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Chapter 1

Introduction

The aim of this thesis is to study black holes in String Theory (ST) through their classical description as Super-
gravity solutions. ST [1, 2] is a framework that attempts to offer a unified quantum description of all the known
fundamental interactions and, in particular, of gravity. It would solve, if correct, the long-standing problem of
Quantum Gravity. In the present day there is no experimental evidence of ST, and there is no hope in the ST
community that such an evidence will soon be found. Despite the lack of experimental results, ST has passed a
few self-consistency checks that are expected to hold in the right unifying theory of nature [3, 4], if it exists. As
a consequence, an enormous effort has been devoted over the last decades to develop ST, leading to beautiful and
important advances and insights in modern Theoretical Physics [5–7] and Mathematics [8–16]. The ramifications
of ST-inspired results are nowadays virtually everywhere in Theoretical Physics, and thus even if the right theory
of nature was not ST, we can expect that they will have some ingredients in common. Hundreds of thesis, books
and reviews have been written over the years dealing with the principal aspects of ST, such as supersymmetry,
perturbative ST, conformal field theory, D-branes, ST dualities, aDS/CFT correspondence, M-Theory... and hence
we refer the interested reader to the existing literature, for instance [17–21] and references therein.

I will focus instead (see chapters 2 and 3), for reasons that will become apparent later, on a different area,
sometimes forgotten in ST applications: the precise mathematical structure of the ST effective actions, i.e. field
theories that describe the dynamics of the massless modes of the ST spectrum and are used to make contact with
four-dimensional low-energy physics. The mathematical structure of these effective actions is crucial in order to
ensure the consistency of the theory and it is the necessary background that we will need to pursue our goal,
namely the study of black holes in ST. Let us see first how to go from the full-fledged ST to four-dimensional
Supergravity.

1.1 From String Theory to Supergravity

ST lives in ten dimensions, that is, the mathematical object that represents the space-time in ST is a ten-
dimensional manifold. Since experimentally, that is, at low energies, we observe four dimensions, some mechanism
must be used to reconcile theory and experiment. The standard way to proceed is to assume that the space-time
manifold M1 has the following fibre bundle structure

M ��!M4 ; (1.1)

where M4 is the base space manifold (which represents the space-time that we observe at low energies) and the
fibre M6 (p) = ��1(p) at each p 2 M4 is a compact manifold, small enough to not be accessible in current high-
energy experiments. So to say, M6 (p) is so small that we cannot see it with the available technology. Notice that
M6 (p) �=M6 (q) ; 8 p; q 2M4, so we can denote the typical fibre simply by M6.

The general mechanism described above can be put in practice in several different ways, on which the precise
size limits of M6 depend [22–25]. Unfortunately, it is currently not known how to compactify ST on a non-trivial
compact manifold M6, except for some particular cases. By non-trivial manifold here we mean a Riemannian
manifold with a curved metric. The usual procedure to deal with this situation is to cook up an effective field
theory action that encodes the dynamics of the massless modes present in the ST spectrum, which are the ones
relevant to low energy physics. The reason is that the first massive states in the spectrum have masses of the order
of the Planck mass, which is way out of reach for current particle accelerators.

1For more details about the precise properties of M, see chapter 2.
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As a consequence of ST having local space-time supersymmetry, the ST massless states action is a very special
one: a Supergravity [26–30]. The key point is that, even though it is not know how to compactify ST, it is known
how to compactify a field theory, and in particular a Supergravity. Therefore, although the procedure described
above is sometimes called “ST compactification” what is actually compactified is a ten-dimensional Supergravity.
We can add to it ST corrections, that is, modifications to the tree level result as prescribed by ST, which is
not a field theory but a theory of extended objects. The resulting corrected action is, again, a Supergravity but,
tipically, it has higher order terms in the Lagrangian and modified couplings.

If we compactify now low energy ST, that is, ten-dimensional Supergravity, on a particular compact six-
dimensional manifold M6

2, we obtain a four-dimensional effective action which will also be a Supergravity, four-
dimensional in this case, if some technical requirements are obeyed by the compact manifold M6. I will come
back to this point later, but for the moment I refer the reader to [25] and references therein.

To summarize, we have started with ten-dimensional ST and we have ended up with four-dimensional Super-
gravity, which is a theory of gravity and matter that can be embedded in ST, and therefore seems to be the perfect
starting point to study four-dimensional black holes in ST.

1.2 Supergravity

Supergravity is a locally supersymmetric theory of gravity, that is, a field theory invariant under local supersym-
metry transformations. Supersymmetry is a not so new, and yet to be observed, hypothetical symmetry between
bosons and fermions [28, 31–33].

If we consider a field theory content with spin less or equal than two, there are seven different types of
four-dimensional Supergravity N = 1; � � � ; 6; 8, depending on the amount N of supersymmetry of the theory.
Supersymmetry transformations are generated by a set of spinors �I(p) ; I = 1; � � � ;N , where N is the number
of supersymmetries of the given Supergravity. In four dimensions, the minimal spinors �I(p) can be taken to be
Weyl or Majorana, and therefore we have respectively 2N complex or 4N real associated charges. Supersymmetry
transformations can be schematically written as

���b � ��(p)
�
�b + ��f�f

�
�f ; ���f � @�(p) +

�
�b + ��f�f

�
�(p)�f ; (1.2)

where �b denotes the bosonic fields and �f denotes the fermionic fields.
Since Supergravity is a supersymmetric theory, and supersymmetry relates bosonic a fermionic fields, every

Supergravity contains bosons and fermions. Truncating the fermions is always consistent, thanks to the following
Z2 symmetry, present in every Supergravity Lagrangian

�b ! �b ; �f ! ��f : (1.3)

The bosonic sector of four-dimensional Supergravity is a particular instance of General Relativity, as formulated
by Albert Einstein in 1915 [34]. That is, it is a metric theory of gravity coupled to a particular matter content,
which includes scalars and vector fields, and where the equation of motion for the metric g is given by

R (r) = T : (1.4)

Here R (r) is the Ricci tensor of the Levi-Civita connection r associated to g on the space-time tangent bundle
[35], and T is the geometrized energy-momentum tensor corresponding to the matter content of the theory.

General Relativity cannot be, in principle, coupled to fermions, since it is formulated in a way on which only
the diffeomorphisms group Di� (M) acts naturally on the matter content. We need to make manifest the local
action of the Lorentz group SO(1; 3)3 on the matter content of the theory, since fermions are associated to spinorial
representations of SO(1; 3). Therefore, if we want to consider the complete Supergravity action, we have to change
the set-up and use a more general formalism, which turns out to be the Cartan-Sciama-Kibble theory [19, 36–38],
a generalization of Einstein’s General Relativity. Just as the bosonic sector of Supergravity is a particular case
of General Relativity, the complete Supergravity theory is a particular case of the Cartan-Sciama-Kibble theory,
which is an extension of General Relativity that can accommodate fermions.

Before introducing the Cartan-Sciama-Kibble theory it is necessary to modify a bit the geometric set-up, in
order to geometrically introduce fermions. General Relativity coupled to matter can be described in terms of
objects that transform as tensors under space-time diffeomorphisms (such as sections over the tensor products
of TM and T �M or connections on principal bundles over M). For instance the metric, which describes the

2Notice that it is possible to compactify in manifolds with dimension other than six, obtaining as effective actions Supergravities
in dimensions other than four.

3Rather, the action of its double-cover, the spin group Spin(1; 3), see below.
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gravitational interaction, is a non-degenerate section of S2T �M. The electromagnetic interaction, on the other
hand, is described by a connection on a principal U(1) bundle over M.

However, fermions are described in classical field theory as spinors, that is, representations of the spin group
Spin(1; 3), and they do not correspond to any section of the tangent or cotangent bundle. The spin group Spin(1; 3)
is the double cover of the Lorentz group SO(1; 3) such that the following short exact sequence holds

Z2 ! Spin(1; 3)
��! SO(1; 3) : (1.5)

In order to properly include fermions into the game, we have to consider first the bundle of frames F (TM) instead
of the tangent TM and the cotangent T �M bundles. The frame bundle F (TM) is the principal vector bundle
associated to TM, defined as follows

Definition 1.2.1. Let M be a differentiable manifold, in our case the space-time minfold. Define a manifold
F (TM) as

F (TM) = f(p; e1; :::; e4) : p 2M ; (e1; :::; e4) ordered basis of TpMg : (1.6)

Define now a projection �F : F (TM) ! M by �(p; e1; � � � ; e4) = p and define an action of GL(4;R) by
e0a = A b

aeb ; a = 1; � � � ; 4, where A 2 GL(4;R). This makes F (TM) into a principal bundle with fibre GL(4;R).

Since the space-time manifold M is equipped with a Lorentzian metric g, we can actually consider the oriented
orthonormal frame bundle FSO (TM), built only from the bases orthonormal respect to the metric g and positively
oriented. Notice that this is possible because we are assuming from the onset that the space-time manifold is
oriented (otherwise we could not write actions as integrals over the space-time). The structure group of FSO (TM)
is then reduced from GL(4;R) to SO(1; 3).

Definition 1.2.2. Let M be a differentiable manifold. Define a manifold FSO (TM) as

FSO (TM) = f(p; e1; :::; e4) : p 2M ; (e1; :::; e4) TpM ordered basis j g(ea; eb) = �ab ;det@(e) > 0g : (1.7)

Define now a projection �SO : FSO (TM) ! M by �(p; e1; � � � ; e4) = p and define an action of SO(1; 3) by
e0a = O b

aeb ; a = 1; � � � ; 4, where O 2 SO(1; 3). This makes FSO (TM) into a principal bundle with fibre SO(1; 3).

Now, in order for the space-time manifold M to admit fermions, a technical requirement must be fulfilled: the
bundle FSO (TM) must admit an equivariant lift with respect to Spin(1; 3). In that case we can construct the
spin bundle P!M, which is a principal bundle with fibre Spin(1; 3). The precise definition goes as follows

Definition 1.2.3. A pair (P;
P ) is a spin structure on the principal bundle FSO !M when

1. P �P��!M is a principal bundle with fibre Spin(1; 3).

2. 
P : P ! FSO is an equivariant two-fold covering map such that �SO � 
P = �P and 
P(p;O) =

P(p)�(O) ; 8 p 2 P ; 8 O 2 Spin(1:3).

The vector bundle S ! M associated to P and the spin representation of Spin(1; 3) is then the spin bundle,
and spinors are thus section of S. The vector bundle associated to a principal bundle can be defined in general.
In our case the construction is given by

Definition 1.2.4. Let � : Spin(1; 3)! U(V ) a unitary representation of Spin(1; 3) on a complex vector space V .
Then Spin(1; 3) acts on the product space P � V by the principal bundle action on the first factor and � on the
second. We define

S = (P� V ) =Spin(1; 3) : (1.8)

Since P=Spin(1; 3) =M, the obvious map �S : (P� V ) =Spin(1; 3)! P=Spin(1; 3) gives the projection on the base
space M. Since Spin(1; 3) acts freely on P, this projection has fibre V . Therefore S is a vector space with base M
and fibre V .

Sections of S are spinors. If we want fermions to exist in the space-time, we must require M to admit a spin
bundle S, since, as we have seen, spinor fields are sections of such bundle. The obstruction to construct a spin
bundle overM is given by the second Stiefel-Whitney class w2, which should be zero. For more details, the reader
is referred to [39].
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Local sections e of P are called local spin frames or vierbiens. In terms of them, the metric is given by

g = � (e; e) ; (1.9)

where � = Diag(+;�;�;�) is the Minkowski metric. The principal bundle P can now be equipped with the
so-called spin connection !, which makes it possible to construct derivatives covariant under local Spin(1; 3)
transformations. Using (1.9) it is possible to rewrite General Relativity in terms of the vierbeins e instead of the
metric. This is important because the choice of a vierbein makes each (TpM ; p 2M) into Minkowski space, where
we know how to write actions for spinor fields. In addition, the use of vierbeins makes explicit the invariance of
the theory under local Spin(1; 3) transformations. This is precisely what we need to include fermions in the theory,
using the so-called first-order formalism of the Cartan-Sciama-Kibble theory. It can be summarized as follows

1. The dynamical field associated to gravity is taken to be e instead of the metric g.

2. The Einstein-Hilbert term is now written in terms of the curvature Ra1a2(!) of the spin connection ! as
follows

S [e; !] =
1

2

Z
Ra1a2(!) ^ ea3 ^ ea4�

a1a2a3a4 ; (1.10)

where �a1a2a3a4 is the flat Levi-Civita tensor. The action (1.10) is equivalent to the first-order Einstein-Hilbert
action for the metric and the affine connection �. See [19] for a detailed explanation.

3. The covariant derivatives are constructed using the connection ! which is considered an independent field
of the theory.

4. Kinetic terms for the spinors are introduced using the covariant derivative constructed from !. For instance,
if  is a Dirac spinor, then a kinetic term of the action would be of the form � =D , where D � @ + ! .

5. The equation of motion for the spin connection ! is an algebraic constraint which relates it with the other
fields of the theory. In particular, it may have torsion. A metric compatible connection ! can be written as
follows

! = !LC +K ; (1.11)

where !LC is the Levi-Civita connection and K is the contorsion tensor [19]. For Supergravity theories, K
depends only on the fermionic fields of the theory, and therefore vanishes in a purely bosonic background.

Therefore, using the Cartan-Sciama-Kibble theory we can extend the Lagrangian density L(g; �b) of General
Relativity to the Lagrangian density L(e; !; �b; �f ), which includes fermions and instead of the metric g has e as
the dynamical field associated to gravity. Notice that, although every Lagrangian density of the form L(g; �b) can
be written as L(e; !; �b; �f = 0), the converse is not true and, therefore, the Cartan-Sciama-Kibble theory is in
general not equivalent to General Relativity.
As it happens in General Relativity, four-dimensional Supergravity assumes that the space-time can be described by
a differentiable Pseudo-Riemannian manifold M modulo isometries of the Pseudo-Riemannian metric, that is, by
an equivalence class of Pseudo-Riemannian isometric manifolds [M]. Physicists are used to consider diffeomorphic
space-times as equivalent. This can be easily accommodated in the definition of equivalence classes by isometries
by equipping the image manifold with the induced metric. That is, if f is the corresponding diffeomorphism, we
would have f : (M;g)!

�
M; g̃ =

�
f�1

��
g
�
, which are isometric manifolds, and hence equivalent from a physical

point of view.
Therefore Supergravity can be constructed explicitly in terms of geometric objects, that is, suitable sections

of appropriate fibre bundle constructed over the space-time manifold, and thus it is a geometric theory. In fact,
as we will see in chapter 3, the structure of the Lagrangian itself can be determined in a geometric way by using
appropriate manifolds and sections therein.

Supersymmetry imposes severe constraints on the field content and structure of the Lagrangian, making possible
the study and classification of all the possible Supergravities. Initially developed independently from ST, it was
realized in the eighties that the three different ten-dimensional Supergravities are the low-energy limit of the five,
duality-related, ten-dimensional STs. Not only that: Supergravity includes crucial non-perturbative information
about ST, through its BPS spectrum. That is, although Supergravity encodes the dynamics of only the massless
states of the ST spectrum, it contains solitonic supersymmetric solutions with physical properties that are protected
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by supersymmetry from the ST corrections to the Supergravity action. Some of these supersymmetric solutions,
like particular instances of supersymmetric black holes, correspond to the long range fields created by bound states
of non-perturbative ST objects, like D-branes.

Its crucial relation with ST, together with the fact that Supergravity may be the right effective theory of nature
(up to some scale) even if it is not embedded in ST, and the beautiful mathematical formulation that underlies
the theory, has made Supergravity an extremely important research topic, which is still extensively studied, with
never decreasing interest.

In addition, a remarkable and fascinating discovery that focused a lot of attention, and increased even more
the interest in Supergravity, was made in 2007: explicit computations showed that N = 8 Supergravity was
perturbatively UV finite up to three loops [7]! (Divergences were expected at one loop). Soon enough the
computation was extended, with finite results, to four loops [40] and to three loops for N = 4 pure Supergravity
[41]. Several powerful arguments have appeared in favor of N = 8 Supergravity and N = 4 pure Supergravity being
perturbatively finite to all loops [42–45]4. Intense research is being performed to extend the explicit calculations
to higher loops and to provide a final proof of the conjectured UV perturbative finitness of N = 8 and pure
N = 4 Supergravities. Ironically, ST, which has always been assumed to contain a perturbatively finite theory of
Quantum Gravity, has been explicitly checked to be finite only up to two loops [20]. As in the Supergravity case,
arguments exist in favor of finiteness to all orders.

On a more mathematical side, Supergravity is suffering a quiet and elegant revolution: a new mathematical
tool, called Generalized Complex Geometry [15, 16] and its extension, Exceptional Generalized Geometry [47–50],
allow for a new and more geometric formulation of Supergravity, considering sections on a generalized bundle
instead of sections of the tangent bundle (and its tensorial products) of the spacetime manifold to represent the
bosonic fields of the theory. This new formulation may be relevant for the role that Supergravity plays in ST, since
it allows a covariant and natural action of the ST duality groups on its massless content, through the extended
structure group that acts on the generalized tangent bundle.

Generalized Complex Geometry considers the vector bundle TM = TM�T �M overM instead of the tangent
or contangent bundles. Here � stands for the Whitney sum of vector bundles over the same base space M.
Elements of TM are of the form X = X+ �, where X 2 TM and � 2 T �M. TM, in contrast to the tangent bundle
TM, is naturally equipped with a canonical metric G, defined as follows

G(X;Y) =
1

2
(�(Y ) + �(X)) ; 8 X = X + � ;Y = Y + � 2 TM : (1.12)

G has signature (d; d), where d is the dimension of M. Interestingly enough, at every point p 2M, G is invariant
under the action of SO(d; d), the T-duality symmetry group of ST compactified on a d-torus. A generalized
complex structure J on TM is a bundle map

J : TM� T �M! TM� T �M ; (1.13)

such that J2 = �1 and G(�; �) = G(J�; J�), where G is the canonical metric on TM� T �M. Remarkably enough,
a complex structure J on TM and a symplectic structure ! on �2T �M are special instances of J, when their
actions are suitable extended to TM� T �M.

This is extremely important, and allows for Generalized Complex Geometry to give a unified description of
the ten-dimensional supersymmetric Supergravity backgrounds. If we look for a supersymmetric solution of the
equations of motion of ten-dimensional Supergravity of the form

M =M4 �M6 ; g(x; y) = g4(x) + g6(y) ; (1.14)

where the metric is written in a patch U with coordinates (x1; : : : ; x4; y1; : : : ; y6), then a possible solution is

g(y) = � + gCY (y) (1.15)

where all the fluxes are taken to be zero and the dilaton is constant. This solution is phenomenologically relevant
because, for Heterotic ST, it preserves four-dimensional N = 1 supersymmetry [23]. Here gCY (y) stands for the
metric of the Calabi-Yau internal spaceM6. However, supersymmetric backgrounds with non-trivial fluxes are far
from being Calabi-Yau5. A Calabi-Yau manifold is in particular a symplectic manifold and a complex manifold in
a compatible way, but more general supersymmetric backgrounds are in general not simultaneously complex and
symplectic. It turns out that Generalized Complex Geometry gives a unified description of all internal spaces of
supersymmetric flux backgrounds [25].

4For a pessimistic opinion, see [46].
5Notice that fluxes cannot be turned on in compact spaces, unless negative tension sources, the so-called orientifold planes, are

included in the vacuum structure.
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Generalized Complex Geometry can be also used to naturally describe the supersymmetric embedding of
D-branes with world-volume fluxes into these backgrounds [51–54]. For more details and other applications of
Generalized Complex Geometry, the reader is referred to the excellent reviews [25, 55].

Generalized Complex geometry and Exceptional Generalized Geometry could be the first step towards the
correct mathematical formalism to describe ST.

1.3 Remarks about Black Holes

A black hole space-time [56–61] is a particular kind of space-time that contains a region, called black hole, from
which gravity prevents anything, including light, from escaping (we will give a precise definition in a moment).
In this extreme situation, the classical laws of physics break down at the singularity and a quantum description
of gravity seems to be needed. Since ST is one of the candidates to a theory of Quantum Gravity, it makes sense
to use it to study situations where Quantum Gravity effects are expected to be important, as it happens for black
holes, and see what we can learn from it, even if we don’t know if ST actually describes the universe.

All the black holes that we will obtain and study in this thesis are asymptotically flat, static and spherically
symmetric6. Notice that we truncate the fermions, which is always a consistent truncation, because black-hole
solutions describe classical macroscopic objects. Therefore, by an asymptotically flat, static and spherically sym-
metric black-hole solution we mean a solution of the equations of motion of the corresponding theory for all the
bosonic fields in the Lagrangian, such that the space-time manifold M is asymptotically flat, static, spherically
symmetric and contains a black hole in the following sense [62]

� A space-time M is asymptotically simple if and only if it admits a conformal compactification and all the
null geodesics of M start and end on @M.

� A space-time M is asymptotically flat if and only if it has an open neighbourhood U isometric to an open
neighbourhood of the boundary of the conformal compactification of an asymptotically simple space-time,
and the Ricci tensor vanishes on U .

� A asymptotically flat space-time is stationary if and only if there exists a time-like Killing vector � in a
neighbourhood of the spatial infinity.

� A stationary space-time M is static if and only if there exists an space-like hypersurface orthogonal to the
Killing vector �.

� In a strongly asymptotically predictable space-timeM, we will call black hole, if it exists, the region B �M
which is not contained in the causal past of the infinite null future.

Although the definition given above is completely precise, it is not very useful for practical purposes. A clearer
characterization can be given using local coordinates (t; r; �; �) adapted to an spherically symmetric and static
space-timeM. Here t is a time coordinate, r is a radial coordinate, and (�; �) are angular coordinates. The metric
can thus be written as

g = gtt(r)dt
 dt� grr(r)dr 
 dr � r2hS2 ; (1.16)

where hS2 = d� 
 d� + sin2 �d�
 d� is the round metric on the unit two-sphere. The event horizon typically lies
at one of the the solutions of the equation gtt(r) = 0. In general, the equation gtt(r) = 0 has several solutions
r1 <; � � � ; < rn, each one typically corresponding to the position of a particular horizon.

In the cases considered in this thesis, the maximum number of solutions of the equation gtt(r) = 0 is going to
be two. Let us denote them by r� < r+. Then, at r = r+ we have the event horizon and at r = r� we have the
Cauchy horizon. When the physical parameters of the solution (such as the mass, the charge or the moduli7) are
adjusted so r� = r+ we have an extremal black hole. Let’s see how this works for the Reissner-Nordström black
hole [57, 58] of mass m and charge q, which is the simplest example of the kind of black holes that are considered
in this thesis. By Birkhoff’s theorem, the Reissner-Nordström solution is the only spherically symmetric solution
of the Einstein-Maxwell theory, which in addition is also static and asymptotically flat. The metric is therefore of
the form (1.16), with

6With one exception: in chapter 5 we will consider momentarily stationary space-times, which are anyway composed of several
static black holes.

