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Abstract

The present thesis belongs to the field of theoretical condensed matter physics. Its main objective is

the analysis of electronic properties, electronic transport and spin dynamics in nanoscopic systems

which are exposed to either magnetic or electric time-dependent fields.

The thesis is divided into two parts: the first part concentrates on electronic transport and spin

dynamics through different configurations of a triple quantum dot that is exposed to time-dependent

magnetic fields. In the second part the influence of a time-dependent electric field on the electronic prop-

erties of graphene is studied.

The experimental and theoretical study of electronic transport through quantum dots and arrays

of quantum dots started more than twenty years ago, when the first measurements on mesoscopic

semiconductor systems showed single electron charging effects. But not until a few years ago, has the

triple quantum dot (TQD) – an array of three tunnel-coupled semiconductor quantum dots, either in

triangular or linear arrangement – been fabricated experimentally. This experimental realization has

triggered off a plethora of theoretical works exploring the new physics that a TQD offers as compared

to the double quantum dot (DQD).

The first part of this thesis starts with an introduction to important properties and features of trans-

port through arrays of quantum dots (chapter 1), which serve as a basis for the following chapters.

After a short overview of the most important properties of a quantum dot special attention is paid

to spin effects in transport through quantum dot arrays, such as the spin blockade phenomenon. The

interaction of the electron spin with its surroundings in a semiconductor quantum dot – the hyperfine

interaction – is shortly explained because of its importance in transport in the spin blockade regime

and in the field of quantum information. The effect of time-dependent magnetic fields on the single

electron spin in quantum dots has been studied experimentally, revealing the possibility to coherently

control and manipulate the electron – an intensely persecuted goal in the field of quantum informa-

tion technology. Several experimental ways have been proposed of inducing such coherent rotations

of the electron spin in quantum dots, out of which a few are explained. Finally, the TQD is presented,

and an overview of the most important experimental and theoretical works is given.

The following chapter 2 is dedicated to the technique that has been used for all calculations through-

out the first part of this thesis: the equation of motion for the reduced density matrix. Besides other

techniques such as the non-equilibrium Green’s function technique, transport through arrays of quan-

tum dots is well described by the equations of motion of the reduced density matrix. The system of

interest – in this case a TQD – is connected to a much bigger system – the leads –, whose degrees of

freedom are traced out, so that one is left with a system of equations for the elements of the density

matrix of the TQD. This technique allows one to calculate both the transport through the quantum
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dot array and the dynamics of electron and spin inside the system. The equations of motion for the

reduced density matrix are derived, and several example calculations are performed for the occupa-

tion probabilities of the closed as well as of the open TQD. The current is calculated for one electron

in a triangular and linear TQD, which simultaneously serves as a basis to understand the results of

the subsequent chapters.

The next three chapters present the results that have been obtained in this thesis regarding transport

through quantum dots in time-dependent magnetic fields. In chapter 3 the focus of attention is on trans-

port through a triangular TQD exposed to crossed dc and ac magnetic fields. The dc magnetic field

introduces an energy difference between the spin-up and spin-down state of the electron, the Zeeman

splitting. The ac magnetic field rotates the electron spin, if its frequency is resonant with the Zeeman

splitting (electron spin resonance). First we concentrate on transport for only one electron. Tunneling

interference due to the triangular arrangement of the TQD leads to an electronic version of the so-

called coherent population trapping phenomenon, which is known from atomic optics. The electron

in the dot delocalizes over two of the three dots that are not connected to the drain, so that current

through the TQD is blocked. The combination of this interference phenomenon together with the

coherent rotation of the electron spin due to the ac magnetic field leads to single-electron spin rotations

that are decoupled from the decoherence introduced by the leads (up to first order in tunneling to the

leads). We then introduce a second electron into the TQD in such a way that the system is operated

in the spin blockade regime. The second electron therefore induces spin correlations between the two

electrons, and new effects can be observed: the combination of coherent trapping, – which also occurs

for two electrons –, spin blockade and ac magnetic fields can be used to control spin blockade, i.e.

both lift it and induce it again.

Chapter 4 exposes the results for spin-polarized currents through both DQDs and linear TQDs

induced by dc and ac magnetic fields. This research has been motivated by an experiment, where

current in a DQD exposed to a dc magnetic field and with one electron was measured. There it

was found that a considerable difference in the Zeeman splittings of the two dots leads to maximal

current, when none of the spin-split levels are aligned, but rather symmetrically placed around each

other, whereas, when two levels are aligned, the current suffers a spin bottleneck situation. In this

chapter we show that by additionally applying an ac magnetic field to either a DQD or a TQD

strongly spin-polarized current can be achieved, and the quantum dot arrays can work as spin-filter

or even spin-inverter.

The first part of this thesis ends with chapter 5, which shows the results that have been obtained

in order to explain experiments performed by the group of Prof. A. Sachrajda (NRC, Canada). In a

specific configuration of a linear TQD, where both the left and right dot are connected to leads and

in each of them an electron is confined electrostatically, current has been measured as a function of

two gate voltages applied to the left and right dot, while the center dot is kept at a constant gate

voltage. For both bias directions it has been found that the current is blocked by spin blockade, thus

exhibiting bipolar spin blockade. Furthermore, a detailed analysis of the eigenstates of the system has

shown that spin blockade is lifted via eigenstates in which an electron is delocalized between the two

extremes, without passing through the center dot.
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The second part of the thesis studies the electronic properties of graphene irradiated by time-dependent

electric fields. Although in the few years since the first ground-breaking experimental results, graphene’s

electronic, magnetic, optic, thermic and mechanic properties have been investigated to a large extent,

its behavior when exposed to time-dependent fields is a relatively new area, and only few experiments

have been performed. On the theoretical side several works exist that suggest that time-dependent

fields applied to graphene can reveal new and interesting physics. The research done in this part of

the present thesis focuses on the calculation of the dynamical polarizability of irradiated graphene,

which gives information on the electron-electron interactions and how they change by applying a

time-dependent electric field.

The most important aspects about pristine graphene are summarized in the introductory chapter 6.

The following chapter 7 is dedicated to the analysis of single and multiparticle properties of irradiated

graphene. In order to treat the time-dependence of the ac field, Floquet theory is introduced and,

subsequently, applied to the Hamiltonian for graphene in both a linearly and a circularly polarized

ac electric field. For both types of polarization we show analytical approximations, which allow to

capture the main physics regarding weak field intensity, i.e. when only absorption processes of up to

one photon are important. These approximations are then used to calculate the quasienergy spectrum

and the generalized density of states for both field polarizations. Finally, the dynamical polarizability

is calculated for the case of a circularly polarized field. It is shown that the presence of the ac field

modifies both single and multiparticle properties of graphene by inducing dynamical gaps in the

density of states on the one hand, and inducing a collective excitation – a plasmon – on the other

hand, even for undoped graphene. This is in strong contrast to pristine graphene where a plasmon

is only found at finite doping. Thus it becomes clear that by applying a time-dependent electric field

to graphene its electronic properties can be manipulated to a great extent, which can be useful for

future applications.
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Resumen

La presente tesis pertenece al campo de la física teórica de la materia condensada. Su objetivo prin-

cipal es el análisis de las propiedades electrónicas, el transporte electrónico y la dinámica del espín

en sistemas nanoscópicos que están expuestos a campos magnéticos o eléctricos dependientes del

tiempo.

La tesis está dividida en dos partes: la primera parte se centra en el transporte electrónico a través

de un triple punto cuántico bajo la influencia de un campo magnético dependiente del tiempo. En la segunda

parte se estudian las propiedades electrónicas de grafeno irradiado por un campo eléctrico dependiente

del tiempo.

El estudio experimental y teórico del transporte electrónico a través de puntos cuánticos empezó

hace más de veinte años, cuando se midieron por primera vez efectos de una única carga electrónica

en sistemas mesoscópicos de semiconductores. Sin embargo, la primera realización experimental de

un triple punto cuántico (TQD) data de hace un par de años. Un TQD es una formación de tres puntos

cuánticos de semiconductores acoplados por túnel, en configuración triangular o lineal. A la vez que

estos experimentos, se han publicado numerosos trabajos teóricos en los que se ha ido explorando la

nueva física que ofrece un triple punto cuántico en contraste con la de un doble punto cuántico.

En el capítulo 1 de esta primera parte, se presenta una introducción al transporte electrónico a

través de puntos cuánticos, donde se discuten las propiedades más importantes para fundamentar el

contenido de los capítulos consecutivos. En particular, se tratan los efectos del espín en el transporte,

como por ejemplo el efecto llamado bloqueo de espín. Debido a su importancia en el campo de

información cuántica y su papel en el transporte en el régimen de bloqueo de espín, se explica

brevemente la interacción del espín electrónico con los espines nucleares en su entorno, la interacción

híperfina. El efecto de un campo magnético dependiente del tiempo en el espín electrónico en un

punto cuántico se ha estudiado experimentalmente, revelando la posibilidad de controlar y manipular

coherentemente el espín – una meta de enorme relevancia dentro del área de la información cuántica.

Se han propuesto varios métodos experimentales para inducir tales rotaciones coherentes, de los

cuales algunos se analizan en detalle. Finalmente se describen las diferentes configuraciones de un

TQD y se comentan los trabajos teóricos y experimentals más relevantes realizados hasta la fecha

presente.

El siguiente capítulo 2 está dedicado a la técnica que se a utilizado a lo largo de esta primera parte

de la tesis para calcular el transporte electrónico en puntos cuánticos: la teoría de la matriz densidad

en sistemas abiertos. Esta técnica permite estudiar la dinámica de sistemas cuánticos acoplados a

reservorios externos, siendo por lo tanto la herramienta natural para estudiar transporte electrónico

en puntos cuánticos. En este capítulo, se muestra la derivación de las ecuaciones de movimiento de
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los elementos de la matriz densidad para un array de puntos cuánticos acoplados a contactos, y se

desarrollan varios cálculos para un TQD cerrado (es decir, sin contactos) y abierto. Estos cálculos a la

vez sirven de base para entender los resultados de los siguientes capítulos.

Los siguientes tres capítulos presentan los resultados obtenidos en relación con el transporte elec-

trónico en puntos cuánticos en presencia de campos magnéticos dependientes del tiempo. En el capítulo 3 se

calcula el transporte a través de un TQD triangular, que está sometido a campos magnéticos tanto es-

táticos como dependientes del tiempo. El campo estático induce un desdoblamiento entre los estados

spin-up y spin-down del electrón (desdoblamiento Zeeman), entre los cuales el campo dependiente

del tiempo induce rotaciones si su frecuencia está en resonancia con la diferencia energética. Primero

se trata el caso de un solo electrón dentro del TQD, en el que, debido a un efecto llamado atrapamiento

coherente de población, el electrón queda atrapado dentro del TQD bajo ciertas condiciones. En esta

situación, se inducen rotaciones del espín del electrón que no se ven afectadas por la decoherencia

inducida por los contactos (en primer orden de túnel a los contactos). A continuación, se introduce

un segundo electrón en el TQD, de manera que la corriente se puede bloquear por medio de bloqueo

de espín. El segundo electrón, por lo tanto, introduce correlaciones de espín entre los dos electrónes,

y se pueden observar nuevos efectos con respecto al caso de sólo un electrón: la combinación de

atrapamiento coherente, – el cual también ocurre con dos electrónes presentes, aunque de forma un

poco diferente –, bloqueo de espín y campos magnéticos dependientes del tiempo, se puede utilizar

para controlar el bloqueo de espín, es decir, tanto romperlo como inducirlo.

El siguiente capítulo 4 presenta los resultados para corrientes polarizadas de espín a través de

dobles puntos cuánticos (DQD) y TQDs, inducidos por campos magnéticos estáticos y dependientes

del tiempo. Este trabajo está motivado por la observación experimental de que la corriente a través de

un DQD con sólo un electrón en un campo magnético estático. Experimentalmente se ha encontrado

que, debido a la presencia de una diferencia considerable de desdoblamiento Zeeman entre los dos

puntos cuánticos, – fabricados a partir de materiales distintos y por lo tanto con factores giromag-

néticos distintos –, la corriente es máxima cuando ninguno de los niveles está alineado con el otro, y

sufre un “atascamiento” cuando se alinean niveles del mismo espín. Se analiza que en esa situación

un campo magnético dependiente del tiempo puede inducir una corriente altamente polarizada de es-

pín, tanto en un DQD como en un TQD. Adicionalmente, se demuestra que un TQD puede funcionar

como convertidor del espín.

La primera parte de la tesis termina con el capítulo 5, en el que se presentan los resultados

obtenidos para explicar un experimento que se llevó a cabo en el grupo del Profesor A. Sachrajda

(NRC, Canada). En este experimento, se midió la corriente a través de un TQD lineal en una configu-

ración específica, en la que los dos puntos extremos están conectados a contactos, habiendo confinado

un electrón en cada uno de los puntos cuánticos aplicando un voltaje electrostático. La corriente se

bloquea debido a bloqueo de espín en dos direcciones opuestas de un voltaje externo, es decir, el

TQD demuestra un bloqueo bipolar de espín. Adicionalmente, se muestra que el proceso de romper el

bloqueo de espín ocurre a través de unos autoestados en los que un electrón está deslocalizado entre

los dos extremos del TQD, sin pasar por el punto central.

La segunda parte de la presente tesis trata del estudio de las propiedades electrónicas de grafeno
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irradiado por un campo eléctrico dependiente del tiempo. Aunque en los años inmediatamente posteriores

a los primeros experimentos las propiedades electrónicas, magnéticas, ópticas, térmicas y mecánicas

de grafeno se han estudiado con mucha intensidad, su comportamiento bajo la influencia de campos

externos dependientes del tiempo es un campo relativamente nuevo, y pocos experimentos se han

hecho hasta ahora. Desde el punto de vista teórico, se han publicado varios trabajos que sugieren que

nuevos e interesantes efectos pueden ocurrir debido al efecto de campos dependientes del tiempo. La

investigación en esta parte de la presente tesis se centra en el cálculo de la polarizabilidad dinámica

de grafeno, y en qué manera cambian las interacciones electrón-electrón al aplicar un campo eléctrico

dependiente del tiempo.

Los aspectos más importantes del grafeno libre están resumidos en el capítulo introductorio 6.

El siguiente capítulo está dedicado al análisis de las propiedades electrónicas de grafeno irradiado

por campos eléctricos dependientes del tiempo. Para tratar la dependencia del tiempo del campo

externo, se introduce la teoría de Floquet, con la que se analiza el Hamiltoniano de grafeno para

un campo externo tanto circular como linealmente polarizado. A continuación, se desarrollan varias

aproximaciones analíticas que permiten captar la física para campos de intensidad débil, es decir los

casos en los que sólo procesos de hasta un fotón juegan un papel relevante. Estas aproximaciones

se utilizan entonces para calcular el espectro de cuasienergías y la densidad de estados, para ambas

polarizaciones. Finalmente, se calcula la polarizabilidad dinámica para el caso de un campo circular-

mente polarizado. Se demuestra que la presencia de un campo dependiente del tiempo modifica las

propiedades electrónicas tanto de excitaciones monopartícula como las colectivas, induciendo bandas

prohibidas en la densidad de estados por un lado, y por otro lado induciendo un plasmón incluso

para el grafeno sin dopar, donde en ausencia de un campo externo un plasmón de larga vida sólo ex-

iste cuando hay un dopaje finito. Así se muestra que con un campo eléctrico dependiente del tiempo

se pueden manipular en gran medida las propiedades electrónicas del grafeno, lo cual podría tener

un fuerte impacto en futuras aplicaciones electrónicas.
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Part I.

Electronic transport and spin dynamics

in lateral triple quantum dots
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1. Transport through arrays of quantum dots

1.1. Introduction

Quantum dots are the solid state counterpart to real atoms [1, 2]. Due to strong confinement of

electrons in all three directions in a solid state material, their energy spectrum is discrete with a

level spacing big enough to be observed experimentally under certain conditions. Quantum dots

have proven to be an excellent testing ground for atomic physics, owing to the fact that they can quite

easily be manipulated by attaching leads or applying gates or external fields [3], in a regime that is not

accessible in real atoms [4]. In electronic transport measurements in quantum dots the discrete nature

of the electron charge has been displayed beautifully in conductance oscillations and the so-called

Coulomb diamonds [5, 6], see Fig. 1.1. The number of free electrons in a quantum dot can routinely

Figure 1.1.: Coulomb blockade diamonds in quantum dots. a) One of the first measurements of Coulomb block-

ade in a vertical few-electron InGaAs quantum dot. The numbers within the white rhombs stand

for the number of electrons in the quantum dot. Figure taken from ref. [4]. b) Coulomb blockade

diamonds in a graphene quantum dot. Figure taken from ref. [7].

be controlled and lowered down to two, one or even zero electrons [8, 9]. Single electron transport

on the nanoscale has been extended successfully from semiconductor quantum dots – made of III-V

semiconductors such as GaAs [8, 9] or II-VI semiconductors such as CdSe/ZnSe [10, 11] – to other

materials: metallic nanoparticles [12, 13], carbon-based structures such as carbon nanotube quantum

dots [14–17] or graphene quantum dots [7, 18–20], and organic materials, the last one having opened

a whole new branch of research known as molecular electronics [21–23].

By confining single electrons, naturally one defines a two-level system out of the spin-up and spin-

down component of the electron spin. It has become a widely pursued and at least partially achieved
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1. Transport through arrays of quantum dots

goal to individually address and manipulate the single electron spin in a quantum dot [24–26], an

effort motivated by the spin’s potential role in a quantum computer [27]. However, difficulties arise

with this task due to the spin-orbit coupling or the hyperfine interaction, i.e. the coupling of the

electron spin to the spin of the nuclei in the host material [28–31]. These spin interactions, however,

although they might be considered a disadvantage for perturbing the coherence of the electron spin

and destroying its phase, can also be exploited in an advantageous way [32–34].

A natural step towards creating quantum networks for a future application in quantum information

processing is to couple two or more quantum dots in an array to get so-called artificial molecules [35–

38]. Double quantum dots have been investigated and are still being investigated to a great extent,

as they have revealed new intriguing transport phenomena like for instance the spin blockade due

to the Pauli exclusion principle, and current rectification due to spin blockade [39, 40]. They can also

provide more insight into entanglement between spins and therefore be candidates for realizing a

qubit. It seems only natural to extend the double quantum dot to the next level of complexity, the

triple quantum dot. This extension is, however, far from being trivial, both from an experimental

and theoretical point of view. Fundamentally new physics can occur in a three-level system such as

an effect called coherent population trapping, – known from atomic optics for a long time [41] –, or

spin-busing [42]. Another striking example of the non-triviality of a three-level system are three spins

arranged in a triangle, where an antiferromagnetic ground state clearly cannot exist (frustration).

The first part of the present thesis is dedicated to the theoretical investigation of a few specific

problems concerning electronic transport and spin dynamics in different configurations of a lateral

semiconductor triple quantum dot array. In all problems, we take into account external magnetic dc

fields that split the electron’s degenerate spin-up and spin-down level. In several cases, single spin

manipulation is considered by applying an ac magnetic field that rotates the electron spin under

resonance conditions. The hyperfine interaction is taken into account in some problems in a phe-

nomenological way in order to mimic its effect on spin dynamics.

In the next sections, basic properties of quantum dots and their fabrication will be summarized,

as well as transport features of single and double quantum dot structures. Special emphasis will be

placed on the spin blockade regime in transport through quantum dot arrays, in which several of

the problems considered are set. Finally, the triple quantum dot array will be presented, with a short

summary of former experimental and theoretical achievements in this system.

1.2. Quantum dots

In order to understand the electronic properties of a triple quantum dot, one must naturally first

look at its smallest building block, the single quantum dot. In the following paragraphs, we will

therefore start with an introduction to the properties of single and subsequently of double quantum

dots, which will serve as a basis for the triple quantum dot that is treated later on.

A semiconductor quantum dot is an artificially made nanostructure of only a few tens of nm size.

Depending on the way they are fabricated, one can distinguish different types of semiconductor
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1.2. Quantum dots

Figure 1.2.: Lateral and vertical quantum dot. a) Schematic view of a lateral quantum dot defined in a 2DEG

(light gray). Depleted region in white, negative voltages applied to metal gate electrodes in dark

gray. Ohmic contacts (light gray columns) to the 2DEG reservoirs. Figure taken from ref. [44].

b) Scanning electron micrograph of a lateral few-electron single quantum dot. The white dot

indicates the location of the QD, and the white squares display Ohmic contact. Figure taken

from ref. [9]. c) Schematic diagram of a vertical quantum dot, where the dot is located between

the two AlGaAs tunnel barriers. The dashed curves indicate that a negative voltage applied

to the side gate effectively reduces the diameter of the dot by squeezing it. Figure taken from

ref. [3]. d) Scanning electron micrograph of a vertical circular quantum dot pillar, with a width

of about 0.5¯m. Figure taken from ref. [3].

quantum dots: lateral, vertical, and self-assembled quantum dots1. Lateral semiconductor quantum

dots, see Fig. 1.2 a) and b), are fabricated from the two-dimensional electron gas (2DEG) formed at

a heterostructure interface of GaAs and AlGaAs. An electric field created by applying negative gate

voltages to the heterostructure is used to locally deplete the 2DEG. The depleted regions can then

be controlled through gate structures of only tens of nanometers size that are designed by electron

beam lithography. Tunnel barriers to the 2DEG outside of the confined region are defined by applying

metallic surface gates. With an electron mobility in the 2DEG as large as 1000 m2/Vs and a relatively

low density of n ≈ (1 − 5) × 1015 m−2, the mean free path of the electrons is several orders of

magnitude bigger than the system dimensions, 100 ¯m, and the Fermi wavelength λF ≈ 80− 30 nm is

roughly two orders of magnitude larger than in metals, due to the low density [45]. The term “lateral”

expresses that the current through the quantum dot flows in the 2DEG plane to which the electrons

are confined. In contrast, in a vertical quantum dot, the current flows in the direction perpendicular to

the plane. The pillar where the vertical quantum dot is confined (see Fig. 1.2 c) and d) is etched from

a semiconductor double-barrier heterostructure, typically made of GaAs and AlGaAs, and a metal

gate electrode is deposited around the pillar. This double-barrier structure confines the electrons in the

vertical direction, whereas the surface potential together with the gate potential provides confinement

in the lateral x- and y-directions. In a central well of InGaAs between the double-barrier structure,

the dot is formed with a thickness of about 12 nm [3].

A quantum dot contains roughly a million atoms and the same number of electrons [45]. The

majority of the electrons, however, is tightly bound to the nuclei in the host material, and the number

1Self-assembled quantum dots form spontaneously in the process of epitaxial growth. They have favorable properties for elec-

tronic and optoelectronic device applications, are, however, not so well controllable with regard to placing gate electrodes,

and we will not describe them in more detail here. For a short introduction, see ref. [43].
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1. Transport through arrays of quantum dots

of free electrons in a quantum dot can be controlled to as low as zero electrons. This control was

achieved quite early in vertical quantum dots [3]. In lateral quantum dots it proved more difficult

to reduce the number of electrons without too much affecting the tunnel barriers: by applying more

negative voltages that deplete the quantum dot, the current through the current barriers can become

unmeasurably small. This disadvantage can, however, be compensated by an appropriate design of

the surface gates. The first lateral few-electron quantum dots were fabricated by Ciorga et al. in a

GaAs/AlGaAs heterostructure [9]. All calculations done in this thesis are assumed to be valid for

lateral few-electron quantum dots.

1.3. Transport through quantum dots

Electron transport through quantum dots is governed by the electron charge on the one hand. On the

other hand, a quantum dot with a single electron naturally defines a quantum-mechanical two-level

system between spin-up and spin-down state of the electron’s spin. We will first give an introduction

to charging effects in transport through quantum dots, and then include the spin and its consequences

for transport.

1.3.1. Coulomb blockade in a single quantum dot

In analogy to the ionization energy of atoms, the charging energy of a quantum dot is the energy cost

one has to pay in order to overcome the Coulomb repulsion between the electrons on the dot when

adding an extra electron. In a single quantum, as it is shown in Fig. 1.3, the chemical potential of the

dot, when the number of electrons is changed by one, is

µN+1 − µN = ∆E + U, (1.1)

where ∆E is the quantum mechanical level spacing and U the charging energy. If for fixed gate voltage

the left and right chemical potentials of source (µS) and drain (µD) are arranged in such a way that the

chemical potential of the dot is higher in energy than the source, no electron can tunnel through the

dot and current is said to be blocked by Coulomb blockade. Increasing the gate voltage lowers the energy

levels in the dots, therefore the current measured as a function of the gate voltage for fixed source-

drain bias oscillates with a peak spacing that is directly proportional to the addition energy ∆E + U,

see Fig. 1.3. When adjusting the bias voltage at the same time, the conductance shows the above

mentioned Coulomb diamonds, see Fig. 1.1 a) and b). The theory of Coulomb blockade oscillations

has been studied in detail by Glazman et al. [47], Averin et al. [48, 49] and Beenakker [50]. So far,

we have not said anything about the conditions under which these charging effects can be observed

experimentally. In order for the Coulomb oscillations to be resolved in a transport experiment, two

conditions have to be fulfilled [45]. First, the temperature has to be sufficiently low, kBT � ∆E. For a

dot of about 100nm, the level spacing can be estimated to be ≈ 0.03 meV. The temperature then has to

be lower, which is the case in a typical dilution refrigerator, where T ≈ 100mK ≈ 0.0086 meV. Second,

in order for the number of electrons to be a well defined quantity on the dot, the barriers to the leads

have to be sufficiently opaque. Considering the typical discharging time for the dot, ∆t = RC, the
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1.3. Transport through quantum dots

Figure 1.3.: Coulomb blockade in a single quantum dot. a) and b) The chemical potential of the dot is varied

by the gate voltage Vg. If µN+1 > µS, current is blocked. c) Measured Coulomb oscillations as a

function of gate voltage for different temperatures. Figure taken from ref. [46].

associated energy uncertainty is ∆E∆t = (e2/C)RC > h which implies that the barrier resistance has

to be much larger than the resistance quantum h/e2 = 25813 kΩ. If this condition is met, the electron

number fluctuations of the dot are negligible and the coupling to the leads is said to be weak.

1.3.2. Coherent transport through double quantum dots

Quantum dot arrays consist of two or more quantum dots connected in series or in parallel. Although

the coupling between the dots can be regarded as classical if it is very weak, the interesting problem

is to consider an array where the tunneling between the dots occurs in a phase-coherent way, so that

an electron can tunnel many times between the dots before it leaves the array. Much like in a single

quantum dot, the energy levels of a double quantum dot can be tuned by near-by gate voltages. Due to

the discreteness of the energy spectrum, tunneling from one dot to another will be strong when the

energy levels are in resonance (resonant tunneling), but is considerably suppressed for off-resonant

energy levels. There are two representations of the energy levels in a quantum dot array: If the

Figure 1.4.: Lateral double quantum dot. a) Schematic view of a lateral double quantum dot. If the energy levels

are in resonance, an electron can tunnel many times between the dots. b) SEM micrograph of a

double quantum dot defined by metallic gates (light gray areas). Figure taken from ref. [51].

interdot tunnel coupling is very strong (compared to the energy level detuning between the dots), the

electron is delocalized over the whole array, and it is appropriate to speak of bonding and antibonding

states, much like in a real molecule. Since a double quantum dot with one energy level per dot

constitutes a quantum-mechanical two-level system, one knows that the antibonding and bonding
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1. Transport through arrays of quantum dots

energy level are separated by 2|t|, where t is the tunneling amplitude. Consequently, if interdot

tunneling is weaker, this separation becomes smaller, and the molecular levels more and more resemble

the atomic levels. Experimentally, precise control of the bonding between dots has been achieved [52].

Transport through single quantum dots has been described traditionally by classical rate equations

[47–50] in terms of occupation numbers and tunneling rates to and from the leads. In order to include

coherent effects coming from interdot tunneling, however, quantum effects play an important role,

and these equations had to be modified, see e.g. ref. [53–55]. In this thesis, a reduced density matrix

approach has been used to calculate both the dynamics of the isolated quantum dot system and

transport through the open system. The detailed derivation of the corresponding equations of motion

is presented in the following chapter.

Let us now continue by describing the stability diagram of a double quantum dot. The stability

diagram constitutes a very important way of characterizing the electronic addition spectrum of a

given quantum dot sample, and it permits one to get information about the electronic parameters

of the dot, such as intradot charging or Coulomb energy U, see e.g. ref. [44]. At very low source-

drain bias Vsd ≈ 0, the differential conductance of a nearby quantum point contact is measured as a

function of the two gate voltages applied to each dot. The conductance in the quantum point contact

next to the dot changes abruptly due to Coulomb interaction, when by changing the gate voltage an

electron enters in one of the dots. These changes in conductance represent the borderlines of regions

with a defined number of electrons, see Fig. 1.5. The most important feature in a stability diagram

is the slope of the resonance lines, along which the dots are on resonance. In a double quantum dot,

there is only the resonance line between the left and right dot (where Vg1 = Vg2, see Fig. 1.5 b), in

a triple quantum dot, however, three different resonance lines are present. This will be explained in

more detail later on.

Figure 1.5.: Stability diagram of a double quantum dot. a) Schematic stability diagram as a function of two gate

voltages. b) Zoom into the dotted square region of a). The chemical potentials of the double

quantum dot are indicated. Along the diagonal line Vg1 = Vg2, the two dots are on resonance.

Figure taken from ref. [51]. c) Measured stability diagram of a double quantum dot, where the

charge states are numbered by (n, m). Figure taken from ref. [31].

When applying a finite bias Vsd 6= 0, current will flow only around the so-called triple points, i.e.

where three charge configurations are resonant, see Fig. 1.5 b). A typical current measurement looks

then like the one shown in Fig. 1.6: the current spots become current triangles. Inside the triangle,

additional features can be detected, which are attributed to different resonance lines between ground
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1.3. Transport through quantum dots

states and different excited states [51]. The triple points always occur in pairs, where one of the points

is due to electron transport, and the other one due to hole transport.

Figure 1.6.: Current through a double quantum dot. a) Schematic view of the current triangles at finite bias. b)

Current through the double quantum dot at zero bias: only black current spots are visible at the

triple points where three charge configurations are in resonance. c) Current through the double

quantum dot at finite bias in the solid square region of b): the spots have increased to triangles

with black resonance line features that indicate where the two dots are on resonance. Figures

taken from ref. [31].

In a double quantum dot, not only charging effects due to Coulomb blockade are relevant, but also

the spin of the electron can play an important role, depending on the electronic configuration of the

energy levels in the double quantum dot.

1.3.3. Spin-blockade in double quantum dots

The spin analogue to Coulomb blockade in transport through quantum dots is the so-called spin

blockade. It occurs when transport is blocked due to Pauli’s exclusion principle. Consider a double

quantum dot in which one electron is confined electrostatically (by means of a gate voltage) in the

dot connected to the drain, see Fig. 1.7 (insets). A finite current is only measured when an electron

can tunnel to the right dot onto a level of double occupation and, subsequently, to the drain. Note

that this two-electron level has singlet character, i.e. only two electrons with different spin (↑↓) can

occupy it. The two-electron excited level with triplet character (↑↑∗) is much higher in energy and not

accessible at this configuration of gate voltages. For an electron entering from the left lead, a spin

selection rule therefore holds for tunneling to the right dot: roughly speaking, if the two electrons

have different spin, tunneling is allowed and a finite current flows. However, if both electrons have

the same spin ((↑, ↑) or (↓, ↓)), tunneling to the right dot is suppressed.

Let us consider the properly antisymmetrized eigenstates: Out of the five possible basis states |↑, ↑〉,
|↑, ↓〉, |↓, ↑〉, |↓, ↓〉, |0, ↑↓〉 (in the notation |L, R〉 for an electron in the left dot L and in the right dot
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1. Transport through arrays of quantum dots

Figure 1.7.: Spin blockade in a double quantum dot. Measurement of spin blockade in the current through a

double quantum dot. Note that the current drops to zero over a large range, and then suddenly

increases. At that point, the excited state in the right quantum dot is accessible for the electron

coming from the left and the blockade is lifted. Figure taken from ref. [39].

R) only two singlet eigenstates couple to |0, ↑↓〉:

|S+〉 =
1√
2
(|↑, ↓〉 − |↓, ↑〉+

√
2|0, ↑↓〉)

|S−〉 =
1√
2
(|↑, ↓〉 − |↓, ↑〉 −

√
2|0, ↑↓〉)

|T+〉 = |↑, ↑〉

|T0〉 =
1√
2
(|↑, ↓〉+ |↓, ↑〉)

|T−〉 = |↓, ↓〉 (1.2)

Tunneling processes in quantum dot arrays conserve the electron spin. Once an electron enters the

double quantum dot and the two electrons form a triplet state (|T±,0〉), this state blocks the current

which then drops to zero. Spin-blockade in quantum dot arrays was theoretically predicted in 1995 by

Weinmann et al. [56] and proposed as a spectroscopic tool by Ciorga et al. [9]. The first experimental

observation of spin blockade in few-electron quantum dots was achieved by Ono et al. [39] in a

vertical quantum dot, and Johnson et al. measured spin blockade in a lateral double quantum dot [40].

Fig. 1.7 shows the current measured by Ono et al. [39]: an electron is confined in the right quantum

dot. For large enough positive bias, the interdot triplet states |T±,0〉 will sooner or later be occupied,

and then a current blockade due to Pauli’s exclusion principle occurs, until the bias is again large

enough (≈ 7mV) for the triplet intradot level |0, ↑↑∗〉 to enter the bias window. On the other hand,

for negative bias, current can always flow: an electron can always tunnel from the singlet level in the

right dot to the left dot (see inset in Fig. 1.7), which gives rise to a finite current.
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1.3. Transport through quantum dots

Figure 1.8.: Spin-flip process between electron and nuclear spin. Sketch of simultaneous spin-flip processes

between electron and nuclear spin. At external magnetic field Bdc, the energy mismatch between

the electronic and nuclear Zeeman energies is big, and a phonon must be dissipated for the

process to occur.

1.3.4. Interactions of the electron spin with the environment

Shortly after the discovery of spin blockade in few-electron quantum dots, Koppens et al. measured

a strikingly large leakage current in the Pauli blockade region of a double quantum dot [30]. This

leakage current has been attributed to the hyperfine interaction between the electron spin and the

spin of the nuclei in the surrounding material.

There are three main interactions of the electron spin with its environment in semiconductor quan-

tum dots: the spin-orbit coupling, the hyperfine interaction with the nuclear spins in the host material,

and also exchange processes with electrons in the leads. This last interaction process can be neglected,

if one considers the tunnel coupling of the dot to the leads only as a weak perturbation [57].

In recent years, great efforts have been made for a deeper understanding of spin interactions in

quantum dots, motivated to a large extent by the potential applications of quantum dots in future

quantum information processing devices. A spin state can be destroyed by the environment in two

different ways: on the one hand, the influence of the environment can lead to relaxation of the spin

in form of a spin-flip process that takes place on a timescale T1. On the other hand, the environment

limits the time in which a superposition of spin-up and spin-down state of a single electron stays

coherent. This time is referred to as the decoherence time T2. For a spin ensemble in GaAs quantum

wells, the dephasing time, denoted as T∗2 , typically provides a lower bound for the intrinsic decoher-

ence time T2. At zero magnetic field, energy relaxation is dominated by spin-flip processes involving

the flip of a nucleus spin and an electron spin. The spin relaxation time T1 in this case can be as low

as 10− 100ns. Relaxation due to spin-orbit interaction is suppressed for zero Zeeman splittings due

to Kramer’s degeneracy [58]. For increasing external magnetic field B, spin-flip processes induced by

hyperfine interaction become less probable since due to the energy mismatch between electronic and

nuclei Zeeman splitting (see Fig. 1.8), a phonon must be dissipated. Consequently, T1 increases fast
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1. Transport through arrays of quantum dots

with increasing B and has been measured to be T1 = 2.58 ms in a magnetic field B = 0.02 T [59]. For

fields up to 2 T, T1 can reach up to 200 ms [60]. The spin ensemble dephasing time T∗2 has been found

to be of the order of several 10 ns [30, 31]. In general, the timescale for the loss of phase coherence,

T2, is much shorter than the relaxation time, and results mainly from fluctuations in the nuclear field.

If one could suppress the effect of the nuclear field on the phase coherence of the spin, the spin-orbit

interaction would still provide the limit T2 = 2T1 [44], which is, however, very long. According to

measurements on quantum dots by Fujisawa et al. [57], the spin-flip time T1 > 10−6 s is much longer

than the typical tunneling time Ttunnel = 1− 100 ns. This implies that spin-flip processes due to hy-

perfine interaction play an important role in the spin blockade regime, where tunneling is suppressed

due to Pauli’s exclusion principle (see before). In the following, we will give a rough overview of the

theory of hyperfine interaction in the context of transport through quantum dot arrays in the spin

blockade regime. A more profound and general study, however, is beyond the scope of this thesis,

and the interested reader shall be referred e.g. to ref. [61–68].

The hyperfine interaction is given by the Hamiltonian

HHF =
N

∑
i=1

AiIi · S, (1.3)

where I is the nuclear spin, S the electron spin and A the coupling strength between them. The

ensemble of the nuclear spins can be described as a semiclassical magnetic field, the Overhauser field

BN ≈ 1
gµB

∑N
i=1 AiIi. The effect of this field is like that of an external magnetic field B0 and can be

added to the Zeeman energy [63, 30], thus giving a total Zeeman splitting

∆Z = gµBB0 · S + gµBBN · S. (1.4)

The electron g-factor in GaAs is negative g = −0.44 [25], hence the ground state of both the nuclei

and electrons in GaAs is parallel to the external field, i.e., spin-up (see also Fig. 1.8). In general, the

coupling of the electron to the nuclear field is different for each dot, so that an electron in a quantum

dot experiences a different splitting ∆ i in different dots. As a consequence, the eigenstates in Eq. (1.2)

are not pure singlet and triplet states any more, but are mixed: The off-diagonal coupling due to the

nuclear field couples the |T0〉 state to the |S±〉 state (see Eq. (1.2)). If in transport through a quantum

dot array in the spin blockade regime a spin-flip process |T±〉  |T0〉 occurs, the coupling between

|T0〉 and |S±〉 induced by the hyperfine interaction opens a current channel, which is the cause for

the measured leakage current in ref. [30]. It is important to note that the hyperfine-induced spin-flip

processes are the more efficient the closer the participating states are in energy. It is therefore crucial

to know the eigenenergy spectrum and its (anti)crossings between singlet and triplet states. For a

double quantum dot in the spin blockade regime, the spectrum for homogeneous and inhomogeneous

Zeeman splittings is shown in Fig. 1.9. The anticrossings due to the coupling between singlet |S±〉
and triplet |T0〉 states are marked by circles, where spin-flip processes become more probable.

In the problems considered in this thesis, spin relaxation processes are mimicked by including

a phenomenological spin-flip rate into the equations of motion of the density matrix. This will be

explained in the corresponding chapters.
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1.3. Transport through quantum dots
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Figure 1.9.: Eigenenergy spectrum of a double quantum dot with two electrons. a) Eigenenergies for zero

Zeeman splittings. b) Eigenenergies for inhomogeneous Zeeman splittings, where the |T0〉 state

mixes with the |S±〉 states, see Eq. (1.2).

1.3.5. Electron spin resonance in quantum dots

With regard to the coherent manipulation and control of a single spin in a quantum dot, an important

goal to achieve is the ability to drive coherent rotations between the spin-up and spin-down state of a

quantum dot. The most direct way of rotating the electron spin is electron spin resonance (ESR). There,

crossed dc and ac magnetic fields are applied to the system, so that the ac frequency is in resonance

with the splitting induced by the dc magnetic field. In quantum dots, electron spin resonance was

performed experimentally by Koppens et al. [26, 69, 70]. An in-plane dc magnetic field Bdc is applied

to the 2DEG where the quantum dots are localized. The field Bdc creates a Zeeman splitting in z-

direction, i.e. the former degenerate spin-levels ↑ and ↓ are now split by an amount ∆Z = gµBBdc,

see Fig. 1.10. Here g is the electron g-factor (that depends on the dot geometry and the material it is

Figure 1.10.: Crossed dc and ac magnetic fields applied to a quantum dot. a) Zero fields. Both spin states are

degenerate. b) A dc field splits the spin-up and spin-down state by ∆Z. c) An additional ac

field rotates the spin for ωac = ∆Z.

made of), and µB is the Bohr magneton. In this thesis, a g-factor of GaAs quantum dots of g ≈ −0.44

is assumed [25]. For a typical value of Bdc = 1T, the Zeeman splitting is ∆Z ≈ 0.025 meV. An ac

magnetic field Bac is applied perpendicularly to the dc field, so that it rotates the electron spin if its

frequency is resonant with the Zeeman splitting

h̄ωac = ∆Z. (1.5)
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1. Transport through arrays of quantum dots

The Hamiltonian for a dc magnetic field in z-direction and a circularly polarized ac magnetic field in

xy-direction reads

HB(t) = ∆ZSz + Bac
[
cos(ωt)Sx + sin(ωt)Sy

]
, (1.6)

with the spin operator S = 1
2 ∑σσ′ ĉ†

σσσσ′ ĉσ′ and the Pauli spin matrices σσσ′ . From the theoretical point

of view, a circularly polarized field has the advantage that it can be transformed into the rotating

reference frame by a unitary transformation

U(t) = exp (−iωactSz) , (1.7)

which yields a time-independent Hamiltonian

HB = (∆Z −ωac)Sz + BacSx. (1.8)

The time-independent Hamiltonian can be useful for the interpretation of certain transport features,

as will become clear in chapters 3 and 4.

It is of particular importance here to explain the effect of the time-dependent magnetic field on spin

blockade. It can be shown that the time-dependent magnetic field Bac has no effect on spin blockade

as long as the Zeeman splittings in the different dots are homogeneous. The ac field does not mix

the singlet |S±〉 and triplet |T±,0〉 subspace (see Eq. (1.2)) for homogeneous Zeeman splittings, so if

the electrons occupy a triplet state, the ac field only induces rotations among the triplet states and

spin blockade is not lifted. If, however, the Zeeman splittings are different, the triplet state |T0〉 is

mixed with the singlet states |S±〉. The ac magnetic field therefore breaks spin blockade by rotating

the electron e.g. from a state |T+〉 to |T0〉 which is now coupled to |S±〉. As it has been mentioned

before, the Zeeman splittings in quantum dot arrays are typically slightly inhomogeneous due to the

different Overhauser splittings induced by the hyperfine interaction, and a time-dependent field Bac

therefore breaks spin blockade.

In the original experiment by Koppens et al. [26], electron spin resonance was detected in a double

quantum dot in the spin blockade regime. There the current through the double quantum dot showed

peaks that occur when one Zeeman splitting is resonant with the frequency of the applied ac field.

