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1. INTRODUCTION

We are concerned with the problem of testing the null hypothesis

H0 : the random variableX has a uniform distribution on some supportS.

We assume throughout that the available information is given by an iid sampleX1, . . . , Xn drawn
from thed-dimensional random variableX.

The vast majority of theoretical developments and applications for this problem deal with
either the univariate cased = 1 or the bivariate models withd = 2. The motivations for both
situations are quite different. While the univariate uniformity tests are often motivated by the need
of having good “random number generators”, the bivariate uniformity problems arise usually in
the setting of spatial statistics. Anyway, the bivariate problem is considerably harder in several
senses. A first obvious difficulty ford = 2 is the lack of a distribution-free procedure (such as
the univariate Kolmogorov-Smirnov test) based on the empirical distribution. Also, the choice of
the support is not an issue in most univariate uniformity problems, as they are naturally set out
in a known intervalS = [a, b] which can be reduced to the standard case[a, b] = [0, 1]; on the
contrary, when we are dealing with bivariate data there is nogood reason for restricting us to a
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fixed support as, for example,S = [0, 1]2. Of course,S = [0, 1]2 is a relevant case, but there are
many other conceivable interesting supports (such as polygons, ellipses, etc.) and one might even
consider the case whereS is not known in advance and only a generic regularity assumption on
its structure is imposed. In other words, the classU(R2) of uniform distributions with connected
support inR2 is much more complicated than its one-dimensional analog,U(R). The latter is a
parametric family so that, even if the supportS were unknown, its estimation is a simple matter
based on standard methods. This is not at all the case withU(R2). Thus, it is clear that the
goodness-of-fit problem to the non-parametric familyU(R2) (or to appropriate sub-families of
it) involves non-trivial geometric and statistical issueswhich lead us to the main point of this
work.

The purpose of this paper
We specifically aim at developing a new uniformity test, based on an iid sample of sizen, for

the null hypothesis

H0 : the random variableX has a uniform distribution belonging to the classUC , (1)

whereUC is the class of bivariate uniform distributions whose support S belongs to a given class
C of compact supports inR2. As we will see, the natural assumption of connectedness forS can
be incorporated to our approach but it is not strictly needed.

Our test will consist of an adaptation of theDistance-to-Boundary Method(DB) which was
proposed by Berrendero, Cuevas, & Vázquez-Grande (2006) for the simplest, usual case that
the supportS is completely known and specified in the null hypothesis; in the notation (1), this
would amount to take a classC = {S} with a unique member. The DB method was based on
calculating the distancesYi from the sampling observationsXi to the boundary of the supportS.
The test checks the fit of the empirical distribution of this variables to that corresponding to the
case whereH0 is true (a more detailed account will be given below). The purpose of this paper
is to show that this method can be adapted to the case where thesupportS is unknown so that
we deal in fact with a general problem of type (1). Our extension of the DB procedure, which we
will denote DBU test, relies on methods of set estimation (see Cuevas & Fraiman (2009) for a
survey of this topic). The basic idea is a sort of plug-in device: we apply the DB test presented in
Berrendero, Cuevas, & V́azquez-Grande (2006) replacing the supportS by a suitable estimator
Sn. If the estimated boundary∂Sn approaches fast enough to the population counterpart∂S,
the respective critical regions in both tests (with the tests statistics calculated fromS andSn,
respectively) will be asymptotically equivalent.

There are many possible different choices forUC in (1). We will pay especial attention to the
cases whereC is either the class of compact convex supports or the class ofcompactλ-convex
supports. The notion ofλ-convexity arises as a natural generalization of convexity, so every
convex set is alsoλ-convex for allλ > 0. We use the letterλ here for convenience; other usual
equivalent notations arer-convex orα-convex. In short a set isλ-convex if it can be expressed
as the intersection of the complements of a family of open balls with radiiλ; see Perkal (1956),
Walther (1997, 1999) and references therein.

Some related literature
In the recent paper by Berrendero, Cuevas, & Pateiro-López (2011) a further uniformity test

is proposed for the problem (1), whenC is also the class of compact supports which are either
convex orλ-convex. However the idea behind this test is completely different from that developed
here as it is based on the size of the estimated maximal bivariate spacing (so we call it EMS test),
as defined in Janson (1987). As we will see in the simulations below, the EMS procedure is,
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in some sense, complementary of the DBU test. While the formeris particularly suitable for
alternative hypothesis of Neyman-Scott type, e.g., for departures from uniformity which lead
to “clustered observations”, the DBU test turns out to be more powerful for “contamination
models”, prone to give more observations close to (or far away from) ∂S than expected under
uniformity.

In the work by Jain et al. (2002) it is analyzed (especially from the practical and computa-
tional point of view) another method for the uniformity testing problem with unknown support.
It is based on ideas of graph theory.

Let us finally mention the interesting proposal by Liang et al. (2001). These authors propose
a uniformity test, easy to implement even for very large dimensional data. However their method
is designed for the specific case thatS = [0, 1]d.

This paper is organized as follows. In Section 2, the basic ideas of the DB test proposed in
Berrendero, Cuevas, & V́azquez-Grande (2006) are summarized. Then the corresponding DBU
test (for the case of unknown support) is defined. Also, some notions onλ-convex sets and their
estimation are recalled. In Section 3 we show that the test statisticDn of the DB method and
its counterpartD∗

n in the new DBU procedure satisfy|Dn −D∗
n| → 0, in probability, so that

both tests are asymptotically equivalent regarding their properties of consistency and asymptotic
preservation of the significance level. Section 4 is devotedto empirical results. Some geometric
and computational issues are discussed in Section 5. The proofs are given in the Appendix.

