4 WEL 47 UE,, (9.12)
WK = K 42005, (14 1)ME, (9.13)
WG = g 420E (9.14)
Why = Wy 42 g, (9.15)
Wh = p 422 ¢, (9.16)

The overbar quantities are the harmonic coefficients corresponding to the decomposition of

Wh,,,. Following GS [51] we can construct the following linear combinations:

2 2
O, = WHup+ (%{1}GA _ {1}HA> n (%{1@3 _ {1}HB) . (9.17)
|B |A

2 I(1+1
W = UK 4207 (% WG4 — “}HA) + Wxl ;r ) a, (9.18)
1
Wy, = {l}hA—§{1}h|A’ (9.19)

which are invariants under the transformations (@ITHITH). Recall that we follow the
convention of defining polar (axial) objects with capital (lowercase) letters. In this way, the

physical degrees of freedom of the perturbations are encoded in these invariants without
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fixing any gauge: on the one hand the four polar freedoms in the tensor /45 and in the

scalar */C, and on the other hand the two axial degrees in the vector k4.

The construction of those invariants, as we have explained and will become clearer
below, is tied to the RW gauge. In fact, it is straightforward to see that in the RW gauge

W = WHEY, (9.20)
o = g ®W) (9.21)
S {1}hE4RW)_ (9.22)

According to our discussion, the gauge invariants are the representatives of each equivalence
class that one constructs taking any general perturbation to the RW form, so we are going

to write the gauge invariants fC,, as,
“VCW = {l}hw, + £{1}pgw/, (9.23)

where Vh,, is a general perturbation decomposed as (ZZ). The invariants are organized in
the tensor “/C,, (@) and p* is the first-order gauge vector that we have to determine

and that is decomposed as

Cpu =3 (B 20 P 20 g X)) (9.24)

L,m

If we translated equation (ZZ3) into spherical harmonics, we would obtain a particular-

ization of the general gauge transformation ([ITHITH). Three of those equations, namely

[@T2), [@T4) and (OTI4), get a vanishing left-hand side

0 = UHu+ “Py+ 2P, (9.25)
0 = MG+20P (9.26)
0 = Wh 42020, (9.27)

and therefore specify the vector “p# in terms of the perturbations:

r? 1 1
mp, — g, — W mp_ _~ g M, — =y, 9.98
A 9 |A A, 9 ) q 92 ( )
From the other three equations we can then read the invariants:
{I}ICAB = {I}HAB + {I}PA|B + {1}PB\A7 (9.29)
UK = UK+ 204 MPy — (14 1) MP, (9.30)

R T— {l}hA+r2“}q|A. (9.31)
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With this analysis we have proven that the RW gauge is well posed in the sense that we can
take any generic perturbation h,, to that gauge. We have also clarified the interpretation
of the gauge invariants constructed in [51,101]. In this respect, a crucial property of the
RW gauge is that we only have to solve algebraic equations to impose it and, therefore,
the solution to these equations is uniquely determined. It is now easy to understand why
it is not possible to impose the RW gauge for the cases [ = 0,1. For these values of the
harmonic labels, equations (L26HI2T), as well as ([IZ0) for [ = 0, become spurious due to
the vanishing of the corresponding tensor harmonics. As a consequence, it is not possible
to define the gauge vectors that bring the generic perturbations to the RW form. In fact,
it is just in this respect that the RW gauge fails to be a fully rigid gauge. We will discuss

this issue in more detail in the last subsection of this chapter.

In order to find the gauge invariants for any other tensor field, in particular for the

stress-energy tensor, it suffices to transform it to the gauge we have chosen using the vector
(L
P,

{1}\Ile = {l}t;w + L {1}pt,uz/7 (932)

where ¢, is the background stress-energy tensor (&) and the ten gauge invariants corre-

sponding to the matter content will be encoded in the tensor ¥, (Z3):

W,p = OTup+ VP atpe + VP ptac + VP tapic, (9.33)
WOy, = Ty + UPPp + ; P40, (9.34)
Wy = Wiy + ; WgaQ, (9.35)

Uy = 7 4 20pQ, (9.36)
Oy = W74 2—; WPAQr?) A — w WpQ, (9.37)
Uhy = 4 200, (9.38)

Here, the objects ) and t4p are the components of the background stress-energy tensor
defined in (B4]). Note that we have used the vector ®p# (I28) instead of the harmonic
coefficients MH ,, MG and ™A, in order to simplify the expression. It is easy to see that
these objects are invariant under a gauge transformation parameterized by any vector ¢+,
that will transform the metric perturbations as (ZIIHIIH) and the matter perturbations

as

“}ZW = {1}75#,, + L {1}575#,,. (9.39)
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Introducing harmonic decompositions, this last equation takes the form

WT,p = YTap+ M=% 4tpe + M= ptac + M=% api0, (9.40)
2
WT, = U7+ WPt p+ % WE40, (9.41)
_ g
Wi, = O 4+0%Q <—) , (9.42)
2 )4
WP = Py 2EQ, (9.43)
- o I(1+1)
W7 = O7 4 —WEAQr?Y), - ———2 UE 9.44
+ o Ay, - D g, (9.41)
WE = g2 gQ, (9.45)

9.2.2 High-order gauge invariants

The procedure we have used shows how the invariants are associated to a choice of
gauge, in this case the RW gauge, and can be generalized to higher orders [114]|. From
formula ([EJ) we see that the gauge transformation for the n-th order perturbation of a
background tensor 7" parameterized by the gauge vectors { {¥¢# ... 1"I¢#} is schematically

given by

APT] = AT = L T+ ™. (9.46)

Here 7 is a source term depending on A™[T] and '™¢* for all m < n, but not on
{ni¢r and hence at first order 7 = 0. Therefore the dependence of the n-th order gauge

transformation on the vector t™¢# is the same at every order.

In order to construct the n-th order gauge invariants, we have to obtain all gauge vectors
{®pr, ..., tIpt} that take any generic perturbation h,, (2) to the RW form ™K, (B4).
Hence, the equation we need to solve is the same as at first order (2Z3)) but with the source
term 7, included:

Oy = Oy + L iy + T (9.47)

This hierarchy of equations can be solved iteratively because, as we have said, 7,
depends on perturbations of lower order {"h,, and on the gauge vectors {™p# which are
supposed to have been determined in terms of "h,,. As usual, we can decompose "7,

in spherical harmonics:

{n} 7m Zm {n} 7m Zm {nhm Xm
{n}jﬂuzz Ji'an Z, - Ti"a 2" + ) ve . (9.48)
Sym. T riyw 2+ T 2 + U X

L,m

As it happens in the first order case, expanding equation (7)) in harmonics, we obtain
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six equations. Three of them are

0 = "™Hy+ "MPy4+ P, 4+ My, (9.49)
1

0 = ®G+20p 4 g, (9.50)
T

0 = o (9.51)

From this we can calculate the components of the gauge vector "p* as a function of the

perturbations of the metric and the gauge vectors of lower order:

2 1
mp, = L G 4 = (g — W, — Ty, (9.52)
2 7»2 |A
mp — _1 G 4 i 7 (9.53)
2 72 ’
1
iy, (ndp, o nh3) 9.54
q o2 ( + J) ( )

The three remaining equations arising from (IZ10) provide the gauge invariants:

"ap = "Hap+ "Pyp+ "Pga+ "ITas, (9.55)
M = K 4204 0P, — (1 +1)™MP + M 7F, (9.56)
{n}I{A = {n}hA +T2 {n}q‘A + {n}jA. (957)

In order to obtain the n-th order stress-energy invariants W . we simply start with the

w's
n-th order perturbation ", and apply a gauge transformation [EJ) parameterized by

the vectors { Mpt, ..., Mipi},

9.2.3 The particular cases [ =0, 1

It is well-known that, at first order, one cannot construct local gauge invariants for
[ = 0,1 by the methods explained in the previous subsection. This is because some of
the equations (ZHHI2T) are not present in those cases, and therefore it is not possible to
attain a local expression for the components of the gauge vector "p# in terms of those of
the metric perturbations. Of course, gauge conditions different from the RW ones can be
imposed on the metric perturbations and hence one can obtain from them the associated
gauge invariants, but these will be nonlocal because the gauge vector will be given by an
integral expression (over M?) of the metric perturbations. Whether this is useful or not
will depend on the particular application that one is studying. The following discussion

will apply to gauge invariants tied to the RW gauge.
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The same obstruction appears as well at every order in perturbation theory, so that
one cannot get local gauge invariants for [ = 0,1 at any order. However, mode coupling
makes the problem worse: the existence of lower-order modes with [ = 0,1 may prevent
the construction of higher-order local gauge invariants with [ > 2. This will happen when

such lower-order modes have a nonzero contribution to the sources 7,,.

At first-order the GS gauge invariants remain unchanged under the restricted group VG°
(see Section EETT]), and here we introduce the diamond notation to indicate that no first-
order generator with [ = 0, 1 is included. However, removing all [ = 0, 1 generators is already
inconsistent at second order if we demand invariance under a group of transformations,
because the [ = 0,1 components of the vectors ¢ will be unavoidably generated by
coupling of first-order gauge modes [cf. composition ([EIF)|. Fortunately, those offending
gauge modes act only on the [ = 0, 1 second-order perturbations, for which invariants cannot
be constructed anyway. All other second-order perturbations admit a gauge-invariant form,
as given in the previous subsection, under the gauge group *G° where again the diamond
denotes that no first-order [ = 0,1 gauge mode is included, but all other first and second-
order (including I = 0, 1) modes are allowed. That is one of the main results of this chapter:
in spherical symmetry algebraic gauge-invariant combinations of the perturbations can be
consistently and simultaneously constructed for all [ > 2 modes at second order, all being

invariant under the group *G°.

The situation at third and higher orders is more restrictive. In these cases, one has
to restrict to a finite set of lower-order modes both in the gauge generators and in the
perturbations in order to define some form of gauge invariance. This is because the presence
at first order of any gauge mode [ > 2 will generate, just by self-coupling, the second-order
modes with harmonic labels 0 and 1. It will then be imposible to construct the gauge-
invariant form of a third-order perturbation whose source J contains a term coupling any
of these second-order [ = 0, 1 modes with any first-order mode. But those sources generically
contain all possible couplings, and so only a problem in which we restrict the number of

first-order gauge modes allows some form of gauge-invariance at third order.

Let us then analyze generic mode coupling around spherical symmetry, starting at sec-
ond order and then proceeding to higher orders. We will later give some bounds on the
number of modes that can be present at first order to allow for the construction of a nth-
order mode with label [. The second-order [-mode will get a contribution from a pair of
first-order modes [ and [ if two conditions are obeyed. On the one hand, the harmonic

labels must be related by the standard composition formulas

-1 <i<i+I, and m=1+m. (9.58)
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In the following discussion we will not consider the m harmonic labels, but it would be
straightforward to include them. On the other hand, mode coupling must conserve parity.
To any harmonic coefficient with label [, we associate a polarity sign ¢ such that, under
parity, the harmonic changes by a sign o(—1)!. Polar (axial) harmonics have o = +1

(0 = —1). Then, parity conservation implies the second condition:
() = ¢ = 556, (9.59)

where the alternating sign e was already defined in Subsection 73 There is a special
case in which the coupling of two modes satisfying equations (ZL) and (@IJ) does not
contribute to a second-order mode, and the reason comes from the properties of the FE-
coefficients (E77) that appear in the product formula for the tensor harmonics (G83]). In
axisymmetry (m = m = 0) the Clebsch-Gordan coefficients, and as a consequence the
E-coefficients, vanish if [ + [ + [ is odd.

The above analysis can be extended to higher orders. In particular, the parity condition
will be that a collection of £ modes with harmonic labels {ly, ..., [} and polarities {7, ..., o) }

will contribute to the mode (I, o) only if
(=)o =TI (=1)k0;. (9.60)

Let us finally consider the case in which we have a first-order finite collection of modes with
their harmonic labels taking all the values from [ = 2 to | = l,,.x, With contributions from
both the polar and the axial sectors. Coupling of these modes at order n will generate some
new modes, following the above rules, so that the highest value of their harmonic label
will be nl,... The construction of the gauge invariants under the corresponding group
of transformations and tied to the RW gauge is only guaranteed for those modes with
harmonic label greater than (n — 2)lyax + 1. This number comes from the coupling of the
(n — 2)th-order (n — 2)lax-mode with the second-order [ = 1 mode.

As a summary, working at order n > 2 only a finite number of gauge generators can
be included in the invariance group at orders 1,...,n — 2. The unavoidable presence of
second-order gauge modes with [ = 0, 1 couples to any metric perturbation at order m and
with harmonic label [, preventing the construction of a gauge invariant of order m + 2 and
label [ or [ £+ 1, with respect to those gauge modes.



Chapter 10

First-order

This chapter summarizes the formalism by Gerlach and Sengupta for first-order pertur-
bations around a spherical spacetime [51,54], and introduces the main notations used in the
following chapters. These are geometrical notations which will allow us to show that the
master axial function we have obtained in Chapter [d via Hamiltonian methods coincides

with the master scalar introduced by Gerlach and Sengupta.

10.1 Einstein equations

The linearized Einstein equations

WG, =8, (10.1)
expressed in terms of the gauge invariant variables, lead to the six GS equations [51],
EaplK] = %,,w + 3vcv® + 2000] Kap + 'UC(’CCB|A + ’CCA\B — Kag'9)

— (vBKia +vaKip + Kjap) + 9aB {r_?’('r?’lCc)w — %K (10.2)

— %ch + (Kc1p — 2KC pje)v” = (Bvevp + 2UCD)ICCD} = 87U 45,
EAK] = %(/CBBUA — KPpia+KaP 5 — Kja) = 870 4, (10.3)

EK] = %{(’CAB — Kgap) "R - %’CAA + KA 5"

— 2K pav® + KA 40P — KAP up + K4+ 2/CAUA} =7 (10.4)
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EIK] = —%ICAA = 870, (10.5)
I—1)(+2 1 ©

Oalr] = %,{A ~ 5 [r4 (%)IC e (%)A} + 47Qr 4 = 8 4,(10.6)

Olk] = w4 =28m1, (10.7)

where we have defined the four dimensional background Ricci tensor R 45 and, for future
convenience, the linear operators £ and O acting respectively in the polar and axial parts
of the perturbations. Note that the n = 1 label has been dropped, since all the considered
harmonic coefficients are of first order.

It is important to remember that the gauge-invariant variables reduce to those obtained
using the RW gauge, that is, cancelling the gauge vector p*. Hence, the above equations

are essentially the ones attained in the RW gauge.

10.2 Energy-momentum conservation equations

A complete set of evolution equations is obtained only after specifying the particular
type of matter content of the system. Some simple systems like scalar fields or perfect
fluids are completely defined dynamically by energy-momentum conservation, but this is
not the case in general. However, we can generally analyze the consequences of perturbing
the matter conservation equations, as well as use this analysis as a check of the perturbed
Bianchi identities, and hence as a consistency check of the equations given in the previous

section.

In the background, the energy-momentum conservation equation is given by (BI0). At
each perturbative order it can be decomposed into three geometric parts, given its vectorial
character: a vector equation in the polar sector and two scalar (one polar and one axial)

equations. We define the following operators acting on the first-order metric and matter

perturbations,
l(l+1 = 1
LAV, K] = — ( ; >\IIA—2UA\If+ﬁ(r2\IfAB)|B (10.8)
S . - 2K L sKClP 4 apklP — L2180
5 BOIA ~ 5 Q(r )ja + Stash-c +taB 2 (r°tag ites
_ o =D+2) 1 A Loa @ 1 4p
LV, K = U T\If + ﬁ(ﬂ\p )ja— (K — 5ic A)§ - §IC tap, (10.9)
Ly, k] = ﬁ(r%ﬂ = ¥~ ﬁ(Qr% )i4- (10.10)

With these at hand, the first order energy-momentum conservation equations can be written
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in compact notation as

La[¥, K] = 0, (10.11)
LV, K] = 0, (10.12)
Ly, k] = 0. (10.13)

10.3 Axial master equation

10.3.1 Gerlach-Sengupta master scalar

In the axial sector the invariant vector k4 satisfies equations (LEHILT). But, using the
energy-momentum conservation equation (ILIF), it is easy to prove that equation (1)
can be obtained by differentiating equation ([LH)). Combining the invariants ¢4 (E34) and

ka ([@3T), let us introduce a new matter invariant

ha =1ha — %HA =ta— %hA, (10.14)

and, as the rotational of the axial vector x4, the GS master scalar

1= AP (@>|B. (10.15)

2
In terms of them, equation (L) takes the form

1 [—1)(1+2)

ﬁeAB(TAH)‘B + ( opa A= 87 4. (10.16)

If we take the rotational of this equation we obtain the so-called GS master equation

— {i(rﬂtn)“‘} + =002y 8B 4 5. (10.17)
2r2 A 2

This is a wave equation for the scalar II. Of course, different matter models will have

additional variables and equations coupled to this equation but we stress the fact that both

the form of IT (ILT1H) and its wave equation (ILI7) will remain unchanged. This variable

is used for historical reasons. But, in fact, it would be better to use the rescaled variable

II = 7311, because its evolution equation has no first-order derivatives,

ﬁ‘AA — VRwﬁ = 87TT36ABQ/~}A|B. (1018)
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This equation is valid in any spherically symmetric background and the potential is given
by

Vaw = + Ti(ﬂ —1). (10.19)

The RW subscript stands for Regge-Wheeler since, on a Schwarzschild background, equation
([MTR) reduces to the RW equation, as we will show in Chapter [[2

The scalar master II can be considered as containing all information about the axial
gravitational wave, since, once II is found, we could use equation ([ILIG) to obtain the
vector k4. This is true once we have solved also for all matter perturbations that define
@Z)A. But one has to be careful because the vector field x4 could also appear inside @A,
what may imply a non-algebraic solution of (ILTH). Let us analyze this issue in more
detail. Tt is possible to solve equation ([ILIH) algebraically for k4 as long as ¥4 does not
contain the symmetrized derivative k(4 p) [since the antysimmetric part defines the master
scalar (LTH)| or higher derivatives of k4. Second and higher derivatives of k4 can be ruled
out by requiring that the matter stress-energy tensor must not contain second derivatives
of the metric, because that would change the principal part of the Einstein equations.
Symmetrized first order derivatives of k4 cannot be ruled out on physical grounds because

perturbation of covariant derivatives of tensor fields may introduce the term

a F(BIO)
r2

AalPap ] = X (10.20)
This is the only possible source of symmetrized derivatives of k 4; all other perturbations of
Christoffel symbols give either II or undifferentiated x4 terms. Summarizing, it will not be
possible to obtain the vector field k4 in terms of the master scalar IT algebraically for those
matter models that have derivatives of tensor fields (no scalars) in their energy-momentum
tensor. This is not the case for standard matter models, but we found an example in the
Einstein-aether theory [159]. In this theory the aether is described by a vector field that
appears differentiated in the energy-momentum tensor. Hence, in order to obtain the vector

k4 in terms of the master scalar II and the perturbations of the aether, one will have to
integrate equation ([ILIH).
In order to end this subsection, we would like to show the following equation, that relates

the master scalar to one of the perturbations of the Riemann tensor (see for instance [136]),

I(l+1)

A[RaBed) = — Y €ap €eq 711, (10.21)

which gives another physical interpretation of the master scalar II.
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10.3.2 Comparison with the Hamiltonian approach

Let us now compare the GS master variable with the gauge-invariant variables we have
found through the Hamiltonian analysis, for the particular matter content of a scalar field,

in Chapter [ First we note that the background momenta can be rewritten as

I, = —2ufvy, (10.22)
I, = —2utvy—2u?,, (10.23)
I3 = u®y, (10.24)
where u? is again the vector field orthogonal to the spacelike hypersurfaces 3,. We see

that II; and II3 are essentially time components of vectors in M?2. However II, is a more
complicated object. Comparing their definitions (I2) and ([ZIHZ3), it is clear that the
vector h, and the scalar h are related in the following way to the original Hamiltonian

variables,
hy = —h,, (10.25)
hy = 2h, (10.26)
hoy = o’h'. (10.27)

On the other hand, the components of the gauge-invariant vector field x4 is given in terms

of the gauge-invariant variables ()1, P, and P, in the following way,

Ky = —Q, (10.28)
o ! : Ql] } (10.29)
P

1. r<1l
K= |:p2 + _h2:| = .
2
These last relations can be inverted, obtaining the Hamiltonian variables in terms of GS

«Q Aaqy

1
{T2P2 — 5 |:’I"2P1 + 2l(l + ].)

harmonic coefficients,

Q1 = —ky, (10.30)
Qs = 2h, (10.31)
P 211
10 J: 0 = —erap — 20 + nPut)oakp = —r?I1 + Tlmp, (10.32)
2 TZPQ

= (=D +2)s"+ €< (r'T) (10.33)

aal(l+1) '

where IT is the GS master scalar ([ILTH), not to be confused with the background momenta
IT; or II,. We see that the gauge-invariant (), is the p component of the gauge-invariant

vector —k4. Then (Qy is a scalar in M2, but it is gauge-dependent. The momentum P is
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the sum of two parts, the first one being a scalar (the curl of the vector x4) and the second
one being essentially the off-diagonal component of the symmetric tensor v(4xp). Therefore
P, is not a component of a tensor itself. Finally P, is, apart from a factor aa, the time
component of a contravariant vector. It is important to stress that these properties are very
easy to obtain in the GS formalism, but not in the original Hamiltonian formalism, where

the variables are well adapted to a three-dimensional point of view.

