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Abstract: A new test is proposed for the hypothesis of uniformity on bi-dimensisopports. The pro-
cedure is an adaptation of the “distance to boundary test” (DB test) prdposBerrendero, Cuevas, &
Vazquez-Grande (2006). This new version of the DB test, called DBUdkstys us (as a novel, inter-
esting feature) to deal with the case where the suppat the underlying distribution is unknown. This
means thatS is not specified in the null hypothesis so that, in fact, we test the null hypistiteat the
underlying distribution is uniform on some supp8rbelonging to a given clagd We pay special attention

to the case that is either the class of compact convex supports or the (broader) élesmpacth-convex
supports (also called-convex ora-convex in the literature). The basic idea is to apply the DB test in a
sort of plug-in version, where the suppétis approximated by using methods of set estimation. The DBU
method is analyzed from both the theoretical and practical point of viemsame asymptotic results and
a simulation study, respectivelyThe Canadian Journal of Statistiex: 1-25; 20?? (© 20?7 Statistical
Society of Canada
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1. INTRODUCTION
We are concerned with the problem of testing the null hypithe

Hy : the random variabl& has a uniform distribution on some supp8rt

We assume throughout that the available information isgisean iid sampléeXy, . . ., X, drawn
from thed-dimensional random variabl¥.

The vast majority of theoretical developments and appboatfor this problem deal with
either the univariate casé= 1 or the bivariate models witd = 2. The motivations for both
situations are quite different. While the univariate unifiityy tests are often motivated by the need
of having good “random number generators”, the bivariaiéoumity problems arise usually in
the setting of spatial statistics. Anyway, the bivariateljpem is considerably harder in several
senses. A first obvious difficulty faf = 2 is the lack of a distribution-free procedure (such as
the univariate Kolmogorov-Smirnov test) based on the eiegdidistribution. Also, the choice of
the support is not an issue in most univariate uniformitybpgms, as they are naturally set out
in a known intervalS = [a, b] which can be reduced to the standard dasé] = [0, 1]; on the
contrary, when we are dealing with bivariate data there igomd reason for restricting us to a
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fixed support as, for examplé, = [0, 1]2. Of course,S = [0, 1]? is a relevant case, but there are
many other conceivable interesting supports (such as pojellipses, etc.) and one might even
consider the case whefeis not known in advance and only a generic regularity assiomoin

its structure is imposed. In other words, the claé&?) of uniform distributions with connected
support inR? is much more complicated than its one-dimensional an&l¢®,). The latter is a
parametric family so that, even if the suppSrtvere unknown, its estimation is a simple matter
based on standard methods. This is not at all the casei#?). Thus, it is clear that the
goodness-of-fit problem to the non-parametric farbdlgR?) (or to appropriate sub-families of
it) involves non-trivial geometric and statistical isswelsich lead us to the main point of this
work.

The purpose of this paper
We specifically aim at developing a new uniformity test, lobee an iid sample of size, for
the null hypothesis

Hy : the random variabl& has a uniform distribution belonging to the clas Q)

wherelf; is the class of bivariate uniform distributions whose suppdelongs to a given class
C of compact supports iR2. As we will see, the natural assumption of connectedness f@n
be incorporated to our approach but it is not strictly needed

Our test will consist of an adaptation of tBestance-to-Boundary Metho@B) which was
proposed by Berrendero, Cuevas, &ifuez-Grande (2006) for the simplest, usual case that
the supportS is completely known and specified in the null hypothesishmotation (1), this
would amount to take a clags= {S} with a unique member. The DB method was based on
calculating the distancas from the sampling observations; to the boundary of the suppast
The test checks the fit of the empirical distribution of thésigbles to that corresponding to the
case wherdl is true (a more detailed account will be given below). Theppse of this paper
is to show that this method can be adapted to the case wheseppertS is unknown so that
we deal in fact with a general problem of type (1). Our extensif the DB procedure, which we
will denote DBU test, relies on methods of set estimatiom (Seevas & Fraiman (2009) for a
survey of this topic). The basic idea is a sort of plug-in devive apply the DB test presented in
Berrendero, Cuevas, &azquez-Grande (2006) replacing the suppbhty a suitable estimator
S,. If the estimated boundar§s,, approaches fast enough to the population counterpgyt
the respective critical regions in both tests (with thesesatistics calculated frorfi and S,,,
respectively) will be asymptotically equivalent.

There are many possible different choicestiigrin (1). We will pay especial attention to the
cases wheré€ is either the class of compact convex supports or the classropact\-convex
supports. The notion ok-convexity arises as a natural generalization of convesityevery
convex set is alsa-convex for allA > 0. We use the lettek here for convenience; other usual
equivalent notations areconvex ora-convex. In short a set is-convex if it can be expressed
as the intersection of the complements of a family of opetslveth radii \; see Perkal (1956),
Walther (1997, 1999) and references therein.