The detection scheme is as follows: Due to a confined electron in the right dot, current through the

double dot can be blocked by spin blockade. By applying an ac magnetic field with a fixed frequency

ωac and simultaneously varying the dc magnetic field, which changes the Zeeman splittings, there

will be a moment when e.g. the left Zeeman splitting of the double quantum dot is in resonance with

the ac frequency. Then, an electron in the left dot is rotated and can tunnel to the two-electron singlet

level in the right dot, see Fig. 1.11 a) (upper panel). This explains the two current peaks at ±100 mT in

Fig. 1.11 a) (lower panel), that are absent if the ac field is turned off. The large current peak at zero dc

magnetic field is traced back to the hyperfine interaction, which is particularly strong for zero field,

where the singlet and triplet states are very close in energy. In addition to the current measurement

as a function of the dc magnetic field, the authors were also able to detect coherent spin oscillations

induced by the ac field. This is shown in Fig. 1.11 b). A gate pulse prepares the double quantum

dot in Coulomb blockade in such a way that the electron in the left dot stays there, because the two-

electron level in the right dot is energetically inaccessible. In this stage the magnetic ac field induces

14



1.3. Transport through quantum dots

Figure 1.11.: Electron spin resonance in a double quantum dot in the spin blockade regime. a) Schematic

view of the transport sequence through the double quantum dot (upper panel) and measured

current through the double quantum dot as a function of the external magnetic field for fixed

frequency ωac (lower panel). ESR peaks occur around ±100mT, where the Zeeman splittings

are resonant with the ac frequency. At zero field, hyperfine-induced spin-flip processes make

way for a large leakage current. b) Schematic view of the pulse sequence for the measurement

of coherent spin oscillations (upper panel) and measured oscillations for different field strength

Bac (lower panel). Figures taken from ref. [26].

rotations of the electron spin in the left dot. After a certain rotation time, the gate pushes back the

right dot’s level so that the doubly occupied energy level is energetically accessible. Then, depending

on the spin state of the rotated electron in the left dot, tunneling to the right dot and subsequently to

the right lead takes place, if the two electrons have antiparallel spins, but does not occur, if they have

parallel spins, see Fig. 1.11 b) (upper panel). As a consequence, the current oscillates as a function

of different burst times, see Fig. 1.11 b) (lower panel). These rotations are so-called Rabi oscillations,

whose frequency is linearly proportional to the ac field intensity Bac [26, 71]. We will encounter Rabi

oscillations, on the one hand spatial, due to tunneling [51], and on the other hand within one dot,

due to an ac magnetic field, in a later chapter of the present thesis (see chapter 3).

Although theoretically fairly easily described, electron spin resonance induced by crossed dc and

ac magnetic fields is experimentally challenging. The electric fields that inevitably accompany the

magnetic ac fields have to be minimized in order not to induce photon-assisted tunneling [73–75].

Therefore, several other techniques have been proposed for driving coherent electron spin oscillations.

The main idea behind those other techniques is to actually use an electrical ac field and couple it to the

spin degree of freedom via mediating mechanisms. These mechanisms can be hyperfine interaction

[32], spin-orbit interaction [33], g-factor modulation [76] or slanting Zeeman fields [72]. In this last

alternative for instance, an effective magnetic field gradient that is imposed by a ferromagnetic strip
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1. Transport through arrays of quantum dots

Figure 1.12.: Electron spin resonance in a double quantum dot in the spin blockade regime, using slanting

Zeeman fields. a) Views of the double quantum dot with a micromagnet placed on top (yel-

low), which creates a magnetic field gradient along the device. b) Charge stability diagrams of

the double quantum dot for zero ac electric field (upper panel), off-resonant (lower left) and

resonant ac electric field (lower right), where ESR spots appear in the spin blockade region.

Figures taken and adapted from ref. [72].

placed on top of the double quantum dot structure and by an additional external in-plane field (see

Fig. 1.12 a), yields a different magnetic field in each dot, so that an electron in the left dot feels a

field pointing upwards, whereas an electron in the right dot feels a field pointing downwards. The ac

electric field is used to periodically displace the electron from one dot to the other, thereby achieving

spin rotations of the electron, see Fig. 1.12 b).

1.4. The triple quantum dot

Before the first experimental realization of a few-electron triple quantum dot in 2006 [77], several

theoretical proposals existed for triple quantum dots as entanglers [78] or coded qubits [79, 80],

and they were predicted to show rectification and ratchet functionalities [81, 82]. Subsequently, a

considerable amount of theoretical works on triple quantum dots has accumulated: starting from the

fundamental investigation of their electronic filling scheme via topological Hund rules [83], more

complex physics has been explored on electronic properties in magnetic [84] and electric fields [85].

A genuine characteristic of a three–level system has been investigated in triple quantum dots: the

formation of a dark state. This term, which originally stems from atomic optics [86, 87], expresses the

fact that in an atom a coherent superposition of two states decouples from the third, which results

in the atom becoming dark. A solid state analogue has been made for electronic transport through a

triangular triple quantum dot both without [88–91] and under an externally applied magnetic field

[92, 93]. Ac driven transport in triple quantum dot nanoelectromechanical shuttles has been analyzed

by means of Floquet theory [94], and generic interference phenomena have been shown to exist in
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1.4. The triple quantum dot

triple quantum dot molecules [95]. Furthermore, the role of the electron spin in both linear and

triangular triple quantum dots has been investigated in spin-selective Aharonov-Bohm oscillations

[96], voltage-controlled spin manipulation [97], entangled GHZ state generation [98, 99], in electron

spin resonance in magnetic ac field driven triple quantum dots [93, 100] (see chapter 3), and by

proposing spin inversion induced by ac magnetic fields in transport through a linear triple quantum

dot [101] (see chapter 4). Very recently, spin blockade has been analyzed in a linear triple quantum

dot filled with up to three electrons [102]. Last but not least, triple quantum dots constitute a fruitful

testing ground for Kondo physics [103–106].

On the experimental side, after early attempts to fabricate a linear triple quantum dot [107, 108],

the charge stability diagram for triangular and linear, lateral and vertical triple quantum dots has

been mapped out only quite recently [16, 77, 109–111]. It has been found [112] that in analogy to the

triple points in a double quantum dot (see Fig. 1.5), transport through a triple quantum dot occurs

around quadruple points (QP), where four charge configurations are resonant. Naturally, the stability

diagram of a triple quantum dot is more complex than for a double quantum dot, as there are three

independent parameters (three gate voltages applied to the three dots), and the full stability diagram

is consequently three-dimensional. By measuring the transconductance of a linear triple quantum dot

as a function of left and right gate voltages for fixed center gate voltages, and successively varying

the center gate voltage, a three-dimensional charge stability diagram has been achieved by Granger

et al. [113], see Fig. 1.13. The stability diagram shows a unique triple quantum dot feature, – i.e. one

immediately above it. As the voltage on C progressively in-
creases, two closely spaced current spots first appear and
disappear, then two well-separated current spots appear and
disappear, and two additional closely spaced current spots
appear and disappear. The total number of current spots is
six.

The simultaneous appearance of pairs of current spots is
interesting. We focus on the first two current spots from Fig.
2, which we label QPs 1 and 2. Figure 3 contains their C gate
dependence.21 The data in Fig. 3 are taken with a slightly
higher resolution than in Fig. 2, so the current spots now
appear as roughly triangular regions. As C is made less nega-
tive, the current intensity of the two triangles changes so that
QP 2 gets progressively replaced by QP 1.

For clarity we reproduce in Fig. 4 the charge detection
and transport data from Fig. 2 where clear pairs of transport
spots occur. It can be seen that transport occurs only at QPs.
The six QPs are labeled from 1 to 6. The inset in the left
panel confirms that the transport spots occur as the !1,1,1"
region closes. Similarly, the inset in the right panel, taken at
a nearby C voltage, indicates that the transport spots occur as
the !2,0,2" region closes. Table I lists the four degenerate
electronic configurations at each QP.

The curved arrows in Fig. 4 indicate single-particle se-
quences involving only nearest-neighbor events for transport
!in analogy with the usual triple point sequential transport
sequences in double quantum dots". Thus, for QP 1, an elec-
tron can be transferred through the device by the following
sequence. Starting in !1,0,1", an electron enters the left dot
and transfers from dot to dot, exiting the right dot. Such a
process requires all four configurations !1,0,1", !2,0,1",
!1,1,1", and !1,0,2". In a similar fashion, for QP 6, hole trans-
port occurs from right to left by going through the sequence
!2,1,2", !2,1,1", !2,0,2", and !1,1,2".22

For QPs 2 and 5, the equivalent sequences are slightly
more subtle. The sequence for QP 2, for example, starts with
!1,0,2". An electron is added to the left dot from the left lead
to reach !2,0,2". Then the electron from the right dot escapes
to the right lead to give !2,0,1", which gives rise to a net
current. The system returns to the initial configuration via the
!1,1,1" state. Note that the current carrying sequences for
QPs 1, 2, 5, and 6 all correspond to a simple closed curve
passing through the relevant four degenerate configurations
similar to that at triple points in double quantum dots. These
curves are drawn in the left and right panels in Fig. 4.

In contrast, the sequences for QPs 3 and 4 differ from all
the others, as their trajectories describe figures of eight,
shown in the central panel of Fig. 4. Such figures of eight do
not have an analog in double dots. For QP 3, we start with
!1,0,2". An electron hops into the left dot from the left lead to
reach !2,0,2". Then, a charge transfer occurs between the left
and center dots to reach !1,1,2", and an electron from the
right dot hops off to the right lead to get !1,1,1" and produce
net current flow. Finally, a charge transfer from the center dot
to the right dot occurs to restore the !1,0,2" configuration.
Likewise, a similar process occurs for QP 4.

IV. ANALYSIS

In order to gain further understanding of the C gate evo-
lution, we use the equivalent circuit model14–16,19 to identify
where QPs occur within stability diagram. This model allows
us to first calculate the energy of the TQD, ETQD, for each of
the eight relevant electronic configuration between !1,0,1"
and !2,1,2" everywhere in the 3D voltage space. The expres-

FIG. 4. !Color online" Charge detection transconductance and
dc transport reproduced from Fig. 2. The values of C in the left,
middle, and right panels are −0.222 V, −0.216 V, and −0.208 V,
respectively. The charge detection transconductance data are plotted
with an arbitrary unit colorscale: dark blue !black" is low, orange
!gray" is medium, and yellow !white" is high. The electronic con-
figurations are indicated. The insets in the left and right panels are
from C=−0.220 V and −0.214 V, respectively. Arrows indicate
sequences for current flow.

FIG. 3. C gate voltage dependence of current
through the TQD in the R-L voltage plane near
QPs 1 and 2 at Vds=0.1 mV. C goes from −0.218
to −0.2165 V in the first row and from −0.216 to
−0.2145 V in the second row. The grayscale
from white to black corresponds to a current
range of 730 fA.
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I. INTRODUCTION

Double quantum dots have been extensively studied and
utilized in quantum information spin qubit experiments.1–3

Recently we have presented a highly tunable triple quantum
dot !TQD" layout4 aimed at quantum information applica-
tions, where the stability diagram was mapped out using
standard charge detection techniques. The experimental real-
ization of this type of tunable TQD is important, as it pro-
vides a platform for testing a variety of predicted novel
quantum information functionalities, running simple algo-
rithms, and investigating interference effects.5–13

Electron transport in double quantum dot systems is lim-
ited to the neighborhood of special locations in the stability
diagram where three electronic configurations are degenerate
!triple points".1 In this paper we probe the equivalent trans-
port conditions in TQDs. In the region of a stability diagram
where one electron is added to each of the three dots, it has
been predicted that electrostatics would result in a total of six
quadruple points !QPs".14 While the stability diagram of a
TQD circuit has been studied in detail using conventional
charge detection techniques4,14–16 and certain transport fea-
tures have been observed in these experiments,14,16,17 in this
paper we reveal the full interplay between the stability dia-
gram and the conditions for electron transport.

We first use a charge detector18 to set up specific elec-
tronic configurations. We focus mainly on the regime be-
tween !1,0,1" and !2,1,2", which is the most relevant for spin
qubit applications. The three-dimensional !3D" nature of the
stability diagram and transport regimes is studied by tuning
plunger gate voltages which control the occupation numbers
of the three individual dots. We compare our results to an
equivalent circuit model.14–16,19

II. EXPERIMENTAL DETAILS

The devices are fabricated on a chip from a GaAs/
AlGaAs heterostructure grown by molecular-beam epitaxy
with a density of 2.1!1011 cm−2 and a mobility of 1.72
!106 cm2 /V s. Annealed NiAuGe Ohmic contacts are used
to contact the two-dimensional !2D" electron gas located 110
nm below the surface of the wafer. TiAu gate electrodes are
patterned by electron-beam lithography to allow electrostatic

control of the triple dot potential, as shown in Fig. 1!a". Two
gates are used to define charge detectors on the left and right
of the TQD but only the left quantum point contact !QPC" is
used for the data shown in this paper.

Both charge detection and transport measurements are
made in the voltage plane determined by the outer plunger
gates L and R #see micrograph in Fig. 1!a"$, which are lo-
cated close to the left and right dots, respectively. In the case
of charge detection,18 the left QPC transconductance at Vds
=0 is measured with a lock-in technique using a typical root-
mean-square modulation of 1 mV on gate R #Fig. 1!a"$. The
QPC detector conductance is tuned to a high sensitivity point
!near e2 /h" and the bias across it is VQPC=0.2 mV unless
indicated otherwise. In the case of transport, a drain-source
bias Vds=0.1 mV is applied on the upper right-hand side
Ohmic contact #Fig. 1!a"$, and the current is measured with a

FIG. 1. !a" Electron micrograph of a device similar to the ones
measured. The plunger gates for the left, center, and right dots are
labeled L, C, and R, respectively. Black dots represent Ohmic con-
tacts. Vds is the drain-source bias across the TQD and VQPC is the
bias across the QPC. The current preamplifier is shown schemati-
cally. #!b" and !c"$ Charge detection transconductance measure-
ments in the L-R space, at Vds=0 mV plotted with a grayscale
where black is low and white is high. !b" The absolute electronic
configurations from !0,0,0" to !1,1,1" are indicated. VQPC=0.3 mV.
!c" The electronic configurations from !0,0,0" to !2,1,2" are
indicated.
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Figure 1.13.: Charge stability diagram of a linear triple quantum dot. Left: Electron micrograph of a linear

triple quantum dot. Right: Charge stability diagram as a function of left (VL) and right (VR)

gate voltage, for three different values of the center gate voltage. The charge configurations are

indicated by white numbers in the upper panels. The red numbers in the lower panels indicate

the six different quadruple points around which transport is possible for finite bias, see also

arrows in the upper panels. Figures taken from ref. [113].

that does not exist in double quantum dots –, commonly referred to as quantum cellular automata

process [77]: a charge reconfiguration from the (202) to the (111) region (see upper middle panel in

Fig. 1.13) requires a change of the electron number by one in each dot. For four electrons inside the
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1. Transport through arrays of quantum dots

triple quantum dot, the energy is minimized by placing the electrons in both extremes, but with only

three electrons, minimal energy is achieved by their equilibrated repartition in the triple quantum

dot. It has been indicated earlier that a particularly important feature of the stability diagram are

the resonance lines, i.e. lines along which certain dots are on resonance. Their importance becomes

clear when measuring transport for finite bias. The resonance lines in a triple quantum dot can be

left-center (LC), center-right (CR) and left-right (LR) resonances. All three of them have different

slopes which depend crucially on the electrostatic parameters, i.e. on the cross capacitances between

the dots, which, by varying e.g. the left gate voltage, do not only influence the left energy levels, but

also to a certain extent the center energy levels and the right energy levels. In Fig. 1.13, the LC line is

visible e.g. in the upper rightmost panel as the bright borderline between the (111) and (201) regions,

whereas the CR line can be seen in the upper middle panel as the border between (102) and (111).

The interpretation of resonance lines in transport experiments will be a topic in chapter 5.

In addition to the stability diagram, coherent control over the three-spin qubit, – a linear triple

quantum dot filled with one electron in each dot –, has been reported very recently [114, 115]. In

ref. [115], the manipulation of coherent superpositions of quantum states has been achieved by em-

ploying the Landau-Zener-Stückelberg method [116]. There, coherence between three spin states has

been maintained while decreasing the coupling between two spins and simultaneously increasing the

coupling to the other spin.

All in all, both experimental and theoretical advances in understanding the properties of triple

quantum dots over the past few years indicate that there is rich and interesting physics to explore in

these systems, and yet more is going to come.
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2. Density matrix formalism and master

equation

In this chapter we describe the theory of the reduced density matrix, one of the theoretical methods

that is used to calculate electron transport through quantum dot systems. We first introduce the

concept of the density operator of a quantum system and then deduce the master equation for the

reduced density matrix. In the following sections we use the master equation in order to calculate the

occupation probabilities in a closed linear triple quantum dot (TQD) and the related Rabi frequencies

for spatial Rabi oscillations. Finally, as an example, we use the general current formula that is applied

to all subsequent problems to calculate the current through a linear and triangular TQD.

2.1. The density matrix

In quantum mechanics the time evolution of a pure state is described by the Schrödinger equation

ih̄
d
dt
|ψ(t)〉 = H(t)|ψ(t)〉. (2.1)

However, one often encounters the problem of finding the time evolution of a physical system whose

state is not completely determined, but rather described by a statistical mixture of states. In this case

the Schrödinger equation cannot be used and one has to find a formalism that both includes the

incomplete information one possesses about the system and gets the maximum use out of it.

The mathematical formalism which fulfills this requirement is the density matrix formalism. In the

following we will give a short outline of the theory of the density matrix. A more detailed introduction

can be found e.g. in ref. [117].

2.1.1. Basic properties

If a system is described by a statistical mixture of states rather than by a linear superposition of states,

there is no state |ψ〉 that comprises all information about the system. The only thing one can say

about the system is that, with a probability of pn, it can be found in the state |ψn〉, so that

0 ≤ p1, p2, p3, . . . , pn, . . . ≤ 1

∑
n

pn = 1. (2.2)

The density operator of the system is then defined as

ρ = ∑
n

pn|ψn〉〈ψn|, (2.3)
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2. Density matrix formalism and master equation

and it fulfills the normalization condition

Trρ = ∑
n

pnTr{|ψn〉〈ψn|} = 1. (2.4)

A system can be described by its density matrix both if it is in a pure state – i.e. if it can be described

by a state vector |ψ〉 – or if it is in a mixed state. Only if the system is in a pure state, then

ρ2 = ρ and Trρ2 = 1, (2.5)

whereas for a statistical mixture ρ = ∑n pn|ψl〉〈ψn|

ρ2 = ∑
n,l

pn pl |ψn〉〈ψn|ψl〉〈ψl | 6= ρ⇒ Trρ2 < 1. (2.6)

The expectation value of every observable can be expressed in terms of the density operator

〈A〉 = ∑
n

pn〈ψn|A|ψn〉 = ∑
n,l

pn〈ψn|A|φl〉〈φl |ψn〉

= ∑
n,l
〈φl |pn|ψn〉〈ψn|A|φl〉

= Tr{ρA}. (2.7)

Every operator in quantum mechanics can be represented as a matrix by choosing a certain basis

of states. The matrix elements of the density operator have, of course, special meanings and they

depend on the basis of states one chooses. For a basis |φl〉 the diagonal elements are

〈φl |ρ|φl〉 = ∑
n

pn〈φl |ψn〉〈ψn|φl〉 = ∑
n

pn|cnl |2, (2.8)

with cnl = 〈ψn|φl〉. The diagonal elements are therefore positive definite numbers, whose meaning is

the population of the basis state |φl〉. The off-diagonal elements

〈φj|ρ|φl〉 = ∑
n

pn〈φj|ψn〉〈ψn|φl〉 = ∑
n

pnc∗njcnl (2.9)

are cross terms between the basis states |φl〉 and |φj〉. If they are non-zero, there is interference

between these states, which only exists if |ψn〉 is a coherent superposition of |φl〉 and |φj〉. The off-

diagonal elements are therefore called coherences. It is clear that depending on the basis in which the

density matrix is written the off-diagonal elements can be zero or non-zero.

2.1.2. Time evolution of the density matrix

The equation of motion of the density matrix can easily be derived using the Schrödinger equation.

We suppose that the system at an initial time t0 is in state |ψn〉 with a probability pn. Its time evolution

is

ih̄
∂

∂t
|ψn(t)〉 = H(t)|ψn(t)〉, (2.10)

by which the time evolution of the corresponding density operator ρn(t) = |ψn(t)〉〈ψn(t)| becomes

∂

∂t
(|ψn(t)〉〈ψn(t)|) =

1
ih̄

H(t)|ψn(t)〉〈ψn(t)| −
1
ih̄
|ψn(t)〉〈ψn(t)|H(t)

=
1
ih̄

[H(t), ρn(t)] . (2.11)
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2.1. The density matrix

For ρ(t) = ∑n pn|ψn(t)〉〈ψn(t)| we obtain then

∂

∂t
ρ(t) =

1
ih̄

[H(t), ρ(t)] . (2.12)

This is the so-called Liouville equation for the time evolution of the density operator of a quantum

system in a mixed state.

This equation is sufficient to describe the time evolution of an isolated system. If there are, however,

two or more systems interacting with each other and one is only interested in the behavior of one

of them, then one can introduce the reduced density matrix that captures the behavior of one of the

subsystems.

2.1.3. The reduced density matrix

We consider a system S which we are interested in and which is in contact with an unobserved

system R. S is described by the basis |sl〉, while R is described by |rn〉. The elements of the total

density matrix can then be written as

ρ(t) = 〈rn′ sl′ |ρ(t)|rnsl〉. (2.13)

The expectation value of an operator AS that only acts on S can be written as

〈AS 〉 = Tr{ρ(t)AS}
= ∑

n′ l′
〈rn′ sl′ |ρ(t)AS |rn′ sl′〉

= ∑
nln′ l′
〈rn′ sl′ |ρ(t)|rnsl〉〈rnsl |AS |rn′ sl′〉

= ∑
nll′
〈rnsl′ |ρ(t)|rnsl〉〈sl |AS |sl′〉

= ∑
ll′

[
∑
n
〈rnsl′ |ρ(t)|rnsl〉

]
〈sl |AS |sl′〉, (2.14)

where the expression in brackets are the elements of a matrix ρ(s, t)

〈sl′ |ρ(s, t)|sl〉 = ∑
n
〈rnsl′ |ρ(t)|rnsl〉, (2.15)

in which the sum over n means tracing out the degrees of freedom of the system R. We finally

conclude

〈AS 〉 = ∑
ll′
〈sl′ |ρ(s, t)|sl〉〈sl |AS |sl′〉. (2.16)

Thus, the expectation value of every operator AS acting on S can be calculated only by knowing the

density operator ρ(s, t). This operator is therefore called the reduced density matrix.

The system S is considered to be in non-equilibrium, before it comes in contact with the system R.

Due to the interaction with R, however, S will evolve into an equilibrium state after some time. The

process from a non-equilibrium state into equilibrium induced by the coupling to an environment is a

relaxation process and therefore irreversible. The Liouville equation, however, describes only reversible

processes, and one needs to extend it in order to take into account the relaxation due to the coupling

to an environment.
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2. Density matrix formalism and master equation

2.2. The master equation

We write the total Hamiltonian for a system S coupled to a reservoir R as

H = HS + HR = H0 + V(t). (2.17)

Since H0 is assumed to be known, it is convenient for our subsequent derivations to change from the

Schrödinger picture to the interaction picture. In the interaction picture the time dependence of an

operator due to H0 is extracted, so that an operator A is given by

AI = e
i
h̄ H0t Ae−

i
h̄ H0t, (2.18)

with A being the operator in the Schrödinger picture. The density matrix operator in the interaction

picture reads then

ρ(t) = e−
i
h̄ H0tρI(t)e

i
h̄ H0t, (2.19)

and the Liouville equation (2.12) becomes therefore

ρI(t) = −
i
h̄
[VI(t), ρI(t)] . (2.20)

This equation can formally be integrated to

ρI(t) = ρI(0)−
i
h̄

∫ t

0
dt′
[
VI(t′), ρI(t′)

]
, (2.21)

which in turn inserted back into Eq. (2.20) yields

∂

∂t
ρI(t) = −

i
h̄
[VI(t), ρI(0)]−

1
h̄2

∫ t

0
dt′
[
VI(t),

[
VI(t′), ρI(t′)

]]
. (2.22)

In order to write down this equation for the reduced density matrix, we use ρS (t) = TrRρ(t) and get

∂

∂t
ρI,S (t) = −

i
h̄

TrR [VI(t), ρI(0)]−
1
h̄2

∫ t

0
dt′TrR

[
VI(t),

[
VI(t′), ρI(t′)

]]
. (2.23)

Assuming that the interaction between the two systems begins at the time t = 0, S and R are

uncorrelated for t < 0. Therefore the total density matrix at t = 0 can be written as the product of the

density matrices of the individual systems:

ρ(0) = ρS (0)ρR(0) = ρI(0) (2.24)

To proceed further, consider that the system R is large and can always be described by a thermal

equilibrium distribution at constant temperature, ρR = 1
Z e−βHR , where β = 1/kBT with the Boltz-

mann constant kB and temperature T. The irreversibility of the relaxation process is expressed in the

fact that the reactions of R back on S are expected to be negligible, by which follows

ρI(t)→ ρI(t) = ρS (t)ρR(0). (2.25)

This important step is called the Born–approximation. Inserting into (2.23) yields

∂

∂t
ρ(t)I,S = − i

h̄
TrR [VI(t), ρS (0)ρR(0)]−

1
h̄2

∫ t

0
dt′TrR

[
VI(t),

[
VI(t′), ρI,S (t′)ρR(0)

]]
. (2.26)
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2.2. The master equation

A useful approximation that turns out to be valid in a wide range of situations is the so–called Markov–

approximation: the system S suffers a damping process due to its interaction with R, which destroys

all memory of the past. Consequently, the time derivative of the density matrix only depends on its

present value ρI,S (t) and not on former times t′ in the time intervall [0, t]. Mathematically this means

ρI,S (t′)→ ρI,S (t). (2.27)

The intermediate result for the equation of motion of the density matrix is then

∂

∂t
ρ(t)I,S = − i

h̄
TrR [VI(t), ρS (0)ρR(0)]−

1
h̄2

∫ t

0
dt′TrR

[
VI(t),

[
VI(t′), ρI,S (t)ρR(0)

]]
. (2.28)

In order to calculate the commutators we write the interaction term as a product of operators AS
and BR that only act on S and R respectively. Since they commute, in the interaction picture they

have the form

VI(t) = ∑
i

AS ,i(t)BR,i(t). (2.29)

After inserting this into Eq. (2.28) and making use of the permutation rule Tr(ABC) = Tr(BCA) =

Tr(CAB), we get after some algebra

∂

∂t
ρI,S (t) = −

i
h̄ ∑

i
[AS ,i(t), ρS (0)] 〈BR,i〉−

1
h̄2 ∑

i,j

∫ t

0
dt′
[ [

AS ,i(t), AS ,j(t′)ρI,S (t)
]

TrR
[
BR,i(t)BR,j(t′)ρR(0)

]
−

[
AS ,i(t), ρI,S (t)AS ,j(t′)

]
TrR

[
BR,i(t)ρR(0)BR,j(t′)

] ]
. (2.30)

Here we have also used 〈BR,i〉 = TrR [ρR(0)BR,i(t)]. Choosing eigenstates |N〉 of the Hamiltonian

HR as a basis, the equilibrium density matrix ρR(0) is diagonal, whereas BR,i does not have diagonal

elements, since otherwise they could be included in the diagonal elements of the Hamiltonian (which

would provide an overall energy shift). Consequently we have 〈BR,i〉 = 0, and the first term in (2.30)

cancels out.

The terms TrR
[
BR,i(t)BR,j(t′)ρR(0)

]
= 〈BR,i(t)BR,j(t′)〉 in (2.30) are time correlation functions, in

which the time difference t− t′ is the range over which 〈BR,i(t)BR,j(t′)〉 6= 0. The correlation functions

in fact only depend on the time difference t− t′, since

〈BR,i(t)BR,j(t′)〉 = Tr
[
BR,i(t)BR,j(t′)ρR(0)

]

= Tr
[
e−

i
h̄ HRtBR,ie

i
h̄ HRte−

i
h̄ HRt′BR,je

i
h̄ HRt′ρR(0)

]

= Tr
[
BR,i(t− t′)BR,jρR(0)

]
. (2.31)

Let the correlation time of the system be τ, then for t− t′ � τ

〈BR,i(t)BR,j(t′)〉 ≈ 〈BR,i(t)〉〈BR,j(t′)〉 = 0. (2.32)

This can be used to change the integration variable t′′ = t− t′ and dt′ = −dt′′ in (2.30). The upper
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2. Density matrix formalism and master equation

integration limit can safely be extended to infinity due to Eq. (2.32), and Eq. (2.30) becomes then

∂

∂t
ρI,S (t) = −

1
h̄2 ∑

i,j

∫ ∞

0
dt′′
[ [

AS ,i(t), AS ,j(t− t′′)ρI,S (t)
]
〈BR,i(t′′)BR,j〉−

−
[
AS ,i(t), ρI,S (t)AS ,j(t− t′′)

]
〈BR,jBR,i(t′′)〉

]
. (2.33)

In the end we are interested in the matrix elements of ρI,S (t). We therefore choose a basis of eigen-

states |m〉 of the Hamiltonian HS . Taking matrix elements of AS ,i(t) yields

〈m′|AS ,i(t)|m〉 = 〈m′|e
i
h̄ H0t AS ,ie−

i
h̄ H0t|m〉 = eiωm′mt〈m′|AS ,i|m〉, (2.34)

with ωm′m = Em′ − Em being the difference of eigenenergies Em′ ,m of the Hamiltonian H0. Inserting the

completeness condition ∑n |n〉〈n| at appropriate positions, the first commutator in Eq. (2.33) becomes

〈m′|
[
AS ,i(t), AS ,j(t− t′′)ρI,S (t)

]
|m〉 =

∑
nn′

[
eiωm′n′ t−iωnn′ t

′′〈m′|AS ,i|n〉〈n|AS ,j|n′〉〈n′|ρI,S (t)|m〉−

eiωm′n′ (t−t′′)+iωnmt〈m′|AS ,j|n′〉〈n′|ρI,S (t)|n〉〈n|AS ,i|m〉
]

(2.35)

and the second commutator

〈m′|
[
AS ,i(t), ρI,S (t)AS ,j(t− t′′)

]
|m〉 =

∑
nn′

[
eiωm′nt−iωn′m(t−t′′)〈m′|AS ,i|n〉〈n|ρI,S (t)|n′〉〈n′|AS ,j|m〉−

eiωnmt+iωn′nt′′〈m′|ρI,S (t)|n〉〈n|AS ,j|n′〉〈n′|AS ,i|m〉
]
. (2.36)

Therefore we get for the matrix element of 〈m′|ρ̇I,S (t)|m〉

〈m′|ρ̇I,S (t)|m〉 = −
1
h̄2 ∑

ij
∑
nn′
〈n′|ρI,S (t)|n〉×

[
eiωm′n′ t ∑

α

〈m′|AS ,i|α〉〈α|AS ,j|n′〉
∫ ∞

0
dt′′e−iωαn′ t

′′〈BR,i(t′′)BR,j〉δnm−

−ei(ωm′n′+ωnm)t〈m′|AS ,j|n′〉〈n|AS ,i|m〉
∫ ∞

0
dt′′e−iωm′n′ t

′′〈BR,i(t′′)BR,j〉−

−ei(ωm′n′+ωnm)t〈m′|AS ,i|n′〉〈n|AS ,j|m〉
∫ ∞

0
dt′′e−iωnmt′′〈BR,jBR,i(t′′)〉+

+eiωnmt ∑
α

〈n|AS ,j|α〉〈α|AS ,i|m〉
∫ ∞

0
dt′′e−iωnαt′′〈BR,jBR,i(t′′)〉δn′m′

]
. (2.37)

By defining

Γ+
mkln =

1
h̄2 ∑

ij
〈m|AS ,i|k〉〈l|AS ,j|n〉

∫ ∞

0
dt′′e−iωlnt′′〈BR,i(t′′)BR,j〉

Γ−mkln =
1
h̄2 ∑

ij
〈m|AS ,j|k〉〈l|AS ,i|n〉

∫ ∞

0
dt′′e−iωmkt′′〈BR,jBR,i(t′′)〉, (2.38)

which fulfill

Γ±mmkl = Γ±klmm = 0

Γ−∗mnkl = Γ+
mnkl , (2.39)
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2.2. The master equation

and by defining the Redfield-Tensor Rm′mn′k

Rm′mn′n = −δnm ∑
α

Γ+
m′ααn′ + Γ+

nmm′n′ + Γ−nmm′n′ − δn′m′ ∑
α

Γ−nααm (2.40)

we can write Eq. (2.37) in a much more compact way:

〈m′|ρ̇I,S |m〉 = ∑
nn′
〈n′|ρI,S (t)|n〉Rm′mn′nei(ωm′n′+ωnm)t (2.41)

One argues now that the typical period of variation of the system, h̄
ωmn

, is much smaller than the

integration step dt, i. e. the system S performs many cycles in the intervall dt. Therefore only the

terms with (ωm′n′ + ωnm) ≈ 0 will contribute to Eq. (2.41) [118, 119]. This condition,

Em′ − En′ + En − Em = 0, (2.42)

is fulfilled in the following three cases

1. m′ = n′ and m = n, but m′ 6= m

2. m′ = m and n′ = n, but m′ 6= n′

3. m′ = n′ = n = m,

which reduce Eq. (2.41) to

〈m′|ρ̇I,S (t)|m〉 = (1−δm′m)〈m′|ρI,S (t)|m〉Rm′mm′m+

δm′m ∑
n 6=m
〈n|ρI,S (t)|n〉Rmmnn+

δm′m〈m′|ρI,S (t)|m′〉Rm′m′m′m′ . (2.43)

The first and third term with Rm′mm′m and Rm′m′m′m′ can be grouped together because the first one

contains the second one when the condition m 6= m′ is omitted. We define

Rm′mm′m = Λm′m = ∑
α 6=m′

Γ+
m′ααm′ + ∑

α 6=m
Γ−mααm. (2.44)

The Redfield-Tensor in the second term in Eq. (2.43) written out explicitely only contains two sum-

mands, which are

Rmmnn = Γ+
nmmn + Γ−nmmn, (2.45)

as the parts including the δ’s drop out. Thus, for

Γmn = Γ+
nmmn + Γ−nmmn = 2ReΓ+

nmmn, (2.46)

we finally obtain the master equation

〈m′|ρ̇I,S (t)|m〉 = δm′m ∑
n 6=m
〈n|ρI,S (t)|n〉Γmn −Λm′m〈m′|ρI,S (t)|m〉. (2.47)

Let us now distinguish between diagonal and off-diagonal elements. The diagonal elements read

〈m|ρ̇I,S (t)|m〉 = ∑
n 6=m
〈n|ρI,S (t)|n〉Γmn − 〈m|ρI,S (t)|m〉Γnm. (2.48)
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2. Density matrix formalism and master equation

They coincide with the classical rate equations for a loss and gain process, where due to a detailed

balance condition the loss in some states is related to the population of other states. The coefficients

Γmn are the rates for a transition from a state |n〉 to a state |m〉 that is induced by the coupling of

system S to the unobserved system R.

For the off-diagonal terms or coherences we get

〈m′|ρ̇I,S (t)|m〉 = −Λm′m〈m′|ρI,S (t)|m〉, (2.49)

with Λ∗m′m = Λmm′ due to the Hermiticity of the density matrix. These elements describe how coher-

ence in the system is damped by the coupling to the environment. The real part of the coherences is

related to the transition rates Γmn through

ReΛm′m =
1
2
(Λm′m + Λ∗m′m) =

1
2
(Λm′m + Λmm′)

=
1
2

(
∑

α 6=m
Γαm′ + ∑

α 6=m
Γαm

)
. (2.50)

Let us now return to the Schrödinger picture by applying

ρS (t) = e−
i
h̄ HS tρI,S (t)e

i
h̄ HS t, (2.51)

which yields for the equation of motion

ρ̇S (t) = −
i
h̄
[HS , ρS (t)] + e−

i
h̄ HS tρ̇I,S (t)e

i
h̄ HS t. (2.52)

The matrix elements are then

〈m|ρ̇S (t)|m〉 = ∑
n 6=m

Γmn〈n|ρS (t)|n〉 − Γnm〈m|ρS (t)|m〉 for m = m′ (2.53)

〈m′|ρ̇S (t)|m〉 = −
i
h̄
〈m′|[HS , ρS (t)]|m〉 −Λm′m〈m′|ρS (t)|m〉 for m 6= m′, (2.54)

where in the off-diagonal elements we can neglect the imaginary part of Λm′m, since it only introduces

a small energy shift. In practice this set of differential equations can either be integrated to give

ρmm(t), i.e. the time evolution of the occupation probabilities, or, – if one is primarily interested in the

asymptotic limit ρ(∞), i.e. the stationary solution –, one can set ρ̇(t) = 0 and solve the set of equations

algebraically. The latter is faster, but only applicable if the Hamiltonian is time-independent.

In the next sections, we will derive the formula for the transition rates Γmn and finally for the

current.

2.2.1. Transition rates

The transition rates Γmn describe the probability per unit time that the system undergoes a transition

between the state |k〉 and |m〉 caused by interaction with the reservoir. Starting with

Γmn = Γ+
mnnm + Γ−mnnm

=
1
h̄2 ∑

ij
〈m|AS ,i|n〉〈n|AS ,j|m〉

∫ ∞

0
dt′′e−iωnmt′′〈BR,i(t′′)BR,j〉

+
1
h̄2 ∑

ij
〈m|AS ,j|n〉〈n|AS ,i|m〉

∫ ∞

0
dt′′e−iωmnt′′〈BR,jBR,i(t′′)〉, (2.55)
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2.2. The master equation

we continue by evaluating the expectation values 〈BR,i(t′′)BR,j〉. Using eigenstates |N〉 of the Hamil-

tonian HR for which 〈N|HR|N〉 = EN , and using the fact that ρR(0) is diagonal in this basis, we

get

Γmn =
1
h̄2 ∑

ij
∑

NN′
〈m|AS ,i|n〉〈n|AS ,j|m〉

∫ ∞

0
dt′′e

i
h̄ (EN−EN′ )t

′′
e−iωnmt′′〈N|ρR(0)|N〉〈N|BR,i|N′〉〈N′|BR,j|N〉

+
1
h̄2 ∑

ij
∑

NN′
〈m|AS ,j|n〉〈n|AS ,i|m〉

∫ ∞

0
dt′′e

i
h̄ (EN′−EN)t′′ e−iωmnt′′〈N|ρR(0)|N〉〈N|BR,j|N′〉〈N′|BR,i|N〉. (2.56)

This can now be simplified by changing the integration variable from t′′ to −t′′

Γmn =
1
h̄2 ∑

ij
∑

NN′
〈N|ρR(0)|N〉×

[
〈mN|AS ,iBR,i|nN′〉〈nN′|AS ,jBR,j|mN〉

∫ ∞

0
dt′′e

i
h̄ (EN−EN′−h̄ωnm)t′′+

〈mN|AS ,jBR,j|nN′〉〈nN′|AS ,iBR,i|mN〉
∫ 0

−∞
dt′′e

i
h̄ (EN−EN′−h̄ωnm)t′′

]
. (2.57)

Substituting V = ∑i AS ,iBR,i yields then

1
h̄2 ∑

NN′
〈N|ρR(0)|N〉|〈mN|V|nN′〉|2

∫ ∞

−∞
dt′′e

i
h̄ (EN−EN′−h̄ωnm)t′′ , (2.58)

which by using
∫ ∞
−∞ dke±ik(x−a) = 2πδ(x− a) finally becomes

Γmn =
2π

h̄ ∑
NN′
〈N|ρR(0)|N〉|〈mN|V|nN′〉|2δ(EN − EN′ − h̄ωnm). (2.59)

The transition rates therefore adopt the form of the well-known Fermi golden rule expression of first

order time-dependent perturbation theory.

Tunneling rates

In this thesis the master equation is used to calculate transport through arrays of quantum dots. The

system S is the quantum dot array, whereas the unobserved system R are the leads that are coupled

by tunneling to the quantum dot system. The coupling is modeled by the Hamiltonian

V = HT = ∑
l,k

γl(d̂†
lk ĉ + ĉ†d̂lk), (2.60)

where d̂†
lk, d̂lk are the creation and annihilation operators for an electron in lead l, and ĉ†, ĉ are the ones

for electrons in the dot closest to the lead. The coupling γl is assumed to be weak. The interaction

with the reservoir R consists in the tunneling of an electron from the system to a lead or vice versa.

There are therefore two different processes to be considered, to which we will refer as “+”, if an

electron is transferred from the system to a lead (for increasing number of electrons in the lead) or as
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2. Density matrix formalism and master equation

“−” if an electron enters from the lead into the system. In both processes, the number of electrons in

the system differs by one. With ρlN = 〈N|ρR(0)|N〉 the transition rates are

Γmn =
2π

h̄ ∑
NN′

ρlN |〈mN|V|nN′〉|2δ(EN − EN′ − h̄ωnm). (2.61)

If an electron is extracted from a dot to one of the leads, only the term d̂†
lk ĉ contributes and the

transition probability becomes

∑
NN′

ρlN |〈mN|V|nN′〉|2 = ∑
NN′k

ρlN |γl |2|〈mN|d̂†
lk ĉ|nN′〉|2

= ∑
NN′k

ρlN |γl |2〈mN|d̂†
lk ĉ|nN′〉〈nN′|ĉ†d̂lk|mN〉

= ∑
NN′k

ρlN |γl |2〈N|d̂†
lk|N′〉〈N′|d̂lk|N〉

= ∑
Nk

ρlN |γl |2〈N|d̂lk d̂†
lk|N〉

= ∑
Nk

ρlN |γl |2
(

1− 〈N|d̂†
lk d̂lk|N〉

)
. (2.62)

For the last line holds

fl(εk) = ∑
N

ρlN〈N|d̂†
lk d̂lk|N〉 (2.63)

and ∑N ρlN = 1 due to the normalization of the density matrix. Since the electronic spectrum in

the leads forms a continuum of states, one can change the sum over k into an integral
∫
Dl(εk)dεk

with Dl(εk) being the density of states in lead l. One obtains then for the transition rate for electrons

tunneling from the system to the lead l

Γ+
mn =

2π

h̄ ∑
l
|γl |2

∫
dεkDl(εk)(1− fl(εk))δ(εk − h̄ωnm)

=
2π

h̄ ∑
l
|γl |2Dl(h̄ωnm)(1− fl(h̄ωnm)), (2.64)

and analogously for electrons coming from the lead l into the system

Γ−mn =
2π

h̄ ∑
l
|γl |2Dl(h̄ωnm) fl(h̄ωnm). (2.65)

The Fermi distribution function is given by

f (ε) =
1

eβ(ε−µl) + 1
, (2.66)

where β = 1/kBT and µl is the chemical potential of lead l.