From the last relations, it is clear that the only independent scalar that can be formed
as a linear combination of P; and @ is Q (L33)). Now it is straightforward to show that

Q is related to the GS scalar variable as

1 Q

_ ﬁl(il T — 1L (10.34)

As a final comment, let us stress again the fact that with the Hamiltonian gauge techniques
presented in Chapter [d and the requirement of finding a scalar variable we have univocally
identified the GS master scalar.



Chapter 11

Second-order

Building on the previous chapters, here we introduce the general formalism to handle
second-order perturbations of a general spherically-symmetric spacetime. We construct
gauge-invariant variables, give their evolution equations (the perturbed Einstein equations)
and the perturbation of the equations of energy-momentum conservation. These are the
equations on which any application will be based on, for example those in the following
chapters. They have been computed in full generality (only under the restriction of spherical

symmetry in the background) during this thesis for the first time.

11.1 Gauge invariant variables

Following the general construction explained in Chapter @ the second order metric

invariants will be given by

Bas = “Hap+ PPap+ PPpa+ Pas, (11.1)
B = BK 4 204®p, (1 +1)@P 4 27, (11.2)
Py = Phy+r? P+ Py, (11.3)

where the components of the second order gauge vector *p* are

2 1
op, = " (ogyoomg) oy, og, (11.4)
2 r? A
@p 1 {2}G+i{2}j (11.5)
2 r2 ’
1
@, _ _ {23y, 4 2} 11.6
¢ = g (Pht ), (116)
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and the harmonic coefficients 7 and j come from the decomposition in harmonics of the

source
{2}\7;1,V = Ez{l}pguu + 2L {1kp {l}huua (117)

as given in definition ([IZ8). As we have explained, the gauge invariants of any other tensor
field are constructed just by performing the gauge transformation (ELIT]) parameterized by

the gauge vectors { tpt, ©Ipt}. In particular, the matter invariants are given by

B0, = BT, + Loyl + L% b + 2L 101, VT (11.8)

Therefore, in order to make explicit the form of the invariants in terms of the first and
second-order perturbations, we only have to obtain the expression of *7,, in terms of
them. Since this source is quadratic in first-order perturbations, and given the product
formula between spherical harmonics (683)), we see that the source will have the general

form (here we obviate the n = 2 label for simplicity, but reintroduce the harmonic labels [

and m):
J"ap = Z()jlm;n}nAB, (11.9)
J"a = Z”j;";nm, (11.10)
Jr = Z“Jlm;”;”, (11.11)
J" = Z“Jlm;”;”, (11.12)
ia = —zz T A, (11.13)
i = —ZZ g, (11.14)

In these expressios we have used the shortcut

>- IPIPHY (115

m=—1m=—1 [=0 1=0

satisfying the standard restrictions m 7 = m and [ —1| < [ < [I+1|. The structure of the
sources is rather peculiar, owing to the mixture of polarities that appears in the product
of harmonics. This fact is encoded in the polarity sign o of the sources lmlm}n, which
is given in terms of the associated sign ¢ = (—1)"~! and is thus completely determined
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for each term of the sum (it cannot be chosen freely). Sources with polarity sign o = +1
contain terms polar X polar and axial X axial with real coefficients. Sources with polarity
sign 0 = —1 contain terms of the form polar x axial with purely imaginary coefficients.
This form ensures an adequate behaviour of the equations under complex conjugation. In

particular, using equation (EZ8), we have for all sources and for all [, IRE

[Ogmmm]* = (e)jl;mljml*m’ (11.16)
[i (76)‘7{%;@?} = 3 (76)‘7ljmljml*m. (11.17)

This guarantees that the objects J™ and j;* on the left-hand side of the equations satisfy

the reality conditions

(7" =7 and [T =5 (11.18)

As expected, these conditions imply that the functions determined by these harmonic co-

efficients are real.

On the other hand, we see that some pairs of equations share the sources: for example,
equations (TI0) and ([II3) alternate their sources VJ and J for particular sets of
labels [, 1,1. The same thing happens with the pair ([CTA) and (TI4). As a result, we

need to compute eight sources in total, instead of twelve.

Using equation (2§ and the decomposition ([@Z), without loss of generality, we can
expand those sources assuming that there are only two first-order perturbations, but allow-
ing these to be completely arbitrary, in particular assigning arbitrary harmonic labels to
them. From now on the coefficients and harmonic labels of those two perturbations will be
denoted as (71, D, /@) and (h, p, K), with all other perturbation amplitudes vanishing. In
this way, we avoid dealing with sums that include (quadratic) couplings between an infinite

number of first-order perturbations.

The tensorial sources are given by [114]

TP = —AEC {P/CAB +2Gshay — (PPp)jay — r*PaPp — TQQ\AQ\B} (11.19)

+ 2800 {2PC ke + PORapc — P¥Paye = POaPeis — PORamc |
OF g = —4ET {QICAB + 2P (akip) — 2r°Ga P + GPs) + ‘j\(ApB)} . (11.20)
We have used the fact that the sums in [ and [ are symmetric to simplify the form of the

sources. Although each individual source (”>.7l—m;ﬁ}” is not symmetric under the interchange

(I,m) < (I,7), their sum is symmetrized.
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The vectorial sources are decomposed as

(+)\7fm??bA

R/

B2 {—2(@@1 + GRa) + (PaP + PaP) +1*(3PP 4 + PP )

_ 9n qq
wna (%)

1 —_ _ A A
SB {2l(l +1)(GRa — Gita) + APBR 4p + 4r2P 1K (11.21)
Ui+ 1) (PPa+ PPy + 3PP+ PPy + 1004 — 170014
2r? |:<PBp|B)| + 4UBPBPA:| -2 (pBPA“_; + 2pBPB‘A -+ PBPA‘B> } ,
A
—iB2 0 {2 (Pia = Pa) + Pa — aPa +1%4Pa + 3P
3r2qP 4 — TQf)C]\A}
z’Eé% {27«2/@% —1(+1) (PRA + P/%A> +2 (/%BPBM + PB/%A‘B>
I(1+1)
2

(7’2(?15|A — 24P 4 + 3r2Pgia + 17 Pdia — GPs + qu)

r2 (ﬁBq‘BA + P8 agip + 4UBPBq|A> } , (11.22)

and finally the four scalar sources are given by

(+)\7fm??1

ST

(+)‘7Zmlzn;n

7 55 2 DA 95 2 sz
(z+1)} PP+ SPAP) s+ 5P PA}

Jort {—2(l+ DPK + = PA(r*K)a + Z<Z:; 1)PA(T415)‘A

I(I + 1)I(I +1)PP — 2P [(PPug) a + 2PPv4v5] } , (11.23)
8iEym Pg

2i B, {%PA/%A —2gK — I(I +1)Pg + %PA(M;)M} : (11.24)

1jml

o . . L o 2 ..
r2pUm {(l L) —1) [PP - qu] —2PAP, — FPAPA}

_ o 3 o 1 _ R
22 I, {QPIC +Il+1) [gm 2PP] ——p* <r4P)A} , (11.25)
T
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Ot = 2@'7’2E§1§:%{(§15—P(1} (11.26)

_ _ o _ R 2 _
+ QiEhT {47%% +2r%1(1 + 1) [213@ - Pq] - ﬁPA(T%j)M}

+ B {415A/%A + (I +2)(1—1)r? [ﬁq+ ch} — QTZPACI‘A} .

11.2 Einstein equations

The evolution of the second-order perturbations is dictated by the same equations as for
first order, except for that now the left-hand side contains extra sources that are quadratic

in the first-order perturbations:

Eap[PK) + YOS ap =87 G g, (11.27)
i

Bal PR+ 3OS = 8w, (11.28)
I

BIOWH] + YOS = sm (11.29)
L

BIOK) + D OSPTY =8y, (11.30
L

OAl P[] — iy IS = 8 P, (11.31)
Il

O[T — i) CISPTT = 8m (11.32)

Li
The sign € flips when any of the [ labels changes. Therefore, all equations have generically

both types of sources.

As it happens with the sources for the gauge invariants, we see that some pairs of
equations share the sources: for example, equations ([T30) and ([T32) alternate their
sources S and S for particular sets of labels [,7,{. The same thing happens with the
pair ([T28) and (CI30). The operators E4p and E, however, have their own pair of sources.
As a result, again, we need to compute eight sources in total, instead of twelve.

Using expansion (B30) and the definition of the gauge-invariant perturbations ([T
[T3)), we expand the Einstein equations and write them for these invariant variables. The
expansion contains many terms with products of tensor harmonics: we count 1275, 972 and
1347 source terms in A[Gap|, A[G 4] and A[Gy)], respectively (still at the 2-+2 abstract
level, without any expansion in coordinate ranges). These products of harmonics must then
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be expanded using formula ([E83). We now analyze the sources separately.

The source of A[G 45| contains products of harmonics of the form Z%¢Z,,., Z%X,,, etc.
(harmonics with four indices do not appear in the RW gauge). The final expression can be

rearranged to arrive at the sources [113]:

mimm 2 —2lm PO ZZ+1 Z+1
g = 2 g kRO 4 ( : ) U( : )

EOl
,r.4

07l (Rakp — QAB/%CFJC)

1 O _ _ _ o
toEk 1%{4’&(“(14!3)0 — Rojap + Rovais + 2Rey(avp)) + 487 0F a1p)

CD
— 2R |A/{C|B—2/{A| KB|c + 9aB [2/{( D )HJ(C|D)—/{C (12 |r —41)ch)

_ P+l—1 4@3P ~
— 2r- (TZI{C)C(TZI{D)|D+(2R—4 = +§< 23 D)/@Cﬁc

4
+ 2€CD o(r 4H)‘D — 2P I + 4r%e CD,‘@CUDH} }
r
1 « _ _ «
T3 53l 1%1 [WCC(J’CAB — 4K 4cK 5 (11.33)

+ gan (4/0@ 4 3KCPK o — l@%/@%ﬂ

7o Pri+P+1-2,
{ 2 ICABIC-i-]C ABIC|C—|— ICAB<T IC‘(;)

n R _ R _ 1 . B
+ (/C/C)\AB — /C|A/C|B + 4U(A/C‘B)IC + §ICCD(A’CCB)
A~ _ _ 1 N _
_ ’CCD [T*Q(TQICCAB)ID o ICCD|BA] . §ICDABICDCC

+ (’CAB — gABl@FF) [KCC|DD — KCD|CD -+ 2’€Cc‘DUD — 4’€CD|CUD

_ _ R PP+1 241 o
- QICCD(Q’UC|D + 3UCUD) + ’CCC (5 — 7’_;_ )] + gaB |: i (/CC + QIC)/C
_ N 2 . _ ~
— KP°K)p - ﬁ/CCD(TSIC‘C)m — —ICIC — —[ 3(KK)e)'© + 5/qclc‘(f
_ . . . _ 1 . _
+ 2/CFDE[(/CFCUC - ICCCUF)QDE + UFICDE] + ZICFCCICFDD - Z’CCDFICCDF

N o P?+10 R
+ (ICCD/CCF — /CCc/CDF) |:gDF< :2_ - 5) +2(2vpir + 3UDUF)H }’

21 A N N
- lmzm;nAB = E1 I%J{KABRCC + KCcRap) — 2K (aFp)c

+ Z(ICAB|C - I@C(A|B))FLC (11.34)
N 1 N N N N
+ gaB |:ICCD§(T2RC)D — ]CCCFLDU) + 2(ICCD\C — ICCC\D — ]C|D)F;D] }

We have tried to simplify the expressions as much as possible by using the GS master scalar
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IT introduced in Chapter [, and we have defined Kapc = Kapjc + Kacip — Kpcja-

On the other hand, the source of A[G 4] can be decomposed as

2 _

OSPETa = B {(Blae + kpva)R” — %) §
_ 1 . B R B _ _
+ E&%z{a’CBCA’CBC + KPY(Kpeja — Kapie — Kpcva)
1, - - _ g 1. _
+ §(ICBB‘C —2KP c1p) KA + (KK)ja + 5/qA/cBB (11.35)
ZQ + Z N ~ _B ~B— 2 A —2-B
+ = 3(Aaip + Apva)k” — KRy + 1 Ra(r "R7) 8| ¢
- —i i (s e
b 0im P+1 c =B | ~Bjf B N ~ (B C
+ éEI[fnl T—2 [—’CABKJ + K ’CAB+(’C B—2/C)I{A—/‘€A(’C B+2’C)]
+ 2/%B|A’€|B — 27“_2(7“2/%B)‘B/€‘A — 2T_2/%B(T2’€|B)|A
2 - _ _ . _
+ Sha <2E [OhP] +K(r* R— 1P —1) + (TZIC)BB) (11.36)

+ 2’/‘2€Bcﬂ/€AB|C — 7“26,431:[(/@(;0‘3 — QICBC\C) + QT_ZEAB(T4ﬂ)|CI€BC}.

Finally, the manipulations for A[G;] are more complicated, involving up to 3091 terms

in some intermediate steps. The resulting expression can be organized in the following four

sources:
. 1 PR (U 1o = CAIB 2, _
H)Szmzmzm = T—zEll%{’CAB’CAB - QICAA’CBB + 2’ﬁA‘B"ﬁAIB - T—Q(THA)lA(mB)IB
~A-B 4 l_2+l_—1—27“7"c‘(j 4ABA 3=
+ 287R" |2 WRap + 3vavB — gan 2 + € Ra(r°l) g
Uooim | PHIP+T : o ( -
+ §E8§mz{ IR FARA+2(K* 0 = K)(KP9 5e — KP51%)

1. _ _ 1 . n _ _
+ §/CAB‘C(2/CAC\B — 3KaBic) + 5(2’CAB|A — K4418)(2K9B o — K€ c1P)

. _ P+1 _ _ 4
+ K8 |:’CAB ( i R) = 205K c1a + 4(Kacv)jp + (K ac) “vp

— ZICAB|CUC:| — Q[KABT_Q(’I“QICNB]M + /@AA|BT_2(T2/€)|B + R’CAA’C

— AKAPRuvp — l@'A/CA}, (11.37)

~ . 27 - ~ ~ ~ ~ N
= T = EL%l{(gAB/CCc — /CAB> KaB+ </C\B +4ICA[A|B] — /CAAUB> RB},(H.SS)

r2
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Pyl—1_,

o 1~ _ . B o
g = Ellggl{—lCABlCAB + KAAK + ¢TI — 2—— ,%A,{A} (11.39)

r
F2m AB
+ oﬁz’c Kag,

Ogmmm —QiEHQZ(KR )|A—iES%l{Q(I@ABF;ANB—I@AA\BRB}, (11.40)

where we have denoted the four dimensional Ricci tensor as @R 45.

In spite of the obvious increase of complexity from the first to the second-order equations,
we want to stress that the final expressions given above are still manageable and fully
general. They are valid for any gauge since only gauge-invariant objects appear. They can
be particularized to the case of any spherical background, dynamical or not, containing any
type of matter, and expressed in any kind of background coordinates (polar-radial, null,

comoving, etc.)

In situations with just a single first-order perturbation we have [=1and m =m. In
these circumstances, the E-coefficients vanish for odd [. This implies that [+1—1is always
even and therefore the sources (7)S are never excited in the polar equations ([TT2Z7HIT30),
neither are the sources ™S in the axial equations (31 [T32). In particular, S 45 and
()8 are never excited. This has been the case encountered in many previous investigations
in second-order perturbation theory. For instance, for the perturbations of a slowly rotating
star a single axial [ = 1 mode has been assumed [44], and the studies of the close-limit black

hole collisions have considered a single polar [ = 2 first-order perturbative mode [82].

11.3 Energy-momentum conservation equations

The second-order perturbation of the energy-momentum conservation equations adopts
the same form as the first-order one (LTIHIOTH), with additional quadratic sources,

L[ rpm, @m) Z(e) lm;n;nA (11.41)
L[{Q}@Z)lma {2}hm Z(s) g hm (11,42)
E[“}w{”, @pm) Z»Zes)zlzn%nlm = 0. (11.43)

Such sources can be computed starting from the equation
AT, "] =0, (11.44)

by decomposing it using formulas (2)) and ([Z3)), changing variables to the gauge invariants
(CIHIT3), and finally applying the tools that we have developed to deal with products of
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harmonics. The result, with the same notation used for the sources of the main equations,
is

1 . R
BT A = poraiy tm {2T2wB<T2RB)A —KPpy — EQ(T74/<;B/iB)|A (11.45)

1 jrl
T 2(Q/A’A’_'iB)IB + 124" (r 8%k c) i — 2(RCK tag)ic — e (r” 2/£B/£C)A}
Il + 50 .
+ —EOIJP {%K\I’A + Q\I/A /C‘B + QQT’C( ’C)\A _ T_Q(TZ\I/ABICBC)W
a 2T2&’(T_276)|A - 2ICBCtABIQC - @BCICBC\A + ‘i’ABICCqB —2KKPt 4

X _ _ _ 9
+ kB¢ |:4ICCD|(AtD)B — KPpictas — Kpepta® + E(TQICBDtAD)|C:| },

- )Iml 1A — Eflﬁzl{ﬁBBi/;A —+ (QICBC/%C — ICCC/%B)tAB — QI%B\I’AB
— 27700 (r k)4 — Q(WA%BMB}, (11.46)
1 N 7 ~, 7 T % A —_ A~ —
+)Izmlmlm = E2 I%z{QRMﬁA + 2R + 2(1/1/_-€A)|A — UK, — QiFg — QHARBtAB}

1 A —
+ Eé%{ (+1) [w — R — B Pt + %Mm] +(—1)(+2)KT

1_
_ ( Q\I/A’CAB)‘B+2T [W ’C|A—\I/’C \I’/C+Q/C/C+2\I/B’CAAB:|
+ r2KCAB {2IC ctCu— Vg — QICAB + gan (\11 Q/C)] } (11.47)
g E2 i {2040 — 2040 — RNy — 2R 4 |

™ Eé%z{l([Jr D) (FATA — a0 + (1 — 1)1+ 2)9K — 2(r*PaKAP) 5
a 2(TQII%A)IA + 27“Q@AIQA + /@(QTQRA)M + (QTZICABRB)M
+ R (wB 22/{3) } (11.48)

11.4 Gerlach and Sengupta master equation

The GS master scalar is defined in the same way as in first-order perturbation theory:

{2}
] = (AB (—’;A) . (11.49)
B

r

Its evolution equation, which can be easily obtained from equation ([[I3), is similar to
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that found at first-order ([ILIH), but with a source term,

1 I—1)(1+2 .
- [ﬁ(r“ {Q}H)A] + % BT = e Py 5+ DSy, (11.50)
1A

where we have made use of the matter invariant ) [see equation ([ILI)| and the source

can be given explicitly as,

@Sy = ietP Y "N Cogmmn b, (11.51)

Li mm

As was the case for first-order perturbations, the master equation ([[I20) fully describes
the evolution of the second-order part of the gravitational wave with axial polarity.
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Chapter 12

Vacuum

In the previous chapter, a gauge-invariant formalism to deal with second-order pertur-
bations on an arbitrary spherical spacetime has been introduced. The aim of the present
chapter is to apply that formalism to the particular background of a Schwarzschild black
hole. In such a background, the perturbed Einstein equations can be reduced to two non-
constrained wave equations: one per degree of freedom of the gravitational wave. These two
equations are the so-called the Regge-Wheeler [56] equation, namely, the particularization

of the GS master equation to vacuum, and the Zerilli [57| equation.