2. THE DBU TEST

Let S ⊂ R
2 be a compact set with non-empty interior. Let us also consider a two-dimensional

random variableX with supportS and denote byXn = {X1, ..., Xn} a sample drawn fromX.
As a first step in the development of our DBU test we briefly describe below the implementation
of the original distance-to-boundary test with known support (DB test) proposed by Berrendero,
Cuevas, & V́azquez-Grande (2006).

The DB test: The supportS is known
The target is to test the null hypothesis

H0 : the distribution ofX is uniform with supportS.

Some notation:D(x, y) denotes the Euclidean distance between pointsx andy; for A ⊂ R
2,

D(x,A) = infy∈A D(x, y). The distribution function of the random variableY = D(X, ∂S)
underH0 will be denoted byF andFn is the empirical distribution function corresponding to
Y1, . . . , Yn, whereYi = D(Xi, ∂S) The usual Kolmogorov-Smirnov statistic is denoted byDn,
so thatDn =

√
n‖F − Fn‖, where‖ · ‖ stands for the sup-norm. The closed and open balls with

centrey and radiusr will be denoted respectively byB(y, r) andB̊(y, r).
Now, we are ready to recall the main ideas behind the DB test. In the study of this method

it arises in a natural way a geometric condition on the support S which is called “invariance by
erosion upon translation” in Berrendero, Cuevas, & Vázquez-Grande (2006). Roughly speaking,
this condition, imposed on the setS, entails that the “ǫ-eroded” versions ofS, that is, the sets
of type {x ∈ S : B(x, ǫ) ⊂ S} preserve the shape ofS, in the sense that it coincides withS
except for an homothecy. Berrendero, Cuevas, & Vázquez-Grande (2006) prove that any convex
polygon circumscribed to a ball fulfills this condition. Essentially the same property is considered
by Pegden (2011) which calls it “resiliency”. This author proves a more general general result
establishing that the sets resilient to erosion coincide with the convex bodies with an inscribed
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ball. We can summarize the implementation of the DB test as follows:

1. Given the original sampleX1, . . . , Xn, compute the distances to the boundaryYi =
D(Xi, ∂S), i = 1, . . . , n.

2. Compute the “maximum depth”R = max{D(x, ∂S), x ∈ S} and define the “normalized dis-
tances”Y R

i = Yi/R, for i = 1, . . . , n.
3. If the setS is “invariant by erosion upon an homothecy” (see Berrendero, Cuevas, & V́azquez-

Grande (2006) for details and Pegden (2011) for closely related ideas) it can be proved that the
distribution functionFR of theY R

i , underH0, is beta with parametersa = 1 andb = 2 (re-
gardless of the supportS). Then the DB test would rejectH0, at a levelα, if the Kolmogorov-
Smirnov statistic based on the normalized distancesDR

n =
√
n‖FR

n − FR‖ is greater that the
corresponding critical valueDn,α.

4. Otherwise (i.e., whenS does not fulfill the mentioned shape assumption), the distribution of
theY R

i will depend, in general, onS. So the normalization byR indicated in the second step
above is not particularly useful. In this case the test is performed, as indicated in the previ-
ous step, using the Kolmogorov-Smirnov statisticDn calculated from the (non-normalized)
distancesYi. If the distribution underH0 of theYi is difficult to calculate in a closed form it
can be approximated by a Monte Carlo procedure by just drawing a large number of artificial
iid observationsX̂i, i = 1, . . . ,m from the uniform distribution onS and taking the corre-
sponding empirical distribution associated withŶi = D(X̂i, ∂S) as an approximation to the
distributionF .

The DBU test: The supportS is unknown
We next present the adaptation of the DB method for the case that the supportS is not

specified in the null hypothesis. So, we will deal with the general problem (1) stated in the in-
troduction. As commented above, the crucial idea is to replace the supportS with an appropriate
support estimatorSn = Sn(X1, . . . , Xn). There are all purpose set estimators which provide
consistency properties (and even known convergence rates)under very general conditions onS;
see Cuevas & Fraiman (2009) for details. However, given the special role of∂S in the DB test,
it is important for the plug-in estimator∂Sn to approximate the population counterpart at a fast
enough rate. This will lead us to impose some restriction on the classC of possible supports. We
will further comment on this below. Now, let us formally state the implementation of the DBU
test:

1. ConstructSn, an estimator ofS based on the sampleXn.
2. DefineX ∗

n = {X∗
1 , . . . , X

∗
n∗} = {Xi ∈ Xn, Xi /∈ ∂Sn, i = 1, . . . , n}.

3. ComputeY ∗
i = D(X∗

i , ∂Sn), i = 1, . . . , n∗.

4. Let us consider a two-dimensional variableX̂, uniform onSn. The DBU test is based on the
statisticD∗

n =
√
n‖F∗

n − F̂‖, whereF∗
n is the empirical distribution ofY ∗

i = D(X∗
i , ∂Sn)

and F̂ is the distribution function of̂Y = D(X̂, ∂Sn). Since this distribution underH0 is
difficult to calculate it is approximated by the empirical distribution of an artificial sample as
described in the next step.

5. Generate an artificial samplêXm = {X̂1, . . . , X̂m}, from a uniform distribution on the es-
timatorSn. ComputeŶi = D(X̂i, ∂Sn), i = 1, . . . ,m. Perform a two-sample Kolmogorov-
Smirnov test of the null hypothesis thatY ∗

i and Ŷi were drawn from the same continuous
distribution.