Some related literature

In the recent paper by Berrendero, Cuevas, & Pateapelz (2011) a further uniformity test
is proposed for the problem (1), whénis also the class of compact supports which are either
convex or-convex. However the idea behind this test is completefe it from that developed
here as it is based on the size of the estimated maximal &feaspacing (so we call it EMS test),
as defined in Janson (1987). As we will see in the simulatieievl) the EMS procedure is,
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in some sense, complementary of the DBU test. While the foimearticularly suitable for
alternative hypothesis of Neyman-Scott type, e.g., foradepes from uniformity which lead
to “clustered observations”, the DBU test turns out to be enpowerful for “contamination
models”, prone to give more observations close to (or faryafnam) 0.5 than expected under
uniformity.

In the work by Jain et al. (2002) it is analyzed (especialynirthe practical and computa-
tional point of view) another method for the uniformity test problem with unknown support.
Itis based on ideas of graph theory.

Let us finally mention the interesting proposal by Liang e{2001). These authors propose
a uniformity test, easy to implement even for very large disienal data. However their method
is designed for the specific case tisat= [0, 1].

This paper is organized as follows. In Section 2, the basiastf the DB test proposed in
Berrendero, Cuevas, & dzquez-Grande (2006) are summarized. Then the corresppBdEU
test (for the case of unknown support) is defined. Also, soati®ms on\-convex sets and their
estimation are recalled. In Section 3 we show that the tasisst D,, of the DB method and
its counterpartD in the new DBU procedure satisip,, — DX| — 0, in probability, so that
both tests are asymptotically equivalent regarding theiperties of consistency and asymptotic
preservation of the significance level. Section 4 is deviateginpirical results. Some geometric
and computational issues are discussed in Section 5. Tléspce given in the Appendix.

2. THE DBU TEST

Let S ¢ R? be a compact set with non-empty interior. Let us also considevo-dimensional
random variableX with supportS and denote byt,, = { X3, ..., X,,} a sample drawn fronX.
As a first step in the development of our DBU test we briefly dbsdelow the implementation
of the original distance-to-boundary test with known supfioB test) proposed by Berrendero,
Cuevas, & \Azquez-Grande (2006).

The DB test: The suppo# is known
The target is to test the null hypothesis

Hy : the distribution ofX is uniform with supportfS.

Some notationD(z, y) denotes the Euclidean distance between pairtsdy; for A C R?,
D(z, A) = infyec 4 D(z,y). The distribution function of the random variable= D(X, 05)
under Hy will be denoted byF' andTF,, is the empirical distribution function corresponding to
Yi,...,Y,, whereY; = D(X;,0S) The usual Kolmogorov-Smirnov statistic is denotediby,
sothatD,, = \/n||F — F, ||, where]| - || stands for the sup-norm. The closed and open balls with
centrey and radius- will be denoted respectively bi(y, r) andB(y, r).

Now, we are ready to recall the main ideas behind the DB teghd study of this method
it arises in a natural way a geometric condition on the supfavhich is called “invariance by
erosion upon translation” in Berrendero, Cuevas, &¥%uez-Grande (2006). Roughly speaking,
this condition, imposed on the s8t entails that the é-eroded” versions of, that is, the sets
of type {x € S: B(x,e) C S} preserve the shape 6, in the sense that it coincides with
except for an homothecy. Berrendero, Cuevas,&§uez-Grande (2006) prove that any convex
polygon circumscribed to a ball fulfills this condition. Esgially the same property is considered
by Pegden (2011) which calls it “resiliency”. This authoopes a more general general result
establishing that the sets resilient to erosion coincidé trie convex bodies with an inscribed
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ball. We can summarize the implementation of the DB test bafie:

1. Given the original sampleXy,..., X,, compute the distances to the boundary=
D(XZ,(?S), 1= 1, sy n.

2. Compute the “maximum depttR = max{D(z,dS),z € S} and define the “normalized dis-
tances’Y,® = Y;/R,fori=1,...,n.

3. Ifthe setS is “invariant by erosion upon an homothecy” (see Berrendéuevas, & \Azquez-
Grande (2006) for details and Pegden (2011) for closelyeelialeas) it can be proved that the
distribution functionF' % of the Y%, underH,, is beta with parameters= 1 andb = 2 (re-
gardless of the suppoft). Then the DB test would rejeéi, at a leveky, if the Kolmogorov-
Smirnov statistic based on the normalized distaregs= /n||FZ — F'Z| is greater that the
corresponding critical valu®,, .

4. Otherwise (i.e., whel§ does not fulfill the mentioned shape assumption), the digion of
the Y, will depend, in general, of. So the normalization by indicated in the second step
above is not particularly useful. In this case the test idgpered, as indicated in the previ-
ous step, using the Kolmogorov-Smirnov statidllg calculated from the (non-normalized)
distanced;. If the distribution undeid, of theY; is difficult to calculate in a closed form it
can be approximated by a Monte Carlo procedure by just dgeviarge number of artificial
iid observationsX;, i = 1,...,m from the uniform distribution or$ and taking the corre-
sponding empirical distribution associated with= D(Xi, 0S5) as an approximation to the
distribution F'.