We will derive the formula of the power radiated to null infinity in terms of the harmonic
coefficients of the perturbed metric up to any order. We will obtain the sources for the
second-order Regge-Wheeler and Zerilli equations. As we will show, these sources diverge
at infinity and we will regularize them. The formula of the emitted power will be given in

terms of the regularized second-order master variables.

Throughout this chapter we will mainly use Schwarzschild coordinates (¢, 7). We define

the components of the metric perturbations in Schwarzschild coordinates as,

{n}H {”}H {n}H {”}h
{n} — tt tr {n} — t {n} — t
Hap = < {n}Htr {n}Hrr ) ’ Hy = < {n}Hr ) ’ hA - ( {n}hr ) ' (121)

We also introduce the following shorthand for coordinate derivatives acting on any scalar

function ¢,

(12.2)

YL
Il

¢

- K
ot

e

133



134 Chapter 12. Vacuum

12.1 The radiated power

In order to compute the power that is radiated to infinity by gravitational waves, we

will use the Landau and Lifshitz formula [14],
2
} , (12.3)

where the vertical bars denote absolute value, and which is valid for any asymptotically

2

1'@99 1 0
4

- sinZ6 | ot ot sin’0 ot

dPower 1 1 8§9¢,
dQ 16772

flat (AF) gauge. By this we mean any gauge in which the components of the metric

perturbations fall off as [46],

{n}htm {n}hrra {n}htr = 0(7’72)7 (12-4)

{n}htﬁa {n}htqba {"}hre, {n}hnb = O(T_l)a (125)
“hog, "hee, Mhey = O(1), (12.6)

,.yab {n}hfab - O(To)v (127)

or more rapidly up to the desired order n. These conditions imply the following decay rates

for the harmonic coefficients,

{n}H{?F — {"}H;;‘F — {”}HﬁF — {n}KAF — O(T_z),

{n}HtAF _ {n}HrAF — {"}hfF _ {n}hfF — {n}GAF _ {n}hAF — O(’I‘fl), (12.8)

where the superscript AF stands for asymptotically flat gauge. In particular, as we will
see, the RW gauge is not asymptotically flat. Nonetheless, we will exploit the fact that we
are working with gauge-invariant objects and, hence, we can recover straightforwardly any
perturbative expression in any gauge, in particular an AF gauge.

The Landau and Lifshitz formula is expressed in a spherical coordinate system (6, ¢),
but it can be given in covariant form. Making use of the round metric defined by the

background spherical spacetime, let us define on the sphere the projector

1
Puy™ = 3" = 577", (12.9)

which maps any rank-two tensor A, into a trace-free tensor on the sphere P,;,**A.;. With

this projector at hand, we define the projected trace-free metric on the sphere,
lah = Padegcda (1210)

which allows us to rewrite formula ([[Z3) in the following way,

dPower 1 Oty wi [(Otea\
= ac — | . 12.11
Q327 ( ot )7 7o (1211)
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Note that for metrics of the form §o, = 7>K74, K being any generic function of the four
coordinates, the induced metric ¢,, will be zero and no power will arrive at null infinity.

The spherically symmetric spacetime, with g,, = 1274, is one such particular case.

Now we replace the perturbative expansion for the metric decomposed in spherical
harmonics ([I2) and find that the projected trace-free metric in an AF gauge is

Lap = Z Z{ 2 {n}GmAFzmab + {n}hmAFxmab} (1212)

lm

Making use of the fact that the tensor spherical harmonics are trace-free and normalized
as shown in (BZI)), it is easy to integrate the emitted power over the solid angle and obtain

the total radiated power,

€j+k l + 2 o {j}GmAF o {k}GmAF *
P — ! !
ower 647”,2 Z Z Skl (1= 2)! { ( ot ) ( ot )

o {J}h;nAF o {k}h;nAF
+ ( BN ) ( ot ) } (12.13)

Therefore, the problem of extracting the radiated power at order " reduces to find the value

of the time derivative of the harmonic coefficients *'G}* and A", for all £ < n, in an
AF gauge. Note that in the last formula there is no coupling between modes with different
harmonic labels, a characteristic phenomenon of high-order perturbation theory. This is
because of the integrated character of the total emitted power. In fact, the orthogonality
between different spherical harmonics prevents it to happen. This issue has important
consequences when one wants to obtain the radiated power up to a given order " in a

consistent way, as we will analyze in the last section of the present chapter.

12.2 Master equations

When perturbing vacuum, it is possible to reduce the perturbed Einstein equations to
two wave equations for two scalars, one axial and one polar. In such a way that if these
equations are satisfied, the Einstein equations will also be trivially fulfilled. These scalars
are called the master scalars because they contain all the physical information of the system

since the perturbed metric can be fully reconstructed from them.

12.2.1 Polar sector

We define the nth order Zerilli scalar function as the following combination of gauge-
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invariant polar harmonic coefficients,

,',.4

mg—_ " (B _ Ay 12.14
3M—|—A<U Kag Kja)v™ +r K, ( )

The symbol A was defined in (B8d). Note that the Zerilli scalar (ZI4) is given in terms
of the nth order gauge invariants tied to the Regge-Wheeler gauge. Then, in Schwarzschild

coordinates,the Zerilli function takes the following form,

2M — 1)

g = BMID pop gy 2K K

VRSVl r) "+t K
I(141) 1
—————(2M — )" H, + (I + 1)r ™G + 12.15
M Ay M ) TSI DG Oz, (12.15)

where ")z depends on lower order perturbations. Note that all terms in the second line,
including @z, are zero when imposing the RW gauge. From this definition, it is easy to
see that, at first order, this variable coincides with the Zerilli variable that we have found
with Hamiltonian techniques particularized to the vacuum (BI0H). In order to compare
them, one has to employ that hy = H, and Hy = (1 — 2M/r)H,,, which can be obtained

relating the different harmonic expansions.

As we have anticipated, the Zerilli scalar satisfies the following wave equation
Mz, —V, Mz = s, (12.16)

("Sz being a source that depends on the perturbations of lower order and the potential
Vy defined in (BI07). As we have shown in (BI06), when it is expressed in the tortoise

coordinates (t,r*), the differential operator takes the following simple form,

oM\ "t/ 2tmz grimgz
mzlA = (122 _ . 12.17
A ( T ) ( ot? * or*2 ) ( )

In addition to having vacuum in the background spacetime, we will also assume vacuum
as perturbed system. This is not mandatory, and some authors have indeed considered
non zero perturbations of a vanishing background stress-energy tensor [109]. In this case,

already at linear order, one finds matter sources in the equation ([2I6).

The sources for the second-order Zerilli scalar ([ZTH) and its wave equation (CZI6) were
recently obtained for the case | = [ = 2, considering only first-order polar perturbations
[139]. As we have commented, this case is simpler than the generic one analyzed here,
because the necessary product formula for the tensor spherical harmonics can be obtained
by using just the product formula for the scalar harmonics and the Leibnitz rule. For

completeness, we now give the second-order source in terms of the sources for the polar



12.2 Master equations 137

Einstein equations ([(LZHIT30),
I(1+1)

r2

4, A
r*v L . .
{2}8 — (e)SmmmB (e)Smmm |B (e)Smmm
zZ = E 7 B|A 7 AB 7 A
3M+Ar{ re Bl Pl il

)

d egmmm A
4(3M + Ar)? [(84M2 +12(1 + 1 — 5)Mr + 2A(1* 4 1 — 4)r?) OSP4
hoiF I(l+1 .
+  4r3(12M + 2A7)vteB© ZT”;YL;”AB] + ( ; )0 . (12.18)

It is interesting to note that the source “5’;”;—%}” does not appear in this expression. In fact,
it can be obtained from the scalar and the vectorial sources in the following way:

(O — NOgmIm _ p2gimm 14 _ gp2yAogmmm (12.19)

This relation comes from the fact that their first-order equation counterparts are not inde-
pendent, actually, equation (L)) is a consequence of equations ([I3HILH).
Note finally that the definition of the high-order Zerilli function (CZTZ) is essentially

determined up to addition of low-order gauge-invariant terms. That is, the addition of such
low-order terms would keep the same form of the Zerilli equation (CZTIH), in particular with
the same potential V, but would change the source "Sz. The definition given in ([ZI4)
is just the simplest possibility, and follows [139]. We will later make use of this freedom.

12.2.2 Axial sector

The Gerlach and Sengupta master scalar is defined as the rotational of the axial invariant
vector k (LTH). Adopting Schwarzschild coordinates, it takes the following form in any
generic gauge,

o] = 713 [2 ", 4 <{"}hr - {”}h;ﬂ + Qy, (12.20)
where Qp would be a source term that depends on lower-order perturbations and that
is zero in the RW gauge. It obeys the GS master equation, which at second order is

straightforwardly obtained from ([IL5{) after letting the matter perturbation ¥4 vanish,

_ L 4 21714 (l_1>(l+2> 27 — {2
|:2T2(7“ 1) |A+ 5 II = “Sy. (12.21)

The source term is related to the sources of the Einstein equations by (IILZ]). This equation
is equivalent to the RW equation, which is satisfied by the rescaled variable I = ¢3 ("1],

T 4 — Viw M1 = 27 718y, (12.22)
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where the potential is given by,

I(l+1) 6M
Vaw = (r2 ) _ - (12.23)

There are some other variables that obey the same master equation. In particular, one
that will be very useful for our purposes is that introduced by RW themselves in their

original paper [56]. Its gauge-invariant generalization to higher orders takes the following

form,
My = oA gy, (12.24)
which in a general gauge and Schwarzschild coordinates is
2M — 2
X = "o = 2h, — Zh| + ©Qu, (12.25)
2r2 r

where {"(Qy is the usual term that depends on lower order perturbations and vanishes
when particularized to the RW gauge. At linear order, "X satisfies the same equation as

II. But already at second order the source term changes,
X4 — Vaw X = ISy, (12.26)
with

21 . -
OSy = D SBM —r) S it [P

: Ty 2(*)5;”?%] . (12.27)

i
As we have shown in Chapter [ for standard matter models, which also includes vac-
uum, all perturbations of the metric can be algebraically reconstructed in terms of the
master scalar II. This is a great advantage, since for other variables, like X', the reconstruc-

tion is non-algebraic.

12.3 First order

In this section we present the reconstruction of the metric components in the RW gauge
(or the gauge invariants) in terms of first-order master scalars. In order to use the Landau
and Lifshitz formula (T2Z3)) we must use an asymptotically flat gauge. As we will see RW is
not asymptotically flat. We will use two different methods to express the emitted power in
terms of the master scalar. Firstly, we will perform an explicit gauge transformation from
the RW to an AF gauge following [140|. Secondly, we will exploit the gauge invariant form
of the master scalars presented in the previous section. This last method was already used
in [139]. We want to show that the second method is much more straightforward and easier
to apply. In this section we will remove all harmonic labels, as well as the n = 1 label since

all the objects will be of first-order and correspond to a generic harmonic pair (I, m).
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12.3.1 Polar sector

At first order, the Zerilli equation is a wave equation without sources,
Zh, — vz =0. (12.28)

This master scalar allows full reconstruction of all components of the perturbation of the
metric, in the RW gauge. Here we provide the explicit relations,
2M —
H, — L - {202M — r)r® (6M + 2Ar)% 2" (12.29)
AL+ 1)r3 (3M + Ar)
+ 4Ar [A(P+1—8)r’M —2A%r° —18M°] 2’
+  A[ISMP+18ArM*+6A*r* M+1(1 + 1)A*r®] 2},

7“2

H, = ——H 12.
rr (2M o T)Q tt ( 30)
2(3M? + 3ArM — Ar?) : 2r
H, = Z z' 12.31
" I(I+1)[6M?+ (2 +1—5)rM — Ar?] +l(z+1) ’ (12:31)
1
K = 2r [—12M? — 2 (1> +1 —5) rM + 2Ar?] 2’
0D e A (P +1-5)rM +20r7]
+  [24M7 +12ArM + (1= 1)L+ 1)L+ 2)r°] Z} . (12.32)

Introducing the above relations into the linearized Einstein equations, one can show that
all of them are trivially satisfied if the Zerilli equation (CZZ8) holds.

In order to extract the radiated power (CZI3), let us now perform a gauge transformation
from the RW to an asymptotically flat gauge near infinity. Since the Zerilli variable Z obeys
a wave equation, near null infinity, it can be expanded in inverse powers of r, with coefficients
that depend on the retarded time u = t —r* (note that both coordinate derivatives (9/0u),
and (0/0t), coincide),

r r2 73

2= 2w+ 20 20 ( ! ) . (12.33)

But these coefficients are not independent. Introducing this expansion into the Zerilli

equation and solving it for each power of r independently we obtain the following relations,

2 g o A 3M(A+2) -
(1 + 1)F(u), Z1(u) = F(u), Z(u) = 5 F(u) F(u), (12.34)

Zolu) = 2T OAA T D

where the function F'(u) can be understood as the free data at null infinity.

In order to see the divergent behaviour of the harmonic coefficients in the RW gauge at
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null infinity, we replace the expansion ([Z33)) in ((Z2ZMHIZ3D),

M = z<z4+F1) r z2(jA+F1)2+OG)’ (12:35)
Hor = z2(z4+F1)2T+ IG%iJSZAF o (%) ’ (12.36)
o= _12(5451)2“ MfzgfflﬁF © (%) (12:37)
K — ‘p(;lTFU”O (:2) (12.38)

where the orders r° and r~! vanish for the harmonic coefficient K. Now, we can make an

explicit gauge transformation, from the RW gauge to an asymptotically flat gauge ([Z)

and obtain,

1

HAY = O(ﬁ) (12.39)
1

HAF = O<—3), (12.40)
T

HAY = (i) (12.41)

tr 7’3 ) .

O
. 1 - (I+2)!
AF = _
"= = {“1 PRI {4MF+<1—2 ]}

O( ) (12.42)
A £ N S IME 4+ A2 +1—38) Lio(l (12.43)
" h2r(l 4 1) r '
4F 1 4NF 1 1
= Barer Teur e P 3*0(74)’ (12.44)
KA = O(%) (12.45)
T

Note that ([ZZMHIZAT) and (CZZH) show that one could actually ask for faster decay rates
than those defined in (CZF). On the other hand, =, = =;(u) is a gauge freedom that is
not fixed by the requirement of asymptotic flatness. From the behaviour of the harmonic
coefficient GG in an asymptotically flat gauge ([ZZ4)) and the asymptotic expansion of the
Zerilli function ([Z33), it is easy to obtain that

2Z 1
GM=—""10 : 12.46
I(L+1)r i (r2> ( )

This last relation can be directly obtained from the gauge invariant definition of the
Zerilli variable (ZTZHIZTH). Since that definition is valid for any gauge we can suppose
that we are in an AF gauge. Imposing the decay rates ([ZJ) it is straightforward to obtain
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(CZZ4d). The great advantage of this last method is that we do not have to do an explicit

gauge transformation. However, we need to assume that ([CZS) is indeed possible.

Using relation ([ZZ46) we obtain the radiated power in terms of the Zerilli function,

Power = 121 %; ( _l(ll)JEZS 2) ’8;{” 2 (12.47)
12.3.2 Axial sector
In the first-order axial sector we have to solve the master equation,
_ l%(rm)/%} o (t=1i+2) 1)2” o (12.48)

Once we have obtained the master scalar I, we can reconstruct the metric in the RW gauge,

2

he = ;—A(QM — 7)(4TT + 7IT), (12.49)
rd :
_ " 12.
S INC I (12.50)

In order to obtain the radiated power in the axial sector, we will use again formula
([CZ13), valid for an asymptotically flat gauge. The rest of this subsection will be devoted
to obtaining the harmonic coefficient A" in an asymptotically flat gauge in terms of the

master scalar II.

We start by expanding the master scalar in inverse powers of r near the asymptotic
null infinity (r — co,u = const.). Since the function II = 7*II satisfies a standard wave

equation, our master scalar will have the following behaviour,

= “;QW + H;iu) + Higu) +0 (T—lﬁ) , (12.51)
We can define a function J(u) such that,
th(u) = 75 i S, M=, T = %Jm) - %j(u). (12.52)

With these expansions at hand, we can obtain the precise divergent behaviour of the

metric perturbation in RW gauge in terms of the function J(u),

r 1 . 1
i - 1 12.
t Al(l+1)J+l(l+1)J+O<r)’ (12.53)

r 2 1 . 1
_ __ M . 1 5y, 12.54
fo Ni+n’ T murn? "o’ O (r) (12:54)
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Now we perform a gauge transformation to an asymptotically flat gauge,

hAr = {éﬁi‘”g;g Mj}i (9(%2) (12.55)
Al = {§0+8;§; [MJ+A(12+Z—8)JH%+O(:—2), (12.56)
WAF = —ﬁj l(li1)‘]+ §0+(9(1), (12.57)

where & = &(u) is a residual gauge freedom. From the last relation it is easy to obtain

that asymptotically,
4
hAF = —%H +O3). (12.58)
Replacing this result in the formula for the emitted power,

527“62( I(L+1) 'aﬂz“ w(;)' (12.59)

16 4 I—1)(+2)| ot
One can try to obtain relation ([Z58) with a gauge invariant approach, as we did in the

Power =

polar case. But it can not be done since the gauge invariant form of the master variable
IT (CZZ0) does not contain the harmonic coefficient h. Hence, one has to face the explicit
gauge transformation. But at this point we note that there is another master variable
X whose gauge-invariant form ([ZZ3) does contain the harmonic coefficient h. Making a
transformation to outgoing coordinates and supossing that the last definition is in an AF

gauge, the relation between X and the time derivative of h at null infinity is easily obtained,
Y = 2rX + O(r0). (12.60)

Therefore, the emitted power can also be given in terms of this last variable,
2

Power = 127? lzw; 8 i 2; X + (%) . (12.61)

Because we can apply this gauge-invariant approach to relate the master variable with
the harmonic coefficient A at null infinity, at second-order we will use the variable 'X. But
there is one disadvantage in using X" instead of II. We have shown above how to reconstruct
the perturbations of the metric in the RW gauge in terms of IT (ZZ9). These relations are
algebraic. If we try to do the same with the variable X', we find that the reconstruction of
the metric is not algebraic, but differential,

T2

hy = mx, (12.62)

: oM\ 2 oM h
h, = [(1-22 n! -, 12.63
t ( 7’) <T+r—2Mr) ( )
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This is why we will use II at linear order, so that we can give the sources explicitly in terms

of it, and X at second order.