2.2.2. Current formula

Having calculated the transition rates for tunneling processes between system and leads, we will now

continue to derive the current formula. As has been said above, every observable can be expressed by
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2.2. The master equation

means of the density matrix. The current through a quantum dot or an array of quantum dots can be

defined as the time derivative of the number of charged particles accumulated in the collector [53],

I(t) = e
d
dt
〈NR(t)〉 = e

d
dt

TrS+R (ρ(t)NR(t)) . (2.67)

If we decompose the reduced density matrix into terms with different numbers N of electrons in the

collector, ρ(t) = ∑N ρN(t), the current can be written as

I(t) = eTrS ∑
N

Nρ̇N(t). (2.68)

The diagonal matrix elements for the N-resolved density matrix are then

〈m|ρ̇N |m〉 = ∑
N′

∑
n 6=m

ΓNN′
mn 〈n|ρN′ |n〉 − ΓN′N

nm 〈m|ρN |m〉, (2.69)

with

ΓNN′
mn =

2π

h̄
|〈mN|HT|nN′〉|2δ(EN − EN′ − h̄ωmn). (2.70)

The off-diagonal elements do not contribute to the current, since NR is diagonal in this basis. There-

fore we obtain for the current

I(t) = eTrS ∑
N

Nρ̇N(t)

= e ∑
NN′

N ∑
n 6=m

(
ΓNN′

mn 〈n|ρN′ |n〉 − ΓN′N
nm 〈m|ρN |m〉

)
. (2.71)

The number N refers to the number of electrons in the collector. Assuming only first order tunneling

processes (sequential tunneling) while neglecting higher order processes such as cotunneling (see e.g.

ref. [120]), N is either decreased or increased by one. Also considering that Γmm = 0 we can then drop

the condition k 6= m:

I(t) = e ∑
N

∑
nm

N
(

ΓNN+1
mn 〈n|ρN+1|n〉+ ΓNN−1

mn 〈n|ρN−1|n〉−

−ΓN+1N
nm 〈m|ρN |m〉 − ΓN−1N

nm 〈m|ρN |m〉
)

(2.72)

By some straightforward index manipulation in the third and fourth term this can be simplified to

I(t) = e ∑
N

∑
nm

ΓNN−1
mn 〈n|ρN−1|n〉 − ΓNN+1

mn 〈n|ρN+1|n〉. (2.73)

In the first term, ΓNN−1
mn describes the rate of an electron tunneling from the system to the collector,

so that the number of particles in the collector rises from N − 1 to N. Likewise, in the second term

the number of particles in the collector decreases from N + 1 to N. We can write these rates as Γ±1
mn

and extract them from the sum, so that the formula for the current finally becomes

I(t) = e ∑
nm

(
Γ+

mn ∑
N
〈n|ρN−1|n〉 − Γ−mn ∑

N
〈n|ρN+1|n〉

)

= e ∑
nm

(
Γ+

mn − Γ−mn
)
〈n|ρ(t)|n〉. (2.74)
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2. Density matrix formalism and master equation

2.3. Electron dynamics in an isolated triple quantum dot array

We will now proceed to apply the theory derived in the foregoing section to a triple quantum dot

(TQD) array. The off-diagonal elements of the density matrix contain information about the coherence

between states. A two–level system – e.g. a double quantum dot with one energy level in each dot,

where the dots are connected by a coherent tunneling amplitude τ and an electron can thus tunnel

between the dots – can be described either by its atomic or its molecular basis. The latter is the diagonal

basis consisting of bonding |ψ−〉 and antibonding |ψ+〉 states separated by 2|τ| (for resonant single

levels), and the former is the set of basis states describing an electron being in the left dot |φL〉
or in the right dot |φR〉. An important difference between the two descriptions is the fact that the

density matrix written in the molecular basis is diagonal, because the coherence between the states

is already stored in the basis states and therefore the off-diagonal elements are zero. For the atomic

basis, however, both Hamiltonian and density matrix are non-diagonal and the coherence between

the states is expressed by the non-zero off-diagonal elements. It is a typical problem of atomic physics

to calculate the probability of a certain state of a two-level system to be occupied after a certain time

t, see e.g. ref. [117]. The occupation probability oscillates as a function of time with a frequency that

is proportional to the coupling between the levels. These oscillations are the so-called Rabi oscillations.

In a double quantum dot as described above with one energy level per dot and tunneling amplitude

τ the Rabi frequency for oscillations of an electron between the left and right dot is Ω = 2τ [117].

The logic extension from a two-level system is the three-level system, which we will encounter in

this thesis in form of a TQD either in linear or triangular arrangement. We will now calculate the

occupation probabilities and Rabi frequencies for one electron in a three-level system, which will first

be given by a linear TQD array and then by a triangular TQD.

2.3.1. Rabi oscillations in an isolated linear TQD

As has been pointed out in the foregoing section, the equation of motion for the density matrix of a

closed system is given by the Liouville equation (Eq. (2.12)). Considering a single spinless electron in

a closed TQD that can tunnel from left (1) to center (2) and from center to right (3) dot (see Fig. 2.1

a), the Hamiltonian is given by

HS = Hlin
TQD = ∑

i=1,2,3
εi ĉ†

i ĉi − τ12(ĉ†
1 ĉ2 + ĉ†

2 ĉ1)− τ23(ĉ†
2 ĉ3 + ĉ†

3 ĉ2). (2.75)

In the basis

|φ1〉 = c†
1|0, 0, 0〉 = |1, 0, 0〉

|φ2〉 = c†
2|0, 0, 0〉 = |0, 1, 0〉

|φ3〉 = c†
3|0, 0, 0〉 = |0, 0, 1〉, (2.76)

the Hamiltonian reads in matrix form

Hlin
TQD =




ε1 −τ12 0

−τ12 ε2 −τ23

0 −τ23 ε3


 . (2.77)
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2.3. Electron dynamics in an isolated triple quantum dot array

Figure 2.1.: Sketch of a TQD with one energy level per dot. a) A linear TQD, in which a spinless electron tunnels

coherently between the three dots coupled by τ12,23. b) A triangular TQD, in which additionally

dot 1 and dot 3 are coupled by τ13.

The density matrix is then also a (3× 3) matrix with elements ρij (i, j = 1, 2, 3), where the diagonal

elements (the occupations) are ρ11, ρ22, ρ33. We solve the equation of motion for the density matrix

elements, ρ̇(t) = − i
h̄

[
Hlin

TQD, ρ(t)
]
, analytically for the case τ12 = τ23 = τ and resonant energy levels

ε1,2,3 = ε. In contrast to the two-level system, the Rabi frequency in the three-level system is different

0

1

ρ
(t
)

0 1 2 3 4

t[2π/Ω]

ρ11
ρ22
ρ33

0 1 2 3 4

t[2π/Ω]

Figure 2.2.: Occupation probabilities as a function of time of an electron tunneling in a resonant isolated

linear TQD. Left panel: The electron is initially placed in dot 1. Right panel: The electron starts

off from dot 2. Ω = 2
√

2τ.

for the different occupations, and also depends on the initial condition we set for the differential

equation. For the electron initially placed in dot 1, the occupations as a function of time are

ρ11(t) =
[

cos
(

1
2

√
2τt
)]4

ρ22(t) =
1
2

[
sin
(√

2τt
)]2

ρ33(t) =
[

sin
(

1
2

√
2τt
)]4

. (2.78)

Since in order to hop to dot 3 the electron has to pass by dot 2, the occupation of dot 2 varies twice

as fast as the occupation of dots 1 and 3, Ω1 = Ω3 =
√

2τ and Ω2 = 2
√

2τ, see also Fig. 2.2 (left

panel). However, the electron never fully resides in the center dot, since the occupation probability

31



2. Density matrix formalism and master equation
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Figure 2.3.: Occupation probabilities as a function of time of an electron tunneling in a resonant isolated

triangular TQD. Left panel: The electron is initially placed in dot 1. Right panel: The electron

starts off from dot 2. The Rabi frequency is the same for all ρii, Ω = 3τ.

ρ22(t) 5 0.5. If we let the electron start to hop from dot 2, the situation is different, because it

will tunnel with the same probability to the left as to the right dot, whose occupation probabilities

consequently coincide, see Fig. 2.2 (right panel). In this case also the Rabi frequencies are the same

for all three occupations, Ω = 2
√

2τ, as can be seen through

ρ11(t) =
1
2

[
sin
(√

2τt
)]2

ρ22(t) =
[
cos

(√
2τt
)]2

ρ33(t) =
1
2

[
sin
(√

2τt
)]2

. (2.79)

2.3.2. Rabi oscillations in an isolated triangular TQD

It is to expect that for a TQD in triangular configuration the Rabi frequencies and occupation prob-

abilities show higher symmetry due to the additional coupling between dot 1 and 3, see Fig. 2.1 b).

The Hamiltonian reads now

Htri
TQD = ∑

i=1,2,3
εi ĉ†

i ĉi − τ12(ĉ†
1 ĉ2 + ĉ†

2 ĉ1)− τ23(ĉ†
2 ĉ3 + ĉ†

3 ĉ2)− τ13(ĉ†
1 ĉ3 + ĉ†

3 ĉ1), (2.80)

or in matrix form

Htri
TQD =




ε1 −τ12 −τ13

−τ12 ε2 −τ23

−τ13 −τ23 ε3


 . (2.81)

We set again ε1,2,3 = ε and τ12,23,13 = τ and obtain with the initial condition ρ11(0) = 1, ρ22,33(0) = 0

the occupation probabilities

ρ11(t) =
1
9
[5 + 4 cos(3τt)]

ρ22(t) =
4
9

[
sin
(

3
2

τt
)]2

ρ33(t) =
4
9

[
sin
(

3
2

τt
)]2

. (2.82)
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2.4. Electron dynamics and current through a TQD

Thus, in fact, the Rabi frequencies are the same for all three occupation probabilities, Ω = 3τ, and

ρ22(t) = ρ33(t). Note in Fig. 2.3 (left panel) that the occupation ρ11 never goes down to zero. The

electron is therefore always delocalized in the TQD, and the electronic density in dot 1 is finite. The

same applies to dot 2, when the electron starts from dot 2, see Fig. 2.3 (right panel).

2.4. Electron dynamics and current through a TQD

In the foregoing sections we have seen that an electron in a closed TQD performs Rabi oscillations

with a Rabi frequency Ω. These oscillations are undamped as long as the system is isolated from an

environment that can introduce decoherence into the system, but they decay once the electron can

leave the TQD through a lead. Then, in the stationary limit, a stationary current will flow through the

system. In this section we calculate the current through a TQD making use of the master equation

derived before, both for a TQD in linear and triangular configuration. These examples will serve as

a basis for the subsequent chapters, in which the same master equation is used for the analysis of

several specific transport problems.

In general, the Hamiltonian of the quantum dot system coupled to leads will be given as

H = HS + HLeads + HT, (2.83)

where HS = HDots + Htun includes the single–particle energies εiσ for an electron in dot i with spin σ,

the intradot Coulomb interaction Ui, the interdot Coulomb interaction Vij and the coherent tunneling

τij,

HS = ∑
iσ

εiσ ĉ†
iσ ĉiσ + ∑

i
Uin̂i↑n̂i↓ +

1
2 ∑

i 6=j
Vijn̂in̂j − ∑

ij,i 6=j,σ
τij(ĉ†

iσ ĉjσ + ĉ†
jσ ĉiσ), (2.84)

with n̂iσn̂iσ′ = ĉ†
iσ ĉiσ ĉ†

iσ′ ĉiσ′ . The Hamiltonians HLeads and HT describe the leads and the tunneling

between leads and dots,

HLeads = ∑
lk

ε lk d̂†
lk d̂lk

HT = ∑
lk

γl d̂†
lk ĉl + γ∗l ĉ†

l d̂lk, (2.85)

where l = L, R is the index for the left (L) and right (R) lead, and d̂†
lk(d̂lk) creates (annihilates) an

electron in lead l and ĉ†
l (ĉl) creates (annihilates) an electron in the dot close to lead l.

The master equation for the elements of the density matrix is, as derived in the foregoing sections,

ρ̇mn(t) = −i〈m|[HS , ρ(t)]|n〉+ ∑
k 6=n

(Γnkρkk − Γknρnn)δmn −Λmnρmn(1− δmn). (2.86)

The commutator accounts for the coherent dynamics in the quantum dot array (in this case only

coherent tunneling), tunneling to and from the leads is governed by the transition rates Γmn from

state |n〉 to state |m〉, and decoherence due to interaction with the reservoir is considered in the term

Λmn = 1
2 ∑k 6=m,m′ (Γkm + Γkn), see Eq. (2.50). The transition rates are calculated using Fermi’s golden

rule (see Eqs. (2.64),(2.65))

Γmn = ∑
l=L,R

Γl{ f (Em − En − µl)δNm ,Nn+1 + [1− f (En − Em − µl)]δNm ,Nn−1}, (2.87)
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Figure 2.4.: Sketch of a linear TQD connected to leads at the left and right dot. The dots are coupled by coherent

tunneling τij and incoherently to leads by ΓL,R. Only one electron can be inside the TQD, and

the single electron energy levels in each dot are within in the transport window µL � µR.

where Em − En is the energy difference between states |m〉 and |n〉 of the isolated quantum dot array

and ΓL,R = 2πDL,R|γL,R|2 are the tunneling rates for each lead. The density of states DL,R and the

tunnel couplings γL,R are assumed to be energy independent.

2.4.1. Current through a linear TQD

We start with the analysis of the electron dynamics and current through a linear TQD, see Fig. 2.4.

We assume strong Coulomb interaction, so that at most one electron can be inside the dot, and we

neglect for now the spin σ of the electron. The Hamiltonian HS is then given by Eq. (2.75) and reads

as a matrix, written in the atomic basis Eq. (2.76)

Hlin
TQD =




ε1 −τ 0

−τ ε2 −τ

0 −τ ε3


 , (2.88)

where we have set the tunneling amplitudes τ12,23 = τ.

For a TQD biased in left-right direction such that µL � ε1,2,3 � µR, an electron can enter from the

left lead to the left dot but cannot tunnel back, see Fig. 2.4. Likewise, when an electron exits through

the right lead, it will relax into the continuum of states in the lead and not come back. The only

nonzero tunneling rates are then Γ10 = 2π
h̄ |γL|2 = ΓL from the vacuum state |φ0〉 = |0, 0, 0〉 to |1, 0, 0〉

and Γ03 = 2π
h̄ |γR|2 = ΓR from |0, 0, 1〉 to |0, 0, 0〉. Applying the master equation (2.86) we get a set of

differential equations for the density matrix elements, out of which the diagonal elements read

ρ̇00(t) = −ΓLρ00(t) + ΓRρ33(t)

ρ̇11(t) = ΓLρ00(t)− iτ [ρ12(t)− ρ21(t)]

ρ̇22(t) = −iτ [ρ21(t)− ρ12(t) + ρ23(t)− ρ32(t)]

ρ̇33(t) = −ΓRρ33(t)− iτ [ρ32(t)− ρ23(t)] . (2.89)

Let us first look at the Rabi oscillations in the TQD, by integrating the set of differential equations in

time to obtain the occupation probabilities ρii(t). Depending on the coherent tunneling amplitude as

compared to the tunneling rates ΓL,R to the leads, an electron in the TQD performs several coherent
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2.4. Electron dynamics and current through a TQD
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Figure 2.5.: Occupations probabilities as a function of time for an open linear TQD. Left panel: Occupations

for the closed TQD, see also Fig. 2.2. Middle panel: Occupations for the open TQD with ΓL,R =

Γ = 0.1τ. Right panel: The higher Γ compared to τ, the faster the oscillations decay. Γ = 0.5τ,

Ω2 = 2
√

2τ.

oscillations before it tunnels out to the right lead. How fast the oscillations decay depends on the

ratio τ/ΓL,R: the bigger ΓL,R compared to τ, the faster the system will reach the stationary state, see

Fig. 2.5.

In order to calculate the stationary current, the equations of motion for the elements of the density

matrix can be solved algebraically by setting ρ̇ij(t) = 0. The current is then proportional to the

occupation of the dot next to the drain, in the present case dot 3, see Fig. 2.4:

I = ΓRρ33. (2.90)

In contrast to a double quantum dot, here an additional degree of freedom exists concerning the

detuning between the dots. With εij = εi − εj, i < j, being the difference between energy levels, the

current through the TQD is

I =
4ΓLΓRτ4

4ΓLε2
12ε2

13 + ΓLΓ2
Rε2

12 +
(
8ΓLε2

13 + 2ΓLΓ2
R
)

τ2 + (12ΓL + 4ΓR)τ4
, (2.91)

see also ref. [121]. We plot the current in Fig. 2.6, in a) as a function of ε12 for three different detunings

ε13, and in b) as a function of ε13 for three different detunings ε12. We encounter here a peculiar

property of a linear TQD which will be a topic in a later chapter (5): the current through the linear

TQD is nearly independent of the position of the central energy level ε2 for ε13 = 0 over a wide range

of detunings (see Fig. 2.6 a). This behavior can be understood by looking at the eigenstates of the

isolated Hamiltonian, Eq. (2.88).

Setting ε1 = ε3, ε2 6= ε1,3, one of the Hamiltonian’s eigenstates is

|ψ〉 = 1√
2
(−|1, 0, 0〉+ |0, 0, 1〉) . (2.92)

Note that in this state the electronic density in the center dot (dot 2) is zero, independently of the

position of ε2 with respect to the resonant levels ε1 = ε3. Therefore, an electron that occupies this
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Figure 2.6.: Current through a linear TQD. a) Current as given in Eq. (2.91), for three different values of ε13 as a

function of ε12. Note that the current for ε13 = 0 is nearly independent of the detuning ε12 over

a large range. b) Current as a function of ε13 for three different ε12. At ε13 = 0, the maximal

current is almost unaffected by the detuning ε12, i.e. the position of the energy level in dot 2 is

not decisive for the current to be maximal. Parameters: τ = 1, ΓL,R = Γ = 0.1.

state contributes to current through the TQD by a tunneling process from left to right that omits the

center dot and that does not depend on the detuning with respect to the center dot. As has been said,

in chapter 5, a similar state and its consequences for transport are going to be analyzed in the context

of a TQD in the spin blockade regime.

2.4.2. Current through a triangular TQD

We consider now a triangular TQD as shown in Fig. 2.7. There is one single electron energy level per

dot and in total only one electron can be inside the TQD. Each dot is coupled to its nearest neighbor

by a tunneling amplitude τij, with i 6= j = 1, 2, 3. Again by choosing the atomic basis Eq. (2.76), the

Hamiltonian is written in matrix form as

Htri
TQD =




ε1 −τ12 −τ13

−τ12 ε2 −τ23

−τ13 −τ23 ε3


 . (2.93)

Before calculating the current, let us analyze the eigenstates of this Hamiltonian.

Without further assumptions about the energy levels and tunneling amplitudes, this Hamiltonian

cannot be diagonalized analytically. We choose, only for simplicity, the easiest configuration with

equal tunneling amplitudes τij = τ and resonant energy levels ε1 = ε2 = ε3 = ε. One eigenstate of
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Figure 2.7.: Schematic view of a triangular TQD. Each dot is connected to its nearest neighbor by a tunneling

amplitudes τij, i 6= j = 1, 2, 3, and dot 1 and dot 3 are coupled to leads by tunneling rates ΓL,R.

the Hamiltonian reads

|ψ〉 = 1√
2
(−|1, 0, 0〉+ |0, 1, 0〉) , (2.94)

in which no electronic density can be found in the drain dot, dot 3. As a side note, it should be said

that the assumptions τij = τ and εi = ε are not necessary in order to obtain an eigenstate with zero

density in dot 3 in this system. It has been shown in ref. [92] that assuming ε1 = − τ12
2τ13τ23

(
τ2

13 − τ2
23
)
=

−ε2, the state

|ψ′〉 = 1√
τ2

13 + τ2
23

(−τ23|1, 0, 0〉+ τ13|0, 1, 0〉) (2.95)

is an eigenstate of the Hamiltonian (2.93). It is clear that in this eigenstate, the two paths τ23 and τ13

interfere destructively at dot 3 so that no electronic density can be found in dot 3, and instead the

electron is delocalized between dots 1 and 2. For the following, the eigenstate |ψ〉 will be of crucial

importance.

Let us now connect the TQD to leads attached to dots 1 and dot 3 and apply a bias from left to

right, see Fig. 2.7. In the equation of motion for the density matrix, Eq. (2.86), we set now HS = Htri
TQD

(Eq. (2.93)). Since we are interested in the stationary current, we solve again the master equation for

ρ̇ij(t) = 0 in order to obtain the stationary occupations ρii. At zero temperature and for a finite bias

from left to right the only non-zero rates for tunneling through the source and drain contacts are

Γ10 = ΓL, where an electron enters from the left lead to the left dot (dot 1), and Γ03 = ΓR, where an

electron exits from the right dot (dot 3) to the right lead. The current through the TQD is then simply

proportional to the occupation of the drain dot, i.e. I = ΓRρ33. The result for the current, setting

τij = τ, ε2 = 0 and ΓL,R = Γ, is

I =
4Γε2

1τ2

(4ε2
1ε2

13 + Γ2ε2
1) + (8ε1ε2

13 + 2Γ2ε1)τ + (24ε2
1 − 24ε1ε3 + 16ε2

3 + 4Γ2)τ2
. (2.96)

It can easily be seen that at ε1 = 0, – i.e. where dot 1 and dot 2 are on resonance –, the current drops

to zero, and therefore exhibits a strong antiresonance, as can be seen in Fig. 2.8. This antiresonance

occurs due to the fact that the electron inside the TQD occupies the eigenstate |ψ〉 (2.94). Since in
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Figure 2.8.: Current through a triangular TQD. The current is shown for equal tunneling amplitudes τij = τ,

and ε2 = 0, for three different values of ε3. Γ = τ/2.

this eigenstate, as has been said above, the electronic density in dot 3 – the drain dot – vanishes and

this state therefore does not contribute to transport, it is also called a dark state. The term dark state

makes reference to its atomic counterpart: in a three-level atom that is excited by two resonant laser

fields, the electronic wave function evolves towards a coherent superposition that is decoupled from

the laser fields and therefore manifests as an antiresonance in the emission spectrum [86, 87, 41]. This

phenomenon, also called coherent population trapping, has been found to have an all-electronic analog

in transport through a triangular TQD as we have seen here [88], and it has also been shown to exist

in a double quantum dot with three levels that is excited by bichromatic laser field [122].

In the following chapter, electronic transport through a magnetic-field driven triangular TQD will

be treated, in which the dark state will play an important role.
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3. Electron spin resonance in magnetic field

driven triangular triple quantum dots

Electronic transport through mesoscopic systems can become correlated not only by charge interac-

tion but also by the spin degree of freedom. A dramatic combination of both can be found in systems

where strong Coulomb interaction limits the population to a small number of electrons (Coulomb

blockade) and where Pauli’s exclusion principle avoids certain internal transitions – spin blockade

(SB). This was first observed as a rectification effect in the current through a double quantum dot

(DQD) [39].

Recent experiments have taken advantage of spin blockade to achieve qubit operations in a double

dot by electric gate control [31] or by electron spin resonance (ESR) [26, 70]. The latter consists in

inducing transitions between the electron’s spin-up and spin-down states, which are split by the

Zeeman energy coming from a dc magnetic field, Bdc. In quantum dots, different mechanisms for

ESR have been considered experimentally and theoretically: crossed dc and ac magnetic fields (Bac),

where the ac frequency is resonant with the Zeeman splitting [26, 62, 71], an effective ac magnetic

field Bac induced by ac electric fields in the presence of spin-orbit interaction [33], slanting Zeeman

fields [72] or hyperfine interaction [32] (see also chapter 1).

In chapter 1, we have introduced the next extension to a DQD, the few-electron triple quantum

dot (TQD). Both in linear and triangular arrangement, the first few-electron measurements have been

performed quite recently [77, 109, 110], concentrating at first on its stability diagram (see also chapter

1), lately also on coherent control of spin states [114, 115]. With regard to the subsequent analysis, it is

important to mention a particular property intrinsic to three-level systems, called coherent population

trapping: this is a well-known effect in quantum optics and has been observed in three-level atoms

excited by two resonant laser fields [86, 87, 41]. In these systems, the electronic wave function evolves

towards an eigenstate superposition, a so-called dark state, which is decoupled from the laser fields

and therefore manifests itself as an antiresonance in the emission spectrum. An analogy in transport

has been made when coherent superpositions avoid transport by interference between tunneling

events. These dark states can be achieved by driving three-level double dots with bichromatic ac

electric fields [122] or by the interference of tunneling processes in TQDs [88, 90, 100]. It has been

shown [92] how coherent trapping can be lifted in closed-loop TQDs by means of the Aharonov-Bohm

(AB) effect [123].

In this chapter, the electron spin dynamics and transport for a triangular TQD exposed to crossed

dc and ac magnetic fields will be analyzed, and dark states will play a crucial role. We consider at first

the case of only one electron within the TQD. In order to analyze spin correlations between electron,

we then introduce a second electron into the TQD. We will show that at certain ac field frequencies
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3. Electron spin resonance in magnetic field driven triangular triple quantum dots
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Figure 3.1.: Schematic diagram of a triangular TQD in crossed dc and ac magnetic fields. The dots are coupled

coherently to each other by a tunneling amplitude τ12,23,13 and incoherently to leads by ΓL,R.

Due to the perpendicular dc field Bdc, the structure encloses a flux Φ which is picked up by a

tunneling electron and thereby modifies the tunneling τ12,23,13 by a phase φ = Φ/Φ0. Here we

chose to accumulate the phase at τ12.

the magnetic field brings the electronic wave function into a superposition of parallel spins states,

unexpectedly bringing the system back to SB.

3.1. Single electron spin rotations in a triple quantum dot

interferometer

3.1.1. Model

In this section we treat the case of a triangular TQD filled with at most one electron and exposed

to both dc and ac magnetic fields. The system is depicted schematically in Fig.3.1. It consists of a

triangular dot structure exposed to crossed dc and ac magnetic fields, in which the three dots are

coupled through tunnel barriers and dots 1 and 3 are weakly connected to source and drain contacts

respectively. Due to the magnetic fields, a new term has to be included into the Hamiltonian (2.84). It

reads now

HS = HDots +Htun +HB(t). (3.1)

With the single electron energy levels εiσ and tunneling amplitude τij the first two terms are

HDots = ∑
iσ

εiσ ĉ†
iσ ĉiσ

Htun = − ∑
ij,i 6=j,σ

τij(ĉ†
iσ ĉjσ + ĉ†

jσ ĉiσ). (3.2)

The Hamiltonian for the dc and circularly polarized ac magnetic field is (see chapter 1)

HB(t) =
3

∑
i=1

{
∆ iSz,i + Bac

[
cos(ωt)Sx,i + sin(ωt)Sy,i

]}
, (3.3)

with Si =
1
2 ∑σσ′ ĉ†

iσσσσ′ ĉiσ′ being the spin operators of each dot, σσσ′ the Pauli spin matrices and ∆ i

the Zeeman splitting produced by the dc magnetic field.
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3.1. Single electron spin rotations in a triple quantum dot interferometer

We describe the system by the basis |0, 0, 0〉, |σ, 0, 0〉, |0, σ, 0〉, |0, 0, σ〉, where σ = {↑, ↓}. The dy-

namics of the system is calculated by making use of Eq. (2.86), where the commutator includes now

HDots +Htun +HB(t),

ρ̇mn(t) = −i〈m|[HDots +Htun +HB(t), ρ]|n〉+ ∑
k 6=n

(Γnkρkk − Γknρnn)δmn −Λmnρmn(1− δmn). (3.4)

Eventual spin scattering processes coming from spin-orbit or hyperfine interaction destroy coher-

ence and will thereby influence the transport features, especially when coherent phenomena such

as population trapping or spin rotations induced by ESR are important. We include these spin-flip

processes phenomenologically into the master equation [124]. The spin relaxation time T1 is given by

W↑↓ + W↓↑, where W↑↓ and W↓↑ are spin-flip rates that fulfill a detailed balance equation

W↓↑ = exp
(−∆z

kBT

)
W↑↓.

T2 is the spin decoherence time – i.e. the time over which a superposition of opposite spin states

of a single electron remains coherent. This time can be affected by spin relaxation and by the spin

dephasing time T∗2 , i.e. the spin decoherence time for an ensemble of spins. We will only consider

T∗2 = 0.1T1. T∗2 is included in the decoherence term in Eq. (3.4) via Λmn = 1
2 ∑k(Γkm + Γkn) + T−1

2 .

The dc magnetic field Bdc applied perpendicularly to the plane of the triangular dot structure (see

Fig. 3.1) encloses a magnetic flux Φ in such a way that electron tunneling acquires an additional

phase φ = Φ/Φ0, with Φ0 = h/e being the flux quantum [123]. Here the phase is accumulated in

the tunneling amplitude τ12φ = τ12e−2πiφ. We consider a bias high enough to have unidirectional

transport (from left to right), so that the current is proportional to the occupation of dot 3,

I = Γ
(

ρ|0,0,↑〉 + ρ|0,0,↓〉
)

, (3.5)

with Γ = ΓL,R being the tunneling rate to the leads.

3.1.2. Undriven case: Bac = 0

Let us first look at the undriven case, i.e. Bac = 0, but Bdc 6= 0. Magnetotransport through a triangular

TQD – i.e. a dc magnetic field perpendicular to the TQD plane – has been analyzed by Emary [92] in

a slightly different configuration where the left lead was connected both to dot 1 and dot 2. This dif-

ference, as we will see later, is expressed in a double periodicity of the current profile. Without any ac

field applied to the system, there is no mixing between different spin channels, and the Hamiltonian

of the system can be written as

Hσ =




ε1σ −τ12e−i2πφ −τ13

−τ21ei2πφ ε2σ −τ23

−τ31 −τ32 ε3σ


 , (3.6)

where εiσ is the energy of an electron in dot i = 1, 2, 3 with spin σ. In the following we will, for simplic-

ity, consider uniform interdot couplings τij = τ, and ε1σ = ε3σ. The eigenstates of the Hamiltonian can

be found analytically and they depend on the phase φ. It turns out that for Φ/Φ0 = n/2, n = 0, 1, 2, . . .
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3. Electron spin resonance in magnetic field driven triangular triple quantum dots
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Figure 3.2.: Current through a triangular TQD in a perpendicular magnetic field Bdc. a) Current I vs. detuning

δ for φ = n/2. At zero detuning, the electron is trapped in a dark state and transport is cancelled.

b) Current I vs. magnetic flux φ at zero detuning (δ = 0) and for different tunnel couplings τ

compared to the rate Γ for the tunneling to and from the leads. The magnetic flux destroys the

electron trapping at φ = (2n+ 1)/4 and current vanishes with a periodicity of Φ0/2. Parameters:

Γ = 0.01, τ = 0.005 in a), all units in meV.

and resonant transport conditions, – i.e. ε1σ = ε2σ = ε3σ –, the already mentioned dark states (see

chapter 2)

|ψσ〉 =
1√
2
(|0, σ, 0〉 − |σ, 0, 0〉) (3.7)

are eigenstates of the Hamiltonian (3.6). They do not contribute to current through the right lead due

to destructive interference of the tunneling processes that transfer the electron to dot 3. However, a

finite detuning δ = ε1σ − ε2σ leads to a finite current through the TQD:

I(δ) =
4Γτ2δ2

16τ2δ2 + Γ2(4τ2 − (−1)n2τδ + δ2)
, n = 0, 1, 2, . . . (3.8)

The number n of flux quanta threading the TQD results in a sign change (−1)n in the denominator of

Eq. (3.8), and is reflected in an asymmetric behavior of the current (see Fig. 3.2 a). It is a consequence

of the specific arrangement of the TQD and the leads (cf. Fig. 3.1). Out of these φ values, a phase

accumulation in the interdot tunneling due to the magnetic flux avoids interference, and a finite

current flows, which shows AB-like oscillations. For δ = 0 we find:

I(φ) =
4Γτ2sin[2φπ]2

Γ2 + 8τ2 − 8τ2cos[4φπ] + 2Γτsin[2φπ]
. (3.9)

Note the double periodicity in the denominator of Eq. (3.9): current vanishes for φ = n/2, but the

specific configuration between the TQD and the leads results in non-uniform AB oscillations, see
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3.1. Single electron spin rotations in a triple quantum dot interferometer
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Figure 3.3.: Current through the triangular TQD for finite spin-flip rate. a) Current I vs. detuning δ for different

spin-flip relaxation rates and φ = 1/2. b) Current I vs. magnetic flux φ for zero and finite spin-

flip probability and δ = 0. Parameters: Γ = 0.01, τ = 0.02, W↑↓ = T−1
1 , all units in meV.

Fig. 3.2 b). The shape of the interference pattern of the current depends on n, as obtained from the

maximal value of the AB oscillations at φ = (2n + 1)/4

Imax,n(δ) =
4Γτ2(4τ2 + δ2)

4τ2(Γ2 − (−1)n2Γτ + 16τ2) + (Γ2 + 16τ2)δ2 . (3.10)

The consequence of finite spin relaxation and decoherence times is shown in Fig. 3.3 for the current

as a function of both the detuning and the magnetic flux: the spin scattering processes, as one can

expect, allow for a finite current to flow at δ = 0 and φ = n/2 by destroying the coherence of the

electronic wavefunction.

3.1.3. Driven case: Bac 6= 0

Let us now additionally apply a time-dependent magnetic field Bac whose frequency is resonant with

the Zeeman splitting induced by Bdc, i.e. ω = ∆ i, and ∆1 = ∆2 = ∆3. The time-dependent field Bac

induces the rotation of the electron spin, however, it does not affect the AB oscillations: For φ = n/2

an electron is trapped in the dark subspace {|ψσ〉}, as discussed in the previous section, while Bac

acts as a coherent coupling between the two dark states. This can be seen in the time evolution of the

occupation probabilities shown in Fig. 3.4 for both zero and finite spin relaxation.

In Fig. 3.4 a), one can see that the dark states are being formed and the system behaves as a two-

level system oscillating with a Rabi frequency given by Bac. Since the dark states are decoupled from

tunneling to the leads (in the sequential tunneling regime), these oscillations can only be affected by

decoherence coming from spin scattering processes. As seen before, spin scattering processes destroy

the dark states, so that there is a finite probability of state |0, 0, σ〉 to be occupied, and they introduce
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3. Electron spin resonance in magnetic field driven triangular triple quantum dots

decoherence that suppresses the Rabi oscillations between the dark states, cf. Fig. 3.4 b). Thus, in the

stationary limit, current flows through the system.

b)

0

0.5ρ
(t
)

0 15 30

t[2π/Ωτ ]

|0, 0, ↑〉,|0, 0, ↓〉

a)

0

0.5ρ
(t
)

|↑, 0, 0〉,|0, ↑, 0〉
|↓, 0, 0〉,|0, ↓, 0〉

Figure 3.4.: Occupation probabilities as a function of time for the TQD driven by Bac, φ = 1/2. a) W↑↓ = 0. Due

to the Aharonov-Bohm phase the electron delocalizes between dot 1 and 2, forming two dark

states |ψσ〉 = 1√
2
(|0, σ, 0〉 − |σ, 0, 0〉), σ = ↑, ↓. The ac field now induces single spin rotations

between these two dark states, see black solid and blue dashed lines. b) W↑↓ = 10−4 meV: due

to the finite spin-flip probability the coherence of the electron wavefunction is destroyed and

finite current flows through the TQD, see lightblue dotted line. Parameters: Γ = 0.001, τ = 0.013,

Bac = 0.0026, Ωτ = 3τ, Ωac = Bac.
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Figure 3.5.: Schematic view of a triangular TQD exposed to crossed dc and ac magnetic fields. Up to two

electrons can be in the TQD at the same time, and one of them is always confined in the dot

connected to the drain, indicated by a red arrow. The three dots are coupled coherently by

tunneling amplitudes τij, where due to the magnetic flux piercing the TQD a phase φ = Φ/Φ0

is accumulated, which we attribute to τ12. Dot 1 and dot 3 are weakly coupled to leads by rates

ΓL,R, and the chemical potentials are such that transport is possible only from left to right.

3.2. Control of spin blockade by crossed dc and ac magnetic fields

in triple quantum dots

So far we have treated transport through a triangular TQD for only one electron inside the TQD. In

order to analyze the effect of spin-spin correlations we include now a second electron in the TQD.

3.2.1. Model

The Hamiltonian for this system reads (see Eq. (3.1))

HS = HDots +Htun +HB(t), (3.11)

with

HDots = ∑
iσ

εiσ ĉ†
iσ ĉiσ + ∑

i
Uin̂i↑n̂i↓ +

1
2 ∑

i 6=j
Vijn̂in̂j

Htun = −∑
ijσ

tij(ĉ†
iσ ĉjσ + ĉ†

jσ ĉiσ)

HB(t) =
3

∑
i=1

{
∆ iSz,i + Bac

[
cos(ωt)Sx,i + sin(ωt)Sy,i

]}
, (3.12)

where εiσ is the energy of an electron with spin σ located in dot i, Ui the intra-dot and Vij = V

the inter-dot Coulomb repulsion. We consider a configuration where the dot coupled to the drain is

permanently occupied by one electron (see Fig. 3.5) and where only up to two electrons can be in the

system.

Double occupancy is only allowed in the drain dot. This is the case when the chemical potentials

in the leads satisfy ε3 + V < µR < ε3 + U3 and µL < ε1 + 2V. We are only interested in one specific

detuning of the energy levels, namely the resonant tunneling condition, where ε1 = ε2 and ε1,2 +V =
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3. Electron spin resonance in magnetic field driven triangular triple quantum dots

ε3 + U3. Out of the full TQD basis with up to two electrons, there are then eleven one- and two-

electron states that dominate the dynamics:

|1〉 = |0, 0, ↑〉, |2〉 = |0, 0, ↓〉
|3〉 = |↑, 0, ↑〉, |4〉 = |↓, 0, ↑〉, |5〉 = |↑, 0, ↓〉, |6〉 = |↓, 0, ↓〉
|7〉 = |0, ↑, ↑〉, |8〉 = |0, ↓, ↑〉, |9〉 = |0, ↑, ↓〉, |10〉 = |0, ↓, ↓〉
|S3〉 = |0, 0, ↑↓〉 (3.13)

The magnetic field Bdc is perpendicular to the plane of the triangular dot structure (Fig. 3.6) and

therefore encloses a magnetic flux Φ, so that electron tunneling acquires an additional phase φ =

2πΦ/Φ0, with Φ0 = h/e being the flux quantum, see foregoing section. We accumulate the phase

between dot 1 and dot 2, τ12 = τe−iφ. If not stated otherwise, we set |τij| = τ.

Due to the confined electron in dot 3, transport will be governed by spin blockade (SB) [39]. It has

been shown in ref. [71] that the ac magnetic field has no effect on SB unless the Zeeman splitting is

inhomogeneous in the sample (see also chapter 1). At first we will consider the simplest configuration

that allows us to analyze the relevant mechanisms: ∆1 = ∆2 6= ∆3. Very recently, it has been demon-

strated experimentally that tayloring the Zeeman splittings in arrays of quantum dots is possible

either due to different g-factors of the dots [125], or also by placing micromagnets above the samples

that induce a magnetic field gradient [72] and thus inhomogeneous Zeeman splittings.

We calculate the current through the TQD by integrating numerically the equations of motion of

the reduced density matrix, see e.g. Eq. (3.4). Transport is biased from left to right and only state |S3〉
contributes to tunneling through to the drain, acting thus as a bottleneck for the current,

I(t) = ∑
n

ΓnS3 ρ|S3〉(t), (3.14)

with ΓnS3 being the tunneling rate to the drain from state |S3〉 to state |n〉 with only one electron in

the drain dot. For simplicity, we set ΓnS3 = Γ. Though being confined, the electron in dot 3 is essential

to induce spin correlated transport.

3.2.2. Undriven case: Bac = 0

We have already seen that in a TQD with up to one extra electron, the current oscillates, due to

interference, with Φ (AB oscillations) and periodically drops to zero with a periodicity of Φ0/21.

For an understanding of the two-electron spin dynamics it is crucial to look at the eigenstates of this

system, which change, depending on the flux Φ, but also due to the presence of a second electron. We

have to distinguish between the phases Φ/Φ0 = n
2 and Φ/Φ0 6= n

2 for n = 0, 1, 2 . . . . For Φ/Φ0 = n
2

1Different periodicities can also occur; this depends on the tunneling amplitudes τij, see [92]; for the present choice of

parameters, the periodicity is as given.
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3.2. Control of spin blockade by crossed dc and ac magnetic fields in triple quantum dots

Figure 3.6.: Coherent processes in a triangular TQD with one electron confined in the dot connected to the

drain. ∆1 = ∆2 6= ∆3, where ∆ i is the Zeeman splitting in dot i. Transport through the system

depends on the magnetic flux Φ penetrating the system and on the frequency ω of the time-

dependent magnetic field Bac. The shaded regions indicate the existence of a dark state.

the following eigenstates of the TQD Hamiltonian are of interest:

|ψ−σσ′〉 =
1√
2
(|0, σ, σ′〉 − |σ, 0, σ′〉) σ, σ′ = {↑, ↓} (3.15)

|ψ+
σσ〉 =

1√
2
(|0, σ, σ〉+ |σ, 0, σ〉) σ = {↑, ↓} (3.16)

|ψ−σσ〉 =
1√
2
(|0, σ, σ〉 − |σ, 0, σ〉) σ = {↑, ↓} (3.17)

Out of these, the states (3.15), although the two electrons have different spins, avoid tunneling to |S3〉:

〈ψ−σσ′ |Htun|S3〉 = 0. (3.18)

In the present configuration current only flows when the state |S3〉 is occupied. Therefore, once

one of the states (3.15) is occupied, tunneling to |S3〉 is suppressed, and in the transitory current

regime the occupation of |S3〉 and therefore the current decays due to the coupling to the drain, see

purple dashed-dotted line in Fig. 3.7 b). The states in (3.15) remind of the dark states found in the

single electron case, see section 3.1, Eq. (3.7). A significant difference is that for two electrons the spin

degree of freedom plays a role: Pauli exclusion principle introduces spin correlation, so that the electrons

are being trapped in combinations of dark states |ψ−σσ′〉 and |ψ−σσ〉 and spin-blockaded states |ψ+
σσ〉.

Thus SB competes with coherent population trapping in the blocking of the current, and the relative

occupation of |ψ−σσ′〉 and |ψ±σσ〉 depends on the initial condition. The current blocking mechanism,

however, is different if the magnetic flux is Φ = Φ0/4. In this case, the AB phase removes the dark
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3. Electron spin resonance in magnetic field driven triangular triple quantum dots

state |ψ−σσ′〉, and only eigenstates with parallel spins are decoupled from |S3〉:

|ξ±σσ〉 =
1√
2
(|0, σ, σ〉 ± ı̇|σ, 0, σ〉) σ = {↑, ↓} (3.19)

Transport keeps being cancelled, however, now only by SB (Figs. 3.6, 3.7 a). In summary, one can

understand that the undriven system is always blocked for transport – the stationary current is insen-

sitive to AB effect due to SB.