The DBU test: The suppof is unknown

We next present the adaptation of the DB method for the camtettle supportS is not
specified in the null hypothesis. So, we will deal with the gyah problem (1) stated in the in-
troduction. As commented above, the crucial idea is to oeplhe suppor§ with an appropriate
support estimatoss,, = S, (X1, ..., X, ). There are all purpose set estimators which provide
consistency properties (and even known convergence nategy very general conditions ¢f)
see Cuevas & Fraiman (2009) for details. However, given preeial role ofdS in the DB test,
it is important for the plug-in estimat@s,, to approximate the population counterpart at a fast
enough rate. This will lead us to impose some restrictiorherctas<’ of possible supports. We
will further comment on this below. Now, let us formally stahe implementation of the DBU
test:

1. Constructs,,, an estimator of based on the samplg, .

2. DefineX = {X7,... . X} ={Xi € X, X; ¢0S,, i=1,...,n}.

3. ComputeY;* = D(X7,05,),i=1,...,n*

4. Let us consider a two-dimensional variaBle uniform onsS,,. The DBU test is based on the
statistic D = /n||F* — F||, whereF* is the empirical distribution of;* = D(X},dS,,)
and ' is the distribution function ot = D(X,d5,,). Since this distribution undek, is
difficult to calculate it is approximated by the empiricadtibution of an artificial sample as
described in the next step.

5. Generate an artificial samp&\%,n = {Xl, o ,)A(m}, from a uniform distribution on the es-
timator S,,. ComputeY; = D(Xi,asn), i=1,...,m. Perform a two-sample Kolmogorov-
Smirnov test of the null hypothesis thi}* andY; were drawn from the same continuous
distribution.

The choice of the support estimatsi;
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Keeping in mind thatS,, must provide and efficient, easy-to-compute estimator &h I$'
and (viadS,,) for 95, a natural choice for the clagsin (1) would be

C = {class of compact convex supports with non-empty interidt#.
In this case the natural estimator®is the convex hull oft,,,
Sp = CONV(X,,).
The properties of this estimator have been extensivelyyaadlsince the early sixties; see Re-

itzner (2009). We will need here the consistency propedstablished by Dmbgen & Walther
(1996). In particular, these authors show that (for the tivoensional caseé = 2), with proba-

bility 1 (a.5.),
1/2
5 (S, S) = O <<loi"> ) :

wheredy (A, B) stands for the Hausdorff distance between two compact ngptyesetsA and
B. As we will see, this convergence rate is not fast enough ompoirposes. Under additional
smoothness assumptions Sifsee also Walther (1997, 1999), Ragirez-Casal (2007)) we have

2/3
5 (Sn,S) = O <(loi”> ) , as. @)

and, more importantly,

2/3
A (98,,08) = O <<1°i"> ) . as. 3)

Whereas convexity is a simple, natural and well-studiedrapsion to be imposed of, it
is quite restrictive for many practical purposes. For exdamwhen analyzing spatial patterns in
ecological data, it is not always reasonable to assumetibatdbitat of a certain plant species
is a convex domain. Hence we will also consider a second (rfasshpopular) condition called
A-convexitywith allows for a much more flexible class of possible suppdfor another recent
application of this condition to the problem of testing wmifiity see Berrendero, Cuevas, &
Pateiro-lbpez (2011).

A closed setS C R? is said to be\-convex for some\ > 0 if S coincides with its\-convex
hull, thatisS = C\(S), where

S = [\ BN~ @)
B(y,\)NS=0

In other words,S can be expressed as the intersection of the complementsaafily fof open
balls with radiiA. The origin of this notion goes back to Perkal (1956). Seeth®al(1997), Ro-
driguez-Casal (2007), Berrendero, Cuevas, & Patedpdz (2011), and references therein, for
additional insights as well as statistical applications.

The condition of\-convexity is clearly reminiscent of the plain notion of werity, as it
can be seen by replacing the balls in (4) by half-spaces.cln éxery closed convex set is also
A-convex for all\ > 0. It is also apparent that-convexity is a much more flexible condition
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which allows the set to have inlands (as long as they are noghiarp) or holes and even to be
disconnected.

From a statistical point of view, the most important featofelefinition (4) is the fact that
a A-convex supporfS has a natural estimator from a random samylewhich is thex-convex
hull of the sample points,

This estimator turns out to be computationally feasible;Rapackagal phahul | developed
by Pateiro-lopez & Rodiguez-Casal (2010) provides an efficient calculation ofifShe two-
dimensional case. Moreover, under appropriate smootloasditions, this estimator exhibits
also the fast convergence rates (2) and (3). This will be mapbin the theoretical developments
of the following section.

3. ASYMPTOTIC PROPERTIES

The aim of this section is to show that, under suitable shapgictions on the class in (1),
the DBU test is asymptotically equivalent to the DB test msgd in Berrendero, Cuevas, &
Vazquez-Grande (2006) for the case of a known support. Aoaptd the notation introduced in
Section 2, this amounts to show tha, — D2 | — 0, in probability as:» — oo. We will establish
this in two results (Theorems 1 and 2 below), obtained undedifferent assumptions far.

We introduce some notation for the results and their probfswhat follows, X, =
{X1,...,X,} willdenote a sample drawn on a compact suppoiith non-empty interior. The
Lebesgue measure of a sewill be denoted by:(A) and the cardinal of the s¢t : X, € 95,,}
will be denoted byV,, (that is,N,, = n — n*). All the convergence results below correspond to
limits asn — oc.