7In this context, the moduli is the arbitrary value at spatial infinity of the scalar fields present in the theory, which is not fixed by
the equations of motion.
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gtt(r) = 1� 2m

r
+
q2

r2
; grr(r) = g�1tt (r) : (1.17)

gtt(r) can be written as

gtt(r) =
(r � r+)(r � r�)

r2
; r� = m�

p
m2 � q2 : (1.18)

Hence, the equation gtt(r) = 0 has two solutions, given by r�. The event horizon lies at r = r+ and the Cauchy
horizon lies at r = r�. Therefore, the entropy and temperatures of the black hole are given by [63, 64]

S =
A

4
= �r2+ ; T =

1

2�

�
r0
r+

�2
; (1.19)

where A is the area of the event horizon and r0 = �M � r� is the extremality parameter (see below). The black
hole is extremal when the two horizons coincide, that is, when m = q (and hence r0 = 0). Notice that in that
case, the temperature T of the black hole is always zero but the entropy S is not, if the extremal black hole is
regular. Extremal black holes cannot radiate [65] and are thus stable. For more details the reader is referred to
[19, 62, 66, 67].

1.4 Supergravity solutions and the attractor mechanism

Going back to the topic of this thesis, black holes in ST, we now have all the elements necessary to precisely
define our goal: in order to study black holes in ST we are going to develop a mathematical procedure to obtain
black-hole solutions of four-dimensional Supergravity theories. These classical solutions (they are classical simply
because the theory is not quantized) play a relevant role in ST, since they are necessary, for instance, in order to
check the match between the microscopic entropy, computed as an ensemble of D-branes and other ST objects,
and the macroscopic entropy, given by the area of the classical solution. This match is mandatory if ST is to be the
correct theory of nature and contains a consistent theory of Quantum Gravity. In fact, the match has been checked
to some extent in several specific cases of extremal and near-extremal black holes [5, 68–74]. However, there are
supersymmetric (and hence extremal and stable) simple black holes for which the microscopic interpretation of
the entropy is not even known at the leading order [75]. This means that even for the simplest kind of black holes
the complete microscopic description of the entropy in ST has not always been achieved.

With the currently available tools, a necessary condition to obtain a match between the microscopic and the
macroscopic computation is that the Supergravity solution depends only on quantized quantities, such as the
charges of the black hole, but not, for example on the moduli, which are free parameters. Remarkably enough,
for extremal black holes this is what generically happens: all the information about infinity is lost at the horizon8

and the entropy only depends on the quantized charges, e.i., the dependence on the moduli drops out. This is a
consequence of the so-called attractor mechanism [76–88] for Supergravity black holes, which roughly speaking
states that the scalar fields of a Supergravity extremal black-hole solution flow from a completely arbitrary value
at spatial infinity to a completely fixed (in terms of the quantized charges of the black hole) value on the horizon,
independent of the asymptotic value of the scalar at spatial infinity.

In fact, the attractor mechanism holds in a class of theories larger than the Supergravities. In particular, it
holds in any theory of the form (4.1). As we will see in chapter 4, the most general spherically symmetric and
static metric solution of (3.28) is given by

g = e2Udt
 dt� e�2U
�

r40
sinh4 r0�

d� 
 d� + r20
sinh2 r0�

hS2

�
; (1.20)

where � is the radial coordinate and r0 is the non-extremality parameter when (1.20) represents a black hole. In
that case, the exterior of the event horizon is covered by � 2 (�1; 0), the event horizon being located at � ! �1
and the spatial infinity at � ! 0�. The interior of the Cauchy horizon (if any) is covered by � 2 (�S ;1), the inner
horizon being located at � ! +1 while the singularity is located at some finite, positive, value �S of the radial
coordinate � [89]. Since we are assuming that the space-time is spherically symmetric, all the fields of the theory,
that is, the scalars and the vector fields, depend only on the radial coordinate � . In the background given by
(1.20) the Maxwell equations can be explicitly integrated, giving the vector fields as functions of � and the electric
q� and magnetic p� charges. The other equations of motion form a system of second order ordinary differential
equations for (U(� ); �(� )), namely (4.18), (4.19) and (4.20).

8In the absence of flat directions.
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The extremal limit r0 ! 0 of (1.20) is given by

g = e2Udt
 dt� e�2U
�
1

� 4
d� 
 d� + 1

� 2
hS2

�
= e2Udt
 dt� e�2U ��ijdxi 
 dxj� ; (1.21)

where xi ; i = 1; : : : ; 3 are three-dimensional cartesian coordinates and �ij is the Kronecker delta. For an extremal
regular black-hole solution of a theory with non-degenerate scalar metric Gij and non-divergent scalars at the
horizon, it can be proven that in the near horizon limit we have

lim
�!�1 e

�2U =
A

4�
lim

�!�1 �
2 ; lim

�!�1 �
d�i

d�
= 0 ; i = 1; � � � ; nv ; (1.22)

where A is the area of the event horizon and nv is the number of scalars. Using Eq. (1.22) we can obtain the
near-horizon limit of the Eq. (4.20), which reads

lim
�!�1

�
d2�i

d� 2
+

4�

A
Gij(�h)@jVbh(�h;Q) 1

� 2

�
= 0 ; (1.23)

where Vbh(�;Q) is the black-hole potential and Q =
�
p�; q�

�T denotes the electric and magnetic charges of the
black hole. The solution to the above differential equation is given by

lim
�!�1�

i = lim
�!�1

�
�4�

A
Gij(�h)@jVbh(�h;Q) log(�� ) + ci1� + ci2

�
; (1.24)

where ci1 and ci2 are arbitrary constants. Therefore, taking the � -derivative we obtain

lim
�!�1

d�i

d�
= lim

�!�1

�
�4�

A
Gij(�h)@jVbh(�h;Q) 1

�
+ ci1

�
: (1.25)

Since Eq. (1.22) must hold and, by assumption, the scalars do not diverge at the horizon, we conclude that

ci1 = 0 ; ci2 = �ih ; Gij(�h)@jVbh(�h;Q) = 0 : (1.26)

Finally, since the scalar metric is non-degenerate, the condition involving the black-hole potential can be rewritten
as

@iVbh(�h;Q) = 0 ; (1.27)

which is the essence of the attractor mechanism [90]. The value of the scalars at the horizon �ih must be a critical
point of the black hole potential Vbh(�;Q). If Vbh(�;Q) has no flat directions, that is, if (1.27) is a compatible
system of nv independent equations, all the scalars are fixed at the horizon in terms of the charges of the black
hole. From the near-horizon limit of Eq. (4.19) it can be easily obtained that, for extremal black holes, the entropy
S is given by

S = �Vbh(�h;Q) : (1.28)

Therefore, we obtain a remarkable result: in the absence of flat directions the entropy S and the value of the
scalars at the horizon only depend on the charges of the black hole, that is

�h = �h(Q) ; S = �Vbh(�h(Q);Q) : (1.29)

When flat directions are present, the scalars are only partially fixed in terms of the charges, but the dependence
of the entropy S on the moduli still drops out. Supersymmetric attractors are always minima of the black hole
potential. For non-supersymmetric attractors this issue must be studied on a case by case basis, although for
homogeneous scalar manifolds it has been proven that the critical points of the black hole potential are always
stable, but only up to possible flat directions [83, 91]. The attractor mechanism is only one example of the
interesting features that Supergravity black holes, and other black objects such a strings or black p-branes display
[92–96].

The search of solutions of Supergravity theories started with the class of supersymmetric solutions, since they
are easier to obtain and classify, thanks to the first order differential equations (the so-called Killing spinor
equations) that they obey.

A configuration of fields (�b; �f ) is supersymmetric invariant (also called B.P.S.) if and only if

���b = 0 ; ���f = 0 ; (1.30)
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for at least one spinor �. In that case, � is called a Killing spinor. If a given configuration is invariant under the
maximum number of independent Killing spinors, given by N , then it is said to be maximally supersymmetric.
Notice that a supersymmetric configuration in principle does not solve the equations of motion of the corresponding
theory. However, a careful analysis of the Killing spinor equations and their integrability conditions, the so called
Killing spinor identities, shows that a supersymmetric configuration usually solves almost all the equations of
motion of the theory, if not all [97, 98].

We are interested in black-hole solutions where the fermions are set to zero. For bosonic configurations,
the equation ���b = 0 is automatically solved and we have to solve only ���f = 0 to obtain a supersymmetric
configuration. These are the Killing spinor equations that must be solved in any supersymmetric theory to obtain
a bosonic supersymmetric configuration. When a supersymmetric configuration also obeys the equations of motion
of the theory it becomes a supersymmetric solution. Examples of supersymmetric solutions of Supergravity are
the Reissner-Nordström extreme black hole, Minkowski space-time or the aDS space-time.

The supersymmetric solutions of Supergravity theories that describe vacua, black holes or topological defects,
play a fundamental role in the progress of ST, since they represent non-perturbative stable states that can be
trusted beyond the Supergravity approximation, and that, if supersymmetric enough, can be taken as exact states
of ST [99, 100]. Supersymmetric solutions have also played an important role in mathematics, and, in particular
in differential geometry, since the classification of supersymmetric solutions is closely related to the classification
of manifolds with special holonomy, given that a supersymmetric solution has at least a globally defined section
of the corresponding spin bundle, and therefore has reduced generalized holonomy. Therefore, great effort has
been devoted in the last decades to study and classify as many supersymmetric solutions as possible.

In his seminal work [101], Tod showed that the Killing spinor equations, together with the corresponding
integrability conditions, could be used to systematically classify all the supersymmetric solutions of a given Super-
gravity theory. He used the Newman-Penrose formalism and focused on pure N = 2 Supergravity, following [102].
Since the Newman-Penrose formalism can only be applied in four dimensions, new techniques had to be developed
in order to deal with higher dimensional cases. One of the techniques developed was the spinor-bilinear method
[103], which was used to classify all the supersymmetric solutions of minimal five-dimensiona Supergravity. This
result was soon extended to the Abelian gauged case [104], to general matter contents and couplings [105] and to
other Supergravities [106–119].

Another approach, closer to the geometrical properties of having a spin manifold with global sections (it exploits
the fact that a global spinor defines a G structure) was developed in [103, 109, 120]. Finally, we can mention
yet another approach, that can be used to find black-hole solutions of four-dimensional theories, which exploits
the symmetries of the time-like dimensionally-reduced theories which become a non-linear �-model coupled to
3-dimensional gravity [121–127].

1.5 Outline of the thesis

The outline of this thesis goes as follows: on chapter 2 we introduce the relevant mathematical background to for-
mulate extended ungauged Supergravity9 in four-dimensions, that is, Special Kähler Geometry and homogeneous
spaces. On chapter 3 we briefly comment on the structure of four-dimensional extended ungauged Supergravity
relevant for black-hole solutions. On chapter 4, based on [128], we characterize the most general spherically sym-
metric and static black-hole solution of ungauged Supergravity, and use the result to study the hidden conformal
symmetries of Supergravity black holes, obtaining the full Virasoro algebra of the dual conformal field theory. On
chapter 5, based on [129], we obtain all the supersymmetric black-hole solutions of extended Supergravity by means
of the algorithm provided in [130]. On chapter 6, based on [131, 132], we introduce the H-F.G.K. formalism,
which simplifies the construction of non-supersymmetric black-hole solutions in N = 2 Supergravity. On chapter
7, based on [75, 133], we apply the H-F.G.K. formalism to a class of theories corresponding to Type-IIA String
Theory compactified on a Calabi-Yau (C.Y.) threefold, obtaining the so-called quantum black holes, which only
exist when certain quantum corrections (perturbative or non-perturbative, depending on the solution) are included
in the prepotential. For the case of non-perturbative black holes we elaborate on the potential consequences of the
appearance on the solution of multi-valued functions in relation to the no-hair theorem for four-dimensional black
holes. This thesis is based on [75, 128–133]. Other works finished during my doctoral studies are [89, 96, 134–138].

9For the case of N = 2 Supergravity, in the absence of hypermultiplets.
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Chapter 2

Mathematical preliminaries

Extended four-dimensional Supergravity, as a classical field theory, admits an elegant geometric formulation in
the following sense: the lagrangian can be constructed from geometrical structures (such as sections) of particular
manifolds that are naturally associated to the theory. Therefore, extended four-dimensional Supergravity can be
completely specified by some geometrical data, that is, particular fibre bundles and global sections thereof.

In fact, such geometric formulation is not just an elegant mathematical tool to describe Supergravity, it is also
useful in a wide range of applications of Supergravity, for instance to relate Supergravity to ST compactifications
or to provide the general formalism to deal with gaugings. In this thesis we will use it to simplify the task of
obtaining black hole solutions: using the mathematical structure of the theory we can introduce a new set of
variables which considerably eases the construction of non-supersymmetric black hole solutions.

As far as Quantum maximally and half-maximally extended Supergravity [7, 40, 41] is concerned, the mathe-
matical structure of the theory at the classical level is also of outermost importance: for example, in Refs. [43, 44]
the symplectic action of the E7(7) group was key in order to explain the conjectured finiteness of N = 8 ungauged
Supergravity at all orders in perturbation theory.

Before dealing with the geometric formulation of four-dimensional extended Supergravity1, it is therefore
necessary to introduce the mathematical background that will play a relevant role in the construction of the
theories, namely, Special Kähler geometry for N = 2 Supergravity (in the absence of Hypermultiplets) and
Irreducible Riemannian Globally Symmetric (I.R.G.S.) spaces for N > 2 Supergravity. That is the goal of this
chapter.

2.1 Special Kähler Geometry

Some basic references for this section are [139–145]. See the appendices of [112, 146, 147], for an extremely
well written short review of Special Kähler Geometry and its relation to N = 2 Supergravity coupled to vector
multiplets and its gaugings. The definition of Special Kähler manifold was made in [10], formalizing the original
results of [8]. We will follow [112, 143, 145].

A Special Kähler manifold is a particular instance of real differentiable manifoldM, that is, it is a differentiable
manifold with some extra-structure defined on it. Therefore, we will proceed defining step-by-step all the necessary
ingredients until we arrive to a Special Kähler manifold, By a real differentiable manifoldM we mean a Hausdorff
and second countable topological space equipped with a differentiable structure (therefore it is paracompact and
metrizable).

Definition 2.1.1. A differentiable Riemannian manifold (M;G) is a differentiable real manifold equipped with a
smooth,non-degenerate, point-wise positive definite, global section g of S2T �M.

Definition 2.1.2. A Symplectic manifold (M; !) is a differentiable manifold real equipped with a smooth, non-
degenerate , global section ! of �2T �M.

Definition 2.1.3. An almost-complex structure J : TM! TM on a tangent bundle TM is a bundle endomor-
phism such that J 2 = �1.
Definition 2.1.4. A differentiable almost-complex manifold (M;J ) is a differentiable 2n-dimensional real man-
ifold equipped with an almost-complex structure.

1See chapter 3.

19



20 CHAPTER 2. MATHEMATICAL PRELIMINARIES

Let (M;J ) be an almost-complex manifold. The complexified tangent bundle of M is the bundle TM
C!M
with fibre (TM
 C)p = TMp 
 C at each p 2 M. If TpM is a real 2n-dimensional vector space, then TpM
 C
is a complex 2n-dimensional vector space.

We can extend linearly J on TM
 C as follows

J (v 
 c) = J v 
 c ; v 2 TM; c 2 C : (2.1)

Since J 2 = �1, Jp acting on TpM
 C has eigenvalues �i. We define

T(1;0)M = fv 2 TM
 C j J v = iv ; 8 v 2 TM
 Cg ;
T(0;1)M = fv 2 TM
 C j J v = �iv ;8 v 2 TM
 Cg : (2.2)

Since

�(1;0) : TM
 C ! T(1;0)M
v ! 1

2
(v 
 1� J v 
 i) ; (2.3)

�(0;1) : TM
 C ! T(0;1)M
v ! 1

2
(v 
 1 + J v 
 i) ; (2.4)

are a real bundle isomorphisms such that �(1;0) � J = �i�(0;1), we have

TM�= T(1;0)M�= T(0;1)M ;

(2.5)�
�(1;0); �(0;1)

�
: TM
 C

�=�! T(1;0)M� T(0;1)M : (2.6)

Analogously, for the complexified cotangent bundle T �M
 C!M we can conclude

T �M�= T (1;0)M�= T (0;1)M ;

(2.7)�
�(1;0); �(0;1)

�
: T �M
 C

�=�! T (1;0)M� T (0;1)M : (2.8)

where

T (1;0)M = f� 2 T �M
 C j � (J v) = i� (v) ; 8 v 2 TM
 Cg ;
T (0;1)M = fv� 2 T �M
 C j � (J v) = �i� (v) ; 8 v 2 TM
 Cg ; (2.9)

and we have defined the natural projections �(1;0) and �(0:1) of the complexified cotangent bundle as follows

�(1;0) : T �M
 C ! T (1;0)M
� ! 1

2
(�
 1� �
 i � J ) ; (2.10)

�(0;1) : T �M
 C ! T (0;1)M
� ! 1

2
(�
 1 + �
 i � J ) ; (2.11)

We are going to elucidate the structure of the space of forms on (M;J ), which, since (M;J ) is almost-complex,
is going to be constructed from sections of T �M
C and its exterior powers, and not from T �M. The main reason
is that J can be diagonalized on T �M
 C but not on T �M. For an almost-complex manifold (M;J ) let
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k (M;C) � �
�
�k (T �M
 C)

�
; (2.12)

where �(�) stands for the space of sections of the corresponding fibre bundle � and

�k (T �M
 C) = �k
�
T (0;1)M� T (1;0)M

�
=

M
l+m=k

�l
�
T (0;1)M

�
^ �m

�
T (1;0)M

�
: (2.13)

Definition 2.1.5. The differential forms of type (l;m) on an almost-complex manifold (M;J ) are the sections
of
L

l+m=k �
l
�
T (0;1)M� ^ �m

�
T (1;0)M�

.

It is convenient to define


(l;m) (M;C) = �
�
�l
�
T (0;1)M

�
^ �m

�
T (1;0)M

��
; (2.14)

and hence


k (M;C) =
M

l+m=k


(l;m) (M;C) : (2.15)

Therefore, when speaking of tensors on a complex manifold, it is generally referred to sections of the com-
plexified tangent or cotangent bundle and its tensorial products. Let �(l;m) be the natural projection �(l;m) :
�k (T �M
 C)! �l

�
T (0;1)M� ^ �m

�
T (1;0)M�

. We define then

@ � �(l+1;m) � d : 
(l;m)(M;C)! 
(l+1;m)(M;C) ;
�@ � �(l;m+1) � d : 
(l;m)(M;C)! 
(l;m+1)(M;C) ; (2.16)

which are differential operators that act on forms of type (m; l). When considering complex manifolds, @ and �@
will become natural differential operators in terms of the complex coordinates of a given chart.

It is possible to define in a compatible, natural, way, an almost-complex structure J on a Symplectic manifold,
which makes it also Riemannian.

Definition 2.1.6. Let (M; !) be a Symplectic manifold. An almost-complex structure J is called compatible if
G (�; �) = ! (�;J �) is a Riemannian metric on M. The triple (!;G;J ) is then called a compatible triple.

For a compatible triple (!;G;J ) we have that

G(J �;J �) = !(J �;J 2�) = !(�;J �) = G(�; �) ; (2.17)

that is, J preserves the Riemannian metric G.

Definition 2.1.7. An almost complex structure J is integrable if and only if N(u; v) � [J u;J v] � J [u;J v] �
J [J u; v]� [u; v] = 08u; v 2 TM.

N(�; �) is the Nijenhuis tensor, and intuitively it parametrizes the obstruction to the possibility of defining holo-
morphic changes of coordinates in M. When it vanishes, it is possible to construct an holomorphic atlas and
therefore M is a complex manifold.

Definition 2.1.8. A differentiable complex manifold (M;J ) is a differentiable 2n-dimensional real manifold
equipped with an integrable complex structure.

Let U � M a chart on a complex manifold (M;J ) with coordinates zi = xi + iyi and real coordinates (xi; yi).
At any p 2M we have

T �pM = R�Span �dxi; dyi�
p
;

T �pM
 C = C�Span �dxi; dyi�
p
: (2.18)

Then, defining dzi = dxi + idyi and d�z�i = dxi � idyi we can write

T �pM
 C = C�Span �dzi�
p
� C�Span

h
d�z

�i
i
p
= T (1;0)M� T (0;1)M ; (2.19)
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since dzi � J = idzi and d�z�i � J = �id�z�i. Therefore, a (1; 0)-form � is written as � = �idz
i and (0; 1)-form �

is written as � = ��id�z
i. Since the manifold (M;J ) is complex, we can consistently define complex coordinates

coordinates ~zi (this may fail in an almost-complex manifold) such that d~zi = dzi. Of course, we will drop the
tilde and call them zi. An similar derivation allows to conclude that

@

@zi
=

1

2

�
@

@xi
� i @

@yi

�
;

@

@�z�i
=

1

2

�
@

@xi
+ i

@

@yi

�
; (2.20)

where @
@zi

spans T(1;0)M and @
@�z�i

spans T(0;1)M.
It can be also proven that the exterior derivative d can be written in terms of @ and �@ as d = @ + �@, where,

given a function f 2 C1(M;C) @ and �@ act as follows

@f =
@f

@zi
dzi ; �@f =

@f

@�z�i
d�z

�i : (2.21)

We are now ready to define Kähler manifolds:

Definition 2.1.9. A Kähler manifold is a Symplectic manifold (M; !), equipped with an integrable compatible
almost complex structure J . The symplectic form ! is then called the Kähler form.

Since ! and J are compatible, they define a Riemannian metric: G(�; �) = !(�;J �). Therefore, a Kähler
manifold is a differentiable manifold which is Symplectic, Riemannian, and Complex in a compatible way, and
therefore incorporates together the three basics types of geometry: Symplectic, Riemannian and Complex 2.

Since a Kähler manifold has an integrable complex structure, it immediately follows that a Kähler manifold is
a complex manifold. As a consequence, tensors on a Kähler manifold are sections of the complexified tangent and
cotangent bundles and their tensorial products. In addition we have the following propostion

Proposition 2.1.10. Let (M; !;J ) a Kähler manifold, then J is a symplectomorphism, that is, J � = J .
Proof.

J �
p !p(u; v) = !p(Jpu;Jpv) = Gp(v;Jpu) = !p(u; v) ; 8p 2M and u; v 2 TpM : (2.22)

In fact, propostion 2.1.10 holds also when ! is not closed, as long as (!;G;J )is a compatible triple. Since !
is a two-form, in principle ! 2 
2 (M;C), that is, it is a section of the exterior product of two copies of the
complexified cotangent bundle TM
 C. Therefore

! 2 
2 (M;C) = 
(2;0) (M;C)� 
(1;1) (M;C)� 
(0;2) (M;C) : (2.23)

However, imposing proposition 2.1.10 in a local chart
�U ; zi�, one can see that

! 2 
(1;1) (M;C) ; (2.24)

i.e. ! defines a Dolbeault (1; 1)-cohomology class [!] 2 H(1;1)
Dolbeault(M). In other words, the local expression for !

does not contain terms of the form dzi ^ dzj or d�z�i ^ d�z�j . Therefore, in a local chart
�U ; zi�, we can write ! as

follows

! = ihi�jdz
i ^ d�z�j ; (2.25)

where hi�j 2 C1 (U ;C) and the i has been introduced by convenience. Using that G(�; �) = !(�;J �), we can write
G in the same local chart as

G = hi�j

�
dzi 
 d�z�j + dz

�j 
 d�zi
�
: (2.26)

Since a Kähler manifold is in particular Symplectic, the symplectic form ! must be real, that is ! = �!, which is
equivalent to hij = �hji. For the same reason, ! is non-degenerate and its n-th exterior power defines a volume
form on (M; !;J ), making (M; !;J ) orientable. To summarize, the Kähler form ! is a two-form compatible with
the complex structure, closed, real valued and non-degenerate.