The choice of the support estimatorSn
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Keeping in mind thatSn must provide and efficient, easy-to-compute estimator for both S
and (via∂Sn) for ∂S, a natural choice for the classC in (1) would be

C = {class of compact convex supports with non-empty interior inR
2}.

In this case the natural estimator ofS is the convex hull ofXn,

Sn = conv(Xn).

The properties of this estimator have been extensively analyzed since the early sixties; see Re-
itzner (2009). We will need here the consistency propertiesestablished by D̈umbgen & Walther
(1996). In particular, these authors show that (for the two-dimensional cased = 2), with proba-
bility 1 (a.s.),

dH(Sn, S) = O

(

(

log n

n

)1/2
)

,

wheredH(A,B) stands for the Hausdorff distance between two compact non-empty setsA and
B. As we will see, this convergence rate is not fast enough for our purposes. Under additional
smoothness assumptions onS (see also Walther (1997, 1999), Rodrı́guez-Casal (2007)) we have

dH(Sn, S) = O

(

(

log n

n

)2/3
)

, a.s. (2)

and, more importantly,

dH(∂Sn, ∂S) = O

(

(

log n

n

)2/3
)

, a.s. (3)

Whereas convexity is a simple, natural and well-studied assumption to be imposed onS, it
is quite restrictive for many practical purposes. For example, when analyzing spatial patterns in
ecological data, it is not always reasonable to assume that the habitat of a certain plant species
is a convex domain. Hence we will also consider a second (muchless popular) condition called
λ-convexitywith allows for a much more flexible class of possible supports. For another recent
application of this condition to the problem of testing uniformity see Berrendero, Cuevas, &
Pateiro-Ĺopez (2011).

A closed setS ⊂ R
2 is said to beλ-convex for someλ > 0 if S coincides with itsλ-convex

hull, that isS = Cλ(S), where

Cλ(S) =
⋂

B̊(y,λ)∩S=∅

B̊(y, λ)c. (4)

In other words,S can be expressed as the intersection of the complements of a family of open
balls with radiiλ. The origin of this notion goes back to Perkal (1956). See Walther (1997), Ro-
dŕıguez-Casal (2007), Berrendero, Cuevas, & Pateiro-López (2011), and references therein, for
additional insights as well as statistical applications.

The condition ofλ-convexity is clearly reminiscent of the plain notion of convexity, as it
can be seen by replacing the balls in (4) by half-spaces. In fact, every closed convex set is also
λ-convex for allλ > 0. It is also apparent thatλ-convexity is a much more flexible condition

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique



6 BERRENDERO, CUEVAS AND PATEIRO-LÓPEZ Vol. xx, No. yy

which allows the set to have inlands (as long as they are not too sharp) or holes and even to be
disconnected.

From a statistical point of view, the most important featureof definition (4) is the fact that
a λ-convex supportS has a natural estimator from a random sampleXn which is theλ-convex
hull of the sample points,

Sn = Cλ(Xn). (5)

This estimator turns out to be computationally feasible; the R-packagealphahull developed
by Pateiro-Ĺopez & Rodŕıguez-Casal (2010) provides an efficient calculation of (5)in the two-
dimensional case. Moreover, under appropriate smoothnessconditions, this estimator exhibits
also the fast convergence rates (2) and (3). This will be important in the theoretical developments
of the following section.

3. ASYMPTOTIC PROPERTIES

The aim of this section is to show that, under suitable shape restrictions on the classC in (1),
the DBU test is asymptotically equivalent to the DB test proposed in Berrendero, Cuevas, &
Vázquez-Grande (2006) for the case of a known support. According to the notation introduced in
Section 2, this amounts to show that|Dn −D∗

n| → 0, in probability asn → ∞. We will establish
this in two results (Theorems 1 and 2 below), obtained under two different assumptions forC.

We introduce some notation for the results and their proofs.In what follows, Xn =
{X1, . . . , Xn} will denote a sample drawn on a compact supportS, with non-empty interior. The
Lebesgue measure of a setA will be denoted byµ(A) and the cardinal of the set{i : Xi ∈ ∂Sn}
will be denoted byNn (that is,Nn = n− n∗). All the convergence results below correspond to
limits asn → ∞.

The proofs are organized in three lemmas and two theorems, see the Appendix. The general
structure is as follows. Lemma 1 establishes the asymptoticproximity (with a

√
n rate) of F̂

to F . Lemma 2 proves an analogous result forFn andF
∗
n. Lemma 3 establishes (as a direct

consequence of the two previous lemmas) the asymptotic equivalence of test statisticsDn and
D∗

n. The practical conclusion is the asymptotic equivalence ofthe DB and the DBU test. Finally,
Theorems 1 and 2 show that the conclusion of Lemma 3 can be applied to the case of convex
support (Theorem 1) and to the more general assumption ofλ-convex support (Theorem 2).

Lemma 1. Assume that the supportS and the estimatorSn are such thatF is Lipschitz con-
tinuous,Sn ⊂ S with probability one,

√
nµ(S \ Sn)

P→ 0 and
√
ndH(∂S, ∂Sn)

P→ 0. Then,√
n‖F̂ − F‖ P→ 0.

Lemma 2. Assume that the supportS and the estimatorSn are such thatF is Lipschitz contin-
uous,Xn ⊂ Sn ⊂ S with probability one,Nn/

√
n

P→ 0 andn1/2+δ dH(∂S, ∂Sn)
a.s.→ 0, for some

δ > 0. Then,
√
n‖F∗

n − Fn‖ P→ 0.