The proofs are organized in three lemmas and two theoremshseAppendix. The general
structure is as follows. Lemma 1 establishes the asymppoticimity (with a \/n rate) of F
to /. Lemma 2 proves an analogous result f®r andF;. Lemma 3 establishes (as a direct
consequence of the two previous lemmas) the asymptotizaquce of test statistic®,, and
D;. The practical conclusion is the asymptotic equivalendd®DB and the DBU test. Finally,
Theorems 1 and 2 show that the conclusion of Lemma 3 can bédpplthe case of convex
support (Theorem 1) and to the more general assumptiarcohvex support (Theorem 2).

Lemmal. Assume that the suppaftand the estimatof,, are such thatf' is Lipschitz con-
tinuous, S,, € S with probability one,y/n u(S \ S,) = 0 and \/ndg (9S,9S,) = 0. Then,
VallF = F| 5o,

Lemma2. Assume that the suppdstand the estimatof,, are such thaf is Lipschitz contin-
uous,X, C S,, C S with probability oneN,, /v/n = 0 andn'/?t% dy (98, S,,) 3 0, for some
6 > 0. Then,y/n||F% —F,| = 0.

Lemma 3. Assume that the suppof and the estimatorS, are such thatF is Lips-
chitz continuousX,, € S,, C S with probability one,\/n u(S\ S,,) = 0, N,,//n = 0, and
n'/2+9 dy;(9S,08,) 2% 0, for somey > 0. Then,|D,, — D%| 5 0.

Now we apply Lemma 3 to the cases when we can assumétlsatonvex and\-convex
respectively. We will also need the following smoothnessdition: A ball of radiusr is said
to roll freely insidea closed setl C R? if for each pointa € A there exists: € R¢ such that
a € B(z,r) C A.
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Theorem 1. LetS c R? be a compact convex set with nonempty interior such Fhist Lips-
chitz continuous and such that a ball of radius- 0 rolls freely insideS for somer > 0. Let.S,,

be the convex hull ot,,. Assume further that th&; have a common Lebesque density bounded
away from zero or§. Then|D,, — D| = 0.

3

Theorem 2. Let S C R? be a compaci-convex set with nonempty interior such tift is
also A-convex andnt(S;) # () for each path-connected componeitC S. Assume thaf is
Lipschitz continuous. Le$,, be the\-convex hull ofX,,. Assume further that th&’; have a
common Lebesque density bounded away from zef @hen|D,, — D%| % 0.

As a consequence of these results the DBU test inherits tiperes of the DB test studied in
Berrendero, Cuevas, &azquez-Grande (2006), in particular, (under the conditamheorems
1 or 2) it asymptotically preserves the prescribed signifiedlevel and both tests are consistent
to detect the same non-uniform alternatives.

4. EMPIRICAL RESULTS
4.1. Empirical significance level

We have checked the performance of the DBU test in terms afpvation of the nominal con-
fidence level. The numerical results given below have beégirdd using the R software, see R
Development Core Team (2011).

A simulation example: the “unknown” suppastis a set limited by a Lagcurve. The possible
supports in the null hypothesis are either convex-aronvex

Table 1 gives the outputs corresponding to the empiricalifidignce level obtained (as an
average over 5000 independent runs) with the DBU test an@Béest intended for nominal
significance levelsx = 0.05,0.1. Sample sizes are = 50, 100, 200. The considered supports
are sets limited by different Laencurves (also called superellipses), that is, sets of tha fo
S ={(z,y) € R?: |z|" + |y|" < 1} for different values of, see Figure 1. Note that for= 1
andr = 2 the equation of the Laéncurve describes a square and a circle, respectively. \&fe ref
to JakIE, Leonardis, & Solina (2000) for further discussion of salijpses and their properties.

The supports limited by these curves fo= 1 andr = 2 are invariant by erosion upon an
homothecy (see Section 2 above for more details on this)s Weuare under the assumptions of
Theorem 1 in Berrendero, Cuevas, &xfuez-Grande (2006) for the DB test, so that the distri-
bution of Y = D(X, dS)/R under the null hypothesis is totally known (it is a beta dlisttion
B(1,2)) and we may perform a classical one-sample Kolmogorov+8mitest of goodness of
fit to that distribution.

For other values of, the setS does not fulfill the mentioned shape restriction and the dis-
tribution of Y is derived in practice by a Monte Carlo mechanism; see theriggion of the
implementation of the test in Section 2. Moreover, the nomalized distance¥; in the DB
test are approximated numerically, since there is no swidti closed form for the distance to
the Lané curve when- = 3 or » = 4, see Rosin & West (1995). For the DBU test we use as
estimatorsS,, both the convex hull of the samp#(X,,) and thex-convex hull of the sample
Cy(X,) (with X\ = 1). This corresponds to tak& in the null hypothesis (1) to be the class of
compact convex sets or the class of compacbnvex sets, respectively.
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FIGURE 1: Lamé curvesgz|™ + |y|” = 1 for different values of-.