Theorem 2.1.11. Let ! be a closed real-valued (1; 1)-form on a complex manifold MComplex and let p 2
MComplex. Then, 9 U(p) and K 2 C1 (U ;R) such that, on U(p), ! = i@ �@K.

2Kähler manifolds are of outermost importance in Theoretical Physics: they appear for example in every supersymmetric non-linear
� model, String Theory compactifications...



2.1. SPECIAL KÄHLER GEOMETRY 23

Proof. See proposition 8.8 in [145].
If we apply theorem 2.1.11 to a Kähler manifold, which is in particular complex, we obtain

G = @i@�jK
�
dzi 
 d�z�j + dz

�j 
 d�zi
�

(2.27)

and K is called the Kähler potential. The metric therefore can be obtained from a single function, which allows
to write simple expressions for the Levi-Cività connection and the curvature tensors. Remarkably enough, the
existence of normal holomorphic coordinates on a complex manifold around each point is equivalent to the metric
being Kähler. The Levi-Cività connection on a Kähler manifold is given by

�jk
i = Gi�i@jG�ik ; ��j�k

�i = G�ii@�jG�ki : (2.28)

The Riemann curvature tensor has as only non-vanishing components Ri�jk�l, but we will not need their explicit
expression. The Ricci tensor is given by

Ri�i = @i@�i
�
1
2 log detG

�
: (2.29)

The Kähler potential is not unique: it is defined only up to Kähler transformations of the form

K0 = K + f + �f ; (2.30)

where f is any holomorphic function on (M; !;J ). We need to introduce now the concepts of holomorphic vector
bundle, line-bundel and Kähler-Hodge manifold

Definition 2.1.12. An holomorphic vector bundle is a complex vector bundle over a complex manifold M such
that the total space E is a complex manifold and the projection map � : E !M is holomorphic.
In particular, the transition functions of an holomorphic vector bundle are holomorphic.

Definition 2.1.13. A line bundle L ��!M is a holomorphic vector bundle of rank r = 1.

Definition 2.1.14. A Kähler manifold (M; !;J ) is Hodge if and only if there exists a line bundle L ��!M such
that c1 (L) = [!], where c1 (L) denotes the first Chern class of L.

The condition on the Chern class is rather abstract, and we will not discuss it here. Intuitively, what is required
in definition 2.1.14 is that the curvature of the line-bundle bundle is equal, up to an exact form, to the Kähler
form !.

Let’s define now, motivated by the structure of N = 1 Supergravity, a family of (complex) rank one bundles�L(q;�q) ; q 2 R ; �q 2 R
	
over a Kähler manifold (M; !;J ) such that, given a section W 2 �

�L(q;�q)�, on the overlap
of two patches U(�) and U(�), W and K are related as follows

W(�) = e�(qf+�q �f)=2W(�) ; K(�) = K(�) + f + �f ; (2.31)

and define the Kähler (connection) 1-form Q as

Q � (2i)�1(dzi@iK � d�z�i@�iK) ; (2.32)

such that the covariant derivative on sections of L(q;�q) is given by

Di � ri + iqQi ; D�i � r�i � i�qQ�i ; (2.33)

wherer is the standard covariant derivative associated to the Levi-Cività connection onM. The Kähler connection
one-form, on the overlap of two patches U(�) and U(�), is related as follows

Q(�) = Q(�) � i
2@f : (2.34)

Then, for q = 1; �q = 0, W 2 �
�L(1;0)� is the superpotential of N = 1 Supergravity and L(1;0) is a line-bundle

which is also Kähler-Hodge in the sense of definiton 2.1.14. That is, the curvature of the line-bundle, obtaining
by computing [Di;Dj ] is equal to the ! up to an exact form, which in this case is zero. Other objects of N = 1
Supergravity correspond to sections of L(q;�q) for other values of q and �q.

A Kähler-Hodge manifold provides the formal starting point for the definition of a Special Kähler manifold:
Special Kähler Geometry appears in the scalar manifold corresponding to the vector multiplets of N = 2 Super-
gravity. Since N = 2 supersymmetry includes N = 1 supersymmetry, we expect Special Kähler manifolds to be
also Kähler-Hodge, equipped with some extra structure, which is indeed the case. Before giving the definition of
Special Kähler manifold, let’s state that there are two kinds of Special Kähler geometry:
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1. Rigid Special Kähler Geometry ! vector-multiplet scalar field sector of N = 2 Yang-Mills theories.

2. Local Special Kähler Geometry ! vector-multiplet scalar field sector of N = 2 Supergravity theories.

Here we will deal with the local case, since we are interested in Supergravity. In any case, the definition for the
global case is similar to the local case, see [148].

Definition 2.1.15. A Kähler-Hodge manifold L ��! M is Special Kähler of the local type if there exists a
bundle SV = SM 
 L ��! M such that for some holomorphic section 
 2 � (SV) the Kähler 2-form is given
by ! = i@ �@ log

�
i
M

�
M
�
, where SM ��! M is a flat (2nv + 2)-dimensional vector bundle with structure group

Sp(2nv + 2;R).


M
�
M = h
 j �
i denotes the hermitian and symplectic inner product of fibres. M;N; � � � = 1 � � � 2nv + 2 are

called symplectic indices, and can be decomposed in two sets of indices �;� � � � = 1; � � � ; nv + 1 such that, for
example, the section 
 would be written as 
M = (X�;F�)T , and therefore we have


 =

� X�

F�
�

!

8>>>><
>>>>:

h
 j �
i � �X�F� �X� �F� = �i e�K ;

@�i
 = 0 ;

h@i
 j 
i = 0 :

(2.35)


 is everything we need to know in order to defineN = 2 ungauged supergravity in the absence of hyper-multiplets:
if we know 
M we can write the complete Lagrangian.

It is convenient to define a covariantly holomorphic symplectic section V = e
K
2 
3, which therefore obeys

V =

� L�
M�

�
!

8>>>><
>>>>:

hV j �Vi � �L�M� � L� �M� = �i ;

D�iV = (@�i +
1
2@�iK)V = 0 ;

hDiV j Vi = 0 :

(2.36)

Notice if we define

Ui � DiV =

�
f�i
h� i

�
; �U�i = Ui ; (2.37)

then it follows from the basic definitions that

D�i Ui = Gi�i V hUi j �U�ii = iGi�i ;

hUi j �Vi = 0 ; hUi j Vi = 0 :
(2.38)

Taking the covariant derivative of the last identity hUi j Vi = 0 we find immediately that hDiUj j Vi = �h Uj j
Uii. It can be shown that the r.h.s. of this equation is antisymmetric while the l.h.s. is symmetric, so that

hDiUj j Vi = hUj j Uii = 0 : (2.39)

The importance of this last equation is that if we group together E� = (V;Ui), we can see that hE� j �E�i is a
non-degenerate matrix. This then allows us to construct an identity operator for the symplectic indices, such that
for a given section of A 3 � (E;M) we have

A = ihA j �ViV � ihA j Vi �V + ihA j UiiGi�i �U�i � ihA j �U�iiGi�iUi : (2.40)

As we have seen DiUj is symmetric in i and j, but what more can be said about it: as one can easily see, the
inner product with �V and �U�i vanishes due to the basic properties. Let us then define the Kähler-weight 2 object

Cijk � hDi Uj j Uki ! Di Uj = iCijkGk�l �U�l ; (2.41)

where the last equation is a consequence of Eq. (2.40). Since the U ’s are orthogonal, however, one can see that C
is completely symmetric in its 3 indices. Furthermore one can show that

3This is the section of a different vector bundle, which cannot be holomorphic since V is related in different patches through
non-holomorphic transition functions.
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D�i Cjkl = 0 ; D[i Cj]kl = 0 : (2.42)

Observe that these equations imply the existence of a function S, such that

Cijk = DiDjDk S : (2.43)

The function S is given by [149]

S � L�=mN��L� ; (2.44)

where N is the period or monodromy matrix. This matrix is defined by the relations

M� = N��L� ; h� i = �N��f
�
i : (2.45)

The relation hUi j Vi = 0 then implies that N is symmetric, which then also trivializes hUi j Uji = 0.
From the other basic properties in (2.38) we find

L�=mN��
�L� = � 1

2 ; (2.46)

L�=mN��f
�
i = L�=mN��

�f��i = 0 ; (2.47)

f�i =mN��
�f��i = � 1

2Gi�i : (2.48)

Further identities that can be derived are

(@iN��)L� = �2i=m(N )�� f�i ; (2.49)

@i �N�� f�j = �2CijkGk�k=mN��
�f��k ; (2.50)

Cijk = f�if
�
j@k �N�� ; (2.51)

L�@�iN�� = 0 ; (2.52)

@�i �N�� f�i = 2iGi�i=mN��L� : (2.53)

An important identity one can derive, and that will be used various times in the main text, is given by

U�� � f�iGi�i �f��i = � 1
2=m(N )�1j�� � �L�L� ; (2.54)

whence �U�� = U��.
We can define the graviphoton and matter vector projectors

T� � 2iL� = 2iL�=mN�� ; (2.55)

T i
� � � �f�

i = �Gi�j �f��j=mN�� : (2.56)

Using these definitions and the above properties one can show the following identities for the derivatives of the
period matrix:

@iN�� = 4Ti(�T�) ;

@�iN�� = 4 �C�i�j�kT �i
(�T �j

�) :
(2.57)

Observe that the first of Eqs. (2.35) together with the definition of the period matrix N imply the following
expression for the Kähler potential:
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e�K = �2=mN��X� �X� : (2.58)

If we now assume that F� depends on zi through the X ’s, then from the last equation we can derive that

@iX�
�
2F� � @�

�X�F�
��

= 0 : (2.59)

If @iX� is invertible as an n� �n matrix, then we must conclude that

F� = @�F(X ) ; (2.60)

where F is a homogeneous function of degree 2, called the prepotential.
Making use of the prepotential and the definitions (3.24), we can calculate

N�� = �F�� + 2i
=mF��0X�0=mF��0X�0

X
=mF

0X
0
: (2.61)

Having the explicit form of N , we can also derive an explicit representation for C by applying Eq. (2.52). One
finds

Cijk = eK@iX�@jX�@kX
F��
 ; (2.62)

so that the prepotential really determines all structures in special geometry.
A last remark has to be made about the existence of a prepotential: clearly, given a holomorphic section 


a prepotential need not exist. It was shown in Ref. [141], however, that one can always apply an Sp(2nv + 2;R)
transformation such that a prepotential exists.

2.2 Homogeneous spaces

The relevant spaces in N > 2 Supergravity are Irreducible Riemannian Globally Symmetric (I.R.G.S.) spaces,
which are particular instances of homogeneous spaces (see [150–153] and references therein). We will also closely
follow the appendix of [130]. We will start by defining the concept of homogeneous space and then we will move
to the cases of interest in Supergravity, the symmetric spaces.

Theorem 2.2.1. Let H be a closed subgroup of a Lie group G, and let G=H be the set f�H : � 2 Gg of left
cosets modulo H. Let � : G ! G=H denote the natural projection �(�) = �H. Then G=H has a unique
manifold structure such that

1. � is C1.

2. There exist local smooth sections of G=H in G; that is, if �H 2 G=H, there is a neighbourhood U (�H)
and a C1 map � : U (�H)! G such that � � � = I.

Definition 2.2.2. Manifolds of the form G=H where G is a Lie group, H is a closed subgroup of G, and the
manifold structure is the unique satisfying theorem 2.2.1, are called homogeneous manifolds.

Definition 2.2.3. Let � : G�M!M be an action of G on M on the left. We denote ��(m) = �(�;m).

1. The action is called effective if the identity e of G is the only element of G for which �e is the identity map
on M.

2. The action is called transitive if 8 p; q 2M 9 � 2 G = ��(p) = q.

3. Let p0 2 M and let H = f� 2 G : ��(p0) = p0g. Then H is a closed subgroup of G, the isotropy group at
m0.

4. The action � restricted to H gives an action of H on M on the left with fixed point m0. It can then be
proven that � : H ! Aut(Tp0M), where �(�) = d�� (Tp0M), is a representation of H, the linear isotropy
group at p0.

Theorem 2.2.4. Let � �M!M be a transitive action of the Lie group G on the manifold M on the left.
Let p0 2 M, and let H be the isotropy group at p0. Then the map � : G=H !M given by �(�H) = ��(p0)
is a diffeomorphism.
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Proof. See [152], Theorem 3.62.
If G is a Lie group and H a closed subgroup of G, then there is a natural transitive action l of G on the

homogeneous manifold G=H on the left, namely l : G�G=H ! G=H given by l(�; �H) = ��H.
A manifold G=H of the kind defined in 2.2.2 is called homogeneous because it admits a transitive action of a

group, in particular of G. Thanks to theorem 2.2.4 we know that the converse is also true, if a manifoldM admits
a transitive action of a group G, then it is diffeomorphic to G=H, where H is the isotropy group of the action.

Theorem 2.2.5. If the isotropy group H of a homogeneous space G=H is compact, then it can be equipped
with a G-invariant Riemannian metric.

Proof. See [154], theorem 1, chapter 4.
Notice that, under the assumptions of 2.2.1, G=H is a differentiable manifold, but it may not be a Lie group

itself. The following theorem gives a sufficient condition for that to happen.

Theorem 2.2.6. Let G be a Lie group and H a closed normal subgroup of G. Then the homogeneous
manifold G=H with its natural group structure is a Lie group.

Proof. See [152], theorem 3.64.
The non-linear �-models appearing in extended Supergravity are homogeneous manifolds G=H, but H is in

general not a normal subgroup of G, and therefore we cannot use the tools available for group manifolds in order
to study them. They are, however, of a particular kind: they are symmetric spaces, a specific type of homogeneous
manifold, and in addition, its isotropy group H is compact. Therefore, they can be endowed with a G-invariant
Riemannian metric. We will thus consider Riemannian symmetric spaces, since they are the ones appearing in the
non-linear �-models of extended Supergravity.

A Riemannian symmetric space is a Riemannian manifold (S;G) with the property that the geodesic reflection
at any point is an isometry of S. That is, 8p 2M 9 sp 2 IIsometries (M) with the properties

sp(p) = p ; (dsp)p = �I : (2.63)

As a consequence of this definition, every symmetric space S is homogeneous: S can be shown to admit the
transitive action of a Lie group G, which is indeed the isometry group of the Riemannian metric G.
Definition 2.2.7. A symmetric space S is precisely a homogeneous space with a symmetry sp at some point
p 2 S.
For our purposes it is therefore better to characterize a symmetric space in the form G=H (which is possible since
they are homogeneous), where G is its isometry group and H a closed subgroup of G, through the following result

Theorem 2.2.8. Let G be a connected Lie group with an involution � : G! G and a left invariant metric
G, which is also right invariant under the closed subgroup ~K = fg 2 G ; g� = gg. Let K be a closed subgroup
of G with ~K0 � K � ~K where ~K0 denotes the connected component (identity component) of ~K. Then
S = G=H is a symmetric space where the metric is induced from the given metric on G. Every symmetric
space S arises this way.

Proof. See [153], theorem 4.1.

Lemma 2.2.9. A vector space decomposition g = t� h of a Lie algebra g is the eigenspace decomposition of
a order-two automorphism � of g if and only if

[h; h] � h ; [h; t] � t ; [t; t] � h ; (2.64)

A decomposition of Lie algebra g = t � h obeying lemma 2.2.9 and such that ad (h)t is the Lie algebra of
a compact subgroup of GL(t) is called the Cartan decomposition, and the corresponding involution � the
Cartan involution. We have the following result

Theorem 2.2.10. Any symmetric space S determines a Cartan decomposition on the Lie algebra of Killing
fields. Vice versa, to any Lie algebra g with Cartan decomposition g = t � h there exists a unique simply
connected symmetric space S = G=H where G is the simply connected Lie group with Lie algebra g and H
is the connected subgroup with Lie algebra h.
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Proof. See [153], theorem 4.2.
The extended Supergravity scalar manifolds are symmetric spaces: they are of the form G=H, where G is the

non-compact real form of a simple, finite-dimensional, Lie group and a H is its maximal compact subgroup, which
is the isotropy group of the manifold. It is equipped with a GL � HR invariant Riemannian metric, which has
strictly negative definite signature.

Definition 2.2.11. An Irreducible Riemannian Globally Symmetric space is a symmetric space with strictly
negative definite metric signature.4

We have arrived therefore to the specific kind of scalar manifolds appearing in the non-linear �-models of extended
four-dimensional Supergravity. In order to implement electromagnetic duality rotations in the theory, as it will be
explained in section 3.1, it is needed to embed the group G appearing in the Supergravity scalar manifold G=H
into the symplectic group Sp(2�n;R), or, going to a complex basis, into Usp(�n; �n), a procedure that can be always
performed in Supergravity. Therefore, all the scalar manifolds can be described by a Usp(�n; �n) matrix U which is
constructed in terms of the matrices5

f � (f�IJ ; f
�
i) ; h � (h� IJ ; h� i) ; (2.65)

which formally are sections of the following trivial flat, symplectic bundle

G�H R2n ! G=H (2.66)

I; J = 1; : : :N are the graviton-supermultiplet, or equivalently U(N ), indices and i(= 1; : : : nv) are indices labeling
the vector multiplets, and the embedding then imposes that

�n = n+
N (N � 1)

2
: (2.67)

This information is represented in the following table:6

N 3 4 5 6 8
n n n 0 1 0
�n n+ 3 n+ 6 10 16 28

Using the above matrices one can then embed the generic scalar manifolds as

U � 1p
2

�
f + ih �f + i�h
f � ih �f � i�h

�
: (2.68)

The condition that U 2 Usp(�n; �n)

U�1 =

�
1 0
0 �1

�
Uy
�

1 0
0 �1

�
=

�
0 1
�1 0

�
UT

�
0 �1
1 0

�

= 1p
2

�
fy � ihy �(fy + ihy)
�(f � ih) f + ih

�
;

(2.69)

leads to the following conditions for f and h:

i(fyh� hyf) = 1 ; fTh� hT f = 0 : (2.70)

In terms of the symplectic sections

VIJ =

�
f�IJ
h�IJ

�
; Vi =

�
f�i
h� i

�
; (2.71)

these constraints take the form7

4In our conventions, the �-model metric is positive definite. Therefore it is minus the metric of the corresponding I.R.G.S. space.
5When we multiply these matrices we must include a factor 1=2 for each contraction of pairs of antisymmetric indices IJ .
6 Observe that N = 6 has n = 1, even though there are no vector supermultiplets in this case.
7We use the convention

hA j Bi � B�A� � B�A
� : (2.72)
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hVIJ j �VKLi = �2i�KL
IJ ;

hVi j �Vji = �i�ij ;
(2.73)

with the rest of the symplectic products vanishing.
The left-invariant Maurer-Cartan 1-form can be split into the Vielbeine P and the connection 
 as follows:

� � U�1dU =

�

 �P
P �


�
: (2.74)

Thus, the different components of the connection are


 =

�

KL

IJ 
j
IJ


KL
i 
j

i

�
=

�
ihdVIJ j �VKLi ihdVIJ j �Vji
ihdVi j �VKLi ihdVi j �Vji

�
; (2.75)

and those of the Vielbeine are

P =

�
PKLIJ PjIJ
PKLi Pij

�
=

� �ihdVIJ j VKLi �ihdVIJ j Vji
�ihdVi j VKLi �ihdVi j Vji

�
: (2.76)

The period matrix N�� is defined by

N = hf�1 = N T ; (2.77)

which implies properties which should be familiar from the N = 2 case: for instance

Dh� = �N��Df
� ; h� = N��f

� ; (2.78)

and

� 1
2 (=mN )�1j�� = 1

2f
�
IJ

�f�IJ + f�i �f
� i ; (2.79)

which can be derived from the definition of N and Eq. (2.70).
We also quote the completeness relation

1
2 j VIJih�VIJ j � 1

2 j �VIJihVIJ j + j Viih�Vi j � j �ViihVi j = i : (2.80)

Defining the HAut �HMatter covariant derivative according to

DV = dV � V
 ; (2.81)

and using Eq. (2.78) we obtain from (2.75)


KL
i = 
j

IJ = 0 ; (2.82)

and from (2.76)

PIJKL = �2f�IJ=mN�� Df�KL ; (2.83)

PiIJ = �2f�i=mN�� Df�IJ ; (2.84)

Pij = �2f�i=mN�� Df�j : (2.85)

The above equation can be inverted to give

Df�IJ = �f�iPiIJ +
1
2
�f�KLPIJKL ; (2.86)

Df�i = �f�jPij +
1
2
�f�IJPiIJ ; (2.87)

using Eq. (2.79).
The definition of the covariant derivative leads to the identities
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hDV j �V i = 0 ; hDV j V i = h dV j V i = iP : (2.88)

The inverse Vielbeine �P IJKL; �P iIJ ; �P ij , satisfy (here A labels the physical fields)

�P IJKLAPMNOP A = 4!�IJKL
MNOP ; �P iIJ APjKLA = 2�ij�

IJ
KL : (2.89)

Their crossed products vanish but their products with Pij A do not.
We find

hDAVIJ j DB
�VKL i = i

2PIJMNA
�PKLMN

B + iPiIJA �P iKL
B ; (2.90)

hDAVIJ j DB
�Vi i = i

2PIJKLA
�P iKL

B + iPjIJA �P ij
B ; (2.91)

hDAVi j DB
�Vj i = i

2PiIJA
�P iIJ

B + iPikA �P jk
B ; (2.92)

while hDAVIJ j DBVKL i = hDAVIJ j DBVi i = hDAVi j DBVj i = 0.
Using the definition of the period matrix Eq. (3.39), equation (2.78) and the first of Eqs. (2.70) we get

dN = 4i=mN Dffy =mN : (2.93)

This expression can be expanded in terms of the Vielbeine, using Eqs. (2.86) and (2.87)

dN�� = i=mN�(�=mN�)


�
PIJKL

�f�IJ �f
KL + 4PiIJ �f
�i �f
IJ + 4Pij �f

�i �f
j
�
: (2.94)

and, using Eqs. (2.89) and taking into account that their contraction with Pij does not necessarily vanish, implies

�P IJKLA @

@�A
N�� = 4!i=mN
(�=mN�)�

�f
[IJj �f�jKL] ; (2.95)

�P iIJ A @

@�A
N�� = 8i=mN
(�=mN�)�

�f
i �f�IJ : (2.96)

�P IJKLA @

@�A
�N�� = �4i=mN
(�=mN�)�

�P IJKLA �P ij
Af



if

�
j ; (2.97)

�P iIJ A @

@�A
�N�� = �4i=mN
(�=mN�)�

�P iIJ A �P jk
Af



if

�
j : (2.98)

Using the Maurer-Cartan equations d� + � ^ � = 0 and direct calculations we find that the curvatures of 
KL
IJ

and 
j
i are

RKL
IJ = d
KL

IJ +
1
2


KL
MN ^ 
MN

IJ

= � 1
2
�PKLMN ^ PMNIJ � �P iKL ^ PiIJ (2.99)

= �ihDVIJ j D�VKL i ; (2.100)

Rj
i = d
j

i +
j
k ^ 
k

i = � 1
2
�P jIJ ^ PiIJ � �P ik ^ Pik (2.101)

= �ihDVi j D�Vj i : (2.102)

The vanishing of the curvature of 
i
IJ leads to

1
2PIJKL ^ �P iKL + PjIJ ^ �P ij = �ihDVIJ j D�Vi i = 0 : (2.103)



Chapter 3

Extended ungauged Supergravity in four
dimensions

After the mathematical background provided in chapter 2, we are ready to summarize the geometric formulation
of extended four-dimensional ungauged Supergravity, following [148, 155], where the interested reader will find a
more detailed exposition. In the case of N = 2 Supergravity, we will focus only on the vector multiplet sector, given
that black hole solutions with non-trivial hyper-scalars are believed to be singular since they would have scalar
hair and it is always consistent to set the hyper-scalars to a constant value. We start by reviewing electromagnetic
duality in a class of gravity theories coupled to scalars and vector fields that includes the bosonic sector of any
ungauged Supergravity.