SB

dark state

|S3�
SB
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Figure 3.7.: Occupation probabilities and current in a triangular TQD with up to two electrons, exposed to

crossed dc and ac magnetic fields. a) Occupation probabilities ρii as a function of time t for

Φ/Φ0 = 0.25, Bac = 0. Current is proportional to the occupation of |S3〉 (dashed-dotted orange

line), therefore transport is blocked due to SB, once the parallel spin states (dashed and dotted

red lines) are occupied. b) Occupation probabilities ρii as a function of time t for Φ/Φ0 = 0.5,

Bac = 0. The electrons form a coherent state of the form (3.15). However, due to SB, there is a

finite occupation of parallel spin states |ψ±σσ〉 (dashed and dotted red lines), while electrons with

antiparallel spin form dark states as in (3.15) (solid and dashed-dotted blue lines), all of them

contributing to quench the current (see dashed-dotted orange line). c) Current I vs. magnetic

flux Φ: for Bac = 0, I = 0 due to SB (dashed turquoise line); Bac 6= 0: for ω = ∆1,2, SB is removed

and the current shows AB-like oscillations (solid black and dashed gray lines for different τ).

Rabi frequency: Ωτ = 2τ. τ = 0.0025, Γ = 0.01, ∆3 = 0.77∆1, ∆1 = ∆2, in meV.

3.2.3. Driven case: Bac 6= 0

In order to remove SB we apply a time-dependent magnetic field Bac with frequency ω = ∆1,2 6= ∆3.

Figure 3.7 c) shows the current as a function of the magnetic flux Φ through the TQD excited by

Bac for fixed ω. For Φ/Φ0 6= n/2, dark states are avoided by AB effect, and the ac field Bac enables

transitions of the form |σ, 0, σ〉 → |σ′, 0, σ〉 → |S3〉 (|0, σ, σ〉 → |0, σ′, σ〉 → |S3〉) that produce a finite

current.

The magnetic ac field Bac does not affect the destructive tunneling interference of the superpositions
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3.2. Control of spin blockade by crossed dc and ac magnetic fields in triple quantum dots

(3.15) for Φ/Φ0 = n/2. Instead, the system evolves towards a state that is only composed of dark

states performing spin rotations, e.g.:

HB(t)
[

1√
2
(|0, ↓, ↑〉 − |↓, 0, ↑〉)

]

=
Bac

2

[
cos(ωt)

1√
2
(|0, ↑, ↑〉 − |↑, 0, ↑〉) + cos(ωt)

1√
2
(|0, ↓, ↓〉 − |↓, 0, ↓〉)

]
+

Bac

2

[
ı̇sin(ωt)

1√
2
(|0, ↑, ↑〉 − |↑, 0, ↑〉)− ı̇sin(ωt)

1√
2
(|0, ↓, ↓〉 − |↓, 0, ↓〉)

]

=
Bac

2

[
exp(ı̇ωt)|ψ−↑↑〉+ exp(−ı̇ωt)|ψ−↓↓〉

]
, (3.20)

also shown schematically in Fig. 3.6. Since the dark states are decoupled from transport, the current

oscillations can only be affected by decoherence due to spin scattering processes, which are not

considered here. As a consequence, a magnetic ac field Bac induces current through the system only

when assisted by the AB lifting of dark states – i.e. for Φ/Φ0 6= n/2 – and the current shows the

familiar AB oscillations (Fig. 3.7 c).

Remarkably, not imposing the resonance condition ω = ∆ i, one can find a novel kind of SB induced

by the Bac, which quenches the current even in the presence of AB effect. This is the main result of

this work. As can be seen in Fig. 3.8 a), the current shows a resonant behavior as the frequency of

Bac approaches the ESR condition (i.e. ω ∼ ∆1, ∆3). Surprisingly, though, an antiresonance appears

for ω0 = (∆1 +∆3)/2, i.e. when the two electrons are equally far from the resonance condition. Note

that the two peaks around the antiresonance are not Lorentzian-like and cannot be identified as two

different resonance peaks centered at the conditions ω = ∆1 = ∆2 and ω = ∆3, but as a collective

effect due to the simultaneous rotation of the two electron spins (2ESR) [71], see also Fig 3.6.

We want to stress that the appearance of the antiresonance does not depend on the field intensity

Bac or tunnel couplings τij (see Fig. 3.8 a, b): it occurs for different τij as well as for linear TQD

configurations (setting τ13 = 0) and DQDs in series (setting τ12 = τ23 = 0), see Fig. 3.8 b). The width

of the antiresonance scales with the Rabi frequency of the coherent processes involved [126]: spin

rotation (∝ Bac) and interdot tunneling (∝ τij) (Figs. 3.8 a) and 3.8 b), respectively); it also depends on

the tunneling rates Γ through the contact barriers, which induce decoherence, see Fig. 3.8 c).

The quenching of the current can be understood analytically by transforming the Hamiltonian

HB(t) into the rotating frame [93]. This transformation yields a time-independent Hamiltonian

H′B =
3

∑
i=1

[(∆ i −ω)Szi + BacSxi].

Since tunneling conserves the spin, this transformation commutes with the tunneling Hamiltonian
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Figure 3.8.: 2ESR in a TQD by tuning ω, for Φ/Φ0 = 0.25, is manifested in the current as an antiresonance at

ω0 = (∆1 +∆3)/2. a) For different Bac and fixed τij = τ: the width of the antiresonance depends

on the Rabi frequencies associated with τ and Bac. b) For different τij and fixed Bac = τ/5. The

antiresonance appears for any configuration of the τij. Black solid line: τ12 = 2τ, τ23 = 0.1τ,

τ13 = 0.5τ. c) For different Γ and τij = τ. d) Current I vs. magnetic flux Φ for fixed ω while

tuning Bdc, so both Φ and ∆ i are modified. AB oscillations are suppressed by SB except when the

Zeeman splittings are close to resonance with ω. At Φ/Φ0 = 0.25, where current vanishes, the

Zeeman splittings have values, so that ω = 1/2(∆1 +∆3). Parameters: τ = 0.01, Γ = Γ∗ = 0.001.

Htun. In matrix notation, the two-electron Hamiltonian H′ = Htun +H′B can be written as



|↑,0,↑〉 |↓,0,↑〉 |↑,0,↓〉 |↓,0,↓〉 |0,↑,↑〉 |0,↓,↑〉 |0,↑,↓〉 |0,↓,↓〉 |0,0,↑↓〉

−∆1+∆3
2 +ω Bac

2
Bac

2 0 iτ 0 0 0 0

Bac
2

∆1−∆3
2 0 Bac

2 0 ı̇τ 0 0 τ

Bac
2 0 ∆3−∆1

2
Bac

2 0 0 ı̇τ 0 −τ

0 Bac
2

Bac
2

∆1+∆3
2 −ω 0 0 0 ı̇τ 0

−ı̇τ 0 0 0 −∆2+∆3
2 +ω Bac

2
Bac

2 0 0

0 −ı̇τ 0 0 Bac
2

∆2−∆3
2 0 Bac

2 τ

0 0 −ı̇τ 0 Bac
2 0 ∆3−∆2

2
Bac

2 −τ

0 0 0 −ı̇τ 0 Bac
2

Bac
2

∆2+∆3
2 −ω 0

0 τ −τ 0 0 τ −τ 0 0




. (3.21)

One can easily verify that for ∆1 = ∆2 and at ω0 = (∆1 + ∆3)/2 the coherent superpositions

|Ψ1〉 =
1
2
(ı̇|↑, 0, ↑〉 − ı̇|↓, 0, ↓〉+ |0, ↑, ↑〉 − |0, ↓, ↓〉)

|Ψ2〉 =
1
2
(ı̇|↑, 0, ↑〉 − ı̇|↓, 0, ↓〉 − |0, ↑, ↑〉+ |0, ↓, ↓〉) (3.22)

are eigenstates of this Hamiltonian. At ω0 the single electrons in each dot are equally far away from

resonance with the ac magnetic field. However, the two-electron states |↑, 0, ↑〉 and |↓, 0, ↓〉, |0, ↑, ↑〉
and |0, ↓, ↓〉 are brought into resonance when ω = 1/2(∆1 +∆3), i.e. their corresponding energies are

equal (see diagonal elements of (3.21)). The electrons in (3.22) have parallel spins and are decoupled

from the transport state |S3〉. Once states (3.22) are occupied, the tunneling to dot 3 is therefore
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3.2. Control of spin blockade by crossed dc and ac magnetic fields in triple quantum dots

suppressed and the current is quenched due to SB. Note that the electron spins in (3.22) are maximally

entangled [127]. By evaluating the off-diagonal elements of the density matrix Eq. (3.4) at ω0 =

(∆1 + ∆3)/2 we can unambiguously show that in fact these states are responsible for the current

quenching: the off-diagonal elements of the density matrix represent the coherences between the basis

states, and, as we can see in Fig. 3.9, the only important coherence exists between states |3〉 = |↑, 0, ↑〉,
|6〉 = |↓, 0, ↓〉, |7〉 = |0, ↑, ↑〉, and |10〉 = |0, ↓, ↓〉 which hence form the superpositions (3.22), see

purple columns and purple dashed curve in Fig. 3.9.

−0.25

0

0.25

ρ

∆3 ω0 ∆1

ρS3

ρ3,6
ρ6,6

Figure 3.9.: Analysis of the density matrix of a triangular TQD exposed to crossed dc and ac magnetic fields.

Left plot: Bar chart of the real part of the density matrix at ω0 = (∆1 + ∆3)/2. Red positive

columns represent the diagonal elements, i.e the occupations, of the states |3〉, |6〉, |7〉, |10〉 of

the density matrix, purple negative columns the real part of the off-diagonal elements – i.e.

coherences – between states |3〉 and |6〉, |7〉 and |10〉, see text. At frequency ω0 the electrons

occupy only parallel spin states (red columns) and form a coherent superposition given by state

(3.22), which is decoupled from the driving field Bac. Right plot: Occupations and coherences of

the density matrix as a function of ω for a few selected elements. Black solid line: occupation of

|S3〉, the transport state (∝ current). Red dashed-dotted line: occupation of state |6〉 = |↓, 0, ↓〉,
one of the basis states which forms part of (3.22). Its occupation is 1/4 as expected at ω0. Purple

dashed line: ρ3,6, i.e. the coherence between states |3〉 and |6〉 is highest at ω0.

We want to emphasize that SB can be switched on and off by tuning the frequency of Bac, which is

usually introduced to lift it, or also by changing the flux Φ at a fixed frequency ω, see Fig. 3.8 d).

In a TQD, a necessary condition for (3.22) to be eigenstates ofH′ is the equal coupling of dots 1 and

2 to Bdc, i.e. ∆1 = ∆2 ( 6= ∆3). If ∆1 6= ∆2, though, this symmetry is broken and H′B couples all parallel

to antiparallel spin states and thus to the transport state |S3〉. However, numerical results show that

even in the asymmetric case a pronounced antiresonance still appears in the current, although at

a different frequency, see Fig. 3.10. An analysis of the density matrix elements reveals that at the

antiresonance the electrons still drop into an eigenstate |Ψ′〉 of the Hamiltonian (3.21), similar to

(3.22), which includes a finite but very small contribution of antiparallel spin states. We can determine

where the antiresonance occurs by analyzing the Hamiltonian (3.21). Setting Bac = 0 but keeping ω

finite, we diagonalize this Hamiltonian analytically. Four of its eigenenergies are

Ea,b =
1
4

(
∆1 + ∆2 + 2∆3 ±

√
δ2 + 16τ2 − 4ω

)

Ec,d = −1
4

(
∆1 + ∆2 + 2∆3 ±

√
δ2 + 16τ2 − 4ω

)
, (3.23)
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3. Electron spin resonance in magnetic field driven triangular triple quantum dots

where δ = ∆1 −∆2. These eigenenergies correspond to eigenstates of the type |↓, 0, ↓〉 ± |0, ↓, ↓〉 and

|↑, 0, ↑〉 ± |0, ↑, ↑〉 (where we omit the normalization for simplicity). It is easy to see that at ω1 =
1
4 (∆1 + ∆2 + 2∆3), Ea = Ed and Eb = Ec, i.e. the eigenenergies cross as a function of ω. For finite

but small Bac � ∆ i, the crossing becomes an anticrossing, and the energies are split by an amount

∝ Bac, see Fig. 3.10 c). It is therefore at ω1 where the corresponding eigenstates |↓, 0, ↓〉 ± |0, ↓, ↓〉
and |↑, 0, ↑〉 ± |0, ↑, ↑〉 have almost the same energy, and form, induced by the field Bac, a coherent

superposition |Ψ′〉 ≈ |Ψ〉 that does not contribute to current and is ultimately responsible for the

antiresonance in the current profile. It should be noted that for three different Zeeman splittings the

position of the antiresonance as shown in Fig. 3.10 is valid only for a certain parameter range. The

interplay between Bac, τ, ∆ i and ω can become very complicated, and it is a task for future works to

analyze transport in these cases in more detail. In the plots in Fig. 3.10 we set τ ≈ ∆ i, Bac � τ, ∆ i,

and ∆ i − ∆ j < τ (i, j = 1, 2, 3).

0

I
/
Γ

∆3 ω0 ∆1

−1

4

0

ω0 ω1

Bac ! τ
E

a
,b

ω0 ω1

E
a
,d

Bac � ∆i

Figure 3.10.: Current, eigenenergies, and off-diagonal element ρ3,6 of the density matrix of the triangular

TQD for different ∆1 6= ∆2 6= ∆3. a) Density plot of the current as a function of ω and

δ = ∆1 −∆2. At δ = 0, ∆1 = ∆2 and the antiresonance occurs at ω0 (see red circle in panel b).

For δ 6= 0, however, the antiresonance is shifted, which can also be seen in panel b), where the

current is plotted vs. ω for specific values of δ, with a certain offset in order to better visualize

the different curves. c) Two eigenenergies of Htun +H′B (3.21) for δ 6= 0 and Bac � ∆ i, τ (see

Eq. 3.23): an anticrossing occurs at ω1 = 1/4(∆1 +∆2 + 2∆3) (black circle) between eigenstates

of the form |↓, 0, ↓〉 ± |0, ↓, ↓〉 and |↑, 0, ↑〉 ± |0, ↑, ↑〉, which form a coherent superposition |Ψ′〉
similar to (3.22) whose occupation gives rise to the antiresonance in the current. d) Coherence

ρ3,6 between the basis states |↑, 0, ↑〉 and |↓, 0, ↓〉 as a function of ω for δ = 0 (black solid

line) and δ 6= 0 (blue dotted line): note that for δ 6= 0, i.e. three different Zeeman splittings,

coherence between parallel spin states is as high as for δ = 0, cf. also Fig. 3.9. Parameters:

τ = 0.01, Γ = 0.001, Bac = τ/5, ∆1 = 0.013, ∆3 = 0.01001, en meV.

3.3. Conclusions

In summary, in this chapter we have presented results for electron transport through a specific con-

figuration of a triangular TQD driven by crossed dc and ac magnetic fields. For the case of only one

electron within the TQD we have analyzed the current and electron dynamics of the undriven and
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3.3. Conclusions

the driven system. In the undriven case we have calculated the current as a function of both detuning

and magnetic flux analytically, showing the formation of a dark state as well as Aharonov–Bohm

oscillations. The configuration considered here leads to asymmetric current characteristics. Electron

spin resonance conditions allow one to consider the TQD as a qubit where Rabi oscillations between

two dark states can be controlled. Both in the undriven and driven case we have shown that finite

spin scattering destroys the coherent electron trapping and allows for a finite current to flow through

the TQD. It has become clear by our analysis that TQDs in triangular configuration under dc and ac

magnetic fields exhibit rich dynamics due to the interplay of different coherent phenomena induced

by the magnetic fields.

For two extra electrons in the system the interplay of the Pauli exclusion principle and coherent

trapping is discussed in terms of the magnetic flux piercing the TQD. We have shown that, in con-

trast to the one-electron case, electrons remain trapped even for Φ/Φ0 6= n/2 due to spin blockade.

We have demonstrated that it is a generic property of magnetic ac fields to induce spin blockade

at certain frequencies in both DQDs and TQDs. Furthermore, the coherent superposition induced

by the magnetic ac field Bac constitutes a novel spin blockade state, which decouples from the field.

Its experimental realization will make it possible to infer properties of the system such as Zeeman

inhomogeneities and to manipulate spin qubits in DQDs and TQDs. It opens new perspectives for

manipulating spin transport properties, thereby providing possibilities for designing spintronic de-

vices.
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4. Spin-polarized currents through double and

triple quantum dots induced by ac magnetic

fields

A key aim in spintronics is the realization of spin-based quantum information devices, where coher-

ent electron-spin manipulation is a fundamental issue [27, 128, 124]. In semiconductor quantum dots

coherent electron-spin manipulation can be realized by electron spin resonance (ESR), where an oscil-

lating magnetic field is applied to the sample in order to rotate the electron spin [26, 129, 71, 62, 64]

(see chapter 1). Together with ESR, electron-dipole spin-resonance techniques – which combine ac

electric fields with spin-orbit interaction [33] or with a dc magnetic field gradient [32, 72] – have been

implemented in order to measure coherent rotations of one single electron spin in double quantum

dots (DQDs) [26, 33]. Coherent spin rotations of one single spin have also been proposed theoretically

in triple quantum dots (TQDs) under crossed ac and dc magnetic fields [100].

In ESR experiments in quantum dot arrays, an important issue is to individually address the elec-

tron spin in each quantum dot. To this end, it has been proposed to tune the Zeeman splitting in

order to manipulate the electron spin independently in each dot [130]. The Zeeman splitting in a

quantum dot is determined by the intensity of the applied dc magnetic field and the electron g-factor,

∆Z = gµBBdc. Different Zeeman splittings can occur in quantum dot arrays either when the dots have

different g-factors or by applying different magnetic fields to each quantum dot. Both alternatives

have been realized experimentally very recently: vertical DQDs made out of different materials – e.g.,

GaAs and InGaAs – show different g-factors [125]. On the other hand, in a sample with a spatially

homogeneous g-factor, an additional microferromagnet placed near the quantum dot array creates a

different external magnetic field Bdc in each dot [72].

In this chapter we are interested in single electron manipulation, and we theoretically study trans-

port both through DQDs and TQDs. We calculate the current and current spin polarization through a

DQD and a linear TQD array exposed to crossed dc and ac magnetic fields. We consider an inhomo-

geneous dc magnetic field that produces different Zeeman splittings in the dots while the g- factor

is the same in both dots. For DQDs a regime is considered where the system is occupied either by

zero or one electron. For TQDs the corresponding features are discussed for one or two electrons

in the system. With the single electron-spin levels resolved in each quantum dot, interdot tunneling

is governed by definite spin-selection rules, i.e. tunneling from one dot to the other is only possible

when two equal spin levels are aligned. However, when an ac magnetic field is applied, it rotates

the spin and allows spin-flip processes along the tunneling, which can lead to new features in the
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4. Spin-polarized currents through double and triple quantum dots induced by ac magnetic fields

current. This effect of an ac magnetic field has been explored previously in a DQD [26], where the

authors report on single electron-spin rotations by using a combination of an ac magnetic field and

sharp electric pulses. Here, as will be discussed in more detail below, we will focus our attention on

the polarizing effect of an ac field, i.e. we will show that the combination of inhomogeneous dc and

ac magnetic fields in DQDs and TQDs allows the creation of spin-polarized currents and thus the

design of spin-filters and spin-inverters.

4.1. Model

We consider quantum dot arrays as shown schematically in Fig. 4.1. The dots are coupled to each

Figure 4.1.: Schematic diagram of a DQD and TQD exposed to crossed dc (Bdc) and ac (Bac) magnetic fields.

The electron spin is rotated once the ac frequency matches the Zeeman splitting in one of

the dots. In the TQD, one electron is confined in the left dot, so that only an electron with

opposite spin can enter the TQD. The dots are coupled coherently by tunneling amplitudes tij

and incoherently to leads by rates ΓL and ΓR.

other coherently by a tunneling amplitude tij and are weakly connected to source and drain contacts

by rates ΓL and ΓR.

The total Hamiltonian reads

H = HDots +Htun +HB(t) +HT +HLeads, (4.1)

where the individual terms are

HDots = ∑
iσ

ξi ĉ†
iσ ĉiσ + ∑

i
Uin̂i↑n̂i↓ +

1
2 ∑

i 6=j
Vn̂in̂j

Htun = −∑
ijσ

tij(ĉ†
iσ ĉjσ + ĉ†

jσ ĉiσ)

HLeads = ∑
l∈L,R,kσ

εlk d̂†
lkσ d̂lkσ (4.2)

HT = ∑
l∈L,R,kσ

γl(d̂†
lkσ ĉlσ + ĉ†

lσ d̂lkσ).

The first term, HDots, describes an isolated array of quantum dots with electrons coupled electro-

statically. Here, ξiσ stands for the single electron energy level located in dot i, and Ui and V are the
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4.1. Model

intradot and the interdot Coulomb repulsion, respectively. Htun describes the coherent tunneling be-

tween the dots, which in the case of a DQD is given by t12 and in a TQD by t12 and t23. The quantum

dot array is coupled to leads, which are described by HLeads, and the coupling of the array to the

leads is given by HT. The magnetic field Hamiltonian consists of two parts coming from a dc field

Bdc in z-direction and an ac field Bac applied in xy-direction

HB(t) = ∑
i

{
∆ iSzi + Bac[cos(ωt)Sxi + sin(ωt)Syi]

}
, (4.3)

being Si =
1
2 ∑σσ′ ĉ†

iσσσσ′ ĉiσ′ the spin operator of the ith dot, σσ the Pauli spin matrices, and the sum

running over i = 1, 2 for the DQD and i = 1, 2, 3 for the TQD.

Bdc has a different intensity in each dot and thus produces different Zeeman splittings ∆ i = gµBdc,i,

whereas we consider the dots to have equal g-factor. Bac induces spin rotations when its frequency

fulfills the resonance condition ω = ∆ i. The time-dependent Hamiltonian can be transformed by

means of a unitary transformation U(t) = e−iωt ∑i Szi into the rotating reference frame [71, 93]. The

resulting time-independent Hamiltonian is then

HB = ∑
i
[(∆ i −ω)Szi + BacSxi] . (4.4)

In order to calculate the current through the system, we make use of the density matrix formalism

and solve the equations of motion for the reduced density matrix, see Eq. (2.86) (chapter 2),

ρ̇mn(t) = −i〈m|[HDots +Htun +HB(t), ρ]|n〉+ ∑
k 6=n

(Γnkρkk − Γknρnn)δmn −Λmnρmn(1− δmn). (4.5)

We consider strong Coulomb repulsion, so that the DQD can be occupied with at most one extra

electron. It is then described by a basis of five states, namely: |0, 0〉, |↑, 0〉, |↓, 0〉, |0, ↑〉, |0, ↓〉. With a

bias applied from left to right, current I flows whenever dot 2 is occupied,

IDQD = Γ(ρ|0,↑〉 + ρ|0,↓〉), (4.6)

where Γ = ΓL,R is the tunneling rate to the right lead. The spin-resolved currents are then I↑ = Γρ|0,↑〉
and I↓ = Γρ|0,↓〉. In the TQD, one electron is confined in the left dot (dot 1, see Fig. 4.1), and the

chemical potential of the left lead is arranged in such a way that only an electron with the opposite

spin can enter the TQD. Considering here strong Coulomb repulsion as well, we allow only one

additional electron to enter the TQD. The full two-electron basis for the TQD contains 15 two-electron

states and one zero- and six one-electron states. For the scope of this work it is sufficient to look at

transport around the transitions (2, 0, 0) ↔ (1, 1, 0) ↔ (1, 0, 1) → (1, 0, 0). The number of relevant

basis states is then reduced to 11, which are (a) one-electron states: |↑, 0, 0〉, |↓, 0, 0〉, (b) two-electron

states: |↑, ↑, 0〉, |↓, ↑, 0〉, |↑, ↓, 0〉, |↓, ↓, 0〉, |↑, 0, ↑〉, |↓, 0, ↑〉, |↑, 0, ↓〉, |↓, 0, ↓〉, and |↑↓, 0, 0〉. The current

from left to right through the TQD is calculated summing over all states that include an electron in

the right dot (dot 3)

ITQD = Γ(ρ|↑,0,↑〉 + ρ|↓,0,↑〉 + ρ|↑,0,↓〉 + ρ|↓,0,↓〉). (4.7)

The spin-resolved currents are then

I↑ = Γ(ρ|↑,0,↑〉 + ρ|↓,0,↑〉)

I↓ = Γ(ρ|↑,0,↓〉 + ρ|↓,0,↓〉). (4.8)
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Spin polarized currents in g-factor engineered Serial Quantum Dot Arrays
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We present a Double Quantum Dot System that acts as a spin inverter when exposed to crossed
dc and ac magnetic fields. Without the need of ferromagnetic leads, a spin-polarized current is
created making use of electron spin resonance. We analyze the inversion strength of the device
towards changing of tunneling amplitude, field intensity and field frequency, as well as the influence
of finite spin relaxation times.

PACS numbers:

ε = 0

I. MODEL

We consider a double quantum dot system as shown
schematically in Fig. 1. The dots are coupled to each
other coherently by a tunneling amplitude T and con-
nected to source and drain contacts. The total Hamil-
tonian of the system is H(t) = HDQD + HT + HL +
Hleads. HDQD describes the uncoupled DQD, HDQD =∑

iσ εiĉ
†
iσ ĉiσ+

∑
i Uin̂i↑n̂i↓+V n̂in̂j , HT the coherent tun-

neling between the dots, HT = − ∑
ijσ(Tij ĉ

†
iσ ĉjσ + h.c.),

HL describes the coupling of the DQD to the leads,

HL =
∑

l∈L,Rkσ(γld̂
†
lkσ ĉlσ + h.c.), and Hleads the leads

themselves, Hleads =
∑

lkσ εlkd̂†
lkσ d̂lkσ . εi is the energy

of an electron located in dot i, Ui is the intra-dot and V
the inter-dot Coulomb repulsion.

The dynamics of the system is given by the time evo-
lution of the reduced density matrix elements whose
equations of motion read within the Born-Markov-
approximation:

ρ̇ln(t) = −i 〈l|[HTQD + Ht, ρ]|n〉
+

∑

k $=n

(Γnkρkk − Γknρnn)δln

− Λlnρln(1 − δln). (1)

The commutator accounts for the coherent dynamics in
the DQD, Γln are the transition rates from state |n〉 to
state |l〉 induced by the coupling to the leads — being
Γi = 2π|γi|2 when they occur through lead i ∈ L, R
— and the eventual spin scattering processes (intro-
duced phenomenologically by the spin relaxation rate
T −1

1 = WSF. Decoherence is considered by the terms
Λln = 1

2

∑
k(Γkl + Γkn) + T −1

2 , being T2 = 0.1T1 the
intrinsic spin decoherence time.

In this paper, we will explain spin current polarization
by means of crossed dc magnetic fields in double quantum
dots.

FIG. 1: Schematic diagram of a linear DQD with one extra
electron. The 2 dots are coupled coherently by a tunneling
amplitude T and incoherently to leads by rates ΓL,R.

II. RESULTS

III. Bx = 0

In order to understand the polarization mechanism,
we need to explain first the transport behavior through
a DQD with different Zeeman splittings, see also Huang
et al.. We consider a DQD with only one extra electron,
such that our basis consists of 5 states, which are: |0, 0〉,
| ↑, 0〉, | ↓, 0〉, |0, ↑〉, |0, ↓〉.

We apply now a magnetic field in z-direction that pro-
duces a Zeeman splitting ∆z, which we consider to be
very different in the two dots: ∆1 '= ∆2. Let us rename
δ = ∆2 − ∆1. The tunnel coupling between the dots
preserves spin, hence there is no coupling between the
↑ and ↓ state. As was already pointed out by Huang et
al.1, a spin bottleneck can occur in the transport through
the DQD, if an entering electron occupies a level in dot
1 that is very off-resonant from the corresponding spin-
level in dot 2. Since spin is preserved, a spin blockade
or bottleneck situation arises, which is only relieved by
a finite level broadening and coupling to the leads. The

0
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I
/Γ

−0.1 0 0.1

�

δ = 0
δ = − 1

2∆1

δ = ∆1

δ = 2∆1

Figure 4.2.: Current versus detuning in an undriven DQD with different Zeeman splittings. Maximal current I

flows when the detuning ε = 0, and this central current decreases for increasing δ, since parallel

spin levels are then more separate. Parameters (e = h̄ = 1, in meV): t12 = 0.005, Γ = 0.001,

∆1 = 0.025 (Bdc ≈ 1T), and the current I is normalized in units of the hopping Γ to the leads.

The spin polarization of the current is defined as

P =
I↑ − I↓
I↑ + I↓

, (4.9)

where I↑(I↓) is the ↑(↓)-current.

4.2. Undriven case: Bac = 0

Let us now start by describing transport through a DQD (see Fig. 4.1, upper panel). In this section,

within our theoretical framework, we reproduce the results recently reported by Huang et al. [125].

The authors have shown that in transport through DQDs with different Zeeman splittings a so-called

spin bottleneck situation can occur. When either ↑- or ↓-levels are aligned, transport is suppressed,

whereas the current is largest in the configuration where the interdot level detuning ε is set to half

the Zeeman energy difference. Applying a dc magnetic field in z direction produces a Zeeman split-

ting ∆Z, which we consider inhomogeneous: ∆1 6= ∆2 and δ = ∆2 − ∆1. If an electron tunnels onto

the ↑(↓)-level in dot 1 that is far from resonance from the corresponding spin level in dot 2, a spin-

blockade or bottleneck situation arises. Spin is conserved at tunneling, so the electron remains in dot

1 without being able to tunnel to dot 2. This blockade is only relieved by a finite level broadening and

by coupling to the leads. The maximal current occurs then for the most symmetric level arrangement,

that is when neither ↑- nor ↓-levels are in resonance, but when they are symmetrically placed around

each other (see Fig. 4.2). Increasing the Zeeman splitting difference δ maintains the bottleneck situa-

tion, but the central current decreases, since it is a consequence of the level hybridization of the same

spin levels due to tunneling. Hence, the further separated they are, the less current will flow. Notice

that the current only depends on the Zeeman splitting difference δ and not on the absolute values.

Interdot tunneling conserves spin, and the current through the sample is completely unpolarized.

In ac magnetic fields, however, the electron spin undergoes rotations, and the spin- selection rules
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4.3. Driven case: Bac 6= 0

thus do not apply any more. For certain detunings this will lead to spin-polarized currents, as we

will see in the next section.

4.3. Driven case: Bac 6= 0

4.3.1. Resonance condition: ω = ∆1

With a circularly polarized ac magnetic field Bac applied to the DQD, the transformed Hamiltonian

H0 = HDots +Htun +HB reads

H0 =




−∆1
2 + ω

2
Bac
2 −t12 0

Bac
2

∆1
2 − ω

2 0 −t12

−t12 0 −∆2
2 + ω

2 − ε Bac
2

0 −t12
Bac
2

∆2
2 − ω

2 − ε




, (4.10)

where ε is the detuning between dot 1 and dot 2.

For the ease of its analysis, the Hamiltonian Eq. (4.10) can be seen as a pair of two-level systems

coupled by t12. In a two-level system the important physical quantities are the energy difference

(detuning) of the two levels and the coupling between them. In the present case, note that t12 couples

only levels with the same spin, which are detuned by ±δ/2 + ε, where δ = ∆2 − ∆1. Moreover,

within each dot the different spin levels are coupled by Bac/2 and detuned by ω −∆1,2, see diagonal

elements in Eq. (4.10). Therefore, depending on the ac frequency ω, the energy levels in either left

or right dot are renormalized to the same energy. In the other dot, however, since there ω ≷ ∆ i, the

renormalized splitting between the spin levels becomes smaller compared to the field-free splitting

∆ i, when ω < 2∆ i or bigger for ω > 2∆ i. We will focus first on the resonance condition ω = ∆1, as it

is the most relevant here.

In order to understand the effect of Bac on the system, let us look at the eigenstates of the isolated

dots 1 and 2. In dot 1, since ω = ∆1, the eigenstates are |ψ1〉± = 1√
2
(| ↑1〉 ± | ↓1〉) and their eigenen-

ergies differ by Bac. In dot 2, however, since it is out of resonance, the eigenstates depend both on δ

and Bac:

|ψ2〉+ =
1
N

[
Bac| ↑2〉+

(
δ +

√
B2

ac + δ2
)
| ↓2〉

]

|ψ2〉− =
1
N

[(
δ +

√
B2

ac + δ2
)
| ↑2〉 − Bac| ↓2〉

]
(4.11)

Here N =
√

2
√

B2
ac + δ2 + δ

√
B2

ac + δ2 is the normalization factor. The eigenenergies associated to

these states are separated by
√

B2
ac + δ2. One can straightforwardly show that for Bac � δ the eigen-

states in dot 2 are almost pure ↑(↓) states, i.e. the spin-mixing is weak. Regarding the detuning ε, we

distinguish three different level arrangements, see Fig. 4.3, upper panel: In case I, the ↑- and ↓-levels

in dot 1 are aligned with the ↑-level in dot 2, case II is the symmetric situation, and in case III the

levels in dot 1 are in resonance with the ↓-level in dot 2.

In Fig. 4.3, lower panels, we plot the current I through the driven DQD as a function of the level

detuning ε. It shows two peaks at ε ≈ ± δ
2 . At these lateral peaks, – corresponding to case I and III
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We present a Double Quantum Dot System that acts as a spin inverter when exposed to crossed
dc and ac magnetic fields. Without the need of ferromagnetic leads, a spin-polarized current is
created making use of electron spin resonance. We analyze the inversion strength of the device
towards changing of tunneling amplitude, field intensity and field frequency, as well as the influence
of finite spin relaxation times.

PACS numbers:

ε = 0

I. MODEL

We consider a double quantum dot system as shown
schematically in Fig. 1. The dots are coupled to each
other coherently by a tunneling amplitude T and con-
nected to source and drain contacts. The total Hamil-
tonian of the system is H(t) = HDQD + HT + HL +
Hleads. HDQD describes the uncoupled DQD, HDQD =∑

iσ εiĉ
†
iσ ĉiσ+

∑
i Uin̂i↑n̂i↓+V n̂in̂j , HT the coherent tun-

neling between the dots, HT = − ∑
ijσ(Tij ĉ

†
iσ ĉjσ + h.c.),

HL describes the coupling of the DQD to the leads,

HL =
∑

l∈L,Rkσ(γld̂
†
lkσ ĉlσ + h.c.), and Hleads the leads

themselves, Hleads =
∑

lkσ εlkd̂†
lkσ d̂lkσ . εi is the energy

of an electron located in dot i, Ui is the intra-dot and V
the inter-dot Coulomb repulsion.

The dynamics of the system is given by the time evo-
lution of the reduced density matrix elements whose
equations of motion read within the Born-Markov-
approximation:

ρ̇ln(t) = −i 〈l|[HTQD + Ht, ρ]|n〉
+

∑

k $=n

(Γnkρkk − Γknρnn)δln

− Λlnρln(1 − δln). (1)

The commutator accounts for the coherent dynamics in
the DQD, Γln are the transition rates from state |n〉 to
state |l〉 induced by the coupling to the leads — being
Γi = 2π|γi|2 when they occur through lead i ∈ L, R
— and the eventual spin scattering processes (intro-
duced phenomenologically by the spin relaxation rate
T −1

1 = WSF. Decoherence is considered by the terms
Λln = 1

2

∑
k(Γkl + Γkn) + T −1

2 , being T2 = 0.1T1 the
intrinsic spin decoherence time.

In this paper, we will explain spin current polarization
by means of crossed dc magnetic fields in double quantum
dots.

FIG. 1: Schematic diagram of a linear DQD with one extra
electron. The 2 dots are coupled coherently by a tunneling
amplitude T and incoherently to leads by rates ΓL,R.

II. RESULTS

III. Bx = 0

In order to understand the polarization mechanism,
we need to explain first the transport behavior through
a DQD with different Zeeman splittings, see also Huang
et al.. We consider a DQD with only one extra electron,
such that our basis consists of 5 states, which are: |0, 0〉,
| ↑, 0〉, | ↓, 0〉, |0, ↑〉, |0, ↓〉.

We apply now a magnetic field in z-direction that pro-
duces a Zeeman splitting ∆z, which we consider to be
very different in the two dots: ∆1 '= ∆2. Let us rename
δ = ∆2 − ∆1. The tunnel coupling between the dots
preserves spin, hence there is no coupling between the
↑ and ↓ state. As was already pointed out by Huang et
al.1, a spin bottleneck can occur in the transport through
the DQD, if an entering electron occupies a level in dot
1 that is very off-resonant from the corresponding spin-
level in dot 2. Since spin is preserved, a spin blockade
or bottleneck situation arises, which is only relieved by
a finite level broadening and coupling to the leads. The

I II III
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−0.1 0 0.1
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/
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Figure 4.3.: Current as a function of detuning through a DQD driven by an ac magnetic field Bac. Upper panel:

Energy level distribution for different detunings ε. When ω = ∆1, the levels in dot 1 renormalize

to the same energy (their eigenenergies are split by Bac, see text), and the levels in dot 2 get closer

or farther apart than in the undriven case. Middle panel: Spin-resolved currents I↑ and I↓ vs.

detuning ε. At ε ≈ ± δ
2 , the current is strongly ↑(↓)-polarized, compared to the undriven current

I0. Lower panel: Polarization P versus the detuning ε. Note the strong polarization (P ≈ ±1)

around ε ≈ ± δ
2 . Parameters in meV (e = h̄ = 1): Γ = 0.001, t12 = 0.005, Bac = 0.005 (≈ 0.2T),

∆1 = 0.025 (Bz1 ≈ 1T), ∆2 = 0.1.

–, the current is strongly spin-polarized: an electron in dot 1 is rotated by the ac field, which breaks

the spin bottleneck, and the electron can thus tunnel to dot 2 where the spin levels are almost pure.

Speaking in terms of the rotating field, the ac frequency in dot 2 is far off resonance and cannot

rotate the electron there. We thus arrive at one of the main results of this chapter: under the condition

ω = ∆1, dot 2 acts as a spin-filter, and it depends on ε, whether it filters ↑- or ↓-electrons. Notice that

the current I only depends on δ and not on the absolute values ∆1,2.

For the purpose of a spin-filter, one has to answer the question as to how reliable the mechanism

is and how it depends on the different system parameters. Both strong polarization and measurable

currents are desirable. Here we discuss the sensibility of the spin-filtering mechanism towards the

interplay between tunneling t12, ac field intensity Bac and Zeeman splitting difference δ. In order to

get more insight into the problem, we obtain the current I analytically for certain limits: at symmetric

detuning ε = 0 (case II), the current is unpolarized and reads

I0

Γ
=

4t2
12(4B2

ac + Γ2 + δ2)

4B2
ac(Γ2 + 10t2

12) + (Γ2 + δ2)(Γ2 + 10t2
12 + δ2)

. (4.12)

I0 decreases for large δ and increases with growing Bac. In the limit of very large t12 the total current

60



4.3. Driven case: Bac 6= 0
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Figure 4.4.: Current polarization P as a function of different system parameters. Polarization P versus t12 (left),

Bac (middle) and δ (right) in ac-driven DQD at detuning ε = ± δ
2 for ω = ∆1: Left and middle

panel: For both small t12 and Bac, spin-polarized current flows. |P| becomes smaller as Bac and

t12 grow. Right panel: P is zero at δ = 0 and increases with δ. Parameters see Fig. 4.3.

I saturates to I
Γ (t12 → ∞) = 2

5 . For the limiting cases of Bac we get

lim
Bac→0

I↑,↓
eΓ

=
2t2

12
Γ2 + 10t2

12 + 4ε2 + δ2
(4.13)

lim
Bac→∞

I↑,↓
eΓ

=
2t2

12
Γ2 + 10t2

12 + 4ε2
. (4.14)

For Bac → 0, i.e. in the undriven case, the current is unpolarized and maximal at ε = 0 and de-

creases for growing δ, see Eq. (4.13). Notice that in the opposite limit, i.e. for large Bac (Eq. (4.14)), the

current is the same as in the undriven case for δ = 0. In this case, the difference of the eigenenergies

in each isolated dot becomes Bac in both dots, and the spins are mixed almost equally strongly. The

polarized side-peaks therefore disappear in favor of the unpolarized central current peak, see also

Eq. (4.12). Already with t12 and Bac of the order of δ, we find that the current is practically unpolar-

ized. Hence both t12 and Bac have to be sufficiently small to ensure strong current spin polarization.

It can be shown numerically that for small t12 and Bac the position ε of the side-peaks is ε ≈ ± δ
2 .

The larger δ is, the further separated will be the peaks corresponding to I↑ and I↓. As a consequence

also the polarization is stronger for large δ, since the overlap of the spin-resolved currents tends to

zero.

In order to illustrate the effect of tunneling t12, of ac field intensity Bac and of Zeeman splitting

difference δ on the polarization P, we calculate P at ε = ± δ
2 (Fig. 4.4). In the left and middle panel

one can appreciate that for both small t12 and Bac, P ≈ ±1, and it becomes smaller as t12 and Bac

increase. The right panel in Fig. 4.4 shows P for increasing δ: the larger δ, the stronger P.

4.3.2. Resonance condition: ω = ∆2

When the ac field, however, fulfills the resonance condition ω = ∆2, the energy renormalization due

to ω is reversed in the two dots as compared to ω = ∆1, and now the energy levels in dot 2 become

degenerate. The analytical limits described for ω = ∆1 hold here as well: for large t12 and Bac the

current becomes unpolarized, and at ε = 0 it follows Eq. (4.12). However, out of these limits, transport
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4. Spin-polarized currents through double and triple quantum dots induced by ac magnetic fields

Figure 4.5.: Density plots of the current I versus detuning ε and Zeeman splitting difference δ. Left panel: ω =

∆1. For growing δ and ε, the current I splits off in two branches (light-colored regions), which

are spin-polarized in opposite direction (cf. previous section). Right panel: ω = ∆2. Current flows

only around δ = ε = 0 (light-colored region); P = 0. Parameters see Fig. 4.3.

behavior here is very different from the case ω = ∆1. At detunings ε ≈ ± δ
2 , spin bottleneck occurs

similar as has been shown in the undriven case. Since dot 1 is out of resonance, the ac field cannot

rotate the electron there, hence tunneling to dot 2 is strongly suppressed. The maximal (unpolarized)

current then flows for ε = 0, and no side-peaks appear.