Lemma 3. Assume that the supportS and the estimatorSn are such thatF is Lips-
chitz continuous,Xn ⊂ Sn ⊂ S with probability one,

√
nµ(S \ Sn)

P→ 0, Nn/
√
n

P→ 0, and
n1/2+δ dH(∂S, ∂Sn)

a.s.→ 0, for someδ > 0. Then,|Dn −D∗
n|

P→ 0.

Now we apply Lemma 3 to the cases when we can assume thatS is convex andλ-convex
respectively. We will also need the following smoothness condition: A ball of radiusr is said
to roll freely insidea closed setA ⊂ R

d if for each pointa ∈ ∂A there existsx ∈ R
d such that

a ∈ B(x, r) ⊂ A.
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Theorem 1. LetS ⊂ R
2 be a compact convex set with nonempty interior such thatF is Lips-

chitz continuous and such that a ball of radiusr > 0 rolls freely insideS for somer > 0. LetSn

be the convex hull ofXn. Assume further that theXi have a common Lebesque density bounded
away from zero onS. Then|Dn −D∗

n|
P→ 0.

Theorem 2. Let S ⊂ R
2 be a compactλ-convex set with nonempty interior such thatSc is

also λ-convex andint(Si) 6= ∅ for each path-connected componentSi ⊂ S. Assume thatF is
Lipschitz continuous. LetSn be theλ-convex hull ofXn. Assume further that theXi have a
common Lebesque density bounded away from zero onS. Then|Dn −D∗

n|
P→ 0.

As a consequence of these results the DBU test inherits the properties of the DB test studied in
Berrendero, Cuevas, & V́azquez-Grande (2006), in particular, (under the conditions of Theorems
1 or 2) it asymptotically preserves the prescribed significance level and both tests are consistent
to detect the same non-uniform alternatives.

4. EMPIRICAL RESULTS

4.1. Empirical significance level

We have checked the performance of the DBU test in terms of preservation of the nominal con-
fidence level. The numerical results given below have been obtained using the R software, see R
Development Core Team (2011).

A simulation example: the “unknown” supportS is a set limited by a Laḿe curve. The possible
supports in the null hypothesis are either convex orλ-convex

Table 1 gives the outputs corresponding to the empirical significance level obtained (as an
average over 5000 independent runs) with the DBU test and theDB test intended for nominal
significance levelsα = 0.05, 0.1. Sample sizes aren = 50, 100, 200. The considered supports
are sets limited by different Laḿe curves (also called superellipses), that is, sets of the form
S =

{

(x, y) ∈ R
2 : |x|r + |y|r ≤ 1

}

for different values ofr, see Figure 1. Note that forr = 1
andr = 2 the equation of the Laḿe curve describes a square and a circle, respectively. We refer
to Jaklǐc, Leonardis, & Solina (2000) for further discussion of superellipses and their properties.

The supports limited by these curves forr = 1 andr = 2 are invariant by erosion upon an
homothecy (see Section 2 above for more details on this). Thus we are under the assumptions of
Theorem 1 in Berrendero, Cuevas, & Vázquez-Grande (2006) for the DB test, so that the distri-
bution ofY R = D(X, ∂S)/R under the null hypothesis is totally known (it is a beta distribution
β(1, 2)) and we may perform a classical one-sample Kolmogorov-Smirnov test of goodness of
fit to that distribution.

For other values ofr, the setS does not fulfill the mentioned shape restriction and the dis-
tribution of Y is derived in practice by a Monte Carlo mechanism; see the description of the
implementation of the test in Section 2. Moreover, the non-normalized distancesYi in the DB
test are approximated numerically, since there is no solution in closed form for the distance to
the Laḿe curve whenr = 3 or r = 4, see Rosin & West (1995). For the DBU test we use as
estimatorSn both the convex hull of the sampleH(Xn) and theλ-convex hull of the sample
Cλ(Xn) (with λ = 1). This corresponds to takeC in the null hypothesis (1) to be the class of
compact convex sets or the class of compactλ-convex sets, respectively.
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FIGURE 1: Lamé curves|x|r + |y|r = 1 for different values ofr.

The slight (non-systematic) improvements observed in somecases in the DBU test (with
respect to the DB test) can be explained by the fact that, on average, the DBU procedure under-
estimates the proportion of observations near the boundary, since the points in the boundary of
the convex hullH(Xn) and those in the boundary of theλ-convex hull,Cλ(Xn), are excluded
from consideration. So, in the DBU test those uniform samples that, by chance, turn out to be
unusually close to the boundary (which therefore would tendto increase the type I error) are less
likely to appear in the DBU procedure. Of course, as a counterpart, there is an obvious effect
against the DBU procedure since the samples under the null hypothesis are drawn fromS and
DBU tests in fact the uniformity onSn. The oscillations in the performance of DBU and DB
represent the balance between both opposite effects.

A case with non-connected support
Let S be the set in Figure 2, which is not convex butλ-convex forλ = 2. Table 2 gives the

outputs corresponding to the empirical significance level obtained (as an average over 10000
independent runs) with the DBU test and the DB test intended for nominal significance levels
α = 0.05, 0.1.
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TABLE 1: Empirical significance level of the DBU test and DB test over 5000 uniform samples of size
n = 50, 100, 200 on the supportsS =

{

(x, y) ∈ R
2 : |x|r + |y|r ≤ 1

}

for different values ofr. The
nominal values are0.05, 0.1. For the DBU test, we considerSn = H(Xn) andSn = Cλ(Xn) with λ = 1.

