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Resumen y conclusiones

A �nales de los a~nos 60 del siglo pasado, B. Muckenhoupt y E. Stein publican una serie de

trabajos en el contexto de los polinomios ortogonales cl�asicos (Hermite Laguerre y Jacobi).

La idea subyacente era analizar el sustituto de serie conjugada del an�alisis arm�onico cl�asico

y estudiar el comportamiento en los espacios Lp. En este sentido las ecuaciones de Cauchy-

Riemann y los an�alogos de algunas propiedades de las funciones arm�onicas tambi�en fueron

tratados. Por otro lado a comienzos de los a~nos 90, el profesor E. Fabes dirigi�o dos tesis

doctorales (R.Scotto y W. Urbina) en las que se analizaban las \transformadas de Riesz

asociadas a la medida gaussiana". En ambos trabajos se de�n��an unos operadores llamados

\transformadas de Riesz", y se probaban acotaciones paralelas a las transformadas de Riesz

cl�asicas (tipo fuerte (p,p), p > 1 y d�ebil (1, 1)). Sin embargo en ning�un momento se explicaba

la raz�on del nombre.

Las tesis dirigidas por el profesor Fabes fueron un revulsivo dentro del mundillo de los

expertos en An�alisis Arm�onico y comenz�o un gran orecimiento de un An�alisis de Fourier

asociado a laplacianos generales. Adem�as se cont�o con la ayuda inestimable del libro de E.

Stein \Topics in Harmonic Analysis Related to the Littlewood-Paley Theory". Este libro

apareci�o en 1970 y ha sido una gu��a esencial para un gran n�umero de profesionales. En la

monograf��a de Stein se describe desde varios puntos de vista la importancia de la teor��a de

semigrupos para entender, mediante una visi�on muy general, algunos de los conceptos desar-

rollados en An�alisis Arm�onico. Stein tambi�en obtiene acotaciones en espacios de Lebesgue Lp

y en espacios de Hardy Hp de algunos operadores cl�asicos, todo ello apelando a la teor��a de

semigrupos de difusi�on. En las dos �ultimas d�ecadas un gran n�umero de publicaciones se han

ocupado de desarrollar un An�alisis Arm�onico asociado a diversos operadores diferenciales.

Por otra parte en Agosto de 2006, L. Ca�arelli y L. Silvestre publican el celebrado trabajo

\An extension problem related to fractional Laplacian". Este interesante trabajo introduce

de pleno derecho en la teor��a de ecuaciones en derivadas parciales al operador laplaciano

fraccionario (−∆)α con 0 < α < 1. Este operador hasta ese momento hab��a sido estudiado

de manera modesta en teor��a de potencial y en probabilidad. El trabajo de Ca�arelli y

Silvestre hizo que pasase a ser uno de los temas candentes de EDP's.

En 2010 Pablo Stinga, present�o su tesis doctoral en la UAM. En dicha tesis se hac��a un

tratamiento del laplaciano fraccionario utilizando la teora de semigrupos. En concreto la



f�ormula

(−∆)σf(x) =
1

Γ(−σ)

∫∞
0

(
et∆f(x) − f(x)

) dt

t1+σ
, x ∈ Rn, 0 < σ < 1.

Permit��a un tratamiento del operador fraccionario mucho m�as vers�atil que la f�ormula ̂(−∆)αf)(ξ) =
|ξ|α/2f̂(ξ), combinada con t�ecnicas de transformada de Fourier.

La tesis de Pablo Stinga suger��a que alguno de los temas estudiados por Ca�arelli y Sil-

vestre podr��an ser abordados con la �optica nueva de la teor��a de semigrupos. Esto permitir��a

obtener resultados nuevos y entender mejor alguno de los resultados ya conocidos.

Uno de los problemas esenciales en ecuaciones en derivadas parciales es la obtenci�on de

estimaciones de regularidad (estimaciones de Schauder). Nos propusimos estudiar dichas

estimaciones para operadores de Schr�odinger desde dos puntos de vista:

1.- A trav�es de las extensiones arm�onicas. Es decir utilizando el semigrupo subordinado

de Poisson.

2.- Utilizando teoremas del an�alisis arm�onico relativos a acotaciones en espacios de tipo

H�older pero con descripci�on como espacios de Campanato. Esto permitir��a el aprovechamiento

de ideas ya utilizadas en An�alisis Arm�onico.

El trabajo fue realizado con �exito y llegamos a publicar un trabajo en cada una de las

lineas de investigaci�on anteriores a saber:

T. Ma, P. R. Stinga, J. L. Torrea, and C. Zhang, Regularity properties of Schrodinger

operators. J. Math. Anal. Appl. 388, 817837 (2012).

T. Ma, P. R. Stinga, J. L. Torrea and C. Zhang, Regularity estimates in Holder spaces

for Schrodinger operators via a T1 theorem, Ann. Mat. Pura Appl. (por aparecer).

Sin ninguna duda, otro problema recurrente en la teor��a de ecuaciones en derivadas par-

ciales es la obtenci�on de desigualdades de Harnack. Nuestra idea aqu�� fue la utilizaci�on

de algunas t�ecnicas de transferencia entre semigrupos que nos permitiesen \transferir" de-

sigualdades de Harnack entre laplacianos fraccionarios. Las t�ecnicas de transferencia fueron

introducidas por I.Abu-Falahah y J.L. Torrea en 2006. Nuevamente hubo �exito y esta inves-

tigaci�on di�o lugar al trabajo

P. R. Stinga and C. Zhang, Harnack's inequality for fractional operators, Discrete Contin.

Dyn. Syst. (por aparecer).

Adem�as del trabajo descrito hasta el momento tambi�en se han estudiado funciones de

Littlewood-Paley cuando se toman derivadas fraccionarias. La derivada fraccionaria aparece

en distintos tratados, nosotros hemos estudiado la introducida por C. Segovia y R. Wheeden

en 1969. Dado α > 0, sea m el entero m�as peque~no estrictamente mayor que α. Llamando

Pt al semigrupo de Poisson, se de�ne

∂αt Ptf(x) =
e−iπ(m−α)

�(m− α)

∫∞
0

∂mt Pt+s(f)(x)s
m−α−1ds, t > 0, x ∈ Rn. (0.1)



En la de�nici�on puede intervenir cualquier semigrupo subordinado, en particular los semigru-

pos de Poisson de operadores diferenciales. Esto permite estudiar las funciones de Littlewood-

Paley fraccionarias

gα(f)(x) =
( ∫∞

0

|tα∂αt Ptf(x)|
2dt

t

)1/2
.

Estas funciones fueron utilizadas en el caso cl�asico para obtener caracterizaciones de espacios

de Sobolev. Nosotros estudiamos las versiones vectoriales de dichas funciones caracterizando

las espacios de Banach para los cuales son acotadas.

CONCLUSIONES

La memoria establece de dos modos, completamente originales, estimaciones de Schauder

para potencias fraccionarias del operador de Schr�odinger. Un primer m�etodo consiste en

considerar las extensiones arm�onicas del operador. Para ello se necesita un estudio muy

meticuloso del correspondiente semigrupo de Poisson. El segundo m�etodo consiste en la

construcci�on de un criterio general para el estudio de estimaciones de regularidad. Este

criterio establece esencialmente que para una amplia familia de operadores, las estimaciones

de regularidad dependen del comportamiento del operador cuando act�ua sobre la funci�on

constante 1.

Por otro lado en la memoria se prueban desigualdades de Harnack para potencias frac-

cionarias de una amplia familia de operadores. La aportaci�on en este caso, adem�as del propio

resultado en s�� mismo, la constituye el m�etodo de la prueba que utiliza una transferencia muy

sencilla entre operadores. La transferencia resulta sencilla, pero su utilizaci�on en este tipo

de problemas es completamente original.

Finalmente a lo largo de toda la memoria se analizan diversos comportamientos de una

derivada fraccionaria unidimensional que extiende a la derivada cl�asica.

La memoria ha dado lugar a las siguientes publicaciones:

1.- T. Ma, P. R. Stinga, J. L. Torrea, and C. Zhang, Regularity properties of Schrodinger

operators. Journal of Mathematical Analysis and Applications 388, 817- 837 (2012).

2.- T. Ma, P. R. Stinga, J. L. Torrea and C. Zhang, Regularity estimates in Holder spaces

for Schrodinger operators via a T1 theorem, Annali di Matematica Pura ed Applicata. (por

aparecer).

3.- P. R. Stinga and C. Zhang, Harnack's inequality for fractional operators, Discrete and

Continuous Dynamical Systems. (por aparecer).

La memoria hace un recorrido por diversos temas de Anlisis Armnico y de Ecuaciones en

Derivadas Parciales teniendo como herramienta base la teor��a de semigrupos
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Chapter 1

Introduction

In the last decades the theory of di�usion semigroups have been used successfully in the

development of a theory of Harmonic Analysis associated to several Laplacians. This theory

has meanly dealt with Lp and Hp boundedness of operators like Riesz potentials, Riesz

transforms, Litlewood-Paley functions, etc. The idea behind the use of the semigroup theory

in Harmonic Analysis has its roots in the book published in 1970 by E. Stein, \Topics in

Harmonic Analysis Related to the Littlewood-Paley Theory", [78]. But the big owering of

it was after 1990. It could be said that the starting point of this new wave were the Ph.D.

dissertations of R. Scotto and W. Urbina advisered by Professor E. B. Fabes in the University

of Minnesota, see [33, 91].

The systematic use of the theory of semigroups to understand Harmonic Analysis started

a few years later and papers in this line are [2, 3, 5, 6, 7, 15, 26, 27, 30, 31, 32, 41, 42, 51,

61, 62, 69, 76, 77, 80].

In this very short account of the use of semigroup theory in Harmonic Analysis, we

arrive to the use of the theory in PDEs. In general, working in Hamonic Analysis, to get

Lp-estimates for one operator it is not necessary to have a pointwise description of the

operator acting on functions in Lp. The situation is completely di�erent in PDEs and the

pointwise description of the operator is one of the crucial facts that are needed. An example

of this situation is the fractional laplacian (−∆)σ. This operator has become one of the

most famous operators in the last �ve years, after the celebrated work of L. Ca�arelli and L.

Silvestre [16]. The understanding of the fractional laplacian is completely clear when using

Fourier transform, that means (−∆)σf is the function whose Fourier transform is given by

|ξ|2σf̂(ξ). However to �nd a formula for (−∆)σf(x) is rather involve by using Fourier inverse

techniques. It turns out that this pointwise description is fundamental when working with

Cα-estimates (regularity estimates). An alternative approach to characterize (−∆)σ, could

be the classical formula

(−∆)σf(x) =
1

Γ(−σ)

∫∞
0

(
et∆f(x) − f(x)

) dt

t1+σ
, x ∈ Rn, 0 < σ < 1.

This formula can be used in a direct way to get an exact pointwise expression of (−∆)σf(x)

3



4 Chapter 1. Introduction

for good enough functions, see [82].

The formula above can be considered for any di�usion semgroup,
{
e−tL

}
t>0

, generated

by a general laplacian L satisfying certain mild conditions (self-adjointness, positivity, etc)

and

Lσf(x) =
1

Γ(−σ)

∫∞
0

(
e−tLf(x) − f(x)

) dt

t1+σ
, x ∈ Ω, 0 < σ < 1. (1.1)

Analogously for negative powers we can consider the operators

L−σf(x) =
1

Γ(σ)

∫∞
0

e−tLf(x)
dt

t1−σ
, x ∈ Ω, σ > 0, (1.2)

where Ω is the domain of the functions f for which L is acting on, such as the torus, Rn,
(0,∞), etc. In order to make the understanding of these formulas easy we recall the following

formulas related to Gamma function

λσ =
1

Γ(−σ)

∫∞
0

(e−tλ − 1)
dt

t1+σ
, 0 < σ < 1, and λ−σ =

1

Γ(σ)

∫∞
0

e−tλ
dt

t1−σ
, σ > 0,

where � denotes the Gamma function and Γ(−σ) :=
Γ(1− σ)

−σ
=

∫∞
0

(e−s − 1)
ds

s1+σ
< 0.

Finally, before passing to the description of our work, we want to recall a de�nition of

fractional derivative (one dimensional). The following de�nition is due to C. Segovia and R.

L. Wheeden [70]. Given α > 0, let m be the smallest integer which strictly exceeds α. Let f

be a reasonable nice function in LpB
(
Rn
)
. Then

∂αt Ptf(x) =
e−iπ(m−α)

�(m− α)

∫∞
0

∂mt Pt+s(f)(x)s
m−α−1ds, t > 0, x ∈ Rn, (1.3)

where Pt is the classical Poisson semigroup. Observe that

∂αt e
−t|ξ| = eiπα|ξ|αe−t|ξ|, α > 0.

The de�nition of fractional derivatives appearing in (1.3) can be used in a natural way when

dealing with subordinated semigroups. The most interesting for us, will be the case of

di�erential operators that generate di�usion semigroups and subordinated semigroups.

Apart of this, it is a common fact that some results in Probability Theory have some

parallels when considering the Poisson semigroup in the torus. In this line of thought, in 1998

Q. Xu [92] found a characterization of a property of Banach spaces (martingale type) that was

de�ned by G. Pisier in probability. The characterization was achieved by the boundedness

of some Littlewood-Paley functions de�ned in the torus. This idea was explored with much

more generality in 2006 for subordinated semigroups in [57].

Before entering into a detailed account of our work, we would like to make a naive

description of it.
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-As we said before formulas (1.1) and (1.2) produce a path to study regularity properties

(Schauder estimates) of powers of L. How to exploit this idea in the case of Schr�odinger

operator will be an important part of our work. In order to do this we shall need to go further

and in fact we shall �nd some new (and useful) de�nitions for the classes Cα associated to

an operator L. These ideas have appeared in [55, 56].

-Sometimes there are some relations (essentially changes of variables) between the semi-

groups associated to di�erential operators. For example, due to the fact that an Hermite

function is an Hermite polynomial multiplied by a �xed exponential function, the corre-

sponding heat semigroups will have an exact pointwise relation. Because of formulas (1.1)

and (1.2), one can think that these relations could be used when analyzing the properties of

operators L±σ. In general this is not true (for example when dealing with Lp boundedness)

due to the fact that the relations cannot be controlled globally. However this relations are

good enough for some local estimates crucial in PDEs. We shall see how to get some new

Harnack's inequalities by using these ideas in Chapter 4, which was produced in [84].

-The introduction of fractional derivative suggests the possibility of de�ning Littlewood-

Paley functions with it. We characterize the geometric properties of Banach spaces for which

these new fractional Littlewood-Paley functions are bounded. The condition we found in our

paper [88] is the same as the one for the classical square functions previously studied in [57].

Now we shall pass to an explicit description of the manuscript.

1.1 Regularity theory of operators related with Schrödinger
operators

Very recently, a great deal of attention was given to nonlinear problems involving fractional

integro-di�erential operators. These problems arise in Physics (uid dynamics, strange ki-

netics, anomalous transport) and Mathematical Finance (modeling with L�evy processes),

among many other �elds, see for instance [17, 18, 19, 73, 74] and the references therein.

The main question is the regularity of solutions. In Chapter 2 and 3, we want to get some

regularity properties related with the time independent Schr�odinger operator in Rn, n > 3,

L := −∆ + V, where the nonnegative potential V satis�es a reverse H�older inequality. In

the last twenty years there exists an increasing interest on the study of these operators. C.

Fe�erman [35], Z. Shen [72] and J. Zhong [99] obtained some basic results on L, includ-

ing certain estimates of the fundamental solutions of L and the boundedness on Lebesgue

spaces Lp(Rn) with some p ∈ (1,∞) of Riesz transforms. J. Dziuba�nski and J. Zienkiewicz

[30, 31, 32] characterized the Hardy space HpL(R
n) associated with L, see also [76, 77]. In

[27], the authors considered the BMOL-spaces. And in [13], the theory related with the

BMOαL-spaces (0 < α < 1) were developed. With a Campanato description, we know that

these BMOαL, (0 < α < 1) are equivalent with the H�older spaces related with L; see Section

2.4. We shall denote these H�older spaces by C0,α
L . For more results of Schr�odinger operators,

we refer the readers to [2]
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In Chapter 2, our aim is to develop the regularity theory of H�older spaces adapted to

L and to study estimates of operators like fractional integrals L−σ/2, and fractional

powers Lσ/2 by L-harmonic extensions. The solution of the boundary value problem{
∂ttu− Lu = 0, in Rn × (0,∞),

u(x, 0) = f(x), on Rn, (1.4)

is given by the action of the L-Poisson semigroup on f:

u(x, t) = Ptf(x) ≡ e−t
√
Lf(x).

By using formulas (1.1) and (1.2), the powers of L can be described in terms of u as

L−σ/2f(x) =
1

Γ(σ)

∫∞
0

Psf(x)
ds

s1−σ
, x ∈ Rn,

and

Lσ/2f(x) =
1

Γ(−σ)

∫∞
0

Psf(x) − f(x)
ds

s1+σ
, x ∈ Rn.

Therefore, to deal with these spaces and operators, we will adopt the point of view based on

L-harmonic extensions.

The main result in Chapter 2 is the following theorem.

Theorem 1.1. Assume that q > n. Let σ be a positive number, 0 < α < 1 and f ∈ C0,α
L .

(a) If 0 < α+ σ < 1 then L−σ/2f ∈ C0,α+σ
L and

‖L−σ/2f‖
C

0,α+σ
L

6 C ‖f‖
C

0,α
L

.

(b) If σ < α then Lσ/2f ∈ C0,α−σ
L and

‖Lσ/2f‖
C

0,α−σ
L

6 C ‖f‖
C

0,α
L

.

(c) Let a be a bounded function on [0,∞) and de�ne

m(λ) = λ1/2
∫∞
0

e−sλ
1/2

a(s) ds, λ > 0.

Then the multiplier operator of Laplace transform type m(L) is bounded on C0,α
L ,

0 < α < 1.

In general, to study the regularity properties of fractional operators like (−∆)1/2, or more

generally (−∆)σ/2, 0 < σ < 2, and (−∆)−σ/2, there are (essentially) two possible alternatives.

Either describe the operators with a pointwise (integro-di�erential or integral) formula, or

characterize the H�older classes by some norm estimate of harmonic extensions, see (1.4) but
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replace L with ∆, that are in fact Poisson integrals, as described above. The �rst approach

was taken by L. Silvestre in [74] to analyze how (−∆)±σ/2 acts on classical Cα spaces. Let

us point out that he also needed to handle the classical Riesz transforms ∂xi(−∆)
−1/2 as

operators on Cα. The second one, in the spirit of harmonic extensions, is nowadays classical.

Indeed, for bounded functions f it is well known that the harmonic extension u(x, t) satis�es

‖tut(·, t)‖L∞(Rn) 6 Ct
α for all t > 0 if, and only if, f ∈ Cα, 0 < α < 1.

In order to prove Theorem 1.1, we will use a characterization of functions f in C0,α
L

by properties of size and integrability of L-harmonic extensions to the upper half space.

The theory of BMOL spaces and Carleson measures developed in [27](also [4] in the Bessel

seeting) will be a central tool. The characterization is as following.

Theorem 1.2. Let 0 < α < 1 and f be a function such that∫
Rn

|f(x)|

(1+ |x|)n+α+ε
dx <∞

for any ε > 0. Fix any β > α and assume that s > n. The following statements are

equivalent:

(i) f ∈ C0,α
L .

(ii) There exists a constant c1,β such that

‖tβ∂βt Ptf‖L∞(Rn) 6 c1,βtα.

(iii) There exists a constant c2,β such that for all balls B = B(x0, r) in Rn,

(
1

|B|

∫
B̂

|tβ∂
β
t Ptf(x)|

2 dx dt

t

)1/2

6 c2,β |B|
α
n ,

where B̂ denotes the tent over B de�ned by {(x, t) : x ∈ B,and 0 < t 6 r}.

Moreover, the constants c1,β, c2,β and ‖f‖
C

0,α
L

above are comparable.

Our choice of the method turns out to be well suited for our purposes. In this Schr�odinger

context the pointwise description of the operators as in [74] seems to be technically di�cult.

In fact, even for one of the most simplest cases (the harmonic oscillator, where V(x) = |x|2)

it is already rather involved, see [83]. On the other hand, the characterization of L-H�older

spaces via L-harmonic extensions does not appear to be easily obtained as a repetition of

the arguments for classical H�older spaces given in [79]. Once the above characterization is
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established the following computation shows how to use it for our regularity purpose:

|tβ∂
β
t Pt(L

−σ/2f)(x)| = Ctβ
∫∞
0

∂
β
t Pt(Psf)(x)

ds

s1−σ

= Ctβ
∫∞
0

∂βwPwf(x)
∣∣∣
w=t+s

ds

s1−σ
6 C ‖f‖

C
0,α
L
tβ
∫∞
0

(t+ s)α−β
ds

s1−σ

= C ‖f‖
C

0,α
L
tα+σ

∫∞
0

(1+ r)α−β
dr

r1−σ

= C B(σ,β− α− σ) ‖f‖
C

0,α
L
tα+σ, for all x ∈ Rn.

Due to the characterization of the spaces C0,α
L via BMOαL spaces, it could be thought that

some Harmonic Analysis techniques could be adapted to show the boundedness described in

Theorem 1.1. The answer is positive. In fact, in order to get the regularity properties related

with the Schr�odinger operator L, we develop a T1 criterion in Chapter 3. T1-theorem was

�rstly stated by G. David and J. Journ�e [22], for the L2-boundedness of a Calder�on-Zygmund

operator T , see also in [38]. T. P. Hyt�onen [45] and, T. P. Hyt�onen and L. Weis [48], extended

it into operator-valued case. In [6], the authors got a T1 criterion for the boundedness in

BMOH-space, where H is the Hermite operator.

The main point of Chapter 3 is to give a similar T1 criterion for boundedness in BMOαL
of the so called γ-Schr�odinger-Calder�on-Zygmund operator T , for the de�nition of T see

De�nition 3.6. The advantage of this criterion is that everything reduces to check a certain

condition on the function T1.

Theorem 1.3. Let T be a γ-Schr�odinger-Calder�on-Zygmund operator, γ > 0, with

smoothness exponent δ, such that α+γ < min {1, δ} with α > 0. Then T is bounded from

BMOαL into BMOα+γL if and only if there exists a constant C such that

(
ρ(x)

s

)α 1

|B|1+
γ
n

∫
B

|T1(y) − (T1)B| dy 6 C,

for every ball B = B(x, s), x ∈ Rn and 0 < s 6 1
2
ρ(x). Here (T1)B =

1

|B|

∫
B

T1(y) dy and

ρ(x) is the critical radii function de�ned in (2.3).

For the case α = 0, we have a similar result.

The criterion is essentially applied to the whole family of operators associated to L, that

is maximal operators associated with the semigroups e−tL and e−tL
1/2

(or more general

Poisson operators associated to the extension problem for Lσ), the L-square functions, the

Laplace transform type multipliers m(L), the L-Riesz transforms and the negative powers

L−γ/2, γ > 0.
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1.2 Harnack’s inequality for fractional operators

One of the tools that plays a crucial role in the regularity theory of PDEs is Harnack's in-

equality. In 1887, C. A. Harnack [44] formulated and proved the classical Harnack's inequality

in the case n = 2 as in the following, see [50].

Theorem 1.4. Let f : BR(x0) ⊂ Rn → R be a harmonic function (∆f = 0) which is either

nonnegative or nonpositive. Then the valued of f at any point in Br(x0)(0 < r < R) is

bounded from above and below by the quantities

f(x0)
( R

R+ r

)n−2R− r

R+ r
, f(x0)

( R

R− r

)n−2R+ r

R− r
.

For details of the development of Harnack's inequality, we refer the reader to the paper by

M. Kassmann [50]. Some important classical works in the direction of Harnack's inequality

are the papers [36, 37, 54, 58, 66, 71, 89, 90]. Particularly, E. B. Fabes, C. Kenig and R.

Serapioni [34] proved a scale invariant Harnack's inequality for the degenerate operators and

C. E. Guti�errez [39] proved Harnack's inequality for degenerate Schr�odinger operators. Re-

cently, L. Ca�arelli and L. Silvestre [16] considered the Harnack's inequality for the fractional

Laplacian. A novel proof of Harnack's inequality for the fractional Laplacian was given by

L. Ca�arelli and L. Silvestre by using the extension problem in [16, 17]. We want to explain

it at here because it is crucial in our proof. Consider f : Rn → R as in the hypotheses of

Theorem 1.5 below. Let u(x,y) be the extension of f to the upper half space Rn+1
+ obtained

by solving {
div(y1−2σ∇u) = 0, in Rn × (0,∞);

u(x, 0) = f(x), on Rn.

Let ~u(x,y) = u(x, |y|), y ∈ R, be the reection of u to Rn+1. The hypothesis (−∆)σf = 0 in

O implies that y1−2σuy(x,y)→ 0 as y→ 0+, for all x ∈ O. This is used to show that ~u is a

weak solution of the degenerate elliptic equation with A2 weight

div(|y|1−2σ∇~u) = 0, in O× (−R,R) ⊂ Rn+1,

for some R > 0. Recall that a nonnegative function ω on Rn is an A2 weight if

sup
B ball

(
1

|B|

∫
B

ω

)(
1

|B|

∫
B

ω−1

)
<∞.

Then the theory of degenerate elliptic equations by E. Fabes, et all in [34] says that ~u satis�es

an interior Harnack's inequality and it is locally H�older continuous, thus f(x) = ~u(x, 0) has

the same properties. And then, P. R. Stinga and J. L. Torrea [82] extended Harnack's

inequality for the fractional harmonic oscillator.

We proved Harnack's inequalities for the following operators:

� Divergence form elliptic operators L = −div(a(x)∇) +V(x) with bounded measurable

coe�cients a(x) and locally bounded nonnegative potentials V(x) de�ned on bounded

domains;
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� Ornstein-Uhlenbeck operator OB and harmonic oscillator HB on Rn;

� Laguerre operators Lα, L
ϕ
α , L

`
α, L

ψ
α and LL

α on (0,∞)n with α ∈ (−1,∞)n;

� Ultraspherical operators Lλ and lλ on (0,π) with λ > 0;

� Laplacian on domains Ω ⊆ Rn;

� Bessel operators ∆λ and Sλ on (0,∞) with λ > 0.

For the full description of the operators, see Sections 4.3, 4.5 and 4.6. In general, all these

operators L are nonnegative, self-adjoint and have a dense domain Dom(L) ⊂ L2(Ω,dη),

where Ω ⊆ Rn, n > 1, is an open set and dη is some positive measure on Ω.

To get Harnack's inequalities for fractional powers of the operators listed above we push

further the Ca�arelli{Silvestre ideas. We proceed in two steps. First we use two tools:

the extension problem of [82] and Harnack's inequality for degenerate Schr�odinger operators

of C. E. Guti�errez [39]. These are enough to get Theorem 4.4, from which the result for

divergence form elliptic operators with potentials and some Schr�odinger operators from or-

thogonal expansions is deduced. Secondly, we apply systematically a transference method

that permits us to derive the results for other operators involving terms of order one and in

non-divergence form. The transference method is inspired in ideas from Harmonic Analysis

of orthogonal expansions, where it is used to transfer Lp boundedness of operators, see for

example [1, 3, 41]. In that case, the dimension, the underlying measure and the parameters

that de�ne the operators play a signi�cant role. But we can obtain our estimates without any

restrictions on dimensions or parameters in our case. And we have the following theorem.

Theorem 1.5. Let L be any of the operators listed above and 0 < σ < 1. Let O be an

open and connected subset of Ω and �x a compact subset K ⊂ O. There exists a positive

constant C, depending only on σ, n, K and the coe�cients of L such that

sup
K
f 6 C inf

K
f,

for all functions f ∈ Dom(L), f > 0 in Ω, such that Lσf = 0 in L2(O,dη). Moreover, f is

a continuous function in O.

Theorem 1.5 is new, except for three cases: the Laplacian on Rn ([16, Theorem 5.1]

and [52, p. 266]), the Laplacian on the one-dimensional torus [67, Theorem 6.1] and the

harmonic oscillator [82, Theorem 1.2]. Harnack's inequality is well-known for divergence

form Schr�odinger operators with locally bounded potentials [39], see also [23, 37, 89]. For

the non-divergence form operators listed above the result can be obtained by using our

transference method of Section 4.4. We observe that, instead of the theory of [34], Harnack's

inequality for degenerate Schr�odinger operators of C. E. Guti�errez [39] had to be applied.
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1.3 Fractional vector-valued Littlewood–Paley–Stein theory
for semigroups

In Chapter 5, we shall consider a generalized vector-valued Littlewood-Paley-Stein theory

for semigroups generated by the Laplacian. We want to get some equivalent connections be-

tween the one-side inequalities of generalized Littlewood-Paley g-function and the geometric

properties of the Banach space in which the functions taking values. These equivalences are

originally from the Probability Theory.

In Probability Theory, the martingale type and cotype properties of a Banach space B
were introduced in the 1970's by G. Pisier [64, 65] in connection with the convexity and

smoothness of B. If M = (Mn)n∈N is a martingale de�ned on some probability space and

with values in B, the q-square function SqM is de�ned by SqM =
( ∞∑
n=1

‖Mn−Mn−1‖qB
) 1
q
.

The Banach space B is said to be of martingale cotype q, 2 6 q < ∞, if for every bounded

L
p
B-martingale M = (Mn)n∈N we have ‖SqM‖Lp 6 Cp sup

n
‖Mn‖LpB , for some 1 < p < ∞.

The Banach space B is said to be of martingale type q, 1 < q 6 2, when the reverse inequality

holds for some 1 < p < ∞. The martingale type and cotype properties do not depend on

1 < p < ∞ for which the corresponding inequalities are satis�ed. B is of martingale cotype

q if and only if its dual, B∗, is of martingale type q ′ = q/(q− 1).

It is a common fact that results in probability theory have parallels in harmonic analysis.

In this line of thought, Q. Xu [92] de�ned the Lusin cotype and Lusin type properties

for a Banach space B as follows. Let f be a function in L1B(T), where T denotes the one

dimensional torus and L1B(T) stands for the Bochner-Lebesgue space of strong measurable

B-valued functions such that the scalar function ‖f‖B is integrable. Consider the generalized

Littlewood{Paley g-function

gq(f)(z) =

(∫1
0

(1− r)q ‖∂rPr ∗ f(z)‖qB
dr

1− r

) 1
q

,

where Pr(θ) denotes the Poisson kernel. It is said that B is of Lusin cotype q, q > 2, if for

some 1 < p <∞ we have ‖gq(f)‖Lp(T) 6 Cp‖f‖LpB(T); B is of Lusin type q, 1 6 q 6 2, if for

some 1 < p <∞ we have ‖f‖LpB(T) 6 Cp
(
‖f̂(0)‖B + ‖gq(f)‖Lp(T)

)
.

The Lusin cotype and Lusin type properties do not depend on p ∈ (1,∞); see [63, 92].

Moreover, a Banach space B is of Lusin cotype q (Lusin type q) if and only if B is of

martingale cotype q (martingale type q); see [92, Theorem 3.1].

T. Mart��nez, J. L. Torrea and Q. Xu [57] extended the results in [92] to subordinated

Poisson semigroup {Pt}t>0 of a general symmetric di�usion Markovian semigroup {Tt}t>0.

Being positive operators, Tt and Pt have straightforward norm-preserving extensions to

L
p
B(Ω) for every Banach space B, where LpB(Ω) denotes the usual Bochner{Lebesgue Lp-

space of B-valued functions de�ned on a positive measure space (Ω,dµ).
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As we said before, C. Segovia and R. L. Wheeden [70] motivated by some characteriza-

tion of potential spaces on Rn, introduced the \fractional derivative" ∂α. Observe that for

reasonable good functions, ∂αt Ptf(x) = eiπα(−∆)α/2Ptf(x). In [70], the authors developed

a satisfactory theory of euclidean square functions of Littlewood{Paley type in which the

usual derivatives are substituted by these fractional derivatives.

It turns out that the notion of partial derivative considered by C. Segovia and R. L.

Wheeden can be used in the case of general subordinated Poisson semigroups de�ned on

a measure space (Ω,dµ). Of course, without having a pointwise expression but just an

identity in Lp(Ω). This fractional derivative has a nice behavior for iteration and for spectral

decomposition. We will consider the following \fractional generalized Littlewood{Paley g-

function"

gqα(f) =

(∫∞
0

‖tα∂αt Ptf‖
q
B
dt

t

) 1
q

, f ∈
⋃

16p6∞L
p
B(Ω), α > 0. (1.5)

Then it is natural to ask whether results already known for classical derivatives are still

true for the fractional derivative case. In Chapter 5, we shall be concerned with several

characterizations of Lusin type and Lusin cotype of Banach spaces by the boundedness of

the Littlewood{Paley g-functions de�ned by using the fractional derivatives. In fact, we get

the following results.

Theorem 1.6. Given a Banach space B and 2 6 q < ∞, the following statements are

equivalent:

(i) B is of Lusin cotype q.

(ii) For every symmetric di�usion semigroup {Tt}t>0 with subordinated semigroup

{Pt}t>0, for every (or, equivalently, for some) p ∈ (1,∞), and for every (or,

equivalently, for some) α > 0, there is a constant C such that

‖gqα(f)‖Lp(Ω) 6 C‖f‖LpB(Ω), ∀f ∈ LpB(Ω).

With the results in [57], some technical results of the gqα-functions in Section 5.3 and an

extensively using of Calder�on-Zygmund theory, we can give the proof of Theorem 1.6 easily.

On the particular Lebesgue measure space (Rn,dx) , we have the following theorem about

the Lusin cotype property of the Banach space and the a.e. convergence.

Theorem 1.7. Given a Banach space B, 2 6 q < ∞, the following statements are

equivalent:

(i) B is of Lusin cotype q.

(ii) For every (or, equivalently, for some) p ∈ [1,∞) and for every (or, equivalently,

for some) α > 0, gqα(f)(x) <∞ for a.e. x ∈ Rn, for every f ∈ LpB(Rn).
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(iii) For every (or, equivalently, for some) p ∈ [1,∞) and for every (or, equivalently,

for some) α > 0, Sqα(f)(x) <∞ for a.e. x ∈ Rn, for every f ∈ LpB(Rn).

(iv) For every (or, equivalently, for some) p ∈ [q,∞) and for every (or, equivalently,

for some) α > 0, gq,∗λ,α(f)(x) <∞ for a.e. x ∈ Rn, for every f ∈ LpB(Rn).

The proof of Theorem 1.7 contains some new ideas that can be applied to a huge class of

operators. Roughly, the method used in the proof is the following. If an operator T with a

Calder�on{Zygmund kernel is a.e. pointwise �nite (Tf(x) <∞) for any function f in Lp0(Rn)
with some p0 ∈ [1,∞), then T is bounded from L1(Rn) into weak-L1(Rn).

Let us describe the organization of the next chapters. Chapter 2 is devoted to get some

regularity properties of the fractional powers of Schr�odinger operators by using harmonic

extension technical, which contains the results of paper [55]. In Chapter 3, we collect the

results of paper [56] which gives some regularity estimates by a T1-type criterion. Chapter

4, aims to get some interior Harnack's inequalities for some fractional operators, which cor-

responds to the paper [84]. At last, we collect the results in [88] in Chapter 5, related with

the Littlewood-Paley-Stein theory on semigroups.
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Chapter 2

Regularity properties of
Schrödinger operators via
L-harmonic extensions

In this chapter, we shall get some regularity estimates of operators related with Schr�odinger

operators via L-harmonic extensions. In Section 2.1, we give some basic properties of the

Schr�odinger operators, especially the critical radii function and some estimates of the heat

kernel. We list the regular theorem and some characterization theorems in Section 2.2. With

the characterization theorems in Section 2.2, we give a simple proof of the regularity theorem

in Section 2.3. The proof of the characterization theorems are given in Section 2.4.

2.1 Some properties of the Schrödinger operators

Let

L := −∆+ V, (2.1)

be the time independent Schr�odinger operator in Rn, n > 3, where the nonnegative potential

V satis�es a reverse H�older inequality for some s > n/2; that is, there exists a constant

C = C(s,V) such that

(
1

|B|

∫
B

V(y)s dy

)1/s

6
C

|B|

∫
B

V(y) dy, (2.2)

for all balls B ⊂ Rn. Associated to this potential, Z. Shen de�nes in [72] the critical radii

function as

ρ(x) := sup
{
r > 0 :

1

rn−2

∫
B(x,r)

V(y) dy 6 1
}
, x ∈ Rn. (2.3)

15
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Lemma 2.1 (See [72, Lemma 1.4]). There exist c > 0 and k0 > 1 such that for all

x,y ∈ Rn

c−1ρ(x)

(
1+

|x− y|

ρ(x)

)−k0

6 ρ(y) 6 cρ(x)

(
1+

|x− y|

ρ(x)

) k0
k0+1

. (2.4)

In particular, there exists a positive constant C1 < 1 such that

if |x− y| 6 ρ(x) then C1ρ(x) < ρ(y) < C
−1
1 ρ(x).

Covering by critical balls. According to [30, Lemma 2.3] there exists a sequence of points

{xk}
∞
k=1 in Rn such that if Qk := B(xk, ρ(xk)), k ∈ N, then

(a) ∪∞k=1Qk = Rn, and

(b) there exists N ∈ N such that card{j ∈ N : Q∗∗j ∩Q∗∗k 6= ∅} 6 N, for every k ∈ N.

For a ball B, the notation B∗ above means the ball with the same center as B and twice

radius.

Let {Tt}t>0 be the heat{di�usion semigroup associated to L:

Ttf(x) ≡ e−tLf(x) =
∫
Rn
kt(x,y)f(y) dy, f ∈ L2(Rn), x ∈ Rn, t > 0. (2.5)

In the following arguments we need some well known estimates about the kernel kt(x,y).

Lemma 2.2 (See [31, 51]). For every N > 0 there exists a constant CN such that

0 6 kt(x,y) 6 CNt
−n/2e−

|x−y|2

5t

(
1+

√
t

ρ(x)
+

√
t

ρ(y)

)−N

, x,y ∈ Rn, t > 0. (2.6)

Let

ht(x) :=
1

(4πt)n/2
e−

|x|2

4t , x ∈ Rn, t > 0, (2.7)

be the kernel of the classical heat semigroup {Tt}t>0 = {et∆}t>0 on Rn.

Lemma 2.3 (See [31, 51]). For every N > 0 there exists a constant CN such that

0 6 kt(x,y) 6 CNt
−n/2e−

|x−y|2

5t

(
1+

√
t

ρ(x)
+

√
t

ρ(y)

)−N

, x,y ∈ Rn, t > 0.

Lemma 2.4 (See [31, Proposition 2.16]). There exists a nonnegative function ω ∈ S such

that

|kt(x,y) − ht(x− y)| 6

( √
t

ρ(x)

)δ0
ωt(x− y), x,y ∈ Rn, t > 0,

where ωt(x− y) := t
−n/2ω

(
(x− y)/

√
t
)
and

δ0 := 2−
n

q
> 0. (2.8)
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In fact, going through the proof of [31] we see that ω(x) = e−|x|2 .

Lemma 2.5 (See [32, Proposition 4.11]). For every 0 < δ < δ0, there exists a constant

c > 0 such that for every N > 0 there exists a constant C > 0 such that for |y− z| <
√
t

we have

|kt(x,y) − kt(x, z)| 6 C

(
|y− z|√

t

)δ
t−n/2 e−c|x−y|

2/t

(
1+

√
t

ρ(x)
+

√
t

ρ(y)

)−N

.

Lemma 2.6 (See [31, Proposition 2.17]). For every 0 < δ < min{1, δ0},

|(kt(x,y) − ht(x− y)) − (kt(x, z) − ht(x− z))| 6 C

(
|y− z|

ρ(x)

)δ
ωt(x− y),

for all x,y ∈ Rn and t > 0, with |y− z| < Cρ(y) and |y− z| < 1
4
|x− y|.