The slight (non-systematic) improvements observed in soases in the DBU test (with
respect to the DB test) can be explained by the fact that, erage, the DBU procedure under-
estimates the proportion of observations near the boundige the points in the boundary of
the convex hull{(X,,) and those in the boundary of theconvex hull,C(X,,), are excluded
from consideration. So, in the DBU test those uniform sasiat, by chance, turn out to be
unusually close to the boundary (which therefore would teridcrease the type | error) are less
likely to appear in the DBU procedure. Of course, as a copatgrthere is an obvious effect
against the DBU procedure since the samples under the npdithgsis are drawn frorfi and
DBU tests in fact the uniformity oty,,. The oscillations in the performance of DBU and DB
represent the balance between both opposite effects.

A case with non-connected support

Let S be the set in Figure 2, which is not convex Butonvex forA = 2. Table 2 gives the
outputs corresponding to the empirical significance lelshimed (as an average over 10000
independent runs) with the DBU test and the DB test intendedcéminal significance levels
a = 0.05,0.1.
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TABLE 1: Empirical significance level of the DBU test and DB test over 5000oumifsamples of size
n = 50,100, 200 on the support§ = {(z,y) € R*: |z|" + |y|" < 1} for different values of-. The
nominal values ar@.05, 0.1. For the DBU test, we considéf,, = H (X, ) andS, = Cx(X,) with A = 1.

DBU test DBU test DB test
S = H(Xy) Sn = Cx(Xy)
a 005 01 005 0.1 005 0.1
r=1 n=50 0.0436 0.0868 0.0422  0.0860 0.0460 0.0896
n = 100 0.0414 0.0888 0.0406 0.0858 0.0408  0.0834
n = 200 0.0492  0.0962 0.0476  0.0960 0.0418 0.0864
r=2 n=50 0.0474  0.0906 0.0400 0.0866 0.0472  0.0940
n =100 0.0416 0.0828 0.0452  0.0920 0.0450 0.0934
n = 200 0.0510 0.0934 0.0490 0.0966 0.0522 0.1018
r=3 n=>50 0.0502  0.0974 0.0482  0.0932 0.0500 0.0954
n = 100 0.0468  0.0902 0.0442  0.0902 0.0472  0.0938
n = 200 0.0480 0.0998 0.0510 0.1016 0.0444 0.0890
r=4 n=50 0.0416 0.0820 0.0376 0.0790 0.0414 0.0834
n = 100 0.0448  0.0920 0.0432  0.0880 0.0428 0.0846
n = 200 0.0470  0.0946 0.0468 0.0908 0.0344 0.0718

® @

FIGURE 2: Non-convex suppo¥ = B(z,1) U B(y, 1), with x = (0,0) andy = (6,0). The setS is not
convex but\-convex forA = 2.

Some results iiR?

We have also studied the behavior in terms of significancd teithe DB test and DBU test
in R3. The algorithms are essentially the same as those desdri®ection 2. Table 3 gives
the outputs corresponding to the empirical significancelleftained (as an average over 10000
independent runs) with the DBU test and the DB test intendechdéminal significance lev-
elsa = 0.05,0.1. Sample sizes are = 50, 100, 200, 500. The considered supports are the unit
cubeS = [0,1] and unit ballS = B(0,1) in R3. Since both supports are invariant by erosion
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TABLE 2: Empirical significance level of the DBU test and DB test over 1000fbrm samples of size
n = 50, 100, 200, 500 on S in Figure 2. The nominal values aBed5, 0.1. For the DBU test, we consider
Sn = Ca(Xn) with A = 2.

DBU test DB test
Sn = Cr(Xr)
a  0.05 0.1 0.05 0.1
n =50 0.0433 0.0860 0.0480 0.0981
n = 100 0.0472 0.0933 0.0437 0.0922
n = 200 0.0439 0.0934 0.0417 0.0889
n = 500 0.0466 0.0967 0.0495 0.0948

upon an homothecy we perform for the DB test a classical angpte Kolmogorov-Smirnov
test of the null that the distribution function of the randeaniableY ® = D(X,0S)/R is a beta
distribution with parameters = 1 andb = 3. For the DBU test, we restrict ourselves to the case
where the suppor$ is assumed to be convex and is estimated through the coneaftibe
sampleH(X,,).

TABLE 3: Empirical significance level of the DBU test and DB test over 1000fbrm samples of size
n = 50, 100, 200,500 on S = [0, 1]* and.S = B(0, 1) in R3. The nominal values a&05, 0.1. For the
DBU test, we considef,, = H(X,).

DBU test DB test
Sn = H(Xn)
a  0.05 0.1 0.05 0.1
S =[0,1)? n = 50 0.0399 0.0831 0.0483 0.0969
n = 100 0.0434 0.0886 0.0423 0.0872
n = 200 0.0468 0.0916 0.0487 0.0950
n = 500 0.0470 0.0938 0.0483 0.0956
S=B(0,1) n=50 0.0378 0.0798 0.0480 0.0972
n = 100 0.0453 0.0886 0.0488 0.0968
n = 200 0.0449 0.0909 0.0433 0.0872
n = 500 0.0510 0.0970 0.0507 0.0948

4.2. Power study
As for the power study, we have considered two different reiethe choice of the alternative
distribution.