3.1 Extended electromagnetic duality

For this section, the basic references are [140, 156, 157]. An excellent review and extension of these works can be
found in [158]. We are going to consider four-dimensional theories of the general form

I =

Z
d4x
p
jgj�R+ Gij(�)@��i@��j + 2=mN��F

�
��F

��� � 2<eN��F
�
�� ? F

���
	
; (3.1)

which includes the bosonic sectors of all four-dimensional ungauged supergravities for appropriate �-model metrics
Gij(�) and (complex) kinetic matrix N��(�), with negative-definite imaginary part (see sections 3.2 and 3.3). The
indices i; j; : : : = 1; : : : ; ns run over the scalar fields and the indices �;�; : : : = 0; : : : ; nv over the 1-form fields.
Their numbers are related only for N � 2 supergravity theories.

We denote to the equations of motion corresponding to the action (3.28) by

Ea� � � 1

2
pjgj �S�ea� ; Ei � � 1

2
pjgj �S��i ; E�� � 1

8
pjgj �S

�A�
�
; (3.2)

and denote the Bianchi identities for the vector field strengths by

B�� � r�
?F� �� : (3.3)

The explicit form of the equations of motion can be found to be

E�� = G�� + Gij [@��i@��j � 1
2g��@��

i@��j ]

+8=mN��F
�+

�
�F��

�� ; (3.4)

Ei = r�(Gij@��i)� 1

2
@iGjk@��j@��k + @i[ ~F�

��?F�
�� ] ; (3.5)

E�� = r�
? ~F�

�� ; (3.6)

where we have defined the dual vector field strength ~F� by

31
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~F��� � � 1

4
pjgj �S

�?F�
��

= <eN��F
�
�� + =mN��

�F�
�� : (3.7)

Let’s focus our attention on the equations of motion for the vector fields (that is, the Maxwell identities) E��
together with the Bianchi identities B�� and define the doublet

EM� �
0
@ B��

E� �

1
A ; (3.8)

where M = (�;�). The Maxwell and Bianchi identities can be now succinctly written as

EM� = 0 ; (3.9)

and therefore they admit as a symmetry an arbitrary GL(2nv + 2;R) rotation acting on M . That is

EM� = 0) AM
NEN� = 0 ; A 2 GL(2nv + 2;R) : (3.10)

It is convenient to write A in terms of (nv + 1)� (nv + 1) blocks

A =

0
@ D C

B A

1
A ; (3.11)

These transformations act in the same form on the vector of 2nv + 2 two-forms

FM �
0
@ F�

~F�

1
A ; F 0M = AM

NF
N : (3.12)

However, ~F� is not an independent set of fields, it is related to F� by Eq. (3.7), and therefore we must require the
same definition to hold for the transformed ~F 0� in terms of the transformed action S0 and the transformed F 0�,
that is, we require that

~F 0��� � �
1

4
pjgj �S0

�?F 0���
: (3.13)

In order to implement (3.13) consistently, we have to consider simultaneously a transformation � 2 Di� (Mscalar)
on the scalar manifold Mscalar, since imposing (3.13) requires the scalar matrix N�� to transform in a prescribed
way, which in turn has to be implemented through a transformation of the scalars. Therefore, we assume the
existence of a group homomorphism

i : Di� (Mscalar)! GL (2nv + 2;R) ; (3.14)

which maps every diffeomorphism � 2 Di� (Mscalar) to a general linear transformation i (�) 2 GL(2nv + 2;R).
Using the homomorphism i we can define now a simultaneous action of � in all of the fields of the theory.

Writing schematically �0 = � (�), we define the action of an arbitrary diffeomorphism � 2 Di� (Mscalar) on the
theory (3.28) to be given by [148]

�
�; FM ;N��

	 ��!
n
�0; (i (�))M NF

N ;N 0
�� (�0)

o
; (3.15)

and consistency with Eq. (3.13) requires that

N 0 (�0) = (AN (�) +B)(CN (�) +D)�1 : (3.16)

Furthermore, the transformations must preserve the symmetry of the period matrix, which requires

ATC = CTA ; DTB = BTD ; ATD � CTB = 1 ; (3.17)

i.e. the transformations must belong to Sp(2nv + 2;R). Therefore, the homomorphism i must be reduced to

i : Di� (Mscalar)! Sp (2nv + 2;R) : (3.18)
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Notice that (3.18) can never be an isomorphism, since Sp (2nv + 2;R) is a finite-dimensional Lie group and
Di� (Mscalar) is infinite-dimensional. The above transformation rules for the vector field strength and period
matrix imply

=mN 0 = (CN � +D)�1T=mN (CN +D)�1 ; F 0�+ = (CN � +D)��F
�+ ; (3.19)

so the combination =mN��F
�+

�
�F��

�� that appears in the energy-momentum tensor is automatically invariant.
So far, the situation is the following: we have noticed that the set of Maxwell and Bianchi identities admit a

global group of linear symmetries given by GL (2nv + 2;R). In order to define an action consistent with (3.13) we
have to impose three conditions

1. The transformation group mas be reduced from GL (2nv + 2;R) to Sp (2nv + 2;R)

2. The Sp (2nv + 2;R) rotation must be performed together with a transformation on the scalars, given by a
diffeomorphism � 2 Di� (Mscalar).

3. The couplings of scalars and vector fields N�� must transform as indicated in (3.16).

So, as long as our kinetic matrix N�� obeys (3.16) we can consistently define symplectic/duality rotations on
the theory in such a way that they act as symmetries of the Maxwell and the Bianchi identities. Notice that this
does not mean at all that the duality rotations are symmetries of the action: duality rotations are not even a
symmetry of

IMaxwell =

Z
d4x
p
jgj�+2=mN��F

�
��F

��� � 2<eN��F
�
�� ? F

���
	
; (3.20)

i.e., the part of the Lagrangian corresponding to the vector fields. But on top of that, we are considering arbitrary
scalar diffeomorphisms, which will not preserve the non-linear �-model nor the equations of motion for the scalars.
Therefore, if we require at least the duality rotations to be symmetries of the equations of motion, we have to
consider not arbitrary diffeomorphisms but only isometries of the scalar metric Gij(�), which are exact symmetries
of

IScalars =

Z
d4x
p
jgj�Gij(�)@��i@��j	 : (3.21)

Therefore, the homomorphism i must be again reduced to

i : Isometries (Mscalar;Gij)! Sp (2nv + 2;R) : (3.22)

Thus, the duality/symplectic transformations, i.e. global symmetries of the equations of motion, are the isometries
of the scalar manifold. considered as a Riemannian manifold equipped with the metric Gij , which act on the scalars
as usual diffeomorphisms and on the vector fields linearly through the homomorphism (3.22), as long as the matrix
N�jsigma transforms as prescribed by (3.16).

It can checked that the strict symmetries of the Lagrangian are the isometries of the scalar manifold with a
block diagonal embedding on the symplectic group Sp (2nv + 2;R), and the symmetries of the Lagrangian up to
a total derivative are those whose embedding obeys C = 0.

3.2 N = 2; d = 4 ungauged Supergravity

N = 2 four-dimensional Supergravity makes reference generically to any four-dimensional theory of gravity
invariant under two supersymmetries. Here we will consider such theory up to two derivatives in the Lagrangian
and in the absence of gauings, and in consequence, we call it ungauged four-dimensional classical Supergravity.
The matter content of the theory is the following

1. Gravitational multiplet:
�
ea�; � 

I ;  I ; A
0
�
, where ea� is the Vielbein (together with the spin connection

one-form !ab),  I is an SU(2) doublet of gravitino one-forms, and A0 is the graviphoton one-form.

2. nv vector supermultiples:
�
Ai; ��iI ; �

i I ; zi
�
, where Ai i = 1; � � � ; nv is a one-form, �iI is a zero-form spinor,

and zi is a complex scalar. The scalars zi parametrize the nv-dimensional base of a Special Kähler bundle
SV.

3. nh hypermultiplets: (��; �
�; qu), where �� is zero-form spinor (� = 1; � � � ; 2nh), and four real scalars

(u = 1; � � � ; 4nh) which parametrize a 4nh-dimensional Quaternionic manifold HM .
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It is convenient tu define a new index � = (0; i), which allows to write all the vector fields of the theory as�
A�
� ;� = 0; � � � ; nv

	
. Since we are interested in bosonic solutions, we will set all the fermions to zero, which is

always a consisten truncation. The general bosonic Lagrangian is given by

S =

Z
d4x
p
jgj
�
R+ Gi�j (z; �z) @�zi@��z�j + huv (q) @�q

u@�qv

+ 2=mN�� (z; �z)F�
��F

��� � 2<eN�� (z; �z)F�
�� ? F

���
�
;

Observe that the canonical normalization of the vector fields kinetic terms implies that =mN�� is negative definite,
as is guaranteed by special geometry [141]. The equations of motion for the hyper-scalars corresponding to (3.23)
are given by

D�@
�qu = r�@

�qu + �vw
u@�qv@�q

w = 0 ; (3.23)

where �vw
u are the Christoffel symbols of the 2nd kind for the metric huv. Therefore, it is always consistent to

truncate the hyper-scalars to a constant value qu = qu0 , and we will do so in the sequel, since black hole solutions
with non-trivial hyper-scalars are believed to be singular, since the would develop scalar hair. Let’s state for
completeness that the scalars qu parametrize a Quaternionic manifold [159], i.e. a Riemannian manifold of special
holonomy, which will not be discussed here.
As a consequence of supersymmetry, the metric Gi�j (z; �z) of the non-linear � model and period matrix N�� (z; �z)
are constrained in a very precise way. We have the following structure

1. The scalars zi parametrize a Special Kähler manifold1: a holomorphic non-trivial flat tensor bundle SV =
SM
L with structural group Sp (2nv + 2;R)
 U(1).

2. All the couplings of the theory (in the absence of hyper-multiplets) can be constructed in terms of the
holomorphic section 
 2 � (SM) or the covariantly holomorphic symplectic section V.

Since we are interested in bosonic configurations, the only couplings that we need to consider are those of vector
fields and scalars, given by the period matrix N�� (z; �z). It can be shown that, in terms of the covariantly
holomorphic symplectic section V, N�� (z; �z) is given by [149]

M� = N��L� ; h� i = N �
��f

�
i ; (3.24)

where M�;L�; h� i and f�i have been defined in (2.36) and (2.37).
Notice that Eq. (3.24) implies that N�� (z; �z) transforms under diffeomorphisms of the base space as required

by (3.16). Therefore, we can apply the formalism of section 3.12 and conclude that the equations of motion of
ungauged N = 2 Supergravity enjoy duality invariance. The same conclusion holds in the presence of hyper-
multiplets.

To summarize, four-dimensional ungauged N = 2 Supergravity in the absence of hyper-multiplets is completely
specified once the Special Kähler bundle SM describing the self-interactions of the vector multiplets is given. As
explained in chapter 2, specifying such bundle is equivalent to specify the holomorphic symplectic section, which
is equivalente, when it exists, to specify the second-order homogeneous prepotential F (X ). Therefore, four-
dimensional ungauged N = 2 Supergravity in the absence of hyper-multiplets can be completely specified in terms
of just a function, the prepotential.

3.2.1 Type-IIA String Theory on a Calabi Yau manifold

Let’s consider a particular example of ungauged N = 2 Supergravity embeddable in String Theory. In particular,
we are going to consider the class of Supergravities that are obtained by compactifying Type-IIA String Theory
on a Calabi Yau manifold in the absence of fluxes. We will come back to this example in chapter 7, obtaining
some of its black hole solutions. As in the previous section, we will omit the hyper-scalar sector.

Type-IIA String Theory on a Calabi-Yau threefold yields four-dimensional, ungauged, N = 2 Supergravity,
given by [11, 160–162]

F (X ) = � 1

3!
�0ijk

X iX jX k

X 0
+ i

��(3)

2(2�)3
+
i(X 0)2

(2�)3

X
fdig

nfdigLi3

�
e2�idi

Xi

X0

�
;

1For more details about Special Kähler geometry, see chapter 2 and references therein.
2Obviously the action (3.23) is a particular case of (3.28).
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where Li3(x) =
P1

k=1
xk

k3 is the third polylogarithmic function, � is the Euler characteristic of the Calabi-Yau, �(3)
is the Riemann zeta function of 3, nfdig is the number of genus 0 instantons3 and �0ijk are the classical intersection

numbers. Using special coordinates zi = X i

X 0 we can write the prepotential as follows

F = � 1

3!
�0ijkz

izjzk + i
��(3)

2(2�)3
+

i

(2�)3

X
fdig

nfdigLi3
�
e2�idiz

i
�
;

The theory defined by (3.25) is extremely involved due to the infinite sum of polylogarithms. We can simplify it
by considering the large-volume compactification limit =mzi !1, where the prepotential is given by

F0 = � 1

3!
�0ijkz

izjzk :

Let’s consider now the compactification on a specific Calabi-Yau threefold, the Quintic manifold. The effective
theory of Type-IIA String Theory compactified on the Quintic C.Y. three-fold, in the large-volume compactification
limit, is given by4 [11, 160]

F0 = �t3 :

Let’s construct the bosonic Lagrangian. First, we need the geometric data of the Special Kähler manifold relevant
to construct the Lagrangian, that is, the scalar metric and the covariantly holomorphic symplectic section. Using
the formulae of chapter (2) we obtain

Gt�t =
�3

(t� �t)2
; VT =

�
1; t; t3;�3t2� :

We can identify the Special Kähler manifold corresponding to (3.25), which is an homogeneous, symmetric space:

M =
SU(1; 1)

U(1)
(3.25)

Such geometry would be completely modified if we were to introduce the constant and the polilogarithmic correc-
tions on the prepotential: the scalar manifold would not be an homogeneous space anymore!

With (3.25) we can now compute N�
, using (3.24). The result is

ReNIJ =

 �2<3 3<2
3<2 �6<

!
; (3.26)

ImNIJ =

 �(=3 + 3<2=) 3<=
3<= �3=

!
; (3.27)

where < = Re(t) and = = Im(t). Therefore, the bosonic Lagrangian, in the absence of hyper-multiplets, of
Type-IIA String Theory compactified on the mirror Quintic manifold, is finally given by

S =

Z
d4x
p
jgj
�
R� 3@�t@

��t

(t� �t)2
+ 2=mN�� (z; �z)F�

��F
��� � 2<eN�� (z; �z)F�

�� ? F
���

�
:

3.3 N > 2; d = 4 ungauged Supergravity

The structure of four-dimensional ungaugedN > 2 Supergravity is very similar to the structure of four-dimensional
ungauged N = 2 Supergravity coupled to vector multiplets. A similar symplectic formulation, that is, based on
the construction of a vector bundle with a symplectic structure group over the scalar manifold can be realized, and
all the couplings of the theory written in terms of a section of such bundle. The basic reference for this section is
[155], where a much more detailed exposition can be found. We will use the notation and conventions of [111, 130].

If we restrict ourselves to theories with maximum spin two, we can conclude that the amount of supersymmetry
is constrained to be less or equal than eight N � 85. In addition, we will consider only terms up to two derivatives
on the Lagrangian. As in the N = 2 case, all the N > 2 Supergravities contain in the lagrangian a non-linear �
model of the form

3That is, the number of distinct holomorphic mappings of the genus 0 world-sheet onto holomorphic two-cycles with degrees fdig
4Up to an unimportant constat for our purposes,
5That is, thirty two real charges, if we consider Majorana spinors.
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IScalars =

Z
d4x
p
jgj�Gij(�)@��i@��j	 : (3.28)

As we saw, for N = 2 ungauged Supergravity coupled to vector multiplets, the scalars parametrize the base space
of a Special Kähler bundle, whose defining section V specifies the N = 2 model, since the Lagrangian, couplings
and scalar metric, can be completely specified in terms of V. Here the situation is similar. However the extra
amount supersymmetry imposes stronger constraints on the theory, and now the Riemannian scalar manifold
(MScalar;Gij) has to be an Irreducible Riemannian Globally Symmetric space67 [150]. Therefore, all the �-models
for N > 2 Supergravity are of the form

Mscalar =
G

H
(3.29)

where G is the group of isometries of the scalar manifold (MScalar;Gij) and H is its isotropy group. In particular,
for N > 2 Supergravity G is the maximally non-compact real form of a simple Lie group, which depends on the
particular N > 2 Supergravity. The different groups appearing in Supergravity N > 2 are summarized in table
3.3. The isotropy group H is in turn of the form

H = HA �HM ; (3.30)

where HA corresponds to the automorphisms group of the corresponding supersymmetry algebra, and HM is
related to the matter vector multiplets. When matter cannot be incorporated to the theory, namely for N > 4,
we have HM = I. The geometric formulation of N > 2 can be given in terms of an specific fibre bundle over G

H ,
namely, a trivial flat symplectic bundle of the form [155, 158]

G�H R2n ! G

H
; (3.31)

which justifies its construction in section 2.2. The couplings of the theory can be obtained now from the symplectic
section VIJ defined in 2.71.

All the four-dimensional ungauged N > 2 Supergravities can be described in a unified way. In particular,
all the Supergravity N > 2 matter contents can be written in the same generic form; we only need to take into
account the range of values taken by the U(N ) R-symmetry indices, denoted by uppercase Latin letters I etc.
taking on values 1; � � � ;N , in each particular case. Only fields and terms that should be considered are those whose
number of antisymmetric SU(N ) indices is correct, i.e. objects with more than N antisymmetric indices are zero
and terms with Levi-Cività symbols �I1���IM should only be considered when M equals the N of the supergravity
theory under consideration. There are also constraints on the generic fields for specific values of N that we are
going to review.

The generic supergravity multiplet in four dimensions is

�
ea�;  I �; A

IJ
�; �IJK ; �

IJKLM ; PIJKL�

	
; I; J; � � � = 1; � � � ; N ; (3.32)

and the generic vector multiplets (labeled by i = 1; � � � ; n) are
�
Ai �; �iI ; �i

IJK ; PiIJ �
	
: (3.33)

The spinor fields  I �; �IJK ; �IJKLM ; �iI ; �i
IJK have positive chirality with the given positions of the SU(N )

indices.
The scalars of these theories are encoded into the 2�n-dimensional (�n � n + N (N�1)

2 ) symplectic sections
(� = 1; : : : �n) VIJ and Vi (see section 2.2). They appear in the bosonic sector of the theory via the pullbacks of the
Vielbeine PIJKL� (Supergravity multiplet) and PiIJ � (matter multiplets)8. There are three instances of theories
for which the scalar Vielbeine are constrained: first, when N = 4 the matter scalar Vielbeine are constrained by
the SU(4) complex self-duality relation9

N = 4 :: P � i IJ = 1
2"

IJKL PiKL : (3.34)

6See section 2.2 for more details.
7Notice that Gij is minus the metric of the Supergravity �-model.
8The Vielbeine Pij � either vanish identically or depend on PIJKL� and PiIJ �, depending on the specific value of N . Thus, they

are not needed as independent variables to construct the theories.
9 In order to highlight the fact that an equation holds for a specific N only, we write a numerical variation of the token “N = 4 ::”

to the left of the equation.
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Secondly, in N = 6 the scalars in the supergravity multiplet are represented by one Vielbein PIJ and one
Vielbein PIJKL related by the SU(6) duality relation

N = 6 :: P � IJ = 1
4!"

IJK1���K4 PK1���K4
; (3.35)

and lastly the N = 8 case, in which the Vielbeine is constrained by the SU(8) complex self-duality relation

N = 8 :: P � I1���I4 = 1
4!"

I1���I4J1���J4 PJ1���J4 : (3.36)

These constraints must be taken into account in the action.
The graviphotons AIJ

� do not appear directly in the theory, rather they only appear through the “dressed”
vectors, which are defined by

A�
� � 1

2f
�
IJA

IJ
� + f�iA

i
� : (3.37)

For N > 4 the larger amount of supersymmetry implies that the theory is unique: no matter can be added and
all the fields belong to the gravitational multiplet. Therefore, the scalar manifold is also completely fixed, as can
be seen in table 3.3.

As in the N = 2 Supergravity case, we are only interested in the bosonic part of the Lagrangian, since we are
going to consider exclusively bosonic solutions. The bosonic Lagrangian is again of the form

S =

Z
d4x
pjgj �R+ 2=mN��F

���F�
�� � 2<eN��F

��� ? F�
��

+ 2
4!�1P

� IJKL
�PIJKL

� + �2P
� iIJ

�PiIJ
�
�
;

(3.38)

where N�� is the generalization of the N = 2 period matrix, defined in Eq. (3.39), and where the parameters
�1; �2 are equal to 1 in all cases except for N = 4; 6 and 8 as one needs to take into account the above constraints
on the Vielbeine: �2 = 1=2 for N = 4, �1+�2 = 1 for N = 6 (the simplest choice being �2 = 0) and �1 = 1=2 for
N = 8. The action is good enough to compute the Einstein and Maxwell equations, but not the scalars’ equations
of motion in the cases in which the scalar Vielbeine are constrained: these constraints have to be properly dealt
with and the resulting equations of motion are given below. The period matrix N�� is defined by10

N = hf�1 = N T ; (3.39)

Notice that, as in the N = 2 case, Eq. (3.39) implies that N�� transforms under diffeomorphisms of the base space
as required by (3.16). Therefore, we can apply the formalism of section 3.111 and conclude that the equations of
motion of ungauged N > 2 Supergravity enjoy duality invariance.

As corresponds to the general formalism explained in section 3.1, the isometry group, for each N = 3; : : : ; 8
must be embedded in the corresponding symplectic group, something which is always possible. As explained in
section 2.2, the isometry group of I.G.R.S spaces is G itself. The scalar manifold for all N > 2 Supergravities,
together its symplectic representation, is detailed in table 3.3.

10See section 2.2 for more details.
11Obviously the action (3.38) is a particular case of (3.28).
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N G/H R

N = 3 SU(3;nv)
SU(3)�SU(nv) (3+ nv)c

N = 4 SL(2;R)
U(1) � SO(6;nv)

SO(6)�SO(nv) (2;6+ nv)

N = 5 SU(1;5)
U(5) 20

N = 6 SO�(12)
U(6) 32

N = 8
E7(7)

SU(8)=Z2 56

Table 3.1: N > 3 supergravity sequence of groups G of the corresponding G
H symmetric spaces, and their

symplectic representations R



Chapter 4

Supergravity black holes

In this chapter we are going to obtain the form of the most general black hole solution of four-dimensional, ungauged
Supergravity1, using the so-called conform-static coordinates, since they provide a universal way, that is, model
independent, to identify the extremal limits and the horizon of the black hole. As a result, these coordinates allow
a general study of the attractor behavior of several physical quantities on the event horizon of the black hole,
yielding, as a plus, simplified equations of motion.