The Poisson semigroup associated to L is obtained from the heat semigroup (2.5) through

Bochner's subordination formula, see [78]:

Ptf(x) ≡ e−t
√
Lf(x) =

1√
π

∫∞
0

e−u√
u

Tt2/(4u)f(x) du =
t

2
√
π

∫∞
0

e−t
2/(4u)

u3/2
Tuf du, (2.9)

for any x ∈ Rn, t > 0. It follows that

Ptf(x) =

∫
Rn

Pt(x,y)f(y) dy, x ∈ Rn, t > 0,

where

Pt(x,y) =
1√
π

∫∞
0

e−u√
u
kt2/(4u)(x,y) du =

t

2
√
π

∫∞
0

e−t
2/(4u)

u3/2
ku(x,y) du. (2.10)

2.2 Regularity estimates for Schrödinger operator

The concept of H�older spaces associated with L is based on the critical radii function ρ(x)

de�ned by Z. Shen in [72], see (2.3). In our case, the function ρ(x) is always considered when

the potential V satis�es a reverse H�older inequality for some q > n/2.

Definition 2.7 (H�older spaces for L). A continuous function f de�ned on Rn belongs to the

space C0,α
L , 0 < α 6 1, if there exists a constant C such that

|f(x) − f(y)| 6 C |x− y|α and |f(x)| 6 Cρ(x)α,

for all x,y ∈ Rn. If we de�ne

[f]Cα = sup
x,y∈Rn
x 6=y

|f(x) − f(y)|

|x− y|α
and [f]Mα

L
= sup
x∈Rn

∣∣ρ(x)−αf(x)∣∣ ,
then the norm in the spaces C0,α

L is ‖f‖
C

0,α
L

= [f]Cα + [f]Mα
L
.
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Let us present the regularity estimates of fractional integrals, fractional powers of L and

the Laplace transform multiplier operator associated with L.

Theorem 2.8. Assume that q > n. Let σ be a positive number, 0 < α < 1 and f ∈ C0,α
L .

(a) If 0 < α+ σ < 1 then L−σ/2f ∈ C0,α+σ
L and

‖L−σ/2f‖
C

0,α+σ
L

6 C ‖f‖
C

0,α
L

.

(b) If σ < α then Lσ/2f ∈ C0,α−σ
L and

‖Lσ/2f‖
C

0,α−σ
L

6 C ‖f‖
C

0,α
L

.

(c) Let a be a bounded function on [0,∞) and de�ne

m(λ) = λ1/2
∫∞
0

e−sλ
1/2

a(s) ds, λ > 0.

Then the multiplier operator of Laplace transform type m(L) is bounded on C0,α
L ,

0 < α < 1.

In order to prove Theorem 2.8, we will use a characterization of functions f in C0,α
L by

properties of size and integrability of L-harmonic extensions to the upper half space. The

theory of BMOL spaces and Carleson measures developed in [27] will be a central tool. The

characterization is as following.

Theorem 2.9. Let 0 < α < 1 and f be a function such that∫
Rn

|f(x)|

(1+ |x|)n+α+ε
dx <∞

for any ε > 0. Fix any β > α and assume that q > n. The following statements are

equivalent:

(i) f ∈ C0,α
L .

(ii) There exists a constant c1,β such that

‖tβ∂βt Ptf‖L∞(Rn) 6 c1,βtα.

(iii) There exists a constant c2,β such that for all balls B = B(x0, r) in Rn,(
1

|B|

∫
B̂

|tβ∂
β
t Ptf(x)|

2 dx dt

t

)1/2

6 c2,β |B|
α
n ,

where B̂ denotes the tent over B de�ned by {(x, t) : x ∈ B,and 0 < t 6 r}.
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Moreover, the constants c1,β, c2,β and ‖f‖
C

0,α
L

above are comparable.

Note that the conclusion of Theorem 2.9 above is not valid in the cases α = 1 or α = 0.

In fact, we have the following results for α = 1:

Theorem 2.10 (Case α = 1). Assume that q > n.

(I) If f ∈ C0,1
L then for any β > 1 there exists a constant cβ such that(

1

|B|

∫
B̂

|tβ∂
β
t Ptf(x)|

2 dx dt

t

)1/2

6 cβ |B|
1
n ,

for all balls B. The converse statement is not true.

(II) Let Lµ = −∆ + µ, for µ > 0. There exists a function f such that for any β > 1

there exists a constant cβ that veri�es ‖tβ∂βt Ptf‖L∞(Rn) 6 cβt, for all t > 0, but

f does not belong to the space C0,1
Lµ
.

It has no sense to take α = 0 as a H�older exponent. By the Campanato-type description

of Proposition 2.27 we see that the natural replacement in this situation is the space BMOL.

Theorem 2.11 (Case α = 0). Assume that q > n.

(A) A function f is in BMOL if and only if for f being a function such that∫
Rn

|f(x)|

(1+ |x|)n+ε
dx <∞

for any ε > 0, and for all β > 0 there exists a constant cβ such that(
1

|B|

∫
B̂

|tβ∂
β
t Ptf(x)|

2 dx dt

t

)1/2

6 cβ,

for all balls B.

(B) Let Lµ = −∆+ µ, for µ > 0. There exists a function f ∈ BMOLµ such that

sup
t>0

|tβ∂
β
t Ptf(0)| =∞,

for some β > 0.

2.3 Proof of regularity theorem

In this section we shall provide the proof of Theorem 2.8. With Theorem 2.9, we can prove

the regularity estimates, Theorem 2.8, easily. Let us start with a technical lemma which will

be used several times later.
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Lemma 2.12. Let 0 < γ < 1, and g be a continuous function such that |g(x)| 6 Cρ(x)γ,
where ρ is the critical radii function de�ned in (2.3). Then

(i) For any ε > 0, ∫
Rn

|g(x)|

(1+ |x|)n+γ+ε
dx <∞.

(ii) For any β > γ and any N > 0 there exists a constant Cβ,N,g such that

|sβ∂βs Psg(x)| 6 Cβ,N,g

(
ρ(x)

s

)N
(ρ(x)γ + sγ) , x ∈ Rn, s > 0.

(iii) For any N > 0 there exists a constant CN,g such that

|Psg(x)| 6 CN,g

(
ρ(x)

s

)N
(ρ(x)γ + sγ) , x ∈ Rn, s > 0.

Proof. Let us begin with (i). We write

I =

∫
Rn

|g(x)|

(1+ |x|)n+γ+ε
dx

=

∫
|x|<2ρ(0)

|g(x)|

(1+ |x|)n+γ+ε
dx+

∞∑
j=1

∫
2jρ(0)6|x|<2j+1ρ(0)

|g(x)|

(1+ |x|)n+γ+ε
dx.

To estimate the integrals we apply the hypothesis and some properties of the function ρ

contained in Lemma 2.1. The inequality |x| = |x− 0| < 2j+1ρ(0), j > 0, and Lemma 2.1 give

us

ρ(x) 6 cρ(0)

(
1+

|x− 0|

ρ(0)

) k0
k0+1

6 cρ(0)
(
1+ 2j+1

) k0
k0+1 6 Cρ(0)2j.

Therefore,

I 6 Cρ(0)γ+n + C

∞∑
j=1

(
ρ(0)2j

)γ+n
(1+ 2jρ(0))

n+γ+ε 6 C+ C

∞∑
j=1

2−jε <∞.

For (ii), recall that (i) implies that Ptg(x) is well de�ned. By Proposition 2.15(b) and

Lemma 2.1 below, for some constant C = Cβ,N,g, we have

|sβ∂βs Psg(x)| 6 C
∫
Rn

sβρ(x)N

(s+ |x− y|)n+β+N
ρ(y)γ dy

6 C
∫
Rn

sβρ(x)N

(s+ |x− y|)n+β+N
ρ(x)γ

(
1+

|x− y|

ρ(x)

)γ
dy

6 Cρ(x)γ+N
∫
Rn

sβ

(s+ |x− y|)n+β+N
dy

+ Cρ(x)N
∫
Rn

sβ

(s+ |x− y|)n+β+N−γ
dy

= Cρ(x)γ+Ns−N + Cρ(x)Ns−N+γ.
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The third statement (iii) can be proved in the same way as (ii).

Proof of Theorem 2.8. We start with the proof of part (a). For f ∈ C0,α
L , we have

L−σ/2f(x) =
1

Γ(σ)

∫∞
0

Psf(x)
ds

s1−σ
, x ∈ Rn. (2.11)

By Lemma 2.12(iii), since |f(x)| 6 Cρ(x)α,∫∞
0

|Psf(x)|
ds

s1−σ
6 C
∫ρ(x)
0

ρ(x)α+N1

sN1
+
ρ(x)N1

sN1−α

ds

s1−σ

+ C

∫∞
ρ(x)

ρ(x)α+N2

sN2
+
ρ(x)N2

sN2−α

ds

s1−σ
(2.12)

6 CN1,N2,α,f · ρ(x)
α+σ,

by choosing 0 < N1 < σ and N2 > α + σ. Hence L−σ/2f(x) is well de�ned. Moreover, it

satis�es the required growth |L−σ/2f(x)| 6 Cρ(x)α+σ. So Lemma 2.12 applies to it. Fix any

β > α + σ. To obtain the conclusion we apply Theorem 2.9. That is, it is enough to prove

that ‖tβ∂βt Pt(L−σ/2f)‖L∞(Rn) 6 C ‖f‖
C

0,α
L
tα+σ. By using formula (2.11) and Lemma 2.12

together with Fubini's theorem, we have

tβ∂
β
t Pt(L

−σ/2f)(x) = Ctβ
∫∞
0

∂
β
t Pt(Psf)(x)

ds

s1−σ
= Ctβ

∫∞
0

∂βwPwf(x)
∣∣∣
w=t+s

ds

s1−σ
.

Indeed, by (2.12) and Lemma 2.12,

|tβ∂
β
t Pt(L

−σ/2f)(x)| 6 Cx,t,f

(
ρ(x)α+N0+N1

tN1
+

ρ(x)N1

tN1−α−N0

)
<∞,

for any x ∈ Rn and t > 0. So Fubini's Theorem can be applied. Since β > α+ σ we can use

Theorem 2.9 to get

|tβ∂
β
t Pt(L

−σ/2f)(x)| 6 C ‖f‖
C

0,α
L
tβ
∫∞
0

(t+ s)α−β
ds

s1−σ

= C ‖f‖
C

0,α
L
tα+σ

∫∞
0

(1+ r)α−β
dr

r1−σ

= C B(σ,β− α− σ) ‖f‖
C

0,α
L
tα+σ, for all x ∈ Rn.

This concludes the proof of (a).

To prove part (b), �x any β > α. Since 0 < σ < α < 1 we can write

Lσ/2f(x) =
1

Γ(−σ)

∫∞
0

Psf(x) − f(x)
ds

s1+σ
(2.13)

= I(x, t) + II(x, t),
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where

I(x, t) =
1

Γ(−σ)

∫t
0

Psf(x) − f(x)
ds

s1+σ

and

II(x, t) =
1

Γ(−σ)

∫∞
t

Psf(x) − f(x)
ds

s1+σ
.

To apply Theorem 2.9 we show �rst that
∣∣Lσ/2f(x)∣∣ 6 Cρ(x)α−σ. Indeed, since f ∈ C0,α

L ,

|I(x, ρ(x))| 6
∫ρ(x)
0

|Psf(x) − f(x)|
ds

s1+σ
=

∫ρ(x)
0

∣∣∣∣∫s
0

∂rPrf(x) dr

∣∣∣∣ ds

s1+σ

6 C
∫ρ(x)
0

∫s
0

rα−1 dr
ds

s1+σ
= Cρ(x)α−σ.

Taking N = α in Lemma 2.12(iii) and using the growth of f we also have

|II(x, ρ(x))| 6
∫∞
ρ(x)

|Psf(x) − f(x)|
ds

s1+σ
6
∫∞
ρ(x)

|Psf(x)|+ |f(x)|
ds

s1+σ

6 C
∫∞
ρ(x)

ρ(x)2α

sα
+ ρ(x)α

ds

s1+σ
= Cρ(x)α−σ.

The computations above also say that (2.13) is well de�ned. By linearity, it is enough to

analyze tβ∂βt PtI(x, t) and t
β∂
β
t PtII(x, t) separately. Fubini's theorem implies that

tβ∂
β
t PtI(x, t) =

tβ

Γ(−σ)

∫t
0

∫s
0

∂β+1
w Pwf(x)

∣∣
w=t+r

dr
ds

s1+σ
.

Apply Theorem 2.9 and the fact that β > α to obtain

|tβ∂
β
t PtI(x, t)| 6 C ‖f‖C0,α

L
tβ
∫t
0

∫s
0

(t+ r)α−β−1 dr
ds

s1+σ

= C ‖f‖
C

0,α
L
tα
∫t
0

∫s/t
0

(1+ u)α−β−1 du
ds

s1+σ
(2.14)

6 C ‖f‖
C

0,α
L
tα
∫t
0

s

t

ds

s1+σ
= C ‖f‖

C
0,α
L
tα−σ.

Theorem 2.9 and Fubini's theorem give us

|tβ∂
β
t PtII(x, t)| 6 C

∫∞
t

∣∣∣tβ∂βwPwf(x)∣∣w=t+s

∣∣∣+ ∣∣∣tβ∂βt Ptf(x)∣∣∣ ds

s1+σ

6 C ‖f‖
C

0,α
L

∫∞
t

tβ(t+ s)α−β + tα
ds

s1+σ
= C ‖f‖

C
0,α
L
tα−σ. (2.15)

Collecting estimates (2.14) and (2.15) we get the conclusion of (b).

Let us �nally check (c). Fix any β > α. As

m(λ) = −

∫∞
0

∂s
(
e−sλ

1/2)
a(s) ds,
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we have

m(L)f(x) = −

∫∞
0

∂sPsf(x) a(s) ds.

As a is a bounded function and f ∈ C0,α
L ,∫ρ(x)

0

|∂sPsf(x) a(s)| ds 6 C
∫ρ(x)
0

sα−1 ds = Cρ(x)α.

Moreover, by Lemma 2.12(ii) with β = 1 and some N > α at there,∫∞
ρ(x)

|∂sPsf(x) a(s)| ds 6 C
∫∞
ρ(x)

(
ρ(x)

s

)N
(ρ(x)α + sα)

ds

s
= Cρ(x)α.

Therefore, |m(L)f(x)| 6 Cρ(x)α, so by Lemma 2.12(i) the hypothesis of Theorem 2.9 holds

for m(L)f. By Theorem 2.9 and Fubini's theorem we have

|tβ∂
β
t Pt

(
m(L)f

)
(x)| = tβ

∣∣∣∣∫∞
0

∂β+1
w Pwf(x)

∣∣
w=t+s

a(s) ds

∣∣∣∣
6 C ‖f‖

C
0,α
L
tβ
∫∞
0

(t+ s)α−(β+1) ds

= C ‖f‖
C

0,α
L
tα
∫∞
0

(1+ r)α−(β+1) dr = C ‖f‖
C

0,α
L
tα.

This completes the proof of (c).

2.4 Proofs of characterizations of f in Hölder spaces for Schrödinger
operator

In this section, we aim to give the proofs of Theorems 2.9{2.11 which characterize the func-

tions in C0,α
L . In order to do this, we need do some preparations. We will give some estimates

for the kernel that we need �rst. Secondly, we de�ne the BMOαL spaces, give its relation

with C0,α
L and prove a duality result HpL − BMOαL. With these results, we give the proof of

Theorems 2.9{2.11 at last.

2.4.1 Estimates on the kernel

We de�ne the following kernel that will be useful to obtain estimates for the Poisson kernel

in the sequel. Let

Qt(x,y) := t
2 ∂ks(x,y)

∂s

∣∣∣∣
s=t2

, x,y ∈ Rn, t > 0, (2.16)

where ks is the heat kernel related with L as in (2.5).
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Lemma 2.13 (See [27, Proposition 4]). Let δ0 be as in (2.8). There exists a constant c

such that for every N there is a constant CN such that

(a) |Qt(x,y)| 6 CNt
−ne−c

|x−y|2

t2

(
1+

t

ρ(x)
+

t

ρ(y)

)−N

;

(b) |Qt(x+ h,y) −Qt(x,y)| 6 CN

(
|h|

t

)δ0
t−ne−c

|x−y|2

t2

(
1+

t

ρ(x)
+

t

ρ(y)

)−N

, for all |h| 6

t;

(c)

∣∣∣∣∫
Rn
Qt(x,y) dy

∣∣∣∣ 6 CN (t/ρ(x))δ0

(1+ t/ρ(x))N
.

Remark 2.14. Let 0 < δ ′ 6 δ0. Then we deduce from Lemma 2.13(c) that for any N > 0

there exists a constant CN such that∣∣∣∣∫
Rn
Qt(x,y) dy

∣∣∣∣ 6 CN (t/ρ(x))δ
′

(1+ t/ρ(x))N
.

Indeed, if t/ρ(x) < 1,

(t/ρ(x))δ0

(1+ t/ρ(x))N
=

(t/ρ(x))δ
′
(t/ρ(x))δ0−δ

′

(1+ t/ρ(x))N
6

(t/ρ(x))δ
′

(1+ t/ρ(x))N
.

Suppose now that t/ρ(x) > 1. Since N can be arbitrary, we choose it such that M :=

N+ δ ′ − δ0 > 0. Then

(t/ρ(x))δ0

(1+ t/ρ(x))N
6

(t/ρ(x))δ
′
(t/ρ(x))δ0−δ

′

(1+ t/ρ(x))N+δ ′−δ0(t/ρ(x))δ0−δ
′ =

(t/ρ(x))δ
′

(1+ t/ρ(x))M
.

To conclude note that M > 0 can also be arbitrary.

We will denote the classical Poisson kernel in Rn+1
+ by Pt(x),

Pt(x) = cn
t

(t2 + |x|2)
n+1
2

, (2.17)

and Ptf(x) = Pt ∗ f(x).
Let us now compute the fractional derivatives of the Poisson kernel. The formula will

involve the kernel Qt(x,y) of (2.16) and the Hermite polynomials Hm(r) de�ned, form ∈ N0

and r ∈ R, as

Hm(r) = (−1)mer
2 dm

drm

(
e−r

2)
.

Observe �rst that, from the �rst identity in (3.15) and the de�nition of Qt in (2.16),

∂tPt(x,y) =
2

t
√
π

∫∞
0

e−u√
u
Qt/(2

√
u)(x,y) du =

2√
π

∫∞
0

e−t
2/(4v2)Qv(x,y)

dv

v2
.
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Hence, for each m > 1,

∂mt Pt(x,y) =
2√
π

∫∞
0

∂m−1
t

(
e−

t2

4v2
)
Qv(x,y)

dv

v2

=
2√
π

∫∞
0

dm−1

drm−1

(
e−r

2)∣∣∣
r= t

2v

1

(2v)m−1
Qv(x,y)

dv

v2

=
2(−1)m√

π

∫∞
0

Hm−1

(
t

2v

)
e−

t2

4v2
1

(2v)m−1
Qv(x,y)

dv

v2
.

With this we can write the derivatives ∂βt Pt(x,y), β > 0, as follows. For m = [β] + 1,

∂
β
t Pt(x,y) =

e−iπ(m−β)

Γ(m− β)

∫∞
0

∂mt Pt+s(x,y)s
m−β ds

s

=
2(−1)me−iπ(m−β)

Γ(m− β)
√
π

∫∞
0

∫∞
0

Hm−1

(
t+ s

2v

)
e−

(t+s)2

4v2
1

(2v)m−1
Qv(x,y)

dv

v2
sm−β ds

s

(2.18)

=
2(−1)me−iπ(m−β)

Γ(m− β)
√
π

∫∞
0

[∫∞
0

Hm−1

(
t+ s

2v

)
e−

(t+s)2

4v2 sm−β ds

s

]
1

(2v)m−1
Qv(x,y)

dv

v2
.

The next proposition collects all the estimates for the Poisson kernel that we need.

Proposition 2.15. Let β > 0. For any 0 < δ ′ 6 δ0 with 0 < δ ′ < β, and N > 0 there

exists a constant C = CN,β,δ ′ such that

(a) |Pt(x,y)| 6 C
t

(|x− y|2 + t2)
n+1
2

(
1+

(|x− y|2 + t2)1/2

ρ(x)
+

(|x− y|2 + t2)1/2

ρ(y)

)−N

;

(b) |tβ∂
β
t Pt(x,y)| 6 C

tβ

(|x− y|2 + t2)
n+β
2

(
1+

(|x− y|2 + t2)1/2

ρ(x)
+

(|x− y|2 + t2)1/2

ρ(y)

)−N

;

(c) For all |h| 6 t,

|tβ∂
β
t Pt(x+ h,y) − t

β∂
β
t P(x,y)|

6 C

(
|h|

t

)δ ′
tβ

(|x− y|2 + t2)
n+β
2

(
1+

(|x− y|2 + t2)1/2

ρ(x)
+

(|x− y|2 + t2)1/2

ρ(y)

)−N

;

(d)

∣∣∣∣∫
Rn
tβ∂

β
t Pt(x,y) dy

∣∣∣∣ 6 C (t/ρ(x))δ
′

(1+ t/ρ(x))N
.
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Proof. Let us prove (a) �rst. Observe that, by the second identity of (3.15) and Lemma 2.3,

|Pt(x,y)| 6 Ct
∫∞
0

u−
n+3
2 e−

|x−y|2+t2

cu

(
1+

√
u

ρ(x)
+

√
u

ρ(y)

)−N

du

= Ct

∫ |x−y|2+t2
0

u−
n+3
2 e−

|x−y|2+t2

cu

(
1+

√
u

ρ(x)
+

√
u

ρ(y)

)−N

du

+ Ct

∫∞
|x−y|2+t2

u−
n+3
2 e−

|x−y|2+t2

cu

(
1+

√
u

ρ(x)
+

√
u

ρ(y)

)−N

du

=: I+ II.

For I apply the change of variables r = (|x− y|2 + t2)/u to get

I 6
Ct

(|x− y|2 + t2)
n+1
2

(
1+

(|x− y|2 + t2)1/2

ρ(x)
+

(|x− y|2 + t2)1/2

ρ(y)

)−N ∫∞
1

r
n+N−1

2 e−cr dr.

For II,

II 6 Ct

(
1+

(|x− y|2 + t2)1/2

ρ(x)
+

(|x− y|2 + t2)1/2

ρ(y)

)−N ∫∞
|x−y|2+t2

u−
n+3
2 du

= C
t

(|x− y|2 + t2)
n+1
2

(
1+

(|x− y|2 + t2)1/2

ρ(x)
+

(|x− y|2 + t2)1/2

ρ(y)

)−N

.

Pasting together these last two estimates we conclude the proof of (a).

To prove (b), note that we can estimate the integral in brackets in (2.18) as follows:∣∣∣∣∫∞
0

Hm−1

(
t+ s

2v

)
e−

(t+s)2

4v2 sm−β ds

s

∣∣∣∣
6 Cm

∫∞
0

e−c
(t+s)2

4v2 sm−β ds

s
6 Cme

−c t
2

v2

∫∞
0

e−c
s2

v2 sm−β ds

s
(2.19)

= Cme
−c t

2

v2 vm−β

∫∞
0

e−cr
2

rm−β dr

r
= Cm,β e

−c t
2

v2 vm−β.

Using identity (2.18), this last inequality and Lemma 2.13(a),

|∂
β
t Pt(x,y)| 6 C

∫∞
0

e−c
t2

v2 v−β |Qv(x,y)|
dv

v

6 C
∫∞
0

v−n−βe−c
|x−y|2+t2

v2

(
1+

v

ρ(x)
+

v

ρ(y)

)−N
dv

v

= C

∫ (|x−y|2+t2)1/2
0

v−n−βe−c
|x−y|2+t2

v2

(
1+

v

ρ(x)
+

v

ρ(y)

)−N
dv

v

+ C

∫∞
(|x−y|2+t2)1/2

v−n−βe−c
|x−y|2+t2

v2

(
1+

v

ρ(x)
+

v

ρ(y)

)−N
dv

v

=: I ′ + II ′.



2.4. Proofs of characterizations of f in C
0,α
L 27

Now I ′ and II ′ can be treated as I and II above, respectively. Hence (b) is proved.

The proof of part (c) follows parallel lines as we have just done for (b) by using identity

(2.18), estimate (2.19) and Lemma 2.13(b).

For (d), let 0 < δ ′ 6 δ0 with 0 < δ ′ < β. By Remark 2.14 and the change of variables

w = t/v, ∣∣∣∣∫
Rn
tβ∂

β
t Pt(x,y) dy

∣∣∣∣ 6 Ctβ ∫∞
0

e−c
t2

v2 v−β
∣∣∣∣∫

Rn
Qv(x,y) dy

∣∣∣∣ dvv
6 Ctβ

∫∞
0

e−c
t2

v2 v−β
(v/ρ(x))δ

′

(1+ v/ρ(x))N
dv

v

= C(t/ρ(x))δ
′
∫∞
0

e−cw
2 wβ−δ

′

(1+ t/(wρ(x)))N
dw

w
.

On one hand,∫∞
t/ρ(x)

e−cw
2 wβ−δ

′

(1+ t/(wρ(x)))N
dw

w
6 e

−c t2

2ρ(x)2

∫∞
0

e−c
w2

2 wβ−δ
′ dw

w

6 Ce
−c t2

ρ(x)2 6
C

(1+ t/ρ(x))N
.

On the other hand, we consider two cases. If t/ρ(x) 6 1 then∫t/ρ(x)
0

e−cw
2 wβ−δ

′

(1+ t/(wρ(x)))N
dw

w
6
∫1
0

wβ−δ
′ dw

w
6

C

(1+ t/ρ(x))N
.

If t/ρ(x) > 1 then∫t/ρ(x)
0

e−cw
2 wβ−δ

′

(1+ t/(wρ(x)))N
dw

w
6

1

(t/ρ(x))N

∫∞
0

e−cw
2

wβ−δ
′+N dw

w
6

C

(1+ t/ρ(x))N
.

This concludes the proof of the proposition.

To �nish this section we show a reproducing formula for the operator tβ∂βt Pt on L
2(Rn).

Lemma 2.16. The operator tβ∂βt Pt de�nes an isometry from L2(Rn) into L2(Rn+1
+ , dx dtt ).

Moreover,

f(x) =
4β

Γ(2β)
lim
ε→0
N→∞

∫N
ε

(tβ∂βt Pt)
2f(x)

dt

t
, in L2(Rn). (2.20)

Proof. The proof is standard by using spectral techniques. Let us denote by dE(λ) the

spectral resolution of the operator L1/2. Since Pt =

∫∞
0

e−tλ dE(λ) we have

tβ∂
β
t Pt = e

−iπ([β]+1)

∫∞
0

(tλ)βe−tλ dE(λ).
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Then, for all f ∈ L2(Rn), we have

‖tβ∂βt Ptf(x)‖
2

L2(Rn+1
+ ,dx dtt ) =

∫∞
0

∫
Rn

|tβ∂
β
t Ptf(x)|

2 dx
dt

t
=

∫∞
0

〈
(tβ∂βt Pt)

2f, f
〉
L2(Rn)

dt

t

=

∫∞
0

∫∞
0

t2βλ2βe−2tλ dt

t
dEf,f(λ) =

Γ(2β)

4β
‖f‖2L2(Rn) . (2.21)

In order to prove (2.20), it is enough to show that, for every pair of sequences nk ↗ ∞,

εk ↘ 0,

lim
k→∞

∫nk+m
nk

(tβ∂βt Pt)
2f(x)

dt

t
= lim
k→∞

∫εk+m
εk

(tβ∂βt Pt)
2f(x)

dt

t
= 0, for all m > 1. (2.22)

Indeed, when this is the case, we can �nd h ∈ L2(Rn) so that lim
k→∞

∫nk
εk

(tβ∂βt Pt)
2f
dt

t
= h

and therefore, by using also a polarized version of (2.21),

〈h,g〉L2(Rn) = lim
k→∞

∫nk
εk

〈
tβ∂

β
t Ptf, t

β∂
β
t Ptg

〉
L2(Rn)

dt

t
=

∫∞
0

〈
tβ∂

β
t Ptf, t

β∂
β
t Ptg

〉
L2(Rn)

dt

t

=
Γ(2β)

4β
〈f,g〉L2(Rn) , for all g ∈ L2(Rn),

which implies h =
Γ(2β)
4β

f. To check (2.22) we use functional calculus again, so that∥∥∥∥∫nk+m
nk

(tβ∂βt Pt)
2f(x)

dt

t

∥∥∥∥2
L2(Rn)

6
∫∞
0

∫nk+m
nk

t2βλ2βe−2tλ dt

t
d
∣∣Ef,f∣∣ (λ).

Since

∣∣∣∣∫nk+m
nk

t2βλ2βe−2tλ dt

t

∣∣∣∣ → 0 as nk → ∞ and

∫∞
0

d
∣∣Ef,f∣∣ (λ) 6 ‖f‖2L2(Rn), by domi-

nated convergence we have∫∞
0

∫nk+m
nk

t2βλ2βe−2tλ dt

t
d
∣∣Ef,f∣∣ (λ)→ 0, as nk →∞.

One proceeds similarly when εk → 0.

2.4.2 The Campanato-type space BMOαL, 0 6 α 6 1

In this section we give the de�nition of space BMOαL introduced in [13], also see [25, 93]

in a more general setting. For completeness we give the relation with C0,α
L and we prove a

duality result HpL{BMO
α
L.

Definition 2.17 (BMOα space for L, see [13]). A locally integrable function f is in BMOαL,

0 6 α 6 1, if there exists a constant C such that

(i)
1

|B|

∫
B

|f(x) − fB| dx 6 C |B|
α
n , for every ball B in Rn, and
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(ii)
1

|B|

∫
B

|f(x)| dx 6 C |B|
α
n , for every B = B(x0, r0), where x0 ∈ Rn and r0 > ρ(x0).

As usual, fB :=
1

|B|

∫
B

f(x) dx. The norm ‖f‖BMOαL is de�ned as

‖f‖BMOαL = inf {C > 0 : (i) and (ii) hold} . (2.23)

Remark 2.18. The space BMO0
L is the BMO space naturally associated to L given in [27].

We require α 6 1 in the de�nition above because if α > 1 then the space only contains

constant functions, see the proof of Proposition 2.27 below. Let us note that if (ii) is true for

some ball B then (i) holds true for the same ball, so we might ask for (i) only for balls with

radii smaller than ρ(x0). By using the classical John-Nirenberg inequality it can be seen that

if in (i) and (ii) L1-norms are replaced by Lp-norms, for 1 < p <∞, then the space BMOαL
does not change. In this case the conditions read:

(i)p

(
1

|B|

∫
B

|f(x) − fB|
p dx

)1/p

6 C |B|
α
n , for every ball B in Rn, and

(ii)p

(
1

|B|

∫
B

|f(x)|p dx

)1/p

6 C |B|
α
n , for every B = B(x0, r0), where x0 ∈ Rn and r0 >

ρ(x0).

Proposition 2.19. Let f ∈ BMOαL, 0 < α 6 1, and B = B(x, r) with r < ρ(x). Then there

exists a constant C = Cα such that

|fB| 6 Cα ‖f‖BMOαL ρ(x)
α.

Proof. Let j0 be a positive integer such that 2j0r 6 ρ(x) < 2j0+1r. Since f ∈ BMOαL,

|fB| 6
1

|B|

∫
B

|f(z) − f2B| dz+

j0∑
j=1

|f2jB − f2j+1B|+ |f2j0+1B|

6 C ‖f‖BMOαL |2B|
α
n + C

j0∑
j=1

‖f‖BMOαL |2j+1B|
α
n + ‖f‖BMOαL |2j0+1B|

α
n

6 C ‖f‖BMOαL |B|
α
n

j0+1∑
j=1

(2α)j = C ‖f‖BMOαL |B|
α
n
2α − 2α(j0+1)

1− 2α

6 C ‖f‖BMOαL |B|
α
n 2α(j0+1) = C2α ‖f‖BMOαL

(
2j0r

)α
6 Cα ‖f‖BMOαL ρ(x)

α.

Remark 2.20. From the proof of Proposition 2.19 it can be seen that if f is in BMOL =

BMO0
L and B = B(x, r) with r < ρ(x) then the conclusion of Lemma 2 in [27] follows:

|fB| 6 C

(
1+ log

ρ(x)

r

)
‖f‖BMOL

.
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Following the works by J. Dziuba�nski and J. Zienkiewicz [30, 32, 31] we introduce the

Hardy space naturally associated to L.

Definition 2.21 (Hardy spaces for L). An integrable function f is an element of the L{Hardy

space HpL, 0 < p 6 1, if the maximal function

T∗f(x) := sup
s>0

|Tsf(x)| = sup
s>0

∣∣∣∣∫
Rn
ks(x,y)f(y) dy

∣∣∣∣
belongs to Lp(Rn). The quasi-norm in HpL is de�ned by ‖f‖HpL := ‖T∗f‖Lp .

We also have a description for atomic L{Hardy spaces.

Definition 2.22 (Atomic Hardy spaces for L). An atom of the L{Hardy space HpL, 0 < p 6
1, associated with a ball B(x0, r) is a function a such that

� suppa ⊆ B(x0, r);

� ‖a‖L∞ 6
1

|B(x0, r)|
1/p

;

� r 6 ρ(x0);

� if r < ρ(x0)/4 then

∫
a(x) dx = 0.

The atomic L{Hardy space Hpat,L, 0 < p 6 1, is de�ned as the set of L1-functions f with

compact support such that f can be written as a sum

f =
∑
i

λiai,

where λi are complex numbers with
∑
i |λi| < ∞ and ai are atoms in HpL. The quasi-norm

is

‖f‖Hp
at,L

:= inf
{∑

i

|λi| : f =
∑
i

λiai

}
.

Theorem 2.23 (See [30, 31]). Let δ̃ = min {1, δ0}, with δ0 as in (2.8). Then, for every

f ∈ L1c(Rn),
‖f‖HpL ∼ ‖f‖Hp

at,L
, for all n

n+δ̃
< p 6 1.

Remark 2.24 (Important remark about atomic decompositions). When n/2 < q < n, the

conclusion of Theorem 2.23 can be extended to hold for Hardy spaces HpL with n
n+1

< p 6
n

n+δ0
, but atoms must be rede�ned, see [32].

Lemma 2.25. Let 0 < p 6 1. Then L2c(Rn) is a subset of HpL. More precisely, if

B = B(x0,R) with R > ρ(x0) then

‖g‖HpL 6 C |B|
1
p−

1
2 ‖g‖L2(B) , for all g ∈ L2(B).
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Proof. Let g ∈ L2(B), where B = B(x0,R) and R > ρ(x0). We have to prove that T∗g ∈
Lp(Rn). Let us write∫

Rn
(T∗g(x))p dx =

∫
4B

(T∗g(x))p dx+

∫
(4B)c

(T∗g(x))p dx =: I+ II.

For I we apply H�older's inequality with exponents 2/p > 2 and (2/p) ′, and the boundedness

of T∗ on L2(Rn), so that

I 6 C |B|1/(
2
p )
′
(∫

Rn
(T∗g(x))2 dx

)p/2
6 C |B|1−

p
2 ‖g‖p

L2(B)
.

Now let x ∈ (4B)c, that is |x− x0| > 4R. By Lemma 2.3, Lemma 2.1 and H�older's inequality,

Ttg(x) 6 C
∫
B

(
ρ(y)√
t

)N 1

tn/2
e−

|x−y|2

ct |g(y)| dy

6 C

(
ρ(x0)√
t

)N
e−

|x−x0|
2

ct

tn/2

∫
B

(
1+

|x0 − y|

ρ(x0)

) k0
k0+1

N

|g(y)| dy

6 C
ρ(x0)

N

|x− x0|
n+N

‖g‖L2(B)

(
|B|1/2 + ρ(x0)

−
k0
k0+1

N

(∫
B

|x0 − y|
2k0
k0+1

N
dy

)1/2
)

6 C ‖g‖L2(B) |B|
1/2

 ρ(x0)
N

|x− x0|
n+N

+
ρ(x0)

N(1−
k0
k0+1

)

|x− x0|
n+N(1−

k0
k0+1

)

 , x ∈ Rn.

The estimate above is uniform in t. Therefore for II,

II 6 C ‖g‖p
L2(B)

|B|
p
2

∫
(4B)c

 ρ(x0)
Np

|x− x0|
(n+N)p

+
ρ(x0)

N(1−
k0
k0+1

)p

|x− x0|
(n+N(1−

k0
k0+1

))p

 dx

6 C ‖g‖p
L2(B)

|B|
p
2 Rn(1−p)

(
ρ(x0)

NpR−Np + ρ(x0)
N(1−

k0
k0+1

)p
R
−N(1−

k0
k0+1

)p
)

6 C ‖g‖p
L2(B)

|B|1−
p
2 ,

by choosing suitable N >
n(1−p)

(1−
k0
k0+1

)p
> 0. Pasting together the estimates for I and II above

we get ‖g‖HpL = ‖T∗g‖Lp 6 C |B|
1
p−

1
2 ‖g‖L2(B).

As mentioned in [14], see also [43, 96, 97], once an atomic decomposition of HpL is at

hand, the dual space can be described.

Theorem 2.26 (Duality HpL{BMO
α
L). Let q > n and 0 6 α < 1. Then the dual of H

n
n+α

L

is the space BMOαL. More precisely, any continuous linear functional ` over H
n
n+α

L can

be represented as

`(a) =

∫
Rn
f(x)a(x) dx,
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for some function f ∈ BMOαL and all atoms a ∈ H
n
n+α

L . Moreover, ‖`‖ ∼ ‖f‖BMOαL.

Proof. The case α = 0 is already proved in [27]. Assume then that 0 < α < 1.

Let us �rst check that any function f in BMOαL de�nes a continuous linear functional on

H
n
n+α

L by

`f(a) :=

∫
Rn
f(x)a(x) dx, a an H

n
n+α

L {atom.

Indeed, take an atom a supported in a ball B = B(x0, r), r 6 ρ(x0), and suppose �rst that

r > ρ(x0)/4 (so no cancelation happens). Then, by the size condition ‖a‖L∞(Rn) 6 |B|−(1+α
n )

and Proposition 2.19,∣∣∣∣∫
Rn
f(x)a(x) dx

∣∣∣∣ 6 ∫
B

|f(x) − fB| |a(x)| dx+ |fB|

∣∣∣∣∫
B

a(x) dx

∣∣∣∣
6

1

|B|1+
α
n

∫
B

|f(x) − fB| dx+ Cα ‖f‖BMOαL
ρ(x0)

α

|B|
α
n

6 C ‖f‖BMOαL .

In the remaining case r 6 ρ(x0)/4 note that the second term in the �rst inequality above is

zero. Hence `f is in the dual of H
n
n+α

L .

Now let ` be a continuous linear functional on H
n
n+α

L and BN = B(0,N) with N > ρ(0).

Lemma 2.25 implies that ` is a continuous linear functional on L2(BN). Hence, by the Riesz

Representation Theorem, there exists a function fN ∈ L2(BN) such that

`(g) =

∫
BN

fN(x)g(x) dx, g ∈ L2(BN).

Lemma 2.25 gives∣∣∣∣∫
BN

fN(x)g(x) dx

∣∣∣∣ 6 ‖`‖ ‖g‖H n
n+α
L

6 C ‖`‖ |BN|
1
2
+α
n ‖g‖L2(BN) , g ∈ L2(BN),

so ‖fN‖L2(BN) 6 C ‖`‖ |BN|
1
2
+α
n . If we iterate the previous argument inN we get the existence

of a function f ∈ L2(Rn) such that f
∣∣
BN

= fN and

`(g) =

∫
Rn
f(x)g(x) dx, g ∈ L2c(Rn). (2.24)

Since H
n
n+α

L {atoms belong to L2c(Rn) we have that ` ≡ `f in H
n
n+α

L . It remains to show

that f ∈ BMOαL with ‖f‖BMOαL 6 C ‖`‖. Let B = B(x0, r). If r > ρ(x0) then, by H�older's

inequality,
1

|B|

∫
B

|f(x)| dx 6 |B|−1/2 ‖f‖L2(B) 6 C ‖`‖ |B|
α
n .