DBU test DBU test DB test

Sn = H(Xn) Sn = Cλ(Xn)

α 0.05 0.1 0.05 0.1 0.05 0.1

r = 1 n = 50 0.0436 0.0868 0.0422 0.0860 0.0460 0.0896

n = 100 0.0414 0.0888 0.0406 0.0858 0.0408 0.0834

n = 200 0.0492 0.0962 0.0476 0.0960 0.0418 0.0864

r = 2 n = 50 0.0474 0.0906 0.0400 0.0866 0.0472 0.0940

n = 100 0.0416 0.0828 0.0452 0.0920 0.0450 0.0934

n = 200 0.0510 0.0934 0.0490 0.0966 0.0522 0.1018

r = 3 n = 50 0.0502 0.0974 0.0482 0.0932 0.0500 0.0954

n = 100 0.0468 0.0902 0.0442 0.0902 0.0472 0.0938

n = 200 0.0480 0.0998 0.0510 0.1016 0.0444 0.0890

r = 4 n = 50 0.0416 0.0820 0.0376 0.0790 0.0414 0.0834

n = 100 0.0448 0.0920 0.0432 0.0880 0.0428 0.0846

n = 200 0.0470 0.0946 0.0468 0.0908 0.0344 0.0718

0 2 4 6

−
3

−
2

−
1

0
1

2
3

FIGURE 2: Non-convex supportS = B(x, 1) ∪B(y, 1), with x = (0, 0) andy = (6, 0). The setS is not
convex butλ-convex forλ = 2.

Some results inR3

We have also studied the behavior in terms of significance level of the DB test and DBU test
in R

3. The algorithms are essentially the same as those describedin Section 2. Table 3 gives
the outputs corresponding to the empirical significance level obtained (as an average over 10000
independent runs) with the DBU test and the DB test intended for nominal significance lev-
elsα = 0.05, 0.1. Sample sizes aren = 50, 100, 200, 500. The considered supports are the unit
cubeS = [0, 1]3 and unit ballS = B(0, 1) in R

3. Since both supports are invariant by erosion
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TABLE 2: Empirical significance level of the DBU test and DB test over 10000 uniform samples of size
n = 50, 100, 200, 500 onS in Figure 2. The nominal values are0.05, 0.1. For the DBU test, we consider

Sn = Cλ(Xn) with λ = 2.

DBU test DB test

Sn = Cλ(Xn)

α 0.05 0.1 0.05 0.1

n = 50 0.0433 0.0860 0.0480 0.0981

n = 100 0.0472 0.0933 0.0437 0.0922

n = 200 0.0439 0.0934 0.0417 0.0889

n = 500 0.0466 0.0967 0.0495 0.0948

upon an homothecy we perform for the DB test a classical one-sample Kolmogorov-Smirnov
test of the null that the distribution function of the randomvariableY R = D(X, ∂S)/R is a beta
distribution with parametersa = 1 andb = 3. For the DBU test, we restrict ourselves to the case
where the supportS is assumed to be convex and is estimated through the convex hull of the
sampleH(Xn).

TABLE 3: Empirical significance level of the DBU test and DB test over 10000 uniform samples of size
n = 50, 100, 200, 500 onS = [0, 1]3 andS = B(0, 1) in R

3. The nominal values are0.05, 0.1. For the
DBU test, we considerSn = H(Xn).

DBU test DB test

Sn = H(Xn)

α 0.05 0.1 0.05 0.1

S = [0, 1]3 n = 50 0.0399 0.0831 0.0483 0.0969

n = 100 0.0434 0.0886 0.0423 0.0872

n = 200 0.0468 0.0916 0.0487 0.0950

n = 500 0.0470 0.0938 0.0483 0.0956

S = B(0, 1) n = 50 0.0378 0.0798 0.0480 0.0972

n = 100 0.0453 0.0886 0.0488 0.0968

n = 200 0.0449 0.0909 0.0433 0.0872

n = 500 0.0510 0.0970 0.0507 0.0948

4.2. Power study

As for the power study, we have considered two different models in the choice of the alternative
distribution.

Contamination model
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20?? 11

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

FIGURE 3: Random samples of sizen = 200 from mixtures of type(1− ǫ)U(S) + ǫU(S \ S0), where
S =

{

(x, y) ∈ R
2 : |x|r + |y|r ≤ 1

}

for r = 3 andS0 denotes a set likeS with the same centre and area
µ(S)/2. Left, ǫ = 0.1. Middle, ǫ = 0.2. Right,ǫ = 0.3.

The sample points are drawn from a random variable whose distribution is given by a mixture
of type (1− ǫ)U(S) + ǫU(S \ S0), whereS =

{

(x, y) ∈ R
2 : |x|r + |y|r ≤ 1

}

for r = 3 and
S0 denotes a set likeS with the same centre and areaµ(S)/2. We have takenǫ = 0.1, 0.2, 0.3, see
Figure 3. We have compared the performance of the DBU test with that of the EMS test (based
on multivariate spacings) by Berrendero, Cuevas, & Pateiro-López (2011). The corresponding
outputs are summarized in Table 4.

TABLE 4: Empirical powers over 5000 runs of the DBU test, EMS test and DB test.The underlying
distributions are contaminated uniforms(1− ǫ)U(S) + ǫU(S \ S0), where

S =
{

(x, y) ∈ R
2 : |x|r + |y|r ≤ 1

}

for r = 3 andS0 denotes a set likeS with the same centre and area
µ(S)/2. The significance level is 0.05.