In summary, at ω ≈ ∆1, dot 2 can always act as a spin-filter. The mixing of ↑- and ↓-states due to

the ac field is always stronger in dot 1 than in dot 2, no matter if ∆1 ≷ ∆2. The ac field mixes ↑- and

↓-states in dot 1, so that at ε ≈ ± δ
2 the electron tunnels onto the almost pure ↑- or ↓-levels in dot

2, which thus filters the spin and gives rise to spin-polarized currents. This is opposed to the case

ω = ∆2: here, due to spin bottleneck, tunneling to dot 2 is only possible around ε = 0 where the

current is totally unpolarized. This behavior is shown in Fig. 4.5 in two density plots of the current I

versus detuning ε and δ = ∆2−∆1, for the two cases ω = ∆1 (left) and ω = ∆2 (right). In the left plot

one can clearly see the formation of the two spin-polarized current branches which move far apart

as δ and ε grow. In contrast to that, the right plot shows that current only flows for both ε = 0 and

δ = 0, and no spin-polarized side-peaks arise.

4.3.3. Non-resonant driving

If the ac frequency does not match any of the Zeeman splittings ∆1,2, the effective finite Zeeman

splittings are ∆∗1,2 = ∆1,2 − ω. It is easy to prove that for ω = ∆1+∆2
2 = ∆s there is a “symmetric”

situation, namely ∆∗1 = ∆1−∆2
2 , and ∆∗2 = −∆∗1. In this case, the mixing of the spin-states within each

dot is equal in both dots, or in other words, both dots are equally far from resonance with the ac field.

Regarding interdot tunneling, the levels are resonant at ε = 0, giving rise to one unpolarized current-

peak. At all other detunings ε, spin bottleneck avoids the formation of polarized side-peaks. In Fig. 4.6

we show the total current I (upper left) and spin-resolved currents (upper middle, upper right) vs.

detuning ε and frequency ω, for ∆2 > ∆1. In order to appreciate the different current intensities

we plot in the lower panel the current versus the detuning ε for the three relevant frequencies ω =

62



4.3. Driven case: Bac 6= 0

∆1, ∆2, ∆s. Note the regimes for ω as discussed in the previous sections: for ω = ∆2, spin bottleneck

only allows for a very weak and unpolarized current to flow around ε = 0. When the frequency

matches the symmetric value ∆s, at ε = 0 one sharp and unpolarized current peak arises as predicted.

Further decreasing of the frequency splits the current into two branches, which are enhanced and

broadened as ω ≈ ∆1. The sidearms correspond to either ↑ (middle panel) or ↓ (right panel) electrons.

For any off-resonant frequency, the current depends not only on δ as in the resonant case, but also on

the absolute values ∆1,2. Hence the position of the side-peaks is not ε ≈ ± δ
2 , but follows a different

behavior. This explains the kink in Fig. 4.6 (upper panel) around ω = ∆1. We want to stress that

0
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Figure 4.6.: Plots of the total current and spin-resolved currents in a DQD for different resonance conditions.

Upper panel: Density plots of the total current I (left) and spin-resolved currents I↑ (middle) and

I↓ (right) as a function of detuning ε and ac frequency ω for ∆1 < ∆2. The lighter the color,

the higher the current. Note that only very low current flows in the frequency range ω > ∆s

around ε = 0. At ω = ∆s and ε = 0, one sharp unpolarized peak arises. Lowering ω further, the

current splits into two arms and successively grows, until around ω = ∆1 current is strongly

enhanced and polarized, since the sidearms stem from either ↑- or ↓-electrons, see middle and

right upper panels. Lower panel: Current versus ε for the three different situations ω = ∆1,

ω = ∆2, and ω = ∆s. One can appreciate the big difference in the current intensities: only for

ω = ∆1, polarized sidepeaks arise. For ω = ∆2 current flows weakly around ε = 0 and for ∆s,

only at ε = 0 a sharp current peak appears. Parameters see Fig. 4.3.

in the ac-driven DQD spin-polarized currents can be achieved both for ∆1 > ∆2 or ∆1 < ∆2, since

by varying the frequency ω one can always tune one Zeeman splitting to be smaller than the other,

as schematically indicated by the renormalization of the energy levels due to ω (see Fig. 4.3, upper

panel). In contrast to that, a static magnetic field set-up – for example, considering dc magnetic fields

in x-direction [125] – would only produce polarized currents for ∆1 < ∆2.
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4. Spin-polarized currents through double and triple quantum dots induced by ac magnetic fields

Figure 4.7.: Total current and spin-resolved currents vs. two energy levels in a TQD exposed to crossed Bdc

and Bac. In all plots: ω = ∆2 and ∆1 = ∆3 > ∆2. Four relevant level configurations can occur

when varying ξ2 and ξ3: in cases I and II, current through the TQD is polarized in one spin-

direction, and in cases III and IV, the electron spin is inverted. In order not to overload the

figure, we indicate only the spins of the incoming and outgoing electrons, but note that always

one electron is confined in dot 1, cf. Fig. 4.1. Parameters: Γ = 0.01, t12, 23 = 0.01, Bac = 0.01

(≈ 0.4T), ∆1 = ∆3 = 7∆2, ∆2 = 0.025 (Bdc ≈ 1T), U = 1.0, ξ1 = 0.1, all units in meV.

4.3.4. A triple quantum dot as spin-inverter

Now we want to implement the spintronic functionality of the spin-filter device towards a spin-

inverter, and to this end we consider a TQD. Our goal is to produce spin-polarized incoming current

Iin and oppositely spin-polarized outgoing current Iout.

We consider the TQD in a regime where only 2 electrons can be in the TQD at a time, and one

electron is confined electrostatically in dot 1 (cf. Fig. 4.1, lower panel). This confinement is necessary

to introduce spin correlations in the dot, so that only an electron with opposite spin can enter the TQD.

The incoming current is then either ↑- or ↓-polarized, depending on the position of the energy levels

in the adjacent dot. The ac field frequency ω is in resonance with the central dot (dot 2), ω = ∆2, in

order for the right dot (dot 3) to act as the filter dot. The TQD is here operated around the resonances

(2, 0, 0) ↔ (1, 1, 0) ↔ (1, 0, 1). For simplicity, we restrict the discussion to the case where the Zeeman

splittings are ∆1 = ∆3 > ∆2, although this condition is not necessary, as long as ∆1,3 6= ∆2.

From the previous sections we already know that, depending on the detuning, the dot connected to

the drain can act as ↑- or ↓-filter. In a TQD there is one more degree of freedom compared to the DQD,

regarding the detuning between the dot levels. Without loss of general validity, we can fix the energy

level of dot 1 and move the energy levels of dot 2 and 3 (which is experimentally realized by applying
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gate voltages to the corresponding dots). Under these conditions, there are then four relevant energy

level configurations, which are shown in Fig. 4.7, lower panel. In two of the configurations (I and II),

the TQD acts as a spin-polarizer, and in the other two (III and IV) the electron spin is inverted. We

hereby arrive at another important result of our work: a TQD can be tuned as both spin-polarizer and

spin-inverter by confining one electron in the left dot and adjusting the gate voltages at two of the

three dots. Then electrons coming from the left lead can only enter with a distinct spin-polarization

that depends on the level position of the central dot. As the magnetic field Bac is turned on with

frequency ω = ∆2, the electron spin coming from dot 1 is rotated in dot 2, whereas dot 1 and dot

3 due to their different Zeeman splittings are far off resonance from the ac field. Dot 3 then acts as

spin-filter and, depending on the relative position ε of its energy levels with respect to dot 2, a ↑- or

↓-polarized current is produced, similar as it happens in the DQD described in the previous sections.

We plot the total Itotal and spin-resolved currents I↑ and I↓ as functions of the energy levels ξ2,3

of dot 2 and dot 3 in Fig. 4.7, together with sketches of the corresponding energy level distribution.

In situations I and IV, dot 2 is energetically in resonance with the ↑-level in dot 1. Therefore only

↑-electrons coming from the left lead will be able to tunnel to dot 2. Here they are inverted due to

ω = ∆2, where the renormalized energy levels have been depicted schematically in the same way

as has been done for the DQD. It depends then on the level position of dot 3, whether the outgoing

current is spin-up (case I) or spin-down (case IV) polarized. An analogous situation occurs for cases

II and III: the energy level of dot 2 is positioned in such a way that only ↓-electrons can tunnel from

dot 1 to dot 2. Again, after rotation due to the ac field in dot 2, in dot 3 the spin is filtered without

inversion (case II) or inverted (case III).

4.4. Conclusions

In this chapter we have analyzed spin current polarization in transport, both through a DQD with one

extra electron and through a TQD with two extra electrons in the system. The quantum dot arrays are

subject to two different external magnetic fields: an inhomogeneous dc field which produces different

Zeeman splittings ∆Z in the dots, and a time-dependent ac field that rotates the electron spin in one

dot, if the resonance condition ω = ∆Z is fulfilled. For the DQD we have analyzed both off-resonance

and resonance conditions of the ac field with each of the Zeeman splittings. Our results show that ac

magnetic fields produce strongly spin-polarized current through a DQD, depending on the detuning

of the energy levels in the dots and on the resonance conditions.

Finally, we have proposed a TQD in series as both spin-polarizer and spin-inverter. As in a DQD,

in a TQD different Zeeman splittings in the sample combined with a resonant ac frequency give way

to spin-polarized currents. In addition, spin-polarized incoming current can be achieved, and thus

the spin-polarizing mechanism can be extended to a spin-inversion mechanism. Our results show

that dc and ac magnetic fields combined with gate voltages allow one to manipulate the current spin

polarization through DQDs and TQDs, which are then able to work as a spin-filter and spin-inverter.

In spintronic devices at the nanometer scale an environment of nuclei introduces additional spin-

flip processes that can lower the efficiency of the desired mechanism. In our setup, we do not expect
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spin-flip processes due to hyperfine interaction to influence drastically on the results because hy-

perfine spin-flip times are usually much longer than typical tunneling times in quantum-dot arrays,

especially in finite magnetic fields where the hyperfine interaction is an inelastic process. Therefore

the systems presented in this work are promising candidates for spintronic devices.
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5. Bipolar spin blockade in triple quantum

dots

Transport experiments in double quantum dots (DQD) have revealed a phenomenon called spin block-

ade (see also chapter 1) [9, 39]: it occurs when, due to the confinement of an electron in the dot closest

to the drain, another electron with the same spin cannot pass through this dot as a consequence

of Pauli’s exclusion principle. To operate a quantum dot array in the spin blockade regime is a ba-

sis for spin readout of a qubit state due to spin-to-charge conversion. The archetypal spin blockade

transport signature in DQDs takes the form of a rectified current. Spin qubits based on interacting

spins in DQDs have been demonstrated [131, 31, 132], and currently more complex spin qubit circuits

such as triple quantum dots (TQDs) are being developed [77, 109, 110]. There the coherent control of

three-spin qubit has been achieved [114, 115]. In a spin blockade situation in DQDs, leakage currents

have been observed and attributed to hyperfine interaction, i.e. to the interaction between the spin of

conduction electrons and nuclei spins in the host material [30] (see chapter 1). Spin-flip processes can

occur between one electron and one nuclear spin, thus contributing to remove the occupation of spin

blockaded states. Hyperfine interaction induces Overhauser fields that give rise to an inhomogeneous

magnetic field Bz,nucl. The inhomogeneous nuclear field Bz,nucl mixes the singlet and triplet states of

spins in neighboring dots. Once an external magnetic field bigger than the difference between Over-

hauser fields Bz,nucl and exchange coupling is applied, triplet states ↑↑ and ↓↓ are no longer mixed

with singlet states, and therefore leakage current is suppressed as well by spin blockade.

In this chapter we show both experimental results (obtained by Sachrajda et al.) and theoretical

results for spin blockade in transport through a linear TQD. The spin blockade becomes bipolar with

current suppressed in both bias directions. The blockade is lifted by the hyperfine interaction via the

formation of coherent superpositions of states. The responsible coherent state transfers charge non-

intuitively from one end of the triple dot circuit to the other without involving the intermediate site,

which suggests that new quantum coherent mechanisms are relevant in TQDs as compared to DQDs.

5.1. Model

The TQD is prepared in a similar way as a DQD in the spin blockade regime: an electron is confined

electrostatically both in the dot connected to the source and in the dot close to the drain, see Fig. 5.1.

The charge stability diagram of a TQD prepared in such a way has been measured by Granger et al.

[113]. There six quadruple points, – i.e. six different points with four resonant charge configurations

–, have been found, around which transport is possible. Out of these six points, we are interested here
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5. Bipolar spin blockade in triple quantum dots§3.4. Transport à travers la triple bôıte quantique 69

Figure 3.12 – Mesures en détection de charge et transport provenant de la figure 3.11
à VC = -0.222 V, -0.216 V et -0.208 V. Les encadrés dans les panneaux de gauche et
droite indiquent la présence des régions (1,1,1) et (2,0,2). Les séquence de transport dans
chacun de points quadruples est indiquée par des flèches.

bôıtes quantiques. La ligne séparant les régions (1,1,1) et (2,0,2) est un exemple de l’effet

d’automate cellulaire quantique dans lequel l’addition d’un électron dans le système est

accompagné d’une réarrangement des électrons pour minimiser l’énergie électrostatique.

En effet, dans la configuration (1,1,1) le système minimise son énergie en séparant les trois

électrons dans chaque bôıte quantique, mais avec quatre électrons le système réorganise

la charge dans la configuration (2,0,2).

Les panneaux en gris de la figure 3.11 correspondent aux mesures de transport dans la

configuration du panneau immédiatement au dessus. Dans ces conditions, le détecteur de

charge n’est pas utilisé est nous appliquons une différence de potentiel de 100 mV entre

les réservoirs de gauche et de droite de l’échantillon. À mesure que le voltage de la grille C

est augmenté, nous détectons l’apparition de deux pics de courant rapprochés. Ces deux

pics disparaissent et deux autres apparaissent, mais plus éloignés l’un de l’autre, pour

ensuite disparâıtre à leur tour. Finalement, une autre paire de pics de courant apparâıt. Le

nombre total de pics observés dans cette évolution est six, ce qui est le nombre de points

quadruples (où quatre configurations électroniques sont dégénérées) prédits lorsque les

trois bôıtes quantiques sont en résonance [50].

Pour mieux comprendre les séquences de transport, la figure 3.12 montre les dia-

grammes de stabilité et les mesures de courant dans lesquels les six pics de courant sont

détectés. Les encadrés dans la figures montrent des agrandissements où l’on observe qu’il
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Figure 5.1.: Bipolar spin blockade in a linear TQD. a) Scanning electron micrograph of the sample structure. b)

Stability diagram of the TQD measured for fixed center gate voltage and varying left (horizontal)

and right (vertical) gate voltages. The tunneling sequence at quadruple points 5 and 6 (see

Eq. (5.1)) is marked by arrows, and the (202) region is zoomed in the upper right corner. c)

Schematic picture of the TQD indicating a coherent state forming between a spin-up electron in

the left and in the right dot (the same situation would occur for a spin-down electron), under the

condition that left and right dot energy levels align. d) Schematic description of spin blockade

in positive bias direction. In the left and right dot one electron is confined electrostatically, so

that only doubly occupied levels in left and right dot contribute to transport. The central dot

can only accept one electron. If the two electrons in the center and right dot have the same spin,

current is blocked due to spin blockade. e) Spin blockade in negative bias direction. Figures a)

and b) taken from ref. [113].

in transport around two of them, which in the original work were labelled as points 5 and 6

QP5 : (1, 1, 1) (1, 1, 2) (2, 1, 1) (2, 0, 2)

QP6 : (1, 1, 2) (2, 1, 1) (2, 0, 2) (2, 1, 2). (5.1)

We are modeling the TQD, the leads and the coupling between them with an Anderson-like Hamilto-

nian that reads

H = HTQD +Htun +HB +HT +HLeads, (5.2)
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5.1. Model

where the individual terms are

HTQD = ∑
iσ

εiσ ĉ†
iσ ĉiσ + ∑

i
Uin̂i↑n̂i↓ +

1
2 ∑

i 6=j
Vijn̂in̂j

Htun = −∑
ijσ

tij(ĉ†
iσ ĉjσ + ĉ†

jσ ĉiσ)

HB =
3

∑
i=1

gµB(Bz + Bi,nucl)Sz,i =
3

∑
i=1

∆ iSz,i

HT = ∑
l∈L,R,kσ

γl(d̂†
lkσ ĉlσ + ĉ†

lσ d̂lkσ)

HLeads = ∑
l∈L,R,kσ

εlk d̂†
lkσ d̂lkσ. (5.3)

The first term represents the TQD itself, with εiσ being the energy of an electron with spin σ, Ui

the on-site Coulomb interaction energy, V12,23,13 the interdot Coulomb interaction energies; we set

V12 = V23 = V 6= V13. The second term describes the coherent tunneling between the dots where we

set tij = t; the third term is the magnetic field Hamiltonian with different Zeeman splittings ∆ i in

each dot; the fourth term describes the tunneling between dot 1 and the left lead, and between dot 3

and the right lead; finally, the last term describes the leads themselves. The creation and annihilation

operators for an electron on dot i with spin σ are given by ĉ†
iσ, ĉiσ, and for an electron in lead l by d̂†

lσ,

d̂lσ.

The experimentally measured quadruple points include electronic configurations for three, four

and five electrons (see Eq. (5.1)), with the restriction that the center dot can only host one single

electron, whereas both left and right dot contain one confined electron and can accept one more

electron, see Fig. 5.1. In positive bias (negative bias), the left (right) dot – i.e. the dot connected to

the electron source – accepts an additional incoming electron, so that the two electrons occupy a

singlet state |↑↓〉s. The higher levels, such as excited triplets |↑↑∗〉s , |↓↓∗〉s and 1/
√

2(|↑↓∗〉+ |↓↑∗〉)s

or excited singlet 1/
√

2(|↑↓∗〉 − |↓↑∗〉)s states, are not accessible for an incoming electron (the index

s stands for source). In contrast, the right (left) dot in positive (negative) bias is modeled in such

a way that not only the singlet state |↑↓〉d, but also the energetically higher excited states |↑↑∗〉d,

|↓↓∗〉d, 1/
√

2(|↑↓∗〉+ |↓↑∗〉)d and 1/
√

2(|↑↓∗〉 − |↓↑∗〉)d (where d expresses drain) can participate in

transport, depending on their alignment with the adjacent central dot.

This confinement of electrons in the dot close to the drain introduces spin correlations between the

electrons, so that double occupation in the drain dot undergoes a selection rule due to Pauli exclusion

principle: the TQD is thus operated in the so-called spin blockade regime [39]. The full basis of states

for the present problem contains 58 states. In the forward bias direction these states are

|1, 1, 1〉 = |σ′′, σ′, σ〉 |1, 1, 1∗〉 = |σ′′, σ′, σ∗〉
|2, 1, 1〉 = |S, σ′, σ〉 |2, 1, 1∗〉 = |S, σ′, σ∗〉
|2, 0, 2〉 = |S, 0, S〉 |2, 0, 2∗〉 = |S, 0, T∗(S∗)〉
|1, 1, 2〉 = |σ, σ′, S〉 |1, 1, 2∗〉 = |σ, σ′, T∗(S∗)〉
|2, 1, 2〉 = |S, σ, S〉 |2, 1, 2∗〉 = |S, σ, T∗(S∗)〉 (5.4)
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5. Bipolar spin blockade in triple quantum dots

with {σ, σ′, σ′′} = {↑, ↓}. For the calculation of the current we make use of the density matrix formal-

ism and write the equation of motion for the elements of the reduced density matrix as presented in

chapter 2 (Eq. (2.86))

ρ̇mn(t) = −i〈m|[HTQD +Htun +HB, ρ]|n〉+ ∑
k 6=n

(Γnkρkk − Γknρnn)δmn −Λmnρmn(1− δmn). (5.5)

For an approximate modeling of the spin-flip processes induced by hyperfine interaction we include

a phenomenological spin-flip rate into the equations for the reduced density matrix [124] and a finite

inhomogeneous Overhauser field. The spin relaxation time T1 is given by W↑↓ +W↓↑, where W↑↓ and

W↓↑ are spin-flip rates that fulfill a detailed balance equation

W↓↑ = exp
(−∆ i

kBT

)
W↑↓.

T2 is the spin decoherence time – i.e. the time over which a superposition of opposite spin states

of a single electron remains coherent. This time can be affected by spin relaxation and by the spin

dephasing time T∗2 , i.e. the spin decoherence time for an ensemble of spins (see also chapter 1). We

set the spin relaxation rate T1 ≈ 1 ¯s and the spin decoherence time T∗2 ≈ 10 ns. The spin decoherence

time is included in the master equation (5.5) via Λmn = 1
2 ∑k(Γkm + Γkn) + T−1

2 . As we are interested

in the stationary current through the TQD, we solve the set of equations of the reduced density matrix

algebraically and then calculate the current, which e.g. in positive bias direction (i.e. from left to right)

is given by

IR = e ∑
mn

(
Γ+

mn − Γ−mn
)

ρnn, (5.6)

where Γ+
mn expresses the rate of tunneling of an electron to the drain from the TQD and Γ−mn the

tunneling of an electron from the drain to the TQD.

In the experiment the current is measured for a fixed center gate voltage while varying the left

and right gate voltages. A change in the left gate voltage, however, does not only affect the energy

levels in the left dot, but also affects, due to cross capacitances, – albeit slightly weaker – the energy

levels of the neighboring dots. It has been stated in ref. [77] that the energy levels of the dots can be

written as linear functions of the affecting gate voltages. Following therefore the scheme in ref. [77]

and considering cross capacitances as proposed by the experiment, we write the energy levels εi of

the dots i = 1, 2, 3 as

εi = Ci − αiVL − βiVR, (5.7)

where C1,2,3 are constants that provide an overall energy shift. The conversion parameters are given

in eV/V. In the appendix A.1 we provide more details on how the conversion parameters influence

the current profile.

5.2. Current through the TQD

In contrast to spin blockade measurements in DQDs [39, 40] the current profile of the TQD looks

very similar for both bias directions. The most prominent features in the transport triangles are, as can
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5.2. Current through the TQD

Figure 5.2.: Current through the TQD for zero magnetic field. Both for positive (left column) and negative (right

column) bias and for the experimental (upper panels) and theoretical results (lower panel),

one can clearly distinguish resonance lines with two different slopes: the LR resonance lines

where left and right dot are on resonance and the steeper CR resonance lines that occur when

center and right dot levels are aligned. Parameters: t = 0.005, U1 = 3.1, U3 = 2.2, V = 0.5,

V13 = 0.25, ε = 0.6, J = −0.02, ΓL,R = 0.001, W↑↓ = 5 · 10−7, W↓↑,i = exp[−∆ i/T]W↑↓, Wdec =

100(W↑↓ +W↓↑), Wrel = 2 · 10−5, ∆1 = 0.15 · 10−3, ∆2 = 0.2 · 10−3, ∆3 = 0.1 · 10−3, Bdc = 0T. All

parameters in meV.

be seen in Fig. 5.2, several relatively sharp lines: out of these lines, it is clear that parallel ones are

due to similar resonance processes within the dot. We have indicated the LR lines, i.e. the lines along

which the left and right dots are on resonance, by black lines, see Fig. 5.2. The two parallel LR lines

correspond to resonances of |2, 1, 1〉 and |1, 1, 2〉 states which involve different orbital states in the side

quantum dots: for positive bias, in the lower one only the ground (singlet) state participates (LRS),

while in the upper one transport takes place through the occupation of an excited state in the drain

dot (LRT). Another resonance line, steeper than the LR line, is clearly visible: the CR resonance line (in

positive bias), where tunneling of an electron from the center to the right dot, i.e. |2, 1, 1〉→ |2, 0, 2〉, is

resonant. It is also indicated by a black line in Fig. 5.2, left panels. At the top of the transport triangle

we can see blue spots whose basis line is parallel to the CR line and thus indicates that along this line

the states |2, 1, 1〉 are on resonance with those |2, 0, 2∗〉 states that contain an electron in the excited

orbital.
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5. Bipolar spin blockade in triple quantum dots

Figure 5.3.: Current through the TQD for finite magnetic field. For positive (left column) and negative (right

column) bias, both the experimental (upper panels) and theoretical results (lower panel) are

shown. In a finite magnetic field, spin-flip processes are less effective and spin blockade occurs.

Parameters as in Fig. 5.2, but Bdc = 0.2 T.

Let us now switch on a static magnetic field Bdc. In Fig. 5.3 we show the measured and calcu-

lated current for finite magnetic field in positive and negative bias direction. In the following, we

concentrate on the LR resonance lines. Note that from the aforementioned LR resonance lines only

one survives when turning on the magnetic field. This lets us deduce that the disappearing line now

suffers spin blockade, whereas the surviving one does not. Remembering the origin of the LR lines

it is clear what happens: the lower resonance line (the one that disappears) occurs for a resonance of

the type |↑↓, ↑, ↓〉 → |↓, ↑, ↑↓〉. However, when two electrons with the same spin occupy the center

and right dot (or the center and left dot in negative bias), a tunneling process from center to right

(center to left in negative bias) is forbidden once a state of the type |↑↓, ↑, ↑〉 (|↑, ↑, ↑↓〉) is occupied,

since two electrons with the same spin cannot occupy the singlet level in the right dot (in the left dot).

This intermediate channel from center to right (to left), although not resonant along the LR resonance

lines, has to be open in order for a finite current to flow. The excited triplet level in the right dot (left

dot), which would open such a channel, is energetically not accessible at this voltage configuration.

It is, however, accessible at different voltages VL,R, where the surviving LR line (LRT) is visible in

Fig. 5.3. It is not affected by spin blockade, since it arises due to the alignment of a singlet level in the

left dot (right dot) with the excited triplet levels |↑↑∗〉, |↓↓∗〉, 1/
√

2(|↑↓∗〉+ |↓↑∗〉) in the right dot (in
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5.3. Coherent transport features

the left dot in negative bias).

5.3. Coherent transport features

Coherent coupling of quantum states can lead to molecular-like superpositions where the electronic

wave function has no weight in a spatial region of the system. In an array of states coupled in series,

superpositions can be formed, which are localized at the two extremes of the chain, avoiding the

occupation of the intermediate states. These kinds of orbitals have been revealed to be responsible for

dark resonances in the fluorescence of sodium atoms [133]. In an electronic device, transport through

arrays of quantum dots has been predicted to be similarly affected by dark states [122, 88] (see also

chapter 3). If the intermediate quantum dot is connected to a drain terminal, the occupation of a dark

state switches off the flow of current. In contrast, in a linear chain of three or more quantum dots

with contacts at both extremes, the resonance of the two side dots favors transport regardless of the

configuration of the intermediate sites [134].

Transport through the TQD presented here is governed by coherent processes that are not trivial

and quite distinct from the DQD case. A definite signature for coherence are the LR resonance lines

in the current (see Figs. 5.2,5.3). Note that no direct tunneling is possible from the left to the right dot.

For the following analysis we will concentrate on the LR singlet line (in positive bias), i.e. the one that

disappears due to spin blockade when a magnetic field is turned on. The LR triplet line is somewhat

more complicated, and it is a task for future works to analyze its coherence properties.

The LR singlet resonance line is suppressed by spin blockade when spin-flip processes become less

probable, as happens in the presence of a magnetic field. Spin-flip processes are the more efficient

the closer the participating states are in energy, i.e. in the energy spectrum close to crossings. For

a reduced Hamiltonian of the closed system, we have analyzed the eigenstates and eigenenergy

spectrum, see appendix A.2. We have observed that in the case where the difference of effective

Zeeman splittings, – i.e. the Zeeman splittings induced by the external field plus the splittings induced

by the Overhauser field –, is negligible, one eigenstate is of particular importance for the interpretation

of the LR resonance line, which is

|Σ2〉 =
1
2
(|↑↓, ↑, ↓〉 − |↑↓, ↓, ↑〉 − |↓, ↑, ↑↓〉+ |↑, ↓, ↑↓〉) (5.8)

Remarkably, this state is a swapped superposition of singlets with a different charge distribution:

double occupation equally affects the source and drain dots. Such a charge transfer would require a

sequence |2, 1, 1〉→ |S, 0, S〉→ |1, 1, 2〉. Note, however, that the intermediate state |S, 0, S〉 = |↑↓, 0, ↑↓〉
is not involved in the superposition |Σ2〉. We emphasize the similarity of such a superposition with

dark resonances observed in multilevel atoms. If a small difference between the effective Zeeman

splittings ∆ i (see Hamiltonian Eq. (5.3)) appears due to the hyperfine interaction, the superposition

given by |Σ2〉 acquires a perturbative mixing with triplet states, still, however, without participation

of the |↑↓, 0, ↑↓〉 state, see appendix A.2.

By analyzing the occupation probabilities and coherences of the density matrix ρ, we can determine

the electron dynamics at the LR line. In Fig. 5.4 b) we plot the occupation of the state |↑↓, 0, ↑↓〉 =
|S, 0, S〉 for fixed VR as a function of VL, i.e. along a horizontal line indicated in the current plot in
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5. Bipolar spin blockade in triple quantum dots

Figure 5.4.: Density matrix analysis at LR singlet resonance line. a) Current in positive bias for zero external

magnetic field (remember, however, that inhomogeneous Zeeman splittings are present due to

hyperfine interaction). b) Selected elements of the density matrix along the black horizontal

arrow indicated in a). The occupation of |S, 0, S〉 decreases significantly at LRS, i.e. at the LR

singlet resonance line. At the same time, the coherence between the states |2〉 = |↓, ↑, S〉, |3〉 =
|↑, ↓, S〉, |6〉 = |S, ↓, ↑〉, |7〉 = |S, ↑, ↓〉 increases. c) Histogramm of the imaginary part of the

density matrix for a part of the basis of states at the point LRS, see b). The highest columns

indicate the coherence between the states |2〉, |3〉, |6〉 and |7〉.

Fig. 5.4 a) by a black arrow. Once the left and right dots are on resonance (LRS), the coherence between

states |2〉 = |↓, ↑, S〉, |3〉 = |↑, ↓, S〉, |6〉 = |S, ↓, ↑〉, |7〉 = |S, ↑, ↓〉 increases, while simultaneously the

occupation of state |S, 0, S〉 decreases significantly. This antiresonance corresponds to an increased

tunneling process directly from left to right dot, through coherent superpositions of the form |Σ2〉.
This in turn results in an increased current along the whole LR resonance line. Note also in Fig. 5.4 c),

– where we show the imaginary part of the system’s density matrix at the point LRS –, the coherences

(given by the off-diagonal elements, see chapter 2) between the states |2, 1, 1〉 and |1, 1, 2〉. These also

indicate the formation of a coherent superposition of the type |Σ2〉 (Eq. (A.5)).

On top of the states which participate in the transport from left to right there are other eigenstates

with a finite contribution of the state |S, 0, S〉. Consequently, the occupation of this state will never

go to zero and several states contribute to the total current along the LR line. We want to emphasize,

however, that the coherent superpositions that transfer an electron directly from left to right are

responsible for removing spin blockade and for opening the current channels along this resonance

line. This is due to the fact that in the eigenenergy spectrum the superpositions of the type |Σ2〉 are

close in energy to spin blockade states and are thus the most probable states for eventual spin-flip

processes induced by hyperfine interaction (see appendix A.2).

5.4. Conclusions

In summary, in this chapter we have presented theoretical results for current through a linear TQD

array in a certain electronic configuration. These results have been used to explain corresponding

experimental results obtained by the group of A. Sachrajda. The current profile of the TQD shows
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5.4. Conclusions

spin blockade in positive and negative bias direction, which we therefore call bipolar spin blockade.

Within the current profile we could interpret certain distinct lines as resonances between the left (L)

and right (R) dot that occur without a direct coupling between these dots. By applying an external

magnetic field, their origin has been attributed to tunneling processes from a singlet state in the

source dot to singlet or excited triplet states in the drain dot, the latter surviving the external magnetic

field, the former, however, disappearing in an external magnetic field due to spin blockade.

The LR resonance lines are a unique feature of the TQD, which do not have a counterpart in the

DQD. We have found that, along the singlet LR line, spin blockade is broken through a spin-flip

process involving coherent superpositions of states that do not include an electron passing through

the central dot. Therefore our results are related to suggested schemes for spin busing and quantum

rectification and will have implications in future complex nano-spintronic circuits.
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Part II.

Electronic properties of graphene

irradiated by ac electric fields
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6. A general introduction to graphene

Since its experimental discovery in 2004 [135, 136], graphene – a single layer of carbon atoms arranged

in a hexagonal lattice and the first known stable two-dimensional crystal – has shown outstanding

properties in a large variety of fields. Theoretically known for almost a century [137], it was its fabrica-

tion, isolation and subsequent experimental achievements that culminated in the Nobel prize awarded

to two of its discoverers, A. Geim and K. Novoselov, in 2010. Graphene is the strongest and thinnest

material ever isolated – it is only one atom thick, and nevertheless “a sheet of it as thin as clingfilm

could support an elephant” [138]. The high mobility of its charge carriers makes them move 10-100

times faster than in silicon chips [139], the thermal conductivity in graphene is much better than in

carbon nanotubes [140], and graphene can sustain a very high current density. It has peculiar optical

properties, which make it very suitable for applications in optoelectronic devices [141]. Remarkably,

although only one atom thick, graphene can be visualized optically, being its transmittance a multi-

ple of the fine structure constant [142], see Fig. 6.1. Due to these outstanding properties, graphene,

after not even 10 years of experimental research, has already entered the stage of being fabricated at

an industrial scale – samples of graphene as large as 30 inches are being produced for transparent

electrodes [143] – and it has found its way into a plethora of applications, and more are to come

for sure. In the field of electrical engineering, graphene is starting to replace traditional materials

in high-frequency transistors [144] and it is used as frequency generator in the THz regime [145].

As electronic components are getting smaller and smaller, and single molecules can be the building

blocks of electronic circuits, it becomes increasingly difficult to detect their mass, and graphene has

 2

allows a reliable and routine fabrication of practically 
macroscopic graphene membranes suitable for optical, 
electron-microscopy, micromechanical and other studies 
(our success rate in making final devices is >50%). So 
large one-atom-thick membranes were previously 
inaccessible and present a significant experimental 
advance with respect to the earlier fabrication procedures 
that largely relied on chance and allowed graphene 
membranes of only a few microns in size [8,9]. 
 
Optical measurements  
To measure the optical spectra, we used a xenon lamp 
(wavelength  between 250 and 1200nm) as a light source 
and focused its beam on graphene membranes. The 
transmitted light intensity was measured by Ocean Optics 
HR2000 spectrometer. The recorded signal was then 
compared with the one obtained by directing the light 
beam through either an empty space or, as a double check, 
another aperture of the same size but without graphene. 
Typical experimental data are shown in Figure 2 by open 
circles. Here, to reduce the measurement noise below 
0.1%, we have averaged the spectral curves over intervals 

 of 10 nm. The measurements yield graphene’s opacity 
of 2.3% which is practically independent of wavelength . 
An interesting alternative method to measure opacity of 
graphene was to use membranes that only partially covered 
the apertures and take their images in an optical 
microscope (we used Nikon Eclipse LV100). In this case, 
opacities of different areas can be compared directly. The 
images taken by a high-quality grey-scale camera (Nikon 
DS2MBW) were then analyzed, and relative intensities of 
the light transmitted through different areas were 
calculated. Figure 3 shows an image of one of such 

samples in transmitted white light. The line scan across the image 
qualitatively illustrates changes in the observed light intensity. This 
method has also allowed us to measure graphene’s transmittance as 
a function of . To this end, we used 22 different narrow-band-pass 
filters for transmission (back-side) illumination. Examples of such 
spectroscopy for graphene and its bilayer are shown in Fig. 4. 
Results of the two measurement techniques are compared in Figure 
2 (circles versus squares) and show nearly the same accuracy. Note 
that the use of an optical microscope is possible for graphene 
membranes because they mostly absorb light with only a minute 
portion of it being reflected (<0.1%). The latter ensures that the 
opacity of graphene is practically independent of the numerical 
aperture and magnification (this was carefully checked 
experimentally and is in agreement with our calculations).  
Both approaches to measure graphene transmittance spectra show a 
deviation from a constant opacity for  < 500 nm (photon energy E 
>2.5eV), and the same is valid for bilayer graphene (see Figs. 2 and 
4). Such rapid deviations are not expected in theory (see below). 
We have investigated this spectral feature further and found that its 
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Figure 2. Transmittance spectrum of graphene 
over a range of photon energies E from near-
infrared to violet. The blue open circles show 
the data obtained using the standard 
spectroscopy for a membrane that completely 
covered a 30 m aperture. For comparison, we 
show the spectrum measured using an optical 
microscope (squares). The red line indicates the 
opacity of . Inset: Dynamic conductivity G of 
graphene for visible wavelengths (symbols) 
recalculated from the measured T. The green 
curves in both main figure and inset show the 
expected theoretical dependences (see further), 
in which G varies between 1.01 and 1.04 of 
G0 e2/4 for this frequency range. The red line 
and the gray area indicate the statistical average 
of our measurements and their standard error, 
respectively: G/G0 =1.01 0.04. 
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Figure 3. Looking through one-atom-
thick crystals. Optical photograph of a 
50 m aperture partially covered by 
graphene and its bilayer. The line scan 
profile shows the intensity of 
transmitted white light along the 
yellow line. 

Figure 6.1.: Absorption of light by mono- and bilayer graphene. Figure taken from ref. [142].
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6. A general introduction to graphene

qualified to be an ideal candidate for highly sensitive mass detectors [146]. Moreover, in the last few

years, graphene has become an important ingredient in the field of plasmonics [147]: in nanoelectron-

ics, transmission of information by light is strongly limited due to the fact that light breaks free when

the confinement length is shorter than its wavelength. However, light couples to the free electrons of

metals in form of a plasmon whose wavelength is at the nanometer scale. Plasmonics is hence dedi-

cated to efficiently connect photonics and nanoelectronics. Plasmons bound to the surface of doped

graphene, due to their large confinement and long propagation distances, make graphene a suitable

alternative to traditional metal plasmonics [148].

In the next sections, we will give a review of how graphene is fabricated and what are its most

important electronic properties, with a special emphasis on plasmons, as they constitute an important

part of the research done in this thesis.

6.1. Experimental fabrication and characterization of graphene

layers

Naturally, the discovery of graphene’s outstanding electronic, mechanical and optical properties has

entailed an intense work on its fabrication, both with regard to fundamental research as well as for

production on a large scale. Single layers of carbon were actually known to be produced by epi-

taxial growth many years before the breakthrough in 2004. These graphene layers, however, were

too strongly coupled to the substrate as to show the characteristic properties observed later on. The

achievement of the Manchester group was therefore not so much the discovery of single graphene

layers, but rather the isolation of these layers and their characterization that henceforth showed the in-

trinsic features expected from a 2D crystal, e.g. the presence of massless Dirac fermions. Very recently,

graphene has actually been designed artificially [149]: a conventional two-dimensional electron gas at

a copper surface was used for assembling carbon monoxide molecules by atomic manipulation into

a structure called molecular graphene.

In the following sections we will shortly summarize the most important ways of fabricating graphene.

6.1.1. Mechanical exfoliation and suspended graphene

The first successful isolation of graphene by the Manchester group was achieved in a rather unsophis-

ticated way that is commonly referred to as the scotch-tape method: atomically thin carbon films are

prepared by repeatedly peeling off highly orientated graphite samples (mechanical exfoliation). In

order to identify 2D samples, they are primarily analyzed in an optical microscope, and furtheron by

an atomic force microscope [150]. However, as has been said before, graphene is almost completely

transparent, and it is not at all sure that one can see it in an optical microscope. The substrate the

flakes are placed on and its thickness are a crucial issue: the graphene flakes are transferred to a

300nm thick SiO2 layer, which, due to interference effects, makes the flakes visible in an optical mi-

croscope. Monolayer graphene flakes prepared by mechanical exfoliation can nowadays be as large

as 100 µm. They were used in the pioneering experiments in 2004 and 2005 (see Fig. 6.2), and still

80



6.1. Experimental fabrication and characterization of graphene layers

are the leading ones in fundamental research on graphene, after considerable improvement regarding

e.g. their purity. In addition, later experimental research has achieved the removal of part of the SiO2

substrate, yielding suspended graphene. The procedure to produce suspended graphene starts with

Figure 6.2.: Graphene samples produced by mechanical exfoliation (left) and suspended graphene (right). Left:

Multilayer graphene (A,B) and monolayer graphene (C) on top of SiO2 substrate and incorpo-

rated into electronic device (D,E). Figure taken from ref. [135]. Right: TEM image of suspended

graphene membrane. The area indicated by arrows is monolayer graphene. Figure taken from

ref. [151].

mechanically exfoliating graphene and then with placing it on top of a 300nm SiO2 substrate [151].

After identifying the films as single-atom layers by optical and atomic force microscopes, electron

beam lithography is then used to deposit a metal grid out of Cr and Au on top of one of the flakes.

The bulk Si is etched away afterwards by putting the samples in tetramethylammonium hydroxide,

and the remaining SiO2 layer is removed by hydrofluoric acid. In the final samples graphene flakes

are attached to a metallic scaffold. Important optical experiments have been performed in samples

of suspended graphene, which led to the discovery of graphene’s optical transparency determined

by the fine structure constant α [142], see also Fig. 6.1. Additionally, these samples show ultrahigh

mobility of charge carriers of around µ = 200.000 cm2/Vs [152].

6.1.2. Epitaxially grown graphene

Epitaxial growth means the deposition of a crystalline layer onto another crystalline substrate in an

ordered manner, i.e. in a preferred crystalline direction. For epitaxial graphene, various subtrates have

been used, among them Ru [153] and SiC [154–156]. In the latter, graphene layers are produced by

heating the SiC to high temperatures (1000− 1500◦C) in order to desorb the Si from the top layers, so

that just a few layers of graphene are left on the surface [154]. Of these graphene layers, the first one

is strongly bound to the substrate, and only the second one is less coupled. Thus, intrinsic graphene

properties have been detected, as e.g. the linear dispersion of massless Dirac electrons [157] or the

half-integer quantum Hall effect [158]. The coupling to the substrate, however, leads to considerable

doping of the graphene layers, which makes it difficult to access experimentally the Dirac point, where

the valence and conduction band touch each other. The coupling to the substrate is also responsible

for the appearance of gaps in the energy spectrum of graphene [159].
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6. A general introduction to graphene

6.1.3. Chemical vapor deposition

The formerly described methods of fabricating graphene are in general not suitable for the production

of larger samples on an industrial scale desirable for many of the applications graphene is supposed

to provide. In the case of mechanical exfoliation, even if the sample quality is very good, it is not

clear how to extend the production to graphene layers larger than µm size. Epitaxial growth requires

ultrahigh vacuum conditions and is therefore expensive. An alternative method has been proposed

three years ago by different groups [160, 161]: Chemical Vapor Deposition (CVD). There, carbon is

dissolved on a Ni substrate, and then forced to precipitate out by cooling the Ni. The precipitated

carbon atoms form graphene on the Ni surface. The graphene layer is then separated from the Ni sub-

strate by chemical etching, and is subsequently transferred onto another appropriate substrate [162].

The graphene films produced by CVD show inferior results as compared to suspended graphene or

mechanically exfoliated probes in terms of carrier mobility (3700 cm2/Vs [160]) and optical trans-

parency (90%, [160, 161]). They are, however, still attractive for applications such as solar cells or

high-frequency electronic and optoelectronic devices [162].