12.4 Second order

12.4.1 Regularization of the sources

At first sight one would say that in order to solve the system at second order it is enough
to solve the Zerilli (2ZI6) and RW ([Z20) equations with their corresponding sources
([CZIY) and (CZZ0), respectively. But we encounter another difficulty: as we have defined
it, the second-order Zerilli function **'Z diverges at large distances, and as a consequence
also the source #Sz of the equation it satisfies. In order to see this, it is enough to take
its gauge-invariant definition (ZZTZH[ZTH), suppose that we are in an asymptotically flat

gauge, and impose the conditions ((Z3WHIZTH) and ((ZHGHICZDT). In this way, we find that

the quadratic source ')z diverges as,

PQz =Qr’ + Qir + Qo + O (%) ) (12.64)

where 0y, ()1 and () are quadratic functions of {ﬁ’,F’, j, J}. The hat and bar on F and
J functions denote, again, the generic harmonic labels (I,77) and (I,1m), respectively. For

instance, the dominant term is given by

32 olm o 7
%:ZM% S Em, FF. (12.65)

In this formula, because of the properties of Clebsch-Gordan coefficients, the E-coefficient
(B4) restricts the sums to those harmonic labels {I,1,1} for which [ + 1 + [ is an even
number. That is, in the cases for which [+1+1is an odd number, the term ()5 cancels out.

However, the term (); contributes in all the cases and the divergence does not dissappear.

These divergences are non-physical and can be regularized by making use of the fact
that we have absolute freedom to add any first-order gauge-invariant quadratic terms to the
definition of the second-order master scalars and they will still satisfy the same equation
with a new source term. Therefore, our aim is to obtain some quadratic terms on the first-
order Zerilli and GS master scalars Q,., = Qreg[{é’,?,f{,ﬁ}] so that, near null infinity,

they reproduce the asymptotic divergent behaviour of the source )z. That is, for large r
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while keeping u = const,
QT@QHZA’?’ ﬂaﬁ}] = QQ[{F’ Fa ja j}]TQ + Ql[{pa Fa j7 j}]T
+ Q{F,F,J,J}+0 (—) : (12.66)

In order to construct the function @),., we will make the following replacements in ()2, ()
and QQ,

.. 1 .. 3

Folii+1)z,  J- %l(l + 1IL (12.67)
These rules can be applied to replace second and higher derivatives of F' and J. There are
no F' or J terms without derivatives in the divergent terms, but there are some first-order

derivatives. Hence, the straightforward definition for the first derivative of F' would be
: 0Z
F——rl=). 12.68

But this replacement introduces divergences at the horizon » = 2M. In order to see this, we
choose ingoing Eddington-Finkelstein coordinates, which are smooth at the horizon. They
are obtained from the Schwarzschild coordinates (¢,7) by making the following transforma-

tion of the time coordinate,

t »w=t+2Mn —1). (12.69)

‘ r
2M
In these coordinates the two-dimensional metric takes the form,

2M 4M 2M
gABd.TAdZL’B = — (1 — T) dw2 + TdU}dT + (1 + T) dT2. (1270)

Therefore, we have the following relation between derivatives,

0Z 0Z r+2M (0Z
) (2= - 12.71
(8r)u <0r)w+r—2M(8w)r’ (12:71)
which makes explicit the divergence of the radial derivative in outgoing coordinates at the
horizon r = 2M.

Hence, instead of using the replacement rule (CZG8), we can make a Taylor expansion
in inverse powers of r of the right-hand side of the last relation and define a derivative that,
for large r, will be equal to (9/dr),, but without being divergent at the horizon. Following
this method we arrive at the relation

J (%—f) — (r® + 4Mr + 8M?) (g—f) +O (1) , (12.72)

r
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that converges at the horizon. Converting it back into Schwarzschild coordinates, gives the

following rules to reconstruct the divergent terms,

. r3 — 16M3 .

Fo 2y —" =

- + OM —r

. S_16M3 ..
J— —r? (r*) + %r?)n. (12.73)

The replacements ([2Z67) and (CZ73) must be done systematically. That is, first take

Q7% and reconstruct the term that will reproduce it,

8r? 0lm ~=
> —————— R ZZ. (12.74)
= AT+ D)1+ 1)
When expanding near null infinity, this term will go as Qur* + Rir + Ry + O(r71). In
order to remove the divergent terms of order O(r), it is not enough to find a term that will
reproduce @7, it must reproduce (¢; — R;)r to compensate the new term that we have just
introduced. Therefore, we take (1 — Ry)r and make the above replacements ([ZE7) and

([CZ3) again. And so on, until we achieve the desired quadratic function Qreg[{ﬁ, Z 11, I1}]
that behaves as (TZG0).

We have made the calculation for generic mode coupling, but the results are quite
lengthy. Hence here we just want to present a particular example to make an idea of what
kind of terms appear. In the particular case (I,7m) = (I,m) = (I, m) = (2,0) the previous

construction gives rise to the following regularization term,

. 1 5 : .
particular -/ —12(2M — < M Mz {I}Z) 1z

Qreg 252(2M —7r) V' 7 { ( M (OM +7)HZ+6

+  (L10M® — 217 M? + 1497° M + 4%) 12 012

— 202M — ) (42 M2 — (15M — 6r) V2) {I}Z}

3r% /5 : L
= 22 e ot 4 (20 — 3M {1}1'[{1}1'[}. 12.75
224 w{ 0 +(2r—3M) (12.75)

In this way, we define the regularized second-order Zerilli function as
B Zreg = P24 Qrey- (12.76)
It satisfies the following wave equation,
B Z g u = Vi P 2y = IS, (12.77)

where the regularized source is given by

{2}8269 = {2}83 + QTG!]\AM - VZQreg- (1278)
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On the other hand, in the axial case, there is no such a divergence. Following the same
steps as above, one finds that near null infinity the quadratic part of the RW function X

tends to .
@Qy = QVHF,F,J, T} +0 (;) . (12.79)

Therefore, in principle there is no need to regularize the second-order RW variable. But,
as it will be clear in the next section, we are interested in removing the term of order O(1).
Then, we apply the same procedure as in the polar case and obtain a term Q’%? [2,2 f[,ﬁ]
that, at null infinity, will reproduce Q(A?) [F,F,J,J]. Following the above example, for the

case (I,1m) = (I,m) = (I,m) = (2,0) this regularizing term is given by

r3 \/E D .
W= ——/={3l1Z + 11Z + ZII}. 12.80
=~/ (B11E + 112 + 21} (12.80)
We define the regularized second-order RW variable as
BX., = PX 4+ QY (12.81)
and its evolution equation

BX g 41 = Viw PXieg)” = PSEY, (12.82)

where the regularized source is again given by
B8y = BSy + QTX69|A|A — VawQ%y’. (12.83)

The regularized sources for the equations of motion (ZZ7) and ([Z8Z) are the main
result of this chapter. We have calculated them for the presence of any first- and second-
order axial or polar modes. We do not include them here because they are quite lengthy
and do not contribute to the discussion. Nevertheless, in Appendix[(Jwe have written down

their explicit form for two particular cases.

12.4.2 Radiated power

After solving for the second-order perturbations of the metric, we can obtain the corre-
sponding radiated power by making use of the Landau and Lifshitz formula (CZT3). Writing

it explicitly up to order &3, it takes the following form,

€2 (I+2)! [ |omGmar | | apmAF
647?7“2%;@—2)! "” ot +’ at

a{1}GmAF a{z}GmAF * 8{1}hmAF 8{2}hmAF *
4 l l l l 4
+ €Re [r py ( 5 ) + ot ( ot ) :|}+O(E ),

2

(12.84)

Power =
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where Re means the real part. Again, the problem of finding the radiated power, reduces to
calculate the harmonic coefficients G}* and h]", near null infinity, in an asymptotically flat
gauge. More precisely, we want to relate them with the regularized master scalars that would
be used to perform a numerical implementation of this problem. In the previous section,
we have regularized the second-order master variables so that the quadratic contributions
from first-order modes decay as O(1/r) near null infinity. Hence, we can use their gauge-
invariant definitions, (ZI0) and ([ZZZ0), and suppose that we are in an AF gauge ([CZF),
which is also valid at second order (this has been explicitly shown in [140]). This leads to

the very same relations as at first-order, namely,

2 {Q}Zm 1
{2y ymAF [ reg _ 12.85
Gi I(l+1)r +O(7’2)’ ( )
{2}hlmAF = 9 {Q}X}mreg + O(TO)- (1286)

Replacing these relations in the above formula, the radiated power, up to order €3, is given

in terms of the master scalars by

2 2

2

€ I+ 2)! 4
Power = =) (1—2)! {12(z+1)2

l,m

a{l}zlm T6 8{1}Hlm
ot A2 ot

4 owgp fomzp,\t 2toumy \
R 2 QXm* .
EI+172 ot ( ot Ao | tOE)

(12.87)

+ €Re{

This last formula, complemented with the evolution equations for the regularized master
scalars (CZ71) and (CZ8J), provides a closed set of formulas that permit us to obtain the

complete radiated power up to order £3.

Note that even solving the problem up to second-order in perturbations, we only can
obtain the complete radiated power up to third-order in €. In order to obtain the following

order £, one should also consider third-order perturbations.

Let us suppose the simplest scenario: a unique first-order mode with harmonic labels
(I,m) and polarity o, as has been defined in Subsection Because of the reality con-
ditions, if we have the mode (I, m, o) we must also have its conjugate (I, —m, o). Following
the selection rules ([IO8) and (@3HY), the self-coupling of this mode will generate several
second-order modes but not necessarily the one with labels (I, m, o). In contrast, at third
order the mentioned mode (I, +m, o) will always be generated by the mere coupling of the
first-order mode under consideration with the second-order (1,0, (—1)!). This means that
the third-order modes will always contribute to the emitted power at order £*, coupled to
the first-order mode with the same harmonic labels. Therefore, without considering third-
order modes, one can only obtain the radiated power consistently up to order €3. In order
that the emitted power (ZI3)) has a contribution of that order (&%), the self-coupling of the
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first-order mode must give a second-order mode with the same labels (I,m, o). It is easy
to see from the selection rules (IO8) and ([Z29) that when considering a unique first-order
mode (I, £m, o), this will happen if and only if m = 0 and if, for 0 =1 (0 = —1), [ is an

even (odd) number.

In order to clarify the above discussion and analyze which particular problems can be
addressed consistently, let us consider the particular case of a first-order polar mode with
harmonic labels [ = m = 2 and [ = m = —2. These modes will generate the second-
order {{ = 4,m = +4,0}, {{ = 2,m = 0} and {l = 0, m = 0} polar modes as well as the
{l =3, m = 0} axial mode. Particularizing the power formula (ZT3) in terms of the master

scalars to this case, we obtain the following contributions from the considered modes,

P = — 10,23
ower ’ 0 640
155

Qo ’ {2}X307"€9} + }at 2}2207"6_()} (1288)

{}&t {Q}foreg’ +2 }&t {2}227"69’ }

where the order €% is not present. The problem with this formula is that it is not complete
since the third-order {I = 2,m = +2} polar mode would contribute to the power at order

et.

On the other hand, let us consider the first-order mode [ = 2 with all its possible
harmonic labels m = 0,£1,4+2. By coupling, they will generate the second-order polar
modes [ = 0, [ = 2 and [ = 4 with all their possible m. That is, we will have the second-
order {{ = 0,m = 0}, {l = 2,m = 0,+1,+2} and {l = 4,m = 0,41, +2, £3,+4} polar

modes. This particular case will provide a non-vanishing e3-order term to the power,
2
Power = 24 {2 ‘3,5 “}Z;Gg\ +2 ‘825 {I}Zglreg‘ + }&g HZgreg} }

+ %Re [Qat( {1}2227’eg>8t< {2}2227'69)* + 2815( {I}Z%reg)ﬁt( {2}2217'69)*
(M2 eg) 0 (P28 1eg)"] + O(Y). (12.89)

In this last case the formula is exact up to the displayed order because at order £ the

generated second-order axial modes and third-order polar modes do not contribute.

12.5 Numerical implementation

In this section we present some preliminary results about the numerical investigation on
second-order perturbations of Schwarzschild, that we are performing at this moment [125].

We will just consider a first-order (I = 2,m = +2) polar mode described by a real Zerilli
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function ™ Z. As we have seen in the previous section, and can be easily verified with the
selection rules (@A8)) and [@TX), by selfcoupling this mode generates several second-order
axial as well as polar modes. In particular, here we will only focus on the (I = 2,m = 0)

polar mode, which will be encoded in the (also real) Zerilli function *Z.

Making use of a pseudo-spectral code, we have solved the equations ([Z28) and (CZ710)
for the evolution of the two (first-order and second-order) variables. The numerical scheme
is a fourth-order Runge-Kutta integrator in time, whereas the spatial domain is decomposed
in blocks of length 10M, so that, at each block, the function is proyected into Tchebychev
polynomials. The grid points are the so-called Gauss-Lobatto points [160], which are not
equidistant. In fact, they accumulate at the boundaries of each block. The spatial domain
in decomposed in blocks to avoid too too coars spatial discretization. Different blocks are

matched usign a penalty technique [161].
The mass of the black hole has been fixed to M = 1, which locates the event horizon at

r = 2. The initial data have been taken as a Gaussian centered in the position r = 20M

for the velocity of the first-order variable and vanishing for the rest of the components,

WZt=0,r) = 0, (12.90)
O, MZ(t=0,r) = exp(—(r—20M)*/4%), (12.91)
EZt=0,r) = 0, (12.92)
0, MZ(t=0,r) = 0. (12.93)

Therefore all the information for the evolution of the second-order Zerilli function will come

from the quadratic source Sz.

In the following plot we show the time dependence of both first and second Zerilli func-
tions for an observer located at position » = 41 M. The exterior boundary for the integration
domain has been chosen large enough (r = 801.8M) to prevent spureous reflections from
the outer boundary. The convergency test done for this case estimates an accuracy of the
order 1071° for the plotted solution.

In this plot we can observe the expected quasinormal mode ringing (of both first and
second-order Zerilli functions) dominating the evolution for times greater than 500/. The
quasinormal frecuency for both Zerilli functions is similar. For late times (> 250M) one
can observe the decaying power-law tails, also with similar slopes. These results are very
preliminary and need further study. In particular, there is a remarkable effect regarding
the tails in the previous plot. It happens that, for large times, *Z is greater than MZ.
We still do not understand this behavior and it could indicate that there exists a limit of

validity in the second order approximation.
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Figure 12.1: The evolution of the first-order Zerilli variable with harmonic labels (I =
2,m=+2) (in red) generates, by self-coupling, the second-order Zerilli function (I = 2, m = 0)

(in green). The plot is for an observer stationary at position r = 41M.



Chapter 13

Perfect fluid

In this chapter we apply the second-order GS formalism to a spacetime containing perfect
fluid matter. This generalizes the work by Gundlach and Martin-Garcia [55] beyond linear
perturbation theory, and closely follows their notations. It provides a general framework to
study the evolution of perturbations of both first and second orders on a dynamical fluid
background, and together with the results in the previous and the next chapter, gives a
complete set of tools to study the emission of gravitational radiation during the collapse of

a slowly rotating star, a project now under development [124].

The chapter is organized in two sections. In the first one we will introduce the nota-
tion for the perturbations of the basic fluid variables and calculate the perturbed energy-
momentum tensor in terms of them. At second order this will introduce matter sources in
the Einstein equations. The second section analyzes how to solve the evolution equations,
separating the cases [ > 2, [ =1 and [ = 0. Several long expressions have been moved to
appendices. The equations of motion and notations for the background have been already
displayed in Section RT3 In particular the vector field u* will be the four-velocity of the
perfect fluid. Together with its unit normal n* they define the following frame derivatives

that act on any scalar function (,

¢ =ua, (' =n'a (13.1)

13.1 High-order perfect fluid perturbations

Using the nth order Leibnitz rule (B), it is easy to find the explicit form for the nth

151
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perturbation of the energy-momentum tensor of a perfect fluid (ZZ4),

- - —k . .

INPESY n { Wy R, 43 " (14 i) t5=r1y {"’]}u,,}, (13.2)

o\ k — j—k
=i _]—k

where we define the following notations for the perturbations: ™, = A"[w,], "p = A"[p]

and p = A"[p]. This can be further expanded, using the high-order generalization of the

chain rule (Faa di Bruno formula) on the general equation of state p = p(p, s),

n! Of+Ep

{n}y Z {1} k1 {i} ki {1} 71 oy
b oWk _ithi2lra_ ikl kil Opkosk £ P - (13:3)

where the sum is restricted to the constraint
i J
Z mk,, + Z mry, =n
m=1 m=1

and we have defined K = Zin:l ky, and R = Zfﬁﬂ Tm. Derivatives of the pressure must be
replaced by the sound speed ¢, and thermodynamic factor C, defined in equations (B3,
and their derivatives. Note that these combinatorial formulas are valid for any background

spacetime, not necessarily spherical.

The fluid four-velocity vector is normalized to —1, and this must be satisfied at all

perturbative orders,
A", 9" u,] = 0. (13.4)

Applying again the Leibniz rule n times and separating the terms linear in perturbations

of order n, we can rewrite this equation as follows,

—2 "ty — wu, AMgM] = (13.5)
n—1 n n—1

n! kr ojw) i -k}, {n—i} L T S e
ZZ k!(i—k)!(n—i)!A g “”+Z i Ge
k=1 i=k =1

where the nth order perturbation of the inverse metric is given by formula ([BI1). Because
of spherical symmetry, the background four-velocity has no angular components (u, =
0). Therefore, the constraint ([ZI) contains only non-angular components of the nth
perturbation of the four-velocity. Calling T the right-hand side of equation ([ZI), we

choose the following ansatz,

1

N T

S A" s + in, (13.6)

which reproduces the ansatz used in [55] and trivially satisfies the constraint (ZX). In this

way, the three independent components of the perturbations of the four-velocity are encoded
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in the generic function 5 and in the angular components "u®. The scalar function "5

will be expanded in harmonic series and its harmonic coefficients will be denoted as "™

Following this ansatz, at first order we decompose the four-velocity as [55]

1
Uy, dat EZCW nat s mic;nABuB) Zrdat + (WMo 2, + e X da?, (13.7)
lm
Note that we are supposing that everything in this equation is gauge invariant, and hence
so must be the harmonic component 4", At second order, owing to the two first terms
in ([3H), first-order quadratic terms appear in the harmonic decomposition of the four-

velocity,

1
Bhy,det = Z {2}%mnA+§{2};anBuB+Z<e N A (13.8)
lvm [,i
+ (Yo" Z" + PX]") da

We have decomposed the sources of the four-velocity in spherical harmonics,

UrTra = Efim{ualiy — 4Kson"uC + iCBD/CCDuBuC — KPKepupu®]  (13.9)
—uBICBC]CAc}
2 _
- El 1lmz{UA[0404 + BB + kpuPRou’ — 2hpuP B — kpRouPu®] — kpuPra},
4 ) A
< lm;nlmA = El llmluA[aﬁ+@/iBuB]. (13.10)

Again, objects with hats and overbars denote first-order harmonic components with har-

monic labels (i, m) and (I,m), respectively.