Assume that r 6 ρ(x0). Note that the classical Hardy spaces Hp are contained in HpL,

0 < p 6 1, since classical Hp{atoms are particular cases of HpL{atoms supported in small
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balls. Therefore ` is a continuous linear functional on the classical Hardy space H
n
n+α . Hence

there exists a function h in the classical BMOα space such that

`(a) =

∫
Rn
h(x)a(x) dx, a an H

n
n+α

L {atom, (2.25)

and ‖h‖BMOα = ‖`‖. From (2.24) and (2.25) we get the existence of a constant cB such that

f(x) − h(x) = cB. Therefore,

1

|B|

∫
B

|f(x) − fB| dx 6
1

|B|

∫
B

|h(x) + cB − hB − cB| dx

6 C ‖h‖BMOα |B|
α
n 6 C ‖`‖ |B|

α
n ,

and the conclusion follows.

The following result was proved in [13, Proposition 4] for 0 < α < 1 and in a weighted

context, see also in [96]. We collect it here including the case α = 1. Just for the sake of

completeness we also provide the proof.

Proposition 2.27 (Campanato-type description of C0,α
L ). If 0 < α 6 1 then the spaces

BMOαL and C0,α
L are equal and their norms are equivalent.

Proof. Let f ∈ BMOαL. For x, z ∈ Rn let Bx = B(x, |x− z|) and Bz = B(z, |x− z|). Then

|f(x) − f(z)| 6 |f(x) − fBx |+ |f(z) − fBz |+ |fBx − fBz | .

For the �rst term in the right hand side above, if x is a Lebesgue point of f,

|f(x) − fBx | 6 lim
k→∞

( ∣∣f(x) − f2−kBx∣∣+ k−1∑
j=0

∣∣f2−(j+1)Bx
− f2−jBx

∣∣ )
=

∞∑
j=0

∣∣f2−(j+1)Bx
− f2−jBx

∣∣
6 C

∞∑
j=0

1

|2−jBx|

∫
2−jBx

∣∣f(w) − f2−jBx∣∣ dw
6 C ‖f‖BMOαL

∞∑
j=0

|2−jBx|
α
n 6 C ‖f‖BMOαL |x− z|α .

The second term can be handled in the same way. For the third term above,

|fBx − fBz | 6
|2Bz|

|Bx|

1

|2Bz|

∫
2Bz

|f(w) − f2Bz | dw+ |f2Bz − fBz |

6 C ‖f‖BMOαL |Bz|
α
n = C ‖f‖BMOαL |x− z|α .
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Let now B = B(x, ρ(x)). Then using what we have just proved,

|f(x)| 6
1

|B|

∫
B

|f(x) − f(w)| dw+
1

|B|

∫
B

|f(w)| dw

6 C ‖f‖BMOαL

(
1

|B|

∫
B

|x−w|α dw+ |B|
α
n

)
= C ‖f‖BMOαL ρ(x)

α.

Therefore f ∈ C0,α
L .

Assume that f ∈ C0,α
L and let B ′ = B(x0, r), r > 0. Then

1

|B ′|

∫
B ′

|f(x) − fB ′ | dx 6
1

|B ′|2

∫
B ′

∫
B ′

|f(x) − f(y)| dx dy

6 ‖f‖
C

0,α
L

1

|B ′|2

∫
B ′

∫
B ′

|x− y|α dx dy

6 ‖f‖
C

0,α
L

(2r)α = C ‖f‖
C

0,α
L

∣∣B ′∣∣αn .
Suppose that r > ρ(x0). Then, when |x0 −w| 6 r, we have

ρ(w) 6 cρ(x0)

(
1+

|x0 −w|

ρ(x0)

) k0
k0+1

6 cρ(x0)
1−

k0
k0+1 (2r)

k0
k0+1 6 cr,

see Lemma 2.1. Thus

1

|B ′|

∫
B ′

|f(w)| dw 6 ‖f‖
C

0,α
L

1

|B ′|

∫
B ′
ρ(w)α dw

6 C ‖f‖
C

0,α
L

1

|B ′|

∫
B ′
rα dw = C ‖f‖

C
0,α
L

∣∣B ′∣∣αn .
Thus f ∈ BMOαL and the proof of Proposition 2.27 is completed.

Remark 2.28. Proposition 2.27 implies, in particular, that functions in BMOαL can be

modi�ed in a set of measure zero so they become α-H�older continuous, 0 < α 6 1.

2.4.3 Proofs of Theorems 2.9–2.11

The proof of Theorem 2.9 will follow the scheme (i) =⇒ (ii) =⇒ (iii) =⇒ (i). The statement

(iii) =⇒ (i) relies heavily on the duality H
n
n+α

L − BMOαL developed in the last section, so

the method, rather technical, will work only for 0 < α < 1.

To prove Theorem 2.10(I) we just note that the proofs of (i) =⇒ (ii) =⇒ (iii) in Theorem

2.9 also hold for α = 1. A simple contradiction argument shows that the converse is false: if

it was true then, by the comment just made, f ∈ C0,1
L would be equivalent to (ii) in Theorem

2.9 with α = 1. But that contradicts the statement of Theorem 2.10(II) (which is proved by

a counterexample).
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For Theorem 2.11(A) we only have to prove the necessity part since the su�ciency for

β = 1 follows the same lines as in [27]. For part (B) we give a counterexample.

Proof of Theorem 2.9: (i)=⇒(ii)

Let f ∈ C0,α
L . Then

|tβ∂
β
t Ptf(x)| =

∣∣∣∣∫
Rn
tβ∂

β
t Pt(x, z) (f(z) − f(x)) dz+ f(x)

∫
Rn
tβ∂

β
t Pt(x, z) dz

∣∣∣∣
6 ‖f‖

C
0,α
L

∫
Rn

|tβ∂
β
t Pt(x, z)| |x− z|

α dz+ ‖f‖
C

0,α
L
ρ(x)α

∣∣∣∣∫
Rn
tβ∂

β
t Pt(x, z) dz

∣∣∣∣
=: I+ II.

Applying Proposition 2.15(b),

I 6 C ‖f‖
C

0,α
L

∫
Rn

tβ |x− z|α

(t+ |x− z|)n+β
dz = C ‖f‖

C
0,α
L
tα.

For II we consider two cases. Assume �rst that ρ(x) 6 t. Then Proposition 2.15(b) gives

II 6 C‖f‖
C

0,α
L
tα
∫
Rn

tβ

(t+ |x− z|)n+β
dz = C‖f‖

C
0,α
L
tα.

Suppose now that ρ(x) > t. Since q > n, we have δ0 > 1 in (2.8). Therefore we can choose

δ ′ such that α < δ ′ 6 δ0 with δ ′ < β. By Proposition 2.15(d),

II 6 C ‖f‖
C

0,α
L
tα(t/ρ(x))δ

′−α 6 C ‖f‖
C

0,α
L
tα.

Hence ‖tβ∂βt Ptf‖L∞(Rn) 6 C ‖f‖C0,α
L
tα.

Proof of Theorem 2.9: (ii)=⇒(iii)

For any ball B = B(x0, r),

1

|B|

∫
B̂

|tβ∂
β
t Ptf(x)|

2dx dt

t
6 ‖f‖2

C
0,α
L

1

|B|

∫
B

∫r
0

t2α
dt dx

t
= C ‖f‖2

C
0,α
L

r2α.

Proof of Theorem 2.9: (iii)=⇒(i)

Assume that f ∈ L1(Rn, (1 + |x|)−(n+α+ε) dx) for any 0 < ε < min{β − α, 1 − α}, and

that the Carleson condition in (iii) holds. Let

[dµf]α,β := sup
B

1

|B|
α
n

(
1

|B|

∫
B̂

|tβ∂
β
t Ptf(x)|

2 dx dt

t

)1/2

.

To show that f ∈ BMOαL, by Theorem 2.26, it is enough to prove that the linear functional

H
n
n+α

L 3 g 7−→ Φf(g) :=

∫
Rn
f(x)g(x) dx,



36 Chapter 2. Regularity properties via L-harmonic extensions.

is continuous on H
n
n+α

L . In fact, we are going to prove that there exists a constant C such

that

|Φf(g)| 6 C[dµf]α,β ‖g‖
H

n
n+α
L

,

which implies that f ∈ BMOαL with ‖f‖BMOαL 6 C[dµf]α,β.
To that end we shall proceed in three steps.

Step 1. It consists in writing the functional Φ by using extensions of f and g to the upper

half-space. De�ne the extended functions

F(x, t) := tβ∂βt Ptf(x), G(x, t) := tβ∂βt Ptg(x),

for x ∈ Rn, t > 0. The following reproducing formula holds:

Lemma 2.29. Let f ∈ L1(Rn, (1+ |x|)−(n+α+ε)dx) for any ε > 0 and g be an H
n
n+α

L {atom.

Then
4β

Γ(2β)

∫
Rn
f(x)g(x) dx =

∫
Rn+1
+

F(x, t)G(x, t)
dx dt

t
.

The rather technical proof of the lemma above will be given at the end of this subsection.

To continue we assume its validity. Therefore we are reduced to study the integral in the

right-hand side appearing in the lemma.

Step 2. To handle the integral in Lemma 2.29 we take a result of E. Harboure, O. Salinas

and B. Viviani about tent spaces into our particular case.

Lemma 2.30 (See [43, p. 279]). For any pair of measurable functions F and G on Rn+1
+

we have∫
Rn+1
+

|F(x, t)| |G(x, t)|
dx dt

t

6 C sup
B

(
1

|B|1+
2α
n

∫
B̂

|F(x, t)|2
dx dt

t

)1/2

×

(∫
Rn

(∫
�(x)

|G(y, t)|2
dy dt

tn+1

) n
2(n+α)

dx

)n+α
n

,

where �(x) denotes the cone with vertex at x and aperture 1:
{
(y, t) ∈ Rn+1

+ : |x− y| < t
}
.

If we take F(x, t) = tβ∂
β
t Ptf(x) in Lemma 2.30 then the supremum that appears in the

inequality is exactly [dµf]α,β. Hence it remains to handle the term with G(x, t), which is

done in the last step.

Step 3. The area function Sβ de�ned by

Sβ(h)(z) =

(∫
�(z)

|tβ∂
β
t Pth(y)|

2dy dt

tn+1

)1/2

, z ∈ Rn, (2.26)
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is a bounded operator on L2(Rn). Indeed, by the Spectral Theorem, the square function

gβ(h)(x) =

(∫∞
0

|tβ∂
β
t Pth(x)|

2 dt

t

)1/2

, x ∈ Rn, (2.27)

satis�es
∥∥gβ(h)∥∥L2(Rn) = Γ(β) ‖h‖L2(Rn) and it is easy to check that

∥∥Sβ(h)∥∥L2(Rn) =∥∥gβ(h)∥∥L2(Rn). Now, in view of Steps 1 and 2, we will �nish the proof of (iii) =⇒ (i)

in Theorem 2.9 as soon as we have proved the following

Lemma 2.31. There exists a constant C such that for any function g which is a linear

combination of H
n
n+α

L {atoms we have∥∥Sβ(g)∥∥L n
n+α

6 C ‖g‖
H

n
n+α
L

.

Proof. Let g be an H
n
n+α

L {atom associated to a ball B = B(x0, r). We apply H�older's inequal-

ity and the L2-boundedness of the area function (2.26) to get

∫
8B

∣∣Sβ(g)(x)∣∣ n
n+α dx 6 C |B|

n+2α
2(n+α)

(∫
8B

∣∣Sβ(g)(x)∣∣2 dx) n
2(n+α)

6 C |B|
n+2α
2(n+α) ‖g‖

n
n+α

L2(8B)

6 C |B|
n+2α
2(n+α) |B|

n
2(n+α) ‖g‖

n
n+α

L∞ 6 C.

In order to complete the proof of Lemma 2.31, we must �nd a uniform bound for∫
(8B)c

|Sβ(g)(x)|
n
n+α dx. (2.28)

Let us consider �rst the case when r < ρ(x0)
4

. Then, by the moment condition on g,

(
Sβ(g)(x)

)2
=

∫∞
0

∫
|x−y|<t

(∫
Rn

(
tβ∂

β
t Pt(y, x

′) − tβ∂βt Pt(y, x0)
)
g(x ′) dx ′

)2
dy dt

tn+1

6
∫ |x−x0|

2

0

∫
|x−y|<t

(∫
B

|tβ∂
β
t Pt(y, x

′) − tβ∂βt Pt(y, x0)|
dx ′

|B|
n+α
n

)2
dy dt

tn+1

+

∫∞
|x−x0|

2

∫
|x−y|<t

(∫
B

|tβ∂
β
t Pt(y, x

′) − tβ∂βt Pt(y, x0)|
dx ′

|B|
n+α
n

)2
dy dt

tn+1

=: I1(x) + I2(x).

We now use the smoothness of tβ∂βt Pt(y, x) = tβ∂
β
t Pt(x,y) established in Proposition

2.15(c) with α < δ ′ < β and N > 0. In the domain of integration of I1(x) we have
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|x− x0| 6 2 |y− x0|. So

I1(x) 6 C
∫ |x−x0|

2

0

∫
|x−y|<t

(∫
B

(
|x ′ − x0|

t

)δ ′
tβ

(|x0 − y|
2 + t2)

n+β
2

dx ′

|B|
n+α
n

)2
dy dt

tn+1

6 C
∫ |x−x0|

2

0

∫
|x−y|<t

(r
t

)2δ ′ 1

t2n
(
|x0−y|
t + 1

)2(n+β) 1

|B|
2α
n

dy dt

tn+1

6 C
∫ |x−x0|

2

0

(r
t

)2δ ′ 1

t2n
(
|x0−x|
t

)2(n+β) 1

|B|
2α
n

dt

t

6 C
r2(δ

′−α)

|x− x0|2(n+β)

∫ |x−x0|
2

0

t2(β−δ
′) dt

t
= C

r2(δ
′−α)

|x− x0|2(n+δ
′)
.

Thus, integrating over (8B)c, we have∫
(8B)c

|I1(x)
1/2|

n
n+α dx 6 C

∫
(8B)c

(
rδ
′−α

|x− x0|n+δ
′

) n
n+α

dx = C.

Let us continue with I2(x). If x ∈ (8B)c then we have |x ′ − x0| 6 r <
|x− x0|

2
6 t. Then, by

Proposition 2.15(c) and x ∈ (8B)c,

I2(x) 6 C
∫∞

|x−x0|
2

∫
|x−y|<t

(∫
B

(
|x ′ − x0|

t

)δ ′ 1
tn

dx ′

|B|
n+α
n

)2
dy dt

tn+1

6 C
∫∞

|x−x0|
2

∫
|x−y|<t

(r
t

)2δ ′ 1

t2n
1

|B|
2α
n

dy dt

tn+1

= Cr2(δ
′−α)

∫∞
|x−x0|

2

t−2(n+δ ′) dt

t
= C

r2(δ
′−α)

|x− x0|2(n+δ
′)
.

Therefore, ∫
(8B)c

| (I2(x))
1/2

|
n
n+α dx 6 C

∫
(8B)c

(
rδ
′−α

|x− x0|n+δ
′

) n
n+α

dx 6 C.

Collecting terms we see that if r < ρ(x0)
4

then a uniform bound for (2.28) is obtained.

We now turn to the estimate of (2.28) when r is comparable to ρ(x0), namely, ρ(x0)
4

<

r 6 ρ(x0). For x ∈ (8B)c we can split the integral in t > 0 in the de�nition of Sβg(x) into

three parts:

(
Sβ(g)(x)

)2
=

(∫ r
2

0

+

∫ |x−x0|
4

r
2

+

∫∞
|x−x0|

4

) ∫
|x−y|<t

∣∣∣∣∫
Rn
tβ∂

β
t Pt(y, x

′)g(x ′) dx ′
∣∣∣∣2 dy dt

tn+1

=: I ′1(x) + I
′
2(x) + I

′
3(x).
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In the integrand of I ′1(x) we have |x ′ − y| ∼ |x− x0|, so by Proposition 2.15(b),

I ′1(x) 6 C
∫ r

2

0

∫
|x−y|<t

(∫
B

tβ

(|y− x ′|+ t)n+β
1

|B|
n+α
n

dx ′

)2
dy dt

tn+1

6 Cr−2α

∫ r
2

0

∫
|x−y|<t

t2β

(|x− x0|+ t)2(n+β)
dy dt

tn+1

= Cr−2α

∫ r
2

0

t2β

(|x− x0|+ t)2(n+β)
dt

t
6 C

r2(β−α)

|x− x0|2(n+β)
.

For I ′2(x), by applying Proposition 2.15(b) for any M > α, together with |x ′ − y| ∼ |x − x0|

and ρ(x ′) ∼ ρ(x0) ∼ r, we get

I ′2(x) 6 C
∫ |x−x0|

4

r
2

∫
|x−y|<t

(∫
B

tβ

(|y− x ′|+ t)n+β

(
ρ(x ′)

t

)M 1

|B|
n+α
n

dx ′

)2
dy dt

tn+1

6 C
∫ |x−x0|

4

r
2

∫
|x−y|<t

∫
B

1

tn
(
|x−x0|
t + 1

)n+β (ρ(x0)t
)M 1

|B|
n+α
n

dx ′


2

dy dt

tn+1

6 C
∫ |x−x0|

4

r
2

∫
|x−y|<t

(
tβ−Mρ(x0)

M

|x− x0|n+βrα

)2
dy dt

tn+1
6 C
∫ |x−x0|

4

r
2

(
tβ−MrM−α

|x− x0|n+β

)2
dt

t

6 C
r2(β−α)

|x− x0|2(n+β)

∫ |x−x0|
2r

1

u2(β−M) du

u
6 C

r2(M−α)

|x− x0|2(n+M)
.

Finally, for the last term above I ′3(x), with the same method that was used to estimate

I ′2(x), we obtain

I ′3(x) 6 C
r2(M−α)

|x− x0|2(n+M)
.

Hence, ∫
(8B)c

|I ′j(x)
1/2|

n
n+α dx 6 C,

for j = 1, 2, 3 and the uniform bound for (2.28) is established also when r ∼ ρ(x0). This

completes the proof of Lemma 2.31.

Now the three steps of the proof of (iii) =⇒ (i) in Theorem 2.9 are completed. It only

remains to prove Lemma 2.29, that we took for granted before. To that end, we need the

following result.

Lemma 2.32. Let qt(x,y) be a function of x,y ∈ Rn, t > 0. Assume that for each

N > 0 there exists a constant CN such that

|qt(x,y)| 6 CN

(
1+

t

ρ(x)
+

t

ρ(y)

)−N

t−n
(
1+

|x− y|

t

)−(n+γ)

, (2.29)
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for some γ > α. Then, for every H
n
n+α

L {atom g supported on B(x0, r), there exists

CN,x0,r > 0 such that

sup
t>0

∣∣∣∣∫
Rn
qt(x,y)g(y) dy

∣∣∣∣ 6 CN,x0,r (1+ |x|)−(n+γ) , x ∈ Rn.

Proof. If x ∈ B(x0, 2r) then, since ‖g‖L∞(Rn) 6 |B(x0, r)|
−(1+α

n ),∣∣∣∣∫
Rn
qt(x,y)g(y) dy

∣∣∣∣ 6 CN 1

rn+α

∫
Rn
t−n

(
1+

|x− y|

t

)−(n+γ)

dy

6 CN
1

rn+α

∫
Rn

1

(1+ |u|)n+γ
du 6 CN,r.

Since |x− x0| 6 2r, we have 1+ |x| 6 1+ |x− x0|+ |x0| 6 1+ 2r+ |x0|. Hence∣∣∣∣∫
Rn
qt(x,y)g(y) dy

∣∣∣∣ 6 CN,r
(1+ 2r+ |x0|)

n+γ

(1+ 2r+ |x0|)n+γ
6 CN,x0,r(1+ |x|)−(n+γ).

If x /∈ B(x0, 2r) then for y ∈ B(x0, r) we have |x − y| ∼ |x − x0| and, since r < ρ(x0), we

get that ρ(x0) ∼ ρ(y), see Lemma 2.1. Hence, choosing N = γ in (2.29),∣∣∣∣∫
Rn
qt(x,y)g(y) dy

∣∣∣∣ 6 Cγ( t

ρ(x0)

)−γ

t−n
(
|x− x0|

t

)−(n+γ)

‖g‖L1(Rn)

6 Cγ,x0,rρ(x0)
γ|x− x0|

−(n+γ)r−γ 6 Cγ,x0,r|x− x0|
−(n+γ).

Since x /∈ B(x0, 2r), we can set x = x0 + 2rz, |z| > 1. Then 1 + |x| 6 1 + |x0| + 2r|z|, and
1+|x0|+2r

2r

∣∣x − x0∣∣ = (1 + |x0| + 2r)|z| > 1 + |x0| + 2r|z|. It means that cx0,r|x − x0| > 1 + |x|.

Therefore ∣∣∣∣∫
Rn
qt(x,y)g(y) dy

∣∣∣∣ 6 Cγ,x0,r|x− x0|−(n+γ) 6 Cγ,x0,r(1+ |x|)−(n+γ).

We complete the proof of Lemma 2.32.

Proof of Lemma 2.29. Assume that g is an H
n
n+α

L {atom associated to a ball B = B(x0, r).

By Lemma 2.30 and Lemma 2.31, the following integral is absolutely convergent and therefore

it can be described as

I =

∫
Rn+1
+

F(x, t)G(x, t)
dx dt

t
= lim
ε→0

∫1/ε
ε

∫
Rn
tβ∂

β
t Ptf(x)t

β∂
β
t Ptg(x)

dx dt

t
.

Proposition 2.15(b) and β > α + ε imply that qt(x,y) := tβ∂
β
t Pt(x,y) satis�es (2.29) in

Lemma 2.32. Therefore, since f ∈ L1(Rn, (1 + |x|)−(n+α+ε)dx), Fubini's theorem can be

applied in the following:∫
Rn
tβ∂

β
t Ptf(x)t

β∂
β
t Ptg(x) dx =

∫
Rn

∫
Rn
tβ∂

β
t Pt(x,y)f(y)t

β∂
β
t Ptg(x) dy dx

=

∫
Rn
f(y)(tβ∂βt Pt)

2g(y) dy.
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In fact, by Proposition 2.15(b) and Theorem 2.32, we have∫
Rn
tβ∂

β
t Ptf(x)t

β∂
β
t Ptg(x) dx 6 C

∫
Rn

∫
Rn

tβ

(|x− y|+ t)n+β
f(y) dy

1

(1+ |x|)n+β
dx

6 Ct

∫
Rn

∫
Rn

1

(|x− y|+ 1)n+β
f(y) dy

1

(1+ |x|)n+β
dx

= Ct

∫∫
|x−y|>

|y|
2

1

(|x− y|+ 1)n+β
f(y) dy

1

(1+ |x|)n+β
dx

+ Ct

∫∫
|x−y|6 |y|

2

1

(|x− y|+ 1)n+β
f(y) dy

1

(1+ |x|)n+β
dx.

If |x− y| 6 |y|
2
, then |y| 6 |y− x|+ |x| 6 |y|

2
+ |x|, and so |y|

2
6 |x|. Therefore,∫

Rn
tβ∂

β
t Ptf(x)t

β∂
β
t Ptg(x) dx 6 Ct

∫∫
|x−y|>

|y|
2

1

(|y|+ 1)n+β
f(y) dy

1

(1+ |x|)n+β
dx

+ Ct

∫∫
|x−y|6 |y|

2

1

(|x− y|+ 1)n+β
f(y) dy

1

(1+ |y|)n+β
dx

6 C.

Hence, we can apply Fubini's theorem.

So that,

I = lim
ε→0

∫1/ε
ε

[∫
Rn
f(y)(tβ∂βt Pt)

2g(y) dy

]
dt

t

= lim
ε→0

∫
Rn
f(y)

[∫1/ε
ε

t2β∂
2β
t P2tg(y)

dt

t

]
dy. (2.30)

We claim that

sup
ε>0

∣∣∣∣∣
∫1/ε
ε

t2β∂
2β
t P2tg(y)

dt

t

∣∣∣∣∣ 6 C(1+ |y|)−(n+α+ε), (2.31)

for any y ∈ Rn. To prove (2.31) we �rst note that∣∣∣∣∣
∫1/ε
ε

t2β∂
2β
t P2tg(y)

dt

t

∣∣∣∣∣ 6
∣∣∣∣∫∞
ε

t2β∂
2β
t P2tg(y)

dt

t

∣∣∣∣+ ∣∣∣∣∫∞
1/ε

t2β∂
2β
t P2tg(y)

dt

t

∣∣∣∣
=

∣∣∣∣∫
Rn

∫∞
ε

t2β∂
2β
t P2t(x,y)

dt

t
g(x) dx

∣∣∣∣+ ∣∣∣∣∫
Rn

∫∞
1/ε

t2β∂
2β
t P2t(x,y)

dt

t
g(x) dx

∣∣∣∣ .
Hence, to prove (2.31) it is enough to check that the kernel∫∞

ε

t2β∂
2β
t P2t(x,y)

dt

t
= 2[2β]−2β+1

∫∞
2ε

t2β∂
2β
t Pt(x,y)

dt

t
, (2.32)

satis�es estimate (2.29) of Lemma 2.32, for any ε > 0. To verify this we consider three cases.
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Case I: 2β < 1. Making a change of variables in the de�nition of the fractional derivative

(5.5), applying Fubini's theorem and integrating by parts,∫∞
2ε

t2β∂
2β
t Pt(x,y)

dt

t
= C

∫∞
2ε

t2β
∫∞
t

∂uPu(x,y)(u− t)−2β du
dt

t

= C

∫∞
2ε

∂uPu(x,y)

∫u
2ε

(
t

u− t

)2β
dt

t
du

= C

∫∞
2ε

∂uPu(x,y)

∫1
2ε
u

(
w

1−w

)2β
dw

w
du = C

∫∞
2ε

Pu(x,y)

(
2ε

u− 2ε

)2β
du

u

= C

∫∞
2ε

Pu(x,y)

(
2ε

u− 2ε

)2β

χA(u)
du

u
+ C

∫∞
2ε

Pu(x,y)

(
2ε

u− 2ε

)2β

χAc(u)
du

u

=: I ′ + II ′,

where A = {u − 2ε 6 ε + |x− y|}. Observe that in the equalities above we applied the

assumption 2β < 1 to have convergent integrals. Let us �rst estimate I ′. By Proposition

2.15(a) and since α+ ε < 2β we get that for any N > 0,

∣∣I ′∣∣ 6 C ∫∞
2ε

u

(|x− y|+ u)n+1

(
1+

u

ρ(x)
+

u

ρ(y)

)−N( 2ε

u− 2ε

)2β

χA(u)
du

u

6 C
ε2β

(|x− y|+ ε)n+1

(
1+

ε

ρ(x)
+

ε

ρ(y)

)−N ∫3ε+|x−y|

2ε

(u− 2ε)−2β du

6 Cε2β
(
1+

ε

ρ(x)
+

ε

ρ(y)

)−N

(|x− y|+ ε)−n−2β

6 C

(
1+

ε

ρ(x)
+

ε

ρ(y)

)−N

ε−n
(
1+

|x− y|

ε

)−(n+α+ε)

.

We continue now with II ′. Note that in II ′ we have u − 2ε > |x − y| + ε so, again by

Proposition 2.15(a),

∣∣II ′∣∣ 6 C( ε

ε+ |x− y|

)2β(
1+

ε

ρ(x)
+

ε

ρ(y)

)−N ∫∞
2ε

(|x− y|+ u)−n−1 du

= C

(
ε

ε+ |x− y|

)2β(
1+

ε

ρ(x)
+

ε

ρ(y)

)−N

(ε+ |x− y|)−n

6 C

(
1+

ε

ρ(x)
+

ε

ρ(y)

)−N

ε−n
(
1+

|x− y|

ε

)−(n+α+ε)

.

Case II: 2β = 1. By Proposition 2.15(b) and integrating by parts it is easy to verify

that

∫∞
ε

∂tP2t(x,y) dt satis�es condition (2.29) for any ε > 0.

Case III: 2β > 1. Let k > 2 be the integer such that k − 1 < 2β 6 k. Note that the

estimate is easy when 2β = k, just integrating by parts. When k − 1 < 2β < k we make a
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computation similar to the case 2β < 1. In fact,

∫∞
2ε

t2β∂
2β
t Pt(x,y)

dt

t
= C

∫∞
2ε

t2β
∫∞
t

∂kuPu(x,y)(u− t)k−2β−1 du
dt

t

= C

∫∞
2ε

∂kuPu(x,y)

∫u
2ε

t2β(u− t)k−2β−1 dt

t
du

= C

∫∞
2ε

uk−1∂kuPu(x,y)

∫1
2ε
u

w2β(1−w)k−2β−1 dw

w
du

= C

∫∞
2ε

uk−1∂k−1
u Pu(x,y)

(2ε)2βu1−k

(u− 2ε)1+2β−k

du

u
(2.33)

+ C

∫∞
2ε

uk−2∂k−2
u Pu(x,y)

(2ε)2βu1−k

(u− 2ε)1+2β−k

du

u

+ · · ·+ C
∫∞
2ε

u∂uPu(x,y)
(2ε)2βu1−k

(u− 2ε)1+2β−k

du

u

+ C

∫∞
2ε

Pu(x,y)
(2ε)2βu1−k

(u− 2ε)1+2β−k

du

u
.

In the above equalities, we have used equality

uk−1∂kuPu(x,y)

= ∂u(u
k−1∂k−1

u Pu(x,y)) − (k− 1)∂u(u
k−2∂k−2

u Pu(x,y)) + · · ·+ (−1)(k−1)(k− 1)!Pu(x,y).

For any 1 6 m 6 k− 1 apply Proposition 2.15(b) to get that for any N > 0

∣∣∣∣∫∞
2ε

um∂mu Pu(x,y)
(2ε)2βu1−k

(u− 2ε)1+2β−k

du

u

∣∣∣∣
6 C
∫∞
2ε

um

(u+ |x− y|)n+m

(
1+

u

ρ(x)
+

u

ρ(y)

)−N (2ε)2β

(u− 2ε)1+2β−k

du

uk

6 C
ε2β

(ε+ |x− y|)n+m

(
1+

ε

ρ(x)
+

ε

ρ(y)

)−N ∫∞
2ε

(u− 2ε)k−2β−1 du

uk−m

= C
ε2β

(ε+ |x− y|)n+m

(
1+

ε

ρ(x)
+

ε

ρ(y)

)−N ∫3ε
2ε

(u− 2ε)k−2β−1 du

uk−m

+ C
ε2β

(ε+ |x− y|)n+m

(
1+

ε

ρ(x)
+

ε

ρ(y)

)−N ∫∞
3ε

(u− 2ε)k−2β−1 du

uk−m

=: I ′′ + II ′′.
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For I ′′, since 2β < k and m > 1 > α+ ε, we obtain

I ′′ 6 C
ε2β

(ε+ |x− y|)n+m

(
1+

ε

ρ(x)
+

ε

ρ(y)

)−N 1

εk−m

∫3ε
2ε

(u− 2ε)k−2β−1 du

= C
εm

(ε+ |x− y|)n+m

(
1+

ε

ρ(x)
+

ε

ρ(y)

)−N

6 C
1

(ε+ |x− y|)n

(
1+

ε

ρ(x)
+

ε

ρ(y)

)−N(
ε

ε+ |x− y|

)α+ε
= C

(
1+

ε

ρ(x)
+

ε

ρ(y)

)−N

ε−n
(
1+

|x− y|

ε

)−(n+α+ε)

.

For II ′′, since 1
u <

1
u−2ε and m < 2β, we also have

II ′′ 6 C
ε2β

(ε+ |x− y|)n+m

(
1+

ε

ρ(x)
+

ε

ρ(y)

)−N ∫∞
3ε

(u− 2ε)m−2β−1 du

6 C
εm

(ε+ |x− y|)n+m

(
1+

ε

ρ(x)
+

ε

ρ(y)

)−N

6 C

(
1+

ε

ρ(x)
+

ε

ρ(y)

)−N

ε−n
(
1+

|x− y|

ε

)−(n+α+ε)

.

For the last term of (2.33) we have the same estimate as above by Proposition 2.15(b).

Hence, from the three cases above we see that the kernel (2.32) satis�es condition (2.29)

in Lemma 2.32, for any ε > 0. Therefore can pass the limit inside the integral in (2.30).

Then, by Lemma 2.16,

I =
4β

Γ(2β)

∫
Rn
f(y)g(y) dy.

This establishes Lemma 2.29 and it �nally completes the proof of (iii) =⇒ (i).

Proof of Theorem 2.10(II)

Recall that the proof of Theorem 2.10(I) is contained in the proof of Theorem 2.9, since it

works also when α = 1. The argument for the converse statement was given at the beginning

of this section. Let us continue with the proof of Theorem 2.10(II). To that end we need the

following proposition.

Proposition 2.33. Let 0 < α 6 1 and f be a function in L∞(Rn) such that |f(x)| 6
Cρ(x)α, for some constant C and all x ∈ Rn. Then

‖tβ∂βt Ptf‖L∞(Rn) 6 Ct
α, for any β > α,

if and only if

|f(x+ y) + f(x− y) − 2f(x)| 6 C |y|α , for all x,y ∈ Rn.
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Just for a moment we take the proposition for granted. Let us show how it can be applied

to prove Theorem 2.10(II).

Proof of Theorem 2.10(II). In a �rst step we take n = 1. The idea is to consider the

Weierstrass-Hardy non-di�erentiable function as in [79]:

f(x) =

∞∑
k=1

2−ke2πi2
kx, x ∈ R.

Observe that for Lµ we have ρ(x) ≡ 1√
µ . Therefore there exists a constant C = 2

√
µ such

that |f(x)| 6
∑∞
k=1 2

−k = 1 6 C√
µ = Cρ(x), for all x ∈ R. Now, for any y ∈ R,

f(x+ y) + f(x− y) − 2f(x) = 2

∞∑
k=1

2−k
(
cos(2π2ky) − 1

)
e2πi2

kx.

Since
∣∣cos(2π2ky) − 1

∣∣ 6 C(2ky)2 and ∣∣cos(2π2ky) − 1
∣∣ 6 2, we have

|f(x+ y) + f(x− y) − 2f(x)| 6 C
∑

2k|y|61

2−k(2ky)2 + C
∑

2k|y|>1

2−k 6 C |y| .

So, by Proposition 2.33, ‖tβ∂βt Ptf‖L∞(Rn) 6 Ct. Let us see that f can not be a function in

C
0,1
Lµ

. To arrive to a contradiction suppose that |f(x+ y) − f(x)| 6 Cf |y|, for any x,y ∈ R.
Then by Bessel's inequality for L2 periodic functions we would have

(Cf |y|)
2 >
∫1
0

|f(x+ y) − f(x)|2 dx =

∞∑
k=1

2−2k|e2πi2
ky − 1|2 > |y|2

∑
2k|y|61

|e2πi2
ky − 1|2.

Note that in the range 2k |y| 6 1 we have |e2πi2
ky − 1|2 > c(2ky)2. Hence we arrive to the

contradiction

C2
f > c |y|

2
∑

2k|y|61

22k.

For the case n > 1, note that we can write

Lµ = L1
µ −

∂2

∂x22
− · · ·− ∂2

∂xn2
,

where

L1
µ = −

∂2

∂x12
+ µ.

The operator L1
µ acts only in the one dimensional variable x1. Let us de�ne g(x1, . . . , xn) =

f(x1), with f as above. Then, with an easy computation using the subordination formula

(2.9), we have

‖tβ∂βt Ptg‖L∞(Rn) = ‖tβ∂
β
t e

−t
√

L1
µf‖L∞(R) 6 Ct,
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and, for any x, x ′ ∈ Rn, the inequality∣∣g(x) − g(x ′)∣∣ = ∣∣f(x1) − f(x ′1)∣∣ 6 C ∣∣x1 − x ′1∣∣ 6 C ∣∣x− x ′∣∣ ,
fails for any C > 0. Hence, we complete the proof.

To prove Proposition 2.33 we need the following two lemmas.

Lemma 2.34. Let f be a locally integrable function on Rn, n > 3, and α > 0. If there

exists β > α such that

‖tβ∂βt Ptf‖L∞(Rn) 6 Cβt
α, for all t > 0,

then for any σ > α we also have

‖tσ∂σt Ptf‖L∞(Rn) 6 Cσt
α, for all t > 0.

Moreover, the constants Cβ and Cσ are comparable.

Proof. Assume �rst that σ > β > α. Then, by hypothesis and Proposition 2.15(b),

|tσ∂σt Ptf(x)| = |tσ∂
σ−β
t Pt/2(∂

β
t Pt/2f)(x)| = t

σ

∣∣∣∣∫
Rn
∂
σ−β
t Pt/2(x,y)∂

β
t Pt/2f(y) dy

∣∣∣∣
6 Ctσ+α−β

∫
Rn

1

(|y|+ t)n+σ−β
dy = Ctα.

Suppose now that α < σ < β. Let k be the least positive integer for which σ < β 6 σ+k.
Applying the case just proved above,

|tσ∂σt Ptf(x)| 6 t
σ

∫∞
t

∫∞
s1

· · ·
∫∞
sk−1

∣∣∂k+σsk
Pskf(x)

∣∣ dsk · · · ds2 ds1
6 Ctσ

∫∞
t

∫∞
s1

· · ·
∫∞
sk−1

s
α−(k+σ)
k dsk · · · ds2 ds1 = Ctα.

Lemma 2.35. Let 0 < α 6 1. If a function f satis�es |f(x)| 6 Cρ(x)α for all x ∈ Rn

then for any β > α,

‖tβ∂βt (Pt − Pt)f‖L∞(Rn) 6 Ctα, for all t > 0,

where Pt is the classical Poisson semigroup with kernel (2.17).

Proof. Let β > α and m = [β] + 1. In a parallel way as in (2.18), we can derive a formula

for the kernel Dβ(x,y, t) of the operator tβ∂βt (Pt − Pt) in terms of the heat kernels for L

and −∆ given in (2.5) and (2.7):

Dβ(x,y, t) = t
β∂
β
t

∫∞
0

te−
t2

4u

2
√
π

(ku(x,y) − hu(x− y))
du

u3/2

= Ctβ
∫∞
0

∫∞
0

Hm+1

(
t+ s

2
√
u

)
e−

(t+s)2

4u

(
1√
u

)m+1

sm−β ds

s
(ku(x,y) − hu(x− y))

du

u1/2
.



2.1. Proofs of the characterization theorems 47

Then, by Lemma 2.4, we have

∣∣Dβ(x,y, t)∣∣ 6 Ctβ ∫∞
0

∫∞
0

e−c
(t+s)2

4u

(
1√
u

)m+1

sm−β ds

s
|ku(x,y) − hu(x− y)|

du

u1/2

6 C
∫∞
0

e−c
t2

4u

(
t√
u

)β( √
u

ρ(y)

)α
wu(x− y)

du

u
,

where w is a nonnegative Schwartz class function on Rn. Hence, for all x ∈ Rn, we have

|tβ∂
β
t (Pt − Pt)f(x)| 6 C

∫
Rn

∣∣Dβ(x,y, t)∣∣ |f(y)| dy
6 C
∫
Rn

∫∞
0

e−c
t2

4u

(
t√
u

)β( √
u

ρ(y)

)α
wu(x− y)

du

u
ρ(y)α dy

6 C
∫∞
0

e−c
t2

4u

(
t√
u

)β (√
u
)α du

u

= Ctα
∫∞
0

e−vv
β−α
2
dv

v
= Ctα.

Proof of Proposition 2.33. Assume that ‖tβ∂βt Ptf‖L∞(Rn) 6 Ctα, for any β > α. Then,

by Lemma 2.35,

‖tβ∂βt Ptf‖L∞(Rn) 6 ‖tβ∂
β
t (Pt − Pt)f‖L∞(Rn) + ‖tβ∂βt Ptf‖L∞(Rn) 6 Ct

α.

Therefore, as f is bounded, f ∈ Λα, where Λα denotes the classical α-Lipschitz space, see

[79, Ch. V]. Hence

|f(x+ y) + f(x− y) − 2f(x)| 6 C |y|α , for all x,y ∈ Rn.