Contamination model
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FIGURE 3: Random samples of size= 200 from mixtures of type(1 — €)U(S) + eU(S \ So), where
S ={(z,y) €R*: |z]" + |y|" < 1} forr = 3 andS, denotes a set liké& with the same centre and area
1(S)/2. Left, e = 0.1. Middle, e = 0.2. Right,e = 0.3.

The sample points are drawn from a random variable whosédigon is given by a mixture
of type (1 — e)U(S) + eU(S\ So), whereS = {(z,y) € R? : |z|" + |y|" < 1} for r = 3 and
So denotes a set lik& with the same centre and aregS) /2. We have taken = 0.1,0.2, 0.3, see
Figure 3. We have compared the performance of the DBU tekhtthit of the EMS test (based
on multivariate spacings) by Berrendero, Cuevas, & Paletpez (2011). The corresponding
outputs are summarized in Table 4.

TABLE 4: Empirical powers over 5000 runs of the DBU test, EMS test and DBTéastunderlying
distributions are contaminated uniforrfis— €)U(S) + €U (S \ So), where
S={(z,y) €R?: |z|" + |y|" < 1} for r = 3 andS, denotes a set liké with the same centre and area
wu(S)/2. The significance level is 0.05.

DBU test DBU test DBtest EMS test
Sp=H(X,) Sn=Cx(Xn)

e=01 n=50 0.0646 0.0598 0.1078  0.0130
n =100 0.1042 0.0974 0.1716  0.0404

n = 200 0.2028 0.1934 0.3112  0.0566

e=02 n=50 0.1438 0.1168 0.2584  0.0212
n =100 0.3346 0.2990 0.4786  0.0638

n = 200 0.6110 0.5844 0.7778  0.0992

e=03 mn=>50 0.3218 0.2570 0.5118 0.0374
n =100 0.6598 0.6178 0.8176  0.1126

n = 200 0.9456 0.9338 0.9852  0.1910

Neyman-Scott clustering alternatives
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This is a typical deviation from the uniformity assumptioften considered in the theory of
point processes. Under this model the sample tends to mréeidstered” observations. For the
simulated samples each cluster consistgfoints, generated from the uniform distribution on a
disc of radius-, which entails a departure from the iid assumption for thta.dehe corresponding
outputs are summarized in Table 5.

The support estimator used in the second column of Table 4nafable 5 isS,, = C)\(X,,)
with A = 1.

TABLE 5: Empirical powers of the uniformity tests under study over 5000 rfisample sizex = 100
andn = 200 from Neyman-Scott clustering alternatives. Each cluster consist jpdints, generated from
the uniform distribution on a disc of radius

DBUtest DBtest EMS test

r=0.05 m=5 n = 100 0.6174 0.4946 0.9790
n = 200 0.5608 0.4976 0.9976

r=0.05 m=10 n =100 0.9030 0.7556 0.9994
n =200 0.8504 0.7560 1.0000

r=01 m=5 n=100 0.3458 0.3668 0.7952
n =200 0.3338 0.3670 0.8442

r=01 m=10 n=100 0.5784 0.5822 0.9828
n =200  0.5404 0.5746 0.9970

In order to properly interpret these results one should keepind that the Neyman-Scott
model does not correspond to the case of independent idéytiistributed observations. Thus,
depending on the number of clustersand the radius we could find that the lack of uniformity
in this model is harder to detect with larger samples. Theaeas that for large samples one
would have a larger number of clusters whose centres areratiif distributed so giving a false
appearance of uniformity.

Also, it can be observed that the DBU test outperforms DB wthercluster radius is small.
This can be explained by the “boundary effect” present inDB&) method. Recall again that
the points in the boundary of the support estimator are takerbut, under the Neyman-Scott
model, all these excluded points have a cluster of close rfwhe small) non-excluded points
near the boundary. These points help us to detect the lackifoirmity.

4.3. Conclusions

1. The results in Tables 1 and 2 show that the DBU test sucéeguieserving the significance
level (though it tends to be slightly conservative). Thet@d®stimating the support (pointed
out by the difference observed with the DB test, where th@stps known) turns out to be
moderate and quite affordable in statistical terms.

2. Note that the asymptotic validity of the DBU test in thediinensional case is not covered
by our theoretical results in Section 3 (which apply only doe 2). However, the outputs in
Table 3 suggest that the method could work even in this casewh quite different, theo-
retical approach would be needed in this case, as the argsiineBection 3 rely essentially
on the assumptiod = 2. From the computational point of view, the implementatidrine
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DBU test presents some technical difficulties &b 3. The convex hull estimator can be
computed in general dimension, see for example the R-paakagnet r y by Grasman &
Gramacy (2010). However, theconvex hull is only implemented in the bi-dimensional case
This practical restriction forces us to consider convexpsaus and the convex hull estimator
in Table 3. A possible solution for non-convex support®Rihwould be to compute tha-
shape, see Edelsbrunner &ilgke (1994). The\-shape is computationally practicable, and it
is closely related to tha-convex hull estimator (it approximates the boundary ofthenvex
hull by a piecewise linear surface). The implementation of Ris structure is currently under
development.