We define the harmonic decomposition of the perturbations of the density and entropy,
W= pthw (13.11)

Mg =" Moz, (13.12)

From now on we particularize our formulas to second order and will not write the n = 2
and n = 1 labels anymore, since it will be clear from the context. On the other hand,
the pure first order can be considered a particular case of the second-order case just by
removing all quadratic sources. We perform the harmonic decomposition of the second-

order perturbation of the energy-momentum tensor ([Z2). In terms of metric and matter
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perturbations, the axial components are given by,

U = R B (D pJua — i) TG, (13.13)
I

U = —ZZ< g (13.14)

where £ are first-order quadratic sources that will be given below. The polar sector takes
the following form,
m m 1 m m
Vap = (p+p) 7" (wans + naup) + (K" acup + K" poua) |u

—+ p/Cl AB—i-pwl (UAUB+C nAnB)—i—C'pal nAnB+Z“ lm;nlmAB’ (13.15)
ll

Pao= (e pafluat Y T, (13.16)
i

U = e 4 Epw™ + Cpol™ + Z” i, (13.17)

U = Z” i, (13.18)

Finally, we provide the explicit sources in terms of first-order perturbations and E-coefficients,

4 9 % A — ) A_
B lm;nzmAB = —(p +p)Ey I%I{RC/@(AuB)uC —uquglaa + Bp — Qﬁmcuc]}
+ Eg%l{QPCg@’CAB +2p7[Co+ & (1+ )] (npua + naup)

+ QCpU(]CACanC + ICC[BUA C) + 2pw (1 + Ci) ICC(BuA)uC

.\ oc ok od
pnang | 00 s Wwo s pow ap

+ (P+p) [2ﬁﬁ(nAnB +uAuB)+2’7/€C(An3)uc—ZWKCDnCuDuAuB
_ N _ 1 A _
CF]CDFUCUDUAUB—QICCDICD(AUB)UC—I—échcuC/CBDuD}}, (13.19)

—1lm =/ 2C
_2E1 [mla<’f

(—)yemmm

3 A
2
8
lllAB — r

ue — B)(p + p)uausp, (13.20)
1 . )

WEPTT A = 2Eélml@{(p +p) {wm - §ICABuB] (1 + Aua + C,OauA}, (13.21)
S P o

o zm;n}nA = Q’LE(%%{( +p)[ina + iKABUB]ﬁ + pB[(2 + 1) + Céluy

+ p(C&—l—cgd))Fm}, (13.22)
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9 L s )

grr = ——5 0+ p)Er 15%{ ﬁﬁ}+2p Oﬁmz{/C(wC§+0'C)
92 1._0C p. 9

. —00—— + W~ 13.23

T T30 T ap}’ (13.23)

(- emmm  __ 4i —1im AB (1324)

Iil _TQ 1lml( )04, .
g = 2B (6a — B3)(p + p), (13.25)
g = BT AB(p + p). (13.26)

13.2 Second-order evolution equations

We now focus on the second-order perturbations of the evolution equations, both for
the fluid and the metric variables, separating the polar and axial problems for arbitrary
harmonic label [. Cases with [ = 0,1 are special because the corresponding harmonic bases
are degenerated. In particular, because of the impossibility of constructing gauge-invariants

for [ = 0,1, we will need to resort to an adequate gauge fixing.

This section generalizes the results [55] for first-order perturbations to second order.
The equations at second order share the linear part with those at first order, but contain
complicated additional sources which are quadratic in first-order perturbations. Our main

task here will be, hence, to compute those quadratic sources.

In perturbing the Einstein equations, we find two types of quadratic sources. First, those
coming from second-order perturbation of the Einstein tensor, which have been denoted as
(E)Sllﬁliﬁ}n and displayed in Chapter [0l Second, sources (6>5l—m?1}n, arising from the perturba-
tion of the energy-momentum tensor ([ZI3)-(3I8), which have been given explicitly in
([(3T9)-(32Z6) for perfect fluid matter. It is convenient to combine those two types as

OB = 8m gl T — OSPTT, (13.27)

for all tensorial, vectorial and scalar sources. From now on we will remove the harmonic
labels {l,m,[,1m,l,m} appearing as super and sub indices of the harmonic coefficients, as

well as in the sources.

13.2.1 Axial perturbations (I > 2)

The energy-momentum conservation equation ¢#”,, = 0 contains the evolution equations
for a perfect fluid, except the conservation of the entropy per particle (E60). The pertur-

bation of the former of these equations is composed by three polar and one axial equations
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for each perturbative order n, whereas perturbing the latter gives rise to a polar equation
only. In the axial sector there is only a transport equation for § ([TZ3),

(p+p)[B — c(p+2U)B] = (13.28)
=iy {Cor- =i+ 12):5 D ag 4 %(72(6)&1)“‘}.

L

After expanding the energy-momentum perturbation in terms of fluid variables (313,
we arrive at the following form for the second-order GS master equation ([[I20) on the

background that we are considering,

L T 122

8
8 (p+p) PP — =5 (pCs' +v(p +p) PP —ie'? Z Bas.

S

Since there are no covariant derivatives in the energy-momentum tensor of the perfect fluid,

the vector k4 can be reconstructed in terms of II and matter perturbative variables,

1 ~
- - |1 27 4B 1 94p2 E (=€) ) 13.
KA (l — 1)(l T 2) 67r wA EAB('I’ ) + Zir — SA ( 3 30)

We expand this vector field in the frame provided by the perfect fluid,
KA = O0ua+ Any, (13.31)

and obtain the following components in terms of fluid variables and B sources,

2

r
§ = ——— (P + 4*WI + 1673(P 2'§ CIBut 13.32
2
_ r 27 2 . (—€) A
A ) (r°II + 4r°UIL + 21 E Ban™). (13.33)

L

Therefore, for the case that the second-order harmonic label is [ > 2, the evolution can
be performed with two equations. On the one hand, the matter equation ([328) evolves
B, and on the other hand, the GS master equation ([329) evolves the GS master scalar II.

Once these two variables are obtained, we can reconstruct the perturbed metric by using

equations (E3ZHLEIT).
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13.2.2 Axial perturbations ([ =1)

In this case, the fluid equation is the same as in the general case ([[328) particularized
to [ = 1. This makes one of the right-hand side terms vanish, but the equation continues

being a transport equation for [,

i , _ 1 _
(p+p)(B—E(u+20)8) =iy {< L+ — (r* 6>5A)‘A}. (13.34)
I
For [ = 1 there cannot be gravitational waves, and so the metric perturbations cannot obey

a wave equation. Instead, the metric perturbation equation is given by,

1 -
Q—ﬂeAB(r‘*H)‘B = 874 —l—ZZ (95,. (13.35)
I

Projecting this equation into the frame vectors u* and n” respectively, and introducing the
dependence in the perturbative fluid variables, it gives rise to

2

%(H' FAWI) = —Sa(p+p)B—iY COBaut, (13.36)
i
P 40T — - OB, 13.37
5( + ) = —i Z an. (13.37)
i

This last equation will be used to evolve II. One could employ equation ([336) to obtain
3 algebraically from II, but we know that for certain equation of states the term (p + p)
vanishes at the surface of the star, what makes the equation ([[336) inappropriate for

numerical resolution. Instead, we can always determine 3 from the matter equation ([Z34]).

We cannot employ formula ([330) to reconstruct the vector x4 from IT and 3, and
actually it cannot be uniquely reconstructed. Any two-dimensional vector can be written

in terms of two scalar functions (;(z*) and (»(z*) in the following way,

1 . .
2ha = Cja + EABCQ\B =—(G + Gua + (¢ + C)na. (13.38)
From the definition of the master scalar IT ([ILTH), we obtain an equation to solve for (s,
I=—GMa=G+uk—ve—G. (13.39)

There is still one axial gauge degree of freedom because the RW gauge ([@7) has not imposed
anything in this case, since the harmonic coefficient h does not exist for [ = 1. Thus, the
other scalar (; is this gauge freedom. Under a gauge transformation the vector x4 changes
in the following way,

Ka— ka+78a+. .., (13.40)
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where the dots indicate a source term quadratic in first-order perturbations and is explicitly

given in [114]. In the notation of the previous section, the gauge transformation is

§— 6 —r2€+ ..., (13.41)
A— A+ 4+ (13.42)

Therefore, to fix the gauge, we can make ¢ or A\ vanish, or any combination of them. The
best option is to make the gauge choice A = 0, which leaves a residual gauge under all those
vectors such that £ = 0. This can be interpreted as a free function of time at the center.

In this gauge, the vector k4 is given by,
ka = —1(C1+ (3)ua, (13.43)

where (, is obtained from equation ([Z39) and (| = —(s.

13.2.3 Polar perturbations (I > 2)

In order to deal only with scalar quantities, we decompose the tensorial metric gauge-

invariant into three scalars making use of the frame defined by the fluid,
Kag = n(nang —uaup) + ¢(uaup + nang) + Y(uang + naug). (13.44)

The second-order Einstein equations can be schematically given in the following way. For
[>0,

unPE K] = —8m(p+p)y+4n(p—p)v + Z ©Bypun?, (13.45)
L
uuPE K] = Smpw+ 8mp(n — ¢) + Z ©B 4 puu?, (13.46)
i
n‘nPE,p[K] = Smp(ctw + Co) 4 8mp(n + ¢) + Z ©B4pnn?, (13.47)
Ll
EK] = 8mp(cPw + Co) + 8mpK + Z ©B. (13.48)
Ll
For [ > 1,

urE4K] = —(p+pa+ Z ©Bu, (13.49)

i
nAEs K] = ) OBt (13.50)

I
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And finally, for [ > 2,
EK]=)_“B. (13.51)
L

The E’s are the GS differential operators (ILZHIILH) acting on the metric polar perturba-
tions {Kap, C}. Writing explicitly the linear dependences of equation ([ZE]) in second-

order objects, we obtain the following relation,

n=-3"08 (13.52)
i

This equation determines the value of n in terms of first-order perturbations. Note that in
the case of first-order perturbation theory n vanishes. Therefore, this variable is fixed and
we do not have to worry about it. This equation makes the treatment for the case [ > 2
differ from the case [ = 1 analyzed in the next section, since in the latter case this equation

does not exist.

We define the following linear combinations of first-order sources,

©c, = 9B putn®,

©c, = —9Buputi®,

o, = 2(€)BAuA,

@8, = 208+ 4(9WBsn?Y —29Bpnn® + 420 — W) O Bun?,
©Se = (=Auul +n'nP)IBug + AW OB,

95, = —29B,n".

13.53
13.54
13.55
13.56
13.57
13.58

~—~~ I~ /N N
~— O~ — O~ e ——

And we also introduce the following change to a new variable y,
o —x+K-—n. (13.59)
With this new notation at hand, the system of equations (IZZH)-(Z50) can be rewritten,

[>0:
8r(p+p)y = (K)Y+C,+> Y, (13.60)
L

8rpw = —K"+20¢ +C,+ Y 9C,, (13.61)

Ll
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1>1
167(p+p)a = ¥ +Cot+ Y “C,, (13.62)
L

VX +2n -0 = S+ S, (13.63)

L
—K+ K" = 23Uy = S+ S, (13.64)

i
— = Sy+) ©s, (13.65)

i

where only higher-order derivatives of the variables have been given explicitly. The linear
sources C, C,, Cy, Sy, Sk, and Sy are linear in the variables x, X and 1 and their first-
order derivatives, as well as in the undifferentiated variables 1) and o. These sources coincide
with those given in [55] and are included in Appendix [D.] for completeness. Note that their
only dependence in matter perturbations is through the entropy o, which, as we will see,
obeys an equation decoupled from the rest of matter perturbations. This fact allows us to
interpret equations ([Z63))-(36H) as coupled evolution equations for the variables y, K
and 1. The other three equations ([Z60)-([[362) provide the matter perturbations v, w

and « algebraically in terms of the metric perturbations.

In order to close the system of equations, we give here the second-order perturbation of

the entropy conservation equation s = 0, for [ > 0,

c‘r+(’y+%)s' => s, (13.66)

]

where the source terms are given by,

2 —1lm AN | S ~
(+)SU = _ﬁEl [ml{@ﬁ)\ + 5)\)8/ — 2040} (13.67)
+ Eg%{%?(i@ + %) — (27 + )6’ + (27— K — ;—()5—},
4i .
Os, = —SEm{als - (349} (13.68)

At this point we have succeeded in giving a complete set of equations [namely (60
[[36d)| to evolve the second-order perturbations of both the metric and the perfect fluid, for

[ > 2. The matter perturbations are obtained algebraically from the metric perturbations,
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though they could also be evolved using conservation of energy-stress,

[>0:

: p v\ _ )
- (1 i ;) (’y+ 5) - Sw+; S, (13.69)

T N
i

—& = Sa+ Y S, (13.71)
i

where, again, we have only made explicit the highest derivatives. These equations are
redundant for [ > 2, but will play a fundamental role for [ = 0,1. The linear sources S,
S,, and S, are also provided in Appendix [0l They depend just on the undifferentiated
matter variables «, v, and w and on the entropy perturbation o and its spatial derivative,
as well as on the metric perturbations y, K, v, 1, and their derivatives. Besides, we have
defined the following quadratic sources,

I(1+1 .1
pls, = Lz)@&uf‘ +20 V€ — —(r* D p)Put — I ut, (13.72)
T T
€ Il + 1 € €) o 1 € €
pls, = ( > ) V€A 42 OF — ﬁ(ﬁ ©&1p)PnA — OL,nA, (13.73)
. (I=D(+2 1
(p+p) 95, = ©E— U=DUEH D, —(r? e 4+ T, (13.74)

2r2 72
It is possible to use equations ([Z6Z) and (Z6H) to remove the dependence on the

derivative of ¢ from equations ([369) and ([ZZ0). In this way, with the exception of K
and X', no derivatives of the metric perturbations are present in the matter equations,

[>1:
— - (1 + 1—7) v = S.+> 95, (13.75)
P 0
(1 - g) 4w = 5, +) 95, (13.76)
i

The linear sources S, and S, can be found again in Appendix [D]

13.2.4 Polar perturbations (I =1)

As explained in Chapter [@, there are also three polar degrees of freedom in the case
[ =1, but the RW gauge (@) only imposes two conditions (H4 = 0). Therefore, the RW
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gauge is not rigid for [ = 1 and we do not have a complete set of invariants. Under a gauge

transformation, these “invariants” change as

Kap — Kag — (%§a)p — (r*&B)a + ..., (13.77)
K— K —26—2r20%a+ ..., (13.78)

for a generic function &(z4) and where the dots indicate first-order quadratic terms. These
quadratic terms will arise only if there is some contribution from a first-order [ = 0, 1 mode,

otherwise the quadratic terms in the definition of the invariants will absorb them.

At this point, we follow Campolattaro and Thorne [42] and impose that K vanish as
the leading gauge. This still leaves a residual gauge freedom corresponding to functions &
such that & + r?v4& 4 = 0.

From the point of view of the evolution equations, as we have commented, the main
difference between this and the general [ > 2 case is that equation ([Z22) disappears now.
Therefore, we need to use equations ([364), (Z31), (373), and ([376) in order to evolve
the matter perturbations {0, , w,~}. This is possible because those equations contain only
the metric perturbations {n, ¢, x}, but not their derivatives. Once all matter perturbations
are obtained, one can determine the metric perturbations by making use of the Einstein
equations (ZBOHIZ62) and (B6MIZEH). These five equations do not depend on second
and higher-order (time and space) derivatives of {n, v, x}. Hence, we have five equations
for six unknowns. We can obtain {w, ', x, X'} but only the following combination between
1) and 7/,

B T‘Am A1

(W' = Un), (13.79)

- rBrig  rlof?

|2 = v4v,. This means that we can only integrate 7 in a spatial

where we have defined |v
surface that is everywhere normal to the r = const. surfaces. Therefore, in Appendix [D.2]

we provide the equations exclusively for Dn, D and Dy.

13.2.5 Polar perturbations (I = 0)

The spherical perturbations are treated in a very similar way as in the case [ = 1. We
first evolve the matter perturbations and then obtain the metric perturbations as constraint
equations. This was expected, since in spherical symmetry the metric has no radiative

freedom and it is totally constrained.

First of all, since the RW gauge does not impose any restriction in the case [ = 0, there

are still two gauge degrees of freedom to fix. We extend the gauge used in the previous
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section by choosing

20W
——(n—Xx)- 13.80
21X (13.80)

The second condition implies the vanishing of the variable v when working in polar-radial

K=0, ¢=

coordinates. Another new feature of this case is that the velocity perturbation « is also

equal to zero.

The matter perturbations o, w, and v are evolved by making use of equations (360,
([ZEY), and (EZM) respectively. The last two of these equations contain derivatives of
the metric perturbations that can be removed by making use of the perturbed Einstein
equations (BZGHIZAM). In Appendix [D3l we present the resulting equations, as well as
the constraint equations for the only two non-vanishing metric perturbations n and Y.
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Chapter 14

Perturbative matching

In the previous two chapters we have studied the perturbative problem for a perfect fluid
as well as a vacuum background. We now assume that our background system is a spherical
fluid star surrounded by vacuum, with both regions, interior and exterior, separated by a
timelike surface 3 where the pressure vanishes. Therefore, in order to complete the analysis
of the given physical situation, we need to find out the matching conditions between those
two parts of the spacetime (both at the background and perturbative levels), ensuring

continuity and the correct exchange of radiative information through the stellar surface X.

The first section of this chapter describes high-order perturbative matching on any
timelike surface in a general background spacetime. The second section is particularized to
the case of a fluid interior matched to a vacuum exterior. This generalizes the first-order

results of [112] for the same scenario, and we closely follow the notation of that reference.

14.1 High-order matching conditions

We describe the matching surface 3 as the zero level set of a smooth scalar field P(z*),
whose continuation off the surface is irrelevant. The unit vector normal to the surface is
defined as

n, =pP,, where p= (737”73’”)_1/2. (14.1)

From this vector we construct the induced metric 7,, = g, — n,n, and the extrinsic
curvature e, = 1,1, of the surface. In order to ensure a smooth matching at ¥, the
Israel junction conditions [162]| require that the induced metric i, must be continuous
through the surface, whereas the extrinsic curvature e, may have a discontinuity as given

by the Lanczos tensor S, [163,164]. This tensor can be understood as the surface energy-

165
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momentum tensor and is defined with respect to the proper distance 0 to the surface in the

direction of its normal n,,,
S, = (lsim th,ds. (14.2)

The Lanczos tensor is non-zero only in the presence of surface layers, that is, when there is
some delta-like contribution to the energy-momentum tensor. From now on we will consider
smooth energy-momentum tensors, so that, the junction conditions reduce to continuity of
both i, and e,,. Before discussing high-order perturbations of these objects we need to
address two important new problems in the perturbative version of the matching problem:

index positioning and gauge dependence.

As has been explained in Chapter B for a generic tensor field 7}, we have
A[L,] # g AT, (14.3)

because in general the perturbation of the metric field does not vanish. Imposing continuity
on the perturbations of the covariant or contravariant forms of the tensors ¢ and e can lead to
different results, and so we must decide which are the adequate conditions. The discussion
of the first-order problem in [112] shows that we must use perturbations of the contravariant
fundamental forms. Essentially, this is because a contravariant tensor field T# is intrinsic
to the surface X if and only if 7#"P , = 0 on any of its indices. However, the equivalent
condition for a covariant tensor field 7}, . would be T, ¢"*P, = 0, which involves the
metric, and therefore introduces additional information, not intrinsic to the surface. This
argument is valid also for the perturbed objects, hence we will impose continuity of A" [i*"]

and A"[e*] for all n.

On the other hand, we need to deal with the gauge freedom arising from the arbitrari-
ness of the choice of mapping ¥ between the perturbed and the background spacetimes.
Under a general perturbation, the scalar P will also change, so that the perturbed surface
will be described by the level surfaces of P + Ay [P] + ... (a field on the background man-
ifold), where we have made explicit the gauge W relating the background and perturbed
spacetimes. This allows having a perturbed interior point at a coordinate position corre-
sponding to the background exterior, a situation that can be handled consistently using
one-sided derivatives [91|. However, the question remains of what are the correct conti-
nuity conditions, because these conditions could be inequivalent if expressed in different
gauges. There is a privileged class of gauges ©, characterized by the condition AJ[P] =0,
generalizing the first-order surface gauge of [112]. This does not mean that the shape of
the surface will not change. It could be highly distorted in the perturbed manifold, but
when mapping it to the background manifold a point p of the perturbed surface will be

mapped onto another point (not necessarily p) of the background surface. Hence, we will



14.1 High-order matching conditions 167

have as matching conditions continuity of the perturbations of the induced metric Ag[i*]

and extrinsic curvature Ag[e””] in surface gauge at any perturbative order.