For the converse, if f ∈ L∞(Rn) and |f(x+ y) + f(x− y) − 2f(x)| 6 C |y|α, 0 < α 6 1,

then, by [79, Ch. V], we have ‖t2∂2tPtf‖L∞(Rn) 6 Ct
α. So Lemma 2.35 gives

‖t2∂2tPtf‖L∞(Rn) 6 ‖t2∂2t(Pt − Pt)f‖L∞(Rn) + ‖t2∂2tPtf‖L∞(Rn) 6 Ct
α.

Thus, by Lemma 2.34, ‖tβ∂βt Ptf‖L∞(Rn) 6 Ctα for any β > α.

Proof of Theorem 2.11(A)

As explained at the beginning of this section, we only need to prove the necessity part.

Let f ∈ BMOL. Let us �x a ball B = B(x0, r) and write

f = (f− fB)χ2B + (f− fB)χ(2B)c + fB = f1 + f2 + f3.
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For f1, by the boundedness of the area function (2.26) on L2(Rn) and Remark 2.18 with

p = 2,

1

|B|

∫
B̂

|tβ∂
β
t Ptf1(x)|

2 dx dt

t
=

1

|B|

∫
B̂

|tβ∂
β
t Ptf1(x)|

2

∫
Rn
χ|x−z|<t(z) dz

dx dt

tn+1

6
1

|B|

∫
|x0−z|<2r

∫∞
0

∫
Rn

|tβ∂
β
t Ptf1(x)|

2χ|x−z|<t(z)
dx dt

tn+1
dz

=
1

|B|

∫
|x0−z|<2r

∫∫
�(z)

|tβ∂
β
t Ptf1(x)|

2 dx dt

tn+1
dz

6
C

|B|

∫
2B

|f(z) − fB|
2 dz 6 C ‖f‖2BMOL

.

For f2 and x ∈ B, apply Proposition 2.15(b) to get

|tβ∂
β
t Ptf2(x)| 6

∞∑
k=2

∫
2kB\2k−1B

|f(z) − fB| |t
β∂
β
t Pt(x, z)| dz

6
∞∑
k=2

∫
2kB\2k−1B

|f(z) − f2kB| |t
β∂
β
t Pt(x, z)| dz

+

∞∑
k=2

k∑
j=1

|f2jB − f2j−1B|

∫
2kB\2k−1B

|tβ∂
β
t Pt(x, z)| dz

6 C
∞∑
k=2

∫
2kB\2k−1B

|f(z) − f2kB|
tβ

(t+ |x− z|)n+β
dz

+ C ‖f‖BMOL

∞∑
k=2

k∑
j=1

∫
2kB\2k−1B

tβ

(t+ |x− z|)n+β
dz

6 C

(
t

r

)β( ∞∑
k=2

1

2kβ
1

(2kr)n

∫
2kB

|f(z) − f2kB| dz+ ‖f‖BMOL

∞∑
k=2

k

2kβ

)

6 C

(
t

r

)β
‖f‖BMOL

∞∑
k=2

1+ k

2kβ
= C

(
t

r

)β
‖f‖BMOL

.

Therefore

1

|B|

∫
B̂

|tβ∂
β
t Ptf2(x)|

2 dx dt

t
6 C ‖f‖2BMOL

∫r
0

(
t

r

)2β
dt

t
= C ‖f‖2BMOL

.

Let us �nally consider f3. Assume that r > ρ(x0). By Proposition 2.15(d), for some

0 < δ ′ 6 δ0 with δ ′ < β,

|tβ∂
β
t Ptf3(x)| 6 C |fB|

(t/ρ(x))δ
′

(1+ t/ρ(x))N
6 C ‖f‖BMOL

(t/ρ(x))δ
′

(1+ t/ρ(x))N
.
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Hence

1

|B|

∫
B̂

|tβ∂
β
t Ptf3(x)|

2 dx dt

t
6 C ‖f‖2BMOL

1

|B|

∫
B̂

(t/ρ(x))2δ
′

(1+ t/ρ(x))2N
dx dt

t

6 C ‖f‖2BMOL

1

|B|

∫
B

(∫ρ(x)
0

+

∫∞
ρ(x)

)
(t/ρ(x))2δ

′

(1+ t/ρ(x))2N
dt

t
dx.

(2.34)

On one hand, ∫ρ(x)
0

(t/ρ(x))2δ
′

(1+ t/ρ(x))2N
dt

t
6
∫ρ(x)
0

(t/ρ(x))2δ
′ dt

t
= C.

On the other hand,∫∞
ρ(x)

(t/ρ(x))2δ
′

(1+ t/ρ(x))2N
dt

t
6
∫∞
ρ(x)

(t/ρ(x))2δ
′−2N dt

t
= C.

Therefore from (2.34) we obtain that if r > ρ(x0) then

1

|B|

∫
B̂

|tβ∂
β
t Ptf3(x)|

2 dx dt

t
6 C ‖f‖2BMOL

.

Suppose that r < ρ(x0). Apply Remark 2.20, Proposition 2.15(d) with some δ ′ > 1/2 and

Lemma 2.1 to get

1

|B|

∫
B̂

|tβ∂
β
t Ptf3(x)|

2 dx dt

t
6 C ‖f‖2BMOL

(
1+ log

ρ(x0)

r

)2 1

|B|

∫
B̂

(t/ρ(x))2δ
′

(1+ t/ρ(x))2N
dx dt

t

6 C ‖f‖2BMOL

(
1+ log

ρ(x0)

r

)2 1

|B|

∫
B

∫r
0

(t/ρ(x0))
2δ ′ dt

t
dx

= C ‖f‖2BMOL

(
1+ log

ρ(x0)

r

)2(
r

ρ(x0)

)2δ ′

6 C ‖f‖2BMOL
, for all r < ρ(x0).

This �nishes the proof.

Proof of Theorem 2.11(B)

As in the argument of the proof of Theorem 2.10(II), we only need to consider the case

n = 1. Let

f(x) = max
{
log

1

|x|
, 0
}
, x ∈ R.

It is well known that f belongs to the classical BMO(R). Observe that the function f is

nonnegative and it is supported in [−1, 1]. For every x we have ρ(x) = 1√
µ . Hence, for

r > ρ(x) and B(x0, r) = [x0 − r, x0 + r],

1

|B(x0, r)|

∫
B(x0,r)

|f(x)| dx 6
1

2r

∫
B(0,1)

|f(x)| dx 6 C
√
µ.
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So f ∈ BMOLµ .

Now we want to prove that supt>0 |t∂tPtf(0)| =∞. In fact, we have

t∂tPtf(0) = C

∫∞
0

t

(
1−

t2

2s

)
e−t

2/(4s)

s3/2

∫
|y|<1

e−y
2/(4s)

s1/2
(− log |y|) dy e−sµ ds

= C

∫∞
0

t

(
1−

t2

2s

)
e−t

2/(4s)

s3/2

∫
|zt|<1

e−(zt)2/(4s)

s1/2
t(− log |zt|) dz e−sµ ds

= C

∫∞
0

w2
(
1−w2

)
e−w

2/2

∫
|zt|<1

e−(zw)2/2

s1/2
(− log |zt|) dz e−

t2

2w2µ
dw

w

= C

∫∞
0

w
(
1−w2

)
e−w

2/2

∫
|zt|<1

e−(zw)2/2(− log |z|) dz e−
t2

2w2µ dw

+ C

∫∞
0

w
(
1−w2

)
e−w

2/2

∫
|zt|<1

e−(zw)2/2(− log |t|) dz e−
t2

2w2µ dw

=: I+ II.

Observe that

|I| 6 C
∫∞
0

we−w
2/c

∫
R
e−(zw)2/2 |log |z|| dz dw

6 C
∫∞
0

we−w
2/c

(∫
|z|<1

e−(zw)2/2(− log |z|) dz+

∫
|z|>1

e−(zw)2/2 log |z| dz

)
dw

6 C
∫∞
0

we−w
2/c

(∫
|z|<1

(− log |z|) dz+

∫
|z|>1

e−(zw)2/2|z|δ0 dz

)
dw

6 C
∫∞
0

we−w
2/c

(
1+

1

wδ0

)
dw 6 C,

where δ0 < 1. For the second integral,

|II| 6 C |log |t||

∫∞
0

we−w
2/c

∫
R
e−(zw)2/2 dz dw = C |log |t||

∫∞
0

e−w
2/c dw = C |log |t|| .

Therefore the two integrals that de�ne t∂tPtf(0) are (absolutely) convergent. The limit

when t → 0 of the second term II above is in�nity. Thus t∂tPtf(0) → ∞ as t → 0. We

complete the proof with β = 1.



Chapter 3

Regularity estimates in Hölder
spaces for Schrödinger operators
via a T1 theorem

In this chapter we shall study the regularity estimates in the H�older classes C0,α
L , 0 < α < 1,

of operators associated with the time independent Schr�odinger operator in Rn, n > 3,

L = −∆+ V.

It is well-known that the classical H�older space Cα(Rn) can be identi�ed with the Cam-

panato space BMOα, see [20]. In the Schr�odinger case the analogous result was proved by B.

Bongioanni, E. Harboure and O. Salinas in [13]. They identi�ed the H�older space associated

to L with a Campanato type BMOαL space, see Proposition 2.27. Therefore, in order to

study regularity estimates we can take advantage of this characterization. In fact we shall

present our results as boundedness of operators between BMOαL spaces.

We will give a T1-type criterion for the boundedness of some operators in BMOαL spaces

in Section 3.1 �rst. With this T1-type criterion, we get the regularity estimates for some

operators related to L as applications in Section 3.2.

3.1 T1-type criterions on BMOαL-spaces

The main point of this section is to give a simple T1 criterion for boundedness in BMOαL of the

so-called γ-Schr�odinger-Calder�on-Zygmund operators T , see De�nition 3.6. The advantage

of this criterion is that everything reduces to check a certain condition on the function T1.

We use the notation fB = 1
|B|

∫
B f. The �rst result reads as follows.

Theorem 3.1 (T1-type criterion for BMOαL, 0 < α < 1). Let T be a γ-Schr�odinger-

Calder�on-Zygmund operator, γ > 0, with smoothness exponent δ, such that α + γ <

min {1, δ}. Then T is bounded from BMOαL into BMOα+γL if and only if there exists a

51
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constant C such that (
ρ(x)

s

)α 1

|B|1+
γ
n

∫
B

|T1(y) − (T1)B| dy 6 C,

for every ball B = B(x, s), x ∈ Rn and 0 < s 6 1
2
ρ(x). Here ρ(x) is the critical radii

function de�ned in (2.3).

We can also consider the endpoint case α = 0.

Theorem 3.2 (T1-type criterion for BMOL). Let T be a γ-Schr�odinger-Calder�on-Zygmund

operator, 0 6 γ < min {1, δ}, with smoothness exponent δ. Then T is a bounded operator

from BMOL into BMOγL if and only if there exists a constant C such that

log

(
ρ(x)

s

)
1

|B|1+
γ
n

∫
B

|T1(y) − (T1)B| dy 6 C,

for every ball B = B(x, s), x ∈ Rn and 0 < s 6 1
2
ρ(x).

Observe that for any x ∈ Rn and 0 < α 6 1, if 0 < s 6 1
2
ρ(x) then 1+ log ρ(x)s ∼ log ρ(x)s

and 1+
2α
((
ρ(x)
s

)α
−1
)

2α−1
∼
(
ρ(x)
s

)α
. Therefore, tracking down the exact constants in the proof

we can see that Theorem 3.2 is indeed the limit case of Theorem 3.1.

Theorem 3.2 is a generalization of the T1-type criterion given in [6] for the case of the

harmonic oscillator H = −∆ + |x|2. Here we require the dimension to be n > 3, while in [6]

the dimension can be any n > 1.

For BMOαL-spaces, we have the following propositions and lemmas.

Proposition 3.3. Let B = B(x, r) with r < ρ(x).

(1) (See [27, Lemma 2]) If f ∈ BMOL then |fB| 6 C
(
1+ log ρ(x)r

)
‖f‖BMOL

.

(2) (See [55, Proposition 4.3]) If f ∈ BMOαL, 0 < α 6 1, then |fB| 6 Cα ‖f‖BMOαL ρ(x)
α.

(3) (See [13, Proposition 3]) A function f belongs to BMOαL, 0 6 α 6 1, if and only if

f satis�es (i) for every ball B = B(x0, r0) with r0 < ρ(x0) and |f|Qk 6 C |Qk|
1+α

n , for

all balls Qk given in the covering by critical balls above.

Lemma 3.4 (Boundedness criterion). Let S be a linear operator de�ned on BMOαL, 0 6
α 6 1. Then S is bounded from BMOαL into BMOα+γL , α+ γ 6 1, γ > 0, if there exists

C > 0 such that, for every f ∈ BMOαL and k ∈ N,

(Ak)
1

|Qk|
1+α+γ

n

∫
Qk

|Sf(x)| dx 6 C‖f‖BMOαL, and

(Bk) ‖Sf‖BMOα+γ(Q∗k) 6 C‖f‖BMOαL, where BMO
α(Q∗k) denotes the usual BMOα space

on the ball Q∗k.
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Proof. For α = 0 the result is already contained in [27, p. 346]. The general statement

follows immediately from the de�nition of BMOαL and Lemma 2.1 (see Proposition 3.3).

The duality of the L-Hardy space H1
L with BMOL was proved in [27]. As mentioned

in [13], the BMOαL spaces are the duals of the HpL spaces de�ned in [30, 32, 31]. In fact, if

q > n and 0 6 α < 1 then the dual of H
n
n+α

L is BMOαL, see also [43].

In the following lemma we present examples of families of functions indexed by x0 ∈ Rn

and 0 < s 6 ρ(x0) that are uniformly bounded in BMOαL. They will be very useful in the

sequel.

Lemma 3.5. There exists constants C,Cα > 0 such that for every x0 ∈ Rn and 0 < s 6
ρ(x0),

(a) the function gx0,s(x) := χ[0,s](|x− x0|) log

(
ρ(x0)

s

)
+ χ(s,ρ(x0)](|x− x0|) log

(
ρ(x0)

|x− x0|

)
,

x ∈ Rn, belongs to BMOL and ‖gx0,s‖BMOL
6 C;

(b) the function fx0,s(x) = χ[0,s](|x−x0|) (ρ(x0)
α − sα)+χ(s,ρ(x0)](|x−x0|) (ρ(x0)

α − |x− x0|
α),

x ∈ Rn, belongs to BMOαL, 0 < α 6 1, and ‖fx0,s‖BMOαL 6 Cα.

Proof. The proof of part (a) follows the same lines as the proof of Lemma 2.1 in [6]. We

omit the details.

Let us continue with (b). Recall that the function h(x) = (1− |x|α)χ[0,1](|x|) is in

BMOα(Rn). Hence, for every R > 0, the function hR(x) := Rαh(x/R) is in BMOα(Rn)
and ‖hR‖BMOα(Rn) 6 C, where C > 0 is independent of R. Moreover, for every R > 0

and S > 1, the function hR,S(x) = min{Rα(1− S−α),Rαh(x/R)} belongs to BMOα(Rn) and
‖hR,S‖BMOα(Rn) 6 C, where C > 0 does not depend on R and S. Then, since for every

x0 ∈ Rn and 0 < s 6 ρ(x0),

fx0,s(x) = hρ(x0),
ρ(x0)
s

(x− x0), x ∈ Rn,

we get fx0,s ∈ BMOα(Rn) = Cα(Rn) and ‖fx0,s‖BMOα(Rn) 6 C. This, the obvious inequal-
ity |fx0,s(x)| 6 Cρ(x)

α, for all x, uniformly in x0 and s 6 ρ(x0), and Proposition 2.27 imply

the conclusion.

We denote by Lpc (Rn) the set of functions f ∈ Lp(Rn), 1 6 p 6∞, whose support supp(f)

is a compact subset of Rn.

Definition 3.6. Let 0 6 γ < n, 1 < p 6 q < ∞, 1
q = 1

p − γ
n . Let T be a bounded linear

operator from Lp(Rn) into Lq(Rn) such that

Tf(x) =

∫
Rn
K(x,y)f(y) dy, f ∈ Lpc (Rn) and a.e. x /∈ supp(f).

We shall say that T is a γ-Schr�odinger-Calder�on-Zygmund operator with regularity exponent

δ > 0 if for some constant C
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(1) |K(x,y)| 6
C

|x− y|n−γ

(
1+

|x− y|

ρ(x)

)−N

, for all N > 0 and x 6= y,

(2) |K(x,y) − K(x, z)|+ |K(y, x) − K(z, x)| 6 C
|y− z|δ

|x− y|n−γ+δ
, when |x− y| > 2|y− z|.

Definition of Tf for f ∈ BMOαL, 0 6 α 6 1. Suppose that f ∈ BMOαL and R > ρ(x0),

x0 ∈ Rn. We de�ne

Tf(x) = T
(
fχB(x0,R)

)
(x) +

∫
B(x0,R)c

K(x,y)f(y) dy, a.e. x ∈ B(x0,R).

Note that the �rst term in the right hand side makes sense since fχB(x0,R) ∈ L
p
c (Rn). The

integral in the second term is absolutely convergent. Indeed, by Lemma 2.1, there exists a

constant C such that for any x ∈ B(x0,R),

ρ(x) 6 cρ(x0)

(
1+

|x− x0|

ρ(x0)

) k0
k0+1

6 C

(
ρ(x0) + ρ(x0)

1−
k0
k0+1 |x− x0|

k0
k0+1

)
6 C

(
R+ R

1−
k0
k0+1 |x− x0|

k0
k0+1

)
6 C2R.

Hence, using the γ-Schr�odinger-Calder�on-Zygmund condition (1) for K with N− γ > α,∫
B(x0,2R)c

|K(x,y)||f(y)| dy 6 C
∞∑
j=1

∫
2jR<|y−x0|62j+1R

ρ(x)N

|x− y|n+N−γ
|f(y)| dy

6 C
∞∑
j=1

ρ(x)N

(2jR− R)n+N−γ

∫
|y−x0|62j+1R

|f(y)| dy (3.1)

6 CRα+γ‖f‖BMOαL , a.e. x ∈ B(x0,R).

The de�nition of Tf(x) is also independent of R in the sense that if B(x0,R) ⊂ B(x ′0,R ′), with
R ′ > ρ(x0), then the de�nition using B(x ′0,R

′) coincides almost everywhere in B(x0,R) with

the one just given, because in that situation,

T
(
fχB(x ′0,R ′)

)
(x) − T

(
fχB(x0,R)

)
(x)

= T
(
fχB(x ′0,R ′)\B(x0,R)

)
(x) =

∫
B(x ′0,R

′)\B(x0,R)
K(x,y)f(y) dy

=

∫
B(x0,R)c

K(x,y)f(y) dy−

∫
B(x ′0,R

′)c
K(x,y)f(y) dy, a.e. x ∈ B(x0,R).

The de�nition just given above is equally valid for f ≡ 1 ∈ BMOL.

Next we derive an expression for Tf where T1 appears that will be useful in the proof of

our main results. Let x0 ∈ Rn and r0 > 0. For B = B(x0, r0) we clearly have

f = (f− fB)χB∗∗∗ + (f− fB)χ(B∗∗∗)c + fB =: f1 + f2 + f3. (3.2)
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Let us choose R > ρ(x0) such that B∗∗∗ ⊂ B(x0,R). Using (3.2) we get

Tf(x) = T
(
fχB(x0,R)

)
(x) +

∫
B(x0,R)c

K(x,y)f(y) dy

= T ((f− fB)χB∗∗∗) (x) + T
(
(f− fB)χB(x0,R)\B∗∗∗

)
(x) + fBT

(
χB(x0,R)

)
(x)

+

∫
B(x0,R)c

K(x,y)(f(y) − fB) dy+ fB

∫
B(x0,R)c

K(x,y) dy (3.3)

= T ((f− fB)χB∗∗∗) (x) +

∫
(B∗∗∗)c

K(x,y)(f(y) − fB) dy+ fBT1(x), a.e. x ∈ B∗∗∗.

We observe that there exists a constant C such that

1

|B|1+
γ
n

∫
B

|T1(y)| dy 6 C, for all B = B(x, ρ(x)), x ∈ Rn. (3.4)

Indeed, by H�older's inequality and the Lp − Lq boundedness of T ,

1

|B|1+
γ
n

∫
B

|T (χB∗) (y)| dy 6
1

|B|
1
q+

γ
n

(∫
B

|T (χB∗) (y)|
q dy

)1/q

6 C
|B|1/p

|B|
1
q+

γ
n

= C.

By the integral representation of T and the size condition (1) on K with N = n + γ, for

y ∈ B(x, ρ(x)) we have

∣∣T (χ(B∗)c) (y)∣∣ 6 C ∞∑
k=1

∫
2jρ(x)6|x−z|<2j+1ρ(x)

ρ(y)n+γ

|y− z|2n
dz

6 Cρ(y)n+γ
∞∑
k=1

(2j+1ρ(x))n

(2jρ(x) − ρ(x))2n
6 Cρ(x)γ,

because ρ(x) ∼ ρ(y). Thus (3.4) follows by linearity.

Proof of Theorem 3.1. First we shall see that the condition on T1 implies that T is bounded

from BMOαL into BMOα+γL . In order to do this, we will show that there exists C > 0 such

that the properties (Ak) and (Bk) stated in Lemma 3.4 hold for every k ∈ N and f ∈ BMOαL.
We begin with (Ak). According to (3.3) with B = Qk,

Tf(x) = T
(
(f− fQk)χQ∗∗∗k

)
(x) +

∫
(Q∗∗∗k )c

K(x,y)(f(y) − fQk) dy+ fQkT1(x), a.e. x ∈ Qk.

As T maps Lp(Rn) into Lq(Rn), 1
q = 1

p − γ
n , by H�older's inequality,

1

|Qk|
1+α+γ

n

∫
Qk

∣∣T ((f− fQk)χQ∗∗∗k ) (x)∣∣dx 6 1

|Qk|
1
q+

α+γ
n

(∫
Qk

∣∣T ((f− fQk)χQ∗∗∗k ) (x)∣∣q dx)1/q

6
C

|Qk|
α
n

(
1

|Qk|

∫
Q∗∗∗k

∣∣f(x) − fQk∣∣p dx
)1/p

6 C‖f‖BMOαL .
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On the other hand, given x ∈ Qk, we have ρ(x) ∼ ρ(xk) and if |xk − y| > 2jρ(xk), j ∈ N,
then |x− y| > 2j−1ρ(xk). By the size condition (1) of the kernel K, for any N > α we have

1

|Qk|
α+γ
n

∣∣∣∣∣
∫
(Q∗∗∗k )c

K(x,y)
(
f(y) − fQk

)
dy

∣∣∣∣∣ 6 1

|Qk|
α+γ
n

∫
(Q∗∗∗k )c

|K(x,y)|
∣∣f(y) − fQk∣∣ dy

6
C

|Qk|
α+γ
n

∫
(Q∗∗∗k )c

1

|x− y|n−γ

(
1+

|x− y|

ρ(x)

)−N ∣∣f(y) − fQk∣∣ dy
6

C

|Qk|
α+γ
n

∞∑
j=3

∫
2jρ(xk)<|xk−y|62j+1ρ(xk)

ρ(x)N

|x− y|n−γ+N
∣∣f(y) − fQk∣∣ dy

6
C

ρ(xk)α

∞∑
j=3

ρ(xk)
N

(2jρ(xk))
n+N

∫
|xk−y|62j+1ρ(xk)

∣∣f(y) − fQk∣∣ dy
6 C

∞∑
j=3

2−j(N−α)(j+ 1) ‖f‖BMOαL 6 C‖f‖BMOαL .

Finally, by (3.4),

1

|Qk|
1+α+γ

n

∫
Qk

∣∣fQkT1(x)∣∣ dx = |fQk |

|Qk|
α
n

1

|Qk|
1+ γ

n

∫
Qk

|T1(x)| dx 6 C‖f‖BMOαL .

Hence, we conclude that (Ak) holds for T with a constant C that does not depend on k.

Let us continue with (Bk). Let B = B(x0, r0) ⊆ Q∗k, where x0 ∈ Rn and r0 > 0. Note

that if r0 > 1
2
ρ(x0) then ρ(x0) ∼ ρ(xk) ∼ r0, so proceeding as above we have

1

|B|1+
α+γ
n

∫
B

|Tf(x) − (Tf)B| dx 6
2

|B|1+
α+γ
n

∫
B

|Tf(x)| dx 6 C‖f‖BMOαL .

Assume next that 0 < r0 <
1
2
ρ(x0). Using (3.3) we have

1

|B|1+
α+γ
n

∫
B

|Tf(x) − (Tf)B| dx 6
1

|B|1+
α+γ
n

∫
B

1

|B|

∫
B

|Tf1(x) − Tf1(z)| dz dx

+
1

|B|1+
α+γ
n

∫
B

1

|B|

∫
B

|F2(x) − F2(z)| dz dx

+
1

|B|1+
α+γ
n

∫
B

|Tf3(x) − (Tf3)B| dx =: L1 + L2 + L3,

where f = f1 + f2 + f3 as in (3.3) and we de�ned

F2(x) =

∫
(B∗∗∗)c

K(x,y)f2(y) dy, x ∈ B.

Again H�older's inequality and Lp − Lq boundedness of T give L1 6 C ‖f‖BMOαL . Let us

estimate L2. Take x, z ∈ B and y ∈ (B∗∗∗)c. Then 8r0 < |y− x0| 6 |y− x|+ r0 and therefore
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2 |x− x0| < 4r0 < |y− x|. Under these conditions we can apply the smoothness of the kernel

(2) and the restriction α+ γ < min {1, δ} to get

1

|B|
α+γ
n

|F2(x) − F2(z)| 6
C

r
α+γ
0

∫
(B∗∗∗)c

|K(x,y) − K(z,y)| |f(y) − fB| dy

6
C

r
α+γ
0

∞∑
j=3

∫
2jr06|x0−y|<2j+1r0

|x− z|δ

|x− y|n−γ+δ
|f(y) − fB| dy

6
C

r
α+γ
0

∞∑
j=3

rδ0
((2j − 1)r0)n−γ+δ

∫
2jr06|x0−y|<2j+1r0

|f(y) − fB| dy

6 C
∞∑
j=3

2−j(δ−(α+γ))

(2j+1r0)n+α

∫
|x0−y|<2j+1r0

|f(y) − fB| dy

6 C ‖f‖BMOαL

∞∑
j=3

2−j(δ−(α+γ))(j+ 1) = C ‖f‖BMOαL .

Therefore, L2 6 C ‖f‖BMOαL . We �nally consider L3. Using Proposition 3.3(2) and the

assumption on T1 it follows that

L3 =
|fB|

|B|1+
α+γ
n

∫
B

|T1(x) − (T1)B| dx (3.5)

6 C ‖f‖BMOαL

(
ρ(x0)

r0

)α 1

|B|1+
γ
n

∫
B

|T1(x) − (T1)B| dx 6 C ‖f‖BMOαL .

This concludes the proof of (Bk). Hence T is bounded from BMOαL into BMOα+γL .

Let us now prove the converse statement. Suppose that T is bounded from BMOαL into

BMO
α+γ
L . Let x0 ∈ Rn and 0 < s 6 1

2
ρ(x0) and B = B(x0, s). For such x0 and s consider

the nonnegative function f0(x) ≡ fx0,s(x) de�ned in Lemma 3.5. Using the decomposition

f0 = (f0−(f0)B)χB∗∗∗+(f0−(f0)B)χ(B∗∗∗)c+(f0)B =: f1+f2+(f0)B we can write (f0)BT1(y) =

Tf0(y) − Tf1(y) − Tf2(y), so

(f0)B
1

|B|1+
α+γ
n

∫
B

|T1(y) − T1B| dy 6
2∑
i=0

1

|B|1+
α+γ
n

∫
B

|Tfi(y) − (Tfi)B| dy.

We can check that each of the three terms above is controlled by C ‖f0‖BMOαL 6 C, where

C is independent of x0 and s. Indeed, the case i = 0 follows by the hypothesis about the

boundedness of T . For i = 1 the estimate follows, as usual, by H�older's inequality and Lp−Lq

boundedness of T . The term for i = 2 is done as L2 above. Thus, since (f0)B = C(ρ(x0)
α−sα)

we obtain (
ρ(x0)

s

)α 1

|B|1+
γ
n

∫
B

|T1(y) − (T1)B| dy 6 C.
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Proof of Theorem 3.2. The proof is the same as the proof of Theorem 3.1 putting α = 0

everywhere, except for just two di�erences. The �rst one is the estimate of the term L3,

where we must apply Proposition 3.3(1) instead of (2). The second di�erence is the proof of

the converse, where instead of fx0,s(x) we have to consider the function gx0,s(x) of Lemma

3.5.

At the end of this section, we give an easy application of Theorem 3.1 and Theorem 3.2

about the pointwise multipliers in BMOαL, 0 6 α < 1. For pointwise multipliers of the

classical BMOα spaces see the papers by S. Bloom [11], S. Janson [49] and E. Nakai and K.

Yabuta [60].

Proposition 3.7. Let ψ be a measurable function on Rn. We denote by Tψ the multi-

plier operator de�ned by Tψ(f) = fψ. Then

(A) Tψ is a bounded operator in BMOL if and only if ψ ∈ L∞(Rn) and there exists

C > 0 such that, for all balls B = B(x0, s) with 0 < s < 1
2
ρ(x0),

log

(
ρ(x0)

s

)
1

|B|

∫
B

|ψ(y) −ψB| dy 6 C.

(B) Tψ is a bounded operator in BMOαL, 0 < α < 1, if and only if ψ ∈ L∞(Rn) and
there exists C > 0 such that, for all balls B = B(x0, s) with 0 < s < 1

2
ρ(x0),(

ρ(x0)

s

)α 1

|B|

∫
B

|ψ(y) −ψB| dy 6 C.

Remark 3.8. If ψ ∈ C0,β(Rn)∩L∞(Rn), 0 < β 6 1, then Tψ is bounded on BMOL. More-

over, if for some γ-Schr�odinger-Calder�on-Zygmund operator T and T1 de�nes a pointwise

multiplier in BMOαL then the proposition above and Theorems 3.2 and 3.1 imply that T is

a bounded operator on BMOαL.

Proof of Proposition 3.7. Let us �rst prove (B). Suppose that Tψ is a bounded operator on

BMOαL, 0 < α < 1. For the function fx0,s(x) de�ned in Lemma 3.5 and any ball B = B(x0, s)

with 0 < s 6 1
2
ρ(x0), by Proposition 3.3(2) applied to fψ and the hypothesis, we get(

ρ(x0)

s

)α 1

|B|

∫
B

|ψ(x)| dx 6 Cα
(ρ(x0)

α − sα)

|B|1+
α
n

∫
B

|ψ(x)| dx =
Cα

|B|1+
α
n

∫
B

|ψ(x)fx0,s(x)| dx

6
Cα

|B|1+
α
n

∫
B

|(ψfx0,s)(x) − (ψfx0,s)B| dx+
Cα

|B|
α
n

(ψfx0,s)B

6 Cα ‖fx0,s‖BMOαL + Cα

(
ρ(x0)

s

)α
‖ψfx0,s‖BMOαL

6 Cα

(
ρ(x0)

s

)α
‖fx0,s‖BMOαL 6 C

(
ρ(x0)

s

)α
.
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Hence |ψ|B 6 C with C independent of B, so that ψ is bounded. Next we check the condition

on ψ. We have(
ρ(x0)

s

)α 1

|B|

∫
B

|ψ(x) −ψB| dx 6 Cα
(ρ(x0)

α − sα)

|B|1+
α
n

∫
B

|ψ(x) −ψB| dx

6
Cα

|B|1+
α
n

∫
B

|ψ(x)fx0,s(x) − (ψfx0,s)B| dx

6 Cα‖ψfx0,s‖BMOαL 6 Cα‖fx0,s‖BMOαL 6 C.

The constants C and Cα appearing in this proof do not depend on x0 ∈ Rn and 0 < s 6
1
2
ρ(x0).

For the converse statement, assume ψ satis�es the properties required in the hypothesis.

The kernel of the operator T = Tψ is zero and Tψ1(x) = ψ(x), so the conclusion follows by

Theorem 3.1.

The proof of (A) is completely analogous by using the function gx0,s(x) of Lemma 3.5

instead of fx0,s(x) and by applying Theorem 3.2.

3.2 Regularity estimates by T1-type criterions

In this section, we will use our T1-criterion to get some regularity estimates in C0,α
L .

First, we need the following remark to extend our T1-criterion to vector-valued case.

Remark 3.9 (Vector-valued setting). Theorems 3.2 and 3.1 can also be stated in a vector

valued setting. If Tf takes values in a Banach space B and the absolute values in the conditions

are replaced by the norm in B then both results hold.

By the T1-type criterions we can get the following regularity estimates.

Theorem 3.10. Let 0 6 α < min{1, 2 − n
q }. The maximal operators associated with

the heat semigroup {Tt}t>0 and with the generalized Poisson operators {Pσt }t>0, the

Littlewood-Paley g-functions given in terms of the heat and the Poisson semigroups,

and the Laplace transform type multipliers m(L), are bounded from BMOαL into itself.

3.2.1 Maximal operators for the heat–diffusion semigroup e−tL

Let {Tt}t>0 be the heat{di�usion semigroup associated to L. To prove that the maximal

operator T∗ de�ned by T∗f(x) = supt>0 |Ttf(x)| is bounded from BMOαL into itself we give

a vector-valued interpretation of the operator and apply Remark 3.9. Indeed, it is clear

that T∗f = ‖Ttf‖E, with E = L∞((0,∞),dt). Hence, it is enough to show that the operator

V(f) := (Ttf)t>0 is bounded from BMOαL into BMOαL,E, where the space BMO
α
L,E is de�ned

in the obvious way by replacing the absolute values | · | by norms ‖ · ‖E.
By the Spectral Theorem, V is bounded from L2(Rn) into L2E(Rn). The desired result is

then deduced from the following proposition.
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Proposition 3.11. Let x,y, z ∈ Rn and N > 0. Then

(i) ‖kt(x,y)‖E 6
C

|x− y|n

(
1+

|x− y|

ρ(x)
+

|x− y|

ρ(y)

)−N

;

(ii) ‖kt(x,y) − kt(x, z)‖E+‖kt(y, x) − kt(z, x)‖E 6 Cδ
|y− z|δ

|x− y|n+δ
, when |x−y| > 2|y− z|,

for any 0 < δ < 2− n
q ;

(iii) there exists a constant C such that for every ball B = B(x, s) with 0 < s 6 1
2
ρ(x),

log

(
ρ(x)

s

)
1

|B|

∫
B

‖Tt1(y) − (Tt1)B‖E dy 6 C,

and, if α < min{1, 2− n
q } then(
ρ(x)

s

)α 1

|B|

∫
B

‖Tt1(y) − (Tt1)B‖E dy 6 C.

Proof. Let us begin with (i). If t > |x− y|2 then the conclusion is immediate from the

estimate of Lemma 2.3. Assume that t 6 |x− y|2. Then

0 6 kt(x,y) 6
C

|x− y|n
e−c

|x−y|2

t

(
1+

√
t

ρ(x)
+

√
t

ρ(y)

)−N

=
C

|x− y|n
e−c

|x−y|2

t

( √
t

|x− y|

)−N(
|x− y|√

t
+

|x− y|

ρ(x)
+

|x− y|

ρ(y)

)−N

6
C

|x− y|n
e−c

|x−y|2

t

( √
t

|x− y|

)−N(
1+

|x− y|

ρ(x)
+

|x− y|

ρ(y)

)−N

6
C

|x− y|n

(
1+

|x− y|

ρ(x)
+

|x− y|

ρ(y)

)−N

.

We prove (ii). Observe that if |x−y| > 2|y− z| then |x− y| ∼ |x− z| . For any 0 < δ < δ0,

if |y− z| 6
√
t, by Lemma 2.5,

|kt(x,y) − kt(x, z)| 6 C

(
|y− z|√

t

)δ
t−n/2e−c

|x−y|2

t 6 C
|y− z|δ

|x− y|n+δ
. (3.6)

Consider the situation |y− z| >
√
t. Then Lemma 2.3 gives

|kt(x,y)| 6 C

(
|y− z|√

t

)δ
t−n/2e−c

|x−y|2

t

(
1+

√
t

ρ(x)
+

√
t

ρ(y)

)−N

6 C
|y− z|δ

|x− y|n+δ
.

The same bound is valid for Tt(x, z) because |x− z| ∼ |x− y|. Then the estimate fol-

lows directly since |kt(x,y) − kt(x, z)| 6 |kt(x,y)| + |kt(x, z)|. The symmetry of the kernel

kt(x,y) = kt(y, x) gives the conclusion of (ii).



3.2. Regularity estimates by T1-type criterions 61

Let us prove the �rst statement of (iii). Let B = B(x, s) with 0 < s 6 1
2
ρ(x). The triangle

inequality gives

‖Tt1(y) − (Tt1)B‖E 6
1

|B|

∫
B

‖Tt1(y) − Tt1(z)‖E dz (3.7)

We estimate the integrand ‖Tt1(y) − Tt1(z)‖E. Because y, z ∈ B, we have ρ(y) ∼ ρ(z) ∼ ρ(x)
(see Lemma 2.1). The fact that Tt1(x) ≡ 1 and Lemma 2.4 entail

|Tt1(y) − Tt1(z)| 6 |Tt1(y) − Tt1(y)|+ |Tt1(z) − Tt1(z)|

6
∫
Rn

[( √
t

ρ(y)

)δ0
ωt(y−w) +

( √
t

ρ(z)

)δ0
ωt(z−w)

]
dw

6

( √
t

ρ(x)

)δ0 ∫
Rn

[ωt(y−w) +ωt(z−w)] dw = C

( √
t

ρ(x)

)δ0
. (3.8)

So (3.8) gives

|Tt1(y) − Tt1(z)| 6 C

(
s

ρ(x)

)δ0
, when

√
t 6 2s. (3.9)

If
√
t > 2s then |y− z| 6 2s <

√
t. Hence Lemma 2.5 implies that

|Tt1(y) − Tt1(z)| 6
∫
Rn

|kt(y,w) − kt(z,w)| dw 6 C

(
|y− z|√

t

)δ
6 C

(
s√
t

)δ
, (3.10)

where 0 < δ < δ0. Therefore estimate (3.10) gives

|Tt1(y) − Tt1(z)| 6 C

(
s

ρ(x)

)δ
, when

√
t > ρ(x). (3.11)

When 2s <
√
t < ρ(x) we write

|Tt1(y) − Tt1(z)| = |(Tt1(y) − Tt1(y)) − (Tt1(z) − Tt1(z))|

=
∣∣∣( ∫

|w−y|>Cρ(y)
+

∫
4|y−z|<|w−y|<Cρ(y)

+

∫
|w−y|<4|y−z|

)
(kt(y,w) − ht(y,w)) − (kt(z,w) − ht(z,w)) dw

∣∣∣
= |I+ II+ III| .

For I we use the smoothness proved in part (ii) of this proposition. Note that the same

smoothness estimate is valid for the classical heat kernel. So we get

|I| 6 C
∫
|w−y|>Cρ(y)

|y− z|δ

|w− y|n+δ
dw 6 C

(
s

ρ(x)

)δ
.
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In II we apply Lemma 2.6 and the fact that ρ(w) ∼ ρ(y) in the region of integration:

|II| 6 C |y− z|δ
∫
Cρ(y)>|w−y|>4|y−z|

ωt(w− y)

ρ(w)δ
dw 6 C

(
s

ρ(x)

)δ
.

The estimate of III is obtained by applying Lemma 2.4:

|III| 6 C

( √
t

ρ(x)

)δ0 (∫
|w−y|<4|y−z|

ωt(y−w) dw+

∫
|w−z|65|y−z|

ωt(z−w) dw

)
6 C

( √
t

ρ(x)

)δ0 ∫
|ξ|65

|y−z|√
t

ω(ξ) dξ 6 C

( √
t

ρ(x)

)δ0 (
|y− z|√

t

)n
6 C

sn

ρ(x)δ0(
√
t)n−δ0

6 C
sn

ρ(x)δ0sn−δ0
= C

(
s

ρ(x)

)δ0
,

since 2s <
√
t and n− δ0 > 0. Thus

|Tt1(y) − Tt1(z)| 6 C

(
s

ρ(x)

)δ
, when 2s <

√
t < ρ(x). (3.12)

Combining (3.9), (3.11) and (3.12), we get

‖Tt1(y) − Tt1(z)‖E 6 C

(
s

ρ(x)

)δ
. (3.13)

Therefore, from (3.7) and (3.13) we get

log

(
ρ(x)

s

)
1

|B|

∫
B

‖Tt1(y) − (Tt1)B‖E dy 6 C

(
s

ρ(x)

)δ
log

(
ρ(x)

s

)
6 C,

which is the �rst conclusion of (iii).