We will then use the (previously obtained) general form of a Supergravity black hole to identify its hidden
conformal symmetries, extending them to a full Virasoro algebra, which provides the link to the dual conformal
description of the microscopic degrees of freedom of the entropy.

4.1 The general form a Supergravity black hole

We are going to consider black-hole solutions of four-dimensional theories of the general form

I =

Z
d4x
p
jgj�R+ Gij(�)@��i@��j + 2=mN��F

�
��F

��� � 2<eN��F
�
�� ? F

���
	
; (4.1)

which, as explained in chapter 3, includes the bosonic sectors of all four-dimensional ungauged supergravities for
appropriate �-model metrics Gij(�) and (complex) kinetic matrix N��(�), with negative-definite imaginary part.
The indices i; j; : : : = 1; : : : ; nv run over the scalar fields and the indices �;�; : : : = 0; : : : ; nv over the 1-form
fields. Their numbers are related only for N � 2 supergravity theories. Since we want to obtain static solutions,
we consider the metric

ds2 = e2Udt2 � e�2U
mndx
mdxn ; (4.2)

where 
mn is a 3-dimensional (transverse) Riemannian metric, to be specified later. Using Eq. (4.2) and the
assumption of staticity for all the fields, we perform a dimensional reduction over time in the equations of motion
that follow from the above general action. We obtain a set of reduced equations of motion that can be written in
the form2

rm

�
GAB@m ~�B

�
� 1

2@AGBC@m ~�B@m ~�C = 0 ; (4.3)

Rmn + GAB@m ~�A@n ~�
B = 0 ; (4.4)

@[m 
�@n]�� = 0 ; (4.5)

where all the tensor quantities refer to the 3-dimensional metric 
mn and where we have defined the metric GAB

GAB �
0
@ 2

Gij
4e�2UMMN

1
A ; (4.6)

1In fact, we are going to obtain the form of the most general static, spherically symmetric solution of the action (4.1), which
basically covers any theory of gravity coupled to scalars and vector fields, up to two derivatives.

2See Ref. [77] for more details.
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(MMN ) �
0
@ (I+RI�1R)�� �(RI�1)��

�(I�1R)�� (I�1)��

1
A ; R�� � <eN�� ; I�� � =mN�� ; (4.7)

in the extended manifold of coordinates ~�A =
�
U; �i;  �; ��

�
.

Eqs. (4.3) and (4.4) can be obtained from the three-dimensional effective action

I =

Z
d3x
p
j
j
n
R+ GAB@m ~�A@m ~�B

o
; (4.8)

to which we have to add as a constraint the Eq. (4.5).
In order to further dimensionally reduce the theory to a mechanical, one-dimensional, problem, we introduce

the following transverse metric


mndx
mdxn =

d� 2

W 4
�

+
d
2

�

W 2
�

; (4.9)

where W� is an arbitrary function of � and d
2
� is the metric of the 2-dimensional symmetric space of curvature

� and unit radius:

d
2
(1) � d�2 + sin2� d�2 ; (4.10)

d
2
(�1) � d�2 + sinh2� d�2 ; (4.11)

d
2
(0) � d�2 + d�2 : (4.12)

Notice that for k = 1, Eq. (4.2), assuming Eq. (4.9), is the most general spherically symmetric, static metric of
a four-dimensional space-time. In the three cases k = 1; 0;�1 the equation for W�(� ) can be integrated and the
result is

W1 =
sinh r0�

r0
; (4.13)

W�1 =
cosh r0�

r0
; (4.14)

W�
0 = ae�r0� : (4.15)

a is an arbitrary real constant with dimensions of inverse length and r0 is an integration constant whose interpreta-
tion depends on k. We are interested in the case k = 1, corresponds to asymptotically flat, spherically symmetric,
static black holes. The case k = 0 has been recently studied in Ref. [136] and corresponds to a rich spectrum
of Lifshitz-like solutions with hyper-scaling violation. The case k = �1 has been studied in [] and correspond to
topological solutions with a particular singular behavior.

Remarkably enough, in the three cases (4.13), (4.14) and (4.15) we are left with the same equations for the
one-dimensional fields, which are given by

d

d�

 
GAB d

~�B

d�

!
� 1

2@AGBC
d~�B

d�

d~�C

d�
= 0 ; (4.16)

GBC d
~�B

d�

d~�C

d�
= 2r20 : (4.17)

The electrostatic and magnetostatic potentials  �; �� only appear through their � -derivatives. The associated
conserved quantities are the magnetic and electric charges p�; q� and can be used to eliminate completely the
potentials. The remaining equations of motion can be put in the convenient form

U 00 + e2UVbh = 0 ; (4.18)

(U 0)2 + 1
2Gij�i 0�j 0 + e2UVbh = r20 ; (4.19)

(Gij�j 0)0 � 1
2@iGjk�j 0�k 0 + e2U@iVbh = 0 ; (4.20)
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in which the primes indicate differentiation with respect to � and the so-called black-hole potential Vbh is given
by

� Vbh(�;Q) � � 1
2QMQNMMN ; (QM ) �

�
p�

q�

�
: (4.21)

Eqs. (4.18) and (4.20) can be derived from the effective action

Ie� [U; �
i] =

Z
d�
�
(U 0)2 + 1

2Gij�i 0�j 0 � e2UVbh
	
: (4.22)

Eq. (4.19) is nothing but the conservation of the Hamiltonian (due to absence of explicit � -dependence of the
Lagrangian) with a particular value of the integration constant r20.

A large number of solutions of this system, for different theories of N = 2; d = 4 supergravity coupled to
vector supermultiplets, have been found (see e.g. Refs. [75, 89, 131, 132, 163]), focusing always on the case k = 1.
With this choice of transverse metric, they describe single, charged, static, spherically-symmetric, asymptotically-
flat, non-extremal black holes. However, since the equations of motion are exactly the same in the three cases
k = 1; 0;�1, these solutions are still solutions if we set � = 0;�1 in the transverse metric, and therefore they
can be used to describe Lifshitz-like and topological solutions. Hence, for each solution of the effective system of
equations we can build three different metrics, representing three different, non-equivalent space-times, that solve
the equations of motion of the original theory (this is the essence of the Bh-hvLif-T triality [137]).

To summarize, and focusing only in the k = 1 case, the metrics of all spherically symmetric, static, black-hole
solutions of the action (4.1) have the general form

ds2 = e2Udt2 � e�2U
mndx
mdxn ;


mndx
mdxn =

�
r0

sinh r0�

�2 "�
r0

sinh r0�

�2
d� 2 + d
2

(2)

#
;

(4.23)

where r0 is the non-extremality parameter and U(� ) is a function of the radial coordinate � that characterizes
each particular solution. In these coordinates the exterior of the event horizon is covered by � 2 (�1; 0), the
event horizon being located at � ! �1 and the spatial infinity at � ! 0�. The interior of the Cauchy horizon
(if any) is covered by � 2 (�S ;1), the inner horizon being located at � ! +1 while the singularity is located at
some finite, positive, value �S of the radial coordinate � [89].

The task of obtaining black hole solutions to the action (4.1) is therefore reduced to find the solution (U(� ); �i(� ))
of the corresponding effective, one-dimensional, system of ordinary differential equations. All the four-dimensional
fields, solving the original, four-dimensional, equations of motion, can be constructed from (U(� ); �i(� ))3.

Using (4.23), we can compute the area of a 2-sphere at fixed radial coordinate � = �0, which is given by

A(�0) = 4�f2(�0)e
�2U(�0) ; (4.24)

where
f(� ) � r0

sinh r0�
: (4.25)

Therefore, the areas of the event and Cauchy horizons, A+ and A� respectively, read

A� = lim
�0!�1

A(�0) : (4.26)

We will use Eq. (4.26) later in order to correctly interpret the near-horizon limits of the massless Klein-Gordon
equation.

4.2 Hidden symmetry and the microscopic description of the entropy

In Ref. [164] it was shown that the massless Klein-Gordon equation in the background of the four-dimensional
Schwarzschild black hole exhibits a SL(2;R) invariance in the near-horizon limit which extends to spatial infinity
at sufficiently low frequencies. Here we will generalize these results to every charged, static, spherically symmetric
black-hole solution of (4.1), whose general black hole solution is of the form Eq. (4.23).

In the space-time background given by the metric (4.23), the massless Klein-Gordon equation

1pjgj@�
�p

jgjg��@��
�
= 0 ; (4.27)

3For N = 2 Supergravity, we will use a complex notation (U(�); zi(�)), where the zi are complex scalars.
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can be written in the form
e�2U@2t�� e2Uf�4@2��� e2Uf�2�S2� = 0 ; (4.28)

where f(� ) has been defined in Eq. (4.25) and

�S2� =
1

sin �
@� (sin �@��) +

1

sin2 �
@2�� ; (4.29)

is the Laplacian on the round 2-sphere of unit radius. Using the separation ansatz

� = e�i!tR(� )Y l
m(�; �) ; (4.30)

and
�S2Y

l
m(�; �) = �l(l+ 1)Y l

m(�; �) ; (4.31)

we find
!2e�4Uf2R(� ) + f�2@2�R(� ) = l(l+ 1)R(� ) ; (4.32)

so we can write Eq. (4.28) as
K4� = l(l+ 1)� ; (4.33)

where K4 is the second-order differential operator

K4 � �e�4Uf2@2t + f�2@2� : (4.34)

In order to exhibit the hidden conformal structure of the given space-time, we want to find a representation of
SL(2;R) in terms of first-order differential operators (vector fields) in the t� � submanifold, such as the SL(2;R)
quadratic Casimir, constructed from those vector fields is equal to the second-order differential operator K4. Thus,
we want to find three real vector fields

Lm = amt@t + am�@� ; m = 0;�1 ; (4.35)

for some functions amt(t; � ); am� (t; � ), whose Lie brackets satisfy sl(2) Lie algebra

[Lm; Ln] = (m� n)Lm+n ; m = 0;�1 ; (4.36)

and such that

H2 � L20 � 1
2 (L1L�1 + L�1L1) = K4 : (4.37)

In order to simplify the problem, following [164], we have to make some additional assumptions on the functions
aIt(t; � ); aI� (t; � ), Thus, we make the following ansatz

L1 = l(t) [�m(� )@t + n(� )@� ] ; (4.38)

L0 = � c

r0
@t ; (4.39)

L�1 = �l�1(t) [m(� )@t + n(� )@� ] ; (4.40)

where m and n are functions of � , l is a function of t and c is a real constant.
Plugging this ansatz into Eq. (4.36) we obtain two differential equations

m2@t log l+ n@�m =
c

r0
; (4.41)

c

r0
@t log l = 1 ; (4.42)

and plugging it into Eq. (4.37) we obtain three equations

m = h@�n ; (4.43)

m2 = e�4Uf2 + (c=r0)
2
; (4.44)

n2 = f�2 : (4.45)
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These equations cannot be solved for arbitrary U(� ): we can find l;m; n as functions of f(� ) and the constant
c

l(t) = c0e
r0t=c ; n2(� ) = f�2 ; m(� ) = h cosh (r0� ) ; (4.46)

for some real constant c0, leaving the following equation for the constant c to be solved:

c2 =
�
e�2Uf2

�2
: (4.47)

This equation has only one exact solution, given by eU � f , which does not correspond to any asymptotically
flat black hole. We have to content ourselves with a range of values of the coordinate � in which the above equation
can be solved approximately. The two ranges that we have identified correspond to the two near-horizon regions
(event and Cauchy horizons � ! �1 or � ! �1, respectively) in which

�
e�2Uf2

�2 �!�1�
�
A�
4�

�2
+O(e�r0� ) = c2 +O(e�r0� ) ; (4.48)

according to Eq. (4.26).
We conclude that in the geometry of any four-dimensional, charged, static, black-hole solution of a theory of

the form (4.1), there are two triplets of vector fields L+m and L�m, m = 0;�1 given by

L�1 = �e
r0�t=S�

r0

�
S�
�

cosh (r0� )@t + sinh (r0� )@�

�
(4.49)

L�0 = � S�
r0�

@t ; (4.50)

L��1 = �e
�r0�t=S�

r0

�
S�
�

cosh (r0� )@t � sinh (r0� )@�

�
; (4.51)

where S� = A�
4 , which generate two sl(2) algebras whose quadratic Casimirs

H� 2 � (L�0 )
2 � 1

2

�
L�1 L

�
�1 + L��1L

�
1

�
; (4.52)

approximate the massless Klein-Gordon equation in the two near-horizon regions4:

K4� =
��e�4Uf2@2t + f�2@2�

	
�

�!�1�! f�2
n
� (S�=�)

2
@2t + @2�

o
� = H� 2� : (4.54)

We can see from Eq. (4.49) that the extremal limit r0 ! 0 is singular. The reason is that the operations of
taking the near-horizon limit and of taking the extremal limit r0 ! 0 do not commute.

The sl(2) algebra that we have just found can be immediately extended to a complete Witt algebra (or a Virasoro
algebra with vanishing central charge) with the commutation relations (4.36) for all m 2 Z. The generators of the
Witt algebra are given by

L�m = �e
mr0�t=S�

r0

�
S�
�

cosh (mr0� )@t + sinh (mr0� )@�

�
: (4.55)

To summarize, we have constructed two Witt algebras which have a well-defined action in the space of solutions
to the wave equation in the background of the exterior and interior near-horizon limits of a generic, charged, static
black hole solution of (4.1). The two sl(2) subalgebras are symmetries of these wave equations, since the wave
operators can be seen as their Casimirs, but they are not symmetries of the background metrics which, being
essentially the products of Rindler spacetime (locally Minkowski) and spheres, have abelian (in the time-radial
part) isometry algebras.

This result generalizes those obtained in Refs. [164–167], and present an opportunity to put to test some
conjectures and common lore of this field. To start with, is there a CFT associated to the Witt algebras and
can one compute the central charge of the Virasoro algebra? A most naive computation does not seem to give

4Observe that we only approximate some terms (i.e. we keep some sub-dominating terms):

e�4Uf2 = f�2(e�2Uf2)2 � f�2

��
A�

4�

�2
+O(e�r0� )

�
� f�2

�
A�

4�

�2
+O(e�r0� ) ; (4.53)

which is correct to that order. On the other hand, we do not need to restrict ourselves to any particular range of frequencies.
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meaningful results. This, of course, does not preclude the possibility that a more rigorous calculation, preceded of
careful definitions of the boundary conditions of the fields at the relevant boundaries (which have to be identified
first) may give a meaningful answer.

Meanwhile, it is amusing to speculate on the possible consequences of the existence of such a CFT withe left
and right sectors whose entropies SR; SL and temperatures would be related to the temperatures and entropies of
the outer and inner horizons (T+; T� and S+; S�, respectively) by

S� = SR � SL ; (4.56)

1

T�
= 1

2

�
1

TR
� 1

TL

�
; (4.57)

and obeying the fundamental relation

S+ =
�2

12
(cRTR + cLTL) ; (4.58)

where cL;R are the central charges of the left and right sectors, which will be assumed to be equal cR = cL = c.
The temperatures and entropies of the outer and inner horizons are related to the non-extremality parameter

r0 by

2S�T� = r0 ; (4.59)

which implies for the temperatures of the left and right sectors

4SL;RTL;R = r0 : (4.60)

In the extremal limit

SL ! 0 ; TR ! 0 ; T� ! 0 ; S� ! SR ; (4.61)

and both SR and TL remain finite and are convenient quantities to work with. In particular, we can express the
central charge that the CFT should have in order to reproduce the Bekenstein-Hawking entropy consistently with
this picture, in terms of these two parameters:

c =
12

�2
SR
TL

: (4.62)



Chapter 5

All the supersymmetric black holes of
extended Supergravity

In this chapter we are going to explicitly construct the most general (single and multi-center) supersymmetric
black hole metric of N > 2 ungauged Supergravity in four dimensions, using the algorithm provided to that
effect in [130]1, where the exhaustive classification of all the time-like supersymmetric solutions of any extended
four-dimensional ungauged Supergravity was performed. Although we are going first to specialize to the case of
N = 8 Supergravity, thanks to the properties of the groups of Type E7 we will see that our results also apply to
all N > 2 Supergravities and also to specifc instances of N = 2, namely those with symmetric scalar manifolds.
For the remaining N = 2 Supergravity cases, since the theory (in the absence of hypermultiplets) is specified
upon the choice of a Special Kähler manifold, we can only characterize the form of the supersymmetric solution,
whose details depend on the particular N = 2 model. Previous results on black holes and attractors in N = 8
Supergravity can be found in [168–180].

5.1 The mathematical formalism

According to the results of [130], in order to construct a timelike black-hole-type supersymmetric solution of N = 8
supergravity we may proceed as follows2:

1. Choose an x-dependent rank-2, 8� 8 complex antisymmetric MIJ , These matrices must satisfy a number of
constraints that are difficult to solve. This implies that, in practice, we cannot construct the most general
matrices that satisfy them. Nevertheless, with those matrices we can proceed to the next step.

2. The scalars are encoded into the 56-dimensional symplectic vector

(VMIJ) =

�
f ijIJ
hij IJ

�
; (5.1)

antisymmetric in the local SU(8) indices I; J = 1; � � � 8. It transforms in the fundamental (56) of E7(7) (ij
indices) and as antisymmetric U(8) tensor (IJ indices), It satisfies3

hVIJ j �VKLi = 1
2
�f ij KLhij IJ � 1

2
�hij

KLf ijIJ = �2i�KL
IJ ; hVIJ j VKLi = 0 ; (5.4)

Using the matrix MIJ chosen in the previous step, we define the real symplectic vectors RM and IM
1Generalizing the results of the seminal work [103] by Gauntlett et al.
2We have included in this recipe, to simplify it, the vanishing of the “hyperscalars”.
3The symplectic product of two vectors hA j Bi is defined by

hA j Bi � AMB
M � ANBM
MN ; (5.2)

where

(
MN ) �

�
0 128�28

�128�28 0

�
; (5.3)

is the skew metric of Sp(56;R) that we use to lower (as above) or raise symplectic indices.
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RM + iIM � VMIJ
M IJ

jM j2 ; jM j2 =MIJM
IJ : (5.5)

These two are, by definition, U(8) singlets (no U(8) gauge-fixing necessary) and only transform in the
fundamental of E7(7).

3. The components of I are 56 real functions HM harmonic in the Euclidean R3 transverse space.

4. R is to be be found from I exploiting the redundancy in the description of the scalars by the sections VMIJ
4.

Even with the knowledge of MIJ this is a very difficult step.

5. The metric is

ds2 = e2U (dt+ !)2 � e�2Ud~x 2 ; (5.6)

where

e�2U = jM j�2 = hR j I i = 1
2IijRij � 1

2IijRij ; (5.7)

(d!)mn = 2�mnph I j @pI i ; (5.8)

and can be constructed automatically provided one has been given the harmonic functions corresponding to
I and R(I), quite independently of the construction of these objects from MIJ and VMIJ . The same is true
for the vector field strengths.

6. The vector field strengths are given by

F = � 1
2d(RV̂ )� 1

2 ? (V̂ ^ dI) ; V̂ =
p
2e2U (dt+ !) : (5.9)

7. The Vielbeins describing the scalars in the coset E7(7)=SU(8) PIJKL;� are split into two complementary sets:

PIJKL J I
[MJ J

NJK
P
~J L

Q] ; and PIJKL J I
[M

~J J
N

~JK
P
~J L

Q] ; (5.10)

where we have defined the projectors

J I
J � 2M IKMJK

jM j2 ; J I
J = �IJ � ~J I

J : (5.11)

All those in the second set have been assumed to vanish from the start, since they would lead to a non-trivial
metric in the transverse 3-dimensional space, while those in the first set can in principle be found from R
and I, using the definitions of these vectors and of the Vielbein and the explicit form of the chosen MIJ ,
setting IM = HM (x) and confronting the third step: the resolution of the stabilization equations.

5.2 The supersymmetric black hole solution of N = 8 Supergravity

For the last 20 years, black holes have been intensively studied in string theory and supergravity with never-
decreasing interest. A large part of effort has been focused on two subjects: the construction of the most general
black-hole solutions of these theories and the understanding and computation of different physical properties,
specially the entropy, of the black-hole solutions, following the seminal result of Strominger and Vafa [5].

The attractor mechanism [77, 181] has provided a bridge between these two subjects, allowing the computation
of the entropy and other black-hole properties on the black-hole horizon without the knowledge of the complete
black-hole solutions, at least in the extremal cases. In theories with a very high degree of (super-) symmetry,
though, it is not necessary to use this mechanism and the entropy of the extremal black holes can be determined

4VMIJ uses 562 complex components to describe just 70 physical scalars. The constraints that it satisfies imply a large number of
relations between the components. The same is true for the components projected with MIJ . This step is equivalent to the resolution
of the stabilization equations in N = 2 theories.
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requiring duality-invariance, correct dimensionality and moduli-independence (which is a consequence of the at-
tractor mechanism [77]). In particular, the entropy of the extremal black holes of N = 8 supergravity [182, 183]
was found in [184] to be given by the unique quartic invariant of the E7(7) duality group. If we use the real basis

Q �
�
pij

qij

�
; (5.12)

for the charges, where the indices i; j = 1; � � � ; 8 transform homogeneously under the SL(8;R) � E7(7) and each
pair of indices is antisymmetrized (so there are 28 electric plus 28 magnetic independent charges), the quartic
invariant is known as the Cartan invariant J4(Q) [185]

J4(Q) = pijqjkp
klqli � 1

4 (p
ijqij)

2 + 1
96 "ijklmnpqp

ijpklpmnppq + 1
96 "

ijklmnpqqijqklqmnqpq : (5.13)

In the complex basis, the quartic invariant is known as the Julia-Cremmer invariant }(Q) [182]. They are
equal up to a sign [186, 187] and we will not be concerned with its explicit form.

Although it has not been proven directly5, the entropy formula for the extremal black holes of N = 8 super-
gravity

S = �
p
jJ4(Q)j ; (5.14)

has passed all checks and, in particular, it has been shown to reproduce the entropies of black holes of supergravity
theories withN < 8 (speciallyN = 2) obtained by truncation ofN = 8. For supersymmetric black holes J4(Q) > 0
and one does not need to take the absolute value.

One of the main obstructions for proving this formula is our lack of knowledge of the general extremal black-
hole solutions of N = 8 supergravity as opposite to our complete knowledge of those of the N = 2 theories
[112, 188–191]. This, and the standard lore that all the 1=8 supersymmetric (the ones with a potentially regular
horizon) black-hole solutions of N = 8 are supersymmetric black-hole solutions of some of the N = 2 truncations
of that theory (which seems to have been disproven by the explicit examples of [192, 193]) explains why most of
the literature on N = 8 black holes deals with such truncations.

The supersymmetric black-hole solutions of N = 2 supergravity were re-discovered in [112] among the time-like
supersymmetric solutions of the theory, which were found by exploiting the integrability conditions of the Killing
spinor equations following Tod [101] along the lines of [103]. The same procedure was followed in [130] for all
N � 2; d = 4 ungauged supergravities, using the (almost) N -independent formalism of [155], but the result, which
we are going to explain in the next section, looked too complicated to be used in the explicit construction of the
solutions, in spite to its similarity to the result found in the N = 2 case.

We have recently realized, though, that the results found in [130] do permit the explicit construction of
the metric of the most general single and multi-black-hole solutions of ungauged N = 8 supergravity. The
complications are restricted to the explicit construction of the scalar fields. Thus, we are going to show how to
construct the metrics of the most general black holes ungauged N = 8 supergravity, but we will not be able to
provide a simple algorithm to find the scalar fields corresponding to those solution. Nevertheless, the consistency
of the formalism ensures their existence and there is much that can be learned from the metrics.