6.2. Electronic properties of graphene

It has been known already since 1947, when P. R. Wallace published his paper about the band theory

of graphite [137], that electrons in graphene behave as massless Dirac fermions, i.e. they have a linear

dispersion relation. The carbon atoms in graphene form a honeycomb lattice, as is shown in Fig. 6.3.

Since the honeycomb lattice is not a Bravais lattice, it is formally described as two triagonal lattices

with two inequivalent atoms a and b per unit cell (see blue and white circles and light blue rhomb in

Fig. 6.3). The basis vectors for this lattice are

Figure 6.3.: Sketch of the graphene honeycomb lattice and its first Brillouin zone.
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The distance a between next neighbors is a = 1.42Å and the hopping element between them t = 2.7

eV. It is much bigger than the next-nearest neighbor hopping t2 [163], so that it can safely be neglected

as a first approximation in the analysis of the electronic structure of graphene. The unit cell of the

reciprocal lattice, the first Brillouin zone, is also a hexagon, and as it happens in the direct lattice, it

has two inequivalent points called the Dirac points, K and K′, see Fig. 6.3,
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The Hamiltonian for graphene reads, in second quantization,

H = − t
2 ∑

n
a†

n(bn−a1 + bn−a1 + bn)− b†
n(an+a1 + an+a1 + an) + h.c., (6.3)

where n = n1a1 + n2a2 is a lattice vector and ai are the basis lattice vectors, and a†
n(b†

n) are operators

that create an electron at site a(b). The Hamiltonian can be simplified by using Bloch’s theorem for

periodic crystal potentials:

an = ∑
k

eik·nak

bn = ∑
k

eik·nbk

Inserting this into the Hamiltonian (6.3) yields

H = −t ∑
k

(
a†

k b†
k

)( 0 φ∗(k)

φ(k) 0

)(
ak

bk

)
, (6.4)

where φ(k) = 1 + e−ik·a1 + e−ik·a2 . By diagonalizing this Hamiltonian one obtains the dispersion

relation E(k) = ±t|φ(k)|, which is shown in Fig. 6.4 (middle panel). For the low energy regime, one

can expand φ(k) for small q around one of the Dirac points, K, which yields

φ(K + q) ≈ φ(K) +
d

dk
φ(K) · q =

3
2

ta(qx − iqy). (6.5)

Setting q→ k for the ease of notation, the low-energy Hamiltonian becomes

H = h̄vFσ · k, (6.6)

with the Fermi velocity vF = 3
2

ta
h̄ ≈ 106 m/s and the Pauli matrices

σx =

(
0 1

1 0

)
and σy =

(
0 −i

i 0

)
. (6.7)
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Figure 6.4.: Plots of the dispersion relation of graphene. Left and middle panel: Dispersion around the whole

Brillouin zone. Right panel: Low-energy approximation around one of the Dirac points.

This Hamiltonian is in fact the famous Dirac Hamiltonian. After diagonalization one obtains the

eigenenergies and eigenstates

E(k) = ±h̄vF|k| |φ±〉 =
1√
2

(
e−i Θ

2

±ei Θ
2

)
, (6.8)

where Θ = arctan ky
kx

. The dispersion relation is shown in Fig. 6.4 (right panel). It has the structure of

two opposing (Dirac) cones that touch each other at the Dirac point K, leaving no gap between them.

At the other Dirac point K′, a similar result is obtained. The cones at K and K′ are also called the two

valleys of graphene, and the full low-energy Hamiltonian would actually be a (4× 4)-matrix with the

Hamiltonians (6.6) as (2× 2) building blocks. If, however, there are no mechanisms that couple the

two valleys (like external magnetic fields or spin-orbit coupling), it is sufficient to treat only one valley

and treat the other one as an additional degeneracy to the usual spin degeneracy. For the problem

treated in this thesis, no intervalley couplings are present, and we will henceforth continue with the

description of only one valley.

The existence of the two sublattices brings along an additional quantum number, which is usually

called the pseudospin and arises from the fact that an electron can live either in sublattice a or b. In the

diagonal basis (6.8), it is clear that the pseudospin refers to either the upper or the lower cone. Closely

related with the pseudospin of the electrons is their chirality: the Dirac Hamiltonian (6.6) introduces

a coupling between the motion of an electron (k) and its pseudospin, so that they are aligned either

parallel (in the upper cone) or antiparallel (in the lower cone). The consequence of this extra quantum

number is the fact that it has to be conserved in many processes, an example being the Klein paradox

for relativistic particles [164]: the transmission probability for an electron approaching a potential

barrier reaches perfect transparency for an infinitely high potential, as opposed to non-relativistic

particles, whose transmission probability decays exponentially with increasing potential barrier. This

phenomenon can be explained by taking into account that a very strong potential, repulsive for

electrons, can be attractive for positrons, and results in positron states inside the barrier [165]. It was,

however, never observed experimentally, due to the fact that very high potential drops are necessary.
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6.2. Electronic properties of graphene

In graphene, where the electrons behave as effective relativistic particles, this phenomenon was first

predicted to occur [166] and then actually measured [167].

The pseudospin gives rise to another peculiarity of graphene, namely the half-integer quantum

Hall effect. Owing to its two-dimensionality, graphene is usually compared with a benchmark of solid

state physics, the two-dimensional electron gas (2DEG). In strong contrast to the result obtained in the

2DEG, graphene shows conductivity plateaus at half-integer filling factors, that are ultimately traced

back to the pseudospin. The half-integer quantum Hall effect was predicted theoretically [168, 169]

and henceforth measured in the first experiments [136, 170], see Fig. 6.5. The Landau levels are given

©!!""#!Nature Publishing Group!
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To explain the half-integer QHE qualitatively, we invoke
the formal expression2,14–17 for the energy of massless relativistic
fermions in quantized fields, EN ¼ [2e!hc*

2B(N þ 1/2 ^ 1/2)]1/2.
In quantum electrodynamics, the sign^ describes two spins, whereas
in graphene it refers to ‘pseudospins’. The latter have nothing to do
with the real spin but are ‘built in’ to the Dirac-like spectrum of
graphene; their origin can be traced to the presence of two carbon
sublattices. The above formula shows that the lowest LL (N ¼ 0)
appears at E ¼ 0 (in agreement with the index theorem) and
accommodates fermions with only one (minus) projection of the
pseudospin. All other levels N $ 1 are occupied by fermions with
both (^) pseudospins. This implies that for N ¼ 0 the degeneracy is
half of that for any otherN. Alternatively, one can say that all LLs have
the same ‘compound’ degeneracy but the zero-energy LL is shared
equally by electrons and holes. As a result the first Hall plateau occurs
at half the normal filling and, oddly, both n ¼ 21/2 and þ1/2
correspond to the same LL (N ¼ 0). All other levels have normal
degeneracy 4B/f0 and therefore remain shifted by the same 1/2 from
the standard sequence. This explains the QHE at n ¼ N þ 1/2 and, at
the same time, the ‘odd’ phase of SdHO (minima in rxx correspond to
plateaux in rxy and therefore occur at half-integer n; see Figs 2 and 4),
in agreement with theory14–17. Note, however, that from another
perspective the phase shift can be viewed as the direct manifestation
of Berry’s phase acquired by Dirac fermions moving in magnetic
field20,21.
Finally, we return to zero-field behaviour and discuss another

feature related to graphene’s relativistic-like spectrum. The spectrum
implies vanishing concentrations of both carriers near the Dirac
point E ¼ 0 (Fig. 3e), which suggests that low-T resistivity of the

zero-gap semiconductor should diverge at Vg < 0. However, neither
of our devices showed such behaviour. On the contrary, in the
transition region between holes and electrons graphene’s conduc-
tivity never falls below a well-defined value, practically independent
of T between 4K and 100 K. Figure 1c plots values of the maximum
resistivity rmax found in 15 different devices at zero B, which
within an experimental error of ,15% all exhibit rmax < 6.5 kQ
independently of their mobility, which varies by a factor of 10. Given
the quadruple degeneracy f, it is obvious to associate rmax with
h/fe2 ¼ 6.45 kQ, where h/e2 is the resistance quantum.We emphasize
that it is the resistivity (or conductivity) rather than the resistance (or
conductance) that is quantized in graphene (that is, resistance R
measured experimentally scaled in the usual manner as R ¼ rL/w
with changing length L andwidthw of our devices). Thus, the effect is
completely different from the conductance quantization observed
previously in quantum transport experiments.
However surprising it may be, the minimum conductivity is an

intrinsic property of electronic systems described by the Dirac
equation22–25. It is due to the fact that, in the presence of disorder,
localization effects in such systems are strongly suppressed and
emerge only at exponentially large length scales. Assuming the
absence of localization, the observed minimum conductivity can be
explained qualitatively by invoking Mott’s argument26 that the mean
free path l of charge carriers in ametal can never be shorter than their
wavelength lF. Then, j ¼ nem can be rewritten as j ¼ (e2/h)kFl, so j
cannot be smaller than,e2/h for each type of carrier. This argument
is known to have failed for 2D systems with a parabolic spectrum in
which disorder leads to localization and eventually to insulating
behaviour22,23. For 2DDirac fermions, no localization is expected22–25

and, accordingly, Mott’s argument can be used. Although there is a
broad theoretical consensus15,16,23–28 that a 2D gas of Dirac fermions
should exhibit a minimum conductivity of about e2/h, this quantiza-
tion was not expected to be accurate and most theories suggest a
value of ,e2/ph, in disagreement with the experiment.
Thus, graphene exhibits electronic properties that are distinctive

for a 2D gas of particles described by the Dirac equation rather than
the Schrödinger equation. The work shows a possibility of studying

Figure 4 | QHE for massless Dirac fermions. Hall conductivity jxy and
longitudinal resistivity rxx of graphene as a function of their concentration
at B ¼ 14 T and T ¼ 4K. jxy ; (4e2/h)n is calculated from the measured
dependences of rxy(Vg) and rxx(Vg) as jxy ¼ rxy/(rxy

2 þ rxx
2 ). The

behaviour of 1/rxy is similar but exhibits a discontinuity at Vg < 0, which is
avoided by plotting jxy. Inset: jxy in ‘two-layer graphene’ where the
quantization sequence is normal and occurs at integer n. The latter shows
that the half-integer QHE is exclusive to ‘ideal’ graphene.

Figure 3 | Dirac fermions of graphene. a, Dependence of BF on carrier
concentration n (positive n corresponds to electrons; negative to holes).
b, Examples of fan diagrams used in our analysis7 to findBF.N is the number
associated with different minima of oscillations. The lower and upper curves
are for graphene (sample of Fig. 2a) and a 5-nm-thick film of graphite with a
similar value of BF, respectively. Note that the curves extrapolate to different
origins, namely to N ¼ 1/2 and N ¼ 0. In graphene, curves for all n
extrapolate toN ¼ 1/2 (compare ref. 7). This indicates a phase shift ofpwith
respect to the conventional Landau quantization in metals. The shift is due
to Berry’s phase14,20. c, Examples of the behaviour of SdHO amplitude Dj
(symbols) as a function of T for m c < 0.069 and 0.023m0 (see the
dependences showing the rapid and slower decay with increasing T,
respectively); solid curves are best fits. d, Cyclotronmassm c of electrons and
holes as a function of their concentration. Symbols are experimental data,
solid curves the best fit to theory. e, Electronic spectrum of graphene, as
inferred experimentally and in agreement with theory. This is the spectrum
of a zero-gap 2D semiconductor that describes massless Dirac fermions with
c* 1/300 the speed of light.
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Figure 6.5.: The half-integer quantum Hall effect in graphene. Hall conductivity σxy and longitudinal resistivity

ρxx of graphene as a function of carrier concentration n. Figure taken from ref. [170].

by [171]

Eν =

√
2|e|BvF

(
ν +

1
2
± 1

2

)
, (6.9)

with ν = 0, 1, 2 . . . being the filling factor and ±1/2 stemming from the pseudospin. Most remarkably

and in contrast to the 2DEG, the quantum Hall effect in graphene can also be observed at room

temperature [172], due to the fact that the implied energy scales are different in graphene [163].

The first proof of really dealing with a single sheet of graphene was accomplished by measuring

the electric field effect [135], which means the control of the density of electrons in the sample by

adjusting a gate voltage Vg (see device in Fig. 6.2). By using this effect, it has been shown that the

electronic carriers have a linear energy spectrum, and that there are two bands touching at a single

point, where the conductivity has a quantized minimum, see Fig. 6.6. The minimum conductivity

is ∝ e2/h and seems to be an intrinsic property of Dirac electrons [173, 174]. There is, however,

controversy about its exact value [175, 176].

It should finally be noted that the existence of a 2D crystal is in fact something very unexpected,

according to the classical result obtained by Landau and Peierls [177, 178] and to the Mermin-Wagner-

Hohenberg theorem [179, 180]. The latter states that in two dimensions any crystal would be ther-
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where S(E) ¼ pk2 is the area in k-space of the orbits at the Fermi
energy E(k) (ref. 13). If these expressions are combined with the
experimentally found dependencesm c / n1/2 and BF ¼ (h/4e)n it is
straightforward to show that S must be proportional to E2, which
yields E / k. The data in Fig. 3 therefore unambiguously prove the
linear dispersion E ¼ !hkc * for both electrons and holes with a
common origin at E ¼ 0 (refs 11, 12). Furthermore, the above
equations also imply m c ¼ E/c *

2 ¼ (h2n/4pc *
2)1/2 and the best fit

to our data yields c * < 106m s21, in agreement with band structure
calculations11,12. The semiclassical model employed is fully justi-
fied by a recent theory for graphene14, which shows that SdHO’s
amplitude can indeed be described by the above expression
T/sinh(2p2kBTm c/!heB) with m c ¼ E/c *

2. Therefore, even though
the linear spectrum of fermions in graphene (Fig. 3e) implies zero
rest mass, their cyclotron mass is not zero.

The unusual response of massless fermions to a magnetic field is
highlighted further by their behaviour in the high-field limit, at
which SdHOs evolve into the quantum Hall effect (QHE). Figure 4
shows the Hall conductivity jxy of graphene plotted as a function of
electron and hole concentrations in a constant B. Pronounced QHE
plateaux are visible, but they do not occur in the expected sequence
jxy ¼ (4e2/h)N, where N is integer. On the contrary, the plateaux
correspond to half-integer n so that the first plateau occurs at 2e2/h
and the sequence is (4e2/h)(N þ 1/2). The transition from the lowest
hole (n ¼ 21/2) to the lowest electron (n ¼ þ1/2) Landau level (LL)
in graphene requires the same number of carriers (Dn ¼ 4B/
f0 < 1.2 £ 1012 cm22) as the transition between other nearest levels
(compare the distances between minima in rxx). This results in a
ladder of equidistant steps in jxy that are not interrupted when
passing through zero. To emphasize this highly unusual behaviour,
Fig. 4 also shows j xy for a graphite film consisting of only two
graphene layers, in which the sequence of plateaux returns to normal
and the first plateau is at 4e2/h, as in the conventional QHE. We
attribute this qualitative transition between graphene and its two-
layer counterpart to the fact that fermions in the latter exhibit a finite
mass near n < 0 and can no longer be described as massless Dirac
particles.
The half-integer QHE in graphene has recently been suggested by

two theory groups15,16, stimulated by our work on thin graphite films7

but unaware of the present experiment. The effect is single-particle
and is intimately related to subtle properties of massless Dirac
fermions, in particular to the existence of both electron-like and
hole-like Landau states at exactly zero energy14–17. The latter can be
viewed as a direct consequence of the Atiyah–Singer index theorem
that is important in quantum field theory and the theory of super-
strings18,19. For 2D massless Dirac fermions, the theorem guarantees
the existence of Landau states at E ¼ 0 by relating the difference in
the number of such states with opposite chiralities to the total flux
through the system (magnetic field can be inhomogeneous).

Figure 1 | Electric field effect in graphene. a, Scanning electron microscope
image of one of our experimental devices (the width of the central wire is
0.2 mm). False colours are chosen to match real colours as seen in an optical
microscope for large areas of the same material. b, c, Changes in graphene’s
conductivity j (b) and Hall coefficient RH (c) as a function of gate voltage
Vg. j and RH were measured in magnetic fields B of 0 and 2T, respectively.
The induced carrier concentrations n are described in ref. 7; n/Vg ¼ 101/te,
where 10 and 1 are the permittivities of free space and SiO2, respectively, and
t < 300 nm is the thickness of SiO2 on top of the Si wafer used as a substrate.
RH ¼ 1/ne is inverted to emphasize the linear dependence n / Vg. 1/RH

diverges at small n because the Hall effect changes its sign at about Vg ¼ 0,
indicating a transition between electrons and holes. Note that the transition
region (RH < 0) was often shifted from zero Vg as a result of chemical
doping7, but annealing of our devices in vacuum normally allowed us to
eliminate the shift. The extrapolation of the linear slopes j(Vg) for electrons
and holes results in their intersection at a value of j indistinguishable from
zero. d, Maximum values of resistivity r ¼ 1/j (circles) exhibited by devices
with different mobilities m (left y axis). The histogram (orange background)
shows the number P of devices exhibiting rmax within 10% intervals around
the average value of ,h/4e2. Several of the devices shown were made from
two or three layers of graphene, indicating that the quantized minimum
conductivity is a robust effect and does not require ‘ideal’ graphene.

Figure 2 |Quantumoscillations in graphene. SdHO at constant gate voltage
Vg ¼ 260Vas a function of magnetic field B (a) and at constant B ¼ 12Tas
a function of Vg (b). Because m does not change greatly with Vg, the
measurements at constant B (at a constant q ct ¼ mB) were found more
informative. In b, SdHOs in graphene are more sensitive to Tat high carrier
concentrations: blue, T ¼ 20K; green, T ¼ 80K; red, T ¼ 140K. The Djxx

curves were obtained by subtracting a smooth (nearly linear) increase in j
with increasing Vg and are shifted for clarity. SdHO periodicity DVg at
constant B is determined by the density of states at each Landau level
(aDVg ¼ fB/f0), which for the observed periodicity of,15.8 Vat B ¼ 12 T
yields a quadruple degeneracy. Arrows in a indicate integer n (for example,
n ¼ 4 corresponds to 10.9 T) as found from SdHO frequency BF < 43.5 T.
Note the absence of any significant contribution of universal conductance
fluctuations (see also Fig. 1) and weak localizationmagnetoresistance, which
are normally intrinsic for 2D materials with so high resistivity.
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Figure 6.6.: Conductivity of graphene. Figure taken from ref. [170].

modynamically unstable due to phonons, which effectively try to reinstall the broken translational

symmetry. There are several arguments as to why graphene nevertheless exists. First, the Mermin-

Wagner-Hohenberg theorem is, strictly speaking, only true for infinite crystals, and the graphene

samples are finite. Additionally, the σ-bonds between the carbon atoms are sufficiently strong as

not to be destroyed up to high temperatures [181]. Finally, it was both experimentally and theoreti-

cally confirmed that graphene is not completely flat, but has ripples [182, 183], and the coupling to

out-of-plane bending modes can provide a stabilizing mechanism against in-plane stretching modes.

6.3. Electron-electron interactions in graphene monolayers

Most of the physics of graphene at the neutrality point (undoped) or close to it (slightly doped) can

be explained by the simple low-energy single-electron picture. The vanishing density of states at the

Dirac point,

ρ(E) =
NsNv

2π

|E|
v2

F
, (6.10)

is responsible for many of the exotic phenomena observed in undoped and slightly doped graphene.

The singularity at E = 0, however, constitutes a complicated issue when analyzing electron-electron

interactions in graphene. Traditionally, electron-electron interactions in solid state physics have been

treated successfully by applying the Fermi liquid theory. The concept of the Fermi liquid, derived

originally by Landau to explain the behavior of 3He [184] but applicable to a much broader range

of interacting fermion systems at low temperatures, comprises a simple and yet crucially important

statement: the low-energy excitations of strongly interacting electrons behave as a system of weakly

interacting quasiparticles, which are described by the same quantum numbers as the particles in the
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6.3. Electron-electron interactions in graphene monolayers

absence of interaction. The Fermi liquid theory owes much of its success in explaining solid state

physics to the fact that electrons in metals tend to screen electric fields, so that the long-range Coulomb

interaction becomes effectively short-ranged. The different role of electron-electron interaction in a

conventional 2D system and graphene becomes clear when estimating its strength: The kinetic energy

in a 2D system scales with the inverse of the quadratic inter particle distance l, Ekin ∝ 1/l2, which in

turn is proportional to the density n, Ekin ∝ n. The Coulomb energy is EC ∝ 1/l =
√

n, their ratio is

hence

g =
EC

Ekin
∝

1√
n

. (6.11)

At high densities, the kinetic energy predominates over the Coulomb energy, and the Fermi liquid

picture can safely be applied. For lower densities, however, the Fermi liquid description breaks down,

and new phenomena emerge and can become stable, such as the Wigner crystal, the formation of an

electron lattice. Other phenomena where the Fermi liquid picture does not apply include supercon-

ductivity, which emerges due to additional interaction of electrons with phonons, or Mott insulators

in which strong local electron-electron interaction leads to unexpected insulating behavior.

Graphene, due to its linear dispersion relation Ekin = h̄vF|k| ∝ h̄vF/l, scales with the square root of

the particle density, Ekin = h̄vF
√

n, and the ratio EC/Ekin is therefore independent of the density,

g =
EC

Ekin
=

e2

4πε0κh̄vF
. (6.12)

Hence, the strength of the Coulomb interaction depends only on the material parameter κ, and in

vacuum, where κ = 1, g ≈ 2.2. For doped graphene, i.e. away from the neutrality point, where a

well-defined Fermi surface exists and screening renormalizes the electron-electron interactions, Fermi

liquid theory still holds true. In fact, for heavy doping, graphene resembles more and more its two-

dimensional counterpart, the 2DEG. The vanishing density of states at the neutrality point, however,

makes undoped or slightly doped graphene a unique material as compared to traditional metals

or semiconductors: since no states are available at the Dirac point, interactions are poorly screened,

and the theory of the Fermi liquid breaks down [185, 186]. The reason why, nevertheless, the single

electron picture often suffices to explain the experiments may be related to the fact that the neutrality

point is somewhat elusive, one possibility for it being the formation of electron and hole puddles

due to disorder [187]. It could also happen that interactions are screened due to the presence of

agents living in the environment that graphene is coupled to – be it in the form of phonons from the

substrate, of charge impurities or of water molecules [188].

The graphene Hamiltonian including electron-electron interactions reads

H = ∑
k

(
a†

k b†
k

)( 0 kx − iky

kx + iky 0

)(
ak

bk

)
+

1
2 ∑

q
vqnqn−q, (6.13)

with nq = a†
k+qak + b†

k+qbk and vq = 2πe2/εq being the unscreened Coulomb interaction in 2D,

and ε = ε0κ. A large set of tools has been employed to study this Hamiltonian, both in strong and

weak coupling regimes (i.e. for g � 1 and g � 1) (for a review, see ref. [189]). Due to the singular

nature of the Dirac point where graphene does not behave as a Fermi liquid, one has to distinguish

between the analysis for undoped and for doped graphene. For undoped graphene, mostly renormal-

ization group techniques have been employed to analyze the role of interactions, as e.g. in the first
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calculations in the nineties by González et al. [185, 190]. In these articles, starting from the hypothesis

that the low-energy limit of undoped graphene is that of weak interactions, they found that electrons

behave as a marginal Fermi liquid, whose quasiparticles have an anomalous lifetime with respect to the

conventional Fermi liquid. More recent research points out to the possibility of the existence of strong

coupling phases in undoped graphene, where an excitonic condensate is created [191–193]. One of

the most important approximation techniques for electron-electron interactions, the so-called random

phase approximation (RPA), has been applied successfully to doped graphene. It was first derived

by Bohm and Pines in the 1950s in a series of seminal papers [194–196]. We will not go into details

about the derivation of the RPA, an excellent explanation can be found e.g. in ref. [197]. However, a

sort of handwaiving demonstration of the RPA will be given below. Before that, let us first introduce

another very important physical quantity of charged systems, the electric polarizability.

6.3.1. Electric polarizability

The polarizability Π(r, r′, t, t′) (or also susceptibility χ(r, r′, t, t′)) of a medium describes its tendency

to polarize under the influence of a weak external probe potential. In metals and semiconductors,

this is closely related to the aforementioned screening of electric fields by electrons. The polarizability

is the response of a charge distribution to a weak external probe potential (just as the conductivity

is the response to an electric field, or the spin susceptibility the response to a magnetic field). The

response of a system to a weak external agent is described mathematically by linear response theory

(for an introduction to linear response theory see e.g. ref. [198, 197, 199]). There, the polarizability or

charge-charge correlation function of non-interacting particles is defined in momentum space as

Π(q, t− t′) = −iΘ(t− t′)〈
[
ρ(q, t), ρ(−q, t′)

]
〉, (6.14)

where the Heaviside function expresses the fact that the external perturbation is turned on at a time

t′, before which the response is naturally zero, and the charge operator for electrons with spin σ is

given by

ρ(q) = ∑
qσ

c†
kσck+qσ. (6.15)

The commutator in (6.14) can easily be performed for non-interacting electrons described by the

diagonal Hamiltonian

H = ∑
kσ

εkσc†
kσckσ, (6.16)

and the polarizability of free electrons is [197]

Π0(q, ω) = ∑
kσ

fkσ − fk+qσ

εkσ − εk+qσ + ω + iη
, (6.17)

with the Fermi distribution fkσ = [1 + exp(εkσβ)]−1 at temperature β = kBT. This function is known

as the Lindhard function [200].

The relationship between the polarizability and the dielectric function, which gives information

about the dielectric properties of the medium, can be derived in the following way, where, for the
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sake of simplicity, we will treat all quantities now in the momentum and frequency space (q, ω). The

external probe potential φext(q, ω) is related to the total potential φtot(q, ω) = φext(q, ω) + φind(q, ω)

by the dielectric function ε(q, ω)

ε(q, ω) =
φext(q, ω)

φtot(q, ω)
. (6.18)

The polarizability connects the induced charge distribution to the external potential,

ρind(q, ω) = Π(q, ω)φext(q, ω), (6.19)

so that the induced potential becomes

φind = vqΠ(q, ω)φext(q, ω). (6.20)

The dielectric function is then easily shown to be

ε(q, ω) =
1

1 + vqΠ(q, ω)
. (6.21)

The most important achievement of linear response theory is that the response functions are com-

pletely governed by the properties of the system itself and not the externally applied force. This

means that by evaluating e.g. the polarizability of a system, although making use of an external

agent, the information gained is inherent to the system if the external force is weak. In this context,

the fluctuation-dissipation theorem should be mentioned [201]: it states that the response of a system

to an applied force is the same as its response to fluctuations about equilibrium. Fluctuations about

equilibrium are expressed by the correlation function S(q, ω), which is related to the dissipative part

of the system’s polarizability Π(q, ω) via

S(q, ω) = 2h̄(1 + nB(h̄ω))ImΠ(q, ω), (6.22)

with nB(h̄ω) being the Bose-Einstein distribution. In order to find out the possible dissipative pro-

cesses, and subsequently the dielectric properties given by the dielectric function Eq. (6.21), one has

to calculate the imaginary part of the polarizability of a system. Note, however, that Eq. (6.21) is

the dielectric function of a system of charged non-interacting particles. The Coulomb interaction vq

merely enters due to the definition of the electrostatic potential of a charged system given by the Pois-

son equation. We have not considered interactions between the particles that respond to the external

potential. If these are included via the Hamiltonian

Hint =
1
2 ∑

k,k′ ,q 6=0σ

vqc†
k+qσc†

k−qσck′σckσ, (6.23)

the calculation of the commutator in Eq. (6.14) becomes much more complicated, and one has to apply

approximations, one of which is the already mentioned RPA. In the RPA, the interacting polarizability

can be written as a geometrical series

Π(q, ω)RPA = Π0(q, ω) + Π0(q, ω)vqΠ(q, ω) = Π0(q, ω)(1 + vqΠ(q, ω))

=
Π0(q, ω)

1− vqΠ0(q, ω)
, (6.24)
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by which the dielectric function becomes

εRPA(q, ω) = 1− vqΠ0(q, ω). (6.25)

This surprisingly easy result can also be justified in a more physical, albeit not very rigorous way:

for interacting particles, the potential induced by an external probe should depend not only on the

external potential (see Eq. (6.20)) but on the total potential φtot

φind = vqΠ(q, ω)φtot(q, ω). (6.26)

The dielectric function becomes then directly

ε(q, ω) = 1− vqΠ(q, ω) (6.27)

as derived in the RPA.

A very important feature of the RPA is that it predicts the existence of a plasmon. Note that if

ε(q, ω) = 0, one can encounter the situation that the total potential φtot(q, ω) 6= 0, i.e. it varies in

space and time, while φext(q, ω) = 0 (Eq. (6.18)). Since ε(q, ω) = 0 in the RPA means (see Eq. (6.27))

1 = vqΠ(q, ω), (6.28)

this equation has real solutions if ImΠ(q, ω) = 0. The imaginary part of the polarizability describes

the possible dissipative processes, i.e. particle-hole excitations. Hence, if ImΠ(q, ω) = 0, then no

single-particle excitations exist, and the electrons oscillate collectively in an eigenmode ωp(q), that is

called the plasma mode or plasmon frequency. If on the contrary ImΠ(q, ω) 6= 0, the plasmon is said

to be damped, as it can decay into single-particle excitations.

The plasma oscillation can be understood by using a simple classical picture [198]. Although being

somewhat rough, it gives the correct result for the plasma frequency and provides physical intuition.

On average, a metal is neutral, i.e. the free moving electrons compensate the positive charge back-

ground of the ions. When electrons try to screen a local charge disturbance, they will move by a

distance x and leave behind a positively charged area. An electric field is established that attracts the

electrons again, so that they follow the equation of motion

mẍ = −eE = −ne2x, (6.29)

with n being the electron density. This is the equation for a harmonic oscillator with eigenfrequency

or plasma frequency

ωp ∝

√
e2n
m

. (6.30)

In a 2DEG, the polarizability was first calculated by Stern [202], where the plasmon frequency in

RPA was found to be ω(q) ∝
√

q. In Fig. 6.7, the imaginary part ImΠ(q, ω) of the 2DEG is shown

together with the plasmon dispersion relation for the long wavelength limit.

It has already been mentioned that the screening behavior of graphene is somewhat peculiar, since

at zero doping in fact no screening can exist, due to the lack of states at the Dirac point. The RPA
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Figure 6.7.: Imaginary part of the polarizability of the 2DEG. Density plot of ImΠ(q, ω) with plasmon disper-

sion relation for the long wavelength limit. Figure adapted from ref. [189].

is known to break down at zero doping [203]; nevertheless, a plasmon mode was found for zero

doping in a different approximation [204]. In this thesis, interactions will only be introduced either

for gapped or doped graphene, in which the RPA is assumed to hold [189], and we will hence not

enter into more detail about the different approximation methods for electron-electron interactions in

graphene. We will now continue by summarizing known results on the dynamical polarizability of

undoped and doped graphene.

6.3.2. Polarizability of graphene

In graphene, the dynamical polarizability for the non-interacting and interacting system has been

calculated by various authors [205–207]. It is given by the Lindhard function

Π(ω, q) = ∑
k,σ,σ′

fk+qσ′ − fkσ

ω− εk+qσ′ + εkσ + iη
Fσσ′(k + q, k), (6.31)

with the wavefunction overlap

Fσσ′(k + q, k) =
1
2
(1 + σσ′cos(θk,k+q)). (6.32)

Here σ, σ′ = ±1 for the two cones, and θk,k+q is the angle between k and k + q. As compared to the

polarizability for the 2DEG, in graphene one has to take into account the two sublattices a, b, which

introduces the overlap function Fσσ′(k + q, k) [208]. For zero temperature and undoped graphene,
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the imaginary part of the polarizability reads [205]

ImΠ(ω, q) = − gq2

16
√

ω2 − q2
Θ(ω− q), (6.33)

where g = 4 expresses the degeneracy due to valley and spin, and q = |q|. The imaginary part of

the polarizability, as has been discussed above, is related to the dissipation in the system. Consider-

ing a non-interacting system, the only possible excitations are particle-hole excitations. In undoped

graphene, the lower cone is full whereas the upper cone is empty, and excitations from the electrons in

the lower cone to the upper cone are possible only for ω = q, due the Heaviside function in Eq. (6.33),

which constitutes a threshold for excitations for ω < q. A density plot of the imaginary part of the

polarizability is shown in Fig. 6.8, together with constant-momentum cuts ImΠ(ω).

−0.1

0

Im
Π

(ω
)

0 0.1 ω

q1 = 0.05
q2 = 0.1
q3 = 0.15

Figure 6.8.: Imaginary part of the polarizability of undoped graphene at zero temperature. Left panel: Density

plots of ImΠ(ω, q), see Eq. (6.33). Particle-hole continuum for ω = q, i.e. in the lower triangle.

Middle panel: Constant-momentum cuts of ImΠ(ω) for q = 0.05, 0.1.0.15. Right panel: Sketch of

the possible excitations from the lower to the upper Dirac cone.

In doped graphene, the chemical potential µ is placed either in the lower cone (µ < 0) away

from the Dirac point or in the upper cone (µ > 0). Here, we will describe the behavior for positive

doping, i.e. µ > 0. In addition to interband transitions that are already possible for zero doping

(see Fig. 6.8), in doped graphene there also exist intraband transitions (see Fig. 6.9, right panel).

Most importantly, these intraband transitions exist for arbitrarily small ω but finite momentum q. It

was found [206, 205, 207] that in the RPA, doped graphene sustains an undamped plasmon with

dispersion relation in the long wavelength limit q → 0

ωp = ω0
√

q =

√
2e2µq

ε0
. (6.34)

The plasmon resonance can be seen in Fig. 6.9 (left panel). An undamped plasmon exists when

ImΠ(ω, q)RPA = 0, cf. middle panel in Fig. 6.9. The
√

q-behavior of the plasmon is the same as for

the 2DEG, however, the density dependence in graphene is different: ω0 ∝ n1/4, instead of ∝ n1/2 as

in the 2DEG [209].

We conclude here the introduction to graphene and continue in the next section with electronic

properties of graphene irradiated by ac electric fields.
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Figure 2. Same as figure 1, for the renormalized polarization PRPA(q, ω).

given by equation (9). We note that ImP(1)(q, ω) = 0 for h̄vFq < h̄ω < 2µ − h̄vFq or 0 < h̄ω <
h̄vFq − 2µ, and negative otherwise, while ReP(1)(q, ω) < 0 for ω <v Fq.

The divergence at ω = vFq vanishes in the self-consistent RPA result of the polarization
given by [14]

PRPA(q, ω) = P(1)(q, ω)

1 − vqP(1)(q, ω)
. (14)

Here, vq = e2/2κ0q denotes the in-plane Coulomb potential in vacuum. We note that
PRPA(q, vFq) = −vq so that the self-consistent polarization has a real and finite value at ω = vFq.
Figure 2 shows real and imaginary parts of the self-consistent polarization. While the singularity
at ω = vFq is absent, a new singularity appears in RePRPA(q, ω) at ω ∝ √

q, which reflects the
existence of plasmons, as will be discussed in section 4.

3. Static screening

An external charge density next(r) = Zeδ(r) is screened by free electrons due to the Coulomb
interaction. This results in the induced charge density δn(r)

δn(r) = Ze

4π2

∫
d2q

[
1

ε(q, 0)
− 1

]
eiq·r. (15)

Here ε(q, 0) ≡ limω→0 ε(q, ω). Within the RPA approximation [6]

ε(q, ω) = ε0 − vqP
(1)(q, ω). (16)

The effective dielectric constant ε0 includes high energy screening processes. We take
ε0 & 2.4 [5].

New Journal of Physics 8 (2006) 318 (http://www.njp.org/)

Figure 6.9.: Imaginary and real part of the polarizability in RPA of doped graphene at zero temperature. Left

and middle panel: Density plots of Π(ω, q)RPA. Note in the real part the resonance that shows the

existence of a plasmon. Figure taken from ref. [205]. Right panel: Sketch of the possible intraband

excitations due to finite doping.
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properties of graphene irradiated by ac

electric fields

The effect of external fields in the low energy properties of the electric carriers in graphene has been

a topic of extensive research since early days, an example being the discovery of the anomalous

Quantum Hall effect [170, 136] (see previous chapter). Understanding the behavior of graphene in

the presence of electrical and magnetic fields is of major relevance both from a fundamental and an

applied point of view. From a fundamental point of view, since new exotic behavior may arise in

the presence of external fields; name for instance the recent discovery of the fractional Hall effect in

graphene [210, 211]. From an applied point of view, because external fields can be used to manip-

ulate its properties, for instance by opening gaps in the electronic spectrum, which is essential for

applications in the semiconductor industry.

The effect of radiation on both monolayer and bilayer graphene has been analyzed only recently,

and has led to the prediction of a variety of phenomena, such as the photovoltaic Hall effect [212],

metal-insulator transition of graphene [213], valley-polarized currents in both monolayer and bilayer

graphene [214, 215], and photoinduced quantum Hall effect in the absence of magnetic fields [216].

Other theoretical works include the analysis of ac transport properties through graphene ribbons

[217], graphene-based pn-junctions [218], graphene-based Fabry-Pérot devices [219] and the recent

proposal of quantum pumping in graphene by an external ac field [220]. Experimentally it has been

found that a circularly polarized ac field induces a dynamic Hall effect in graphene [221]. Several

studies have been devoted to the theoretical analysis of the quasienergy spectrum of graphene and

graphene dots under ac fields [222–225], and the optical properties of graphene have been studied

by calculating the optical conductivity [226]. One of the earliest and yet most important findings in

all these studies is that a circularly polarized field induces a band-gap at the Dirac point, along with

dynamical gaps at other momenta, all of which are tunable by the field intensity. This is, however, not

the case for a linearly polarized field: there the anisotropic quasienergy spectrum shows dynamical

gaps at non-zero momentum only in certain directions, and especially no gap is induced at the Dirac

point [222, 226].

In this chapter we will study theoretically the effect of a circularly polarized ac electric field in

the terahertz regime on the electron excitation spectrum and on the electron-electron interaction. The

interactions are found to be affected qualitatively by the external field, altering the nature of the single

particle excitations as well as the many-particle excitations, both in doped and undoped graphene.
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Special attention is paid to the existence of a plasmon in undoped graphene, which is not present

in its field-free counterpart. In order to perform this investigation, the natural object to study is the

dynamical polarizability that we introduced in the previous chapter for graphene without external ac

fields (see also ref. [205, 186, 206, 207, 227–229]).

The structure of this chapter is the following: In Sect. 7.1, we briefly introduce the Hamiltonian

of graphene in the presence of a linearly and circularly polarized electric field, emphasizing the role

of Floquet theory in Sect. 7.1.1. In the following sections, we present several approximations to the

single electron Hamiltonian valid for weak fields; for the linearly polarized field see Sect. 7.1.2, and

for the circularly polarized field see Sect. 7.1.3. Single-particle properties for the analytical approxi-

mations are then shown in Sect. 7.1.4 and Sect. 7.1.5. Section 7.2 is dedicated to the analysis of the

dynamical polarizability: we derive a general expression for the polarizability of graphene in a circu-

larly polarized ac electric field in Sect. 7.2.1, and compare it with the corresponding expression for

the two dimensional electron gas [230]. Finally in section 7.2.2, the general formula is combined with

the analytical approximations in order to work it out both for the non-interacting system and for the

interacting system in the Random Phase Approximation (RPA).

7.1. Single electron properties of graphene irradiated by an ac

electric field

7.1.1. Model and technique

As mentioned already, in the low-energy regime, the Hamiltonian for single electron excitations in

graphene is the Dirac Hamiltonian, H = σ ·k. In order to introduce a time-dependent electric field we

choose a gauge in which the latter is represented via a gauge potential A(t), whose time dependence

is that of a single monochromatic wave of frequency Ω:

A(t) = − E0

Ω
√

2
[x̂ sin(Ωt)− ŷ cos(Ωt)], for a circularly polarized field (7.1)

A(t) = −E0

Ω
x̂ sin(Ωt), for a field linearly polarized in x̂–direction (7.2)

By using a minimal coupling scheme, the Hamiltonian for graphene irradiated by a circularly electric

field reads:

H(t)circ =

(
0 kx − iky + iAe−iΩt

kx + iky − iAeiΩt 0

)
, (7.3)

with A = eE0/(
√

2Ω) and vF = h̄ = 1. Analogously we get for the linearly polarized field

H(t)lin =

(
0 kx − iky + Asin(Ωt)

kx + iky + Asin(Ωt) 0

)
, (7.4)

with A = eE0/Ω. The Hamiltonian is expressed in terms of Bloch states of momentum k, which is de-

fined with respect to one of the valleys. Note that the electric field does not couple the spin and valley

degrees of freedom in graphene, which remain as an extra degeneracy NsNv = 4. As we discussed
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extensively in the introduction, the eigenstates of graphene in the absence of the external field are

two-dimensional spinors representing the two components of the unit cell of the honeycomb lattice

in graphene, that once diagonalized give rise to two bands (or Dirac cones). In the Dirac Hamilto-

nian, the pseudospin has a scalar coupling with the momentum, and its eigenstates are those whose

pseudospin is either parallel or antiparallel to its momentum. It is remarkable that the mathematical

structure of the Hamiltonian is very similar to that of an electronic spin coupled through Rashba

interaction to a magnetic field. In this analogy, the momentum in graphene plays the role of the

magnetic field, and the pseudospin operator is analogous to the ordinary spin, both having the same

representation in terms of Pauli matrices. This allows one to write the Hamiltonian H = σ · k. In the

presence of an external electric field an extra term of the same nature arises in the Hamiltonian, now

coupling the pseudospin and the electric field, and inducing transitions between the eigenstates for

the isolated system. In a sense the momentum and the electric field are competing dynamically for

the direction of the pseudospin, but no compromise can be reached due to the time-dependence of

the field, which no longer allows for an analysis of the problem in terms of stationary eigenstates.

To proceed, we apply the Floquet theorem, which is the most suitable way to address time periodic

Hamiltonians (detailed accounts can be found in Refs. [231, 75, 232]). Floquet theory states that for

a Hamiltonian that is periodic in time – H(t + 2π/Ω) = H(t) – a complete set of solutions of the

time-dependent Schrödinger equation

H(t)|ψ(t)〉 = i
d
dt
|ψ(t)〉 (7.5)

can be written as

|ψα(t)〉 = e−iεαt|φα(t)〉
|φα(t)〉 = |φα(t + T)〉, (7.6)

where α contains the quantum numbers of the problem and the so-called Floquet index that we will

label as l. The role of this index is to classify the different sidebands, since εα, the quasienergies, are

defined mod h̄Ω and are related by the simple transformation

εα(l) = εα(0) + lΩ. (7.7)

In analogy to the Bloch theorem, the quasienergies can be mapped into a first time Brillouin zone,

which is [−Ω/2, Ω/2], and therefore corresponds to l = 0.