For the second estimate of (iii), by (3.13), we have(
ρ(x)

s

)α 1

|B|

∫
B

‖Tt1(y) − (Tt1)B‖E dy 6 C

(
s

ρ(x)

)δ−α
6 C,

as soon as δ−α > 0, which can be guaranteed if α < min{1, 2− n
q } and we choose δ > α.

3.2.2 Maximal operators for the generalized Poisson operators Pσt

For 0 < σ < 1 we de�ne the generalized Poisson operators Pσt as

u(x, t) ≡ Pσt f(x) =
t2σ

4σΓ(σ)

∫∞
0

e−
t2

4rTrf(x)
dr

r1+σ
=

1

Γ(σ)

∫∞
0

e−rT t2
4r

f(x)
dr

r1−σ
, (3.14)
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for x ∈ Rn and t > 0. The function u satis�es the following boundary value (extension)

problem: {
−Lxu+ 1−2σ

t ut + utt = 0, in Rn × (0,∞);

u(x, 0) = f(x), on Rn.

Moreover, u is useful to characterize the fractional powers of L since −t1−2σut(x, t)
∣∣
t=0

=

cσL
σf(x) for some constant cσ > 0, see [82]. The fractional powers Lσ can be de�ned in a

spectral way. When σ = 1/2 we get that P
1/2
t = e−tL

1/2
is the classical Poisson semigroup

generated by L given by Bochner's subordination formula, see [78]. It follows that

Pσt f(x) =

∫
Rn

Pσt (x,y)f(y) dy,

where

Pσt (x,y) =
t2σ

4σΓ(σ)

∫∞
0

e−
t2

4r kr(x,y)
dr

r1+σ
=

1

Γ(σ)

∫∞
0

e−rk t2
4r

(x,y)
dr

r1−σ
. (3.15)

To get the boundedness of the maximal operator Pσ,∗f(x) := supt>0 |P
σ
t f(x)| = ‖Pσt f(x)‖E

in BMOαL, we proceed using the vector-valued approach and the boundedness of the maximal

heat semigroup T∗f. The following proposition completely analogous to Proposition 3.11

holds.

Proposition 3.12. The estimates of Proposition 3.11 are valid when Tt is replaced by

Pσt .

Proof. The proof follows by transferring the estimates for kt(x,y) to Pσt (x,y) through for-

mula (3.15). We just sketch the proof of (iii). For any y, z ∈ B = B(x, s), x ∈ Rn,
0 < s 6 1

2
ρ(x), by (3.15), Minkowski's integral inequality and (3.13) we have

‖Pσt 1(y) − Pσt 1(z)‖E =6 Cσ

∫∞
0

t2σe−
t2

4r ‖Tr1(y) − Tr1(z)‖E
dr

r1+σ

6 C

(
s

ρ(x)

)δ ∫∞
0

t2σe−
t2

4r
dr

r1+σ
= C

(
s

ρ(x)

)δ
.

Then the same computations for the heat semigroup apply in this case and give (iii).

3.2.3 Littlewood–Paley g-function for the heat–diffusion semigroup

The Littlewood{Paley g-function associated with {Tt}t>0 is de�ned by

gT(f)(x) =

(∫∞
0

|t∂tTtf(x)|
2 dt

t

)1/2

= ‖t∂tTtf(x)‖F,

where F := L2
(
(0,∞), dtt

)
. The Spectral Theorem implies that gT is an isometry on L2(Rn),

see [27, Lemma 3]. As before, to get the boundedness of gT from BMOαL into itself it is

su�cient to prove the following result.
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Proposition 3.13. The estimates of Proposition 3.11 are valid when Tt is replaced by

t∂tTt and the Banach space E is replaced by F.

Proof. Part (i) is proved using Lemma 2.13(a) and the same argument of the proof of

Proposition 3.11(i).

Similarly (ii) follows by Lemma 2.13(b) and the symmetry kt(x,y) = kt(y, x).

To prove (iii) let us �x y, z ∈ B = B(x0, s), 0 < s 6 1
2
ρ(x0). In view of an estimate like

(3.7), we must handle ‖t∂tTt1(y) − t∂tTt1(z)‖F �rst. We can write

‖t∂tTt1(y) − t∂tTt1(z)‖2F =
∫∞
0

∣∣∣∣∫
Rn

(t∂tkt(x,y) − t∂tkt(x, z)) dx

∣∣∣∣2 dtt
=

(∫4s2
0

+

∫ρ(x0)2
4s2

+

∫∞
ρ(x0)2

)∣∣∣∣∫
Rn

(t∂tkt(x,y) − t∂tkt(x, z)) dx

∣∣∣∣2 dtt =: A1 +A2 +A3.

(3.16)

Since y, z ∈ B ⊂ B(x0, ρ(x0)), it follows that ρ(y) ∼ ρ(x0) ∼ ρ(z). By Lemma 2.13(c),

A1 6 C
∫4s2
0

(
√
t/ρ(x0))

2δ

(1+
√
t/ρ(x0))2N

dt

t
6 C
∫4s2
0

( √
t

ρ(x0)

)2δ
dt

t
= C

(
s

ρ(x0)

)2δ

. (3.17)

Also, by Lemma 2.13(b),

A3 6 C
∫∞
ρ(x0)2

(
|y− z|√

t

)2δ ∣∣∣∣∫
Rn
t−n/2e−c

|x−y|2

t dx

∣∣∣∣2 dtt
= C

∫∞
ρ(x0)2

(
|y− z|√

t

)2δ
dt

t
6 C

(
s

ρ(x0)

)2δ

. (3.18)

It remains to estimate the term A2. Recall from [27, Eq. (2.8)] that, because the potential

V is in the reverse H�older class,

∫
Rn
ωt(x− y)V(y) dy 6

C

t

( √
t

ρ(x)

)δ
, for t 6 ρ(x)2. (3.19)

Clearly ∂tTt1(x) = LTt1(x) = TtV(x), that is

∫
Rn
∂tkt(x,y) dy =

∫
Rn
kt(x,y)V(y) dy. (3.20)



3.2. Regularity estimates by T1-type criterions 65

We then have, by Lemma 2.5 (remember that |y− z| 6 2s 6
√
t),

A2 =

∫ρ(x0)2
4s2

∣∣∣∣∫
Rn

(t∂tkt(x,y) − t∂tkt(x, z)) dx

∣∣∣∣2 dtt
=

∫ρ(x0)2
4s2

t

∣∣∣∣∫
Rn

(kt(y, x) − kt(z, x))V(x) dx

∣∣∣∣2 dt
6 C |y− z|2δ

∫ρ(x0)2
4s2

t1−δ
∣∣∣∣∫

Rn
t−n/2e−c

|y−x|
t V(x) dx

∣∣∣∣2 dt
6 Cs2δ

∫ρ(x0)2
4s2

t1−δt−2

( √
t

ρ(y)

)2δ

dt

6 C

(
s

ρ(x0)

)2δ ∫ρ(x0)2
s2

dt

t
= C

(
s

ρ(x0)

)2δ

log

(
ρ(x0)

s

)
.

(3.21)

Combining (3.16), (3.17), (3.18) and (3.21) we get

‖t∂tTt1(y) − t∂tTt1(z)‖F 6 C
(

s

ρ(x0)

)δ(
log

(
ρ(x0)

s

))1/2

. (3.22)

Thus (iii) readily follows.

3.2.4 Littlewood–Paley g-function for the Poisson semigroup

The Littlewood{Paley g-function associated with the Poisson semigroup {Pt}t>0 ≡ {P
1/2
t }t>0

(see (3.14) and (3.15)) is de�ned analogously as gT by replacing the heat semigroup by the

Poisson semigroup:

gP(f)(x) =

(∫∞
0

|t∂tPtf(x)|
2 dt

t

)1/2

= ‖t∂tPtf(x)‖F.

The Spectral Theorem shows that gP is an isometry on L2(Rn), see [55, Lemma 3.7]. We

also have

Proposition 3.14. The estimates of Proposition 3.11 are valid when Tt is replaced by

t∂tPt and the Banach space E is replaced by F.

Proof. First we derive a convenient formula to treat the operator t∂tPt. By the second

identity of (3.15) with σ = 1/2 (Bochner's subordination formula) and a change of variables,

t∂tPt(x,y) =
t√
π

∫∞
0

e−r

r1/2
∂t

(
k t2

4r

(x,y)
)
dr =

t2

2
√
π

∫∞
0

e−r

r1/2
∂v (kv(x,y))

∣∣∣
v= t2

4r

dr

r

=
t√
π

∫∞
0

e−
t2

4v v∂vkv(x,y)
dv

v3/2
. (3.23)

Formula (3.23) should be compared with the �rst identity of (3.15) for σ = 1/2. It will allow

us to transfer the estimates for v∂vTv to t∂tPt.
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For (i) we use (3.23), Minkowski's integral inequality and the estimate for v∂vTv:

‖t∂tPt(x,y)‖2F 6 C
∫∞
0

|v∂vkv(x,y)|
2

∫∞
0

te−
t2

4v
dt

t

dv

v3/2

= C

∫∞
0

|v∂vkv(x,y)|
2 dv

v
6

C

|x− y|2n

(
1+

|x− y|

ρ(x)
+

|x− y|

ρ(y)

)−2N

.

The estimate for (ii) follows in the same way.

By (3.23), Fubini's Theorem and (3.22),

‖t∂tPt1(y) − t∂tPt1(z)‖F 6 C
(

s

ρ(x0)

)δ
log

(
ρ(x0)

s

)1/2

,

which is su�cient for (iii).

3.2.5 Laplace transform type multipliers

Given a bounded function a on [0,∞) we let

m(λ) = λ

∫∞
0

a(t)e−tλ dt.

The Spectral Theorem allows us to de�ne the Laplace transform type multiplier operator

m(L) associated to a that is bounded on L2(Rn). Observe that

m(L)f(x) =

∫∞
0

a(t)Le−tLf(x) dt =

∫∞
0

a(t)∂tTtf(x) dt, x ∈ Rn.

Then the kernel M(x,y) of m(L) can be written as

M(x,y) =

∫∞
0

a(t)∂tkt(x,y) dt.

Proposition 3.15. Let x,y, z ∈ Rn, N > 0, 0 6 α < 1 and B = B(x, s) for 0 < s 6 ρ(x).

Then

(a) |M(x,y)| 6
C

|x− y|n

(
1+

|x− y|

ρ(x)
+

|x− y|

ρ(y)

)−N

:

(b) |M(x,y) −M(x, z)|+ |M(y, x) −M(z, x)| 6 Cδ
|y− z|δ

|x− y|n+δ
, for all |x− y| > 2 |y− z| and

any 0 < δ < δ0;

(c) log

(
ρ(x)

s

)
1

|B|

∫
B

|m(L)1(y) − (m(L)1)B| dy 6 C;

(d)

(
ρ(x)

s

)α 1

|B|

∫
B

|m(L)1(y) − (m(L)1)B| dy 6 C, for any 0 6 α < min{1, 2− n
q }.
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Proof. The reader should recall the estimates for ∂tTt(x,y) stated in Lemma 2.13.

For (a), by Lemma 2.13(a),∫ |x−y|2
0

|a(t)∂tkt(x,y)| dt 6 C
∫ |x−y|2
0

t−n/2e−c
|x−y|2

t

(
1+

√
t

ρ(x)
+

√
t

ρ(y)

)−N
dt

t

= C

∫ |x−y|2
0

t−n/2e−c
|x−y|2

t

( √
t

|x− y|

)−N(
|x− y|√

t
+

|x− y|

ρ(x)
+

|x− y|

ρ(y)

)−N
dt

t

6 C
∫ |x−y|2
0

t−n/2e−c
|x−y|2

t

(
1+

|x− y|

ρ(x)
+

|x− y|

ρ(y)

)−N
dt

t

6
C

|x− y|n

(
1+

|x− y|

ρ(x)
+

|x− y|

ρ(y)

)−N

,

and ∫∞
|x−y|2

|a(t)∂tkt(x,y)| dt 6 C
∫∞
|x−y|2

t−n/2e−c
|x−y|2

t

(
1+

√
t

ρ(x)
+

√
t

ρ(y)

)−N
dt

t

6 C
∫∞
|x−y|2

t−n/2e−c
|x−y|2

t

(
1+

|x− y|

ρ(x)
+

|x− y|

ρ(y)

)−N
dt

t

6
C

|x− y|n

(
1+

|x− y|

ρ(x)
+

|x− y|

ρ(y)

)−N

.

To check (b) we apply Lemma 2.13(b) to see that∫∞
|x−y|2

|a(t)| |∂tkt(x,y) − ∂tkt(x, z)| dt 6 C
∫∞
|x−y|2

(
|y− z|√

t

)δ
t−n/2e−c

|x−y|2

t
dt

t

6 C
|y− z|δ

|x− y|n+δ
.

Moreover, by Lemma 2.13(a),∫ |x−y|2
0

|a(t)∂tkt(x,y)| dt 6 C
∫ |x−y|2
0

(
|y− z|√

t

)δ
t−n/2e−c

|x−y|2

t
dt

t
6 C

|y− z|δ

|x− y|n+δ
.

The same bound is valid for
∫|x−y|2
0

|a(t)| |∂tkt(x, z)|
dt
t because |x− z| ∼ |x− y|. The sym-

metry of the kernel M(x,y) = M(y, x) gives the conclusion of (b).

Fix y, z ∈ B. For (c) and (d), let us estimate the di�erence

|m(L)1(y) −m(L)1(z)| 6 ‖a‖L∞([0,∞))

∫∞
0

∣∣∣∣∫
Rn

(∂tkt(y,w) − ∂tkt(z,w)) dw

∣∣∣∣ dt.
To that end we split the integral in t into three parts. We start with the part from 0 to 4s2.

From Lemma 2.13(c),∣∣∣∣∣
∫4s2
0

∫
Rn

(∂tkt(y,w) − ∂tkt(z,w)) dw dt

∣∣∣∣∣ 6 C
∫4s2
0

( √
t

ρ(x)

)δ
dt

t
= C

(
s

ρ(x)

)δ
.
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Let us continue with the integral from ρ(x)2 to ∞. We apply Lemma 2.13(b):∣∣∣∣∫∞
ρ(x)2

∫
Rn

(∂tkt(y,w) − ∂tkt(z,w)) dw dt

∣∣∣∣ 6 C ∫∞
ρ(x)2

(
|y− z|√

t

)δ
dt

t

6 C

(
s

ρ(x)

)δ
.

Finally we consider the part from 4s2 to ρ(x)2. Applying (3.20), Lemma 2.5 and (3.19),∣∣∣∣∣
∫ρ(x)2
4s2

∫
Rn

(∂tkt(y,w) − ∂tkt(z,w)) dw dt

∣∣∣∣∣ =
∫ρ(x)2
4s2

∣∣∣∣∫
Rn

(kt(y,w) − kt(z,w))V(w) dw

∣∣∣∣dt
6 C |y− z|δ

∫ρ(x)2
4s2

∫
Rn
t−n/2e−c

|y−w|2

t V(w) dw
dt

tδ/2

6 C

(
s

ρ(y)

)δ ∫ρ(x)2
s2

dt

t
6 C

(
s

ρ(x)

)δ
log

(
ρ(x)

s

)
.

Hence

1

|B|

∫
B

|m(L)1(y) − (m(L)1)B| dy 6
C

s2n

∫
B

∫
B

|m(L)1(y) −m(L)(z)|dydz

6 C

(
s

ρ(x)

)δ
log

(
ρ(x)

s

)
.

Thus (c) is valid and also (d) holds when α < δ.

3.2.6 L-Riesz transforms and negative powers

Following the pattern of the proof of Theorem 3.10 we can recover the results from [13] and

[14]. We state them as a theorem for further reference.

Theorem 3.16. Let α > 0 and 0 < γ < n. Then:

• The L-Riesz transforms are bounded from BMOαL into itself, for any 0 6 α < 1− n
q ,

with q > n.

• The negative powers L−γ/2 are bounded from BMOαL into BMOα+γL for α + γ <

min{1, 2− n
q }.

Let us prove Theorem 3.16 for the L-Riesz transforms and the negative powers L−γ/2

separately.

L-Riesz transforms. For every i = 1, 2, . . . ,n, the i-th Riesz transform Ri associated to L

is de�ned by

Ri = ∂xiL
−1/2 = ∂xi

1√
π

∫∞
0

e−tL
dt

t1/2
.
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We denote by R the vector ∇L−1/2 = (R1, . . . ,Rn). The Riesz transforms associated to L

were �rst studied by Z. Shen in [72]. He showed (Theorem 0.8 of [72]) that if the potential

V ∈ RHq with q > n then R is a Calder�on{Zygmund operator. In particular, the Rn{
valued operator R is bounded from L2(Rn) into L2Rn(Rn) and its kernel K satis�es, for any

0 < δ < 1− n
q ,

|K(x,y) −K(x, z)|+ |K(y, x) −K(z, x)| 6 C
|y− z|δ

|x− y|n+δ
, (3.24)

whenever |x− y| > 2 |y− z|. Moreover, when q > n we have for any x,y ∈ Rn, x 6= y, and

N > 0 there exists a constant CN such that

|K(x,y)| 6
CN

|x− y|n

(
1+

|x− y|

ρ(x)

)−N

, (3.25)

see [72, Eq. (6.5)] and also [14, Lemma 3]. Hence R is a γ-Schr�odinger-Calder�on-Zygmuund

operator with γ = 0. For more information about R, we refer the reader to [14, 15, 28, 29,

61, 77, 94].

The boundedness results of R in BMOαL follow by checking the properties of R1.

Proposition 3.17. Let V ∈ RHq with q > n, B = B(x0, s) for x0 ∈ Rn and 0 < s 6 1
2
ρ(x0).

Then

(i) log

(
ρ(x0)

s

)
1

|B|

∫
B

|R1(y) − (R1)B| dy 6 C;

(ii)

(
ρ(x0)

s

)α 1

|B|

∫
B

|R1(y) − (R1)B| dy 6 C, for α < 1− n
q .

To prove Proposition 3.17, we collect some well-known estimates on K(x,y). Let us

denote by K0 the kernel of the (Rn{valued) classical Riesz transform R0 = ∇(−∆)−1/2.

Lemma 3.18 ([14, Lemmas 3 and 4]). Suppose that V ∈ RHq with q > n.

(a) For any x,y ∈ Rn, x 6= y,

|K(x,y) −K0(x,y)| 6
C

|x− y|n

(
|x− y|

ρ(x)

)2−n/q

.

(b) For any 0 < δ < 1− n
q there exists a constant C such that if |z− y| > 2 |x− y| then

|(K(x, z) −K0(x, z)) − (K(y, z) −K0(y, z))| 6 C
|x− y|δ

|z− y|n+δ

(
|z− y|

ρ(z)

)2−n/q

.
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Proof of Proposition 3.17. Let y, z ∈ B. Then ρ(y) ∼ ρ(x0) ∼ ρ(z). Since

R1(x) = lim
ε→0+

∫
|x−y|>ε

K(x,y) dy, a.e. x ∈ Rn,

we have

|R1(y) − R1(z)| 6 lim
ε→0+

∣∣∣∣∫
ε<|x−y|64ρ(x0)

K(y, x) dx−

∫
ε<|x−z|64ρ(x0)

K(z, x) dx

∣∣∣∣
+

∣∣∣∣∫
|x−y|>4ρ(x0)

K(y, x) dx−

∫
|x−z|>4ρ(x0)

K(z, x) dx

∣∣∣∣ =: lim
ε→0+

Aε + B,

First, let us consider Aε. Since we will consider the limit as ε tends to zero, we can assume

that 0 < ε < 4ρ(x0) − 2s. For every annulus E we have

∫
E

K0(x,y) dy = 0. Therefore,

Aε =

∣∣∣∣∫
ε<|x−y|64ρ(x0)

(K(y, x) −K0(y, x)) dx−

∫
ε<|x−z|64ρ(x0)

(K(z, x) −K0(z, x)) dx

∣∣∣∣
6

∣∣∣∣∫
Rn

(K(y, x) −K0(y, x))
(
χε<|x−y|64ρ(x0)(x) − χε<|x−z|64ρ(x0)(x)

)
dx

∣∣∣∣
+

∣∣∣∣∫
Rn

[(K(y, x) −K0(y, x)) − (K(z, x) −K0(z, x))]χε<|x−z|64ρ(x0)(x) dx

∣∣∣∣ =: A1
ε +A

2
ε.

(3.26)

The term A1
ε is not zero when

∣∣χε<|x−y|64ρ(x0)(x) − χε<|x−z|64ρ(x0)(x)
∣∣ = 1, namely,

when

� ε < |x− y| 6 4ρ(x0) and |x− z| 6 ε; or

� ε < |x− y| 6 4ρ(x0) and |x− z| > 4ρ(x0); or

� ε < |x− z| 6 4ρ(x0) and |x− y| 6 ε; or

� ε < |x− z| 6 4ρ(x0) and |x− y| > 4ρ(x0).

In the �rst case we have ε < |x− y| 6 |x− z|+ |z− y| < ε+ 2s. Then, by Lemma 3.18(a),

A1
ε 6
∫
ε<|x−y|62s+ε

C

|x− y|n

(
|x− y|

ρ(y)

)2−n/q

dx 6 C

(
s

ρ(x0)

)2−n/q

. (3.27)

In the second case, by the assumption on ε, we get max {ε, 4ρ(x0) − 2s} = 4ρ(x0) − 2s <

|x− y| 6 4ρ(x0). Then Lemma 3.18(a) and the Mean Value Theorem give

A1
ε 6

C

ρ(x0)2−n/q

∫
4ρ(x0)−2s<|x−y|64ρ(x0)

|x− y|2−n/q−n dx 6 C
s

ρ(x0)
. (3.28)

In the third and fourth cases we obtain the same bounds as in (3.27) and (3.28) by replacing

y by z. Thus, when 0 < δ < 1− n/q,

A1
ε 6 C

(
s

ρ(x0)

)δ
. (3.29)
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For A2
ε,

A2
ε 6

∣∣∣∣∫
|x−z|>2|y−z|

[(K(y, x) −K0(y, x)) − (K(z, x) −K0(z, x))]χε<|x−z|64ρ(x0)(x) dx

∣∣∣∣
+

∣∣∣∣∫
|x−z|62|y−z|

[(K(y, x) −K0(y, x)) − (K(z, x) −K0(z, x))]χε<|x−z|64ρ(x0)(x) dx

∣∣∣∣
=: A2,1

ε +A2,2
ε .

(3.30)

By Lemma 3.18(b),

A2,1
ε 6 C

|y− z|δ

ρ(z)2−n/q

∫
|x−z|64ρ(x0)

|x− z|2−n/q−n−δ dx 6 C

(
s

ρ(x0)

)δ
. (3.31)

On the other hand, Lemma 3.18(a) gives

A2,2
ε 6

∫
|x−z|62|y−z|

C

|x− y|n

(
|x− y|

ρ(y)

)2−n/q

dx+

∫
|x−z|62|y−z|

C

|x− z|n

(
|x− z|

ρ(z)

)2−n/q

dx

6
C

ρ(x0)2−n/q

(∫
|x−y|63|y−z|

|x− y|2−n/q−n dx+

∫
|x−z|62|y−z|

|x− z|2−n/q−n dx

)
6 C

(
s

ρ(x0)

)2−n/q

6 C

(
s

ρ(x0)

)δ
,

(3.32)

for any 0 < δ < 1−n/q. Hence, from (3.26), (3.29), (3.30), (3.31) and (3.32) we obtain that

for all ε > 0 su�ciently small,

Aε 6 C

(
s

ρ(x0)

)δ
. (3.33)

Let us now estimate B. In a similar way,

B 6
∫
|x−y|>4ρ(x0)

|K(y, x) −K(z, x)| dx

+

∫
Rn

|K(z, x)|
∣∣χ|x−z|>4ρ(x0)(x) − χ|x−z|>4ρ(x0)(x)

∣∣ dx =: B1 + B2.

In the integrand of B1 we have |x− y| > 4ρ(x0) > 8s > 2 |y− z|. Therefore the smoothness

of the Riesz kernel (3.24) can be applied to get

B1 6 C
∫
|x−y|>4ρ(x0)

|y− z|δ

|x− y|n+δ
dx 6 C

(
s

ρ(x0)

)δ
.

It is possible to deal with B2 as with A
1
ε above to derive the same bound. Hence,

B 6 C

(
s

ρ(x0)

)δ
.
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This last estimate together with (3.33) imply

|R1(y) − R1(z)| 6 C

(
s

ρ(x0)

)δ
,

where 0 < δ < 1− n/q. From here (i) and (ii) readily follow.

Negative powers. For any γ > 0 the negative powers of L are de�ned as

L−γ/2f(x) =
1

Γ(γ/2)

∫∞
0

e−tLf(x)
dt

t1−γ/2
=

∫
Rn

Kγ(x,y)f(y) dy,

where

Kγ(x,y) =
1

Γ(γ/2)

∫∞
0

kt(x,y)
dt

t1−γ/2
, x ∈ Rn.

Therefore, by Lemma 2.3 and a similar argument as in the proof of Proposition 3.11(i), for

every N > 0,

|Kγ(x,y)| 6
C

|x− y|n−γ

(
1+

|x− y|

ρ(x)
+

|x− y|

ρ(y)

)−N

.

In particular, L−γ/2 is bounded from Lp(Rn) into Lq(Rn), for 1
q = 1

p − γ
n with 1 < p < q <∞ and 0 < γ < n. Using similar arguments to those in the proof of Proposition 3.11(ii) it

can be checked that

|Kγ(x,y) −Kγ(x, z)|+ |Kγ(y, x) −Kγ(z, x)| 6 C
|y− z|δ

|x− y|n−γ+δ
,

when |x − y| > 2|y − z|, for any 0 < δ < 2− n
q . Thus L−γ is a γ-Schr�odinger-Calder�on-

Zygmund operator according to De�nition 3.6.

The second item of Theorem 3.16 is a consequence of the following proposition and our

two main theorems.

Proposition 3.19. Let B = B(x, s) with 0 < s 6 1
2
ρ(x). Then

(i) log

(
ρ(x)

s

)
1

|B|1+
γ
n

∫
B

|L−γ/21(y) − (L−γ/21)B| dy 6 C if γ 6 2− n
q ;

(ii)

(
ρ(x)

s

)α 1

|B|1+
γ
n

∫
B

|L−γ/21(y) − (L−γ/21)B| dy 6 C if α+ γ < min{1, 2− n
q }.

Proof. Fix y, z ∈ B, so that ρ(x) ∼ ρ(y) ∼ ρ(z). We can write

L−γ/21(y) − L−γ/21(z) =

∫∞
0

∫
Rn

(kt(y,w) − kt(z,w)) dw tγ/2
dt

t
. (3.34)
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We split the integral in t of the di�erence (3.34) into two parts. From (3.13) we have∣∣∣∣∣
∫ρ(x)2
0

∫
Rn

(kt(y,w) − kt(z,w)) dw tγ/2
dt

t

∣∣∣∣∣
6 C

(
s

ρ(x)

)δ ∫ρ(x)2
0

tγ/2
dt

t
= C

(
s

ρ(x)

)δ
ρ(x)γ.

On the other hand we can use (3.10) to get∣∣∣∣∫∞
ρ(x)2

∫
Rn

(kt(y,w) − kt(z,w)) dw tγ/2
dt

t

∣∣∣∣
6 C
∫∞
ρ(x)2

(
s√
t

)δ
tγ/2

dt

t
6 C

(
s

ρ(x)

)δ
ρ(x)γ,

since γ < δ. An application of these last two estimates to (3.34) �nally gives

1

|B|1+
γ
n

∫
B

|L−γ/21(y) − (L−γ/21)B|dy 6
C

s2n+γ

∫
B

∫
B

|L−γ/21(y) − L−γ/21(z)|dydz

6 C

(
s

ρ(x)

)δ−γ
.

Thus (i) is valid if γ < 2− n
q and δ < 2− n

q is chosen such that γ 6 δ. Also (ii) holds when
α+ γ < min{1, 2− n

q }.
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Chapter 4

Harnack’s inequality for fractional
operators

In this chapter, we will prove interior Harnack's inequalities for fractional powers of second

order partial di�erential operators. In Section 4.1, we give the theorem of Harnack's inequal-

ity for fractional powers of second order partial di�erential operators. The Ca�arelli-Silvestre

extension problem and the Harnack's inequality for degenerate Schr�odinger operators proved

by C. E. Guti�errez for fractional second order partial di�erential operators are developed

in Section 4.2 and Section 4.3 separately. We give a transference method in Section 4.4 to

obtain the non-divergence form operators from the Harnack's inequality for the related diver-

gence form operators. With Harnack's inequality developed in Section 4.3 and the transfer

method in Section 4.4, we give the proof of the Harnack's inequality for fractional operators

in Section 4.5 and Section 4.6.

4.1 Harnack’s inequality for fractional operators

In this section we shall give the interior Harnack's inequalities for fractional powers of second

order partial di�erential operators. The operators we consider are:

� Divergence form elliptic operators L = −div(a(x)∇) +V(x) with bounded measurable

coe�cients a(x) and locally bounded nonnegative potentials V(x) de�ned on bounded

domains;

� Ornstein-Uhlenbeck operator OB and harmonic oscillator HB on Rn;

� Laguerre operators Lα, L
ϕ
α , L

`
α, L

ψ
α and LL

α on (0,∞)n with α ∈ (−1,∞)n;

� Ultraspherical operators Lλ and lλ on (0,π) with λ > 0;

� Laplacian on domains Ω ⊆ Rn;

� Bessel operators ∆λ and Sλ on (0,∞) with λ > 0.

75
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For the full description of the operators see Sections 4.3, 4.5 and 4.6. In general, all these

operators L are nonnegative, self-adjoint and have a dense domain Dom(L) ⊂ L2(Ω,dη),

where Ω ⊆ Rn, n > 1, is an open set and dη is some positive measure on Ω. In Section

4.2 we show how the fractional powers Lσ, 0 < σ < 1, can be de�ned by using the spectral

theorem.

Theorem A (Harnack's inequality for Lσ). Let L be any of the operators listed above and

0 < σ < 1. Let O be an open and connected subset of Ω and �x a compact subset K ⊂ O.

There exists a positive constant C, depending only on σ, n, K and the coe�cients of L

such that

sup
K
f 6 C inf

K
f,

for all functions f ∈ Dom(L), f > 0 in Ω, such that Lσf = 0 in L2(O,dη). Moreover, f is

a continuous function in O.

We will prove Theorem A in each case in Section 4.5 and Section 4.6.

4.2 Fractional operators and extension problem

Along this chapter all the operators will verify the following

General assumption. By L = Lx we denote a nonnegative self-adjoint second order

partial di�erential operator with dense domain Dom(L) ⊂ L2(Ω,dη) ≡ L2(Ω). Here Ω

is an open subset of Rn, n > 1, and dη is a positive measure on Ω. The operator L

acts in the variables x ∈ Rn.

The Spectral Theorem can be applied to an operator L as in the general assumption, see

[68, Chapter 13]. We recall it at here. Given a real measurable function φ on [0,∞), the

operator φ(L) is de�ned as φ(L) =
∫∞
0
φ(λ)dE(λ), where E is the unique resolution of the

identity of L. The domain Dom(φ(L)) of φ(L) is the set of functions f ∈ L2(Ω) such that∫∞
0
|φ(λ)|2 dEf,f(λ) <∞.

In this chapter we are going to use:

� The heat-di�usion semigroup generated by L, de�ned as φ(L) = e−tL, t > 0. For

f ∈ L2(Ω), we have that v = e−tLf solves the evolution equation vt = −Lv, for t > 0.

Moreover, ‖e−tLf‖L2(Ω) 6 ‖f‖L2(Ω), for all t > 0, and e−tLf→ f in L2(Ω) as t→ 0+.

� The fractional powers of L, given by φ(L) = Lσ, with domain Dom(Lσ) ⊃ Dom(L).

When f ∈ Dom(Lσ) we have Lσe−tLf = e−tLLσ. If f ∈ Dom(L) then 〈Lf, f〉 =

‖L1/2f‖2
L2(Ω), where 〈·, ·〉 denotes the inner product in L

2(Ω). Also, for f ∈ Dom(L),

Lσf(x) =
1

Γ(−σ)

∫∞
0

(e−tLf(x) − f(x))
dt

t1+σ
, in L2(Ω), (4.1)
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where Γ is the Gamma function, see for example [98, p. 260].

We will usually assume that the heat-di�usion semigroup e−tL is positivity-preserving,

that is,

f > 0 on Ω implies e−tLf > 0 on Ω, for all t > 0. (4.2)

Remark 4.1 (Maximum and comparison principle for Lσ). Let L be as in the general

assumption. Under the additional hypothesis (4.2), the following comparison principle holds.

If f,g ∈ Dom(L), f > g in Ω and f(x0) = g(x0) at a point x0 ∈ Ω, then Lσf(x0) 6 Lσg(x0).

This comparison principle is a direct consequence of the maximum principle: if f ∈ Dom(L),

f > 0, f(x0) = 0, then Lσf(x0) 6 0 (for the proof just observe in (4.1) that Γ(−σ) < 0 and

e−tLf(x0) > 0).

Theorem 4.2 (Extension problem [82, Theorem 1.1]). Let L be as in the general assump-

tions and f ∈ Dom(Lσ). Let u be de�ned as

u(x,y) :=
y2σ

4σΓ(σ)

∫∞
0

e−tLf(x)e−
y2

4t
dt

t1+σ

=
1

Γ(σ)

∫∞
0

e−tL(Lσf)(x)e−
y2

4t
dt

t1−σ
,

(4.3)

for x ∈ Ω, y > 0. Then u ∈ C∞((0,∞) : Dom(L)) ∩ C([0,∞) : L2(Ω)) and it satis�es the

extension problem {
−Lxu+ 1−2σ

y uy + uyy = 0, x ∈ Ω, y > 0,

u(x, 0) = f(x), x ∈ Ω.
(4.4)

In addition, for cσ =
4σ−1/2Γ(σ)
Γ(1−σ) > 0,

−cσ lim
y→0+

y1−2σuy(x,y) = L
σf(x). (4.5)

We must clarify in which sense the identities in Theorem 4.2 are taken. The �rst equality

in (4.3) means that for any g ∈ L2(Ω),

〈u(·,y),g(·)〉 = y2σ

4σΓ(σ)

∫∞
0

〈e−tLf,g〉e−
y2

4t
dt

t1+σ
, y > 0,

and similarly for the second one. Also (4.4) in general means that 〈1−2σ
y uy(·,y)+uyy(·,y),g(·)〉 =

〈Lu(·,y),g(·)〉, for all y > 0, with 〈u(·,y),g(·)〉 → 〈f,g〉, as y → 0+, and analogously for

(4.5). By the second identity of (4.3), a change of variables and dominated convergence, we

have

lim sup
y→0+

‖y1−2σuy(x,y)‖2L2(Ω ′) 6
41/2−σ

Γ(σ)
lim sup
y→0+

∫∞
0

‖e−
y2

4s L(Lσf)‖2L2(Ω ′)e
−s ds

sσ

= c−1
σ ‖Lσf‖L2(Ω ′), for any measurable set Ω ′ ⊆ Ω.

(4.6)
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4.3 Harnack’s inequality for fractional Schrödinger operators

In this section we consider a uniformly elliptic Schr�odinger operator of the form

L = −div(a(x)∇) + V, on Ω ⊆ Rn.

Here a = (aij) is a symmetric matrix of real-valued measurable coe�cients such that

µ−1|ξ|2 6 a(x)ξ · ξ 6 µ|ξ|2, for some constant µ > 0, for almost every x ∈ Ω and for

all ξ ∈ Rn. The potential V is a locally bounded function on Ω. Here Ω can be an

unbounded set. We assume that L satis�es the general assumption at the beginning of

Section 4.2, with dη(x) = dx, the Lebesgue measure. The domain of L is Dom(L) =

W
1,2
0 (Ω) ∩ L2(Ω,V(x)dx). The Sobolev space W1,2

0 (Ω) is the completion of C∞c (Ω) under

the norm ‖f‖2
W1,2(Ω) = ‖f‖2

L2(Ω) + ‖∇f‖
2
L2(Ω). Note that Dom(L) is dense in L2(Ω). For

f ∈ Dom(L),

〈Lf,g〉 =
∫
Ω

(a(x)∇f · ∇g+ V(x)fg)dx, g ∈ Dom(L).

Theorem 4.3 (Reection extension). Fix a ball BR(x0) ⊂ Ω, x0 ∈ Ω, R > 0. Let u : Ω×
[0,R)→ R be a solution of the extension equation in (4.4) with L = L in BR(x0)× (0,R).

De�ne the reection of u to Ω × (−R,R) by ~u(x,y) = u(x, |y|), x ∈ Ω, y ∈ (−R,R).

Suppose that

(I) limy→0+ ‖y1−2σuy(x,y)‖L2(BR(x0),dx) = 0; and

(II) ‖∇xu(x,y)‖L2(BR(x0),dx) remains bounded as y→ 0+.

Then ~u veri�es the degenerate Schr�odinger equation

div(|y|1−2σb(x)∇~u) − |y|1−2σV(x)~u = 0, (4.7)

in the weak sense in ~B :=
{
(x,y) ∈ Rn+1 : |x− x0|

2 + y2 < R2
}
, where the matrix of co-

e�cients b = (bij) is given by bij = aij, bn+1,j = bi,n+1 = 0, 1 6 i, j 6 n, and

bn+1,n+1 = 1.

Proof. Let ϕ ∈ C∞c (~B). Take any 0 < δ < R. Since u is a solution of the extension equation

in (4.4) for L, for any �xed y ∈ (δ,R), we have∫
BR(x0)

(a(x)∇xu · ∇xϕ+ V(x)uϕ)dx =

∫
BR(x0)

|y|2σ−1∂y(|y|
1−2σuy)ϕdx.

Recall that we are assuming that u ∈ C∞((0,R) : Dom(L)). By integrating the last identity

in y, applying Fubini's theorem and integration by parts,∫R
δ

|y|1−2σ

∫
BR(x0)

(a(x)∇xu · ∇xϕ+ V(x)uϕ)dxdy

= −

∫
BR(x0)

δ1−2σuy(x, δ)ϕ(x, δ)dx−

∫
BR(x0)

∫R
δ

|y|1−2σuy(x,y)ϕy(x,y)dydx.
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From here we get∫
BR(x0)×{|y|>δ}

(b(x)∇~u · ∇ϕ+ V(x)~uϕ)|y|1−2σ dxdy

=

∫
BR(x0)

δ1−2σuy(x, δ)ϕ(x,−δ)dx−

∫
BR(x0)

δ1−2σuy(x, δ)ϕ(x, δ)dx. (4.8)

We are ready to prove that ~u is a weak solution of (4.7) in ~B. We have to check that

I :=

∫
~B

(b(x)∇~u · ∇ϕ+ V(x)~uϕ)|y|1−2σ dxdy = 0.

By using (4.8),

I =

(∫
~B∩{|y|>δ}

+

∫
~B∩{|y|<δ}

)
dxdy

=

∫
BR(x0)

δ1−2σuy(x, δ)ϕ(x,−δ)dx−

∫
BR(x0)

δ1−2σuy(x, δ)ϕ(x, δ)dx

+

∫
~B∩{|y|<δ}

bij∇~u · ∇ϕ|y|1−2σ dxdy+

∫
~B∩{|y|<δ}

V(x)~uϕ|y|1−2σ dxdy.