In the next section we are going to give the general form of the supersymmetric metric solution of N = 8
ungauged Supergravity, after which we will discuss the black-hole case, showing how the entropy formula (5.14)
arises for supersymmetric black holes and which of E7(7) invariants studied in [194] actually arise in the two-center
case.

5.2.1 The metrics of the supersymmetric black-hole solutions of N = 8 supergravity

If we want to construct the most general black-hole solutions of N = 8 supergravity, the recipe demands a
parametrization of the space of all the matrices MIJ(x) that satisfy all the technical requirements, which is very
difficult to find.

We have realized, however, that this is a problem that we only need to solve explicitly if we want to construct
explicitly the scalar fields. If we are only interested in constructing the metric (and perhaps the vector fields) all
we really need is to assume that the problem has been solved and the resulting MIJ(x) has been used to define R
and I.

One may naively think that both the explicit form of MIJ(x) and the explicit expression of the components
VMIJ are needed to set up the stabilization equations and to solve them, finding R as a function of I. Fortunately,
this problem can be reformulated as follows: with a real vector in the 56 of E7(7), I, we want to construct another

5To the best of our knowledge, not even within the FGK formalism of [77].
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one in the same representation which is a non-trivial function of the former, R(I). For a single I, there is a unique
way of constructing a 56 from another 56, provided by the Jordan triple product6. Thus, RM (I) must be given
by

RM (I) � (I; I; I)M ; (5.15)

where

(I; I; I)ij = 1
2IikIklIlj + 1

8IijIklIkl � 1
96"

ijklmnpqIklImnIpq ;

(I; I; I)ij = � 1
2IikIklIlj � 1

8IijIklIkl + 1
96"ijklmnpqIklImnIpq :

(5.16)

To determine the proportionality factor we must first take into account that we expect the RM (I) to be
homogenous of first order in I, which requires that we divide (I; I; I) by an E7(7) invariant (to preserve the
symmetry properties) homogenous of second degree in I, which can only be

p
J4(I).

We, thus, conclude that, up to a normalization constant � to be determined later, the solution to the stabi-
lization equations of N = 8 supergravity defined in the previous section is

RM (I) = �
(I; I; I)Mp

J4(I)
; (5.17)

which is our main result and allows the complete construction of the metrics of all the supersymmetric black holes
of the theory.

Actually, since, as we are going to show in the next section, � = 2, RM coincides exactly with the Freudenthal
dual7 of IM , which we can denote by ~IM defined in [195]. The Freudenthal dual ~Q enjoys several remarkable
properties. Firstly,

h ~Q j Q i = 2J4(Q) ; (5.18)

which follows from the property of the Jordan triple product

h (Q;Q;Q) j Q i = J4(Q) : (5.19)

Secondly,

~~Q = �Q ; (5.20)

which eliminates a possible solution to the stabilization equations (namely RM = ~~IM) because e�2U = h R j Ii
would vanish identically.

Thirdly,

J4( ~Q) = J4(Q) : (5.21)

Finally, in [196] (where the definition of Freudenthal dual was generalized to all N � 2 theories) is has been
shown to be a symmetry of the space of critical points of the black-hole potential introduced in [77].

Thus, following the recipe, and choosing some harmonic functions HM (x), the metric function e�2U is always
given by

e�2U = �
p
J4(H) ; (5.22)

and the 1-form ! is always given by the solution to

(d!)mn = "mnp

�Iij@pIij � Iij@pIij� : (5.23)

the vector field strengths follow from the general formula and the scalars, as mentioned before, cannot be easily
recover, even if we now introduce an MIJ with all the required properties. This is an evident shortcoming of this
procedure, but we believe it is compensated by the possibility of studying explicitly the general black-hole metric.

Observe that, as expected, RM can be obtained from the metric function as

6The Jordan triple product of three different 56s is defined only up to terms proportional to the symplectic products of two of the
three 56s. The ambiguity disappears when we consider them to be equal, since the symplectic products will automatically vanish.

7We thank M. Duff and L. Borsten for pointing out this fact to us.
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2RM (I) = @ e�2U

@IM : (5.24)

Furthermore, observe that the expression that we have given for the metric function reduces to those found in
[197] for all the magic N = 2 truncations of N = 8 supergravity and another simple truncation also reduces it to
that of the well-known STU model. The solution to the stabilization equations of the 4-dimensional supergravities
with duality groups of Type E7 [198–200] is also given by an analogous expression.

In the next sections we analyze what these formulae mean for 1- and 2-center solutions.

5.2.2 Single supersymmetric black-hole solutions

To study more closely these black-hole metrics it is convenient to introduce the so-called K-tensor [194, 201], which
is associated to the completely symmetric linearization of the Cartan invariant performed in [202] (see [203] for
more details):

J 04(Q1;Q2;Q3;Q4) � 1
6TrSL(8;R) fp1 � q2 � p3 � q4 + p1 � q3 � p4 � q2 + p1 � q4 � p2 � q3 + (p$ q)g

� 1
12 f[Q1 j Q2][Q3 j Q4] + [Q1 j Q3][Q2 j Q4] + [Q1 j Q4][Q2 j Q3]g

+ 1
4

�
PfSL(8;R)jjp1p2p3p4jj+ (p$ q)

�
;

(5.25)

where TrSL(8;R) stands for the trace of the products of p and q matrices (always one upper and one lower index),
we have defined, for convenience, the symmetric product

[Q1 j Q2] � � 1
2TrSL(8;R)[p1 � q2 + (p$ q)] ; (5.26)

and

Pfjjp1p2p3p4jj � 1
4!"ijklmnopp

ij
1 p

kl
2 p

mn
3 p

op
4 ;

Pfjjq1q2q3q4jj � 1
4!"

ijklmnopq1 ijq2 klq3mnq4 op :

(5.27)

The K-tensor can be defined by its contraction with four different fundamentals:

KMNPQQ1
MQ2

NQ3
PQ4

Q � J 04(Q1;Q2;Q3;Q4) ; (5.28)

and, since J 04 is completely symmetric in the four 56s, the K-tensor is also completely symmetric in the four
symplectic indices

KMNPQ = K(MNPQ) : (5.29)

By construction

J 04(Q;Q;Q;Q) = J4(Q) = KMNPQQMQNQPQQ ; (5.30)

and the Jordan triple product can be also written in terms of this tensor as

(Q;Q;Q)M = KM
NPQQNQPQQ ; (5.31)

so we can write the symplectic vector R (5.17) and the metric function e�2U (5.22) in the more useful form

RM = �
KMNPQH

NHPHQp
J4(H)

; (5.32)

e�2U = �
q
KMNPQHMHNHPHQ : (5.33)

Single, extremal, static (! = 0) black-hole solutions are associated to harmonic functions of the form

HM = AM +
QM=

p
2

r
; r � j~xj ; (5.34)
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where the AM are constants to be determined in terms of the physical constants of the solution. This is done by
requiring asymptotic flatness and absence of sources of NUT charge and using the relation between these constants
and the asymptotic values of the scalars (which we do not know explicitly). This means that we will not be able
to find the general form of these constants. Nevertheless, let us see how far we can go.

Asymptotic flatness implies

jM1j�2 = hR1 j I1 i = e�2U1 = 1 ; (5.35)

and requires the normalization

KMNPQA
MANAPAQ = ��2 : (5.36)

The absence of sources of NUT charge follows from setting ! = 0 in Eq. (5.8):

0 = hA j Q i = =m �Z1 IJM
IJ
1
�
; (5.37)

where we have used the definition of I, we have also used asymptotic flatness and the definition of the central
charge matrix of N = 8 supergravity

ZIJ � hVIJ j Q i : (5.38)

The projection

Z � 1p
2
ZIJM

IJ

jM j2 ; (5.39)

plays the rôle of central charge for the solutions associated to M IJ , which projects in the U(8) directions in which
supersymmetry is preserved. As shown in [177], it drives the flow of the metric function (but not that of the
N = 8 scalars). The condition of vanishing NUT charge can be written in the form

N = =mZ1 = 0 ; (5.40)

as in an N = 2 theory with central charge Z. As we are going to see the mass of the black hole is given by the
real part of Z1 which coincides with the absolute value (because the imaginary part vanishes)8:

M = jZ1j = <eZ1 = 1p
2
hR1 j Q i = 1p

2
�2KMNPQA

MANAPQQ : (5.41)

Taking these conditions and relations into account9, we find that the metric function has the form

e�2U =

s
1 +

4M

r
+

3�2KMNPQAMANQPQQ

r2
+

p
2�2KMNPQAMQNQPQQ

r3
+
�2J4(Q)=4

r4
: (5.42)

The asymptotic behavior confirms the identification of the mass parameter, which, as all the other coefficients
of the 1=rn terms in the square root (in particular J4(Q)), has to be positive for the metric to be regular. In
the near-horizon limit r ! 0, the last term dominates the metric function and we recover the well-known entropy
formula (5.14) setting � = 2. The coefficients of 1=r2 and 1=r3 do not have a simple expression in terms of the
physical parameters.

5.2.3 Supersymmetric 2-center solutions

Multicenter solutions can be constructed by choosing harmonic functions with several poles, as in N = 2 theories
[190, 191],

HM = AM +
X
a

QM
a =
p
2

j~x� ~xaj ; (5.43)

and tuning the parameters AM ;QM
a ; ~xa,so the integrability conditions of the equation for ! (5.8)

8Entirely analogous expressions have been given in [197] for the masses of the black holes of the magic N = 2 truncations of N = 8
supergravity.

9We will have to impose additional conditions, like the positivity of the mass, to ensure the regularity of the metric.
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hA j Qa i+
X
b

hQb j Qa i=
p
2

j~xa � ~xbj = 0 : (5.44)

Summing the above equations over a and taking into account the antisymmetry of the symplectic product, we find
that the constants A, apart from satisfying (5.36), also satisfy the condition (5.37) where Q =

P
aQa.

When these equations are satisfied, ! exists and describes the total angular momentum of the multi-black-hole
system, just as in the N = 2 cases, since the equations are identical.

The (square of) the metric function will contain many terms, up to order j~x � ~xaj�4. The term of order
j~x� ~xaj�1 has the coefficient

Ma � 2
p
2KMNPQA

MANAPQQ
a ; (5.45)

which corresponds to the mass that the ath center if it was isolated. The mass of the solution is the sum of these
parameters M =

P
aMa.

The coefficient of j~x � ~xaj�nj~x � ~xbj�m with m + n = 4 is one the five quartic invariants listed in [194] for
2-center solutions

I+2 = KMNPQQa
MQa

NQa
PQa

Q = J 04(Qa;Qa;Qa;Qa) = J4(Qa) ;

I+1 = KMNPQQa
MQa

NQa
PQb

Q = J 04(Qa;Qa;Qa;Qb) ;

I0 = KMNPQQa
MQa

NQb
PQb

Q = J 04(Qa;Qa;Qb;Qb) ;

I�1 = KMNPQQa
MQb

NQb
PQb

Q = J 04(Qa;Qb;Qb;Qb) ;

I�2 = KMNPQQb
MQb

NQb
PQb

Q = J 04(Qb;Qb;Qb;Qb) ;= J4(Qb) :

(5.46)

The I+2 I�2 give the contributions of each center to the entropy.
With more than two centers, other combinations will appear based on the quartic invariant. The sextic invariant

found in [194] does not seem to occur in these solutions.

5.3 Supersymmetric black holes and groups of Type E7

The concept of group of Type E7 axiomatizes the key properties of the fundamental (symplectic) representation
the exceptional group E7.

E7 is one of the exceptional simple groups on the classification of all the simple compact groups (or, analogously,
complex simple lie algebras) made by Élie Cartan [185]. The maximally non-compact real form G = E7(7) of E7

is precisely the group that appears in the coset scalar manifold G=H of N = 8 Supergravity.
The first axiomatic characterization of groups “of Type E7" through a module (irreducible representation) was

given in 1967 by Brown [204] (here we will follow [200], see also [199]).
A group G of Type E7 is a Lie group endowed with a representation R such that:

1. R is symplectic, i.e. (the subscripts “s” and “a” stand for symmetric and skew-symmetric throughout):

9!
[MN ] � 1 2 R�aR; (5.47)

C[MN ] defines a non-degenerate skew-symmetric bilinear form, that is, a symplectic producth�; �i: given two
different vectors Q1;Q2 2 R, h��i is defined as

hQ1;Q1i � QM
1 QN

2 
MN = �hQ1;Q2i : (5.48)

2. R admits a unique rank-4 completely symmetric primitive G-invariant structure, the so-called K-tensor

9!K(MNPQ) � 1 2 [R�R�R�R]s ; (5.49)

thus, by contracting the K-tensor with the same vector Q 2 R, we obtain a rank-four homogeneous G-
invariant polynomial (here & is a normalization constant):

q (Q) � &KMNPOQMQNQPQO; (5.50)

which corresponds to the evaluation of the rank-four symmetric invariant q-structure induced by theK-tensor
on four identical modules R.
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3. If a trilinear map t: R�R�R! R is defined such that

ht (Q1;Q2;Q3) ;Q4i = q (Q1;Q2;Q3;Q4) ; (5.51)

then it holds that

ht (Q1;Q1;Q2) ; t (Q2;Q2;Q2)i = �2 hQ1;Q2iq (Q1;Q2;Q2;Q2) : (5.52)

Therefore, for any Supergravity whose scalar manifold is a coset space G=H with G of the E7 type, we can apply the
same discussion that we made in section 5.2.1 for the N = 8 case and conclude that a solution to the stabilization
equations is given by

RM (I) = �(I; I; I)M ; (5.53)

where now t(�; �; �) = (�; �; �) is the trilinear product of the corresponding group G of Type E7. Once we have t(�; �; �)
for a particular G corresponding to a Supergravity, the supersymmetric black hole metric can be constructed
following exactly the same steps as in the N = 8 case.

Remarkably enough, all 2 � N � 8-extended four-dimensional Supergravities with symmetric scalar manifolds
G
H have G of Type E7 [195, 200]. The Supergravity symmetric groups G can be then classified into three different
classes [200, 205, 206], simple non-degenerate, simple degenerate and semi-simple non-degenerate, all of them
belonging to the class of groups of Type E7.

Simple non-degenerate A group of Type E7 is non-degenerate if the quartic form q(�; �; �; �) is absolutely
irreducible (irreducible over a separable closure of the base field). The simple non-degenerate four-dimensional
Supergravity groups G of Type E7 are given by [200]

1. G = E7(7) ! N = 8 Supergravity:

2. G = SO�(12)! N = 6 Supergravity:

3. G = SU(1; 5)! N = 5 Supergravity:

Simple degenerate The simple degenerate four-dimensional Supergravity groups G of Type E7 are given by
[200]

1. G = U(3; nv)! N = 3 Supergravity coupled to nv vector multiplets:

2. G = U(1; nv)! N = 2 Supergravity minimally coupled to nv vector multiplets:

For either G = U(3; nv) or G = U(1; nv), as well as for generic reducible groups of Type E7, one can see that
the quartic form is reducible [200, 206] as follows

KMNPQ = �SM(NSPQ) ; (5.54)

where � 2 R is a constant and S is the rank-two symmetric symplectic tensor defined by

Qi
1Q

j
2�ij = SMNQM

1 QN
2 + iCMNQM

1 QN
2 ; (5.55)

where �ij is the invariant metric of the fundamental irrep. r+ s of U (r; s), and Qi
x and Qi

x are the charge vectors
in the complex (manifestly U (r; s)-covariant) symplectic frame. It can be proven now that

q(Q;Q;Q;Q) = 

�
SMNQMQN

�2
; (5.56)

for an appropriate number 
. This means that for these Supergravities the metric factor e�2U can be written
simply as

e�2U � ��SMNH
MHN

�� ; (5.57)

which indeed can be explicitly checked by solving the stabilization equations by algebraic methods.
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Semi-simple non-degenerate The semi-simple non-degenerate four-dimensional Supergravity groups G of
Type E7 are given by [200]

1. G = SL(2;R)� SO(6; nv)! N = 4 Supergravity coupled to nv vector multiplets:

2. G = SL(2;R)� SO(2; nv)! N = 2 Supergravity coupled to nv + 1 vector multiplets:

5.4 N = 2 Supergravity supersymmetric black holes

The case ofN = 2 Supergravity cannot be solved in general since the scalar manifold is not specified unambiguously.
As explained in chapter 3, supersymmetry only constraint the manifold spanned by the scalar fields on the vector
multiplets to be of Special Kähler type, a condition which does not fix the manifold unequivocally. What can
been done, however, is to characterize and classify the most general supersymmetric solutions of the theory, a
knowledge that will be of outermost importance when trying to propose a formalism to deal with general (not
only supersymmetric) black hole solutions .

The supersymmetric solutions of Supergravity, and in particular of N = 2, can be classified in two classes, the
time-like and null, regarding the casual character of the Killing vector constructed from the Killing spinors and
the Clifford-algebra 
-matrices [101, 103–109, 118, 119]. The black hole solutions belong to the time-like class, so
that’s the particular class that we are going to review here, assuming from the beginning that the hyper-scalars
have been set to a constant value, since otherwise we don’t expect regular solutions. Notice that this is a particular
case of the exposition made in section 5.1, but we include it here since it is of capital importance for chapter 6.

The black hole supersymmetric metric is given by

ds2 = e2U (dt+ !)2 � e�2U�mndx
mdxn : (5.58)

Notice that the only difference respect to the general Supergravity black hole metric (4.2) (assuming staticity
! = 0) is that now the transverse metric is flat, as corresponds in (4.2) to the extremal limit r0 ! 0. That is,
supersymmetry always implies extremalily10, but not the other way around [207, 208].

We take now the covariantly holomorphic section V of Special Kahler geometry and a function X (z; �z), with
Kähler weight such that V=X is Kähler neutral, and define

R+ iI = V=X : (5.59)

Then, it can be shown that a for a supersymmetric black hole we have

e�2U = hR j Ii ; (5.60)

(d!)xy = 2�xyzh I j @zI i : (5.61)

IM = aM � QM

p
2
� : (5.62)

The vector field strengths are given by

F = � 1p
2
fd[e2UR(dt+ !)]� ?[e�2UdI ^ (dt+ !)]g ; (5.63)

and the scalar fields zi can be computed by taking the quotients

zi = (V=X)i=(V=X)0 : (5.64)

Given I, R � <e(V=X) can in principle be found by solving the generalized stabilization, which depend on the
specific model under consideration. Solving the stabilization equations completely determines the solution, since
all the physical fields can be constructed in terms of IM = aM � QMp

2
� , as it can be checked from the previous

formulae.

10Of course, this conclusion relies on the assumption that r0 can be interpreted as the extremality parameter for all the Supergravity
black holes.
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Chapter 6

The H-F.G.K. formalism

In this chapter we are going to introduce a new formalism, the so-called H-F.G.K. formalism, based on a dimensional
reduction of the original four-dimensional action and the use of a new set of duality-covariant variables inspired
by supersymmetry, which eases the explicit construction of non-supersymmetric black hole solutions of N = 2
four-dimensional ungauged Supergravity.

6.1 H-FGK for N = 2, d = 4 supergravity

In [131, 163] it was shown that the search of single, static, spherically-symmetric black-hole solutions of an N = 2,
d = 4 supergravity coupled to nv vector multiplets (and, correspondingly, including nv complex scalars zi and nv+1
Abelian vector fields A�

�) with electric (q�) and magnetic (p�) charges described by the 2(nv + 1)-dimensional
symplectic vector (QM ) � (p�; q�)

T , is remarkably simplified by going to a new set of 2(nv + 1) variables HM

which form a linear, symplectic, representation of the U -duality group and that become harmonic functions on
euclidean R3 for supersymmetric black hole solutions.

We proceed now to describe the change of variables, from those defining a black-hole solution for given electric
and magnetic charges (QM ) = (p�; q�)

T, namely the metric function U and the complex scalars zi1, to the variables
(HM ) = (H�; H�)

T that have the same transformation properties as the charges. There is an evident mismatch
between these two sets of variables, because U is real. For consistency we will introduce a complex variable X of
the form2

X = 1p
2
eU+i� ; (6.1)

although the phase � does not occur in the original FGK formalism. The change of variables will then be well
defined, and the absence of � will lead to a constraint on the new set of variables: this constraint is related to the
absence of NUT charge, a possibility which in d = 4 is allowed for by spherical symmetry.

The theory is specified by the prepotential3 F , a homogeneous function of second degree in the complex
coordinates X�. Consequently, defining

F� � @F
@X�

and F�� � @2F
@X�@X�

; we have: F� = F��X� : (6.2)

Since the matrix F�� is homogenous of degree zero and X has the same Kähler weight as the covariantly holo-
morphic section �VM� = � L�

M�

�
= eK=2

� X�

F�
�
; (6.3)

where K is the Kähler potential, we also find

M�

X
= F�� L

�

X
: (6.4)

Defining the Kähler-neutral, real, symplectic vectors RM and IM by

RM = <eVM=X ; IM = =mVM=X ; (6.5)
1See section 4.1 for more details.
2 In this section we will be following the conventions of Ref. [112], where the function X appears as a scalar bilinear built out of

the Killing spinors.
3We only use the prepotential here to determine quickly the homogeneity properties of the objects we are going to deal with. These

properties are, however, valid for any N = 2 theory in any symplectic frame, whether or not a prepotential exists.
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and using the symplectic metric

(
MN ) �
�

0 I
�I 0

�
(6.6)

as well as its inverse 
MN to lower and raise the symplectic indices according to the convention

RM = 
MNRN ; RM = RN

NM ; (6.7)

one can rewrite the complex relation (6.4) in the real form

RM = �MMN (F)IN : (6.8)

The symmetric symplectic matrix

M(A) �
0
@ =mA�� + <eA�
 =mA�1j
� <eA�� �<eA�
=mA�1j
�

�=mA�1j�
<eA
� =mA�1j��

1
A ; (6.9)

can be associated with any symmetric complex matrix A�� with a non-degenerate imaginary part (such as F��
and the period matrix N��). The inverse of MMN , denoted by MMN , is the result of raising the indices with the
inverse symplectic metric.

It is also immediate to prove the relation

dRM = �MMN (F) dIN : (6.10)

From this equality, its inverse and the symmetry properties of MMN we can derive the following relation between
partial derivatives (see e.g. [209]):

@IM
@RN

=
@IN
@RM

= �@R
M

@IN = �@R
N

@IM = �MMN (F) : (6.11)

Since we want the new variables to become harmonic functions on euclidean R3, we introduce two dual sets of
variables HM and ~HM and replace the original n+ 1 fields X; zi by the 2n+ 2 real variables HM (� )

IM (X;Z;X�; Z�) = HM : (6.12)

The dual variables ~HM can be identified with RM , which we can express as functions of the HM through Eq. (6.8).
This gives VM=X as a function of the HM . The physical fields can then be recovered by

zi =
Vi=X
V0=X and e�2U =

1

2jXj2 = RMIM : (6.13)

The phase of X, �, can be found by solving the differential equation (cf. Eqs. (3.8), (3.28) in Ref. [210])

_� = 2jXj2 _HMHM �Q? ; where Q? =
1
2i _z

i@iK + c:c: (6.14)

is the pullback of the Kähler connection 1-form

Q? =
1
2i _z

i@iK + c:c: (6.15)

Having detailed the change of variables, we want to rewrite the FGK action for static, spherically symmetric
solutions of N = 2, d = 4 Supergravity [77], i.e.