DBU test DBU test DB test EMS test

Sn = H(Xn) Sn = Cλ(Xn)

ǫ = 0.1 n = 50 0.0646 0.0598 0.1078 0.0130

n = 100 0.1042 0.0974 0.1716 0.0404

n = 200 0.2028 0.1934 0.3112 0.0566

ǫ = 0.2 n = 50 0.1438 0.1168 0.2584 0.0212

n = 100 0.3346 0.2990 0.4786 0.0638

n = 200 0.6110 0.5844 0.7778 0.0992

ǫ = 0.3 n = 50 0.3218 0.2570 0.5118 0.0374

n = 100 0.6598 0.6178 0.8176 0.1126

n = 200 0.9456 0.9338 0.9852 0.1910

Neyman-Scott clustering alternatives
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This is a typical deviation from the uniformity assumption,often considered in the theory of
point processes. Under this model the sample tends to provide “clustered” observations. For the
simulated samples each cluster consist ofm points, generated from the uniform distribution on a
disc of radiusr, which entails a departure from the iid assumption for the data. The corresponding
outputs are summarized in Table 5.

The support estimator used in the second column of Table 4 andin Table 5 isSn = Cλ(Xn)
with λ = 1.

TABLE 5: Empirical powers of the uniformity tests under study over 5000 runs of sample sizen = 100

andn = 200 from Neyman-Scott clustering alternatives. Each cluster consist ofm points, generated from
the uniform distribution on a disc of radiusr.

DBU test DB test EMS test

r = 0.05 m = 5 n = 100 0.6174 0.4946 0.9790

n = 200 0.5608 0.4976 0.9976

r = 0.05 m = 10 n = 100 0.9030 0.7556 0.9994

n = 200 0.8504 0.7560 1.0000

r = 0.1 m = 5 n = 100 0.3458 0.3668 0.7952

n = 200 0.3338 0.3670 0.8442

r = 0.1 m = 10 n = 100 0.5784 0.5822 0.9828

n = 200 0.5404 0.5746 0.9970

In order to properly interpret these results one should keepin mind that the Neyman-Scott
model does not correspond to the case of independent identically distributed observations. Thus,
depending on the number of clustersm and the radiusr we could find that the lack of uniformity
in this model is harder to detect with larger samples. The reason is that for large samples one
would have a larger number of clusters whose centres are uniformly distributed so giving a false
appearance of uniformity.

Also, it can be observed that the DBU test outperforms DB whenthe cluster radius is small.
This can be explained by the “boundary effect” present in theDBU method. Recall again that
the points in the boundary of the support estimator are takenout but, under the Neyman-Scott
model, all these excluded points have a cluster of close (when r is small) non-excluded points
near the boundary. These points help us to detect the lack of uniformity.

4.3. Conclusions
1. The results in Tables 1 and 2 show that the DBU test succeedsin preserving the significance

level (though it tends to be slightly conservative). The cost of estimating the support (pointed
out by the difference observed with the DB test, where the support is known) turns out to be
moderate and quite affordable in statistical terms.

2. Note that the asymptotic validity of the DBU test in the tri-dimensional case is not covered
by our theoretical results in Section 3 (which apply only ford = 2). However, the outputs in
Table 3 suggest that the method could work even in this case. Anew, quite different, theo-
retical approach would be needed in this case, as the arguments in Section 3 rely essentially
on the assumptiond = 2. From the computational point of view, the implementation of the

The Canadian Journal of Statistics / La revue canadienne de statistique DOI:



20?? 13

DBU test presents some technical difficulties ford = 3. The convex hull estimator can be
computed in general dimension, see for example the R-package geometry by Grasman &
Gramacy (2010). However, theλ-convex hull is only implemented in the bi-dimensional case.
This practical restriction forces us to consider convex supports and the convex hull estimator
in Table 3. A possible solution for non-convex supports inR

3 would be to compute theλ-
shape, see Edelsbrunner & Mücke (1994). Theλ-shape is computationally practicable, and it
is closely related to theλ-convex hull estimator (it approximates the boundary of theλ-convex
hull by a piecewise linear surface). The implementation in Rof this structure is currently under
development.

3. The power results in Tables 4 and 5 show also a foreseeable behavior: the procedure works
efficiently for detecting “contaminated” distributions but it is much less powerful for Neyman-
Scott alternatives. Again, the loss of efficiency associated with the estimation of the support is
surprisingly low. As mentioned in the Introduction, the “spacing-based” EMS procedure (see
Berrendero, Cuevas, & Pateiro-López (2011) for details) can be thought as complementary
to the DBU test. The EMS test is suitable for alternative hypothesis that provide “clustered”
observations but it is less powerful for “contamination models”, where the DBU test shows a
clear superiority. The slight loss of power observed when increasing the sample size in some
cases in Table 5 may be explained by the dependence of the observations generated from the
Neyman-Scott model.

5. GENERATION OF UNIFORM SAMPLES ON SN

The uniformity test for the case of an unknown supportS is based on the statistic

D∗
n =

√
n‖F∗

n − F̂‖,

being F̂ the distribution of the random variablêY = D(X̂, ∂Sn), whereX̂ is uniform onSn.
SinceF̂ is unknown, this distribution is derived in practice by a Monte Carlo mechanism. A large
number of iid uniform observationŝXi, i = 1, . . . ,m are drawn onSn. The empirical distribu-
tion corresponding to the samplêYi = D(X̂i, ∂Sn), i = 1, . . . ,m is used as an approximation
for F̂ .