The Floquet states |φα(t)〉 have the same periodicity as the driving field (see Eq. (7.6)) and can

therefore be expanded into a Fourier series

|φα(t)〉 =
∞

∑
n=−∞

einΩt|φn
α〉. (7.8)

The Floquet states are also defined in different branches of solutions, related to one another by the

transformation

|φn
α(l)〉 = |φl+n

α(0)〉. (7.9)
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Substituting Eq. (7.6) into Eq. (7.5) and using Eq. (7.8) yields a static eigenvalue equation of the form

∑
m
(Hnm − nΩδmn)|φm

α 〉 = εα|φn
α〉. (7.10)

If we now define the Floquet Hamiltonian as Hnm
F = Hnm − mΩδmn, we see that a significant sim-

plification has been achieved: the time-dependent problem has been transformed to a static problem,

and, consequently, one can apply the intuition about equilibrium problems to make statements about

a dynamical problem. The resulting equilibrium-like observables derived within this framework have

to be understood as time averages over a period of the external field.

Let us now apply the Floquet formalism to the Hamiltonian of irradiated graphene (7.3) and (7.4).

In both cases, the solutions are characterized by indices α = (k, σ, l), being σ = ± the pseudospin

index. For the circularly polarized field, we obtain

nΩφn,a
α + (kx − iky)φ

n,b
α + iAφn+1,b

α = εαφn,a
α

nΩφn,b
α + (kx + iky)φ

n,a
α − iAφn−1,a

α = εαφn,b
α , (7.11)

and for the field linearly polarized in x̂–direction

(nΩ)φn,a
α + (kx − iky)φ

n,b
α +

A
2i
(φn−1,b

α − φn+1,b
α ) = εαφn,a

α

(nΩ)φn,b
α + (kx + iky)φ

n,a
α +

A
2i
(φn−1,a

α − φn+1,a
α ) = εαφn,b

α . (7.12)

Notice that a and b are the indices for the sublattices of the honeycomb lattice. These equations can

be written in matrix form, where the infinite Floquet Hamiltonian for the circular field reads

HF,circ =




. . .
...

...
...

...
...

... . . .

· · · −Ω ke−iΘ 0 iA 0 0 · · ·

· · · keiΘ −Ω 0 0 0 0 · · ·

· · · 0 0 0 ke−iΘ 0 iA · · ·

· · · −iA 0 keiΘ 0 0 0 · · ·

· · · 0 0 0 0 Ω ke−iΘ · · ·

· · · 0 0 −iA 0 keiΘ Ω · · ·

. . . ...
...

...
...

...
...

. . .




, (7.13)

and k =
√

k2
x + k2

y, Θ = arctanky/kx.
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Analogously, we write the Floquet Hamiltonian for the linearly polarized field as

HF,lin =




. . .
...

...
...

...
...

... . . .

· · · −Ω ke−iΘ 0 i
2 A 0 0 · · ·

· · · keiΘ −Ω i
2 A 0 0 0 · · ·

· · · 0 − i
2 A 0 ke−iΘ 0 i

2 A · · ·

· · · − i
2 A 0 keiΘ 0 i

2 A 0 · · ·

· · · 0 0 0 − i
2 A Ω ke−iΘ · · ·

· · · 0 0 − i
2 A 0 keiΘ Ω · · ·

. . . ...
...

...
...

...
...

. . .




. (7.14)

The structure of these Hamiltonians deserves a few comments. Note that the ac field A connects

(2× 2) graphene Hamiltonians with energies nΩ and (n + 1)Ω and so on. Each of these building

blocks contributes with its own dispersion relation (that of a Dirac cone) to the energy spectrum, and

the field introduces transitions between these cones. These transitions are expressed as anticrossings

in the spectrum, and become exact crossings for A → 0. It can easily be seen that the anticrossings

occur at |k| ≈ nΩ/2, with n = 0, 1, 2, . . . . At |k| ≈ Ω/2 e.g., the (+, 0) and the (−, 1) sideband

anticross, which would be a so-called one-photon resonance. In contrast to the circularly polarized field

(Eq. (7.13)), in the Hamiltonian for the linearly polarized field (7.14) the component φn,a
α is coupled to

both φn−1,b
α and φn+1,b

α , see also Eq. (7.12).

The Floquet Hamiltonians, Eqs. (7.14,7.13) can be diagonalized numerically in order to analyze the

energy spectrum and its features. However, in order to simplify the calculations and to illuminate the

main physics, here we resort to analytical approximations which capture the main features whenever

the electric field intensity is sufficiently weak. We will show in Sect. 7.1.4 and 7.1.5 the full numerical

results for the quasienergy spectrum in order to compare it with the analytical approximations.

7.1.2. Analytical approximations to the single particle Hamiltonian: Linearly

polarized field

Let us start by analyzing the case of a linearly polarized field. Before introducing the analytical

approximations, it is convenient to project the Hamiltonian (7.14) into another basis. It can be seen in

Fig. 7.1, that for k = 0 the Hamiltonian for the linearly polarized field breaks up into two degenerate

chains of the form “abab” and “baba”. These types of Hamiltonians are well known as so-called

Wannier-Stark ladders [233], and appear in tight-binding models in static electric fields. As compared

to the present case, the frequency Ω plays the role of the electric potential in a Wannier-Stark ladder,

and the field intensity A represents the hopping between neighboring sites. The Wannier-Stark ladder

is solved by Bessel functions (see appendix B.1 for some important properties). Now the Hamiltonian

for k = 0, as drawn in Fig. 7.1, is

Hk=0
F,lin = ∑

n
nΩ|φn

k=0〉〈φn
k=0|+

iA
2 ∑

n
|φn

k=0〉〈φn+1
k=0| −

iA
2 ∑

n
|φn+1

k=0〉〈φn
k=0|, (7.15)
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... ...

...

k

...... Ω 2Ω−2Ω −Ω 0

...

k = 0

Figure 7.1.: Sketch of Floquet Hamiltonian for linearly polarized electric field. Upper half for k 6= 0 and lower

half for k = 0.

or in matrix form

Hk=0
F,lin =




. . .
...

...
... . . .

· · · (n− 1)Ω iA
2 0 · · ·

· · · − iA
2 nΩ iA

2 · · ·
· · · 0 − iA

2 (n + 1)Ω · · ·
. . . ...

...
...

. . .




. (7.16)

For coefficients cn of the corresponding eigenvectors, this can be written as a recurrence relation

− iA
2

cn−1 + nΩcn +
iA
2

cn+1 = Ecn. (7.17)

With the ansatz E = lΩ, we rewrite

(nΩ− lΩ)cn =
iA
2
(cn−1 − cn+1), (7.18)

and recognize the recurrence relation of the modified Bessel function, see Eq. (B.1), with

Iν(z) = In−l

(
iA
Ω

)
= cl

n. (7.19)

The index n = −∞ . . . ∞ numbers the Fourier mode of the Floquet Hamiltonian (or also the site of the

tight-binding chain), and l = −∞ . . . ∞ is the index for the solution of the Floquet Hamiltonian Hk=0
F,lin .

A solution for Hk=0
F,lin can hence be written as

|ψl〉 =
∞

∑
n=−∞

In−l

(
iA
Ω

)
|φn

k=0〉. (7.20)
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We will now project the Hamiltonian Hk=0
F,lin into the basis |ψl〉. For the derivation of the matrix ele-

ments, see appendix B.2. Using the property In(ix) = in Jn(x) and z = 2A/Ω, the Hamiltonian can
then be written as

HF,lin =



. . .
...

...
...

...
...

... . . .

. . . −Ω κeiθ 0 ky J1(z) 0 −iky J2(z) . . .

. . . κe−iθ −Ω −ky J1(z) 0 iky J2(z) 0 . . .

. . . 0 −ky J1(z) 0 κe−iθ 0 −ky J1(z) . . .

. . . ky J1(z) 0 κeiθ 0 ky J1(z) 0 . . .

. . . 0 −iky J2(z) 0 ky J1(z) Ω κeiθ . . .

. . . iky J2(z) 0 −ky J1(z) 0 κe−iθ Ω . . .

. . . ...
...

...
...

...
...

. . .




, (7.21)

where we introduced

κ =

√
k2

x + k2
y J2

0

(
2A
Ω

)
(7.22)

θ = arctan




ky J0

(
2A
Ω

)

kx


 . (7.23)

Note that the Hamiltonian includes couplings up to infinite order in the Bessel functions (see e.g.

ref. [75, 234]), and here we have displayed only part of the infinite Hamiltonian. In the subsequent

analysis, we will at first only consider the elements ∝ J0(z), and will afterwards include the couplings

∝ J1(z). Higher order couplings, however, will be neglected. This approach is valid as long as the field

strength A is small compared to the frequency Ω, so z = 2A/Ω� 1, since then Jn≥2(z) ≈ 0.

J0–approximation

Neglecting therefore Jn≥1(z), the Hamiltonian (7.21) is block diagonal, and one building block reads

Hn
J0
=

(
nΩ κe−iθ

κeiθ nΩ

)
. (7.24)

It can easily be diagonalized, and its eigenenergies and eigenvectors are

ε±l,J0
= lΩ± κ

|χ+
l,J0
〉 = 1√

2

(
e−

i
2 θ |ψ+

l 〉+ e
i
2 θ |ψ−l 〉

)

|χ−l,J0
〉 = 1√

2

(
e−

i
2 θ |ψ+

l 〉 − e
i
2 θ |ψ−l 〉

)
. (7.25)

This approximation illustrates very clearly that the linearly polarized field renormalizes the Fermi

velocity by J0(2A/Ω). Notice, however, that a linearly polarized field has no effect on the system

along its polarization axis x̂: for ky = 0, we recover the dispersion relation for free graphene.
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J1–approximation

In order to capture higher order photon processes, we take into account the matrix elements ∝

J1(2A/Ω), but keep Jn≥2(2A/Ω) = 0. In the Hamiltonian (7.21), one of the (2× 2)-matrices including

J1 reads

HJ1 =


 0 ky J1

(
2A
Ω

)

−ky J1

(
2A
Ω

)
0


 . (7.26)

We now apply the unitary matrix U that diagonalizes Hn
J0

to the Floquet Hamiltonian (7.21). How-

ever, one has to be careful here: since the Hn
J0

matrices alternate between (7.24) and their hermitian

conjugate, the unitary matrix that we have to use is

U =




. . .
...

...
... . . .

· · · Un∗
0 0 0 · · ·

· · · 0 Un
0 0 · · ·

· · · 0 0 Un∗
0 · · ·

. . . ...
...

...
. . .




, (7.27)

where

Un
0 =

1√
2

(
e−

i
2 θ e−

i
2 θ

e
i
2 θ −e

i
2 θ

)
. (7.28)

We apply hence U†HF,linU and pick the relevant couplings to get two effective decoupled Hamiltoni-

ans

Heff,n,1
J1

=




ε+n−1,J0
−ky J1

(
2A
Ω

)

−ky J1

(
2A
Ω

)
ε−n,J0


 and Heff,n,2

J1
=




ε+n,J0
ky J1

(
2A
Ω

)

ky J1

(
2A
Ω

)
ε−n+1,J0


 . (7.29)

Out of the eigenvalues of these effective Hamiltonians we then choose those that become the free

graphene eigenvalues for A → 0. They read

ε+l,J1
=





lΩ + 1
2

(
Ω−

√
(Ω− 2κ)2 + 4k2

y J2
1

(
2A
Ω

))
if κ < kc

(l + 1)Ω− 1
2

(
Ω−

√
(Ω− 2κ)2 + 4k2

y J2
1

(
2A
Ω

))
if κ > kc

(7.30)

ε−l,J1
=





lΩ− 1
2

(
Ω−

√
(Ω− 2κ)2 + 4k2

y J2
1

(
2A
Ω

))
if κ < kc

(l − 1)Ω + 1
2

(
Ω−

√
(Ω− 2κ)2 + 4k2

y J2
1

(
2A
Ω

))
if κ > kc

(7.31)

and their corresponding eigenvectors are

|ξ+l,J1
〉 =





1√
|ξa |2+|ξb |2

[
ξa|χ+

l,J0
〉+ ξb|χ−l+1,J0

〉
]

if κ < kc

1√
|ξa |2+|ξb |2

[
ξb|χ+

l,J0
〉 − ξa|χ−l+1,J0

〉
]

if κ > kc
(7.32)

|ξ−l,J1
〉 =





1√
|ξa |2+|ξb |2

[
ξb|χ+

l−1,J0
〉+ ξa|χ−l,J0

〉
]

if κ < kc

1√
|ξa |2+|ξb |2

[
ξa|χ+

l−1,J0
〉 − ξb|χ−l,J0

〉
]

if κ > kc,
(7.33)
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where

ξa = κ − 1
2

(
Ω +

√
(Ω− 2κ)2 + 4k2

y J2
1

(
2A
Ω

))
(7.34)

ξb = ky J1

(
2A
Ω

)
. (7.35)

At the critical momentum kc, where the eigenvalues suffer an anticrossing and both eigenenergies

and eigenvectors change their character, the one-photon resonance takes place and a gap opens in

the quasienergy spectrum. The size of the gap, however, or even its existence, depend on ky. It has

already been mentioned that for ky = 0, the field is decoupled from the system and cannot induce

transitions. Therefore along this line, no gaps open in the energy spectrum, and neither zero- nor

multi-photon resonances exist. For this reason, the one-photon gap is zero at ky = 0 and biggest at

kx = 0, ky = kc. There, the critical momentum is

kc = ±
ΩJ0

(
2A
Ω

)

2
[

J2
0

(
2A
Ω

)
+ J2

1

(
2A
Ω

)] . (7.36)

The maximum gap can be found analytically from Eqs. (7.30), (7.31) and (7.36) to be

∆ J1 =
ΩJ1

(
2A
Ω

)

√
J2
0

(
2A
Ω

)
+ J2

1

(
2A
Ω

) . (7.37)

For a field frequency in the mid-infrared regime, Ω ≈ 150 meV, and field intensity E0 ≈ 3.4 · 106 V/m

(so that A/Ω = 0.1), the gap due to one-photon resonances can reach ∆ J1 ≈ 15 meV.

7.1.3. Analytical approximations to the single particle Hamiltonian: Circularly

polarized field

As it happened for the linearly polarized field, for the circularly polarized field it is also advantageous

to project the Hamiltonian (7.13) into another basis. Note that for k = 0, the Floquet chain breaks up

into a series of disconnected two-level systems, see Fig. 7.2. We therefore diagonalize the Hamiltonian

for the two-level-system, and then write the full Hamiltonian in the resulting basis. The Hamiltonian

for k = 0 reads

Hk=0
F = ∑

n
nΩ

[
|φn,a

k=0〉〈φ
n,a
k=0|+ |φ

n,b
k=0〉〈φ

n,b
k=0|

]
+ iA

[
|φn,a

k=0〉〈φ
n+1,b
k=0 | − |φ

n+1,b
k=0 〉〈φ

n,a
k=0|

]
. (7.38)

An excerpt of the series of (2× 2) Hamiltonians is

Hk=0
F =




nΩ iA 0 0

−iA (n + 1)Ω 0 0

0 0 (n− 1)Ω iA

0 0 −iA nΩ




. (7.39)

Out of the four eigenenergies of this matrix we are interested in

ε±l = lΩ± 1
2

∆, (7.40)
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...... Ω 2Ω−2Ω −Ω 0

...... k

......

k = 0

a a a a a

a a a a a

b b b b b

b b b b b

iA

iA

Figure 7.2.: Sketch of the Hamiltonian for the circularly polarized field. Note that if k = 0, the Hamiltonian

breaks up into disconnected two-level systems, in which site an is coupled to site bn+1.

with

∆ = Ω̃−Ω

Ω̃ =
√

4A2 + Ω2,

because these two energies fulfill limA→0 ε±0 = 0. Thus, we associate the first Brillouin zone, l = 0,

from the Floquet solutions, with the solutions corresponding to graphene in the absence of an external

field. The corresponding eigenvectors are

|φ+
l 〉 =

1
N

(
2iA|φl−1,a

k=0 〉+ (∆+ 2Ω)|φl,b
k=0〉

)
(7.41)

|φ−l 〉 =
1
N

(
(∆+ 2Ω)|φl,a

k=0〉+ 2iA|φl+1,b
k=0 〉

)
, (7.42)

where N =
√

4A2 + (∆+ 2Ω)2. From here on and for the rest of this section, we neglect the index k

in the energies and vectors, unless we have to distinguish between k and k + q.
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Using these eigenvectors as a basis, we rewrite the full Floquet Hamiltonian (7.13)

HF =




. . .
...

...
...

...
...

... . . .

. . . ε+n−1 F0keiΘ F1keiΘ 0 0 0 . . .

. . . F0ke−iΘ ε−n−1 0 F∗1 keiΘ F2keiΘ 0 . . .

. . . F∗1 ke−iΘ 0 ε+n F0keiΘ F1keiΘ 0 . . .

. . . 0 F1ke−iΘ F0ke−iΘ ε−n 0 F∗1 keiΘ . . .

. . . 0 F2ke−iΘ F∗1 ke−iΘ 0 ε+n+1 F0keiΘ . . .

. . . 0 0 0 F1ke−iΘ F0ke−iΘ ε−n+1 . . .

. . . ...
...

...
...

...
...

. . .




, (7.43)

where k = |k|, Θ = arctan ky/kx. Here we have introduced the three functions F0, F1 and F2 that will

form the basis for our approximations:

F0 =
(∆+ 2Ω)2

4A2 + (∆+ 2Ω)2

F1 =
2iA(∆+ 2Ω)

4A2 + (∆+ 2Ω)2

F2 =
4A2

4A2 + (∆+ 2Ω)2 . (7.44)

All three functions in Eq. (7.44) are functions of A and Ω. For small A/Ω� 1, one finds that F0 ≈ 1,

and F1,2 ≈ 0, however, F1 increases linearly, whereas F2 increases quadratically with A. Note that for

a two-level system driven by a linearly polarized field, the nth order Bessel function Jn (A/Ω) plays

the role of the function F0,1,2 presented here, and for a complete analysis one has to consider Bessel

functions up to infinite order, see previous section. Here, however, the complete information lies in

F0,1,2. In the subsequent analysis, we will at first only consider the couplings given by F0, and then

include also the couplings given by F1. We will neglect F2 in general, which is valid for small A/Ω.

F0–approximation

A first approximation consists in neglecting both F1 and F2 and considering only F0, which connects

energies with the same photon number n. This approximation is valid for the calculation of many

observables as far as the dimensionless quantity A/Ω� 1, – i.e. the field intensity is small compared

to the frequency –, and we are interested in excitations in the low energy sector, as we will see

below, when we analyze the excitation spectrum and the generalized density of states. The resulting

Hamiltonian (7.43) is then block diagonal with building blocks Hn
F0

, where the matrix Hn
F0

reads

Hn
F0

=

(
ε+n F0keiΘ

F0ke−iΘ ε−n

)
. (7.45)

Its eigenvalues and eigenvectors are

ε±l,F0
= lΩ± 1

2

√
4F2

0 k2 + ∆2 (7.46)
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|χ+
l,F0
〉 = 1√

|χa|2 + |χb|2
(
χa|φ+

l 〉+ χb|φ−l 〉
)

|χ−l,F0
〉 = 1√

|χa|2 + |χb|2
(
χ∗b |φ+

l 〉 − χ∗a |φ−l 〉
)

, (7.47)

where

χa = 2F0kei Θ
2 (7.48)

χb =

(√
4F2

0 k2 + ∆2 −∆

)
e−i Θ

2 . (7.49)

The main virtue of this approximation consists in the fact that it captures the gap ∆ at k = 0 produced

by the ac electric field, giving an analytical expression for its magnitude, ∆ =
√

4A2 + Ω2−Ω, so that

this gap can be tuned by varying the field strength of the applied ac field, see also refs. [212, 222, 226].

We point out that an analogous phenomenon occurs in the optics of semiconductors in a strong

THz-field: There, the dynamical Franz-Keldysh effect [235, 236] blue-shifts the conduction band edge

(or, equivalently, the optical absorption edge) by the ponderomotive energy, which also depends

quadratically on the ac-field amplitude.

The so called F0–approximation neglects the coupling between Hamiltonians with a different number

of photons, and is therefore not useful once we are interested in the anticrossings of the Floquet

quasienergies for non-zero momentum.

F1–approximation

In order to analyze higher order processes, we go one step further and take into account the coupling

elements F1, which capture the one-photon resonances, yielding a much more robust approximation

for the Hamiltonian HF (7.43). At the resonances the relevant couplings are the ones between ε+n−1

and ε−n , ε+n and ε−n+1 etc., see Eq. (7.43). By applying the unitary matrix that diagonalizes Hn
F0

Un =
1√

|χa|2 + |χb|2

(
χa χ∗b
χb −χ∗a

)
, (7.50)

we can construct a new effective infinite Hamiltonian which includes the features of the one-photon

resonance, and which is again block diagonal, now mixing the sectors that differ in one photon in the

F0–approximation:

Heff,n
F1

=

(
ε+n−1,F0

2
Sk

F0F1k2eiΘ

2
Sk

F0F∗1 k2e−iΘ ε−n,F0

)
, (7.51)

where Sk =
√

4F2
0 k2 + ∆2. The intensity of the coupling is proportional to F1, as expected. Diagonal-

izing this Hamiltonian yields the following Floquet quasienergies:

ε+l,F1
=





lΩ + 1
2

(
Ω−

√
(Ω− Sk)

2 + 16
S2

k
F2

0 |F1|2k4
)

if k < kc

(l + 1)Ω− 1
2

(
Ω−

√
(Ω− Sk)

2 + 16
S2

k
F2

0 |F1|2k4
)

if k > kc

(7.52)
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ε−l,F1
=





lΩ− 1
2

(
Ω−

√
(Ω− Sk)

2 + 16
S2

k
F2

0 |F1|2k4
)

if k < kc

(l − 1)Ω + 1
2

(
Ω−

√
(Ω− Sk)

2 + 16
S2

k
F2

0 |F1|2k4
)

if k > kc,
(7.53)

where kc is the momentum at which the one-photon resonance takes place. For the Floquet eigenvec-

tors, it is more convenient to write them in the basis that diagonalizes the Hamiltonian for k = 0,

reading

|ξ+l,F1
〉 =





1
N

[
ξaχa|φ+

l 〉+ ξaχb|φ−l 〉 − ξbχ∗b |φ+
l+1〉+ ξbχ∗a |φ−l+1〉

]
if k < kc

1
N

[
ξ∗b χa|φ+

l 〉+ ξ∗b χb|φ−l 〉+ ξ∗a χ∗b |φ+
l+1〉 − ξ∗a χ∗a |φ−l+1〉

]
if k > kc

(7.54)

|ξ−l,F1
〉 =





1
N

[
ξ∗b χa|φ+

l−1〉+ ξ∗b χb|φ−l−1〉+ ξ∗a χ∗b |φ+
l 〉 − ξ∗a χ∗a |φ−l 〉

]
if k < kc

1
N

[
ξaχa|φ+

l−1〉+ ξaχb|φ−l−1〉 − ξbχ∗b |φ+
l 〉+ ξbχ∗a |φ−l 〉

]
if k > kc,

(7.55)

where N =
√
(|χa|2 + |χb|2)(|ξa|2 + |ξb|2) and where we have introduced

ξa =

[
(Ω− Sk) +

√
(Ω− Sk)

2 +
16
S2

k
F2

0 |F1|2k4

]
e

i
2 Θ (7.56)

ξb =
4
Sk

F0F∗1 k2e−
i
2 Θ. (7.57)

The F1–approximation captures the gap at k = 0 as well as the first resonance. The latter gives rise

to the opening of new gaps, whose expression can be obtained analytically in this approximation,

yielding

∆F1 =

√
(Skc −Ω)2 +

16
S2

kc

F2
0 F2

1 k4
c . (7.58)

For a frequency Ω ≈ 150 meV in the mid-infrared regime, and field intensity E0 ≈ 4.8 · 106 V/m

(which is so that A/Ω = 0.1), the sizes of the two gaps would be ∆ ≈ 3 meV, ∆F1 ≈ 15 meV.

7.1.4. Single particle properties derived from the analytical approximations:

Linearly polarized field

Let us now plot the quasienergy spectrum as a function of the momentum in the different analytic

approximations, both for linearly and circularly polarized field.

For a linearly polarized field, the spectrum is not isotropic, and we choose here to plot the quasiener-

gies as a function of ky. In Fig. 7.3 we show the full numerical spectrum (upper panel), the spectrum

for the J0–approximation (middle panel) and finally for the J1–approximation (lower panel). The solid

black lines represent the Floquet band l = 0, the dashed lines the l = −1, and the dashdotted lines

the l = 1 band. Note that the J0–approximation captures the renormalized Fermi velocity, but no gaps

due to higher order photon processes open. In the J1–approximation (lower panel), however, the gap

at around ky ≈ Ω/2 is well reproduced, as compared to the full numerical result in the upper panel.

For the field strength chosen here – A/Ω = 0.2 –, higher order gaps due to processes involving two

or more photons are negligible.
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Figure 7.3.: Quasienergy spectrum for graphene irradiated by a linearly polarized electric field. The quasiener-

gies are plotted as a function of ky for kx = 0. The solid lines represent the l = 0 band, the

dashed lines the l = −1, and the dashdotted lines the l = 1 sideband. Upper panel: The full

numerical result of the quasienergies. Middle panel: The quasienergies for the zero-photon ap-

proximation J0. Lower panel: The quasienergies for the one-photon approximation J1. Parameters:

kx = 0, A = 0.2, Ω = 1.

For weak fields, the J1–approximation constitutes an excellent analytic approach to the real system.

We will therefore use it to calculate the density of states (DOS), and compare it henceforth with the

full numerical result. The generalized (time averaged) density of states is calculated by

D(ω) = 4 ∑
k,σ

δ(ω− εk,σ,0), (7.59)

where the quasienergies are those defined in the first Brillouin zone of the Floquet spectrum. In the J0–

approximation, εk,σ,l=0 = ε±0,J0
, see Eq. (7.25), and the density of states can be calculated analytically

yielding

DJ0(ω) =
2

π J0

(
2A
Ω

) |ω|, (7.60)

which differs from the density of states for free graphene only by the factor 1/J0(2A/Ω). This can

be understood as an effective renormalization of the Fermi velocity. The results from both J0– and

J1–approximations are displayed in Fig. 7.4, together with the full numerical density of states. Note

the good agreement of the J1–approximation with the full numerical one, where only a very narrow

additional gap opens at ω ≈ Ω, due to two-photon resonances. The density of states both for cir-

cularly and linearly polarized field has already been obtained numerically by Oka et al. [212], Calvo
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Figure 7.4.: Generalized density of states of graphene irradiated by a linearly polarized ac electric field. Upper

panel: Density of states for the analytical approximations J0 and J1. Lower panel: Full numerical

result for the density of states. Note the good agreement between the full numerical result and

the J1–approximation. The antiresonance at ω ≈ ±1 due to two-photon processes is very narrow

at low field strengths as they have been chosen here. Parameters: A = 0.1, Ω = 1.

et al. [222] and Zhou et al. [226] using the full Floquet Hamiltonian. The analytical approximations

derived here, especially the J1–approximation, as it coincides very well with the numerical result for

low field strength, should, however, be useful for future work concerning graphene irradiated by a

linearly polarized ac electric field.

7.1.5. Single particle properties of the Hamiltonian derived from the analytical

approximations: Circularly polarized field

We next consider the quasienergy spectrum for circularly polarized field, both the full numerical

result and the analytical approximation derived in the previous section. With increasing field strength,

zero-photon, one-photon, two-photon and higher order resonances appear. In Fig. 7.5 we compare

the numerical (upper panel) and the analytical results (middle and lower panels) for the quasienergy

spectrum as a function of the wavevector kx and for weak fields. In the middle panel we plot the

F0–approximation, which reproduces very well the gap at kx = 0, but no other features induced by

the ac field show up. The lower panel shows the results for the F1–approximation, which, in addition

to the F0 result, nicely captures the one-photon resonance at kc ≈ ±0.5.

As for the linearly polarized field, the analytical approximations can be tested by computing the
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Figure 7.5.: Quasienergy spectrum of graphene irradiated by a circularly polarized electric field. The quasiener-

gies are plotted as a function of kx for ky = 0. The solid lines represent the l = 0 band, the dashed

lines the l = 1, and the dashdotted lines the l = −1 sideband. Upper panel: The full numerical

result of the quasienergies. Middle panel: The quasienergies for the zero-photon approximation

F0. Lower panel: The quasienergies for the one-photon approximation F1. Parameters: ky = 0,

A = 0.2, Ω = 1.

density of states,

D(ω) = 4 ∑
k,σ

δ(ω− εk,σ,0). (7.61)

In the F0–approximation the quasienergies are εk,σ,l=0 = ε±0,F0
, see Eq. (7.46), and we obtain the density

of states in the F0–approximation

DF0(ω) =
2

πF2
0
|ω|Θ

(
|ω| − ∆

2

)
. (7.62)

Notice the presence of the gap at zero energy in the density of states. The simplicity of this zero-

photon approximation allows for analytical computations of many physical quantities, something

that no longer happens in general in the one-photon approximation, for which we have to resort to

numerical calculations in most of the cases. The results for the generalized density of states in both

the F0– and F1–approximation are plotted in Fig. 7.6 (upper panel), using the analytical quasienergies

from Eqs. (7.52) and (7.53). As a comparison, the lower panel of Fig. 7.6 shows the density of states

calculated numerically by diagonalizing the full Floquet Hamiltonian (7.13). Once again, notice that

the F0–approximation works very well for energies of the order of the zero-photon gap, whereas in

order to study the one-photon resonance the F1–approximation excels quite well. Higher resonances
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– visible in the numerical result for the density of states at around ω ≈ 1, are almost negligible for

the field strength we are considering here.

The developed approximations are useful in order to obtain analytical results when this is possible or

at least simplify the numerical complexity of the problem, as it happens when we use the one-photon

approximations. In principle, these approximations are valid for arbitrary k, as long as A/Ω � 1.

The results for the density of states show that in both the analytical approximations and the full

numerical case the gaps remain stable independently of the range of integration in the momentum

included in the density of states, i.e., the inclusion of higher momentum states does not close the gaps

in our case, contrary to what was found in ref. [226].
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Figure 7.6.: Generalized density of states of graphene irradiated by a circularly polarized ac electric field.

Upper panel: DOS for the analytical approximations F0 and F1. Lower panel: DOS considering

the full Floquet Hamiltonian Eq. (7.13). The F0–approximation reproduces the gap given by ∆,

see text. For the one-photon resonance in the F1–approximation the gap at ω = 0.5, where the

field couples modes with n and n + 1 photons, is reproduced. For the same field strength as

considered in the F0– and F1–approximations the full numerical density of states is identical up

to an additional very small gap at ω ≈ 1, which is due to two-photon processes. In the inset,

the region around the gap ω = 0 is blown up for better visibility. Parameters: A = 0.1, Ω = 1.
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7.2. Single and many-particle excitations in graphene in a circularly

polarized ac electric field

7.2.1. Electron interactions and the formula for the dynamical polarizability

So far we have analyzed the single particle properties of the Hamiltonian. However, a full description

of electron excitations in graphene requires to understand the role of electron-electron interactions in

the system. The Hamiltonian of the interacting system in the presence of an ac field reads now, in

second quantization,

H(t) = vF ∑
k

Ψ†
k σ · (k− eA(t))Ψk + ∑

q
vqn†

qnq, (7.63)

where vq = 2πe2/ε0q is the 2D unscreened Coulomb interaction in vacuum. We have already intro-

duced this Hamiltonian in Sect. 6.3. As has been discussed there, for doped graphene, the Coulomb

interaction becomes screened, yielding a system whose low-energy excitations around the Fermi sur-

face are barely interacting, i.e., electrons in graphene behave as a Fermi liquid. Moreover, there exists

a collective excitation, a plasmon [205, 207]. This is no longer true when the level of doping is zero

or very small, where the role of interactions is controversial due to the singular nature of the Dirac

point and screening is uneffective [185, 186]. In order to understand the effect of interactions between

electrons when an external ac field is applied, we will compute the dynamical polarizability, which

tells us about the response of the system to probes that couple to the electric charge. This function

will yield information about the full spectrum of electron interactions of the system that contains both

single particle and collective excitations. The dynamical polarizability of graphene in the presence of

an ac electric field shows particular features that differ from its counterpart, the 2DEG, as well as

from the one derived for graphene in the absence of the field [206], see also Sect. 6.3.2. The detailed

derivation of the polarizability function is set out in the Appendix B.3, whereas here we only present

the final result:

Π(q, ω) = ∑
σ,σ′

∑
k

∑
l

fk,σ − fk+q,σ′

ω− εk+q,σ′ ,l + εk,σ,0 + iη ∑
n
|φn,a,∗

k+q,σ′ ,lφ
n,a
k,σ,0 + φn,b,∗

k+q,σ′ ,lφ
n,b
k,σ,0|2 (7.64)

The index n stands for the Fourier component of a solution in the sideband l of the infinite Floquet

Hamiltonian. The summation over n constitutes the scalar product of the solution |φk+q,σ′ ,l〉 with

|φk,σ,0〉, where we have made use of the fact that solutions belonging to the lth Brilloun zone in the

Floquet spectrum are those of the first Brilloun zone shifted by l units, see Eqs. (7.7) and (7.9). The

solution l = 0 is the one which fulfills the condition that at A→ 0, Π(q, ω) becomes the polarizability

for an isolated graphene sheet. Mathematically, it is important to notice that the analytical properties

of the dynamical polarizability do not change in the presence of the external ac field. It is a complex

function, analytical in the upper half plane, whose real and imaginary parts are not independent,

but related via the Kramers-Kronig relations, see e.g. ref. [237]. The latter can also be seen as a

consequence of the causality in the response of the system to the external probe.

The polarizability is written in terms of the single particle excitations of the system, as in conven-

tional linear response theory. In the presence of the ac electric field, there is an infinite set of single
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particle excitations that differ between them in the relative number of photons. Once the external field

is switched on, the system is no longer isolated, and the field can pump or extract energy into the

system in the form of photons of frequency Ω. Therefore, the polarizability can be seen as a linear

combination of polarizabilities, each describing excitations in which the number of photons in the

system changes by a certain integer number l. Or in other words, the response of the system to an

external probe of energy ω and momentum q can arise from excitations in which no extra photons are

introduced into the system, as it happens in the absence of the field, or in which a given number l of

photons is introduced into or extracted from it. Similar results as those shown here have been derived

in the context of low-dimensional semiconductors [238] and the 2DEG [230]. The latter is usually the

benchmark to compare the results derived for graphene, and therefore we include here the formula

for the ease of comparison:

Π2DEG
ac (q, ω) = ∑

k
∑

l

fk − fk+q

ω− εk+q,l + εk,0 + iη
(7.65)

Note in this expression that the effects due to the ac electric field appear in two different places: (i) in

the index l of the sideband, reflecting a change in the number of photons, and (ii) as a modification

of the single particle excitations in εk,σ,l . The situation is more complicated in the case of graphene,

Eq. (7.64), where also a momentum dependent overlap term between the excitations with different

momentum must be included. This overlap is reflected in the polarizability via the scalar product be-

tween quasieigenstates, and it is in turn a consequence of the existence of the pseudospin in graphene.

The effect of the electric field on the electronic system can be understood in terms of transfer of spec-

tral weight, as we shall show in the next section. As the electric field is switched on, the spectral

weight is reorganized, although in a way that still preserves the conservation rule imposed by the f -

sum rule, which was derived and analyzed in the context of low-energy graphene by Sabio et al. [227].

As a last remark, since we are dealing with a system in which a polarized ac electric field is already

present, one has to ask oneself about the possible influence of the polarization of the external probe to

which the system responds. In fact, since we are analyzing the dynamical polarizability, which arises

from the coupling between the electronic density and the potential induced by the external probe,

the response of the system in the linear regime is insensitive to the polarization of the probe field.

In order to see a response that depends on the polarization of the probe, we would have to analyze

the response of the electronic current, which couples to the electric field, and whose linear response

function is the conductivity. Notice, however, that the response function itself will not be altered due

to this polarization, since in linear response it only depends on the properties of the system in the

absence of the external probe by virtue of the fluctuation-dissipation theorem (cf. Sect. 6.3.1).

7.2.2. Analytic approximations for the dynamical polarizability

We now evaluate the dynamical polarizability (7.64) using the analytic approximations developed

in Sect. 7.1.3. We first consider the imaginary part of (7.64). This yields the response of the non-

interacting system to an external probe of energy ω and momentum q, and is a building block for

the Random Phase Approximation (RPA). As we mentioned in the introductory chapter 6, RPA is

known to work well for doped graphene [189], where Landau’s theory of the Fermi liquid provides
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a good description of the low energy excitations. In the case of undoped graphene, the issue is more

complicated due to the lack of screening near the Dirac point [186]. In our case, due to the opening

of a gap at k = 0, we expect RPA to be sufficient to describe the main features of the response of the

system once electron-electron interactions are taken into account.

F0–approximation

In the F0–approximation a gap opens up at zero momentum, so it can be used for a qualitative

description of the response to an external ac probe. We set the temperature T = 0, and for the

moment we will restrict ourselves to undoped graphene. In this case, the dynamical polarization

involves only the term that accounts for transitions between the Floquet bands (0,−) and (0,+), i.e.,

transitions in which the number of photons is conserved,

ΠF0(q, ω) = ∑
k

|〈χ+
k+q,0|χ−k,0〉|2

ω− ε+k+q,0 + ε−k,0 + iη
, (7.66)

where |χ±k,0〉 are the eigenvectors from the F0–approximation, see Eq. (7.47). We find

Im ΠF0(q, ω) = −1
4

F2
0 q2

√
ω2 − F2

0 q2

(
1 +

∆2

ω2 − F2
0 q2

)
Θ
(

ω2 − F2
0 q2 −∆2

)
, (7.67)

with ∆ =
√

4A2 + Ω2 −Ω being the gap opened at the first resonance. This is actually the dynamical

polarizability for a “gapped graphene"; now the gap is due to the presence of the circularly polarized

ac field. Gapped graphene has been studied extensively by Pyatkovskiy [239], who also derived

analytical expressions for the real part of the polarization, for both doped and undoped graphene.

We show the imaginary part of the polarizability in the F0–approximation in Fig. 7.7. For a given

momentum of the external probe, the energy threshold required to produce single particle excitations

is increased due to the existence of the gap, which is now located at ω =
√

F2
0 q2 + ∆2. This yields a

rearrangement of the spectral weight of the excitations, which might allow for the existence of more

complex excitations in the spectrum of the interacting system. We investigate this question within

RPA. As shown in Sect. 6.3, the polarizability in the RPA is

ΠRPA(q, ω) =
Π0(q, ω)

1− vqΠ0(q, ω)
, (7.68)

where the denominator is the dielectric function in RPA with vq being the 2D unscreened Coulomb

potential. In order to have long-lived collective excitations, i.e. plasmons, the dielectric function must

vanish at certain points ωp(q), which leads to the conditions vq Re Π0(q, ω) = 1 and Im Π0(q, ω) = 0.

In Fig. 7.8 the imaginary and real part of the polarizability in the RPA are plotted, using Π0(q, ω) =

ΠF0(q, ω) (Eq. (7.66)) in Eq. (7.68). It can be seen that the divergence at the threshold of excita-

tions found for the non-interacting polarizability has disappeared, a feature that is also observed in

graphene in the absence of ac fields. However, the real part of the polarizability does not develop a

resonance, and therefore no plasmons, at least within the RPA of the F0–approximation. This is not

surprising, since in gapped undoped graphene there are no electronic states at the Fermi level that
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Figure 7.7.: Imaginary part of the polarizability ΠF0 for irradiated graphene. Imaginary part of the polariz-

ability in the F0–approximation as a function of ω and for different values of q, Eq. (7.67). For

ω <
√

F2
0 q2 + ∆2 no excitations are possible, as compared to free graphene, where no excitations

are possible for ω < q. Note that only for small q = 0.05 the effect of the gap is visible as a shift

of the divergence away from ω = q. Parameters: A = 0.1, Ω = 1.
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Figure 7.8.: Imaginary part of the polarizability ΠF0 for irradiated graphene in the RPA. Imaginary and real

part of the polarizability in the F0–approximation as a function of ω for different q in the RPA.

The divergence in the imaginary part of the polarizability has disappeared, but the real part has

not developed a resonance, which would be the signature of the existence of collective electronic

excitations. Parameters: A = 0.1, Ω = 1.

provide the support necessary for plasmons. In order to test if this is still true when higher order

photon resonances are included, we analyze the F1–approximation in the next section.

Before that, let us analyze the case of doped graphene. As already shown in Ref. [239] for the case

of gapped graphene, the plasmon already present in the system without ac fields is still robust once a
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weak field is introduced. The main effect of the external ac field is to modify the plasmon dispersion

ωF0
p (q) =

√
gNsNvF0qµ

2

(
1− ∆2

4µ2

)
, (7.69)

where g = e2/vFε0h̄ is the fine structure constant of graphene. The correction affects the plasmon

frequency ω0 =
√

gNs Nv F0µ
2 (1− ∆2

4µ2 ), but not the dependence on momentum, which still follows the

law ωF0
p (q) ∝

√
q. The plasmon frequency is diminished due to the effect of the external ac field,

since F0 < 1 and 1− ∆2/(4µ2) < 1. The correction coming from the factor F0 is essentially due to

the renormalization of the Fermi velocity due to the ac field. The second correction depends on the

relation of the chemical potential to the gap at zero momentum, and it is maximal for a chemical

potential below ∆/2, where the plasmon is completely suppressed since no electrons are populating

the upper Dirac cone. For chemical potentials above this value, the correction tends to be smaller,

being almost negligible for µ � ∆/2. We point out that similar results hold in a quite different

context, that of graphene anti-dot lattices [240, 241], where it has been found out that in the limit of

low doping, gapped graphene models reproduce very well the plasmon dispersion of the anti-dot

lattice.

In short, the results from the F0–approximation yield a similar picture to that of graphene in the

absence of an external field, and the main effect of the ac field is a renormalization of the single

and many-particle spectrum, with a shift of the threshold for excitations, due to the gap at zero

momentum.

F1–approximation

The F1–approximation accounts for non-zero-photon processes neglected in the F0–approximation. It

is not fully analytically tractable in the calculation of many observables. In the F1–approximation

using Eqs. (7.52)-(7.55) the polarizability for undoped graphene at T = 0 becomes

ΠF1(q,ω) = ∑
k

|〈ξ+k+q,0|ξ−k,0〉|2

ω− ε+k+q,0 + ε−k,0 + iη
+

+|〈ξ+k+q,−1|ξ−k,0〉|2
(

1
ω− ε+k+q,−1 + ε−k,0 + iη

− 1
ω− ε−k+q,1 + ε+k,0 + iη

)

+|〈ξ+k+q,−2|ξ−k,0〉|2
(

1
ω− ε+k+q,−2 + ε−k,0 + iη

− 1
ω− ε−k+q,2 + ε+k,0 + iη

)
. (7.70)

Here, there are three different contributions to the polarizability, which come from the Floquet bands

l = 0, l = ±1 and l = ±2, i.e., from excitations that involve the exchange of up to two photons from

the external field. However, for the electric fields in which this approximation holds, the contribution

from the l = ±2 components is essentially negligible, and therefore only zero- and one-photon

processes will be considered. In the following we evaluate (7.70) numerically, first integrating the

imaginary part and then computing the real part via the Kramers Kronig relations.