3. The power results in Tables 4 and 5 show also a foreseeahbvior: the procedure works
efficiently for detecting “contaminated” distributionstlitis much less powerful for Neyman-
Scott alternatives. Again, the loss of efficiency assodiatith the estimation of the support is
surprisingly low. As mentioned in the Introduction, the dsing-based” EMS procedure (see
Berrendero, Cuevas, & Pateirdpez (2011) for details) can be thought as complementary
to the DBU test. The EMS test is suitable for alternative fiipsis that provide “clustered”
observations but it is less powerful for “contamination rmksd, where the DBU test shows a
clear superiority. The slight loss of power observed whengasing the sample size in some
cases in Table 5 may be explained by the dependence of thesatiees generated from the
Neyman-Scott model.

5. GENERATION OF UNIFORM SAMPLES ON Sy
The uniformity test for the case of an unknown supgbis based on the statistic

D;, = vn|F;, — F],

being F' the distribution of the random variablé = D(X, 35,,), whereX is uniform ons,,.
SinceF" is unknown, this distribution is derived in practice by a M®Earlo mechanism. A large
number of iid uniform observationk;, i = 1, ..., m are drawn orS,,. The empirical distribu-
tion corresponding to the sampie = D(Xi, dSp), i =1,...,mis used as an approximation
for F.

Uniform samples ofi{(X},).

Assume that we choose as estimaigr= #(X,,). The problem of how to generate uniform
random vectors on the convex hull of a set of point®Rthis well-known. Note that this is a
particular case of uniform random generation on a conveyguul in the plane, which is solved
by means of triangulation. See Devroye (1986) for a desoripf the algorithm. The procedure
in R? is similar. In this case, we partition the convex hull of tiaenple into tetrahedra by means
of the Delaunay triangulation of the sample, which can beputted in R by means of the library
geonet ry, see Grasman & Gramacy (2010). To generate a point unifomntlye triangulated
polyhedron, we first sample one of the tetrahedra with pritiiab proportional to their volumes
and then we sample a point uniformly in the selected tetmnaimedrhe generation of uniform
random vectors in a tetrahedron is a particular case of thergdon of uniform random vectors
in a simplex for dimensiod = 3. See Figure 4.

Uniform samples 0@y (X,).
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FIGURE 4: Uniform sampleY,, in B(0, 1) in R® of sizen = 500 (left). Convex hull#(X,,) and uniform
sample generated d¥(X,,) of sizem = 2000 (right).

FIGURE 5: Uniform sample (solid points) ity (X,,). The sample is obtained from uniform observations
in the convex hullH (X, ) after removing the sample points (non-solid points) that belong to any bile
defining the complement of the-convex hull.

Assume now thab,, = C\(X,). In order to generate uniform samples ©R(X,,) we pro-
ceed as follows: first, we generate a large sample of unifdisevations in the convex hull
H(X,). Note that the\-convex hull is contained in the convex hull. Then, we remitneepoints
that belong to any of the balls defining the complement oftoenvex hull. The resulting sam-
ple is uniform inC\ (,,), see Figure 5.

APPENDIX

Proof of Lemma 1 Since bothF and £ have compact support, there exigfs> 0 (not depend-
ing onn) such that| ' — F|| = sup, (o x] |F'(t) — F(t)|. Let B be the closed unit ball ik> and
denote byC'© D = {z :  + D C C} the Minkowski difference of two setS' andD. Observe
thaty > tifand onlyif X € S ©tB, andY > tifand only if X € S, © ¢B. Then,

|F(t)— F(t)| = |P(X € S, ©tB) —P(X € S & tB)],
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and, using the triangle inequality,
|F(t) — F(t)] < |P(X € S, ©tB) —P(X € S, ©tB)|
+|P(X € S, 6tB)—P(X € SStB)|. (1)
Regarding the first term in the right-hand side of inequdlify observe that, for all € [0, K],

S, ©tB)  u(S, o tB)

|P(XesnetB)—P(XeSnetB)|:“(

W5 u)
— :u‘(Sn @tB) _ ﬂ(Sn) _ ,U'(Sn) — /L(S\Sﬂ)
= () (1 (9 ) SUTUE) TS

Since, by assumptior/n (S \ S,,) — 0, we also have

Vvn sup [P(X €S, 0tB) ~P(X €S, StB)| > 0.
t€[0,K]

For the second term in the right-hand side of inequality ¢bserve that, for all € [0, K],

P(X € (SO tB)\ (S, ©tB)) <P(Y > t, D(X,d5,) <t>+W’

sinceX € S & tB amounts toY” > ¢, and X ¢ S,, © ¢tB implies thatD(X,95,,) <tor X €
S\ S,.