Surface gauge is only used to define the continuity conditions. We can still work using
any other gauge, which is convenient for the interior or exterior problems. Then, the best
way of treating gauge freedom is by constructing gauge-invariants associated to surface
gauge, that is combinations of the perturbations in an arbitrary gauge whose value coincide
with the result in surface gauge. As has been explained in Chapter Bl this can be achieved
by finding the general form of a gauge transformation from a general gauge to a surface
gauge. Such transformation will be parameterized by the gauge vectors { {H¢H ... tnigH}

defined by solving the expression for the gauge transformation () order by order,

o n - TL' 1 k1 km n—m
0=A"P] +Zl (n— m)!g o oot = e LA Pl (144)
m= km

where now A represents again perturbations in an arbitrary gauge. Particular solutions at

first and second orders are given by

Mg, = —A[Pn,, (14.5)
#g, = —A?[Pln, +p*A[PIA[P],. (14.6)

These solutions fix only one of the four degrees of freedom in each generator. The general
solutions would have three additional degrees of freedom, which represent gauge changes
among different surface gauges, corresponding to the same surface ¥. Owing to its non-
rigidity, the gauge-invariant objects we will construct using the surface gauge will be in-
variant only under very restricted transformations. These gauge-invariant combinations of
perturbations will be denoted using a A operator. On any background tensor field 7" we
define

i A - n! 1 1 k km  An—m
A=At +m221 (n—m)!(KZ)kﬂ...km!2!k2...(m!)kmE{ll}ﬁ"'ﬁ{’"}iA 7, (14.7)

where the gauge vectors { ¢, ..., "¢} are those obtained by solving equation ([Z4). The
fact that the gauge generators depend implicitly on the metric perturbations makes this

formula highly nontrivial and nonlinear.

The A operator has been constructed explicitly so that it satisfies A"[P] = 0. This leads
to the important result that the barred perturbation of the one-form n, is proportional to

itself, -
A Tp]

A" n,,. (14.8)

ny) =
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Again, this formula contains nontrivial information in the barred perturbation of the scalar

p. For example, at first order it is given by,

Alp] = 20 [0hos — 2(pAP)).a] (14.9)
We do not display explicit second and higher-order formulas here, as they are rather com-

plicated and do not contribute to enlighten the discussion.

Result ([ZF) implies that perturbations of any contravariant tensor intrinsic to the
surface ¥ will also be intrinsic to the perturbed surface. That is, if the background tensor
T* is orthogonal to n,, then its barred perturbations will not have orthogonal components
either,

A"[T"n, = 0. (14.10)

Note that this property is not shared by covariant tensor fields.

Summarizing, we require the barred perturbations of the contravariant fundamental
forms, A"[i*] and A"[e#], to be continuous through the surface ¥ at any perturbative
order n. Note that we have not imposed surface gauge, as was done in reference [112], since

these conditions are given for any general gauge.

We end this subsection by mentioning the alternative approach to perturbative matching
introduced by Mukohyama [165] and further developed in [166]. These are results for
first-order perturbations, and coincide with those obtained here and in [112], though not
imposing surface gauge and also including gauge freedom within the matching surface .
The main difference is that Mukohyama introduces an abstract copy of the surface ¥ and
the matching is performed separately between the boundaries of the interior and exterior
spacetimes and that new surface. This introduces an additional geometric structure and
gives rise to a new type of gauge invariance, and so the concept of double gauge-invariants
appears. This is a nice feature in problems like reduction from a N-dimensional spacetime
to a (IV — 1)-dimensional brane, but it would be a complication in the problem of spherical

backgrounds, where the geometry of the matching surface is trivial.

14.2 Matching to vacuum

Around spherical symmetry, the matching conditions can be decomposed in tensor spher-
ical harmonics. We have obtained the decomposed form of the continuity conditions for
second-order perturbations in the most general case, but we will analyze these conditions
only for a very particular example of interest, since the general expressions are quite large.

In this example we will consider the presence of a first-order {{ = 1, m = 0} axial mode
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that, by self coupling, generates the second-order {I = 2,m = 0} polar mode. This is a
particularly interesting situation since the non-radiative first-order mode can be understood
as a slow rotation of the star that produces gravitational radiation through self coupling.
The shorthands dot and prime that will be used in this section are those related to the fluid
frame (I3J). In order to facilitate the identification of the perturbative order of each object
that will appear throughout this section, we will use the left superindex {1} on first-order

perturbations.

The background junction conditions are straightforwardly deduced from continuity of
the two first fundamental forms of the surface. The continuous quantities include the scalars
r, v, and W defined in () and (E52)) respectively. Derivatives of continuous quantities
in the direction of the fluid velocity u” must also be continuous. This leads to continuity
of U (EX2) and, since both derivatives of r are continuous, to continuity of the Hawking
mass (2Z3). In our particular case, the negative pressure of the fluid —p will be interpreted
as the scalar function P of the previous section, since the stellar surface is characterized
by p = 0. The negative sign has been chosen so that P increases with the radius . The
pressure must be continuous trough the surface, whereas the energy density p may jump
there.

The first-order axial matching is simplified by the existence of the Gerlach and Sengupta
master scalar, which can be defined both in the interior and the exterior without using fluid
information. In fact, a first-order junction condition for our particular example is simply
continuity of the master scalar YII through the surface. Regarding the axial vector k4,
we have just continuity of its timelike component x4 u?, that has been defined as 9 in
([33). In particular, in the gauge we have suggested in Section X2, W\ = Mk nt = 0,
the full axial vector "'k, would be continuous. For simplicity and consistency with that
section, this is the gauge we will use here. Another quantity that must be continuous is the
following combination,

“}H’+—167T g, 14.11
5 P
T

which depends on the axial fluid perturbation 3.

The second-order polar problem is more complicated because none of the internal per-
turbations matches easily with the natural variable describing vacuum perturbations, the
Zerilli scalar. Decomposing into harmonics the objects A [i*] and A [e"”], we find that

the following second-order polar quantities must be continuous,

A = N+8 (14.12)
Ay = x+2(v+W)N — 2 (14.13)
A; = K—2NW (14.14)
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(14.15)
Ay = ¢ +2N —2UN (14.16)
. M + 4
As = K' —2yW +2UN +2 (47Tp — 22U + W2 + W — 4; T) N, (14.17)
T
As = X +2up — 20 +2(W +v)y — 2N + 2UN
M —
— 2 (47Tp+21/2+U2 —vW + 35r) N, (14.18)
T
where the quadratic source
1
S =—— 5y (14.19)
5

appears only in the first continuous combination A;, and 7 is given algebraically in terms
of first-order perturbations (I353),

1 {1}52
8m(p + p) p% + 5 [(v—2W) 1§ + {1}5’]2 + 7;5 } ) (14.20)

el

Note that some terms of the right-hand side of this expression are continuous, e. g. 142 /r2.
Hence, when introducing this expression in the definition of the continuous objects ([ZI12+
[[TT1R), those terms can be removed. But one has to be careful with the term 7’ that appears
in (TZIY), since prime derivatives of continuous objects do not have to be continuous. All
perturbative objects that form part of the expressions for the continuous objects, except
N, have been defined in Chapter N is proportional to the gauge invariant (tied to the

RW gauge) associated to the pressure perturbations,

N
_ F = AQLP] + 25{1}pA[p] + (C 23, + £2{1}p> p. (14.21)

The pressure p must not be confused with the vector "p#, whose harmonic components

are given in (@DLZ). This can be written in terms of the second-order gauge-invariant
perturbations of the energy-density ([311]) and entropy (312,

N = A% p] = —p(Ew + Co). (14.22)

The subindex GI stands to denote the perturbation expressed in terms of the gauge-invariant

objects (tied to the RW gauge) that, again, has a form equivalent to the perturbation in the

RW gauge t"p# = 0. This last equation has no quadratic terms in first-order energy-density

and entropy perturbations, because both of them are polar and we are assuming that there

are only first-order axial perturbations. The norm of the normal vector is defined by ([[ZTJ),
12 1

p=(pap?) "= — (14.23)
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The second equality holds because the pressure vanishes on the surface at all times; therefore
p = 0. The minus sign comes from the fact that p’ < 0. On the other hand, making use of
the background Euler equation for the fluid (EERd), we obtain

p=-vp+p). (14.24)
Combining the last three equations, we finally obtain N in terms of the fluid variables,

cw+ Co
—

N = (14.25)

The continuity conditions ([ZT2HIZTIS) coincide with the expressions given in [112] if

we remove the source S and the component 7, which are vanishing at first order.

14.2.1 Extraction

The natural exterior frame is given by the unitary radial vector 4 and its orthogonal,
the unit vector, t4, that were defined in (F2ZI)). In the interior of the star, that frame as well
as the frame defined by the fluid velocity (u®,n') are well defined. The relation between

them is given by a hyperbolic rotation,

rd = —f e Uu + e Wwnd, (14.26)
th = —flrwut + e Un?, (14.27)

where again f = \/g4Prjarp. Replacing this form of the radial vector r4 in the definition
of the Zerilli function (CZI4) and rewriting it in terms of the fluid variables, one obtains

ot .
z — U +2UW — WK
6M+ (1+2)(l—1)r { Kout Yout Kout

+ (U + W?) (Xout + Kout) } + 7Kout (14.28)

-2 U2770ut

where primes and dots are always expressed in the fluid frame, and the expression is eval-
uated just outside the surface. Making use of the continuous quantities (TZTZHIZIR), we
arrive at the formula that gives the outside Zerilli function in terms of the fluid inner

variables,

27t . / ,
= Uy a1y K 2UW e = WKL, — 20 (14.29)

W
+ (U +W?) (Xin + Kin) — 8717 pW Ny, — ﬁ(—g + 14+ 1%)(Soue — Sin)} + 7K.

At first order, because of the vanishing of the source S, the last term in curly brackets

would dissappear.
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14.2.2 Injection

Inside the star, the polar variables y and K satisfy a wave equation. Therefore, boundary

conditions on the surface of the star must be given for these variables.

Outside the star we know how the polar metric perturbations {H,,, H.;, Hy, K} can
be recovered once the Zerilli function has been determined. So, again, we only have to
make a hyperbolic rotation and then use the continuous quantities ((ZTZHIZTR) in order
to transfer information from the exterior to the interior of the star. Making use of the

continuous quantities ([ZI3) and ([ZI), we get

Xin = Xout — 2(7/ + W)(Sout - Sin) - 2(nout - nin)a (1430)
ICin = ’Cout + 2W(Sout - Sin)a (1431)

where, making the hyperbolic rotation, we find that
1
Yout = =T {r'U*Hy + 2r%(r — 2M)UW Hyy + r2(r — 2M *W2H,, } — Kowe. (14.32)

So, we have succeeded in writing the interior variables {IC,x} in terms of the exterior

variables {/C, Hy, Hy., H,.}, which, in turn, can be obtained in terms of the Zerilli function.
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Chapter 15

Mathematica packages

The calculations involved in high-order perturbation theory can hardly be done by hand,
as can be realized from the length of the sources for the gauge invariants (CTTOHITZH) or
for the Einstein equations ([I33HITAO). That is why computer algebra turns out to be
necessary. Most calculations in this thesis have been performed using the free system
zAct [111] for efficient tensor computer algebra in Mathematica. A number of packages and
notebooks have been created for that purpose, two of which, called zPert and Harmonics,
are also freely distributed from http://metric.iem.csic.es/Martin-Garcia/xAct/xPert/,
under the GNU Public License. Other codes, specialized for vacuum or fluid perturbation
theory, will be kept private while we are still applying them to particular scenarios, though

their results will be provided to other authors upon request.

This chapter follows [121] and describes in detail zPert, a package for high-order metric
perturbation theory around arbitrary backgrounds. We will also briefly describe Harmonics,

specialized in the computations and products of tensor spherical harmonics.

The notation that will be used is that of Mathematica and zAct. For instance, a tensor
Tu© will be written as T[—a, —b, c] and the partial derivative operator 0, is represented as
PD[-a], such that the divergence 0,T;." is PD[-al [ T[-b,-c,al 1.

15.1 xPert

zPert has been specifically designed to manipulate the expressions appearing in prob-
lems of high-order perturbation theory in General Relativity around arbitrary backgrounds.

Essentially it implements the perturbative formulas presented in Part [l of this thesis.

We have used zPert in the investigation developed here, but it has also been employed
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by other researchers in several projects. In a cosmological setting, high-order perturbations
of non-linear radiation transfer have been studied using zPert, both in kinetic theory [115]
and in a fluid approximation [116], also including the effects of polarization [117] in the
Boltzmann equation. zPert has also been essential in constructing the equations for first-
order perturbations of scalar field inflation for anisotropic spacetimes [118], or in the recent
study of the interaction of cosmological gravitational waves and magnetic fields [119]. zPert
is also now being used by several authors to perform complicated variational derivatives of

general diffeomorphism-invariant Lagrangians.

15.1.1 The code

This subsection describes the main commands and features of xzPert, simultaneously
constructing a very simple example session. (The In/*/:= and Out/*]:= prompts represent
respectively input and output lines in Mathematica. Code lines without prompt indicate
internal definitions in the package.) Next subsection will provide timings with more com-
plicated examples. Let us start by loading zTensor, the xAct package for abstract tensor
calculus,

In[1] := «xAct‘xTensor*
(Version and copyright messages)

We first define our background structure: a four-dimensional manifold M whose tangent

vector space will have (abstract) indices {a,b,c,d,e},
In[2] := DefManifold[ M, 4, {a,b,c,d,e} ]

Then we define a metric tensor field g with negative determinant and associated Levi-Civita

covariant derivative CD,
In[3] := DefMetric[ -1, gl[-a,-b], CD, {";","V"} ]
(Info messages on construction of associated tensors)

We have provided the symbols {";","V"} to format the derivative in postfix or prefix out-
put notation, respectively. DefMetric automatically defines all tensors normally associated
to the metric or its connection, like ChristoffelCD[a,-b,-c], RiemannCD[-a,-b,-c,-d],
EinsteinCD[-a,-b], Detgl], and so on, with obvious meanings. We can define other

tensors with the syntax
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In[}] :— DefTensor [MaxwellF[a,b] ,M,Antisymmetric[{a,b}],PrintAs->"F"]

The arrow -> is the Mathematica representation for an optional named argument.

Now we load zPert (this would also load automatically zTensor if it was not already in

memory):
Inf[5] := «xAct‘xPert®

Package xAct‘xPert‘ version 1.0.0, {2008, 6, 30}
Copyright (C) 2005-2008 David Brizuela, Jose M. Martin-Garcia

and Guillermo A. Mena Marugan, under GPL

This adds several new commands and reserved words to the system, of which we will here
describe the four most important ones, namely DefMetricPerturbation, Perturbation,

ExpandPerturbation and GaugeChange.

A perturbative structure having metric g as background and the tensor h as its pertur-

bation is defined using
In[6] :— DefMetricPerturbation[ g, h, ¢ ]

which also identifies € as the perturbative parameter of the expansions. From now on, the
n-th perturbation of the metric gl-a,-b] will be denoted as h[LI[n],-a,-b], where LI
is the zTensor head to denote the so-called ‘label indices’, that is, indices with no vector

space association. Labels can be considered as general non-geometric purpose indices.

The perturbative operator A is represented by the head Perturbation. It has two
arguments: the background expression being perturbed and the perturbative order (with
default value 1):

In[7] := Perturbation[ MaxwellF[a,b], 3 ]

Out[7] := A3[F]
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Note that the tensor is represented with its symbol F' and that the perturbation order is
an exponent of A. Following normal Mathematica, the output is formatted for the sake of
clarity, but the internal notation is still the same. Perturbation acts mainly as a wrapper
for tensor expressions, but has been instructed to evaluate them under certain conditions.
First, it automatically combines perturbative orders of composed heads (symbols with an

underscore are named patterns in Mathematica):
Perturbation[ expr_, 0 ] := expr
Perturbation[Perturbation[expr_,n_ ],m_ ] := Perturbation[expr,n+m]

Being a derivative, Perturbation is linear and gives zero on the delta identity tensor and

constants:
Perturbation[ x_+y_,n_ ] := Perturbation[x,n] + Perturbation[y,n]
Perturbation[ deltala_, b_ ], n_ ] =0
Perturbation[ expr_7?ConstantQ, n_ ] := 0

The question mark in a pattern is the Mathematica notation to restrict the pattern to those
expressions obeying a condition. For instance, the last definition will only be used if expr is a
constant quantity. The Leibnitz rule is also automatic, and has been implemented following
equation (BH) for any number of factors and any perturbative order, using fast algorithms to
compute partitions implemented in zPert. Perturbation commutes with partial derivatives

of general expressions and with any covariant derivative of a scalar expression:
Perturbation[ PD[-a_][ expr_ ], n_ ] := PD[-a][Perturbation[expr,n]]
Perturbation[ CD_?CovDQ[-a_][ expr_7ScalarQ ], n_ ] :=
CD[-a] [ Perturbation[ expr, n ] ]
The index of the derivatives is required to be always covariant, to avoid a metric mismatch,
and that is implemented through a pattern index -a_ . Finally, Perturbation does not

change the density weight of the perturbed expression,

WeightOf [ Perturbation[ expr_, n_ ] ] := WeightOf[ expr ]
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The DefMetricPerturbation in In/6] defines special rules for the metric g and its

perturbations h with covariant indices:
Perturbation[ g[-a_,-b_], n_ ] := h[LI[n],-a,-b]

Perturbation[ h[LI[n_]J],-a_,-b_], m_ ] := h[LI[n+m],-a,-bl

With the setup and internal definitions so far we can now perform computations like this

second order perturbation
In[8] := Perturbation[g[-a,-b]JRicciCD[c,d]+RiemannCD[-a,-b,c,d],2]
OUt[S] =2 hlab A[Rcd] + Gab AQ[Rcd] + AQ [Rade] + hzab Rcd

(Note that in the output notation, as opossed to the notation used in the rest of the
thesis, the perturbative order appears after the symbol h.) Actually, we could now proceed
to perform any computation in metric perturbation theory by decomposing the curvature
tensors in partial derivatives of the metric and using the code already given recursively.
Only the definition A[g?] = — A% would be missing. However, that would be highly
inefficient already for moderate perturbative order n. Instead, we will use the expansion
formulas of Chapter B, which allow the nonrecursive construction of perturbations at any

order n.

Formulas (B8, BI0) for derivative expansions and formulas (817 B22, B26 B28 B3,
B33, B34d) for the relevant curvature tensors have all been encoded in a single command
called ExpandPerturbation, the most powerful part of zPert. ExpandPerturbation takes
any expression and replaces the arbitrary-order perturbations of known background objects
by their expansions in terms of metric perturbations, but only if those objects have their
indices in the appropriate positions. For example the perturbation of the Einstein tensor
has only been stored for covariant indices. In all other cases there is an internal call to the
zTensor function SeparateMetric, which introduces metric factors to bring all indices to
their natural positions, which are those given at definition time. To show how this works, we

perform an explicit metric separation by hand (symbol % represents the previous output):
In[9] := Perturbation[ EinsteinCD[a,b] ]
Out[9] := A|GY]

In[10] := SeparateMetric[ 1[ % ]
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Out[10] := Gea g* Alg*] + g™ (gbd AlGed] + Gea A[gbd] )

Now ExpandPerturbation can expand the perturbation of the Einstein tensor with covari-

ant indices, and the perturbation of the inverse metric.
In[11] := ContractMetric[ ExpandPerturbation[ % ] ]
Out[11] := —G bhlac — Ga plbe + %gabhlcdRcd _ %hlabR _ %hlcc;b;a
_%hlcb;c;a + %hlbc;c;a + %hlcb;a;c + %hlca;b;c _ %hlba;c;c
+igabh1dd;c;c + igabhldc;d;c _ igabhlcd;d;c _ %gabhldc;c;d + igabhlcc;d;d

The zTensor command ContractMetric has been used to absorb all possible metric factors.