Figure 7.9 shows the imaginary part of the polarizability ΠF1 for fixed q as a function of ω. In

the upper panel, the components l = 0 and l = ±1 and their sum are shown for q = 0.1, in order
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Figure 7.9.: Imaginary part of the polarizability ΠF1 . Upper panel: q = 0.1; the components l = 0,±1 of the

polarizability and their sum are shown, see Eq. (7.70). Lower panels: Imaginary part of the total

polarizability as a function of ω for two different q, q1 = 0.05, q2 = 0.1. Left plot for ω < 0.4,

right plot for ω > 0.7. Parameters: A = 0.1, Ω = 1.

to illustrate where its structure comes from. The two lower panels represent the total polarizability

for two different wavevectors q, divided into two regions for better visibility of the different features.

Several new features emerge from the F1–approximation. As shown in Fig. 7.9, at the level of zero-

photon processes, there is a gap at zero momentum already captured in the F0–approximation. In

addition, gaps appear at higher momenta, where the first anticrossing of Floquet sidebands occurs

(see Fig. 7.5). For a sufficiently small q this second gap translates into two small gaps in the single

particle excitation spectrum around ω ≈ 1, which are eventually closed for higher momenta, as

shown in Fig. 7.9 (lower panel, right plot). The first of those gaps, for 0.9 < ω < 1, comes from the

fact that for electrons from the lower cone of graphene no states are available in the upper band for

the corresponding values of q and ω, due to the anticrossing of Floquet sidebands. The second one,

at 1 < ω < 1.1, is due to the lack of states in the lower cone in the region where this anticrossing

occurs with lower Floquet sidebands. The most important new features of the response of the system,

however, come from the contribution of one-photon processes, in which transitions from the l = 0

to the l = ±1 sidebands are taken into account. New single particle excitations appear below ω =√
F2

0 q2 + ∆2, leaving only a small region of energies where no excitations are found, a region which,

again, closes for sufficiently large q (dashed line for q = 0.1).

One-photon processes introduce new single particle excitations into the response of the system,

and we next examine the effect of these processes on the collective excitations of the system. The
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Figure 7.10.: Imaginary and real part of the polarizability ΠF1 in the RPA. Notice the resonance in the real

part for small momenta q1 = 0.035 and q2 = 0.05 (lower panel), where no excitations exist

in the imaginary part (upper panel), which points to the existence of collective excitations.

Parameters: A = 0.1, Ω = 1.

RPA polarizability ΠF1,RPA is shown in Fig. 7.10 for different values of the external momentum q.

One-photon processes have an important effect on the response of the interacting system, as they

make the existence of collective excitations possible for small enough momentum, see curves for

q1 = 0.035, q2 = 0.05 in Fig. 7.10. For these momenta, the plasmon conditions are fulfilled, which is

reflected in the development of a resonance in the real part of the RPA polarizability. The important

difference here compared to undoped undriven graphene is that the driving field induces single-particle

excitations at low energy for finite momentum via one-photon absorption or emission processes (see

the peak at low ω in the excitation spectrum in the imaginary part of ΠF1,RPA(ω) in Fig. 7.10). These

excitations are necessary in order for an undamped plasmon to exist, as it is also the case for undriven

doped graphene, see Sect. 6.3. For an external momentum of q = 0.05, e.g., the resonance is located

at ω ' 0.021, which is already in the region where the imaginary part of the polarizability is zero,

making the existence of an undamped plasmon possible. It is important to mention that this plasmon

becomes unstable in two different scenarios. (i) For large enough momentum of the external probe,

where the resonance is weakened and occurs in a region where single particle excitations exist, so

that the plasmon can decay into those excitations, see q3 = 0.15 in Fig. 7.10. (ii) When two-photon

processes are considered, there is no longer a region where the imaginary part of the polarizability is

zero. For weak fields, however, these processes are negligible and their effect on the plasmon should

also essentially be irrelevant. However, this suggests that as we increase the intensity of the electric

field and higher order photon processes are important, there is no region of momenta q in which the

plasmon is stable.

118



7.2. Single and many-particle excitations in graphene in a circularly polarized ac electric field

−0.1

0

Im
Π

F
0
,F

1
(ω

)

0 0.05

ω

0.1 1

ω

−0.01

0

−0.1

0

Im
Π

F
0
,F

1
(ω

)

0.1 ω 1

F0

F1

Figure 7.11.: Imaginary part of the polarizability for doped graphene. Both the F0– (solid red) and the F1–

approximation (dashed dark red) are shown as a function of ω for q = 0.05. In the lower

panels, the upper plot is split in two parts in order to better visualize the different regions of

ω. Parameters: A = 0.1, Ω = 1, µ = 0.2.

For doped graphene, the F1–approximation introduces features similar to those described for un-

doped graphene, see Fig. 7.11. The effect of the anticrossing of Floquet sidebands is to induce gaps in

the response of the system for ω ∼ 1, and processes including the exchange of one-photon give rise

to new excitations for small energies. In order to quantify the effect of these processes, in this figure

the polarizability is compared to the one for doped graphene using the F0–approximation, where

only zero-photon processes are considered. The RPA response of the interacting system is shown for

a couple of representative external momenta in Fig. 7.12. As it happened in the undoped case, for

small external momentum (q = 0.05 in Fig. 7.12) there is a resonance in the real part, signaling the

existence of a plasmon, which again has a renormalized dispersion relation due to the effect of the

external ac field. However, non-zero-photon processes are again responsible for the appearance of

low-energy excitations that tend to make the plasmon unstable for large enough momenta q (q = 0.15

in Fig. 7.12) and for larger intensities of the field, as discussed for the undoped case. These momenta

q for which plasmons become unstable are still lower than those for which the plasmon is damped in

graphene without ac field.

Summarizing, the inclusion of non-zero-photon processes is crucial in order to capture the physics

of the response of graphene to an external probe in the presence of a weak ac field. This is due

to the appearance of excitations in the low-energy spectrum of the system not included in the F0–

approximation, which allow for the existence of collective excitations in undoped graphene, but make

those plasmons unstable for smaller momenta than their counterparts in graphene with no ac fields.
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Figure 7.12.: Polarizability in the RPA for doped graphene in the F0, F1–approximation. Upper panel: Imaginary

part. Lower panel: Real part. The results are shown for two different momenta q = 0.05 and

q = 0.15. In both figures the results are compared with the F0–approximation. Notice, in both

approximations, the existence of the resonance in the real part of the polarizability, signalizing

the existence of a collective excitation. For large momentum q = 0.15, however, the imagi-

nary part shows no gap and therefore the plasmon can decay into single particle excitations.

Parameters: A = 0.1, Ω = 1, µ = 0.2.

7.3. Conclusions

In this chapter we have analyzed the properties of graphene under an external ac field in the weak

field regime. Both for the case of a linearly and circularly polarized field, we have developed analytical

approximations to the Hamiltonian, – the so-called J0– and J1–approximations for linearly polarized

field (Sect. 7.1.2), and F0– and F1–approximations for circularly polarized field (Sect. 7.1.3) –, which

allow for a certain analytical tractability of many relevant objects. The J0– and F0–approximations

include only zero-photon excitations in the system and are useful to calculate certain observables in

the low-energy sector. The J1– and F1–approximations include higher-order photon processes, thereby

making possible the analysis of a wider range of observables and a larger energy sector. However, in

many cases they require numerical calculations to extract the observables.

Special emphasis has been put on the calculation of the dynamical polarizability of graphene ir-

radiated by a circularly polarized field, which can be used to analyze the spectra of single and

many-particle excitations of the system. We have derived a general expression for the polarizabil-

ity of graphene in the presence of a circularly polarized ac electric field, which we have afterwards

analyzed in the context of the F0– and F1–approximations. While the former allows for analytical

expressions and captures well the effect of the zero-momentum gap in the system, it misses the non-
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zero-photon processes that are captured by the F1–approximation, and in turn are responsible for the

emergence of collective excitations even for undoped graphene, as long as the Random Phase Ap-

proximation remains valid. However, it also points out that these collective excitations are less stable

when compared to graphene with no external ac field: for large enough external momenta and ac

field intensities, these excitations become damped and acquire a finite lifetime.

We have shown that both linearly and circularly polarized ac fields can be used to modify the

properties of graphene in several ways: (i) They open up gaps at zero momentum (for circularly

polarized field) and finite momenta (for both polarizations) that can be exploited in practical appli-

cations. (ii) Circularly polarized ac fields permit the existence of plasmons (in both undoped and

doped graphene), (iii) The plasmon frequency is tunable with the external field, and, finally, (iv) For

large enough fields the plasmons become unstable. Moreover, we have developed and tested analyti-

cal tools to analyze theoretically the behavior of graphene in the presence of ac electric fields, which

should be useful in future works in this field.
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A. Appendix: Bipolar spin blockade in triple

quantum dots

A.1. Conversion parameters and slope of the resonance lines

As has been said in chapter 5, the energy levels εi of the dots i = 1, 2, 3 are written as linear functions

of the three gate voltages,

ε1 = C1 − α1VL − β1VR

ε2 = C2 − β12VL − β23VR

ε3 = C3 − β3VL − α3VR, (A.1)

where C1,2,3 are constants that provide an overall energy shift. The conversion parameters are given

in eV/V.

The stability diagram and the current depend very sensitively on the values of the conversion

parameters α1,3, β1,3, and β12,23. The measurement of the stability diagram of a quantum dot or an

array of quantum dots is a fundamental way of determining its filling scheme and serves e.g. to find

the electrostatical parameters of the device. In particular, the slopes of resonance lines appearing in

the stability diagram indicate unambiguously along which line either the left and center dots (LC),

the center and right dots (CR) or the left and right dots (LR) are on resonance. For the theoretical

calculation it is therefore of crucial importance to know the conversion factors by which the slopes

of the resonance lines become equal to the ones obtained experimentally. In the following, we restrict

our discussion to the basis states participating in the positive bias direction. The LC resonance line

occurs when the tunneling from a state |2, 0, 2〉 to a state |1, 1, 2〉 (or from |2, 0, 2∗〉 to |1, 1, 2∗〉) is

resonant. Analogously, for the CR line one must have resonant tunneling from |2, 1, 1〉 to |2, 0, 2〉 (or

|2, 1, 1〉 or |2, 1, 1∗〉 to |2, 0, 2∗〉). Again the same must be true for the LR resonance line which occurs

for resonance between |2, 1, 1〉 and |1, 1, 2〉. One can easily write down the equations for each of the the

resonance lines; as an example we show here the equation for the LR resonance line (for non-excited

levels in the right dot in positive bias direction). For zero magnetic field we have

ε1 + ε2 + 2ε3 + U3 + 3V + 2V13 = 2ε1 + U1 + ε2 + ε3 + 3V + 2V13, (A.2)

which yields, after inserting equations (A.1) and solving for VR,

VR =
U3 −U1 + C3 − C1

α3 − β1
+

α1 − β3

α3 − β1
VL. (A.3)
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Figure A.1.: Resonance lines in a linear TQD for the {VL, VR} parameter space. a) Calculated resonance lines

(see as an example Eq. (A.3)) for three different sets of the conversion parameters α1,3, β1,3,

β12,23. In the left panel, β1,3,12,23 = 0, so that the voltages do not affect any neighboring dot.

Middle panel: β1,3 = 0, β12,23 = 5 (meV/V). Both LC and CR lines are tilted, but the slope

of the LC line is much bigger than the slope of the CR line. Right panel: α1 = 25.6, α3 = 26.4,

β1 = 13.2, β3 = 13.2, β12 = 25.11, β23 = 18.4. Now the CR lines are steeper than the LC line, see

also the experimental stability diagram just below, where the LC and CR lines are indicated by

arrows. b) Energy level configurations for the different resonance lines. The stability diagram

is taken from ref. [113].

The LR resonance line is thus written as a function VR(VL) whose slope only depends on the con-

version factors, i.e. on the extent to which the voltages affect the energy levels of the dots. It is very

helpful for the understanding of the transport triangles to see how much a change in the conversion

factors can affect the slope of the resonance lines. We show therefore in Fig. A.1 resonance line plots in

the {VL, VR} parameter space for three different sets of the parameters α1,3, β1,3 and β12,23.

If the voltages applied to the left and right dot did not affect any of their respective neighboring

dots, the LC resonance line would be vertical (orange solid line), the CR line horizontal (red solid and

dashed lines), and the LR line perfectly diagonal (blue solid and dashed lines), see Fig. A.1 a) (left

panel). There are two points where three of the lines cross, namely the red, blue and orange solid

lines, and the red dashed, blue dashed and orange solid lines. At the latter crossing, all three dots

are on resonance, so that in the right dot the singlet level is aligned with the single level in the center

dot and the singlet level in the left dot, and at the former crossing, the excited triplet level is aligned

with the single level in the center dot and the singlet level in the left dot. We will henceforth refer
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A.2. Eigenvalues at the singlet LR resonance

to the LR singlet and the LR triplet, as well as to the CR triplet and CR singlet line. In Fig. A.1 a)

(middle panel), we plot the resonance lines for the parameters α1 = 25.6, α3 = 26.4, β1 = 0, β3 = 0,

β12,23 = 5, all in meV/V. The former vertical LC line is now tilted, as are also the former horizontal

CR lines, and the LR lines are basically the same. Note that the slope of the CR lines is smaller than

the slope of the LC line. This is contrary to what was measured in the experiment, where the CR

slope is much steeper than the LC slope (see stability diagram in b). With a bit of playing around

with the conversion parameters we have found a set of parameters that reproduces quite well the

different slopes. This is shown in Fig. A.1 a) (right panel). See also the current plots in Figs. 5.2, 5.3.

A.2. Eigenvalues at the singlet LR resonance

As has been said, the LR singlet resonance line, where an enhanced current flows through the TQD

for zero external magnetic field, goes along with a drop of occupation of the state |S, 0, S〉. In order

to understand this transport feature, we analyze the eigenstates of the closed system. We consider

the states that contribute to transport: |S, σ, σ′〉, |S, 0, S〉, |σ′, σ, S〉. Let us define the states (without

normalizing them):

|SLC, S〉 = |↑, ↓, ↑↓〉 − |↓, ↑, ↑↓〉
|S, SCR〉 = |↑↓, ↑, ↓〉 − |↑↓, ↓, ↑〉
|S, 0, S〉 = |↑↓, 0, ↑↓〉
|T0

LC, S〉 = |↑, ↓, ↑↓〉+ |↓, ↑, ↑↓〉
|T+

LC, S〉 = |↑, ↑, ↑↓〉
|T−LC, S〉 = |↓, ↓, ↑↓〉
|S, T0

CR〉 = |↑↓, ↑, ↓〉+ |↑↓, ↓, ↑〉
|S, T+

CR〉 = |↑↓, ↑, ↑〉
|S, T−CR〉 = |↑↓, ↓, ↓〉

The notation Sij, Tα
ij refers to singlet and triplet superpositions formed by electrons in different

quantum dots, respectively. We set ε as the left-right detuning, with the central dot’s level being

off-resonant with both left and right dots. For simplicity, let us first neglect the contribution of the

Overhauser field (i.e. effectively different Zeeman splittings in each dot), which will be considered

later in a perturbative way. The eigenstates are then |Tα
LC, S〉, |S, Tα

CR〉 and three linear combinations

of the three singlets that we denote as |Σl〉. All |Σl〉 contain a contribution of |S, 0, S〉 which depends

on the detuning and the interdot hopping:

|Σ1〉 = γ1|S, SCR〉+ η1|SLC, S〉+ δ1|S, 0, S〉 (A.4)

|Σ2〉 = γ2|S, SCR〉 − η2|SLC, S〉+ δ2|S, 0, S〉 (A.5)

|Σ3〉 = γ3|S, SCR〉+ η3|SLC, S〉+ δ3|S, 0, S〉 (A.6)

Note that spin blockade avoids the overlap of states |Tα
LC, S〉, |S, Tα

CR〉. Of special importance is |Σ2〉
for two reasons: at the LR resonance condition
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Figure A.2.: Eigenvalues around the singlet LR resonance for zero Zeeman splittings. a) Eigenenergies of the

closed system as a function of ε (left-right detuning). The eigenenergy of the additional triplet

states would coincide with those of |T0
LC, S〉 (blue) and |S, T0

CR〉 (orange), as defined in the text.

The eigenstate |Σ2〉 (black, Eq. (A.5)) crosses the triplet states |T0
LC, S〉 (blue) and |S, T0

CR〉 (red),

see zoomed region. b) The contribution of the state |S, 0, S〉 to the eigenstates |Σl〉 is plotted.

The state |Σ2〉 (black) that crosses the triplet subspace at zero left-right detuning (ε = 0) only

contains contributions of states |2, 1, 1〉 and |1, 1, 2〉 at that point.

(i) it crosses the triplet states (cf. left panel in Fig. A.2),

(ii) the contribution of |S, 0, S〉 to the superposition |Σ2〉, δ2, vanishes at this resonance, cf. Fig. A.2

b).

For finite nuclear magnetic field the effective Zeeman splittings in the TQD, ∆ i, will in general be

slightly different. In this case singlet and triplet subspaces mix, with the exception of those with

parallel spins, |T±LC, S〉 and |S, T±CR〉. As a consequence the eigenstates change. In comparison to the

homogeneous case we now obtain anticrossings instead of crossings in the energy spectrum around

the resonance condition, see Fig. A.3 b). At these anticrossings the former state |Σ2〉 and the triplet

states |T0
LC, S〉 and |S, T0

CR〉 mix strongly and are not eigenstates of the Hamiltonian any more. For

our discussion the most important fact is that, up to leading order in a perturbative expansion, the

superposition |Σ2〉, that is responsible for the spin blockade removal, does not mix with |S, 0, S〉. It

reads now

|Σ′2〉 = |Σ2〉+ (∆1−∆2)|S, T0
CR〉+ (∆2−∆3)|T0

LC, S〉+O(B2
nucl). (A.7)

Close to resonance, this state crosses the states |S, T±CR〉, which are responsible of spin blockade, as

shown in Fig. A.3 in the zoomed region.

Our analysis suggests therefore that the lifting of spin blockade occurs via the spin–flip decay of the

blocking states, |S, T±CR〉, into |Σ2〉. The latter has a finite tunneling rate to the drain contact, thereby

opening the system to transport: current will flow from the source to the drain contact until spin
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Figure A.3.: Eigenvalues around the singlet LR resonance for zero and inhomogeneous Zeeman splittings. a)

Eigenenergies of the closed system for zero Zeeman splittings, as also plotted in Fig. A.2. b)

Eigenenergies of the closed system for Overhauser-induced inhomogeneous splittings. In the

zoomed region on the right hand side one can see the anticrossing in the energies due to the

nuclear-induced inhomogeneous splittings. At zero left-right detuning, the eigenstate |Σ2〉 is

modified to |Σ′2〉, cf. Eq. (A.7), with a finite contribution of triplet states |T0
LC, S〉 and |S, T0

CR〉,
but, as in the homogeneous case, the contribution of state |S, 0, S〉 is zero. The eigenenergies of

states |S, T±CR〉 and |T±LC, S〉 are represented by the unmixed dotted gray lines.

blockade is restored again. Note that the blockade-lifting transition does not involve the occupation

of the intermediate state, |S, 0, S〉. The sharp dip in 〈S, 0, S|Σ2〉 (cf. Fig. A.2 b) is therefore consistent

with the occupation of |S, 0, S〉 in the stationary solution of the transport configuration, cf. Fig. 5.4.

There the minimum keeps finite due to the contribution of the other current channels in which |S, 0, S〉
participates.
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B. Appendix: Electronic single and many

particle properties of graphene irradiated

by circularly polarized ac field

B.1. Properties of the Bessel functions of the first kind

For the sake of completeness, we shortly state the properties of the Bessel functions that were used

in deriving the matrix elements of the Hamiltonian (7.21). Details can be found e.g. in ref. [242].

2ν

z
Iν(z) = Iν−1(z)− Iν+1(z)

Iν(−z) = (−1)ν Iν(z)

I−ν(z) = Iν(z), ν ∈ Z

Iν′−ν(z1 + z2) =
∞

∑
k=−∞

Ik−ν(z1)Ik−ν′(z2)

Iν(z)∗ = (−1)ν Iν(z) (B.1)

B.2. Derivation of the matrix elements of the Hamiltonian Eq. (7.21)

The perturbative part of the Hamiltonian connects the two former disconnected chains abab and abab,

so that at site n a and b are connected by kx ± iky. Since the difference between the two chains is the

site index n for a(b), which is either odd or even, we can write the solutions |m〉 as a sum of odd and

even sites |2n〉 and |2n + 1〉:

|ψa
l 〉 = ∑

n
I2n−l |φ2n,a〉+ I2n+1−l |φ2n+1,b〉

|ψb
l 〉 = ∑

n
I2n−l |φ2n,b〉+ I2n+1−l |φ2n+1,a〉

In the same way, we separate the Hamiltonian Hk
F,lin in a sum of odd and even states:

Hk
F,lin = ∑

n
(kx + iky)

(
|φ2n,a〉〈φ2n,b|+ |φ2n+1,a〉〈φ2n+1,b|

)
+ h.c. (B.2)
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We get for the matrix element

〈ψb
l′ |Hk

F,lin|ψa
l 〉 = ∑

n
(−1)2n−l′ I2n−l I2n−l′(kx − iky)

+ ∑
n
(−1)2n+1−l′ I2n+1−l I2n+1−l′(kx + iky)

= kx

[
∑
n
(−1)2n−l′ I2n−l I2n−l′ + (−1)2n+1−l′ I2n+1−l I2n+1−l′

]

− iky

[
∑
n
(−1)2n−l′ I2n−l I2n−l′ − (−1)2n+1−l′ I2n+1−l I2n+1−l′

]
. (B.3)

We distinguish now between the two cases l′ =even/odd, and make successive use of Eq.(B.1):

1. l′ even:

〈ψb
l′ |Hk

F,lin|ψa
l 〉 = kx

[
∑
n

In−l(z)In−l′(−z)

]
− iky

[
∑
n

In−l(z)In−l′(z)

]

= kx Il′−l(0)− iky Il′−l(2z)

= kxδl,l′ − iky Il′−l(2z) (B.4)

2. l′ odd:

〈ψb
l′ |Hk

F,lin|ψa
l 〉 = kx

[
∑
n

In−l(z)In−l′(−z)

]
+ iky

[
∑
n

In−l(z)In−l′(z)

]

= kxδl,l′ + iky Il′−l(2z) (B.5)

The matrix elements are therefore

〈ψb
l′ |Hk

F,lin|ψa
l 〉 =





kxδll′ − iky Il′−l(2z), if l′ even,

kxδll′ + iky Il′−l(2z), if l′ odd.
(B.6)

〈ψa
l′ |Hk

F,lin|ψb
l 〉 =





kxδll′ + iky Il′−l(2z), if l′ even,

kxδll′ − iky Il′−l(2z), if l′ odd.
(B.7)

B.3. Derivation of the polarizability for circularly polarized field

The derivation of the formula for the dynamical polarizability follows the lines of its counterpart in

the 2DEG [230]. The wavefunction for graphene under a periodic driving can be written by use of the

Floquet theorem as

ψk,σ(r, t) =
1√
2

eikre−iεk,σtφk,σ(t), (B.8)

where εk,σ is the quasienergy and φk,σ(t) are the Floquet states, which fulfill the time-periodicity of

the driving field, and we have chosen the solution corresponding to the First Brillouin zone. After
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applying a weak probe potential, these wavefunctions are not any more eigenfunctions of the full

Hamiltonian, but we can use them as a basis to write the new wavefunction

Ψk,σ(r, t) = ∑
k′σ′

ak′ ,σ′(t)ψk′ ,σ′(r, t). (B.9)

Inserting this into the Schrödinger equation for the Hamiltonian H0(t) + H1(t), where H0(t) is the

Hamiltonian for the periodically driven graphene, and H1(t) = V(r, t) represents the weak probe

potential, we are left with a differential equation for the coefficients ak,σ(t)

i ∑
k′σ′

ȧk′ ,σ′(t)ψk′ ,σ′(r, t) = ∑
k′σ′

ak′ ,σ′(t)V(r, t)ψk′ ,σ′(r, t). (B.10)

We can now project this equation into a state ψk′′ ,σ′′ , yielding

ȧk′′ ,σ′′(t) = −i ∑
k′σ′

ak′ ,σ′(t)e
i(εk′′ ,σ′′−εk′ ,σ′ )tφ∗k′′ ,σ′′(t)φk′ ,σ′(t)V(k′′ − k′, t), (B.11)

where V(k′′ − k′, t) is the projection of the probe potential into the states k′ and k′′. Now we can

expand this equation in a power series of the external potential, and, keeping only the first order, we

are left with

ȧ(1)k′′ ,σ′′(t) = −iei(εk′′ ,σ′′−εk,σ)tφ∗k′′ ,σ′′(t)φk,σ(t)V(k′′ − k, t). (B.12)

This equation can be simplified by Fourier transformation, yielding

ak′′ ,σ′′(t) =
∫ dω

2π
V(k′′ − k, ω)e−iωtei(εk′′ ,σ′′−εk,σ)teηt ∑

nn′

ei(n′−n)Ωt
[
φn′ ,a∗

k′′ ,σ′′φ
n,a∗
k,σ + φn′ ,b∗

k′′ ,σ′′φ
n,b∗
k,σ

]

ω− (n′ − n)Ω− (εk′′ ,σ′′ − εk,σ) + iη
. (B.13)

In order to get the response of the system to the external probe in linear response, we write the

expression of the induced charge density as

ρind
k,σ(r, t) = Ψ∗k,σ(r, t)Ψk,σ(r, t)− ψ∗k,σ(r, t)ψk,σ(r, t)

= ∑
k′σ′

a∗k′ ,σ′(t)ψ
∗
k′ ,σ′(r, t)ψk,σ(r, t) + ak′ ,σ′(t)ψ

∗
k,σ(r, t)ψk′ ,σ′(r, t) (B.14)

and insert the result obtained for ak,σ(t). After some algebra we arrive at

ρind(r, t) = ∑
q

∫ dω

2π
Vext(q, ω)e−iωteiqr ∑

σσ′
∑
k

fk,σFk,σ,σ′ , (B.15)

where we have introduced the short notation

Fk,σ,σ′ =
1
2 ∑

nn′
∑
mm′


ei(n′−n)Ωtei(m′−m)Ωt

(
φn′ ,a∗

k+q,σ′φ
n,a
k,σ + φn′ ,b∗

k+q,σ′φ
n,b
k,σ

) (
φm′ ,a∗

k,σ φm,a
k+q,σ′ + φm′ ,b∗

k,σ φm,b
k+q,σ′

)

ω− (n′ − n)Ω− (εk+q,σ′ − εk,σ) + iη
+

e−i(n′−n)Ωte−i(m′−m)Ωt
(

φn′ ,a
k−q,σ′φ

n,a∗
k,σ + φn′ ,b

k−q,σ′φ
n,b∗
k,σ

) (
φm′ ,a

k,σ φm,a∗
k−q,σ′ + φm′ ,b

k,σ φm,b∗
k−q,σ′

)

−ω− (n′ − n)Ω− (εk−q,σ′ − εk,σ)− iη


 . (B.16)
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B. Appendix: Electronic single and many particle properties of graphene irradiated by circularly polarized ac field

By comparing with the Poisson equation

ρind(r, t) = ∑
q

∫ dω

2π
Vind(q, ω)e−iωteiqr q2

4π
(B.17)

we see that the induced potential must fulfill

Vind(q, ω) =
4π

q2 Vext(q, ω)∑
σσ′

∑
k

fk,σFk,σ,σ′ . (B.18)

We sum on both sides Vext(q, ω) and get

Vtot(q, ω) =

(
1 +

4π

q2 ∑
σσ′

∑
k

fk,σFk,σ,σ′

)
Vext(q, ω), (B.19)

where the dielectric function is given by

ε(q, ω) =
1

1 + 4π
q2 ∑σσ′ ∑k fk,σFk,σ,σ′

. (B.20)

In the RPA approximation we obtain therefore

ε(q, ω)RPA = 1− 4π

q2 ∑
σσ′

∑
k

fk,σFk,σ,σ′ . (B.21)

After substituting the expression for Fk,σ,σ′ and some straightforward manipulations, we arrive at

our desired result for the dynamical polarizability:

Π(q, ω) = ∑
σσ′

∑
k

∑
l

fk,σ − fk+q,σ′

ω− εk+q,σ′ ,l + εk,σ,0 + iη ∑
n
|φn,a,∗

k+q,σ′ ,lφ
n,a
k,σ,0 + φn,b,∗

k+q,σ′ ,lφ
n,b
k,σ,0|2 (B.22)

Notice that now we have simplified the expression by writing it as the scalar product between differ-

ent Floquet sidebands by using Eqs. (7.7) and (7.9).
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General conclusions

In the first part of this thesis various problems of transport through few-electron triple quantum dots

(TQD) have been considered. By making use of the reduced density matrix formalism the current, the

occupation probabilities and the coherences between certain states have been analyzed in different

scenarios.

In chapter 3 a triangular TQD has been studied in a regime where only one or two electrons

can be inside the TQD (Coulomb blockade regime). In the case of two electrons one of them is

confined in the dot close to the drain contact, so that transport undergoes spin selection rules and

can be blocked due to Pauli’s exclusion principle (spin blockade regime). The triangular TQD has

been considered as exposed to crossed dc and ac magnetic fields, in such a way that the dc field

is perpendicular to the TQD area. This combination of fields is used to induce coherent rotation of

the electron spin within a quantum dot (electron spin resonance). In a triangular TQD, in which two

dots are coupled to leads, an eigenstate exists that is a coherent superposition of two tunnel-coupled

dots, but in which the third one does not participate. If this third dot is connected to the drain, a

phenomenon called coherent population trapping occurs in transport. This phenomenon depends on

the magnetic flux coming from the dc field that penetrates the TQD. For the case of one electron

the current shows Aharonov-Bohm oscillations when varying the dc magnetic field. An additional

ac magnetic field does not affect the coherent superposition that leads to quenching the current, but

induces coherent spin rotations of the single trapped electron. If an additional electron is confined

in the drain dot, spin blockade occurs in the current through the TQD. It is demonstrated that with

only a dc magnetic field applied to the TQD the current does not show Aharonov-Bohm oscillations

as a function of the magnetic flux, since it is either blocked by coherent population trapping or, –

for flux values that destroy the coherent superposition –, by spin blockade. For the latter situation

an ac magnetic field applied to the TQD induces current by breaking the spin blockade. However,

the field does not affect the coherent trapping, and therefore the Aharonov-Bohm oscillations of the

current are recovered. Most importantly, it is shown that the ac magnetic field does not only break

spin blockade, but induces it again at a different frequency (or equivalently at a different dc magnetic

field). In this situation a novel spin blockade state is formed, which is induced by the ac field and

decoupled from it.

In chapter 4 the effect of crossed dc and ac magnetic fields on a double quantum dot (DQD) and a

linear TQD in the Coulomb blockade regime, i.e. with only one or two electrons, has been analyzed.

Transport through the DQD has been treated in detail in terms of eigenstates of two combined two-

level systems, – the two-level system due to tunneling from one electron to the other, and the two-level

system of spin-up and spin-down within one dot. The analysis of the different resonance conditions

of the ac magnetic field frequency with different Zeeman splittings within the DQD show that the
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DQD can work as a spin-polarizer when the Zeeman splitting of the drain dot is off-resonant with

the ac field, but the Zeeman splitting of the source dot is on resonance. For this situation a change in

the energetic detuning between the two dots provides a way of changing between spin-up and spin-

down polarized current. In a similar way it is demonstrated that a TQD can be operated both as a

spin-polarizer and a spin-inverter, in which e.g. a spin-up polarized current is inverted to spin-down

polarized current.

In chapter 5 the current through a linear TQD has been calculated, and the theoretical results have

been compared to results experimentally obtained in the group of Prof. A. Sachrajda (NRC, Canada).

In contrast to the foregoing chapters no ac magnetic field has been considered here. Transport through

the TQD has been analyzed for an electronic configuration of three, four or five electrons inside the

TQD, where two of them are confined in the two lateral dots that are connected to source and drain.

By making use of the density matrix formalism the current has been calculated as a function of the

left and right gate voltages at constant center voltage, for both zero and finite magnetic dc field. It

has been shown that the theoretical results for the current coincide very well with the experimental

results by A. Sachrajda et al. Both measurements and calculations have shown that the current is

blocked both in positive and negative bias direction due to spin blockade, if a finite dc magnetic field

is applied to the TQD. This bipolar blockade is, however, lifted at zero field by hyperfine-induced spin-

flip processes that are strongly suppressed in a finite magnetic field. By analyzing the density matrix

of the TQD system it could be shown that the lifting of spin blockade occurs due to the formation

of a particular eigenstate of the TQD in which an electron is delocalized between the resonant left

and right dot, but in which the center dot does not participate at all. This kind of states could have

important applications in spin-busing schemes and nanospintronics.

In the second part of this thesis, chapter 7, the electronic singleparticle and multiparticle properties

of graphene irradiated by ac electric fields have been analyzed. For both circular and linear polar-

ization of the ac field analytic approximations have been derived that are shown to constitute an

excellent approximation for the case of weak field intensities, where only up to one-photon processes

are important. The analytical approximations have been used to calculate the quasienergy spectrum

and the density of states. It has been found that a circularly polarized field induces gaps in the den-

sity of states both at the Dirac point and for higher energies, where the absorption of one photon

becomes important. It has also been found out that a linearly polarized influences the quasienergy

spectrum and density of states in a similar way, although no gap is induced at the Dirac point, and

no effect is visible along the polarization axis of the field. The effect of Coulomb interactions has only

been considered for the case of a circularly polarized field due to its larger symmetry with respect to

the linear case. In order to analyze the excitation spectra for the interacting system a general formula

for the dynamical polarizability of irradiated graphene has been derived. The analytic approxima-

tions have been applied to evaluate the dynamical polarizability at low field intensities. Thus, within

the RPA, a plasmon has been found even for undoped graphene, which is in strong contrast to free

graphene where the RPA only predicts a plasmon for doped graphene, and it has also been demon-

strated that a circularly polarized ac field changes the plasmon dispersion relation with respect to the

one for pristine graphene. However, it also makes the plasmon unstable due to higher order photon
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processes, which become important for higher field intensities. In conclusion, it has been analyzed

that the presence of time-dependent electric fields can strongly change the electronic properties of

graphene and thereby open the way for the discovery of new physics in this outstanding material.
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Conclusiones generales

En la primera parte de esta tesis se han considerado diversos problemas de transporte de pocos

electrones a través de un triple punto cuántico (TQD). Al hacer uso del formalismo de la matriz

densidad reducida, las probabilidades de ocupación y las coherencias entre algunos estados se han

analizado en diferentes escenarios.

En el capítulo 3 se ha estudiado un TQD triangular en un régimen donde sólo pueden estar uno o

dos electrones dentro del TQD (régimen de bloqueo de Coulomb). En el caso de dos electrones, uno

de ellos está confinado en el punto cuántico al lado del contacto de drenaje, por lo que el transporte

se somete a las reglas de selección de espín y puede ser bloqueado debido al principio de exclusión

de Pauli (régimen de bloqueo de espín). Se ha considerado que el TQD triangular está expuesto a

campos cruzados magnéticos dc y ac, de tal manera que el campo dc es perpendicular al área del

TQD. Esta combinación de campos se utiliza para inducir la rotación coherente del espín del electrón

en un punto cuántico (resonancia de espín electrónica). En un TQD triangular, en el que dos puntos

están acoplados a contactos, existe un autoestado que es una superposición coherente de dos puntos

acoplados por túnel, pero en el que el tercero no participa. Si este tercer punto está conectado a

un contacto de drenaje, un fenómeno llamado atrapamiento de población coherente se produce en el

transporte. Este fenómeno depende del flujo magnético procedente del campo dc que atraviesa el

TQD. Para el caso de un electrón en el interior del TQD la corriente exhibe oscilaciones Aharonov-

Bohm cuando se varía el campo magnético dc. Se ha encontrado que un campo ac adicional no

afecta a la superposición coherente que lleva a la extinción de la corriente, sino que induce rotaciones

coherentes del espín del electrón atrapado en la superposición coherente. Si un electrón adicional se

confina en el punto cerca del contacto de drenaje, se produce bloqueo de espín en la corriente a través

del TQD. A continuación, se ha analizado que con sólo un campo magnético dc aplicado al TQD

la corriente como una función del flujo magnético no muestra oscilaciones Aharonov-Bohm, ya que

está bloqueada o bien por el atrapamiento de población coherente o bien, – para valores de flujo que

destruyen la superposición coherente –, por el bloqueo de espín. En esta última situación un campo

magnético ac aplicado al TQD induce corriente al romper el bloqueo de espín. Sin embargo, el campo

ac no afecta al atrapamiento coherente, y por lo tanto las oscilaciones Aharonov-Bohm de la corriente

se recuperan. Como resultado principal de este capítulo, se ha mostrado que el campo magnético

ac no sólo puede romper el bloqueo de espín, sino que lo induce de nuevo al variar su frecuencia (o

equivalentemente el campo magnético dc). En esta situación se forma un novedoso estado de bloqueo

de espín, inducido por el campo ac y desacoplado del mismo.

En el capítulo 4 se ha analizado el efecto de aplicar campos magnéticos dc y ac cruzados a un

doble punto cuántico (DQD) y un TQD lineal en el régimen de bloqueo de Coulomb, es decir, con

sólo uno o dos electrones. El transporte a través del DQD ha sido tratado en detalle en términos de
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autoestados de dos sistemas de dos niveles combinados – el sistema de dos niveles debido al efecto

túnel de un electrón de un punto cuántico a otro, y el sistema de dos niveles de espín hacia arriba y

espín hacia abajo dentro de un punto cuántico. El análisis de las diferentes condiciones de resonancia

de la frecuencia del campo magnético ac con los diferentes desdoblamientos Zeeman dentro del

DQD ha demostrado que este sistema puede funcionar como un polarizador de espínes cuando el

desdoblamiento Zeeman del punto cerca del drenaje está fuera de resonancia con el campo ac, pero a

la vez el desdoblamiento Zeeman del punto más próximo a la fuente se encuentra en resonancia. En

esta situación un cambio en la diferencia de energías entre los dos puntos proporciona una manera

de alternar entre corrientes polarizadas de espín hacia arriba o abajo. De una manera similar se

ha demostrado que un TQD puede ser operado tanto como un polarizador o como un inversor de

espines, por ejemplo, cuando una corriente polarizada de espín hacia arriba se invierte a una de espín

hacia abajo.

En el capítulo 5, como último tema relacionado con el transporte, se ha calculado la corriente a

través de un TQD lineal. Los resultados teóricos han sido comparados con unas medidas experi-

mentales llevadas a cabo en el grupo del Profesor A. Sachrajda (NRC, Canada). En contraste con los

capítulos anteriores aquí no se ha considerado un campo magnético ac. El transporte a través del TQD

se ha analizado para una configuración electrónica de tres, cuatro o cinco electrones en el interior del

TQD, donde dos de ellos están confinados en los dos puntos laterales que están conectados a la fuente

y el drenaje. La corriente se ha calculado mediante el formalismo de la matriz de densidad como una

función de los voltajes de la puerta izquierda y la derecha manteniendo el voltaje de puerta central

constante, para ambos cero y campo magnético dc finito. Los resultados teóricos coinciden muy bien

con los resultados experimentales de A. Sachrajda et al. Ambas medidas y cálculos muestran que la

corriente está bloqueada tanto en la dirección de sesgo positivo como negativo debido al bloqueo

de espín, si un campo magnético dc finito se aplica al TQD. Este bloqueo bipolar, sin embargo, se

rompe a campo magnético cero debido a procesos de flip-flop de espín inducidos por la interacción

híperfina, que son muy improbables en un campo magnético finito. Mediante el análisis de la matriz

densidad del TQD se ha podido mostrar que la destrucción del bloqueo de espín se produce debido

a la formación de un autoestado particular del TQD en el que un electrón se deslocaliza entre los

puntos de la izquierda y de la derecha cuando estos están en resonancia, pero en el que el punto

del centro no participa en absoluto. Este tipo de estados podría tener aplicaciones importantes en

“spin-busing” y en nanoespintrónica.

En la segunda parte de esta tesis, en el capítulo 7, se han calculado las propiedades electrónicas

de grafeno irradiado por campos eléctricos dependientes del tiempo, tanto en presencia como en

ausencia de interacciones electrón-electrón. Considerando los dos casos relevantes de polarización del

campo ac circular y lineal, se han derivado aproximaciones analíticas que constituyen una excelente

aproximación cuando la intensidad del campo es débil, pues en este caso sólo los procesos de hasta

un fotón son importantes. Las aproximaciones analíticas se han utilizado para calcular el espectro de

cuasienergías y la densidad de estados. Se ha encontrado que un campo circularmente polarizado

induce gaps en la densidad de estados tanto en el punto de Dirac como para energías más altas,

donde la absorción de uno o más fotones es importante. Para el caso lineal, el efecto del campo es
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similar en el espectro de cuasienergías y en la densidad de estados, si bien no se induce ningún

gap en el punto de Dirac, y ningún efecto es visible a lo largo del eje de polarización del campo. El

efecto de la interacción electrón-electrón sólo se ha considerado para el caso de un campo polarizado

circularmente, debido a su mayor simetría con respecto al caso lineal. Con el fin de analizar el espectro

de excitaciones se ha derivado una fórmula general para la polarizabilidad dinámica de grafeno

irradiado, que es válida para intensidades de campo arbitrarias. Las aproximaciones analíticas se han

utilizado para evaluar la polarizabilidad dinámica a intensidades de campo bajas. De esta manera,

dentro de la aproximación RPA, se ha encontrado que aparece un plasmón incluso para el grafeno sin

dopar, lo cual contrasta con lo que ocurre en el grafeno libre, donde la RPA sólo predice un plasmón

para el grafeno dopado. Además, se ha demostrado que un campo ac de polarización circular cambia

la relación de dispersión del plasmón respecto al caso del grafeno no irradiado, si bien también hace

que el plasmón se vuelva inestable debido a procesos con mayor número de fotones que llegan a ser

importantes para intensidades de campo más altas. En conclusión, se ha analizado que la presencia

de campos eléctricos dependientes del tiempo cambia las propiedades electrónicas del grafeno en

gran medida, abriendo así camino para descubrir nueva física en este material extraordinario.
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