As δ→ 0+, the �rst and second terms above tend to zero because of (I). Also the fourth term

goes to zero because V(x)~u|y|1−2σ ∈ L1loc. Since ‖∇xu(x,y)‖L2(BR(x0),dx) remains bounded

as y → 0+, for any small δ > 0 there exists a constant c > 0 such that if |y| < δ then

‖∇xu(x,y)‖L2(BR(x0),dx) 6 c. This property and (I) imply that the third term above tends

to zero as δ→ 0+.

Theorem 4.4 (Harnack's inequality for Lσ). Let L be as above. Assume that the heat-

di�usion semigroup e−tL is positivity-preserving, see (4.2). Let f ∈ Dom(L) be a non-

negative function such that Lσf = 0 in L2(BR(x0),dx) for some ball BR(x0) ⊂ Ω. Suppose
that ‖∇xu(x,y)‖L2(BR(x0),dx) remains bounded as y → 0+, where u is a solution to the

extension problem (4.4) for L and f. There exist constants R0 < R and C depending

only on n, σ, µ, and V, but not on f, such that,

sup
Br

f 6 C inf
Br
f,

for any ball Br with B8r ⊂ BR(x0) and 0 < r 6 R0. Moreover, f is continuous in BR(x0).

In order to prove Theorem 4.4 we use Theorem 4.3 and the following version of

Gutiérrez’s Harnack inequality for degenerate Schrödinger equations. Consider a

degenerate Schr�odinger equation of the form

−div(~a(X)∇v) + ~V(X)v = 0, X ∈ RN, (4.9)
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where ~a = (~aij) is an N × N symmetric matrix of real-valued measurable coe�cients such

that λ−1ω(X)|ξ|2 6 ~a(X)ξ · ξ 6 λω(X)|ξ|2, for some λ > 0, for almost every X ∈ RN and for

all ξ ∈ RN. The function ω is an A2 weight. The potential ~V satis�es ~V/ω ∈ Lpω locally, for

some large p = pN,ω. Let O be any open bounded subset of RN. Then there exist positive

constants r0,γ depending only on λ, N, ω, O and ~V such that if v is any nonnegative weak

solution of (4.9) in O then for every ball Br with B8r ⊂ O and 0 < r 6 r0 we have

sup
Br/2

v 6 γ inf
Br/2

v.

As a consequence, v is continuous in O; see [39].

Proof of Theorem 4.4. Since Lσf = 0 in L2(BR(x0),dx), by (4.6) and the hypothesis on

∇xu, we see that u satis�es the conditions of Theorem 4.3. Now, equation (4.7) is a degen-

erate Schr�odinger equation with A2 weight ω(x,y) = |y|1−2σ and potential ~V = |y|1−2σV(x)

such that ~V/ω ∈ Lpω locally for all p su�ciently large. By C. E. Guti�errez's result just ex-

plained above, Harnack's inequality for ~u holds. By restricting ~u to y = 0 we get Harnack's

inequality for f. Moreover, ~u is continuous in BR(x0) and thus f.

The case of nonnegative potentials. Under the additional assumptions that Ω is a

bounded set and that the potential V is a nonnegative function in Ω, we can prove Theorem

A for Lσ. In this case the domain of L is Dom(L) = W
1,2
0 (Ω) and it is known that e−tL

is positivity-preserving, see [23, Chapter 1]. Let f ∈ W1,2
0 (Ω), f > 0, such that Lσf = 0 in

L2(BR(x0),dx) for some ball BR(x0) ⊂ Ω, R > 0. Denote by u the solution of the extension

problem for f as in Theorem 4.2. By virtue of Theorem 4.4, to prove Harnack's inequality

for Lσ we just have to verify that u satis�es condition (II) of Theorem 4.3. As f ∈W1,2
0 (Ω),

by the ellipticity condition,

µ−1‖∇f‖2L2(Ω,dx) 6
∫
Ω

a(x)∇f · ∇f dx 6 〈Lf, f〉 = ‖L1/2f‖2L2(Ω,dx), (4.10)

(for the last equality see Section 4.2). Now, since u ∈ C2((0,∞) : W1,2
0 (Ω)), ∇xu(x,y) is

well de�ned and belongs to L2(Ω,dx) for each y > 0. We can apply (4.3), (4.10) and the

properties of the heat-di�usion semigroup e−tL stated at the beginning of Section 4.2 to get

‖∇xu(x,y)‖L2(BR(x0),dx) 6
y2σ

4σΓ(σ)

∫∞
0

‖∇e−tLf‖L2(Ω,dx)e
−y2

4t
dt

t1+σ

6 µ1/2
y2σ

4σΓ(σ)

∫∞
0

‖e−tLL1/2f‖L2(Ω,dx)e
−y2

4t
dt

t1+σ

6 µ1/2
‖L1/2f‖L2(Ω,dx)

Γ(σ)

∫∞
0

(
y2

4t

)σ
e−

y2

4t
dt

t
= µ1/2‖L1/2f‖L2(Ω,dx).

Thus ‖∇xu(x,y)‖L2(BR(x0),dx) remains bounded as y→ 0+ and (II) in Theorem 4.3 is valid.

Hence Theorem A is proved for this case. Observe that, in particular, Theorem A is valid

for the Laplacian in bounded domains with Dirichlet boundary conditions.
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Remark 4.5 (Liouville theorem for fractional divergence form elliptic operators). Let Ω =

Rn and V ≡ 0, that is, L = −div(a(x)∇). Take f ∈ Dom(L) = W1,2(Rn). The following

Liouville theorem is true: If f > 0 on Rn and Lσf = 0 in L2(Rn) then f must be a constant

function. Indeed, for this f, the reection ~u of u is a nonnegative weak solution of (4.7) with

V ≡ 0 in Rn+1, so ~u is constant and therefore f is a constant function. Here we have applied

the Liouville theorem for degenerate elliptic equations in divergence form with A2 weights,

which is a simple consequence of Harnack's inequality of [34].

Remark 4.6. Since our method is based on C. E. Guti�errez's result [39], we are not able to

get the exact dependence on σ of the constant C in Harnack's inequality of Theorem 4.4.

4.4 Transference method for Harnack’s inequality

In this section, we assume that L satis�es the general assumptions of Section 4.2. We will

develop a transference method to get Harnack's inequality from Lσ to another operator �Lσ

related to L. This method will be useful when considering di�erential operators arising in

classical orthogonal expansions and also for the Bessel operator.

Firstly, by a change of measure, we have the following trivial result.

Lemma 4.7. Let M(x) ∈ C∞(Ω) be a positive function. De�ne the isometry operator

U from L2(Ω,M(x)2dη(x)) into L2(Ω,dη(x)) as (Uf)(x) =M(x)f(x). Then if {ϕk}k∈Nn0 is

an orthonormal system in L2(Ω,M(x)2dη(x)) then {Uϕk}k∈Nn0 is also an orthonormal

system in L2(Ω,dη(x)).

Next we set up the notation for the change of variables.

Definition 4.8 (Change of variables). Let h : Ω → �Ω ⊆ Rn be a one-to-one C∞ transfor-

mation on Ω. Denote the Jacobian of the inverse map h−1 : �Ω→ Ω by |Jh−1 |. We de�ne the

change of variables operatorW from L2( �Ω,M(h−1(�x))2 |Jh−1 |dη(�x)) into L2(Ω,M(x)2dη(x))

as

(Wf)(x) = f(h(x)), x ∈ Ω.

Now we are in position to describe the transference method. By using the de�nition above

and Lemma 4.7 we construct a new di�erential operator. This new operator will be nonnega-

tive and self-adjoint in L2( �Ω,d�η(�x)), where �Ω = h(Ω) and d�η(�x) :=M(h−1(�x))2 |Jh−1 |dη(�x).

Let
�L := (U ◦W)−1 ◦ L ◦ (U ◦W).

If E is the resolution of the identity of L then the resolution of the identity �E of (U ◦W) ◦ �L
veri�es

d�Ef,g(λ) = dE(U◦W)f,(U◦W)g(λ), f,g ∈ L2( �Ω,d�η).

Therefore if f ∈ Dom(�Lσ) then we see that the fractional powers of �L satisfy

�Lσf = (U ◦W)−1 ◦ Lσ ◦ (U ◦W)f.
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Lemma 4.9 (Transference method). If Theorem A for Lσ is true, then the analogous

statement for �Lσ is also true.

Proof. Let f ∈ Dom(�Lσ), f > 0, such that �Lσf = 0 in L2(�O,d�η), for some open set �O ⊂ �Ω.

Take a compact set �K ⊂ �O. We want to see that there is a constant C depending on �K and
�Lσ such that

sup
�K

f 6 C inf
�K
f. (4.11)

Observe that ∫
h−1( �O)

|Lσ ◦ (U ◦W)f(x)|2 dη(x) =

∫
�O

|�Lσf(�x)|2 d�η(�x) = 0,

and (U ◦W)f ∈ Dom(L) is nonnegative. By the assumption on Lσ, there exists C depending

on h−1(�K) and Lσ such that

sup
h−1(�K)

(U ◦W)f 6 C inf
h−1(�K)

(U ◦W)f,

and (U◦W)f is continuous. In particular, f is continuous. SinceM(x) is positive, continuous

and bounded in h−1(�K),

sup
h−1(�K)

Wf 6 C ′ inf
h−1(�K)

Wf.

This in turn implies (4.11) as desired.

4.5 Classical orthogonal expansions

In this section we consider operators L (as in the general assumptions of Section 4.2) for

which there exists a family {ϕk}k∈Nn0 of eigenfunctions of L, with associated nonnegative

eigenvalues {λk}k∈Nn0 , namely, Lϕk(x) = λkϕk(x), such that {ϕk} is an orthonormal basis

of L2(Ω,dη). In all our examples, the eigenvalues will satisfy the following: there exists a

constant c > 1 such that λk ∼ |k|c, for any k = (k1, . . . ,kn) ∈ Nn0 , |k| = k1 + · · · + kn.
We also suppose that the eigenfunctions ϕk are in C2(Ω) and that their derivatives satisfy

the following local estimate. For any compact subset K ⊂ Ω and any multi-index β ∈ Nn0 ,
|β| 6 2, there exist ε = εK,β > 0 and a constant C = CK,β such that

‖Dβϕk‖L∞(K,dη) 6 C |k|ε , (4.12)

for any k ∈ Nn0 . For f ∈ L2(Ω,dη) the heat-di�usion semigroup can be written as e−tLf(x) =∑∞
|k|=0 e

−tλkckϕk(x). For 0 < σ < 1, the domain of Lσ is given as Dom(Lσ) = {f ∈
L2(Ω,dη) :

∑∞
|k|=0 λ

2σ
k |ck|

2 < ∞}, where ck denotes the Fourier coe�cient of f in the basis

ϕk: ck = 〈f,ϕk〉 =
∫
Ω fϕk dη. Given f ∈ Dom(Lσ) we have Lσf(x) =

∑∞
|k|=0 λ

σ
kckϕk(x).

Under these assumptions we can show that the solution u of the extension problem is

classical. To this end, let K be any compact subset of Ω. First we show that the series
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that de�nes e−tLf(x) is uniformly convergent in K × (0, T), for every T > 0. Indeed, by

Cauchy-Schwartz's inequality,

|e−tLf(x)| 6
∑
|k|>0

|e−tλkckϕk(x)| 6 C
∑
|k|>0

e−Ct|k|
c

|ck| |k|
ε

6
C

tε/c

∑
|k|>0

e−2Ct|k|c

1/2∑
|k|>0

c2k

1/2

6
C

tε/c

∑
j>0

jne−2Ctjc

1/2

‖f‖L2(Ω,dη)

6
C

t
ε+n
c

∑
j>0

e−C
′tjc

1/2

‖f‖L2(Ω,dη) 6
C

t
ε+n+1/2

c

‖f‖L2(Ω,dη) , x ∈ K,

and the uniform convergence follows. As a consequence, u in (4.3) is well de�ned, for by the

estimate above, for any x ∈ K and y > 0,

∫∞
0

|e−tLf(x)e−
y2

4t |
dt

t1+σ
6 C ‖f‖L2(Ω,dη)

∫∞
0

e−
y2

4t

t
ε+n+1/2

c

dt

t1+σ
6 F(y),

for some function F = F(y). This estimate also implies that in the �rst identity of (4.3) we

can interchange the integration in t with the summation that de�nes e−tLf(x) to get

u(x,y) =
y2σ

4σΓ(σ)

∑
|k|>0

ckϕk(x)

∫∞
0

e−tλke−
y2

4t
dt

t1+σ
. (4.13)

By using (4.12) and the same arguments as above, it is easy to see that this series de�nes

a function in C2(Ω) ∩ C1(0,∞). Moreover, since each term of the series in (4.13) satis�es

equation (4.4) in the classical sense, we readily see that u is a classical solution to (4.4).

Next we will present the concrete applications.

We will take advantage of well-known formulas, see for instance [1, 3], to apply our trans-

ference method to get Harnack's inequality for operators of classical orthogonal expansions

which are not of the form considered in Section 4.3. A remarkable advantage of the transfer-

ence method is that we do not need to check that the semigroup e−tL is positivity-preserving.

4.5.1 Ornstein-Uhlenbeck operator and harmonic oscillator

In [40], C. E. Guti�errez dealt with the Ornstein-Uhlenbeck operator

OB = −∆+ 2Bx · ∇,

where B is an n × n positive de�nite symmetric matrix. The operator OB is positive and

symmetric in L2(Rn,dγB(x)), where dγB(x) = (detB)n/2π−n/2e−Bx·xdx is the B-Gaussian

measure. Let us consider the eigenvalue problem OBw = λw, with boundary conditions



84 Chapter 4. Harnack's inequality for fractional operators

w(x) = O(|x|k), for some k > 0 as |x| → ∞. Firstly, let us assume that the matrix B is

diagonal, which means that

B = D =


d1 0 · · · 0

0 d2 · · · 0
...

...
. . .

...

0 0 · · · dn


with di > 0 for 1 6 i 6 n. It is not di�cult to see that in this case the eigenfunctions w are

the multidimensional Hermite polynomials de�ned byHDk (x) = Hk1(
√
d1x1) · · ·Hkn(

√
dnxn),

k ∈ Nn0 , with eigenvalues 2(k · d), d = (d1, . . . ,dn), where Hki is the one-dimensional Her-

mite polynomial of degree ki, see [40]. For the general case, since B is a positive de�nite

symmetric matrix, there exists an orthogonal matrix A such that ABAt = D, where At is

the transpose of A. Then the eigenfunctions become HB
k(x) = H

D
k (Ax).

Let us also consider the harmonic oscillator

HD = −∆+ |Dx|2,

where D is a matrix as above, with zero boundary condition at in�nity. Under these as-

sumptions HD is positive and symmetric in L2(Rn,dx). It is well known that the multidi-

mensional Hermite functions hDk (x) = (detD)n/4π−n/4e−
Dx·x
2 HDk (x), are the eigenfunctions

of HD and HDh
D
k = (2(k · d) +

∑n
i=1 di)h

D
k . The Hermite functions form an orthonormal

basis of L2(Rn,dx).
Observe that we may also consider

HD −

n∑
i=1

di,

since it has the same eigenfunctions as HD with eigenvalues 2(k · d) > 0. We can also put a

more general matrix B in the place of D; we will prove Harnack's inequality for it by using

the transference method.

A. Proof of Harnack’s inequality for (HD)
σ: To show Harnack's inequality for (HD)

σ

we have to check that all the conditions of Theorem 4.4 hold.

The potential here is V(x) = |Dx|2, which is a locally bounded function on Rn.
By Mehler's formula [40, 85, 86], e−tHD is positivity-preserving.

In [86], it is shown that there exists C such that ‖hDk ‖L∞(Rn,dx) 6 C for all k. Using the

relation

2∂xih
D
k (x) =

√
di

(
(2ki)

1/2hDk−ei(x) − (2ki + 2)1/2hDk+ei(x)
)
,

where ei is the i-th coordinate vector in Nn0 , we see that (4.12) is valid for hDk (x). Therefore

the solution u to the extension problem given in (4.3) for HD is a classical solution.

Let f ∈ Dom(HD), f > 0, such that (HD)
σf = 0 in L2(BR(x0),dx). We have to

verify that ‖∇xu(x,y)‖L2(BR(x0),dx) remains bounded as y → 0+. In fact, we will have
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‖∇xu(x, 0)‖L2(BR(x0),dx) = ‖∇xf(x)‖L2(BR(x0),dx). Indeed, as we can write f =
∑∞

|k|=0 ckh
D
k ,

by (4.13) and the identity for the derivatives of the Hermite functions hDk given above,(
∂xi +

√
dixi

)
(u(x,y) − f(x))

=
∑
k

ck
√
di(2ki)

1/2hDk−ei(x)

(
y2σ

4σΓ(σ)

∫∞
0

e−t(k·d+
∑n
l=1 dl)e−

y2

4t
dt

t1+σ
− 1

)
.

(4.14)

Observe that the term in parenthesis above is uniformly bounded in y and, since

y2σ

4σΓ(σ)

∫∞
0

e−t(k·d+
∑n
l=1 dl)e−

y2

4t
dt

t1+σ
=

1

Γ(σ)

∫∞
0

e−
y2

4w (k·d+
∑n
l=1 dl)e−w

dw

w1−σ
,

we readily see that it converges to 1 when y→ 0+. Moreover, as f ∈ Dom(HD),∥∥∥∥∥∥
∞∑

|k|=0

ck
√
di(2ki)

1/2hDk−ei(x)

∥∥∥∥∥∥
L2(Rn,dx)

=

2

∞∑
|k|=0

c2kkidi

1/2

<∞.

Hence, by dominated convergence in (4.14), we get that
(
∂xi +

√
dixi

)
u(x,y)→

(
∂xi +

√
dixi

)
f(x)

in L2(Rn,dx) as y→ 0+. Since u(x,y)→ f(x) in L2(Rn,dx) and
√
dixi is a bounded function

in BR(x0), we have that
√
dixiu(x,y) converges to

√
dixif(x) in L

2(BR(x0),dx) as y → 0+.

Hence ∇xu(x,y)→ ∇xf(x), as y→ 0+, in L2(BR(x0),dx).

B. Proof of Harnack’s inequality for
(
OD

)σ
: We apply the transference method ex-

plained in Section 4.4. For this case we take M(x) = (detD)n/4π−n/4e−
Dx·x
2 and h(x) = x.

Clearly hDk (x) = (U ◦W)HDk (x) and we have the relation

ODH
D
k = (U ◦W)−1 ◦

(
HD −

n∑
i=1

di

)
◦ (U ◦W)HDk . (4.15)

See also [3]. It can be easily checked, as done for (HD)
σ above, that the operator (HD −

∑n
i=1 di)

σ

satis�es Harnack's inequality. Hence the conclusion for (OD)
σ follows from Lemma 4.9.

C. Proof of Harnack’s inequality for
(
OB

)σ
: Consider the change of variables h(x) =

Atx and call W the corresponding operator as in De�nition 4.8. Then it is easy to check

that

OB(H
D
k ◦ h−1)(h(x)) = ODH

D
k (x).

Then we have OB =W−1 ◦OD ◦W and the result follows by the transference method.

D. Proof of Harnack’s inequality for
(
HB

)σ
:

We observe that parallel to the case of the operator OB we can get HB =W−1 ◦HD ◦W
with W as in Subsection 4.5.1 above and then we get Harnack's inequality for the operator

(HB)
σ.
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4.5.2 Laguerre operators

We suggest the reader to check [1, 41, 53, 85, 86] for the proof of the basics about Laguerre

expansions we use here. Let us consider the system of multidimensional Laguerre polynomials

Lαk (x), where k ∈ Nn0 , α = (α1, · · · ,αn) ∈ (−1,∞)n and x ∈ (0,∞)n. It is well known that

the Laguerre polynomials form a complete orthogonal system in L2((0,∞)n,dγα(x)), where

dγα(x) = xα1

1 e
−x1 dx1 · · · xαnn e−xn dxn. We denote by ~Lαk the orthonormalized Laguerre

polynomials. The polynomials ~Lαk are eigenfunctions of the Laguerre di�erential operator

Lα =

n∑
i=1

(
−xi

∂2

∂x2i
− (αi + 1− xi)

∂

∂xi

)
,

namely, Lα(~L
α
k ) = |k|~Lαk . There are several systems of Laguerre functions. We �rst prove

Harnack's inequality for the operator Lϕα (related to the system ϕαk below) and then we

apply the transference method of Section 4.4 to get the result for the remaining systems.

A. Laguerre functions ϕαk
This multidimensional system in L2((0,∞)n,dµ0(x)), where dµ0(x) = dx1 · · ·dxn, is

given as a tensor product ϕαk (x) = ϕα1

k1
(x1) · · ·ϕαnkn (xn), where each factor ϕαiki (xi) =

xαii (2xi)
1/2e−x

2
i/2~Lαiki (x

2
i). The functions ϕ

α
k are eigenfunctions of the di�erential operator

Lϕα =
1

4

(
−∆+ |x|2

)
+

n∑
i=1

1

4x2i

(
α2
i −

1

4

)
, (4.16)

namely,

Lϕαϕ
α
k (x) =

n∑
i=1

(
ki +

αi + 1

2

)
ϕαiki (xi). (4.17)

Clearly, the functions ϕαk are locally bounded in (0,∞)n. Observe that

∂xiϕ
α
k (x) = −|k|1/2ϕαi+eik−ei

(x) −

(
xi −

1

xi

(
αi +

1

2

))
ϕαk (x). (4.18)

Therefore, (4.12) holds for this system and we get that the solution u in (4.3) of the extension

problem for Lϕα is classical. Moreover, it can be easily seen from [85, p. 102] that e−tL
ϕ
α is

positivity-preserving.

Let us prove Theorem A for (Lϕα )
σ. We can do this as we did for (HD)

σ above by following

the reasoning line by line, but with some modi�cations as follows. Let f ∈ Dom(Lϕα ), f > 0,

such that (Lϕα )
σf = 0 in L2(BR(x0),dµ0(x)), and let u be the corresponding solution to the

extension problem. By (4.18) and a similar argument for that of HσD we can check that

‖∇xu(x,y)‖L2(BR(x0),dµ0(x))
converges to ‖∇xf‖L2(BR(x0),dµ0(x))

, as y→ 0+. Moreover, the

potential in (4.16) is locally bounded. Hence, by Theorem 4.4, f satis�es Harnack's inequality

and it is continuous.
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Note that the same arguments above can be used for (Lϕα − α+1
2

)σ instead of (Lϕα )
σ, so

it also satis�es Theorem A.

B. Laguerre functions `αk
The Laguerre functions `αk are de�ned as `αk (x) = `α1

k1
(x1) · · · `αnkn (xn), where `

αi
ki

are the

one-dimensional Laguerre functions `αiki (xi) = e
−xi/2~Lαiki (xi). Each `

α
k is an eigenfunction of

the di�erential operator

L`α =

n∑
i=1

(
−xi

∂2

∂x2i
− (αi + 1)

∂

∂xi
+
xi
4

)
.

More explicitly, L`α`
α
k =

∑n
i=1

(
ki +

αi+1
2

)
`αiki . For dµα(x) = xα1

1 · · · xαnn dx, the operator

L`α is positive and symmetric in L2((0,∞)n,dµα(x)). The system {`αk : k ∈ Nn0 } is an

orthonormal basis of L2((0,∞)n,dµα(x)).

To apply the transference method we set M(x) = 2n/2x
α1+1/2
1 · · · xαn+1/2

n and h(x) =

(x21, . . . , x
2
n). Then U ◦W is an isometry from L2((0,∞)n,dµα(x)) into L

2((0,∞)n,dµ0(x))

and L`α = (U ◦W)−1 ◦ Lϕα ◦ (U ◦W), see [1].

C. Laguerre functions ψαk
Consider the Laguerre system ψαk (x) = ψα1

k1
(x1) · · ·ψαnkn (xn), which is orthonormal in

L2((0,∞)n,dµ2α+1(x)), where dµ2α+1(x) = x2α1+1
1 dx1 · · · x2αn+1

n dxn and ψαiki is the one-

dimensional Laguerre function ψαiki (xi) =
√
2 `αiki (x

2
i). The functions ψαk are eigenfunctions

of the operator

Lψα =
1

4

(
−∆+ |x|2

)
−

n∑
i=1

2αi + 1

4xi

∂

∂xi
.

In fact, Lψα (ψ
α
k ) =

∑n
i=0

(
ki +

αi+1
2

)
ψαiki .

For the transference method we have to take M(x) = x
α1+1/2
1 · · · xαn+1/2

n and h(x) = x.

Then U ◦W is an isometry from L2((0,∞)n,dµ2α+1(x)) into L
2((0,∞)n,dµ0(x)) and Lψα =

(U ◦W)−1 ◦ Lϕα ◦ (U ◦W), see [1].

D. Laguerre functions Lαk
The functions Lαk (x) = Lα1

k1
(x1) · · ·Lαnkn (xn) form an orthonormal system in L2((0,∞)n,dµ0(x)),

where L
αi
ki

is the one-dimensional Laguerre function given by L
αi
ki
(xi) = x

αi/2
i `αiki (xi). The

functions Lαk are eigenfunctions of the operator

LL
α =

n∑
i=1

(
−xi

∂2

∂x2i
−

∂

∂xi
+
xi
4

+
α2
i

4xi

)
.

In fact, LL
α(L

α
k ) =

∑n
i=0

(
ki +

αi+1
2

)
L
αi
ki
.

Apply the transference method with M(x) = 2n/2x
1/2
1 · · · x1/2n and h(x) = (x21, . . . , x

2
n).

Then U ◦W is an isometry from L2((0,∞)n,dµ0(x)) into itself and LL
α = (U ◦W)−1 ◦ Lϕα ◦

(U ◦W), see [1].
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E. Laguerre polynomials ~Lαk
Finally consider the Laguerre polynomials operator Lα. Let h(x) = (x21, . . . , x

2
n) and

M(x) = 2n/2e−|x|2/2x
α1+1/2
1 · · · xαn+1/2

n . We have that the operator U ◦W is an isometry

from L2((0,∞)n,dγα(x)) into L
2((0,∞)n,dµ0(x)) and Lα = (U◦W)−1◦(Lϕα−α+1

2
)◦(U◦W),

see [1], so the transference method applies.

4.5.3 Ultraspherical operators

Here we restrict ourselves to one-dimensional expansions. We denote the ultraspherical

polynomials of type λ > 0 and degree k ∈ N0 by Pλk(x), x ∈ (−1, 1), see [53, 59, 85].

It is well-known that the set of trigonometric polynomials {Pλk(cos θ) : θ ∈ (0,π)} forms

an orthogonal basis of L2((0,π),dmλ(θ)), where dmλ(θ) = sin2λ θdθ. The polynomials

Pλk(cos θ) are eigenfunctions of the ultraspherical operator

Lλ = −
d2

dθ2
− 2λ cot θ

d

dθ
+ λ2,

that is, LλP
λ
k(cos θ) = (k+ λ)2Pλk(cos θ). We denote by ~Pλk(cos θ) the orthonormalized poly-

nomials given by Γ(λ)2(n+λ)n!
21−2λπΓ(n+2λ)

Pλk(cos θ). There exists a constant A such that |Pλk(cos θ)| 6

Ak2λ−1, see [59]. This and Stirling's formula for the Gamma function [53] imply that there

exists C such that |~Pλk(θ)| 6 Ck for all k. A similar estimate holds for the derivatives of ~Pλk
since d

dxP
λ
k(x) = 2λPλ+1

k−1(x), see [85].

The set of orthonormal ultraspherical functions pλk(θ) = sinλ θ~Pλk(cos θ) is a basis of

L2((0,π),dx). The ultraspherical functions are eigenfunctions of the di�erential operator

lλ = −
d2

dθ2
+
λ(λ− 1)

sin2 θ
,

namely, lλp
λ
k(θ) = (k + λ)2pλk(θ). By using the estimates for ~Pλk given above, we can eas-

ily check that this system satis�es (4.12). Moreover, the heat-di�usion semigroup e−tlλ is

positivity-preserving. This last assertion can be deduced directly from the facts that the

heat-di�usion semigroup for the ultraspherical polynomials e−tLλ is positivity preserving,

see [12], and e−tlλ = (U ◦W) ◦ (e−tLλ) ◦ (U ◦W)−1, see Subsection 4.5.3 below.

A. Proof of Harnack’s inequality for (lλ)
σ

We do this as we did for (HD)
σ above by following parallel arguments. Let f ∈ Dom(lλ),

f > 0, such that (lλ)
σf = 0 in L2(I,dθ), for some interval I ⊂ (0,π). Let u be the solution

to the extension problem for lλ and this f. By the estimates mentioned above, u is classical.

The potential here is V(θ) =
λ(λ−1)

sin2 θ
, which is a locally bounded function. Observe that

d
dθp

λ
k(θ) = −2λpλ+1

k−1(θ) + λ cot θp
λ
k(θ). Since cot θ is bounded in I, by following the same

arguments as those for (HD)
σ, we can get ‖ ∂∂θu(θ,y)‖L2(I,dθ) → ‖f

′(θ)‖L2(I,dθ), as y→ 0+.

The conclusion follows by Theorem 4.4.

B. Proof of Harnack’s inequality for (Lλ)
σ
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This is achieved by applying the transference method with M(θ) = sinλ θ and h(θ) = θ.

It readily follows that (Lλ)
σ = (U ◦W)−1 ◦ (lλ)σ ◦ (U ◦W).

4.6 Laplacian and Bessel operators

In this section we will prove Theorem A for the fractional powers of the Bessel operator.

This operator is a generalization of the radial Laplacian. For the sake of completeness and

to show how the proof works, we present �rst the case of the fractional Laplacian on Rn, for
which the more familiar Fourier transform applies.

The main di�erence with respect to the examples given before is that these operators

have a continuous spectrum and the Fourier and Hankel transforms come into play.

4.6.1 The Laplacian on Rn

Consider the fractional Laplacian de�ned by ̂(−∆)σf(ξ) = |ξ|2σ f̂(ξ), where f̂ denotes the

Fourier transform: f̂(ξ) ≡ cξ(f) =
1

(2π)n/2

∫
Rn
f(x)e−ix·ξ dx, ξ ∈ Rn. The eigenfunctions of

−∆, indexed by the continuous parameter ξ, are ϕξ(x) = e
−ix·ξ, x ∈ Rn, and (−∆)ϕξ(x) =

|ξ|2ϕξ(x). Note that for any compact subset K ⊂ Rn and any multi-index β ∈ Nn0 , |β| 6 2,

we have ∥∥Dβϕξ∥∥L∞(K) 6 |ξ||β|. (4.19)

For any f ∈ L2(K,dx), the heat semigroup is de�ned by et∆f(x) =
1

(2π)n/2

∫
Rn
e−t|ξ|

2

cξ(f)ϕ−ξ(x)dξ.

As ∣∣et∆f(x)∣∣ 6 C ∫
Rn

∣∣∣e−t|ξ|2cξ(f)ϕ−ξ(x)
∣∣∣ dξ 6 Ct−n/4 ‖f‖L2(K,dx) , x ∈ K, (4.20)

the integral that de�nes et∆f(x) is absolutely convergent in K× (0, T) with T > 0. Moreover,

et∆ is positivity-preserving in the sense of (4.2) because it is given by convolution with the

Gauss-Weierstrass kernel. Note that, in this spectral language, Dom(−∆) =
{
f ∈ L2(Rn,dx) :

|ξ|2f̂(ξ) ∈ L2(Rn,dx)
}

=
{
f ∈ L2(Rn,dx) : D2f ∈ L2(Rn,dx)

}
= W2,2(Rn), the Sobolev

space of functions in L2(Rn) with Hessian D2f in L2(Rn).
Let us show Theorem A for (−∆)σ. Assume that f ∈ W2,2(Rn), f > 0 and (−∆)σf =

0 in L2(BR,dx), for some ball BR ⊂ Rn. By Theorem 4.4, we just must check that

‖∇xu(x,y)‖L2(BR,dx) remains bounded as y→ 0+. To that end, observe that for any x ∈ BR
and y > 0, by (4.20),∫∞

0

|et∆f(x)e−
y2

4t |
dt

t1+σ
6 C ‖f‖L2(BR,dx)

∫∞
0

t−n/4e−
y2

4t
dt

t1+σ
6 F(y),

for some function F(y). This means that we can interchange integrals in u to get

u(x,y) =
y2σ

4σΓ(σ)(2π)n/2

∫
Rn
cξ(f)ϕ−ξ(x)

∫∞
0

e−t|ξ|
2

e−
y2

4t
dt

t1+σ
dξ. (4.21)
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By (4.19) and using the same arguments as above, it is easy to see that this double integral

de�nes a function in C2(BR × (0,∞)). So in this case u is a classical solution of (4.4). By

using Plancherel's Theorem and (4.21) we have

‖∂xj(u(x,y) − f(x))‖
2
L2(Rn,dx) =

∥∥∥(∂xj(u(x,y) − f(x)))̂ (ξ)∥∥∥2
L2(Rn,dξ)

=
1

(2π)n

∫
Rn

∣∣∣∣(−iξj)cξ(f) [ y2σ

4σΓ(σ)

∫∞
0

e−t|ξ|
2

e−
y2

4t
dt

t1+σ
− 1

]∣∣∣∣2 dξ
=

1

(2π)n

∫
Rn

∣∣(−iξj)cξ(f)ϕ−ξ(x)
∣∣2 [ y2σ

4σΓ(σ)

∫∞
0

(
e−t|ξ|

2

− 1
)
e−

y2

4t
dt

t1+σ

]2
dξ.

(4.22)

Observe that the expression in square brackets above is uniformly bounded in y and it

converges to 0 when y → 0+. Moreover, as f ∈ W2,2(Rn),
∥∥(−iξj)cξ(f)∥∥L2(Rn,dξ) =

‖∂xjf‖L2(Rn,dx) < ∞. Hence, by dominated convergence in (4.22), ∂xju(x,y) converges

to ∂xjf in L
2(Rn,dx) as y→ 0+. Whence ∇xu(x,y)→ ∇xf(x) as y→ 0+, in L2(BR,dx).

4.6.2 The Bessel operators on (0,∞)

Let λ > 0. Let us denote by ∆λ the Bessel operator

∆λ = −
d2

dx2
−

2λ

x

d

dx
, x > 0,

which is positive and symmetric in L2((0,∞),dmλ(x)), where dmλ(x) = x2λdx, see [7, 59].

If 2λ = n− 1, n ∈ N, then we recover the radial Laplacian on Rn. Let Jν denote the Bessel

function of the �rst kind with order ν and let us de�ne ϕλξ(x) = x−λ(ξx)1/2Jλ−1/2(ξx),

x, ξ ∈ (0,∞). Then, ∆λϕ
λ
ξ(x) = ξ2ϕλξ(x), see [7]. These functions will play the role of the

exponentials e−ixξ in the case of the Laplacian.

We also consider the Bessel operator

Sλ = −
d2

dx2
+
λ2 − λ

x2
,

which is positive and symmetric in L2((0,∞),dx). Observe that the potential V(x) = λ2−λ
x2

is a locally bounded function. If we let ψλξ(x) = xλϕλξ(x) then Sλψ
λ
ξ(x) = ξ2ψλξ(x), see [7].

The Hankel transform

f 7−→
∫∞
0

ψλ(ξx)f(x)dx

is a unitary transformation in L2((0,∞),dx), see [87, Chapter 8]. On the other hand, it

is known that for any compact subset K ⊂ (0,∞) and k ∈ N0, there exist a nonnega-

tive number ε = εK,k and a constant C = CK,k such that ‖ψλξ(x)‖L∞(K,dx) 6 C, and

‖ dk
dxk

ψλξ(x)‖L∞(K,dx) 6 C|ξ|
ε, see [53]. Therefore parallel to the case of the Laplacian we can

de�ne the heat semigroup as

e−tSλf(x) =

∫∞
0

e−tξ
2

cξ(f)ψ
λ
ξ(x)dξ,
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where cξ(f) =

∫∞
0

f(x)ψλξ(x)dx. Moreover,

∣∣e−tSλf(x)∣∣ 6 ∫∞
0

∣∣∣e−tξ2cξ(f)ψλξ(x)∣∣∣ dξ 6 Ct−1/4 ‖f‖L2(K,dx) , x ∈ K,

so the integral that de�nes e−tSλf(x) is absolutely convergent in K× (0, T) with T > 0. Since

e−tSλ is positivity-preserving (see [7]), we can follow step by step the arguments we gave for

the case of the classical Laplacian to derive Theorem A for the operator (Sλ)
σ.

In order to get Theorem A for (∆λ)
σ we apply the transference method. Indeed, an

obvious modi�cation of Lemma 4.7 is applied withM(x) = xλ to get (∆λ)
σ = U−1◦(Sλ)σ◦U.
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Chapter 5

Fractional vector-valued
Littlewood-Paley-Stein theory for
semigroups

In this chapter, we consider the fractional derivative of a general Poisson semigroup. With

this fractional derivative, we de�ne the generalized fractional Littlewood{Paley g-function

for semigroups acting on Lp-spaces of functions with values in Banach spaces. In Section 5.1,

we give a characterization of the classes of Banach spaces for which the fractional Litlewood{

Paley g-function is bounded on Lp-spaces. It is also shown that the same kind of results

exist for the case of the fractional area function and the fractional g∗λ-function on Rn, see
in Section 5.5. In Section 5.6, we consider the relationship of the almost sure �niteness of

the fractional Littlewood{Paley g-function, area function, and g∗λ-function with the Lusin

cotype property of the underlying Banach space.

5.1 Main theorems about the fractional Littlewood-Paley-Stein
theory

Let {Tt}t>0 be a collection of linear operators de�ned on Lp(Ω,dµ) over a positive measure

space (Ω,dµ) satisfying the following properties:

T0 = Id, TtTs = Tt+s, ‖Tt‖Lp→Lp 6 1 ∀p ∈ [1,∞], (5.1)

lim
t→0

Ttf = f in L2 ∀f ∈ L2, (5.2)

T∗t = Tt on L2, Ttf > 0 if f > 0, Tt1 = 1. (5.3)

93
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The subordinated Poisson semigroup {Pt}t>0 is de�ned as

Ptf =
1√
π

∫∞
0

e−u√
u

T t2
4u

du =
t

2
√
π

∫∞
0

e−
t2

4u

u
3
2

Tufdu. (5.4)

{Pt}t>0 is again a symmetric di�usion semigroup, see [78]. Recall that if A denotes the

in�nitesimal generator of {Tt}t>0, then that of {Pt}t>0 is −(−A)1/2. Tt and Pt have straight-

forward extensions to LpB(Ω) for every Banach space B, where LpB(Ω) denotes the usual

Bochner{Lebesgue Lp-space of B-valued functions de�ned on Ω and the extensions are also

contractive. So we shall consider Tt and Pt as semigroups on LpB(Ω) too. Recall that the

generalized Littlewood{Paley g-function associated to the semigroup is de�ned as

g
q
1 (f)(x) =

(∫∞
0

‖t∂tPtf(x)‖qB
dt

t

) 1
q

.

C. Segovia and R. L. Wheeden, see [70], motivated by some characterization of potential

spaces on Rn, introduced the fractional derivative ∂α. Parallel to C. Segovia and R. L.

Wheeden, we de�ne

∂αt Ptf =
e−iπ(m−α)

�(m− α)

∫∞
0

∂mt Pt+s(f)s
m−α−1ds, t > 0, (5.5)

where m is the smallest integer which strictly exceeds α. In [70], the authors developed a

satisfactory theory of euclidean square functions of Littlewood{Paley type in which the usual

derivatives are substituted by these fractional derivatives. In Section 5.2, we shall see that for

any f ∈ Lp(Ω), this partial derivative is well de�ned and then we are allowed to consider the

following \fractional generalized Littlewood{Paley g-function" associated to the semigroup

as

gqα(f)(x) =

(∫∞
0

‖tα∂αt Ptf(x)‖
q
B
dt

t

) 1
q

, ∀f ∈
⋃

16p6∞L
p
B(Ω). (5.6)

Let E ⊂ L2(Ω) be the subspace of the �xed points of {Pt}t>0, that is, the subspace of

all f such that Pt(f) = f for all t > 0. Let E : L2(Ω) −→ E be the orthogonal projection.