IFGK[U; z
i] =

Z
d�
n
( _U)2 + Gij� _zi _z� j� � 1

2e
2UMMN (N )QMQN + r20

o
; (6.16)

in terms of the variables HM . We start by defining the function W(H), which can be identified with the Hesse
potential

W(H) � ~HM (H)HM = e�2U =
1

2jXj2 ; (6.17)
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which is homogenous of second degree in the HM . Using the properties (6.11) one can show that

@MW � @W

@HM
= 2 ~HM ; (6.18)

@MW � @W

@ ~HM

= 2HM ; (6.19)

@M@NW = �2MMN (F) ; (6.20)

W @M@N logW = 2MMN (N ) + 4W�1HMHN ; (6.21)

where the last property is based on the following relation4

�MMN (N ) =MMN (F) + 4V(MV�N) : (6.22)

Using the special geometry identity Gij� = �iDiVMDj�V�M , we can rewrite the effective action in the form

� Ie� [H] =

Z
d�
n
1
2@M@N logW

�
_HM _HN + 1

2QMQN
�
� �� r20

o
; (6.23)

where we have defined

� �
 

_HMHM

W

!2

+

�QMHM

W

�2
: (6.24)

The � -independence of the Lagrangian implies the conservation of the Hamiltonian H

H � � 1
2@M@N logW

�
_HM _HN � 1

2QMQN
�
+

 
_HMHM

W

!2

�
�QMHM

W

�2
� r20 = 0 : (6.25)

The equations of motion can be written in the form

1
2@P @M@N logW

�
_HM _HN � 1

2QMQN
�
+ @P @M logW �HM � d

d�

�
@�

@ _HP

�
+

@�

@HP
= 0 : (6.26)

Contracting them with HP and using the homogeneity properties of the different terms as well as the Hamiltonian
constraint above, we find the equation (cf. Eq. (3.31) of Ref. [210] for the stationary extremal case)

1
2@M logW

�
�HM � r20HM

�
+

 
_HMHM

W

!2

= 0 ; (6.27)

which corresponds to the equation of motion of the variable U in the standard formulation.
Note that in the extremal case (r0 = 0) and in the absence of the NUT charge

_HMHM = 0 ; (6.28)

the equations of motion are solved by harmonic functions _HM = QM [209].

6.1.1 Extremal black holes

Extremal supersymmetric black holes are expected to be described by HM (� ) which are harmonic in Euclidean
R3, i.e. linear in � 5:

HM = AM � 1p
2
BM� ; (6.29)

4 This relation can be derived from the identities in Ref. [139].
5 As mentioned above, this anstaz arises quite naturally when one imposes the constraint Eq. (6.28), but it may not be the most

general one. The known extremal solutions (usually non-supersymmetric) that do not conform to this ansatz do not satisfy that
constrained, either [210, 211]. On the other hand, the representation of a solution in terms of the HMmay not be unique and the
harmonicity or the fact that the constraint Eq. (6.28) is satisfied or not, may not always be a characteristic feature of a solution. In
what follows we are going to explore the (large) sector of the space of black-hole solutions which can be described by harmonc HM s
and, therefore, satisfy the constraint Eq. (6.28). Analogous remarks apply to the non-extremal hyperbolic ansatz to be studied later.
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where AM and BM are integration constants to be determined as functions of the independent physical constants
(namely, the charges QM and the values of the scalars at spatial infinity zi1) by using the equations of motion
(6.26)-(6.28) and the asymptotic conditions.

The equations of motion for the above ansatz can be written in a simple and suggestive form

@P [Vbh(H;Q)� Vbh(H;B)] = 0 ; (6.30)

Vbh(H;Q)� Vbh(H;B) = 0 ; (6.31)

AMBM = 0 : (6.32)

Observe that the first two equations are automatically solved for BM = QM , which corresponds to the supersym-
metric case. The third equation (enforcing absence of NUT charge) takes the form AMQM and still has to be
solved, which can be done generically [190, 191] as we are going to show.

Furthermore, observe that the Hamiltonian constraint (6.31) is equivalent to the requirement that the black-hole
potential, evaluated on the solutions has the same form in terms of the true or the fake central charge6

~Z(�;B) � hV j B i ; (6.33)

that is

� Vbh(�;Q) = j ~Zj2 + Gij�Di
~ZDj�

~Z� : (6.34)

The asymptotic conditions take the form

W(A) = 1 ; (6.35)

zi1 =
~Hi(A) + iAi

~H0(A) + iA0
; (6.36)

but can always be solved, together with (6.32) as follows: if we write X as

X = 1p
2
eU+i� ; (6.37)

then, from the definition of IM (6.5) we get

HM =
p
2e�U =m(e�i�VM ) ; (6.38)

and, at spatial infinity � = 0, using asymptotic flatness (6.35)

AM =
p
2=m(e�i�1VM1 ) : (6.39)

Now, to determine �1 we can use (6.32) and the definition of fake central charge (6.33). Observe that

AMB
M = hH j B i = =mh V=X j B i = =m( ~Z=X) = e�U=m(e�i� ~Z) = 0 ; (6.40)

from which it follows first that

ei� = � ~Z=j ~Zj ; (6.41)

and is then the general expression for the AM as a function of the BM and the zi1:

AM = �
p
2=m

 
~Z�1
j ~Z1j

VM1
!
: (6.42)

6 It is worth stressing that, even though the first equation is the derivative of the second with respect to HP , solving the second for
some functions HM does not imply having solved the first. Only if we find a BM such that the second equation is satisfied identically
for any HM will the first equation be satisfied as well. The number of BM s with this property and their value depend on the particular
theory under consideration, but their existence is a quite general phenomenon.
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In general, the sign of AM should be chosen to make HM finite (and, generically, the metric non-singular) in the
range � 2 (�1; 0). The positivity of the mass is a physical condition that eliminates some singularities of the
metric. As we are going to see in Eq. (6.50), this requirement singles out the upper sign in the above formula.

This reduces the problem of finding a complete solution to the determination of the constants BM as functions
of the physical parameters QM ; zi1, which must solve equations (6.30) and (6.31).

It is useful to analyze the near-horizon and spatial-infinity limits of these two equations. The near-horizon
limit of (6.31) plus the definition of the fake central charge lead to the following chain of relations7

S=� = 1
2W(B) = �Vbh (B;Q) = j ~Z(B;B)j2 ; (6.43)

where ~Z(B;B) is the near-horizon value of the fake central charge. The last of these relations, together with the
condition (6.34) imply that, on the horizon, the fake central charge reaches an extremum

@ij ~Z(�h; B)j = 0 : (6.44)

The near-horizon limit of (6.30) leads to

@MVbh(B;Q) = 0 ; (6.45)

which says that the BM extremize the value of the black-hole potential on the horizon. Since the black-hole
potential is invariant under a global rescaling of the HM , the solutions (that we will call generically attractors
BM ) of these equations are determined up to a global rescaling which can be fixed by imposing Eq. (6.31).

The BM must transform under the duality group of the theory (embedded in Sp(2n + 2;R)) in the same
representation as the HM , the charges QM and the constants AM . In certain cases this poses strong constraints on
the possible solutions since, building an object that transforms in the right representation of the duality group and
has dimensions of length squared from QM and zi1 can be far from trivial. A possibility which is always available
is the Freudenthal dual defined in Ref. [196], generalizing the definition made in Ref. [195], and further explored
in [212], where it was shown that the lagrangian (6.23) has indeed a gauge symmetry which is a generalization
of a Frehudental transformation on HM : Freudenthal duality in N = 2; d = 4 theories can be understood as the
transformation from the HM to the ~HM (H) variables. The same transformation can be applied to any symplectic
vector, such as the charge vector. Then, in our notation and conventions, the Freudenthal dual of the charge
vector, ~QM , is defined by

~QM = 1
2

@W(Q)
@QM

: (6.46)

It is not hard to prove that this duality transformation is an antiinvolution

~~QM = �QM ; (6.47)

and using Eq. (6.17) to show that

W( ~Q) = W(Q) : (6.48)

It is harder to show that the critical points of the black-hole potential are invariant under Freudenthal duality
[196]. Therefore, since BM = QM is always an attractor (the supersymmetric one),

BM = ~QM ; (6.49)

will always be another attractor.
Let us now consider the spatial infinity limit taking into account the definition of the mass in these spacetimes

and the definition of the fake central charge

M = _U(0) = 1p
2
hR(A) j Bi = �j ~Z(A;B)j : (6.50)

As mentioned before, to have a positive mass we must use exclusively the upper sign in (6.41) and (6.42) and we
do so from now onwards. In the supersymmetric case, when BM = QM and the fake central charge is the true
one, this is the supersymmetric BPS relation.

The asymptotic limit of (6.31) plus (6.34) and the above relation give

7In this and other equations, the expression Vbh (B;Q) stands for standard the black-hole potential with the functions HM (�)
replaced by the constants BM .
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M2 +
h
Gij�Di

~ZDj�
~Z�
i
1
+ Vbh1 = 0 ; (6.51)

which, when compared with the general BPS bound [77], lead to the identification of the scalar charges �i with
the values of the covariant derivatives of the fake central charges at spatial infinity

�i = Di
~Z
���
1
: (6.52)

First-order formalism

First-order flow equations for extremal BPS and non-BPS black holes can be easily found following [177] but using
the generic harmonic functions (6.29): let us consider the Kähler-covariant derivative of the inverse of the auxiliary
function

DX�1 = ih V j V�iDX�1 = ihD(V=X) j V�i = ih d(V=X) j V�i

= ih d(V=X)� d(V=X)� j V�i = �2h dH j V�i

= +
p
2 ~Z�(�;B) d� ;

(6.53)

where we have used the normalization of the symplectic section in the first step , the property hDV j V�i = 0 in
the second, the Kähler-neutrality of V=X in the third, hDV� j V�i = h V� j V�i = 0 in the fourth, the definition of
I = H in the fifth, and the ansatz (6.29) and the definition of the fake central charge (6.33) in the sixth.

From this equation and (6.37) and (6.41) we find the standard first-order equation for the metric function U :

de�U

d�
= j ~Z(�;B)j : (6.54)

Let us now consider the differential of the complex scalar fields:

dzi = iGij�hDj�V� j DkV idzk = iXGij�hDj�V� j Dk(V=X) idzk

= iXGij�hDj�V� j @k(V=X) idzk = iXGij�hDj�V� j d(V=X) i

= iXGij�hDj�V� j d(V=X)� d(V=X)� i = �2XGij�hDj�V� j dH i

= +
p
2XGij�hDj�V� j B i d� =

p
2XGij�Dj�

~Z�(�;B) d� ;

(6.55)

where we have used the same properties as before. To put this expression in a more conventional form we can use
the covariant holomorphicity of ~Z writing

Dj�
~Z� = Dj�

j ~Zj2
~Z =

2j ~Zj@j� j ~Zj
~Z = 2e�i�@j� j ~Zj ; (6.56)

and plugging this result in the expression above:

dzi

d�
= 2eUGij�@j� j ~Zj : (6.57)

It is easy to check that these first order equations imply the second-order equations of motion

�U + e2UVbh(�;B) = 0 ; (6.58)

�Zi + �jk
i _Zj _Zk + e2U@iVbh(�;B) = 0 ; (6.59)

which coincide with the original ones if

Vbh(�;B) = Vbh(�;Q) ; (6.60)

for any � (not just for ths solution; see the remark in footnote 6).
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6.1.2 Non-extremal black holes: the generic Ansatz

Precious experience [89] (see also [163] and, further, [213, 214] for 5-dimensional examples) suggests that a quite
general ansatz for the variables HM for non-extremal black holes of N = 2; d = 4 supergravity is8

HM (� ) = AM cosh r0� +
BM

r0
sinh r0� ; (6.61)

for some integration constants AM and BM that, as in the extremal case, have to be determined by solving the
equations of motion and by imposing the standard normalization of the physical fields at spatial infinity.

Using this ansatz, the equations of motion (6.25)-(6.27) take the form

1
2@P @M@N logW

�
BMBN � r20AMAN

�� @P (Vbh(�;Q)=W) = 0 ; (6.62)

� 1
2@M@N logW

�
BMBN � r20AMAN

�� Vbh(�;Q)=W = 0 ; (6.63)

AMBM = 0 ; (6.64)

where we have used the third equation and the homogeneity properties of the Hessian potential W in order to
simplify the first two.

In the non-extremal case we can define several fake central charges:

~Z(�;B) � hV j B i ; ~Z(�;B�) � hV j B� i ; (6.65)

where we have defined the shifted coefficients

BM
� � lim

�!�1
r0H

M (� )

sinh r0�
= BM � r0AM : (6.66)

Imposing now the same asymptotic conditions on the fields as in the extremal case and the condition (6.64), we
arrive again to (6.42). Therefore, we only have to determine the BM s plus the non-extremality parameter r0 by
imposing the equations of motion.

The mass is given again by Eqs. (6.50) and the expression for the event horizon area (+) and the Cauchy
horizon area (�) are given by

Ah�
4�

= W(B�) : (6.67)

In the near-horizon limit, the equations of motion, upon use of the above formulae for the area of the event horizon,
lead to the following relations

Ah�
4�

= �Vbh(B�)� 2r0MMN [F(B�)]AMBN
� = W(B�) ; (6.68)

@PVbh(B�) = �2r0@PMMN [F(B)]AMBN
� = �2r20@PMMN [F(B)]AMAN ; (6.69)

which generalize Eqs. (6.43) and (6.45) to the non-extremal case. In the last identity we have used the expression

HM@PMMN (F) = 0 : (6.70)

The right-hand side of Eq. (6.69) would, then, vanish if AM / BM . This is a special case that we will study in
Section 6.1.3. Another possibility is that F�� and, henceforth, MMN (F) are constant, as it happens in quadratic
models but, in the general case @PVbh(B�) 6= 0 for non-extremal black holes and we conclude that, in general, the
values of the scalars on the horizon do not extremize the black-hole potential.

8See the caveats in footnote 5.



62 CHAPTER 6. H.F.G.K. FORMALISM

First-order formalism

The derivation carried out for extremal black holes in Section 6.1.1 can be straightforwardly extended to the
non-extremal case. As in the 5-dimensional case studied in Ref. [214], the trick is to define a new coordinate �
and a function f(�)

� � sinh r0�

r0 cosh r0�
f(�) � 1p

1� r20�2
= cosh r0� ; (6.71)

so that the hyperbolic ansatz (6.61) for HM can be rewritten in the “almost extremal form”:

HM = f(�)(AM +BM�) � f(�)ĤM : (6.72)
Then, following the same steps that lead to Eqs. (6.54) and (6.74) one can obtain the first-order flow equations:

de�Û

d�
=

p
2j ~Z(�;B)j ; (6.73)

dzi

d�
= �2

p
2 eÛGij�@j� j ~Z(�;B)j : (6.74)

where we ave introduced the hatted warp factor Û = U + log f .
Similarly to the extremal case, it is not difficult to show that these first-order equations imply the second order

ones:

d2Û

d�2
+ e2ÛVbh(�;

p
2B) = 0 ; (6.75)

d2zi

d�2
+ �kl

i dz
k

d�

dzl

d�
+ e2ÛGij�@j�Vbh(�;

p
2B) = 0 ; (6.76)

plus the constraint9

 
dÛ

d�

!2

+ Gij� dz
i

d�

dz� j
�

d�
+ e2ÛVbh(�;

p
2B) = 0 ; (6.77)

but now with respect to the new variable � and the new function Û . In order to compare these equations with the
actual second-order equations of the warp factor and the scalars we have to rewrite them in terms of the variable
� and rescale Û to U . For the former, by using d=drho = f2d=d� and Eq. (6.73) one finds:

�U � 2
p
2�

f
eU jZ(�;

p
2B)j+ r20

f2
+
e2U

f2
Vbh(�;

p
2B) ; (6.78)

from which it follows the relation between the true black hole potential and the fake one that must hold for the
above second-order equations to imply the true ones:

e2UVbh(�;Q) = e2U

f2
Vbh(�;

p
2B)� 2

p
2r20�

f
eU jZ(�;

p
2B)j+ r20

f2
: (6.79)

The same condition ensures that the constraint Eq. (6.77) implies the standard Hamiltonian constraint. For
the scalar equations we find the condition

@i

(
e2UVbh(�;Q)� e2U

f2
Vbh(�;

p
2B) +

4
p
2r20�

f
eU jZ(�;

p
2B)j

)
= 0 : (6.80)

There no other conditions to be satisfied for the firs-order equations to imply all the second order ones. Taking
the derivative with respecto to � of Eq. (6.79) we find that, if we assume that this relation is satisfied for any �
(or any HM ), then the last equation is also satisfied and all the second-order equations are satisfied.

Evaluating Eq. (6.79) at spatial infinity, (� = 0, which corresponds to � = 0) we find the following relation
between the charges, the fake charges, the moduli at infinity and the non-extremality parameter:

Vbh(�1;Q)� Vbh(�1;
p
2B) = r20 : (6.81)

9Observe that the right-hand side of this equationis not r2
0
:
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6.1.3 Non-extremal generalizations of doubly-extremal black holes

In this section we are going to solve the equations of the H-FGK system for the non-extremal black holes whose
scalars are constant over the whole spacetime using the hyperbolic ansatz Eq. (6.61) for any theory of N = 2; d = 4
supergravity. Thus, we assume

zi1 = zih ; (6.82)

which requires

BM / AM ; (6.83)

where the constants AM are given by Eq. (6.42).
Using the proportionality of the BM s and AM s in the � ! 0� or � ! �1 limit of (6.62) we get

@KVbh(�1;Q) = 0 ; (6.84)

which proves that the scalars must assume a value �1 = �h which extremizes the black hole potential just as in
the extremal case (this is something that has to be taken into account when one applies Eq. (6.42) to find the
AM ). We can, therefore, use Eq. (6.43) that gives the value of the black-hole potential at the horizons in terms of
the fake central charge there ~Z(B;B) (not ~Z(�;B�))

� Vbh(�1;Q) = j ~Z(B;B)j2 : (6.85)

The proportionality constant between BM and AM is easily determined to be �W1=2(B) by using the normal-
ization at infinity W(A) = 1 and choosing the sign so as to make the functions HM 6= 0 for � 2 (�1; 0). Then we
can write

HM (� ) = AM

�
cosh r0� �W1=2(B)

sinh r0�

r0

�
: (6.86)

and the values of BM
� are

BM
� = �[W1=2(B)� r0]AM ; (6.87)

and

W(B�) = [W1=2(B)� r0]2 : (6.88)

A relation between the value of W1=2(B) and physical parameters and r0 can be found by taking the � ! 0�

of Eq. (6.63)

W(B) = r20 � Vbh(�1;Q) : (6.89)

Another relation comes from the definition of mass M = _U(0) which gives M = ~HM (A)BM . Using the
proportionality between AM and BM we find that

M = W1=2(B) : (6.90)

The final expression for the functions HM (� ) and the entropies of all these solutions, for any theory, is

HM (� ) = AM

�
cosh r0� �M sinh r0�

r0

�
; (6.91)

S� = �[M � r0]2 ; (6.92)
(6.93)

where the non-extremality parameter is, upon use of Eq. (6.85) given by

r0 =

q
M2 � j ~Z(B;B)j2 : (6.94)
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Chapter 7

Quantum black holes in String Theory

In this chapter we use the H-F.G.K. formalism (see section 6) to define a new class of black hole solutions in
Type-IIA String Theory compactified on a Calabi-Yau (C.Y.) three-fold, in the presence of perturbative and non-
perturbative corrections. We have chosen to call them quantum black holes, since they only exist when the
quantum corrections to the prepotential are present, and no classical limit can be assigned to them. We will
also obtain the first explicit and complete black hole solution in the presence of non-perturbative corrections to
the prepotential. Supersymmetric black hole solutions to N = 2 four-dimensional ungauged Supergravity in the
presence quantum corrections have been previously considered in [132, 215]. The entropy of supersymmetric black
holes in the presence of perturbative and non-perturbative corrections has been investigated in [188].

7.1 Type-IIA String Theory on a Calabi-Yau manifold

Type-IIA String Theory compactified to four dimensions on a C.Y. three-fold, with Hodge numbers (h1;1; h2;1), is
described, up to two derivatives, by a N = 2; d = 4 ungauged Supergravity whose prepotential is given in terms
of an infinite series around =mzi !11 [11, 160, 216]

F = � 1

3!
�0ijkz

izjzk +
ic

2
+

i

(2�)3

X
fdig

nfdigLi3
�
e2�idiz

i
�
; (7.1)

where zi; i = 1; :::; nv+1 = h1;1, are the scalars in the vector multiplets,2 c = ��(3)
(2�)3 is a model dependent number3,

�0ijk are the classical intersection numbers, di 2 Z+ is a h1;1-dimensional summation index and Li3(x) is the third
polylogarithmic function, defined in section 7.3.2 together with some of its properties. The first two addends in
the prepotential correspond to tree level and perturbative contributions in the �0 expansion, respectively

FP = � 1

3!
�0ijkz

izjzk +
ic

2
; (7.2)

whereas the third term accounts for non-perturbative corrections produced by world-sheet instantons.

FNP =
i

(2�)3

X
fdig

nfdigLi3
�
e2�idiz

i
�
: (7.3)

These configurations get produced by (non-trivial) embeddings of the world-sheet into the C.Y. three-fold. The
holomorphic mappings of the (genus 0) string world sheet onto the h1;1 two-cycles of the C.Y. three-fold are
classified by the nubers di, which count the number of wrappings of the world sheet around the i�th generator of
the integer homology group H2(C.Y.;Z). The number of different mappings for each set of fdig (� fd1; :::; dh1;1g)
or, in other words, the number of genus 0 instantons is denoted by nfdig

4

The full prepotential can be rewritten in homogeneous coordinates X�, � = (0; i) as

F (X ) = � 1

3!
�0ijk

X iX jX k

X 0
+
ic(X 0)2

2
+
i(X 0)2

(2�)3

X
fdig

nfdigLi3

�
e2�idi

Xi

X0

�
; (7.4)

1Actually, the prepotential obtained in a Type-IIA C.Y. compactification is symplectically equivalent to the prepotential (7.1).
2There are also h2;1 + 1 hypermultiplets in the theory. However, they can be consistently set to a constant value.
3� is the Euler characteristic, which for C.Y. three-folds is given by � = 2(h1;1 � h2;1).
4See, e.g. [217] for more details on the stringy origin of the prepotential.
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with the scalars zi given by5

zi =
X i

X 0
: (7.5)

We are interested in studying spherically symmetric, static, black hole solutions of the theory defined by Eq.
(7.1). In order to do so we are going to use the H-F.G.K. formalism [89, 131, 214], based on the use of a new
set of variables HM ; M = (�;�), that transform linearly under duality and reduce to harmonic functions on
the transverse space R3 in the supersymmetric case6. However, the theory defined by Eq. (7.1) is extremely
complicated and therefore the task of obtaining explicit black hole solutions is almost hopeless. Therefore, we
are going to consider a particular approximation, namely, the large volume limit =mzi ! 1: in section 7.2 we
will discard the non-perturbative corrections and consider only the perturbative ones, and in section 7.3 we will
consider a self-mirror C.Y., and therefore the perturbative correction exactly vanishes, and the first non-trivial
non-perturbative correction to the prepotential.