Finally, ToCanonical moves indices around, bringing equal terms together,
In[12] := ToCanonicall % ]
Out[12] := —G¥h'a, — Goh'b, + %gabhlcdRcd _ %hmbR _ %hlcc;a;b
tipleea | Lplach _ Iplabe _ Lgabpled 4 1gabpled

Figure [0l shows the output of the second perturbation of the covariant Einstein tensor,

computed with the same combination of commands.

Another useful command in zPert is GaugeChange, that implements the general gauge
transformation at any order (LH). In order to use it, first we must define the family of

generator vector fields on the manifold M transforming from the current to a new gauge,
In[13] := DefTensor[ {[LI[n],al, M ]
The third-order perturbation of F% can be changed to the new gauge using
In[1}] := GaugeChange[ Perturbation[ MaxwellF[a,b]l, 3 1, ¢ ]
Out[14] := A3 [F®] + 3 LaA?[FP] + 3 LaLaA[F™) + LaLa Lo FP
+3 LeaLeaF® + 3 L2 A[FY) + Lea FP

We finish this subsection by turning back to the problem of perturbation theory using
the background field method, in which all but the first metric perturbations vanish, as

stated in Section This can be easily implemented setting

In[15] := h[LI[n_l,a_,b_1:=0 /; n > 1
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Absol ut eTi mi ng[
Perturbation[Ei nstei nCD[-a, -b], 2] // ExpandPerturbation // Contract Metric //
ToCanoni cal ]

(0. 783872 Second, hl,, h'ed Ry + % Gap D29 Ry - gap h%,° h16d Ry, — % hZp R+ 1 Rl o o s
1 h2c,. .. 1 1 h2.c. .. h2.c. .. h2_ ¢
> hl(:d;a hlcd;b _ cz,a,b " > hlbc;a hldd;c N > hlac;b hldd;c + bz,a,c + a2,b,c _ ab2 C

1 14 1 5c_plc pld 1c pld 1 :cpld led i led i

7h dc Nap® —hpSahic% g -hfp hic% g +higy® hic% g - h N pe;a;a - h N ac;bia +

lcd K1 1 1lcd lcd KWle 1 2cd 1 lc ;d 1 2c ;d

h hab;c;d_habh ;c;d_gabh h e;c;d _7gabh ;c;d+habh c ;d +7gabh c ;d T
lcd ple 1 lLeid, pl 1c¢d, 1 le lc :d led ple

Gap h h*e® e;d ~Nhg;c h7a + N7, W +‘4‘9.’:1bh e;d D% % +0ap D75 ¢ h7g® e -

. . 1 . 3 .
Jab hlcc'd h:Lde;e +Jab htcd hlce;d;e - Jab htcd hlcd’e;e + Vi Gab hlce;d htcdie _ Y GJab hlcd;e thd'e}

Figure 15.1: The second-order perturbation of the Einstein tensor is constructed and canon-
icalized in less than one second. The first (blue) label of each h tensor denotes the pertur-
bative order. In Mathematica the action of a command command on an expression expr is

denoted by either expr//command or command [expr].

15.1.2 Timings

We now focus on the dependence of the timings of standard computations on the per-
turbative order and the number of objects being perturbed. The intrinsic combinatorial
nature of the problem will always imply exponential dependence, but we will see that the
timings in xzPert are short enough to handle all useful cases. These examples have been

performed using a Linux box with a 3 GHz Pentium IV processor and 2 Gb of RAM.

In perturbation theory the overall level of complexity is mainly determined by the
perturbative order n. It affects the computation in two different ways: on the one hand the
expressions to manipulate are sums with a number of terms which grows exponentially with
n; on the other hand each term is a product of objects and the number of factors also grows
(typically linearly) with n. Canonicalizing a sum of terms is obviously a linear process
because each term can be dealt with independently, but canonicalization of a product of
objects is naturally factorial in the number of indices and this could prevent any practical
computation. The algorithms in zTensor are fast enough to render the problem effectively
polynomial in the number of indices, allowing us to deal with expressions of a few dozen
indices in hundredths of a second. Figure .2 shows the number of terms and the timing of
canonicalization of the perturbation of the Riemann tensor at different perturbative orders.
The 10-th order perturbation contains 44544 terms and is canonicalized in slightly less than
20 minutes, whereas third-order expressions can be manipulated in 1 second. We see clearly

the exponential growth of both curves, but with manageable timings.
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Figure 15.2: Canonicalization timings (in seconds) for the perturbation of the Riemann
tensor at perturbative orders n = 1...10 (lower, red line). Also shown number of terms in
the expression (upper, blue dashed line). Both lines are clear exponentials in n, with the
timings growing slightly faster because terms with larger n are harder to canonicalize owing

to their larger average number of indices.

Other possible sources of complexity in perturbative computations are the expansion
of perturbations of a product of tensors and the expansion of perturbations of a function
of a number of scalar arguments. Our implementations of the nth-order Leibnitz rule and
Faa di Bruno formula are fast enough to neglect their timings in comparison with those
of canonicalization. Figures and [5.4 display example timings for those problems
respectively. The Leibnitz rule is simpler than the Faa di Bruno formula and produces

faster results, also taking less memory.

Overall, we see that we are limited in size by RAM memory, which allows us to work with
up to roughly 10° terms with a few Gbytes, corresponding to n = 10 approximately. Time
limitations come mainly from the canonicalization process (other expansions are faster).
Within seconds we can manipulate all equations up to orders n =4 or n = 5. The n = 10
equations require canonicalization times of the order of 1 hour. This gives an idea of the

power and efficiency of zPert, and what can be achieved with it.
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Figure 15.3: Timings of expansion (in seconds; red lines, stars) and number of terms (blue
dashed lines, diamonds) of the perturbation of the product of m factors, for different per-
turbative orders n = 1...10 [the generalized Leibnitz rule (BH)|. Different lines correspond
to increasing values of m, from m = 2 to m = 10 starting from below. All practical cases

stay below one second.
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Figure 15.4: Timings of expansion (in seconds; red lines, stars) and number of terms (blue
dashed lines, diamonds) of the perturbation of a scalar function of m scalar arguments, for
different perturbative orders n = 1...10 [the generalization to many arguments of Faa di
Bruno formulal. Different lines correspond to increasing values of m, from m = 1 to m = 10
starting from below. We include only those cases which can be handled with 2Gb of RAM
memory, corresponding to a few tens of thousands of terms. For example, for n = 10 we

can only handle up to m = 4.
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15.2 Harmonaics

The package Harmonics implements all geometric structures on S? defined in Part [
and Appendices [Al and Bl of this work. The commands PureSpin[j, +1, ml[a, b, ...]
and PureOrbitall[y, 1, ml[a, b, ...] provide any pure-spin or pure-orbital harmonics
(analyzed in Sections B3 and B4 respectlvely) , both in abstract form (in terms of the
bases m or t) or giving their components in any coordinate or non-coordinate basis. The
generalized RWZ harmonics Z[LI[1], LI[m],a, b, ...] and X[LI[1], LI[m],a, b,

..] have also been defined, incorporating all their symmetries and properties (CHIHG.6H).
The product formula (E83) has also been included defining a rule named productRule.

As an example of the use of this package, we present in figure [ the expansion of the
product between two tensor spherical harmonics into a linear combination of harmonics, in

spherical coordinates (6, ¢).

X[LI [7], LI [2], {-2, spherical }, {3, spherical }]
Z[LI [4], LI [-1], {-2, spherical }, {-2, spherical}, {-3, spherical}]

723 4-1
X Z223

%/. productRule // Sinplify
0. 736047 Second

1
ZCs,c[e}

(1 By 1.4 X5 + i B3%y 16x613+1'lE§4 ‘18 X813+J'1E§,221,7'-§;10 Xlo% 45 2 sSin[e] X000 +
4E5 127 Sin[e] Xy,s,° +4E34 2.9Sin[e] X%y5° +4E5 1234 Sinfe] XMy, * -

Ba?s/ 1.3 2% - B2 15 2% - B30 27 - Ba% 50 29 - B3P0 1 1 ZMY 4

4iE5 4% 6Sin[o] Z%%,,5,° +41E3,4,-1,8 Sin(e] z28,,3,° +41E5 1210 Sin(e] 22,3, *)

%/. coeffERul e // Har noni cConponent

0. 64404 Second

W (8505 1 /7 e'? (-338+1351Cos[26] -990 Cos[46] + 1001 Cos[66]) Sin[26]?)

Figure 15.5: The product between two tensor spherical harmonics is expanded as a linear
combination of other tensor harmonics with E-coefficients via the command productRule
that is encoded in the package Harmonics. After that, the E-coefficients are replaced by
their numerical values and the component of the resultant harmonic in the spherical basis
(0, ¢) is obtained.

The output of the tensorial harmonics is different from the input since, as it is usual

in Mathematica, the output is formatted but the internal structure is maintained. In the
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input, the harmonic labels [ and m are considered as label indices (LI), whereas the basis
is named spherical and the components are denoted by (2,3) = (6, ¢). In the output, the
harmonic labels are the first set of indices (in black), while the second set (in red) stands

for the coordinate indices in the mentioned basis.

The command coeffERule replace the E-coefficients by their numerical values, and
HarmonicComponent returns the explicit component of the expression in the given spherical
basis. The time spent by the computer to make the computation between each input and

output is also shown above.
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Conclusions

The main part of the present work provides a systematic approach to high-order per-
turbation theory in General Relativity. It is based on the combination of an appropriate
theoretical formalism for the description of the problem (implementing symmetry reduc-
tions, covariant notation, gauge invariance, and other nice features) and the intensive use
of abstract computer algebra to manipulate the enormous expressions that unavoidably
appear in this field. In addition, this theoretical formalism has been proven in situations
of astrophysical relevance through its application to a background of a spherical, but still

dynamical, perfect-fluid star.

As another parallel and complementary line of research, we have also considered the
linear perturbative problem in a canonical framework. It offers an alternative point of view
to analyze the gauge freedom in perturbation theory and a systematic way of constructing

gauge invariant objects, whose evolution is given by master unconstrained equations.

The main results presented in this thesis are the following:

e We have given a number of closed formulas which allow us to compute at any order
the perturbation of all relevant curvature tensors in General Relativity. These for-
mulas can be used in very different areas of gravitational physics, including theories
that depart from standard General Relativity (like in the case of models with extra

dimensions, curvature corrections, or in braneworld scenarios).

e These formulas are combinatorial, what makes them very effective from the point of
view of an algebraic implementation. So, they have been implemented in the Mathe-
matica package xPert, which enables us to employ them up to very high orders. Apart
from its obvious application in field theory, zPert can also be easily adapted to com-
pute variational derivatives with respect to a metric field, because the computation
is equivalent to performing first-order perturbations. This is of great help in deriving
the evolution equations from the most general diffeomorphism-invariant Lagrangian,

which includes as a special case the f(R) theories, under intensive study currently.
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Conclusions

We have analyzed the general issue of gauge invariance in high-order perturbation
theory. The two classical approaches by Sachs and Moncrief have been related and
generalized. We have shown how invariants can be constructed, for any background
spacetime and up to any order in perturbation theory, provided that a rigid gauge is

chosen. For highly symmetric backgrounds, the invariants can be explicitly expressed.

We have generalized to higher orders the well known Gerlach and Sengupta formalism
for nonspherical first-order perturbations of a spherical spacetime. This formalism is
considered to be optimal for the perturbative study of a number of astrophysical sce-
narios of interest. The generalization put forward here makes it even more powerful,
leading to more precise results and allowing to describe interactions between different

modes, and other nonlinear effects.

With this purpose, we have constructed a generalization of the Regge-Wheeler-Zerilli
harmonics to any number of indices, closely related to the Wigner rotation matrices

(the so-called spin-weighted harmonics in the General Relativity community).

We have obtained a general formula to expand the product between any pair of
generalized tensorial harmonics into a linear combination of harmonics. This formula

is essential in the generalization of the GS formalism to higher orders.

We have written the Mathematica package Harmonics, able to work with the different
kinds of tensorial harmonics presented in this thesis. It stores all the symmetry

properties of the harmonics, as well as the product formula between any two of them.

We have proven that the Regge-Wheeler gauge can be imposed to any order in per-
turbation theory and given an iterative procedure to construct the gauge invariant

quantities tied to this gauge.

Making use of this procedure, we have explicitly calculated and simplified the second-
order gauge invariants for spherical backgrounds. These invariants have a similar
form to that of the GS first-order invariants, corrected with terms that are quadratic

in first-order perturbations.

We have explicitly computed all equations of the generalized GS formalism at second
order, including those of energy-momentum conservation, and simplified them to a
manageable form. These equations are completely general except for the restriction
to a spherical background: they can be used with any background, dynamical or not,
they can be coupled to any matter model, and they have been given in covariant form,

so that any coordinate system can be used on the background manifold.
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e The second-order equations are essentially the same as the first-order equations, but
they also include complicated quadratic sources. We have disentangled the structure
of these sources and shown that, in previous investigations considering just a single

first-order perturbative mode, many of such sources were not excited.

e We have applied the second-order GS formalism to vacuum. A formula to obtain the
power that the gravitational waves carry to null infinity at any perturbative order has
been given in terms of the trace-free part of the projected perturbation on the sphere.
There are two important features of this formula that we would like to mention. On
the one hand, owing to its integrated character, only the coupling between harmonic
coefficients with the same harmonic labels contribute to the total power. On the other
hand, one can see that the emitted power at order O(¢") depends on all the lower

k < n orders.

e The simplest generalizations of the Zerilli and RW variables at second order do not
decay with radius when approaching null infinity. This unphysical behavior has been
regularized by adding appropriate first-order quadratic sources to the definitions of
the master variables. The evolution equations for the new master scalars have the
same differential part as the non-regularized ones; only their corresponding sources

change. These sources have been explicitly obtained in full generality.

e The trace-free part of the projected perturbation on the sphere has been reconstructed
in terms of the regularized master scalars at null infinity. This permits us to solve
the problem of the radiated power up to order O(g%) just by solving the two (first-

and second-order) master equations.

e We have also applied the second-order GS formalism to a perfect fluid. There are
first-order quadratic sources that appear when writing down the perturbations of the
energy-momentum tensor in terms of the fluid variables. We have obtained them at

second order.

e The evolution equations have been converted into scalar equations by projecting them
into the frame provided by the background fluid four-velocity u*. They have been
simplified for different harmonic labels. In particular, for [ > 2 the second-order
axial problem reduces to a wave equation for the perturbations of the metric and a
transport equation for the matter perturbations. Whereas in the polar case there are
two wave equations (one for the gravitational and another for the sound waves) and
a transport equation. The rest of the perturbations are recovered in terms of the

variables that are obtained by solving the mentioned equations.
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e We have provided the matching or junction conditions at any perturbative order

through a time-like surface defined by the zero level surface of a scalar function
P. Summarizing, the junction conditions are given by the continuity of the gauge-
invariant (tied to the surface gauge, which is defined by the requirement A"[P] = 0)
perturbations of the contravariant induced metric and extrinsic curvature. As far as
we know, this is the first time that arbitrary-order perturbative matching conditions

are analyzed.

In order to analyze the second-order perturbations of a spherical star, we have de-
composed the junction conditions into spherical harmonics for any harmonic label.
For simplicity and explicitness, we have restricted the presentation to a particular
example of a spherical background with a first-order [ = 1 axial mode. Second order
perturbations represent gravitational radiation generated by a slowly rotating star by
the mere self-coupling of the rotation on a dynamical background. For this case, we
have also solved the problem of the injection and extraction of information through

the matching surface.

On a different matter, we have studied the linear perturbations of a spherical space-
time in a canonical setting. The background matter content is taken to be a scalar
field, which makes the spacetime non static. We have found gauge-invariant objects
that contain all physical information of the system. In the axial sector we have recov-
ered the GS master scalar, whereas in the polar sector we have found a master variable
with a complicated equation of motion, still under analysis. This study paves the way

to obtain systematically master variables for different background spacetimes.
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El trabajo presentado proporciona un formalismo sistematico para la teoria de perturba-
ciones a altos 6rdenes en Relatividad General. Esta basado en la combinacion de una buena
eleccion del formalismo tedrico empleado para la descripcion del problema (implementando
reduccion de simetrias, notacion covariante y otras buenas caracteristicas) y el uso intensivo
de 4lgebra computacional abstracta para manipular las enormes expresiones que irremedia-
blemente aparecen en este campo. Ademaés, este formalismo teorico se ha utilizado en
situaciones de relevancia astrofisica mediante su aplicacion a un fondo correspondiente a

una estrella de fluido perfecto esférica, pero atin dindmica.

Como otra linea de investigacion paralela y complementaria a la anterior, se ha conside-
rado el problema perturbativo lineal en un marco canoénico. La libertad gauge perturbativa
aparece de forma maés explicita en este formalismo. Ademés, este tratamiento proporciona
una manera sistemética de construir objetos invariantes gauge, cuya evoluciéon esta dada

por una ecuacion master libre (sin ligaduras).

Los resultados principales que se han alcanzado con este trabajo son los siguientes:

e Se han dado formulas cerradas que permiten calcular a cualquier orden la perturbacion
de todos los tensores de curvatura relevantes en Relatividad General. Estas formulas
pueden utilizarse en diversas areas de la fisica gravitacional, incluyendo teorias que
difieren de la Relatividad General estandar (como pueden ser los modelos con di-
mensiones extra, con correciones de curvatura o bien en escenarios de mundos brana

[braneworlds|).

e Todas estas formulas son combinatorias, lo que las convierte en altamente efectivas
desde el punto de vista de la implementacion algebraica. Se han implementado en el
modulo zPert para Mathematica, lo que permite utilizarlas a 6érdenes muy elevados.
Aparte de su aplicacion obvia en teorias de campo, zPert puede ser adaptado facil-
mente para calcular derivadas variacionales con respecto de una métrica, ya que el

calculo es equivalente a realizar perturbaciones a primer orden. Esto es de gran ayuda
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al derivar las ecuaciones de evolucion para el lagrangiano més general invariante bajo
difeomorfismos, lo que incluye como una caso especial las teorias f(R), bajo amplio

estudio hoy en dia.

Se ha aclarado la confusiéon existente en la literatura en lo que respecta a los dos
puntos de vista diferentes sobre las cantidades invariantes gauge. Hemos comprobado
que los invariantes gauge pueden construirse, para cualquier espaciotiempo de fondo y
hasta cualquier orden en teoria de perturbaciones, dado que se pueda hallar un gauge
rigido. De esta manera, hemos resuelto la cuestion sobre la existencia de invariantes

gauge a cualquier orden superior.

Hemos generalizado a 6rdenes superiores el conocido formalismo de GS para primeras
perturbaciones no esféricas de un espaciotiempo esférico. Este formalismo se considera
optimo para el estudio perturbativo de varios escenarios astrofisicos de interés. La
generalizacion realizada aqui lo hace atin més poderoso, llevando a resultados mas

precisos y permitiendo describir las interacciones entre diferentes modos.

Con este objetivo, hemos construido la generalizacion de los harmoénicos de RWZ y
de los pure-spin a cualquier ntimero de indices. Dicha generalizacion resulta estar
muy relacionada con las matrices de rotacion de Wigner (que son proporcionales a los

harmonicos llamados spin-weighted por la comunidad de Relatividad General).

Hemos obtenido una férmula general para expandir el producto entre cualquier par
de harmonicos tensoriales generalizados como una combinacion lineal de harmonicos.
Esta formula es esencial para llevar a cabo la generalizacion del formalismo de GS a

altos 6rdenes.

Hemos escrito el moédulo Harmonics para Mathematica capaz de trabajar con los dife-
rentes tipos de harmonicos tensoriales que se han considerado en esta tesis. Contiene
todas las propiedades de simetria de los harmoénicos, asi como la férmula del producto

entre cualquier par de ellos.