It is clear that E extends to be a contractive projection (still denoted by E) on Lp(Ω) for

every 1 6 p 6 ∞ and that E(Lp(Ω)) is exactly the �x point space of {Pt}t>0 on Lp(Ω).

Moreover, for any Banach space B, E extends to be a contractive projection on LpB(Ω) for

every 1 6 p 6 ∞ and that E(LpB(Ω)) is again the �x point space of {Pt}t>0 considered as a

semigroup on LpB(Ω). In the particular case on Rn, E = 0 and so E(LpB(R
n)) = 0. According

to our convention, in the sequel, we shall use the same symbol E to denote any of these

contractive projections. Our main goal in this chapter is to extend the results in [57] to the

fractional derivative case. Now we list our main theorems.

Theorem 5.1. Given a Banach space B and 2 6 q < ∞, the following statements are

equivalent:
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(i) B is of Lusin cotype q.

(ii) For every symmetric di�usion semigroup {Tt}t>0 with subordinated semigroup

{Pt}t>0, for every (or, equivalently, for some) p ∈ (1,∞), and for every (or,

equivalently, for some) α > 0, there is a constant C such that

‖gqα(f)‖Lp(Ω) 6 C‖f‖LpB(Ω), ∀f ∈ LpB(Ω).

Theorem 5.2. Given a Banach space B and 1 < q 6 2 , the following statements are

equivalent:

(i) B is of Lusin type q.

(ii) For every symmetric di�usion semigroup {Tt}t>0 with subordinated semigroup

{Pt}t>0, for every (or, equivalently, for some) p ∈ (1,∞), and for every (or,

equivalently, for some) α > 0, there is a constant C such that

‖f‖LpB(Ω) 6 C
(
‖E0(f)‖LpB(Ω) + ‖g

q
α(f)‖Lp(Ω)

)
, ∀f ∈ LpB(Ω).

5.2 Fractional derivatives

In this section, we shall give some properties of the fractional derivatives.

Theorem 5.3. Given a Banach space B, 1 6 p 6 ∞, α > 0, and t > 0, ∂αt Ptf is well

de�ned as a function in LpB (Ω) for any f ∈ LpB (Ω) . Moreover, there exists a constant

Cα such that

‖∂αt Ptf‖LpB(Ω) 6
Cα

tα
‖f‖LpB(Ω) , ∀f ∈ LpB (Ω) . (5.7)

Proof. Firstly, let us consider the case α = m, m = 1, 2, . . . . We know that, for any m =

1, 2, . . . , there exist constants Cm such that

∂mt

(
t√
u
e−

t2

4u

)
6 Cm

1(√
u
)m e−

t2

4u .

Then, by using formula (5.4), we have

‖∂mt Ptf‖LpB(Ω) 6 C
∫∞
0

∣∣∣∣∂mt ( t√
u
e−

t2

4u

)∣∣∣∣ ‖Tuf‖LpB(Ω)

du

u

6 Cm

∫∞
0

1(√
u
)m e−

t2

4u
du

u
‖f‖LpB(Ω) =

Cm

tm
‖f‖LpB(Ω) . (5.8)
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So we have proved (5.7) when α is integer. Therefore, given α > 0, we have

‖∂αt Ptf‖LpB(Ω) =

∥∥∥∥e−iπ(m−α)

�(m− α)

∫∞
0

∂mt Pt+s(f)s
m−α−1ds

∥∥∥∥
L
p
B(Ω)

6
Cm

�(m− α)
‖f‖LpB(Ω)

∫∞
0

1

(t+ s)m
sm−α−1ds (5.9)

=
Cm

�(m− α)
B(m− α,α)

‖f‖LpB(Ω)

tα
= Cα

‖f‖LpB(Ω)

tα
,

where B denotes the Beta function, see [53].

Observe that by estimate (5.8), we can perform integration by parts in the formula (5.5).

In particular, the formula (5.5) is valid for α being integer.

Theorem 5.4. Given a Banach space B and 0 < β < γ, we have

∂
β
t Ptf =

e−iπ(γ−β)

�(γ− β)

∫∞
0

∂
γ
t Pt+s(f)s

γ−β−1ds, ∀f ∈
⋃

16p6∞L
p
B (Ω) . (5.10)

Proof. Assume that f ∈ LpB (Ω) for some 1 6 p 6 ∞, by changing variables and Fubini's

theorem, we have the following computation as in (5.9)∫∞
0

∂
γ
t Pt+s(f)s

γ−β−1ds =

∫∞
0

e−iπ(k−γ)

�(k− γ)

∫∞
0

∂ktPt+s+u(f)u
k−γ−1dusγ−β−1ds

=
e−iπ(k−γ)

�(k− γ)

∫∞
0

∫∞
s

∂ktPt+�u(f)(�u− s)k−γ−1sγ−β−1d�uds (5.11)

=
e−iπ(k−γ)B(k− γ,γ− β)

�(k− γ)

∫∞
0

∂ktPt+�u(f)�u
k−β−1d�u,

where k is the smallest integer which is bigger than γ. By (5.8), we know that we can integrate

by parts in the last integral of (5.11). Let m be the smallest integer which is bigger than β.

Then by integrating by parts k−m times, we obtain∫∞
0

∂
γ
t Pt+s(f)s

γ−β−1ds

=
B(k− γ,γ− β)e−iπ(m−γ)

�(k− γ)
(k− β− 1) · · · (m− β)

∫∞
0

∂mt Pt+�u(f)�u
m−β−1d�u

= e−iπ(γ−β)�(γ− β)∂βt Ptf.

Hence we get (5.10).

Theorem 5.5. Given a Banach space B and α, β > 0, ∂αt

(
∂
β
t Ptf

)
can be de�ned as

∂αt

(
∂
β
t Ptf

)
=
e−iπ(m−α)

�(m− α)

∫∞
0

∂mt

(
∂
β
t+sPt+sf

)
sm−α−1ds, ∀f ∈

⋃
16p6∞L

p
B (Ω) , (5.12)
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where m is the smallest integer which is bigger than α. Then

∂αt

(
∂
β
t Ptf

)
= ∂α+βt Ptf, ∀f ∈

⋃
16p6∞L

p
B (Ω) . (5.13)

Proof. For any f ∈ LpB (Ω) for some 1 6 p 6 ∞, by (5.5) and Theorem 5.3 we have the

following computation for the latter of (5.12):

e−iπ(m−α)

�(m− α)

∫∞
0

∂mt

(
∂
β
t+sPt+sf

)
sm−α−1ds

=
e−iπ(m+k−α−β)

�(m− α)�(k− β)

∫∞
0

∂mt

(∫∞
0

∂kt+sPt+s+u(f)u
k−β−1du

)
sm−α−1ds, (5.14)

where k is the smallest integer which is bigger than β. For any �xed s ∈ (0,∞), t ∈
(t0 − ε, t0 + ε) ⊂ (0,∞) for some t0 ∈ (0,∞), and ε > 0, by (5.7) we have

∥∥∂mt (∂kt+sPt+s+u(f)uk−β−1
)∥∥
L
p
B(Ω)

=
∥∥∂m+k
t Pt+s+u(f)

∥∥
L
p
B(Ω)

uk−β−1

6
C

(t+ s+ u)m+k
uk−β−1 ‖f‖LpB(Ω) 6

C

(t0 − ε+ s+ u)m+k
uk−β−1 ‖f‖LpB(Ω) , (5.15)

for any 1 6 p 6∞. And

∫∞
0

∣∣∣∣ uk−β−1

(t0 − ε+ s+ u)m+k

∣∣∣∣du ‖f‖LpB(Ω)

=

(∫t0−ε+s
0

∣∣∣∣ uk−β−1

(t0 − ε+ s+ u)m+k

∣∣∣∣du+

∫∞
t0−ε+s

∣∣∣∣ uk−β−1

(t0 − ε+ s+ u)m+k

∣∣∣∣du) ‖f‖LpB(Ω)

(5.16)

6 C
1

(t0 − ε+ s)β+m
‖f‖LpB(Ω) <∞.

Combining (5.15) and (5.16), we know that ∂mt
(
∂kt+sPt+s+u(f)u

k−β−1
)
is controlled by an

integrable function. Hence we can interchange the order of the inner integration and the
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partial derivative ∂mt in (5.14) to obtain

e−iπ(m−α)

�(m− α)

∫∞
0

∂mt

(
∂
β
t+sPt+sf

)
sm−α−1ds

=
e−iπ(m+k−α−β)

�(m− α)�(k− β)

∫∞
0

∫∞
0

∂mt ∂
k
t+sPt+s+u(f)u

k−β−1dusm−α−1ds

=
e−iπ(m+k−α−β)

�(m− α)�(k− β)

∫∞
0

∫∞
0

∂m+k
t Pt+s+u(f)u

k−β−1dusm−α−1ds

=
e−iπ(m+k−α−β)

�(m− α)�(k− β)

∫∞
0

∫∞
s

∂m+k
t Pt+w(f)(w− s)k−β−1dwsm−α−1ds (5.17)

=
e−iπ(m+k−α−β)

�(m− α)�(k− β)

∫∞
0

∫w
0

∂m+k
t Pt+w(f)(w− s)k−β−1sm−α−1dsdw

=
e−iπ(m+k−α−β)B(m− α, k− β)

�(m− α)�(k− β)

∫∞
0

∂m+k
t Pt+w(f)w

k+m−α−β−1dw

=
e−iπ(m+k−α−β)

�(m+ k− α− β)

∫∞
0

∂m+k
t Pt+w(f)w

k+m−α−β−1dw.

Sincem−1 6 α < m and k−1 6 β < k,m+k−2 6 α+β < m+k. Ifm+k−1 6 α+β < m+k,

we have
e−iπ(m+k−α−β)

�(m+ k− α− β)

∫∞
0

∂m+k
t Pt+w(f)w

k+m−α−β−1dw = ∂α+βt Ptf. (5.18)

If m+ k− 2 6 α+ β < m+ k− 1, then integrating by parts, we get

e−iπ(m+k−α−β)

�(m+ k− α− β)

∫∞
0

∂m+k
t Pt+w(f)w

k+m−α−β−1dw

=
e−iπ(m+k−1−α−β)

�(m+ k− 1− α− β)

∫∞
0

∂m+k−1
t Pt+w(f)w

k+m−α−β−2dw = ∂α+βt Ptf. (5.19)

So, combining (5.14) and (5.17){(5.19), we get

e−iπ(m−α)

�(m− α)

∫∞
0

∂mt

(
∂
β
t+sPt+sf

)
sm−β−1ds = ∂α+βt Ptf,

for any f ∈
⋃

16p6∞L
p
B (Ω) .

Write the spectral decomposition of the semigroup {Pt}t>0: for any f ∈ L2(Ω)

Ptf =

∫∞
0

e−λtdEf(λ),

where E(λ) is a resolution of the identity. Thus

∂ktPtf = e
−iπk

∫∞
0+
λke−λtdEf(λ), k = 1, 2, . . . . (5.20)

We have the following proposition.
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Proposition 5.6. Let f ∈ L2(Ω) and 0 < α <∞. We have

∂αt Ptf = e
−iπα

∫∞
0+
λαe−λtdEf(λ). (5.21)

Proof. Assume that k− 1 6 α < k, 0 < k ∈ Z. By (5.5) and (5.20), we have

∂αt Ptf =
1

�(k− α)

∫∞
0

∂ktPt+sfs
k−α−1ds

=
(−1)k

�(k− α)

∫∞
0

∫∞
0+
λke−(t+s)λdEf(λ)s

k−α−1ds. (5.22)

Then

∫∞
0

∫∞
0+
λk e−(t+s)λ |dE(λ)| sk−α−1ds is absolutely convergent. Indeed, for any t ∈

(0,∞), we have∫∞
0

∫∞
0+
λke−(t+s)λ |dE(λ)| sk−α−1ds =

∫∞
0+

∫∞
0

λke−(t+s)λsk−α−1ds |dE(λ)|

=

∫∞
0+

(∫t
0

λke−(t+s)λsk−α−1ds+

∫∞
t

(λs)ke−(t+s)λs−α
ds

s

)
|dE(λ)|

6 C
∫∞
0+
t−α |dE(λ)| 6

C

tα
<∞.

By Theorem 5.3, we know that the integral in (5.5) is absolutely convergent in L2(Ω). So by

(5.22), we get

〈∂αt Ptf, g〉 =

〈
(−1)k

�(k− α)

∫∞
0

∫∞
0+
λke−(t+s)λdEf(λ)s

k−α−1ds, g

〉
=

(−1)k

�(k− α)

∫∞
0

〈∫∞
0+
λke−(t+s)λdEf(λ), g

〉
sk−α−1ds

=
(−1)k

�(k− α)

∫∞
0

∫∞
0+
λk e−(t+s)λdE〈f,g〉(λ)s

k−α−1ds

=
(−1)k

�(k− α)

∫∞
0+

∫∞
0

λk e−(t+s)λsk−α−1ds dE〈f,g〉(λ)

= (−1)k
∫∞
0+
λα e−tλdE〈f,g〉(λ)

=

〈
(−1)k

∫∞
0+
λα e−tλdEf(λ), g

〉
, ∀g ∈ L2(Ω).

Hence we get (5.21).

5.3 Some technical results for Littlewood-Paley g-function

In this section, we will give some properties of the fractional Littlewood{Paley g-function.
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Proposition 5.7. Given a Banach space B, 1 < q < ∞, and 0 < β < γ, there exists a

constant C such that

g
q
β(f) 6 Cg

q
γ(f), ∀f ∈

⋃
16p6∞L

p
B (Ω) . (5.23)

Proof. Assume that f ∈ LpB (Ω) for some 1 6 p 6∞. By Theorem 5.4 and H�older's inequality,

we have∥∥∂βt Ptf∥∥B 6
1

�(γ− β)

∫∞
t

∥∥∂γsPsf∥∥B(s− t)γ−β−1ds

6
1

�(γ− β)

(∫∞
t

∥∥∂γsPsf∥∥qB(s− t)γ−β−1sγ(q−1)ds

) 1
q
(∫∞
t

(s− t)γ−β−1s−γds

) 1
q ′

.

By changing variables, we have∫∞
t

(s− t)γ−β−1s−γds =

∫∞
t

(
1−

t

s

)γ−β−1(
t

s

)β+1

t−β−1ds

= t−β
∫1
0

(1− u)γ−β−1uβ−1du = t−βB(γ− β,β).

So we have∥∥∥∂βt Ptf∥∥∥B 6
1

�(γ− β)

(
t−βB(γ− β,β)

) 1
q ′

(∫∞
t

∥∥∂γsPsf∥∥qB(s− t)γ−β−1sγ(q−1)ds

) 1
q

(5.24)

=
(B(γ− β,β))

1
q ′

�(γ− β)

(
t−β

) 1
q ′

(∫∞
t

‖∂γsPsf‖
q
B (s− t)γ−β−1sγ(q−1)ds

) 1
q

.

Using Fubini's theorem, by (5.24) we get∫∞
0

∥∥∥tβ∂βt Ptf∥∥∥qB dtt 6
(B(γ− β,β))

q
q ′

�(γ− β)q

∫∞
0

tβq
(
t−β

) q
q ′
∫∞
t

‖∂γsPsf‖
q
B (s− t)γ−β−1sγ(q−1)ds

dt

t

=
(B(γ− β,β))q−1

�(γ− β)q

∫∞
0

sγ(q−1) ‖∂γsPsf‖
q
B

∫s
0

tβ−1(s− t)γ−β−1dtds

=

(
�(β)

�(γ)

)q ∫∞
0

∥∥sγ∂γsPsf∥∥qB dss .

Hence we get the inequality (5.23) with the constant C =
�(β)

�(γ)
.

In the following, we shall need the theory of Calder�on{Zygmund on Rn. So we should

recall briey the de�nition of the Calder�on{Zygmund operator. Given two Banach spaces B1

and B2, let T be a linear operator. Then we call that T is a Calder�on{Zygmund operator on

Rn, with associated Calder�on{Zygmund kernel K if T maps L∞c,B1
, the space of the essentially
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bounded B1-valued functions on Rn with compact support, into the space of B2-valued and

strongly measurable functions on Rn, and for any function f ∈ L∞c,B1
we have

Tf(x) =

∫
Rn
K(x,y)f(y)dy, a.e. x ∈ Rn outside the support of f,

where the kernel K(x,y) is a regular kernel, that is, K(x,y) ∈ L (B1,B2) satis�es ‖K(x,y)‖ 6
C

1

|x− y|n
and ‖5xK(x,y)‖ + ‖5yK(x,y)‖ 6 C

1

|x− y|n+1
, for any x,y ∈ Rn and x 6= y,

where as usual 5x = (∂x1 , · · · ,∂xn).
Let us recall the B-valued BMO and H1 spaces on Rn. It is well known that

BMOB(Rn) =

{
f ∈ L1B,loc(Rn) : sup

cubes Q⊂Rn

1

|Q|

∫
Q

∥∥∥∥f(x) − 1

|Q|

∫
Q

f(y)dy

∥∥∥∥
B
dx <∞} .

The B-valued H1 space is de�ned in the atomic sense. We say that a function a ∈ L∞B (Rn)
is a B-valued atom if there exists a cube Q ⊂ Rn containing the support of a, and such that

‖a‖L∞B (Rn) 6 |Q|−1 and

∫
Q

a(x)dx = 0. Then, we can de�ne H1
B (Rn) as

H1
B (Rn) =

{
f : f =

∑
i

λiai, ai are B-valued atoms and
∑
i

|λi| <∞
}
.

We de�ne ‖f‖H1
B(Rn) = inf

{∑
i

|λi|
}
, where the in�mum runs over all those such decompo-

sitions.

Remark 5.8. [57, Theorem 4.1] Given a pair of Banach spaces B1 and B2, let T be a

Calder�on{Zygmund operator on Rn with regular vector-valued kernel. Then the following

statements are equivalent:

(i) T maps L∞c,B1
(Rn) into BMOB2

(Rn).

(ii) T maps H1
B1
(Rn) into L1B2

(Rn).

(iii) T maps LpB1
(Rn) into LpB2

(Rn) for any (or, equivalently, for some) p ∈ (1,∞).

(iv) T maps BMOc,B1
(Rn) into BMOB2

(Rn).

(v) T maps L1B1
(Rn) into L1,∞B2

(Rn).

Proposition 5.9. Given a Banach space B, 1 < q < ∞, and 0 < α < ∞, gqα(f) can be

expressed as an LqB(R+,
dt
t )-norm of a Calder�on{Zygmund operator on Rn with regular

vector-valued kernel.



102 Chapter 5. Fractional vector-valued Littlewood-Paley-Stein theory for semigroups

Proof. Assume that m− 1 6 α < m for some positive integer m. For any f ∈ S(Rn)⊗B, we
have

gqα(f)(x) = ‖tα∂αt Ptf(x)‖LqB(R+,
dt
t ) =

∥∥∥∥∫
Rn
Kt(x− y)f(y)dy

∥∥∥∥
L
q
B(R+,

dt
t )

,

with

Kt(x−y) =
�(n+1

2
)

π
n+1
2 �(m− α)

tα
∫∞
0

∂mt

(
t+ s

((t+ s)2 + |x− y|2)
n+1
2

)
sm−α−1ds, x,y ∈ Rn, x 6= y, t > 0.

Then for every x,y ∈ Rn, x 6= y, t > 0 and f ∈ S(Rn)⊗ B, the integral
∫
Rn
Kt(x − y)f(y)dy

is absolutely convergent because

|Kt(x− y)| 6 Ctα
∫∞
0

1

((t+ s)2 + |x− y|2)
n+m
2

sm−α−1ds

6 Ctα
∫t+|x−y|

0

1

(t+ s+ |x− y|)n+m
sm−α−1ds (5.25)

+Ctα
∫∞
t+|x−y|

1

(t+ s+ |x− y|)n+m
sm−α−1ds

6 C
tα

(t+ |x− y|)n+α
, x,y ∈ Rn, x 6= y, t > 0.

By the comment about the Calder�on{Zygmund operator above, we need only prove that

Kt(x,y) = Kt(x− y) is a regular kernel. For any b ∈ B,

‖Kt(x− y)b‖LqB(R+,
dt
t ) =

(∫∞
0

‖Kt(x− y)b‖qB
dt

t

) 1
q

6 ‖b‖B
(∫∞

0

|Kt(x− y)|
qdt

t

) 1
q

.

So, by (5.25), we have

‖Kt(x− y)‖
L
(
B, LqB(R+,

dt
t )
) 6 (∫∞

0

|Kt(x− y)|
qdt

t

) 1
q

6 C

(∫∞
0

(
tα

(t+ |x− y|)n+α

)q
dt

t

) 1
q

= C

(∫ |x−y|
0

(
tα

(t+ |x− y|)n+α

)q
dt

t
+

∫∞
|x−y|

(
tα

(t+ |x− y|)n+α

)q
dt

t

) 1
q

(5.26)

6 C
1

|x− y|n
, x,y ∈ Rn, x 6= y.

Next, we observe that, for each i = 1, . . . ,n,

|∂xi (Kt(x− y))| = Ctα

∣∣∣∣∣
∫∞
0

∂xi

[
∂mt

(
t+ s

((t+ s)2 + |x− y|2)
n+1
2

)]
sm−α−1ds

∣∣∣∣∣
6 C

∣∣∣∣tα ∫∞
0

1

(t+ s+ |x− y|)n+m+1
sm−α−1ds

∣∣∣∣
6 C

∣∣∣∣∣ tα

(t+ |x− y|)n+α+1

∣∣∣∣∣ , x,y ∈ R, x 6= y, t > 0.
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Then for any b ∈ B

‖∂xi (Kt(x− y))b‖LqB(R+,
dt
t ) =

(∫∞
0

‖∂xi (Kt(x− y))b‖
q
B
dt

t

) 1
q

6

(∫∞
0

|∂xiKt(x− y)|
q dt

t

) 1
q

‖b‖B 6 C

(∫∞
0

∣∣∣∣∣ tα

(t+ |x− y|)n+α+1

∣∣∣∣∣
q
dt

t

) 1
q

‖b‖B

6 C
1

|x− y|n+1
‖b‖B, x,y ∈ Rn, x 6= y.

As the argument in (5.26), we obtain

‖∇xKt(x− y)‖L(B,LqB(R+,
dt
t ))

6 C
1

|x− y|n+1
, x,y ∈ Rn, x 6= y. (5.27)

Also, we can prove that

‖∇yKt(x− y)‖L(B,LqB(R+,
dt
t ))

6 C
1

|x− z|n+1
, x,y ∈ Rn, x 6= y (5.28)

in the same way as the proof of (5.27). Combining (5.26){(5.28), we know that Kt(x,y) is

a regular kernel. The proposition is established. The proof of this proposition can be found

in [8] also.

Proposition 5.10. Let B be a Banach space which is of Lusin cotype q, 2 6 q < ∞.

Then for every symmetric di�usion semigroup {Tt}t>0 with subordinated semigroup

{Pt}t>0 and for every (or, equivalently, for some) p ∈ (1,∞), there is a constant C such

that

‖gqk(f)‖Lp(Ω) 6 C‖f‖LpB(Ω), k = 1, 2, . . . , ∀f ∈ LpB(Ω). (5.29)

Moreover, for any 0 < α <∞, if

‖gqα(f)‖Lp(Ω) 6 C‖f‖LpB(Ω), ∀f ∈ LpB(Ω), (5.30)

then we have

‖gqkα(f)‖Lp(Ω) 6 C‖f‖LpB(Ω), k = 1, 2, . . . , ∀f ∈ LpB(Ω). (5.31)

Proof. For the case k = 1, the inequality (5.29) have been proved in [57]. We only need

prove the cases k = 2, 3, . . . . We can prove it by induction. Assume that the inequality (5.29)

is true for some 1 6 k ∈ Z. Let us prove that it is true for k + 1 also. Since the inequality

(5.29) is true for k, we know that the following operator

T : LqB(R
n) −→ L

q

L
q
B(R+,

dt
t )

(Rn),

Tf(x, t) = tk∂ktPtf(x), ∀f ∈ LqB(R
n)
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is bounded. By Fubini's theorem we know that the operator

~T : Lq
L
q
B(R+,

dt
t )

(Rn) −→ L
q

L
q
B(
ds
s
dt
t )

(Rn) ,

~TF(x, s, t) = s∂sPs(F)(x, t), ∀F(x, t) ∈ Lq
L
q
B(R+,

dt
t )

(Rn)

is also bounded. Since ~T can be expressed as a Calder�on{Zygmund operator with regular

vector-valued kernel, by Remark 5.8 we get that ~T : Lp
L
q
B(R+,

dt
t )

(Rn) −→ L
p

L
q
B(
ds
s
dt
t )

(Rn) is

bounded for any 1 < p <∞. Hence, by Theorem 5.2 of [57], we know that LqB
(
R+,

ds
s

)
is of

Lusin cotype q.

Now given a symmetric di�usion semigroup {Tt}t>0 with subordinated semigroup {Pt}t>0.

As B is of Lusin cotype q and LqB
(
R+,

ds
s

)
also is of Lusin cotype q, we get that T is bounded

from L
p
B (Ω) to Lp

L
q
B(R+,

dt
t )

(Ω) and ~T is bounded from L
p

L
q
B(R+,

dt
t )

(Ω) to Lp
L
q
B(
ds
s
dt
t )

(Ω) , for

any 1 < p < ∞. So the operator ~T ◦ T is bounded from L
p
B (Ω) to Lp

L
q
B(
ds
s
dt
t )

(Ω) , for any

1 < p <∞, and by (5.13) we have

~T ◦ Tf(x, t, s) = ~T(Tf(x, t))(s) = ~T(tk∂ktPtf(x))(s)

= s∂sPs(t
k∂ktPtf)(x) = st

k∂s∂
k
tPsPtf(x) (5.32)

= stk∂s∂
k
tPs+tf(x) = st

k∂k+1
u Puf

∣∣
u=t+s

(x).

So there exists a constant C such that

‖f‖p
L
p
B(Ω)

> C
∥∥∥~T ◦ Tf∥∥∥p

L
p

L
q
B(dss dtt )

(Ω)

= C
∥∥stk∂k+1

u Puf|u=t+s(x)
∥∥p
L
p

L
q
B(dss dtt )

(Ω)

= C

∥∥∥∥∥
(∫∞

0

∫∞
0

∥∥∥stk∂k+1
u Puf

∣∣
u=t+s

(x)
∥∥∥q
B

ds

s

dt

t

) 1
q

∥∥∥∥∥
p

Lp(Ω)

= C

∥∥∥∥∥
(∫∞

0

∫∞
t

tkq(s− t)q
∥∥∂k+1
s Psf

∥∥q
B
ds

s− t

dt

t

) 1
q

∥∥∥∥∥
p

Lp(Ω)

(5.33)

= C

∥∥∥∥∥
(∫∞

0

∥∥∂k+1
s Psf

∥∥q
B

∫s
0

tkq−1(s− t)q−1dtds

) 1
q

∥∥∥∥∥
p

Lp(Ω)

= C(B(kq,q))
p
q

∥∥∥∥∥
(∫∞

0

s(k+1)q
∥∥∂k+1
s Psf

∥∥q
B
ds

s

) 1
q

∥∥∥∥∥
p

Lp(Ω)

= C(B(kq,q))
p
q
∥∥gqk+1(f)

∥∥p
Lp(Ω)

.

Whence

‖gqk+1(f)‖Lp(Ω) 6 C‖f‖LpB(Ω), ∀f ∈ LpB(Ω).
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Then we get the inequality (5.29) for any k ∈ Z+.

We can prove inequality (5.31) under the assumption (5.30) with the similar argument

as above. The only di�erence is that we should de�ne T by

Tf(x, t) = tkα∂kαt Ptf(x), ∀f ∈ LqB(R
n),

and de�ne ~T by

~TF(x, s, t) = sα∂αs PsF(x, t), ∀F(x, t) ∈ Lq
L
q
B(R+,

dt
t )

(Rn).

And by Proposition 5.9 we know that in this case ~T can be expressed as a Calder�on{Zygmund

operator also.

The following theorem is proved in [57].

Theorem 5.11 (See [57, Theorem 3.2]). Let B be a Banach space and 1 < p,q < ∞.

Let h(x, t) be a function in Lp
L
q
B(R+,

dt
t )

(Ω). Consider the operator Q de�ned by Qh(x) =∫∞
0

∂tPth(x, t)dt, x ∈ Ω. Then for nice function h we have∥∥gq1 (Qh)∥∥Lp(Ω)
6 Cp,q‖h‖Lp

L
q
B(R+,dtt )

(Ω),

where the constant Cp,q depends only on p and q.

5.4 Proofs of the main results

In this section, we will give the proofs of Theorem 5.1 and Theorem 5.2.

Proof of Theorem 5.1. (i) ⇒ (ii). Since B is of Lusin cotype q, by Proposition 5.10 we

have ∥∥gqk(f)∥∥Lp(Ω)
6 C‖f‖LpB(Ω), k = 1, 2, . . . , ∀f ∈ LpB(Ω).

Then, for any α > 0, there exists k ∈ N such that α < k. By Proposition 5.7, we have

‖gqα(f)‖Lp(Ω) 6 C
∥∥gqk(f)∥∥Lp(Ω)

6 C‖f‖LpB(Ω), ∀f ∈ LpB(Ω).

(ii)⇒ (i). Since
∥∥gqα(f)∥∥Lp(Ω)

6 C‖f‖LpB(Ω) for any f ∈ L
p
B(Ω), by Proposition 5.10 there

exists an integer k such that kα > 1 and∥∥gqkα(f)∥∥Lp(Ω)
6 C‖f‖LpB(Ω)

for any f ∈ LpB(Ω). By Proposition 5.7, we have∥∥gq1 (f)∥∥Lp(Ω)
6 C

∥∥gqkα(f)∥∥Lp(Ω)
6 C‖f‖LpB(Ω)

for any f ∈ LpB(Ω). Hence, by Theorem 2.1 in [57], B is of Lusin cotype q.
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Proof of Theorem 5.2. (i)⇒ (ii). It is easy to deduce from (5.21) that for any f,g ∈ L2(Ω)∫
Ω

(f− E0(f))(g− E0(g))dµ =
4α

�(2α)

∫
Ω

∫∞
0

(tα∂αt Ptf)(t
α∂αt Ptg)

dt

t
dµ. (5.34)

Now we use duality. Fix two functions f ∈ LpB(Ω) and g ∈ Lp
′

B∗(Ω), where 1
p + 1

p ′ = 1.

Without loss of generality, we may assume that f and g are in the algebraic tensor products(
Lp(Ω) ∩ L2(Ω)

)
⊗ B and

(
Lp
′
(Ω) ∩ L2(Ω)

)
⊗ B∗, respectively. With 〈 , 〉 denoting the

duality between B and B∗, we have∫
Ω

〈f,g〉dµ =

∫
Ω

〈E0(f),E0(g)〉dµ+

∫
Ω

〈f− E0(f),g− E0(g)〉dµ. (5.35)

The �rst term on the right is easy to be estimated:∣∣∣∣∫
Ω

〈E0(f),E0(g)〉dµ
∣∣∣∣ 6 ‖E0(f)‖LpB(Ω)‖E0(g)‖Lp ′B∗(Ω)

6 ‖E0(f)‖LpB(Ω)‖g‖Lp ′B∗(Ω)
. (5.36)

For the second one, by (5.34) and H�older's inequality∣∣∣∣∫
Ω

〈f− E0(f),g− E0(g)〉dµ
∣∣∣∣ = 4α

�(2α)

∣∣∣∣∫
Ω

∫∞
0

〈tα∂αt Ptf, tα∂αt Ptg〉
dt

t
dµ

∣∣∣∣
6

4α

�(2α)

∫
Ω

∫∞
0

‖tα∂αt Ptf‖B ‖t
α∂αt Ptg‖B∗

dt

t
dµ (5.37)

6
4α

�(2α)

∥∥gqα(f)∥∥Lp(Ω)

∥∥gq ′α (g)
∥∥
Lp
′
(Ω)

.

Now since B is of Lusin type q, B∗ is of Lusin cotype q ′. Thus by Theorem A,∥∥gq ′α (g)
∥∥
Lp
′
(Ω)

6 C ‖g‖
L
p ′
B∗(Ω)

. (5.38)

Combining (5.35){(5.38), we get∣∣∣ ∫
Ω

〈f,g〉dµ
∣∣∣ 6 ( ‖E0(f)‖LpB(Ω) + C ‖g

q
α(f)‖Lp(Ω)

)
‖g‖

L
p ′
B∗(Ω)

,

which gives (ii) by taking the supremum over all g as above such that ‖g‖
L
p ′
B∗(Ω)

6 1.

(ii) ⇒ (i). We only need consider the particular case on Rn. In this case, E0(f) = 0 for

any f ∈ LpB(Rn). Assuming p = q and k− 1 6 α < k for some k ∈ Z+, by Proposition 5.7 we

have

‖f‖LqB(Rn) 6 C ‖g
q
α(f)‖Lq(Rn) 6 C

∥∥gqk(f)∥∥Lq(Rn) , (5.39)

for any f ∈ LqB(Rn). By using (5.33) and (5.32), we have(∫∞
0

skq
∥∥∂ksPsf∥∥qB dss

) 1
q

= C

(∫∞
0

∫∞
0

s
q
1 s

(k−1)q
2

∥∥∂k−1
s2

Ps2 (∂s1Ps1) f
∥∥q
B
ds2

s2

ds1

s1

) 1
q

.
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By iterating the argument, we can get

(∫∞
0

skq
∥∥∂ksPsf∥∥qB dss

) 1
q

= C

(∫∞
0

· · ·
∫∞
0

s
q
1 · · · s

q
k ‖∂s1Ps1 · · ·∂skPskf‖

q
B
ds1

s1
· · · dsk

sk

) 1
q

.

Therefore we can choose a function b(x, s1, . . . , sk) ∈ Lq
L
q
B

(
dt1
t1
···dtktk

) (Rn) of unit norm such

that

∥∥gq ′k (f)
∥∥
Lq
′
(Rn)

= C

∫
Rn

∫∞
0

· · ·
∫∞
0

〈s1 · · · sk ∂s1Ps1 · · ·∂skPskf(x), b(x, s1, . . . , sk)〉
ds1

s1
· · · dsk

sk
dx.

We may assume that f and b are nice enough to legitimate the calculations below. By

Fubini's theorem, H�older's inequality and (5.39), we have

∥∥gq ′k (f)
∥∥
Lq
′
(Rn)

= C

∫
Rn

∫∞
0

· · ·
∫∞
0

〈
s1 · · · sk ∂s1Ps1 · · ·∂skPskf(x), b(x, s1, . . . , sk)

〉ds1
s1
· · · dsk

sk
dx

= C

∫
Rn

〈
f(x),

∫∞
0

· · ·
∫∞
0

s1 · · · sk ∂s1Ps1 · · ·∂skPskb(x, s1, . . . , sk)
ds1

s1
· · · dsk

sk

〉
dx

6 C‖f‖
L
q ′
B∗(Rn)

∥∥∥∥∫∞
0

· · ·
∫∞
0

s1 · · · sk∂s1Ps1 · · ·∂skPskb(x, s1, . . . , sk)
ds1

s1
· · · dsk

sk

∥∥∥∥
L
q
B(Rn)

(5.40)

6 C‖f‖
L
q ′
B∗(Rn)

∥∥∥∥gqk (∫∞
0

· · ·
∫∞
0

s1 · · · sk∂s1Ps1 · · ·∂skPskb(x, s1, . . . , sk)
ds1

s1
· · · dsk

sk

)∥∥∥∥
Lq(Rn)

=: C‖f‖
L
q ′
B∗(Rn)

∥∥gqk (Gk(b))∥∥Lq(Rn) ,
where

Gk(b) =

∫∞
0

· · ·
∫∞
0

s1 · · · sk∂s1Ps1 · · ·∂skPskb(x, s1, . . . , sk)
ds1

s1
· · · dsk

sk
, k ∈ Z+.
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Using (5.33), Fubini's theorem and Theorem 5.11 repeatedly, we have∥∥gqk (Gk(b))∥∥qLq(Rn) (5.41)

6 C
∫
Rn

∫∞
0

· · ·
∫∞
0

∥∥∥t1∂t1Pt1 · · · tk∂tkPtk (Gk(b)) ∥∥∥qB dt1t1 · · · dtktk dx
= C

∫∞
0

· · ·
∫∞
0

∫
Rn

∫∞
0

∥∥∥∥tk∂tkPtk [∫∞
0

sk∂skPsk
(
t1∂t1Pt1 · · · tk−1∂tk−1

Ptk−1
Gk−1(b)

) dsk
sk

]∥∥∥∥q
B

dtk
tk
dx
dt1

t1
· · · dtk−1

tk−1

6 C
∫∞
0

· · ·
∫∞
0

∫
Rn

∫∞
0

∥∥t1 · · · tk−1∂t1Pt1 · · ·∂tk−1
Ptk−1

Gk−1(b)
∥∥q
B
dsk
sk
dx
dt1

t1
· · · dtk−1

tk−1

...

6 C
∫
Rn

∫∞
0

· · ·
∫∞
0

‖b(x, s1, . . . , sk)‖qB
ds1

s1
· · · dsk

sk
dx = C.

Combining (5.40) and (5.41), we get∥∥∥gq ′k (f)
∥∥∥
Lq
′(Rn)

6 C‖f‖
L
q ′
B∗(Rn)

.

By Theorem A, B∗ is of Lusin cotype q ′. Hence B is of Lusin type q.

If p 6= q, it su�ces to prove that the operator b → g
q
k(Gk(b)) maps Lp

L
q
B

(
dt1
t1
···dtktk

) (Rn)
into Lp(Rn). To that end we shall use the theory of vector-valued Calder�on{Zygmund oper-

ators. We borrow this idea from [63]. Let us consider the operator

T(b)(x, t1, . . . , tk)

= t1∂t1Pt1 · · · tk∂tkPtk
∫∞
0

· · ·
∫∞
0

s1∂s1Ps1 · · · sk∂skPskb(x, s1, . . . , sk)
ds1

s1
· · · dsk

sk
.

Clearly,

‖T(b)(x, t1, . . . , tk)‖Lp
L
q
B

(
dt1
t1
···dtktk

)(Rn) = ∥∥gqk (Gk(b))∥∥Lp(Rn) .
Therefore it is enough to prove

T : Lp
L
q
B

(
dt1
t1
···dtktk

) (Rn) −→ L
p

L
q
B

(
ds1
s1
···dsksk

) (Rn) .
Hence as we already know that T is bounded in the case p = q, in order to get the case p 6= q
it su�ces to show that the kernel of T satis�es the standard estimates, see Remark 5.8. For

simply and essentially, we only need consider the case when k = 2. So

T(b)(x, t1, t2) = t1t2∂t1Pt1∂t2Pt2

∫∞
0

∫∞
0

s1s2∂s1Ps1∂s2Ps2(b)(x, s1, s2)
ds1

s1

ds2

s2

=

∫
Rn

∫∞
0

∫∞
0

t1t2∂t1Pt1∂t2Pt2s1s2∂s1Ps1∂s2Ps2(x− y)b(y, s1, s2)
ds1

s1

ds2

s2
dy.
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Then the operator-valued kernel K(x) is

∫∞
0

∫∞
0

t1t2∂t1Pt1∂t2Pt2s1s2∂s1Ps1∂s2Ps2(x)
ds1

s1

ds2

s2
.

For any b(s1, s2) ∈ LqB
(
ds1
s1

ds2
s2

)
with unit norm, we have

‖K(x)b‖B =

∥∥∥∥∫∞
0

∫∞
0

t1t2∂t1Pt1∂t2Pt2s1s2∂s1Ps1∂s2Ps2(x)b(s1, s2)
ds1

s1

ds2

s2

∥∥∥∥
B

=

∥∥∥∥∫∞
0

∫∞
0

t1t2s1s2∂
4
uPu(x)

∣∣∣
u=t1+t2+s1+s2

b(s1, s2)
ds1

s1

ds2

s2

∥∥∥∥
B

6
∫∞
0

∫∞
0

t1t2s1s2∂
4
uPu(x)

∣∣∣
u=t1+t2+s1+s2

‖b(s1, s2)‖B
ds1

s1

ds2

s2

6 ‖b‖
L
q
B

(
ds1
s1

ds2
s2

)
{∫∞

0

∫∞
0

(
t1t2s1s2∂

4
uPu(x)

∣∣∣
u=t1+t2+s1+s2

)q ′
ds1

s1

ds2

s2

} 1
q ′

6 C

{∫∞
0

∫∞
0

(
t1t2s1s2

(t1 + t2 + s1 + s2 + |x|)n+4

)q ′
ds1

s1

ds2

s2

} 1
q ′

6 C
t1t2

(t1 + t2 + |x|)n+2
.