Uniform samples onH(Xn).
Assume that we choose as estimatorSn = H(Xn). The problem of how to generate uniform

random vectors on the convex hull of a set of points inR
2 is well-known. Note that this is a

particular case of uniform random generation on a convex polygon in the plane, which is solved
by means of triangulation. See Devroye (1986) for a description of the algorithm. The procedure
in R

3 is similar. In this case, we partition the convex hull of the sample into tetrahedra by means
of the Delaunay triangulation of the sample, which can be computed in R by means of the library
geometry, see Grasman & Gramacy (2010). To generate a point uniformlyin the triangulated
polyhedron, we first sample one of the tetrahedra with probabilities proportional to their volumes
and then we sample a point uniformly in the selected tetrahedron. The generation of uniform
random vectors in a tetrahedron is a particular case of the generation of uniform random vectors
in a simplex for dimensiond = 3. See Figure 4.

Uniform samples onCλ(Xn).
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FIGURE 4: Uniform sampleXn in B(0, 1) in R
3 of sizen = 500 (left). Convex hullH(Xn) and uniform

sample generated onH(Xn) of sizem = 2000 (right).

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

FIGURE 5: Uniform sample (solid points) inCλ(Xn). The sample is obtained from uniform observations
in the convex hullH(Xn) after removing the sample points (non-solid points) that belong to any of theballs

defining the complement of theλ-convex hull.

Assume now thatSn = Cλ(Xn). In order to generate uniform samples onCλ(Xn) we pro-
ceed as follows: first, we generate a large sample of uniform observations in the convex hull
H(Xn). Note that theλ-convex hull is contained in the convex hull. Then, we removethe points
that belong to any of the balls defining the complement of theλ-convex hull. The resulting sam-
ple is uniform inCλ(Xn), see Figure 5.

APPENDIX

Proof of Lemma 1. Since bothF andF̂ have compact support, there existsK > 0 (not depend-
ing onn) such that‖F̂ − F‖ = supt∈[0,K] |F̂ (t)− F (t)|. LetB be the closed unit ball inR2 and
denote byC ⊖D = {x : x+D ⊂ C} the Minkowski difference of two setsC andD. Observe
thatY ≥ t if and only ifX ∈ S ⊖ tB, andŶ ≥ t if and only if X̂ ∈ Sn ⊖ tB. Then,

|F̂ (t)− F (t)| = |P(X̂ ∈ Sn ⊖ tB)− P(X ∈ S ⊖ tB)|,
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and, using the triangle inequality,

|F̂ (t)− F (t)| ≤ |P(X̂ ∈ Sn ⊖ tB)− P(X ∈ Sn ⊖ tB)|
+ |P(X ∈ Sn ⊖ tB)− P(X ∈ S ⊖ tB)|. (1)

Regarding the first term in the right-hand side of inequality(1), observe that, for allt ∈ [0,K],

|P(X̂ ∈ Sn ⊖ tB)− P(X ∈ Sn ⊖ tB)| = µ(Sn ⊖ tB)

µ(Sn)
− µ(Sn ⊖ tB)

µ(S)

=
µ(Sn ⊖ tB)

µ(Sn)

(

1− µ(Sn)

µ(S)

)

≤ 1− µ(Sn)

µ(S)
=

µ(S \ Sn)

µ(S)
.

Since, by assumption,
√
nµ(S \ Sn)

P→ 0, we also have

√
n sup

t∈[0,K]

|P(X̂ ∈ Sn ⊖ tB)− P(X ∈ Sn ⊖ tB)| P→ 0.

For the second term in the right-hand side of inequality (1),observe that, for allt ∈ [0,K],

P
(

X ∈ (S ⊖ tB) \ (Sn ⊖ tB)
)

≤ P
(

Y ≥ t, D(X, ∂Sn) < t
)

+
µ(S \ Sn)

µ(S)
,

sinceX ∈ S ⊖ tB amounts toY ≥ t, andX /∈ Sn ⊖ tB implies thatD(X, ∂Sn) < t or X ∈
S \ Sn.

Also, D(X, ∂Sn) < t implies Y < t+ ǫn, where ǫn = dH(∂S, ∂Sn). Indeed, since
D(X, ∂Sn) < t, there existszn ∈ ∂Sn such thatD(X, zn) < t. By definition of Hausdorff dis-
tance, there existsz ∈ ∂S with D(z, zn) ≤ ǫn. Hence,

Y = D(X, ∂S) ≤ D(X, z) ≤ D(X, zn) +D(zn, z) < t+ ǫn.

As a consequence,

P
(

X ∈ (S ⊖ tB) \ (Sn ⊖ tB)
)

≤ P
(

t ≤ Y < t+ ǫn
)

+
µ(S \ Sn)

µ(S)
. (2)

SinceF is Lipschitz continuous, there existsM > 0 such thatP
(

t ≤ Y < t+ ǫn
)

= F (t+
ǫn)− F (t) ≤ Mǫn. From this bound, (2) and taking into account the assumptions we deduce

√
n sup

t∈[0,K]

P
(

X ∈ (S ⊖ tB) \ (Sn ⊖ tB)
)

≤ M
√
nǫn +

√
nµ(S \ Sn)

µ(S)

P→ 0.