Also, D(X,0S,) <t implies Y <t+¢,, where ¢, =dg(05,0S,). Indeed, since
D(X,08,) < t, there existg,, € 95,, such thatD(X, z,,) < t. By definition of Hausdorff dis-
tance, there exists € 95 with D(z, z,,) < ¢,. Hence,

Y =D(X,05) < D(X,z) < D(X,z) + D(2n,2) < t+ €.
As a consequence,

(S \ Sp)
u(s)

Since F' is Lipschitz continuous, there exisfd > 0 such that]P’(t <Y <t+ en) =F(t+
en) — F(t) < Me,. From this bound, (2) and taking into account the assumgtiendeduce

P(X € (SetB)\ (S, 0tB)) <P(t<Y <t+e,)+ 2)

Vvn sup P(X € (SotB)\ (S, ©tB)) SM\/ﬁenJrM 50.

te[0,K] N(S)
]
Proof of Lemma 2 Fori=1,...,n defin~e}7i = D(X,;,0S,) and letF,, be the empirical
distribution function corresponding 1g, ..., Y,,. Since
VallF, = Full < VolF;, = Fall + v/allFn = Fall, ®)

it is enough to prove that both terms in the right-hand sid¢heflast inequality go to zero
in probability. Since there exist&” > 0 such that all the involved distributions have supports
included in[0, K], the sup-norms can always be computed on a compact in{érvl| instead

of R.
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Observe that, fot > 0, F,,(t) = (1 — N,,/n)F%(t) + N,,/n. Therefore,

~ N,
Val[Fy, —Fof = == sup (1-F;(t)) < -

0,
VI te[0,K]

Bk

by assumption. i i
Regarding the second term of the right-hand side of (3)cadtiaty; < Y; <Y, + ¢,, where
€n = dy(0S,0S,,). Then,

- 1 &
Vo|F, =F,|| < sup — I <tte,)- 4)
¥ l o] N ; {t<Y;<t+e,}

Define the sequendg, = n~'/2~%, wheres > 0 is given in the assumptions of the lemma. No-
tice that, from the assumption ahy; (95, 9S,,), we haveb,, > ¢,, eventually with probability 1.
Then,

sup E Iiicvi<tte,r < sup E Iiiey, , eventually with probability 1.
e, ]\F {t<Y;<t+e,} e, \f {t<Y;<t+bn}
(5)

Now, denote by”,,, for eachn, the covering of0, K] by intervals of the forni?* = (jb,,, (j +
1)b,), j = 1,2, .... Clearly, the cardinality of’,, is O(b;;!) = O(n?) with v = 1/2 + §. Also,
sinceF, the distribution of th&’;’s, is Lipschitz continuous, there exist$ such that

Pr(I) < Mb, = o(n~/?).
max Pr(I) < Mb, = o(n™"')

Therefore, the sequence of coverings fulfills the assumptions in Lemma 2.2 of Fernholz

(1991). It follows thaff}, //n =3 0, whereT,, is the maximum number df;’s with values in any
Ie(C,.Then,

2T, as
sup \/» Z H{t<Y <tt+b,} < \/» — 0. (6)

te[0,K]

From (4)1 (5) and (6) we ge\t/ﬁ”]ﬁn _ ]Fn” B_S> 0.

[ |
Proof of Lemma 3 Applying the triangle inequality,
IFs, — F|| < |[F}, — Full + |Fn — Fl + |F - F|,
and
[Fp — F|| < |Fn = Fpll + IF;, — F|| + | F = F].
Hence,
Dy, = v/n|[F}, = Full = Vol F = F|| < D}, < Dy + V/n||F}, = Fy | + v/nl|[F — F||
and the result follows from Lemmas 1 and 2.
[ ]
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Proof of Theorem 1 We are going to check the assumptions of Lemma 3. By Theorem 3
and Remark 3 in Rodlyuez-Casal (2007), it holds

logn 2/3
dp(0S,08,) =0 -

with probability 1. Observe that, it is convex andS,, C,(X,) stand for the convex hull
and the A-convex hull, respectively, oft,,, then C,\(X,,) C S,, € S for any A > 0. Thus,
n'/2+9 4y (98,08,) 23 0,for0 < § < 1/6.

Theorem 1 in Sciitt (1994) ensures that for any convex boflyc R¢, E[u(
O(n~2/(4+1)) In particular, ford = 2 and using Markov inequality we have’ 1.(S
for0 < g < 2/3.

Finally, we use the so-calleBifron’s identity see Efron (1965, Eq. 3.7), which relates the
expected number of vertices and the area in the convexshulind we get

Sn)} =

S\
\ Sn) =0,

E(N,) = HW — O(n(d—l)/(d+1))’

where in the second equality we have used agairiiBshTheorem. In particular, faf = 2 and
using Markov’s inequality we havd,, /n® 5 0, for 8 > 1/3.
|

Proof of Theorem 2 We are going to check the assumptions of Lemma 3. By Theoriem 3
Rodiiguez-Casal (2007), with probability 1

logn\2/3
dH(GS,é)Sn):O< & )

n

and the same rate holds for(S\ S,). Then, n® u(S\ S,) 30, for 0 < B < 2/3, and
n'/2+9 4y (98,08,) 23 0, for 0 < § < 1/6. Finally we haveE(N,,) = O(n'/3) (see Pateiro-
Lopez & Rodiguez-Casal, 2011) and using Markov inequality we obt&ip/n’+—0 for
B8 >1/3.

|
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