Therefore,

‖K(x)b‖
L
q
B

(
dt1
t1

dt2
t2

) =
(∫∞

0

∫∞
0

‖K(x)b‖qB
dt1

t1

dt2

t2

) 1
q

6 C

(∫∞
0

∫∞
0

(
t1t2

(t1 + t2 + |x|)n+2

)q
dt1

t1

dt2

t2

) 1
q

6
C

|x|n
.

Similarly, we can show that

‖∇K(x)‖ 6 C

|x|n+1
.

Therefore, K is a regular vector-valued kernel and the proof is �nished.

5.5 Some results with Poisson semigroup on Rn

In this section, we devote to study the fractional area function and the fractional g∗λ-function

on Rn in the vector-valued case. Our main goal is to prove the analogous results with

Theorem A and Theorem B related to these two functions on Rn.
Let B be a Banach space, 0 < α < ∞, λ > 1, and 1 < q < ∞. We de�ne the fractional

area function on Rn as

Sqα(f)(x) =

(∫∫
Γ(x)
‖tα∂αt Ptf(y)‖

q
B
dydt

tn+1

) 1
q

, ∀f ∈
⋃

16p6∞L
p
B (Rn) ,
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where Γ(x) =
{
(y, t) ∈ Rn+1

+ : |x− y| < t
}
, and de�ne the fractional g∗λ-function on Rn as

g
q,∗
λ,α(f)(x) =

(∫∫
Rn+1
+

(
t

|x− y|+ t

)λn
‖tα∂αt Ptf(y)‖

q
B
dydt

tn+1

) 1
q

, ∀f ∈
⋃

16p6∞L
p
B (Rn) .

In [9, 10, 21], the authors considered some area square functions in some general setting.

The following proposition demonstrate that the vector-valued fractional area function Sqα
can be treated as an LqB(Γ(0),

dydt
tn+1 )-norm of a Calder�on{Zygmund operator.

Proposition 5.12. Given a Banach space B, 1 < q <∞ and 0 < α <∞, then Sqα(f) can

be expressed as an LqB(Γ(0),
dydt
tn+1 )-norm of a Calder�on{Zygmund operator on Rn with

regular vector-valued kernel.

Proof. Assume that m− 1 6 α < m for some positive integer m. For any f ∈ S(Rn)⊗B, by
changing of variables, we have

Sqα(f)(x) = ‖tα∂αt Ptf(x+ y)‖LqB
(
Γ(0), dydt

tn+1

) =
∥∥∥∥∫

Rn
Ky,t(x, z)f(z)dz

∥∥∥∥
L
q
B

(
Γ(0), dydt

tn+1

) ,
where

Ky,t(x, z) =
�(n+1

2
)

π
n+1
2 �(m− α)

tα
∫∞
0

∂mt

(
t+ s

((t+ s)2 + |x+ y− z|2)
n+1
2

)
sm−α−1ds,

for any x,y, z ∈ Rn, t > 0. Then for every x,y, z ∈ Rn, t > 0 and f ∈ S(Rn)⊗B, the integral∫
Rn Ky,t(x, z)f(z)dz is absolutely convergent because

|Ky,t(x, z)| 6 Ctα
∫∞
0

1

((t+ s)2 + |x+ y− z|2)
n+m
2

sm−α−1ds

6 Ctα
∫∞
0

1

(t+ s+ |x+ y− z|)n+m
sm−α−1ds (5.42)

6 C
1

(t+ |x+ y− z|)n
, x,y, z ∈ Rn, t > 0.

And for any b ∈ B

‖Ky,t(x, z)b‖LqB(Γ(0), dydttn+1 )
=

(∫∫
Γ(0)
‖Ky,t(x, z)b‖qB

dydt

tn+1

) 1
q

6 ‖b‖B
(∫∫

Γ(0)
|Ky,t(x, z)|

q dydt

tn+1

) 1
q

, x, z ∈ Rn. (5.43)

So, by (5.42) and (5.43), we have

‖Ky,t(x, z)‖
L
(
B,LqB(Γ(0),

dydt

tn+1 )
) 6

(∫∫
Γ(0)

|Ky,t(x, z)|
qdydt

tn+1

) 1
q

6 C

(∫∫
Γ(0)

∣∣∣∣ 1

(t+ |x+ y− z|)n

∣∣∣∣q dydttn+1

) 1
q

, x, z ∈ Rn.
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We split the integral in two parts. If x,y, z ∈ Rn and 2|y| < |x − z|, then|x + y − z| >
|x−z|

2
.

Hence(∫∞
0

∫
{
|y|<t,|y|<

|x−z|
2

}
∣∣∣∣ 1

(t+ |x+ y− z|)n

∣∣∣∣q dydttn+1

) 1
q

6 C

∫∞
0

1(
t+

|x−z|
2

)nq dtt
 1
q

6 C
1

|x− z|n
, x, z ∈ Rn, x 6= z.

On the other hand, if 2|y| > |x− z|, then |x− z| < 2t. So(∫∞
0

∫
{
|y|<t,|y|>

|x−z|
2

} 1

(t+ |x+ y− z|)nq
dydt

tn+1

) 1
q

6 C

(∫∞
0

1

(t+ |x− z|)nq
dt

t

) 1
q

6 C
1

|x− z|n
, x, z ∈ Rn, x 6= z.

Then we get

‖Ky,t(x, z)‖
L
(
B,LqB

(
Γ(0), dydt

tn+1

)) 6 C 1

|x− z|n
, x, z ∈ Rn, x 6= z. (5.44)

Next, we observe that, for each i = 1, . . . ,n,

|∂xiKy,t(x, z)| = C

∣∣∣∣∣tα
∫∞
0

∂xi

[
∂mt

(
t+ s(

(t+ s)2 + |x+ y− z|2)
n+1
2

)]
sm−α−1ds

∣∣∣∣∣
6 C

∣∣∣∣tα ∫∞
0

1

(t+ s+ |x+ y− z|)n+m+1
sm−α−1ds

∣∣∣∣ (5.45)

6 C
tα

(t+ |x+ y− z|)n+α+1
, x,y, z ∈ Rn, t > 0.

Then for any b ∈ B

‖∂xiKy,t(x, z)b‖LqB
(
Γ(0), dydt

tn+1

) =
(∫∫

Γ(0)
‖∂xiKy,t(x, z)b‖

q
B
dydt

tn+1

) 1
q

6 ‖b‖B
(∫∫

Γ(0)
|∂xiKy,t(x, z)|

q dydt

tn+1

) 1
q

, x, z ∈ Rn. (5.46)

So, by (5.45) and (5.46), we have

‖∂xiKy,t(x, z)‖L
(
B,LqB

(
Γ(0), dydt

tn+1

)) 6

(∫∫
Γ(0)

|∂xiKy,t(x, z)|
q dydt

tn+1

) 1
q

6 C

(∫∫
Γ(0)

∣∣∣∣ tα

(t+ |x+ y− z|)n+α+1

∣∣∣∣q dydttn+1

) 1
q

= C

(∫∞
0

∫
{|y|<t}

tαq−n−1

(t+ |x+ y− z|)(n+α+1)q
dydt

) 1
q

x, z ∈ Rn.
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Then, proceeding as above, we have

‖∇xKy,t(x, z)‖
L
(
B,LqB(Γ(0),

dydt

tn+1 )
) 6 C 1

|x− z|n+1
, (5.47)

for x, z ∈ Rn, x 6= z. Also, we can prove that

‖∇zKy,t(x, z)‖
L
(
B,LqB(Γ(0),

dydt

tn+1 )
) 6 C 1

|x− z|n+1
, (5.48)

for x, z ∈ Rn, x 6= z, in the same way as the proof of (5.47). Combining (5.44) and (5.47){

(5.48), we know that Ky,t(x, z) is a regular kernel. So we get the proof.

Together with Proposition 5.9, Proposition 5.12 and Remark 5.8, we can immediately get

the following theorem for gqα and Sqα with 1 < q <∞ and 0 < α <∞.

Theorem 5.13. Given a Banach space B, 1 < q < ∞ and 0 < α < ∞, let U be either

the fractional Littlewood{Paley g-function gqα or the fractional area function Sqα, then

the following statements are equivalent:

(i) U maps L∞c,B(Rn) into BMO(Rn).
(ii) U maps H1

B(Rn) into L1(Rn).

(iii) U maps LpB(R
n) into Lp(Rn) for any (or, equivalently, for some) p ∈ (1,∞).

(iv) U maps BMOc,B(Rn) into BMO(Rn).

(v) U maps L1B(Rn) into L1,∞(Rn).
Theorem 5.14. Given a Banach space B and 2 6 q <∞, the following statements are

equivalent:

(i) B is of Lusin cotype q.

(ii) For every (or, equivalently, for some) positive integer n, for every (or, equiva-

lently, for some) p ∈ (1,∞), and for every (or, equivalently, for some) α > 0,

there is a constant C > 0 such that

‖Sqα(f)‖Lp(Rn) 6 C‖f‖LpB(Rn), ∀f ∈ LpB(R
n).

Proof. (i)⇒ (ii). By Fubini's theorem, we have

‖Sqα(f)‖
q
Lq(Rn) =

∫
Rn

∫∞
0

‖tα∂αt Ptf(y)‖
q
B

(∫
Rn
χ|x−y|<tdx

)
dydt

tn+1

=

∫
Rn

∫∞
0

‖tα∂αt Ptf(y)‖
q
B
dydt

t
= ‖gqα(f)‖

q
Lq(Rn). (5.49)
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Since B is of Lusin cotype q, by (5.49) and Theorem A we get

‖Sqα(f)‖Lq(Rn) = ‖gqα(f)‖Lq(Rn) 6 C‖f‖LqB(Rn), ∀f ∈ LqB(R
n).

Hence, by Theorem 5.13

‖Sqα(f)‖Lp(Rn) 6 C‖f‖LpB(Rn), ∀f ∈ LpB(R
n), 1 < p <∞.

(ii)⇒ (i). We only need prove that there exists a constant C such that

gqα(f)(x) 6 CS
q
α(f)(x), ∀x ∈ Rn, (5.50)

for a big enough class of nice functions in LpB(R
n). Then we have ‖gqα(f)‖Lp(Rn) 6 C‖f‖LpB(Rn).

By Theorem A, B is of Lusin cotype q.

Now, let us prove (5.50). We shall follow those ideas in [79]. It su�ces to prove it for

x = 0. Let us denote by B(0, t) the ball in Rn+1 centered at (0, t) and tangent to the

boundary of the cone Γ(0). Then the radius of B(0, t) is
√
2
2
t. Now the partial derivative

∂αt Ptf(x) is, like Ptf(x), harmonic function. Thus by the mean-value theorem, we have

∂αt Ptf(0) =
1

|B(0, t)|

∫∫
B(0,t)

∂αs Psf(x)dxds.

By H�older's inequality,

‖∂αt Ptf(0)‖B 6
1

|B(0, t)|

∫∫
B(0,t)

‖∂αs Psf(x)‖Bdxds

6
1

|B(0, t)|
1
q

(∫∫
B(0,t)

‖∂αs Psf(x)‖
q
Bdxds

) 1
q

.

Integrating this inequality, we obtain∫∞
0

tαq‖∂αt Ptf(0)‖
q
B
dt

t
6 C
∫∞
0

tαq−n−2

∫∫
B(0,t)

‖∂αs Psf(x)‖
q
Bdxdsdt

6 C
∫∫
Γ(0)

(∫c2s
c1s

tαq−n−2dt

)
‖∂αs Psf(x)‖

q
Bdxds 6 C

∫∫
Γ(0)
‖sα∂αs Psf(x)‖

q
B
dxds

sn+1

by using Fubini's theorem and (x, s) ∈ B(0, t) implying c1s 6 t 6 c2s, for two positive

constants c1 and c2. Hence, we get inequality (5.50).

Theorem 5.15. Given a Banach space B and 1 < q 6 2, the following statements are

equivalent:

(i) B is of Lusin type q.
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(ii) For every (or, equivalently, for some) positive integer n, for every (or, equiva-

lently, for some) p ∈ (1,∞), and for every (or, equivalently, for some) α > 0,

there is a constant C > 0 such that

‖f‖LpB(Rn) 6 C ‖S
q
α(f)‖Lp(Rn) , ∀f ∈ LpB(R

n).

Proof. (i)⇒ (ii). Since B is of Lusin type q, by Theorem B and (5.50) we have

‖f‖LpB(Rn) 6 C ‖g
q
α(f)‖Lp(Rn) 6 C ‖S

q
α(f)‖Lp(Rn) .

(ii)⇒ (i). We shall prove ‖Sq
′
α (g)‖Lp ′(Rn) 6 C‖g‖Lp ′B∗(Rn)

. We can choose b ∈ Lp
L
q
B

(
Γ(0), dzdt

tn+1

)(Rn)
of unit norm such that

‖Sq ′α (g)‖Lp ′(Rn) = ‖tα∂αt Ptg(y− z)‖
L
p ′

L
q ′
B (Γ(0), dzdt

tn+1 )
(Rn)

=

∫
Rn

∫
Γ(0)
〈tα∂αt Ptg(y− z),b(y, z, t)〉dzdt

tn+1
dy

=

∫
Rn

∫
Γ(0)

〈 ∫
Rn
tα∂αt Pt(y− z− ~z)g(~z)d~z,b(y, z, t)

〉dzdt
tn+1

dy

=

∫
Rn

〈
g(~z),

∫
Γ(0)

∫
Rn
tα∂αt Pt(y− z− ~z)b(y, z, t)dy

dzdt

tn+1

〉
d~z

6 ‖g‖
L
p ′
B∗(Rn)

‖G(b)‖LpB(Rn) 6 ‖g‖Lp ′B∗(Rn)
‖Sqα(G(b))‖LpB(Rn),

where G(b)(~z) =

∫
Γ(0)

∫
Rn
tα∂αt Pt(y − z − ~z)b(y, z, t)dy

dzdt

tn+1
and in the last inequality we

used the hypothesis. Let us observe that we will have proved the result as soon as we

prove ‖Sqα(G(b))‖LpB(Rn) 6 C‖b‖LpLqB(Γ(0), dzdttn+1 )
(Rn). We shall prove this by following a parallel

argument to the proof of (ii) =⇒ (i) in Theorem B and we also borrow the ideal from [63].

Observe that

Sqα(G(b))(x)

=
( ∫
Γ(0)

∥∥∥sα∂αs Ps( ∫
Γ(0)

∫
Rn
tα∂αt Pt(y− z− ·)b(y, z, t)dydzdt

tn+1

)
(x+ u)

∥∥∥q
B

duds

sn+1

)1/q
=
( ∫
Γ(0)

∥∥∥sα∂αs Ps( ∫
Γ(0)

∫
Rn
tα∂αt Pt(−y+ z+ ·)b(y, z, t)dydzdt

tn+1

)
(x+ u)

∥∥∥q
B

duds

sn+1

)1/q
=
( ∫
Γ(0)

∥∥∥( ∫
Γ(0)

∫
Rn
sα∂αs Pst

α∂αt Pt(−y+ z+ x+ u)b(y, z, t)dy
dzdt

tn+1

)∥∥∥q
B

duds

sn+1

)1/q
=
( ∫
Γ(0)

∥∥∥( ∫
Γ(0)

∫
Rn
sαtα∂2αu Pu

∣∣
u=s+t

(−y+ z+ x+ u)b(y, z, t)dy
dzdt

tn+1

)∥∥∥q
B

duds

sn+1

)1/q
.

It is an easy exercise to prove that

|sαtα∂2αu Pu|u=s+t| 6 C
sαtα

(s+ t+ |x|)n+2α
.
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In this circumstances, it can be proved that the operator

b −→ U(b)(x,u, s) =

∫
Rn

∫
Γ(0)

sαtα∂2αu Pu|u=s+t(−y+ z+ x+ u)b(y, z, t)
dzdt

tn+1
dy

can be handled by using Calder�on{Zygmund techniques and U is bounded on Lp
L
q
B(Γ(0),

duds
sn+1 )

(Rn)

for every 1 < p,q < ∞ and every Banach space B, see the details in [63, Section 2]. The

proof of the theorem ends by observing that Sqα(G(b)) = ‖U(b)‖LqB(Γ(0), dudssn+1 )
.

Now, let us consider the relationship between the geometry properties of the Banach

space B and the fractional g∗λ-function g
q,∗
λ,α.

Theorem 5.16. Given a Banach space B, 2 6 q <∞ and λ > 1, the following statements

are equivalent:

(i) B is of Lusin cotype q.

(ii) For every (or, equivalently, for some) positive integer n, for every (or, equiva-

lently, for some) p ∈ [q,∞), and for every (or, equivalently, for some) α > 0,

there is a constant C > 0 such that∥∥∥gq,∗λ,α(f)∥∥∥
Lp(Rn)

6 C‖f‖LpB(Rn), ∀f ∈ LpB(R
n).

Proof. (i) ⇒ (ii). Since λ > 1, the function (1 + |x|)−λn is integrable and hence for good

enough function h(x) > 0, we have

sup
t>0

∫
Rn

1

tn

( t

t+ |x− y|

)λn
h(y)dy 6 CMh(x), (5.51)

whereMh is the Hardy{Littlewood maximal function of h. By (5.51) and H�older's inequality,

we have∫
Rn

(
g
q,∗
λ,α(f)(x)

)q
h(x)dx =

∫
Rn

∫
Rn

∫∞
0

‖tα∂αt Ptf(y)‖
q
B

( t

t+ |x− y|

)λn dt

tn+1
dyh(x)dx

6 C
∫
Rn

(gqα(f)(y))
qMh(y)dy 6 C ‖gqα(f)‖

q
Lp(Rn) ‖Mh‖L p

p−q (Rn)
.

Here, when p = q, let L
p
p−q (Rn) = L∞ (Rn) . Since M is bounded on Lr (Rn) (1 < r 6 ∞),

we get ∫
Rn

(
g
q,∗
λ,α(f)(x)

)q
h(x)dx 6 C ‖gqα(f)‖

q
Lp(Rn) ‖h‖L p

p−q (Rn)
.

Taking supremum over all h in L
p
p−q (Rn) , we get∥∥∥gq,∗λ,α(f)∥∥∥
Lp(Rn)

6 C ‖gqα(f)‖Lp(Rn) , q 6 p. (5.52)
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Since B is of Lusin cotype q, by Theorem A and (5.52) we get ‖gq,∗λ,α(f)‖Lp(Rn) 6 C‖f‖LpB(Rn).
(ii)⇒ (i). On the domain Γ(x) =

{
(y, t) ∈ Rn+ : |y− x| < t

}
, we have(

t

|x− y|+ t

)λn
>

(
1

2

)λn
.

Hence

Sqα(f)(x) =

(∫∫
Γ(x)
‖tα∂αt Ptf(y)‖

q
B
dydt

tn+1

) 1
q

6

(∫∫
Γ(x)

2λn
(

t

|x− y|+ t

)λn
‖tα∂αt Ptf(y)‖

q
B
dydt

tn+1

) 1
q

6 2
λn
q

(∫∫
Rn+1
+

(
t

|x− y|+ t

)λn
‖tα∂αt Ptf(y)‖

q
B
dydt

tn+1

) 1
q

(5.53)

= 2
λn
q g

q,∗
λ (f)(x), ∀x ∈ Rn.

Hence ‖Sqα(f)‖LpB(Rn) 6 2
λn
q

∥∥∥gq,∗λ,α(f)∥∥∥
L
p
B(Rn)

6 C‖f‖LpB(Rn), for any f ∈ LpB(Rn). Then, by

Theorem 5.14, B is of Lusin cotype q.

Theorem 5.17. Given a Banach space B, 1 < q 6 2 and λ > 1, the following statements

are equivalent:

(i) B is of Lusin type q.

(ii) For every (or, equivalently, for some) positive integer n, for every (or, equiva-

lently, for some) p ∈ [q,∞), and for every (or, equivalently, for some) α > 0,

there is a constant C > 0 such that

‖f‖LpB(Rn) 6 C
∥∥∥gq,∗λ,α(f)∥∥∥

Lp(Rn)
, ∀f ∈ LpB(R

n).

Proof. (i)⇒ (ii). Since B is of Lusin type q, by Theorem 5.15 and (5.53) we get

‖f‖LpB(Rn) 6 C ‖S
q
α(f)‖Lp(Rn) 6 C

∥∥∥gq,∗λ,α(f)∥∥∥
Lp(Rn)

, ∀f ∈ LpB(R
n).

(ii)⇒ (i). By (5.52), we get

‖f‖LpB(Rn) 6 C
∥∥∥gq,∗λ,α(f)∥∥∥

Lp(Rn)
6 C ‖gqα(f)‖Lp(Rn) , ∀f ∈ LpB(R

n).

Then by Theorem B, B is of Lusin type q.
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5.6 Another characterization of Lusin cotype

In this section, we will give another characterization of Lusin cotype q property by almost

everywhere �niteness, see Theorem 5.18. It is worth to mention that the proof of Theorem

5.18 contains some new ideas that can be applied to a huge class of operators. Roughly, the

method used in the proof is the following. If an operator T with a Calder�on{Zygmund kernel

is a.e. pointwise �nite (Tf(x) < ∞) for any function f in Lp0(Rn) and some p0 ∈ [1,∞),

then T is bounded from L1(Rn) into weak-L1(Rn). This philosophy can be translated to the

vector-valued case and with this we can get a characterization of the UMD property of a

Banach space.

5.6.1 Characterization of Lusin cotype by almost everywhere finiteness

On the particular Lebesgue measure space (Rn,dx) , we have the following theorem.

Theorem 5.18. Given a Banach space B, 2 6 q < ∞, the following statements are

equivalent:

(i) B is of Lusin cotype q.

(ii) For every (or, equivalently, for some) p ∈ [1,∞) and for every (or, equivalently,

for some) α > 0, gqα(f)(x) <∞ for a.e. x ∈ Rn, for every f ∈ LpB(Rn).

(iii) For every (or, equivalently, for some) p ∈ [1,∞) and for every (or, equivalently,

for some) α > 0, Sqα(f)(x) <∞ for a.e. x ∈ Rn, for every f ∈ LpB(Rn).

(iv) For every (or, equivalently, for some) p ∈ [q,∞) and for every (or, equivalently,

for some) α > 0, gq,∗λ,α(f)(x) <∞ for a.e. x ∈ Rn, for every f ∈ LpB(Rn).

Proof. By Theorem A, Theorem 5.13, Theorem 5.14 and Theorem 5.16, we have (i) ⇒ (ii),

(i) ⇒ (iii) and (i) ⇒ (iv).

Let us prove the converse. (ii)⇒ (i). Let p0 ∈ (1,∞). Observe that

gqα(f)(x) =

(∫∞
0

‖tα∂αt Ptf(x)‖
q
B
dt

t

) 1
q

= sup
j∈Z+

(∫ j
1
j

‖tα∂αt Ptf(x)‖
q
B
dt

t

) 1
q

= sup
j∈Z+

∥∥T j(f)(x, t)∥∥
L
q
B(R+,

dt
t )

,

where T j(f)(x, t) = tα∂αt Ptf(x)χ{ 1j<t<j}
is the operator which sends B-valued functions to

L
q
B(R+,

dt
t )-valued functions. It is clear that T j is bounded from L

p0
B (Rn) to Lp0

L
q
B(R+,

dt
t )

(Rn).
Indeed, since for any m ∈ Z+, we have

|tm∂mt Pt(x,y)| 6 Cm
t

(t+ |x− y|)n+1
.
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Therefore, for 1
j < t < j, j ∈ Z+, we have

|tm∂mt Pt(x,y)| 6 Cm
j

(1j + |x− y|)n+1
.

Hence

‖tm∂mt Ptf(x)‖B 6 Cm

∫
Rn

j

(1j + |y|)n+1
‖f(x− y)‖B dy =: Lj(‖f‖B)(x).

Since
∥∥Lj(‖f‖B)∥∥Lp(Rn) =

∥∥∥∥∥ j

(1j + |y|)n+1

∥∥∥∥∥
Lp(Rn)

‖f‖LpB(Rn) 6 j
n+2−n

p ‖f‖LpB(Rn) . Therefore,

∥∥T j(f)∥∥
L
p0

L
q
B (R+, dtt )

(Rn) 6

∫
Rn

(∫ j
1
j

∣∣Lj(‖f‖B)(x)∣∣q dtt
)p0/q

dx

1/p0

= Cj
∥∥Lj(‖f‖B)∥∥Lp0(Rn) 6 Cj ‖f‖Lp0B (Rn) .

Let T jN(f)(x) = T
j(f)(x)χBN(x), where BN = B(0,N) is the ball in Rn, for any N > 0. So T jN

is bounded from L
p0
B (Rn) to Lp0

L
q
B(R+,

dt
t )

(BN). Then we have∣∣∣{x ∈ BN :
∥∥∥T jN(f)(x)∥∥∥

L
q
B(R+,

dt
t )
> λ‖f‖Lp0B (Rn)

}∣∣∣
6

1

λp0‖f‖p0
L
p0
B (Rn)

∫
BN

∥∥∥T jN(f)(x)∥∥∥p0
L
q
B(R+,

dt
t )
dx 6

C

λp0
. (5.54)

Let M =
{
f : f is LqB(R+,

dt

t
)-valued and strong measurable on BN

}
. In the �nite mea-

surable space, (BN,M), we introduce the following topology basis. For any ε > 0, let

VBN,ε =
{
f ∈M :

∣∣∣{x ∈ BN :
∥∥∥f(x)∥∥∥

L
q
B(R+,

dt
t )
> ε
}∣∣∣ < ε}.

We denote the topology space on BN by L0
L
q
B(R+,

dt
t )

(BN). By (5.54), we have

lim
λ→∞

∣∣∣{x ∈ BN :
∥∥∥T jN(f)(x)∥∥∥

L
q
B(R+,

dt
t )
> λ‖f‖Lp0B (Rn)

}∣∣∣ = 0.

So for any ε > 0, there exists λε > 0 such that∣∣∣{x ∈ BN :
∥∥∥T jN(f)(x)∥∥∥

L
q
B(R+,

dt
t )
> λ‖f‖Lp0B (Rn)

}∣∣∣ < ε, λ > λε.

Then for ε given above, there exists a constant δε =
ε

λε
, such that for any ‖f‖Lp0B (Rn) < δε

we have ∣∣∣{x ∈ BN :
∥∥∥T jN(f)(x)∥∥∥

L
q
B(R+,

dt
t )
> ε
}∣∣∣

6
∣∣∣{x ∈ BN :

∥∥∥T jN(f)(x)∥∥∥
L
q
B(R+,

dt
t )
> λε‖f‖Lp0B (Rn)

}∣∣∣ < ε.
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This means that T jN(f) ∈ VBN,ε for any f ∈ Lp0B (Rn) with ‖f‖Lp0B (Rn) < δε. Hence T
j
N is

continuous from L
p0
B (Rn) to L0

L
q
B(R+,

dt
t )

(BN). Let UN =
{
T
j
N(f)
}∞
j=1

. Since gqα(f)(x) < ∞
a.e., UN is a well de�ned linear operator from L

p0
B (Rn) to L0

`∞(LqB(R+,
dt
t ))

(BN). As BN has

�nite measure, the space L0
`∞(LqB(R+,

dt
t ))

(BN) is metrizable and complete. Then by the closed

graph theorem, the operator UN is continuous. As gqα,N(f)(x) =
∥∥∥T jN(f)(x)∥∥∥

`∞(LqB(R+,
dt
t ))

,

we get that gqα,N is continuous from L
p0
B (Rn) to L0(BN). Therefore for any ε > 0, there exists

δε > 0 such that

|{x ∈ BN : |gqα(h)(x)| > ε}| < ε, for ‖h‖Lp0B (Rn) < δε.

In particular, for any 0 < r < ε, there exists δr > 0 such that

|{x ∈ BN : |gqα(h)| > r}| < ε, for ‖h‖Lp0B (Rn) < δr.

Now let g be an element of Lp0B (Rn) with ‖g‖Lp0B (Rn) 6= 0 and h =
g

‖g‖Lp0B (Rn)

δr

2
. Then we

have ‖h‖Lp0B (Rn) <
δr

2
and

ε >
∣∣{x ∈ BN : |gqα(h)| > r

}∣∣ > ∣∣∣{x ∈ BN : |gqα(h)| > ε
}∣∣∣

=
∣∣∣{x ∈ BN : |gqα(g)| >

2ε ‖g‖Lp0B (Rn)

δr

}∣∣∣.
Let µε =

2ε

δr
. Then when µ > µε, we have

∣∣∣{x ∈ BN : |gqα(g)| > µ ‖g‖Lp0B (Rn)

}∣∣∣ 6 ∣∣∣{x ∈ BN : |gqα(g)| >
2ε ‖g‖Lp0B (Rn)

δr

}∣∣∣ < ε. (5.55)

Let f ∈ L1B(Rn) and λ > 0, we perform the Calder�on{Zygmund decomposition as the sum

f = g+ b such that ‖g‖L1B(Rn) 6 ‖f‖L1B(Rn) and ‖g‖L∞B (Rn) 6 2λ. Then we have

‖g‖Lp0B (Rn) 6 (2λ)
p0−1

p0 ‖f‖
1
p0

L1B(Rn)
(5.56)

and ∣∣∣{x ∈ Rn :
∣∣gqα(b)(x)∣∣ > λ

2

}∣∣∣ 6 C

λ
‖f‖L1B(Rn) . (5.57)

Indeed, (5.56) is trivial from the estimates of g. For (5.57), we observe that by Proposition

5.9, gqα(f) can be expressed as an LqB(R+,
dt
t )-norm of a Calder�on{Zygmund operator with

a regular kernel. In these circumstances, it can be observed that the boundedness of the
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measure of the set appearing in (5.57) depends only on the kernel of the operator and not

on the boundedness of the operator, see [24]. Therefore, by (5.56) and (5.57), we have∣∣∣{x ∈ BN :
∣∣∣gqα(f)(x)∣∣∣ > λ}∣∣∣ 6 ∣∣∣{x ∈ BN :

∣∣∣gqα(g)(x)∣∣∣ > λ

2

}∣∣∣+ ∣∣∣{x ∈ Rn :
∣∣∣gqα(b)(x)∣∣∣ > λ

2

}∣∣∣
=
∣∣∣{x ∈ BN :

∣∣∣gqα(g)(x)∣∣∣ > λ

2 ‖g‖Lp0B (Rn)
‖g‖Lp0B (Rn)

}∣∣∣
+
∣∣∣{x ∈ Rn : |gqα(b)(x)| >

λ

2

}∣∣∣
6
∣∣∣{x ∈ BN : |gqα(g)(x)| >

λ
1
p0

2
2− 1

p0 ‖f‖
1
p0

L1B(Rn)

‖g‖Lp0B (Rn)

}∣∣∣+ C

λ
‖f‖L1B(Rn)

=
∣∣∣{x ∈ BN :

∣∣∣gqα,N(g)(x)∣∣∣ > λ
1
p0

2
2− 1

p0 ‖f‖
1
p0

L1B(Rn)

‖g‖Lp0B (Rn)

}∣∣∣+ C

λ
‖f‖L1B(Rn) .

Now, given ε > 0 we perform the Calder�on-Zygmund decomposition with λ such that λ
1
p0 >

2
2− 1

p0 ‖f‖
1
p0

L1B(Rn)
µε. Then, by (5.55), we have

|{x ∈ BN : |gqα(f)(x)| > λ}| 6
∣∣∣{x ∈ BN : |gqα(g)(x)| > µε‖g‖Lp0B (Rn)

}∣∣∣+ C

λ
‖f‖L1B(Rn)

6 ε+
C

λ
‖f‖L1B(Rn) .

This clearly implies gqα(f)(x) < ∞ a.e. x ∈ Rn, for any f ∈ L1B(Rn). We apply Theorem 7.1

in [57] and get the result.

To prove that (iii)⇒ (i), we can use the same argument as above but with a very small

modi�cation. We only need note that

Sqα(f)(x) =

(∫∫
Γ(x)
‖tα∂αt Ptf(y)‖

q
B
dydt

tn+1

) 1
q

=

(∫∞
0

∫
|y−x|<t

‖tα∂αt Ptf(y)‖
q
B
dy

tn
dt

t

) 1
q

= sup
j∈Z+

(∫ j
1
j

∫
|y−x|<t

‖tα∂αt Ptf(y)‖
q
B
dy

tn
dt

t

) 1
q

= sup
j∈Z+

∥∥T j(f)(x, t)∥∥
L
q
B(R+,

dt
t )

,

where T j(f)(x, t) =

∫
|y−x|<t

‖tα∂αt Ptf(y)‖
q
B
dy

tn
χ{ 1j<t<j}

is the operator which sends B-

valued functions to Lq(R+,
dt
t )-valued functions. And T j is bounded from L

p0
B (Rn) to

L
p0
Lq(R+,

dt
t )

(Rn), 1 < p0 <∞ also. Now we can continue the proof as in the case of gqα.

(iv)⇒ (i). Assuming that gq,∗λ,α(f)(x) <∞ a.e. x ∈ Rn, by (5.53) we know that Sqα(f)(x) 6
Cg
q,∗
λ,α(f)(x) <∞ a.e. x ∈ Rn. Then by (iii)⇒ (i), B is of Lusin cotype q.
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5.6.2 UMD spaces

By using the method used in the proof of Theorem 5.18, we can get a characterization of

UMD spaces as follows. For some information about the Littlewood-Paley-Stein theory for

semigroups in UMD spaces, see [46, 47].

Theorem 5.19. Given a Banach space B, the following statements are equivalent:

(i) B is UMD.

(ii) For every (or, equivalently, for some) p ∈ [1,∞),

lim
ε→0+

∫
|x−y|>ε

f(y)

x− y
dy exists a.e. x ∈ R, for every f ∈ LpB(R).

Proof. Clearly it is enough to prove (ii) ⇒ (i). Let 1 < p0 < ∞ and assume that

lim
ε→0+

∫
|x−y|>ε

f(y)

x− y
dy exists a.e. x ∈ R for any f ∈ Lp0B (R). Then the maximal operator

H∗f(x) = sup
ε>0

∥∥∥ ∫
|x−y|>ε

f(y)

x− y
dy
∥∥∥
B
is �nite a.e. x ∈ R. Indeed, given ε0 = 1, there exists

δ1 > 0 such that

‖Hεf(x) − F(x)‖B < 1, for all ε < ε0,

where F(x) = lim
ε→0+

∫
|x−y|>ε

f(y)

x− y
dy. So

‖Hεf(x)‖B 6 ‖Hεf(x) − F(x)‖B + ‖F(x)‖B < 1+ ‖F(x)‖B .

If ε > ε0, we have

‖Hεf(x)‖B =

∥∥∥∥∫
|x−y|>ε

f(y)

x− y
dy

∥∥∥∥
B
6

(∫
|x−y|>ε

‖f(y)‖p0B dy

) 1
p0

(∫
|x−y|>ε

1

|x− y|p
′
0 dy

) 1

p ′
0

6 ‖f‖Lp0B (R)

(∫
|x−y|>ε0

1

|x− y|p
′
0 dy

) 1

p ′
0

= ‖f‖Lp0B (R)
ε
1−p ′0
0

p ′0 − 1
.

So H∗f(x) = sup
ε
Hεf(x) is �nite a.e. x ∈ R. Our idea is to apply the method developed

in the proof of (ii) ⇒ (i) of Theorem C. However, we cannot apply it directly since H∗

can't be expressed as a norm of a Calder�on{Zygmund operator with a regular kernel. Let

ϕ be a smooth function such that χ[ 3
2
,∞) 6 ϕ 6 χ[ 1

2
,∞). Consider the operator H∗ϕf(x) =

sup
ε>0

∥∥∥ ∫
R
ϕ
( |x− y|

ε

)
f(y)dy

∥∥∥
B
. It can be easily checked that

|H∗ϕf(x) −H
∗f(x)| 6 CM(‖f‖B)(x), a.e. x ∈ R, (5.58)
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where M denotes the Hardy{Littlewood maximal function. Then

H∗ϕf(x) = sup
ε>0

∥∥∥∥∫
Rn
ϕ

(
|x− y|

ε

)
f(y)

|x− y|
dy

∥∥∥∥
B

6 sup
ε>0

∥∥∥∥∫
Rn

(
ϕ

(
|x− y|

ε

)
− χ[ 3

2
,∞)

(
|x− y|

ε

))
f(y)

|x− y|
dy

∥∥∥∥
B

+ sup
ε>0

∥∥∥∥∫
Rn
χ[ 3

2
,∞)

(
|x− y|

ε

)
f(y)

|x− y|
dy

∥∥∥∥
B

6 sup
ε>0

∥∥∥∥∫
Rn
χ( 12 ,

3
2)

(
|x− y|

ε

)
f(y)

|x− y|
dy

∥∥∥∥
B
+ sup
ε>0

∥∥∥∥∫
Rn
χ[ 3

2
,∞)

(
|x− y|

ε

)
f(y)

|x− y|
dy

∥∥∥∥
B

6 sup
ε>0

C

ε

∫
{y∈Rn}:|x−y|< 3

2
ε

‖f‖B dy+ sup
ε>0

∥∥∥∥∫
Rn
χ[ 3

2
,∞)

(
|x− y|

ε

)
f(y)

|x− y|
dy

∥∥∥∥
B

= CM (‖f‖B) (x) +H
∗f(x).

Therefore, the operator H∗ϕf(x) <∞, a.e. x ∈ R. Observe that this operator can be expressed

as

H∗ϕf(x) =
∥∥∥{ ∫

R
ϕ
( |x− y|

ε

)
f(y)dy

}
ε

∥∥∥
L∞B .

It is well known that the last operator can be viewed as the L∞B -norm of a Calder�on{Zygmund

operator with regular kernel. Now we are in the situation of the proof of part (ii) ⇒ (i) of

Theorem C and with some obvious changes we get

lim
λ→∞ |{x ∈ BN : |H∗ϕ(f)(x)| > λ}| = 0, ∀f ∈ L1B(R), N > 0.

In particular, this implies that the operator H∗ϕ maps L1B(R) into L0(R). By (5.58) and the

fact that M maps L1B(R) into weak-L1(R) for every Banach space B, H∗ maps L1B(R) into

L0(R). Now we can apply the following lemma.

Lemma 5.20. [57, Lemma 7.3] Let B be a Banach space. Then every translation and

dilation invariant continuous sublinear operator T : L1B(Rn) → L0(Rn) is of weak type

(1, 1).

Then we get H∗ : L1B(R) → weak-L1(R) which implies that the Banach space B is UMD.

Remark 5.21. The above thoughts can be apply to the following general situation.

Given two Banach spaces B1, B2 and 1 6 p < ∞, let K(x,y) ∈ L(B1,B2) be a regular

Calder�on{Zygmund kernel. De�ne Tεf(x) =

∫
|x−y|>ε

K(x,y)f(y)dy and

Sf(x) = lim
ε→0+

Tεf(x), x ∈ Rn.

Then the following statements are equivalent:
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� For any p ∈ (1,∞), the operator S maps LpB1
(Rn) into LpB2

(Rn).

� For any (or, equivalently, for some) p ∈ (1,∞), the maximal operator S∗f(x) =

sup
ε>0

‖Tεf(x)‖B2
<∞, a.e. x ∈ Rn for every f ∈ LpB1

(Rn).

In other words, the following statement

\There exists a number p0 ∈ [1,∞) such that ‖Tf(x)‖B2
<∞ a.e x ∈ Rn, for every f ∈ Lp0B1

(Rn)."
could be added to the list of those statements in Remark 5.8, after an appropriated description

of T .
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