�

Proof of Lemma 2. For i = 1, . . . , n defineỸi = D(Xi, ∂Sn) and letF̃n be the empirical
distribution function corresponding tõY1, . . . , Ỹn. Since

√
n‖F∗

n − Fn‖ ≤ √
n‖F∗

n − F̃n‖+
√
n‖F̃n − Fn‖, (3)

it is enough to prove that both terms in the right-hand side ofthe last inequality go to zero
in probability. Since there existsK > 0 such that all the involved distributions have supports
included in[0,K], the sup-norms can always be computed on a compact interval[0,K] instead
of R.
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Observe that, fort ≥ 0, F̃n(t) = (1−Nn/n)F
∗
n(t) +Nn/n. Therefore,

√
n‖F∗

n − F̃n‖ =
Nn√
n

sup
t∈[0,K]

(

1− F
∗
n(t)

)

≤ Nn√
n

P→ 0,

by assumption.
Regarding the second term of the right-hand side of (3), notice thatỸi ≤ Yi ≤ Ỹi + ǫn, where

ǫn = dH(∂S, ∂Sn). Then,

√
n‖F̃n − Fn‖ ≤ sup

t∈[0,K]

1√
n

n
∑

i=1

I{t<Yi≤t+ǫn}. (4)

Define the sequencebn = n−1/2−δ, whereδ > 0 is given in the assumptions of the lemma. No-
tice that, from the assumption ondH(∂S, ∂Sn), we havebn > ǫn eventually with probability 1.
Then,

sup
t∈[0,K]

1√
n

n
∑

i=1

I{t<Yi≤t+ǫn} ≤ sup
t∈[0,K]

1√
n

n
∑

i=1

I{t<Yi≤t+bn}, eventually with probability 1.

(5)
Now, denote byCn, for eachn, the covering of(0,K] by intervals of the formInj = (jbn, (j +

1)bn], j = 1, 2, . . .. Clearly, the cardinality ofCn is O(b−1
n ) = O(nγ) with γ = 1/2 + δ. Also,

sinceF , the distribution of theYi’s, is Lipschitz continuous, there existsM such that

max
I∈Cn

PF (I) ≤ Mbn = o(n−1/2).

Therefore, the sequence of coveringsCn fulfills the assumptions in Lemma 2.2 of Fernholz
(1991). It follows thatTn/

√
n

a.s.→ 0, whereTn is the maximum number ofYi’s with values in any
I ∈ Cn. Then,

sup
t∈[0,K]

1√
n

n
∑

i=1

I{t<Yi≤t+bn} ≤ 2Tn√
n

a.s.→ 0. (6)

From (4), (5) and (6) we get
√
n‖F̃n − Fn‖ a.s.→ 0.

�

Proof of Lemma 3. Applying the triangle inequality,

‖F∗
n − F̂‖ ≤ ‖F∗

n − Fn‖+ ‖Fn − F‖+ ‖F − F̂‖,

and

‖Fn − F‖ ≤ ‖Fn − F
∗
n‖+ ‖F∗

n − F̂‖+ ‖F̂ − F‖.

Hence,

Dn −√
n‖F∗

n − Fn‖ −
√
n‖F − F̂‖ ≤ D∗

n ≤ Dn +
√
n‖F∗

n − Fn‖+
√
n‖F − F̂‖

and the result follows from Lemmas 1 and 2.
�

The Canadian Journal of Statistics / La revue canadienne de statistique DOI:



20?? 17

Proof of Theorem 1. We are going to check the assumptions of Lemma 3. By Theorem 3
and Remark 3 in Rodrı́guez-Casal (2007), it holds

dH(∂S, ∂Sn) = O

(

log n

n

)2/3

with probability 1. Observe that, ifS is convex andSn, Cλ(Xn) stand for the convex hull
and theλ-convex hull, respectively, ofXn, then Cλ(Xn) ⊂ Sn ⊂ S for any λ > 0. Thus,
n1/2+δ dH(∂S, ∂Sn)

a.s.→ 0, for 0 < δ < 1/6.
Theorem 1 in Scḧutt (1994) ensures that for any convex bodyS ⊂ R

d, E[µ(S \ Sn)] =

O(n−2/(d+1)). In particular, ford = 2 and using Markov inequality we havenβ µ(S \ Sn)
P→ 0,

for 0 ≤ β < 2/3.
Finally, we use the so-calledEfron’s identity, see Efron (1965, Eq. 3.7), which relates the

expected number of vertices and the area in the convex hullSn, and we get

E(Nn) = n
E[µ(S \ Sn−1)]

µ(S)
= O(n(d−1)/(d+1)),

where in the second equality we have used again Schütt’s Theorem. In particular, ford = 2 and
using Markov’s inequality we haveNn/n

β P→ 0, for β > 1/3.
�

Proof of Theorem 2. We are going to check the assumptions of Lemma 3. By Theorem 3in
Rodŕıguez-Casal (2007), with probability 1

dH(∂S, ∂Sn) = O

(

log n

n

)2/3

and the same rate holds forµ(S \ Sn). Then, nβ µ(S \ Sn)
a.s.→ 0, for 0 ≤ β < 2/3, and

n1/2+δ dH(∂S, ∂Sn)
a.s.→ 0, for 0 < δ < 1/6. Finally we haveE(Nn) = O(n1/3) (see Pateiro-

López & Rodŕıguez-Casal, 2011) and using Markov inequality we obtainNn/n
β

P→0 for
β > 1/3.

�
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Pateiro-Ĺopez, B. & Rodŕıguez-Casal, A. (2010). Generalizing the convex hull of a sample: TheR package
alphahull.Journal of Statistical Software, 34(5), 1–28.
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