Hemos probado que el gauge de RW se puede imponer a cualquier orden en teoria de
perturbaciones y hemos dado un procedimiento iterativo para construir las cantidades

invariantes gauge ancladas a este gauge.

Haciendo uso de este procedimiento, hemos calculado y simplificado explicitamente
los invariantes gauge de segundo orden para fondos esféricos. Estos invariantes han
resultado tener una forma similar a los invariantes GS de primer orden pero corregidos

con términos cuadraticos en primeras perturbaciones.
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Hemos calculado explicitamente todas las ecuaciones del formalismo de GS genera-
lizado a segundo orden, incluyendo las de conservaciéon de energia-momento, y las
hemos simplificado hasta una forma manejable. Estas ecuaciones son completamente
generales excepto por la restriccion a un fondo esférico: son vélidas para cualquier
fondo, sea dindmico o no, se pueden acoplar a cualquier modelo de materia y estan
dadas de manera covariante, lo que permite elegir cualquier sistema de coordenadas
en la variedad de fondo.

Las ecuaciones de segundo orden son esencialmente las mismas que a primer orden,
pero también contienen complejas fuentes cuadraticas. Hemos desenmaranado la es-
tructura de estas fuentes y mostrado que en las investigaciones que se habian realizado
previamente, considerando un tnico modo perturbativo de primer orden, muchas de

esas fuentes no estaban excitadas.

Hemos aplicado el formalismo GS de segundo orden a vacio. Se ha dado una férmula
para obtener la potencia que las ondas gravitatorias transportan hasta el infinito nulo
a cualquier orden perturbativo en funcién de la parte sin traza de la perturbacion
proyectada sobre la esfera. Hay dos caracteristicas importantes de esta formula que
nos gustaria mencionar. Por un lado, debido a su caracter integrado, solo el acoplo
entre los coeficientes con los mismos nimeros harmoénicos contribuye a la potencia
total. Por otro lado, se puede ver que la potencia emitida a orden O(e™) depende de

todos los 6rdenes inferiores k£ < n.

La generalizacion mas sencilla de las variables de Zerilli y de RW a segundo orden
no decae con el radio al aproximarse al infinito nulo. No obstante, este compor-
tamiento no es fisico, y se ha corregido simplemente sumando a sus definiciones fuentes
cuadraticas adecuadas de los términos perturbativos de primer orden. Las ecuaciones
de evolucion para los escalares master regularizados resultantes tienen la misma parte
diferencial que los no regularizados; solamente cambian las fuentes correspondientes.

Estas fuentes se han obtenido explicitamente.

La parte sin traza de la perturbacion proyectada sobre la esfera se ha reconstruido en
términos de los escalares master regularizados en el infinito nulo. Esto permite solu-
cionar el problema de la potencia radiada hasta orden O(¢®) simplemente mediante

la resolucion de las dos ecuaciones master (de primer y segundo orden).

También hemos aplicado el formalismo de GS de segundo orden a un fluido perfecto.
Se han obtenido las fuentes cuadraticas de primer orden que aparecen al determinar

las perturbaciones del tensor energia-momento en funcién de las variables del fluido.



194

Conclusiones

Las ecuaciones de evolucion se han convertido en ecuaciones escalares proyectandolas
en el frame dado por la cuadrivelocidad u* del fluido de fondo. Han sido simplificadas
para los diferentes niimeros harmonicos. En particular, para [ > 2 el problema axial
de segundo orden se reduce a una ecuacion de onda para las perturbaciones métricas
y, a una ecuacion de transporte para las perturbaciones de la materia. Por su parte,
en el caso polar hay dos ecuaciones de onda (una para la ondas gravitatorias y otra
para las sonicas) ademés de una ecuacion de transporte. El resto de las perturbaciones
se recuperan en términos de las variables que se obtienen al resolver las ecuaciones

mencionadas.

Hemos dado las condiciones de matching, para cualquier orden perturbativo, a través
de una superficie temporal definida como la superficie de nivel cero de una funcién
escalar P. En resumen, estas condiciones estin dadas por la continuidad de las
pertubaciones invariantes gauge (ancladas al gauge de superficie, que esta definido
por el requisito A"[P] = 0) de la métrica inducida y la curvatura extrinseca contra-
variantes. Por lo que sabemos, esta es la primera vez que se analizan las condiciones

de matching para 6rdenes perturbativos arbitrarios.

Para analizar las perturbaciones a segundo orden de una estrella esférica, hemos
descompuesto las condiciones de matching en harmoénicos esféricos para cualquier
nimero harmoénico. Por simplicidad hemos restringido la presentacini al caso particular
de una perturbaciion axial [ = 1. Las segundas perturbaciones representan las ondas
gravitatorias generadas por una estrella en rotacion lenta debido al autoacoplo de la
rotacion. Para este caso, también hemos resuelto el problema de la inyeccion y la
extraccion. Esencialmente, esto quiere decir que hemos fijado las variables de vacio

externas en términos de las variables del fluido internas y viceversa.

En otro orden de cosas, hemos estudiado las perturbaciones lineales de un espacio-
tiempo esférico en un tratamiento canénico. Se ha supuesto que el contenido material
de fondo es un campo escalar, que hace que el espaciotiempo no sea estatico. Hemos
hallado los objetos invariantes gauge que contienen toda la informacion fisicamente
relevante del sistema. En el sector axial hemos recuperado el escalar master de GS,
mientras que en el sector polar hemos encontrado una variable master con una com-
plicada ecuaciéon de movimiento. A pesar de esta complicacion, el analisis realizado
abre el camino para obtener sisteméaticamente variables master para diferentes espa-

ciotiempos de fondo.



Appendix A

Spherical functions

Several conventions are employed in the literature for the special functions used in
the theory of representations of the 3-dimensional rotation group. Here we follow the
conventions of Edmonds (E) [158], and briefly compare them with those of Galindo and
Pascual (GP) [156], Goldberg et al. (G) [152], and Mathematica [167].

The spherical harmonics Y;"(6, ¢) are

Y™(0,0) = \/<2l4j; (1l)—<if 7;)7:%)' P™(cos §)e™?, (A.1)

where P/™ is the associated Legendre function

(=)™ aymy2 A7
sy = e

P (z) = (2% — 1), (A.2)

The so-called Condon-Shortley phase (—1)™ [156] is already included in these polynomials,
as it is nowadays standard, rather than in the definition of ¥, as done by Edmonds [cf.
his equation (2.5.29)|. The Mathematica functions SphericalHarmonicY and LegendreP
are indeed those defined in equations ([AJ]) and ([A2), respectively.

All the references provided above agree in the definition of the Clebsch-Gordan coeffi-
cients and we refer to any of them for explicit expressions. However, there is no universally
accepted convention for the rotation matrices in a representation D of SU(2). For a given
rotation of the reference frame described by the Euler angles («, 3,v), Edmonds defines the
unitary matrices

Dfi)/m(oz, B,7v) = eim/adgb),m(ﬁ)eimy. (A.3)

In fact, we have corrected here a mistake in Edmonds’ equation (4.1.12): the angles o and

~ have been exchanged (see e.g. [168| for an independent mention of this mistake). The
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[-transformation is given by

d(l)

m’m

®=3 (=1 /T m)iT = m)!(T 4+ m)T = m)! "

(l—m'—o)l(l—m—0)(m'+m+o) ol

2l—m/—m—20 m+m/+20
X | sin é cos é )
2 2

where the sum ranges over those integers o for which the arguments of the factorials are

all nonnegative. The order and sign of the Euler angles differ among authors, the relation

being
D9, 8,0) = DY, (—a,—8,-7) (4.5)
Aot B) = iy FB) = i (=), (A7)

Throughout this article and in our computational implementation, definitions [A3]) and
(A=) have been adopted.



Appendix B

Symmetric trace-free tensors

Given any tensor T;, _;, over a vector space of dimension d with a metric g;;, we construct

its symmetric trace-free part as

[L/2]
[Til...il]STF - Z al(jg)g(iliQ"'gi2m71i2mSi2m+1---il)jljl---]mjm (Bl)
m=0
with S;, i, = T(;,..4,) and [[/2] the integer part of [/2. The coefficients of the expansion are

determined by the trace-free condition, and are given by

b (—g)ymml(1 = 2m)! T[4+ d/2 —1]

(B.2)

In our case, we have d = 2 for the unit sphere. These formulas allow us to compute any
of the Z/",, ., in terms of the derivatives Y™, .., or viceversa. Note that derivatives
of Y™ with indices sorted differently are not equal, but can always be transformed into a
term with the desired order of indices plus terms with a lower number of derivatives. For

example (eliminating the harmonic labels [ and m)

Yiabe = Zabe — W%byc — W%@Y;b), (B.3)
and
Yabed = Zabed — 2VabYeed — w%(axb)d (B-4)
—(l il 3>2<l — 2>7d(aY;b)c - (430 zlﬂ(l —2) [%(a%)d - %%b%d]-
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Appendix C

Vacuum sources

In this appendix we show two particular examples for the regularized sources of the RW
([CZRA) and Zerilli equations (CZTQ). We assume that we have the first-order {{ = 2, m = 1}-
polar and {l = 8, m = —4}-axial modes. The regularized source generated by them for the

equation of motion of the second-order {{ = 7,m = 3}-polar mode is given by,

iy 3T )
[ — {— 60r® 13+ 5502+ Tu—18)22 .11,
z 945(u + 9)2(2u — D(Bu+ 22 L " 6 +55u"+ Tu—18) 2, 11,

+ 607 (6 4 55u% + Tu — 18)" Z,,11,,,

— 20r*(u+9)* (18u* + 51u® — 58u® — 26u + 20) Z, 11,

— 57°(3u+ 2)% (212u* + 3364u” 4 11603u® — 13149u + 3240) 2,11,
+ 20/ (u+9)* (126u” + 141u® — 82u® — 50u + 20) 2,11,

+ 5r°(3u+ 2)* (308u* + 4972u” + 17255u% — 22221u + 6156) 2,11,
— 180r(u—+9)* (6u* + 9u® + 2u® + 4u — 4) ZI1,,

r (360u°® + 2568u° + 57529u” — 14036u® + 375804u” + 88254u

—  123444) Z, 11, + r (14220u° + 253302u° + 1234181u* + 854111u°
— 966354u” — 375354u + 220644) Z,I1, + 15r(3u + 2)* (92u” + 1492u°
8507u” 4 14154u — 9396) Z,,,IT — (6840u’ + 112128u° + 422069u’
1424u® — 213006u° + 271944u — 48924) Z11,,

(6210u° + 116313u” + 1283789u” + 6929894u° + 6649074u’

—  316926u — 1359504) z,tn}, (C.1)

_I_

+ o+ 4

where the symbol u stands for the dimensionless mass u = M/r. In order to show the
regularized source for the RW equation ([CZ82) we take the particular case in which the
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first-order polar modes (I = 3,7m = 0) and (I = 4,7 = —1) generate a second-order axial
mode with labels (I =4, m = —1):

reg
X

31

- 8800/ 77 (u + 3)4(2u — 1)2(3u + 5)4 {_ 10r

B+ 14u+15)" Qu—1)°Z,,,. 2,

+ 26 (3u? + 14u+ 15)" (u - 1)°Z,, Z,,,

+
_|_

+ -

_I_

+

_I_

(3u+5)>
r2
3760905u> + 2764530u” — 467775u — 1518750) (2u — 1)°Z,,.,. 2
(u+3)?
r2

5534775u® — 7023550u” — 3510375u — 573750) (2u — 1)°2Z,,
107 (3u?+ 14u+15) (2u—1)*Z ,,, 2, — 26r (3u>+ 14u+15) (2u—1)*2 , Z .,

16(1 — 2u)?
7’4

16821825u8 + 34748135u° + 56990175u* + 686011501 + 42931125u>
5703750u — 15946875) ZZ

(3060u® + 49401u” + 332356u’ + 1197973u” + 2636572u*

(1620u® + 28161u" + 173844u’ + 197637u” — 1511900’

(1701u™ + 35262u'® + 320166u” + 1720086u” + 6285736u’

2
= (6u? + Tu— 5)° (15300° + 342210® + 303099u” + 1485635u° + 4592169u°
.

0179205u” + 10353033u” + 3316365u — 2994975u — 1478250) Z, Z

10 .

—(u+3)% (60 + Tu—5)" (v + 9w’ +27u +90) 2, 2

2
= (2u® + 5u — 3)” (24138u° + 399357u® + 2535795u + 8866263u°
T

20189321u° + 31979265u* + 349368251 + 20024625u° — 4674375u

9618750) ZZ,, + % (6% + 25u% + 16u — 15)° (90u” + 468u® + 1763u°
5632u* + 22704u® — 6480u® — 35025u + 15750) 2,2,

%(u +3)2 (6u? + Tu — 5)° (675u° + 5741u" + 15946u° + 24570u>
10590u — 13950) 2,2, — 5(u+ 3)*(11u — 9) (61> + 7u — 5)"* 2., Z,
%(Bu +5) (2u® + 5u — 3)° (13770° + 11403u’ + 25994u® + 19250u°
410u — 10350) Z,.Z,., — 8(1 — 2u)* (3u® + 14u + 15)° (30u° + 91u?
99U +15) £, 2, + 13(3u +5)*(17u — 15) (2u® + 5u —3)" 2,2,
778(314 +5) (2u? + 5u — 3)" (3u® + 150 + 25u + 50) 22,
% (3% + 14u + 15)° (198u” + 1164u° + 2627u° + 17137u + 45972u°

3140u” — 38100u + 11475) 2,2,
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+ o+ o+

2
Z(u+3)*(3u+5)* (474u° + 45754 + 13106u” 4 20156u® + 1014u”
.

23685u + 8100) 2,4, 2, + %(u +3)*(3u+5)* (2142u’ + 13005u°
21826u" + 13968u® — 4370u® — 21115u + 8100) Z,2,,

5(1 — 2u)?(u + 3)3(3u + 5)* (4u? + 23u — 9) 2, 2,

24 (u? — 3u —5) (6u° + 25u° + 16u — 15)° 2, Z,,

13(1 — 2u)%(u + 3)*(3u + 5) (120> + 37u — 15) z%,tzt,q,‘}.

(C.2)
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Appendix D

Fluid sources

D.1 Polar linear sources

In this appendix we give the linear sources that appears in the polar evolution equations

of the fluid. These are the same sources that were given in [55].

6 | I—1)(l+2
S, = =2 2y2+87rp—r—?—2U(u—U) (X+/C)+#X
3ux + 4(u — U)K — (5v — 2W)X' = 2[2uv — 2(p — U)W + i/ — Dy
[ I(l+1)+8
20" —2(u — U+ (Sv — 6W)n' — | —4* + % + 8vIV
+ 4(2MU+U2—4W2—87rp)}7, (D.1)

Sk = (1+AUX+[AU + A(p+20)K =W (1 = A\ — (v + 2WAK
1 I(1+1
— [2 (—Z—Wz)—l—Sﬁp—cg(( +2 )+2U(2u+U)—87rp)] (x +K)
T r

N W(l +ex +2f=pW (1 =) + (v + W)U (1 + )y

272
(l+1)+2
+ 87Cpo — 2Un + 2Wn/ +{%—6W2+16m—w(2u + U)cﬁ} n, (D.2)
Sy = 2v(x+K)+2u)p+x —2n(v—W) =21, (D.3)
) TII(l+1)+2
c, = ~-Wx +Ux — (M—2U)/C/+§[%+2U(2M+U)
— 2W(Q2v+ W)+ 8n(p — p)} W — 207, (D.4)
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I(1+1
C, = [(; )+2U(2u—|—U)—87rp} (X +K)+2vU + (n+ U)Wy
: I—1)(1+2
+ U)'(+(u+2U)IC+Wx'—2WlC’—2nU(2,u—|—U)—%X, (D.5)
Co = 2u(x+K)+ 200 + x + 2K — 2n(u + U), (D.6)
(141 ¢ + 3K
S, = <1+Z—’) —(t )a+X+3K+< +2W—3) (’Y—Fw)
p r 2 c? 2

+(p+2U) (c§ — %) w-—C Kw %) — - a(u—i—?U)} (D.7)
S, = <1+§) [WH 21+ 2U) — <v——)]

, s’ Ocs ,0C 1 Oc;
_C"_“[C< c?as>+ 95 ”(”5)%85]

s P ptplc , [0c? p Oc?
— -—=— — — — = D.
I/(CS p 2 ap)w ws l@s C 1+Cg o )| (D.8)
. K+x cw+C’0
Sa = —T+77—C(M+2U) W, (Dg)

(- sttt ) at G+ ek O = a4 )

S, = <1+Z—9)
p

+C(p+2U)o - 0—12 {S’C + (1 + g) (v — 2Wc§)} (7 - %)

+(p+2U) (ci—%)w+u(1+§) < —%) (D.10)
K Y

2
, s"oC v P N\ 1 0c?
—CO—O’C|:I/+5g—(5<1+; +S)c_§83}
p / 803 ! 1803
+w {V(;—cg)Jrs (C’— 8S)Jr[z/(erp)+pC's]c—§8/) . (D.11)

D.2 Polar constraint equations for the case [ =1

Here we give the second-order polar constraint equations for the case [ = 1. Once one

knows the matter perturbations {«,y,w, o}, these must be solved in a surface everywhere
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orthogonal to the r = const. surfaces to obtain the metric perturbations {7, x, ¥ }.

2
rlv|?’Dn = 4dnp(l — A)w — 167(p + p)Ua — (ﬁ — 3W? + 8mp + U2)7}
— (W?4+U?—4n(p+p))x — 2UWe — 4mpCo
1
-5 > {9+ (1=, 209, }, (D.12)
i

2
rlv|?’Dxy = Smpw — (ﬁ + 20U — 87?/)))( +2WU — (p+U)W)yp — 20

— 2r(p+p)Ua+ ) {209C, —9C,}, (D.13)
i

2
rloPDi = 8a(p+p)(y+2Wa) + AUWn — <U2 ~W 5 dn(p p)>¢

+ 2uW —vU)(n—x) - > _{9c,+wlc, -us,}. (D.14)

I

D.3 Polar equations for the case [ =0

We give now all the equations needed to solve the second-order polar sector for the
particular case [ = 0. On the one hand, there are two evolution equations for {w,~} and,
on the other hand, two constraint equations for {n, y} that must be solved in a surface

orthogonal to r = const. surfaces,

_@—(1#_’)7' = (M—FZU)CJ—W[ZI?T%(]?—#/))—|—(M-|—2U)<§_Cg)]

- 7[(2§,+<1+%><4|7;|V;/(p+p)—y—2w+c—g)}

+ (x—n) [%i—; - (1 g) < _ VU2U+WW2 1 ;cg
U |of? Uw?
2o gl

GG

©a _ +p) A B A, B\(e)
+ Z{ S e (Uuu” — Wun®) PAB}, (D.15)

p+m+U+@}

I
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(1 + ]—7)1 + cgw'
p

rlv]*Dn

rlv[*Dy

o=+ S5} i (14 2) (g +4o) - o
W v Uzw

ST rwe T 471'7[]4 7 (p+ p)) (D.16)

(e (p+p) A B A, B\(e)
Z{ S, + T (Uun® — Wn“n”) PAB},

L

202 2UW
dm(p+ p) (x + Wﬂ) +8m(p + p) e

U? +Ww?

[ol?

Z {(U2 + W) (utu? + nnP) — 4UWuAnB}(€)77AB,
i

47tp (Co+ (14 E)w) (D.17)

1
2Jv[?

AUW
U2 + W2

Uw
(uW —vU +4rm e (p+ p))(x )

1 202 2UW U? + W?
(Sﬂ'p — ﬁ) (X + Wﬁ) + 87T<p + p)W”y + 871'pr

1
[v]2 Z {({U* + WHutu? — 20Wun®}OPp. (D.18)
i

Last equation corrects the sign of the second term of the sum from reference [55].
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