7.2 Perturbative quantum black holes

The non-perturbative corrections (7.3) are exponentially suppressed and therefore can be safely ignored going to
the large volume limit. Therefore our starting point is going to be Eq. (7.2), which in homogeneous coordinates
X�; � = (0; i), can be written as

F (X ) = � 1

3!
�0ijk

X iX jX k

X 0
+
ic

2

�X 0
�2

: (7.6)

The scalars zi are given by

zi =
X i

X 0
: (7.7)

The scalar geometry defined by (7.6) is the so called quantum corrected d-SK geometry [218, 219].The attractor
points of this class of models have been extensively studied in [220–222]. In this scenario, the classical case is
modified and the scalar manifold, due to the correction encoded in c, is no longer homogeneous, and therefore,
the geometry has been corrected by quantum effects.

7.2.1 A quantum class of black holes

In chapter 6, thanks to the H-F.G.K. formalism, we reduced the task of obtaining black hole solutions of four-
dimensional ungauged N = 2 Supergravity to solving the following set of equations

EP = 1
2@P @M@N logW

h
_HM _HN � 1

2QMQN
i
+ @P @M logW �HM � d

d�

�
@�

@ _HP

�
+

@�

@HP
= 0 ; (7.8)

together with the Hamiltonian constraint

H � � 1
2@M@N logW

�
_HM _HN � 1

2QMQN
�
+

 
_HMHM

W

!2

�
�QMHM

W

�2
� r20 = 0 ; (7.9)

where

� �
 

_HMHM

W

!2

+

�QMHM

W

�2
; (7.10)

and

W(H) � ~HM (H)HM = e�2U : (7.11)

The theory is now expressed in terms of 2 (nv + 1) variables HM and depends on 2 (nv + 1) + 1 parameters:
2 (nv + 1) charges QM and the non-extremality parameter r0, from which one can reconstruct the solution in
terms of the original fields of the theory (that is it, the space-time metric, scalars and vector fields).

5This coordinate system is therefore only valid away from the locus X 0 = 0.
6For more details, see section 6.
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For Eq. (7.2), the general W(H) is an extremely involved function, and one cannot expect to solve in full
generality the corresponding differential equations of motion, or even the associated algebraic equations of motion
obtained by making use of the hyperbolic Ansatz for the HM . Therefore, we are going to consider a particular
truncation, which will give us the desired quantum black holes

H0 = H0 = Hi = 0; p0 = p0 = qi = 0 : (7.12)

Eq. (7.31) implies

W(H) = �
���0ijkHiHjHk

��2=3 ; (7.13)

where � = (3!c)1=3

2 must be positive in order to have a non-singular metric. Hence c > 0 is a necessary condition
in order to obtain a regular solution and a consistent truncation. The corresponding black hole potential reads

Vbh =
W(H)

4
@ij logW(H)QiQj ; (7.14)

The scalar fields, purely imaginary, are given by

zi = i (3!c)
1=3 Hi�

�0ijkH
iHjHk

�1=3 ; (7.15)

and are subject to the following constraint, which ensures the regularity of the Kähler potential (X 0 = 1 gauge)

�0ijk=mzi=mzj=mzk >
3c

2
: (7.16)

Substituting Eq. (7.15) into Eq. (7.16), we obtain

c >
c

4
; (7.17)

which is an identity (assuming c > 0) and therefore imposes no constraints on the scalars. This phenomenon can
be traced back to the fact that the the Kähler potential is constant when evaluated on the solution, and given by

e�K = 6c ; (7.18)

which is well defined, again, if c > 0. Since the volume of the C.Y. manifold is proportional to e�K, Eq. (7.18)
implies that such volume remains constant and, in particular, that the limit =mzi ! 1 does not imply a large
volume limit of the compactification C.Y. manifold, a remarkable fact that can be seen as a purely quantum
characteristic of our solution7. Notice that it is also possible to obtain the classical limit =mzi � 1 taking c� 1,
that is, choosing a Calabi-Yau manifold with large enough c. In this case we would have also a truly large volume
limit.

We have seen that, in order to obtain a consistent truncation, a necessary condition is c > 0, which implies
that W (H) is well defined. We can go even further and argue that this is a sufficient condition by studying the
equations of motion EP :

A consistent truncation requires that the equation of motion of the truncated field is identically solved for the
truncation value of the field. First, notice that the set of solutions of Eqs. (7.8) and (7.9), taking into account
(7.31), is non-empty, since there is a model-independent solution, given by

Hi = ai � pip
2
�; r0 = 0 ; (7.19)

which corresponds to a supersymmetric black hole. However, the equations of motion EP don’t know about
supersymmetry: it is system of differential equations whose solution can be written as

HM = HM (a; b) ; (7.20)

where we have made explicit the dependence in 2nv+2 integration constants. When the solution (7.20) is plugged
into (7.9) is when we impose, through r0, a particular condition about the extremality of the black hole. If r0 = 0
the integration constants are fixed such as the solution is extremal. In general there is not a unique way of doing it,
one of the possibilities being always the supersymmetric one. Therefore, given that for our particular truncation

7Notice that in order to consistently discard the non-perturbative terms in Eq. (7.1) we only need to take the limit =mzi ! 1.
Therefore, the behavior of the C.Y. volume in such limit plays no role.
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the supersymmetric solution always exists, we can expect the existence also of the corresponding solution (7.20)
of the equations of motion, from which the supersymmetric solution may be obtained through a particular choice
of the integration constants that make (7.20) fulfilling (7.9) for r0 = 0.
We conclude, hence, that

�
HP = 0;QP = 0

	 ) EP = 0 ; (7.21)

and therefore the truncation of as many H’s as we want, together with the correspondet Q’s, is consistent as long
as W (H) remains well defined, something that in our case is assured if c > 0. From Eq. (7.1) it can be checked
that the case c = 0, that is h1;1 = h2;1, can be cured by non-perturbative effects.

It is easy to see that the truncation is not consistent in the classical limit, and therefore, we can conclude that
the corresponding solutions are genuinely quantum solutions, which only exist when perturbative quantum effects
are incorporated into the action.

Hence, we can conclude that if we require our theory to contain regular quantum black holes there is a
topological restriction on the Calabi-Yau manifolds that we can choose to compactify Type-IIA String Theory.
The condition can be expressed as

c > 0 ) h11 > h21 : (7.22)

For the supersymmetric solution (7.48) it is possible to compute the entropy in a model independent way. The
result reads

Ssusy = ��
���0ijkpipjpk��2=3 : (7.23)

The class of supersymmetric black holes described here, with entropy (7.23), have no microscopic-String-Theory
description, not even at the leading order, and therefore illustrate how the microscopic description of the entropy
in String Theory is not well understood even for the simplest class of black holes, namely, the supersymmetric
one.

7.2.2 Quantum corrected STU model

In this section we consider a very special case, the so-called STU model, obtaining the first non-extremal solution
with non-constant scalars in the presence of perturbative quantum corrections. In order to do so, we set nv =
3; �0123 = 1. From (7.13) we obtain

W(H) = �
��H1H2H3

��2=3 ; (7.24)

where � = 3c1=3. The scalar fields are given by

zi = ic1=3
Hi

(H1H2H3)
1=3

; (7.25)

The � -dependence of the HM can be found by solving Eqs. (7.8) and (7.9), and the solution is given by

Hi = ai cosh (r0� ) +
bi

r0
sinh (r0� ) ; bi = sib

r
r20(a

i)2 +
(pi)2

2
: (7.26)

The three constants ai can be fixed relating them to the value of the scalars at infinity and imposing asymptotic
flatness. We have, hence, four conditions for three parameters and therefore one would expect a relation among
the =mzi1, leaving c undetermined. However, the explicit calculation shows that the fourth relation is compatible
with the others, and therefore no extra constraint is necessary. The ai are given by

ai = �sib
=mzi1p

3c
: (7.27)

The mass and the entropy, in turn, read

M =
r0
3

X
i

s
1 +

3c(pi)2

2r20(=mzi1)2
; (7.28)

S� = r20�
Y
i

 s
1 +

3c(pi)2

2r20(=mzi1)2
� 1

!2=3

; (7.29)
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and therefore the product of the inner and outer entropy only depends on the charges

S+S� =
�2�2

4

Y
i

�
pi
�4=3

; (7.30)

In the extremal limit we obtain the supersymmetric as well as the non-supersymmetric extremal solutions, de-
pending on the sign chosen for the charges.

7.3 Non-perturbative quantum black holes

In this section we are going to include non-perturbative corrections into the game. As we saw in section 7.2, the
perturbative quantum black holes become singular when c = 0, i.e., when the compactification C.Y. manifold
is self-mirror. However, as we will see later, it is possible to make the formal limit c ! 0 regular by including
non-perturbative corrections in the prepotential. At the same time, we will construct the first explicit black hole
solution in the presence of non-perturbative quantum corrections.

Therefore we are going to consider, for the time being, the complete (7.1), and impose the same particular
truncation as in section 7.2

H0 = H0 = Hi = 0; p0 = q0 = qi = 0 : (7.31)

Under this assumption, the stabilization equations, which can be directly read off from (7.11) take the form�
iHi

Ri

�
=
eK=2

X

� X i

@F (X )
@X i

�
;

� R0

0

�
=
eK=2

X

� X 0

@F (X )
@X 0

�
; (7.32)

and the physical fields can be obtained in terms of the Hi as

e�2U = Ri(H)Hi ; zi = i
Hi

R0(H)
; (7.33)

as soon as R0 and Ri are determined. In order to obtain R0 as a function of Hi, we need to solve the highly
involved equation

@F (H)

@R0
= 0 ; (7.34)

where F (H) stands for the prepotential expressed in terms of the Hi

F (H) =
i

3!
�0ijk

HiHjHk

R0
+
ic(R0)2

2
+
i(R0)2

(2�)3

X
fdig

nfdigLi3

�
e�2�di

Hi

R0

�
: (7.35)

Once this is done, it is not difficult to express Ri in terms of Hi. Indeed, from (7.32) we simply have

Ri = �i@F (H)

@Hi
; (7.36)

where R0 = R0(H) must be substituted only after we perform the derivative, and must be taken to be independent
before. Let’s see how involved is the equation for R0: if we expand (7.34), we find

� 1
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�0ijk

HiHjHk

(R0)3
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4�3

X
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+Li2

�
e�2�di

Hi
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i

R0

��
= 0 : (7.37)

Solving (7.37) forR0 in full generality seems to be an extremely difficult task. However, if we go to the large volume
compactification limit (=mzi >> 1), we can make use of the following property for polylogarithmic functions

lim
jwj!0

Lis(w) = w ; 8s 2 N ; (7.38)

since, in our case, w = e�2�di=mzi ; 8 fdig 2 (Z+)h
1;1

. Eq. (7.38) enables us to rewrite (7.37) as
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� 1
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i

R0

��
= 0 ; (7.39)

keeping in mind that we are assuming =mzi >> 1. The dominant contribution in this regime, aside from the
cubic one, is given by c. In [75], the first non-extremal black hole solutions (with constant and non-constant
scalars) of (7.1) were obtained ignoring the non-perturbative corrections. These solutions turned out to be purely
quantum8, in the sense that not only the classical limit c ! 0 was ill-defined, but also the truncated theory
became inconsistent and therefore no classical limit could be assigned to such solutions. An interesting question
to ask now is whether the non-perturbative contributions could actually be able to cure or at least improve this
behaviour. On the other hand, it is also interesting per se to explore the existence of black hole solutions when the
subleading contribution to the prepotential is not given by c, but has a non-perturbative origin. In order to tackle
these two questions, let us restrict ourselves to C.Y. three-folds with vanishing Euler characteristic (c = 0), the
so-called self-mirror C.Y. three-folds. Under this assumption, and considering only the subleading contribution in
(7.37), which is now given by the fourth addend in (7.39), such equation becomes9

� 1
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�0ijk
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(R0)3
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1

4�3

X
fdig

nfdige
�2�di Hi

R0

�
�diH

i

R0

�
= 0 : (7.40)

The sum over fdig in (7.40) will be dominated in each case by a certain term corresponding to a particular vectorn
d̂i

o
(and, as a consequence, to a particular nd̂i � n̂), which, consistently with the assumption =mzi >> 1, is the

only one that we are going to consider. Therefore, (7.40) becomes
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= 0 ; =mzi >> 1 : (7.41)

This equation is solved by10

R0 =
�d̂lH
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Wa

�
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r
3n̂(d̂nHn)3

2�0
ijk

HiHjHk

� ; (7.42)

where Wa(x); (a = 0;�1) stands for (any of the two real branches of) the Lambert W function11 (also known as
product logarithm), and sa = �1. Using now Eqs. (7.42) and (7.36) we can obtain Ri. The result is

Ri =
1

2
�0ijk

HjHk

�d̂lHl
Wa

 
sa

s
3n̂(d̂mHm)3

2�0pqrH
pHqHr

!
: (7.43)

The physical fields can now be written as a function of the Hi as

e�2U = W(H) =
�0ijkH

iHjHk

2�d̂mHm
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3n̂(d̂lHl)3
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; (7.44)

zi = i
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�d̂mHm
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s
3n̂(d̂lHl)3

2�0pqrH
pHqHr

!
: (7.45)

In order to have a regular solution, we need to have a positive definite metric warp factor e�2U . Since, as explained
in section 7.3.2, sign [Wa(x)] = sign [x] ; a = 0;�1; x 2 Da

R, we have to require that

s0 � sign

�
�0ijk

HiHjHk

d̂mHm

�
; (7.46)

for the real branch W0 and
8It is worth pointing out that, in this context, the term quantum does not refer to space-time but to world-sheet properties [217].

In this respect, although such denomination is widely spread in the literature, the adjective stringy might result more acqurate.
9e2�idiz

i
<< �jdi=mzije2�idiz

i
for =mzi >> 1.

10Henceforth we will be using W for the Hessian potential, and W for the Lambert function. We hope this is not a source of
confusion.

11See section 7.3.2 for more details.
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s�1 � �1 : (7.47)

for the real branch W�1. On the other hand, since W0(x) = 0 for x = 0 and W�1(x) is a real function only when
x 2 �� 1

e ; 0
�
, we have to impose that the argument Arg [Wa] of Wa(x) lies entirely either in

�� 1
e ; 0
�
or in (0;1) for

all � 2 (�1; 0), since e2U cannot be zero in a regular black hole solution for any � 2 (�1; 0). This condition must
be imposed in a case by case basis, since it depends on the specific form of the symplectic vector HM = HM (� )
as a function of � . Notice that if Arg [Wa] 2

�� 1
e ; 0
� 8 � 2 (�1; 0) we can in principle12 choose either W0 or

W�1 to build the solution, whereas if Arg [Wa] 2 (0;+1) 8 � 2 (�1; 0), only W0 is available.
Needless to say, in order to construct actual solutions, we have to solve the H-FGK equations of motion (7.8)

(plus hamiltonian constraint (7.9)) using the Hessian potential given by (7.44). Fortunately, such equations admit
a model-independent solution which is obtained choosing the Hi to be harmonic functions in the flat transverse
space, with one of the poles given in terms of the corresponding charge

Hi = ai � pip
2
�; r0 = 0 : (7.48)

This corresponds to a supersymmetric black hole.

7.3.1 The general supersymmetric solution

As we have said, plugging (7.48) into (7.45) and (7.44) provides us with a supersymmetric solution without solving
any further equation. The entropy of such solution reads

S =
1

2
�0ijk
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d̂mpm
Wa (sa�) ; (7.49)
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and the mass is given by
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: (7.51)

In the approximation under consideration, we are neglecting terms � e�2�di=mzi with respect to those going
as � jdi=mzije�2�di=mzi . Taking into account (7.45), this assumption is translated into the condition

Wa(x) >> 1 ; (7.52)

where x stands for the argument of the Lambert function (see (7.42)). It is clear that this condition is satisfied
for a = 0 if Arg[W0] 2 [�; �] for positive and suficiently large values of � and �. However, it is not satisfied at all
for Arg[Wa] 2 [� 1

e ; 0), which is the range for which both branches of the Lambert function are available.
If we assume Arg [Wa] 2 [�; �] for suficiently large �; � 2 R+, a = 0 and W0 is the only real branch of the

Lambert function. In that case, s = s0 = 1, and we have
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2�0pqrH
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!
: (7.54)

12As we will see in section 7.3.1, the possibility s0 = s�1 = �1 will not be consistent with the large volume approximation we are
considering.
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In the conformastatic coordinates we are working with, the metric warp factor e�2U is expected to diverge at the
event horizon (� ! �1) as � 2. In addition, we have to require e�2U > 0 8� 2 (�1; 0], and impose asymptotic
flatness e�2U(�=0) = 1. The last two conditions read

�0ijkH
iHjHk

2�d̂nHn
> 0 8� 2 (�1; 0] ; (7.55)

�0ijka
iajak

2�d̂mam
W0 (�) = 1 ; (7.56)

whereas the first one turns out to hold, since

e�2U �!�1�! �0ijkp
ipjpk

8�d̂mpm
W0 (�) �

2 : (7.57)

(7.55) and (7.56) can in general be safely imposed in any particular model we consider. Finally, the condition for
a well-defined and positive mass M > 0 can be read off from (7.50).

7.3.2 Multivalued functions and black hole uniqueness theorems

As we explained in the previous section, our approximation is not consistent with a solution such that Arg[Wa] 2
[� 1

e ; 0). This forbids the domain in which W (x) is a multivalued function (both W0 and W�1 are real there).
However, it seems legitimate to ask what the consequences of having two different branches would have been, if this
constraint had not been present. In principle, we could have tried to assign the asymptotic (� ! 0) and near horizon
(� ! �1) limits to any particular pair of values of the arguments of W0 and W�1 through a suitable election of
the parameters available in the solution. In particular, if we had chosen Arg [W0] j�=0 = Arg [W�1] j�=0 = �1=e
and Arg [W0] j�!�1 = Arg [W�1] j�!�1 = �, � 2 (�1=e; 0), both solutions would have had exactly the same
asymptotic behavior (and therefore the scalars of both solutions would have coincided at spatial infinity), and
we would have been dealing with two completely different regular solutions with the same mass13, charges and
asymptotic values of the scalar fields, in flagrant contradiction14 with the corresponding black hole uniqueness
theorem (conjecture). At this point, and provided that our approximation is not consistent with such presumable
two-branched solution (therefore, we could say that ST forbids such possibility), the feasibility of this reasoning
in a different context can only be catalogued as speculative at the very least. However, as a matter of fact,
a violation of the black hole uniqueness theorem (and, in turn, of the No-Hair conjecture) in four-dimensional
ungauged Supergravity would have far-reaching consequences independently of whether the solution is embedded
in ST or not. In this regard, the very possibility that the stabilization equations may admit (for certain more
or less complicated prepotentials) solutions depending on multivalued functions seems to open up a window for
possible violations of the black hole uniqueness theorems in the context of N = 2 d = 4 ungauged Supergravity.
The question (whose answer is widely assumed to be "no") is now: is it possible to find a four-dimensional
(Super)gravity theory with a physically-admisible matter content admitting more than one stable black hole
solution with the same mass, electric, magnetic and scalar charges? This question will be addressed in [223].

The polylogarithm

The polylogarithmic function or polylogarithm Liw(z) (see e.g. [224] for an exhaustive study) is a special function
defined through the power series

Liw(z) =

1X
j=1

zj

jw
; z; w 2 C : (7.58)

This definition is valid for arbitrary complex numbers w and z for jzj < 1, but can be extended to z0s with jzj � 1
by analytic continuation. From its definition, it is easy to find the recurrence relation

Liw�1(z) = z
@Liw(z)

@z
: (7.59)

13Although W 0
0;�1(x) are divergent at x = �1=e (as explained in section 7.3.2), and the definition of M would involve derivatives of

the Lambert function at that point, it would not be difficult to cure this behaviour and get a positive (and finite) mass by imposing

_x(�)
�!0

�! 0 faster than jW 0
0;�1(x)j

x!�1=e
�!1 .

14Up to possible stability issues, which should be carefully studied.
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The case w = 1 corresponds to

Li1(z) = � log(1� z) ; (7.60)

and from this it is easy to see that for w = �n 2 Z� [ f0g, the polylogarithm is an elementary function given by

Li0(z) =
z

1� z ; Li�n(z) =
�
z
@

@z

�n
z

1� z : (7.61)

The special cases w = 2; 3 are called dilogarithm and trilogarithm respectively, and their integral representations
can be obtained from Li1(z) making use of

Liw(z) =

Z z

0

Liw�1(s)
s

ds : (7.62)

The Lambert W function

The Lambert W function W (z) (also known as product logarithm) is named after Johann Heinrich Lambert
(1728-1777), who was the first to introduce it in 1758 [225]. During its more than two hundred years of history, it
has found numerous applications in different areas of physics (mainly during the 20th century) such as electrostatics,
thermodynamics (e.g. [226]), statistical physics (e.g. [227]), QCD (e.g. [228], [229], [230], [231], [232]), cosmology
(e.g. [233]), quantum mechanics (e.g. [234]) and general relativity (e.g. [235]).

W (z) is defined implicitly through the equation

z =W (z)eW (z) ; 8z 2 C : (7.63)

Since f(z) = zez is not an injective mapping, W (z) is not uniquely defined, and W (z) generically stands for the
whole set of branches solving (7.63). For W : R ! R, W (x) has two branches W0(x) and W�1(x) defined in the
intervals x 2 [�1=e;+1) and x 2 [�1=e; 0) respectively (See Figure 1). Both functions coincide in the branching
point x = �1=e, where W0(�1=e) = W�1(�1=e) = �1. As a consequence, the defining equation x = W (x)eW (x)

admits two different solutions in the interval x 2 [�1=e; 0).

W  (x)

W  (x)
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Figure 7.1: The two real branches of W (x).

The derivative of W (z) reads
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dz
=

W (z)

z(1 +W (z))
; 8z =2 f0;�1=eg ; dW (z)

dz

����
z=0

= 1 ; (7.64)

and is not defined for z = �1=e (the function is not differentiable there). At that point we have

lim
x!�1=e

dW0(x)

dx
=1; lim

x!�1=e
dW�1(x)

dx
= �1 : (7.65)
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Appendix A

Resumen

Esta tesis ha sido dedicada a la obtención y estudio de soluciones de tipo agujero negro en teorías supersimétri-
cas de la gravedad sin gaugeos y en cuatro dimensiones. Las teorías supersimétricas de la gravedad, llamadas
Supergravedades [26–30], son teorías que describen la gravedad a partir de una métrica definida en una variedad
diferenciable, al estilo de la Relatividad General, y que incorporan una simetría concreta, la Supersimetría, que
relaciona los bosones y los fermiones de la teoría. La Supersimetría [28, 31–33] es una simetría hipotética de la
naturaleza que se postuló en los anõs setenta y que aún no ha sido observada en la naturaleza. No obstante, ha sido
y sigue siendo intensamente estudiada por su atractivo teórico. En concreto, Supersimetría presenta una unifi-
cación no trivial de las simetrías internas de una teoría de campos con las espaciotemporales, dadas por el grupo
de Poincaré. Asimismo permite resolver algunos de los problemas presentes actualmente en física de partículas,
como por ejemplo el problema de la jerarquía, y además mejora en general el comportamiento ultravioleta de las
teorías cuánticas de campos.

En Supergravedad, la Supersimetría aparece irremediablemente gaugeada, es decir, las transformaciones que
relacionan los bosones y los fermiones de la teoría son locales y por tanto dependen del punto del espaciotiempo.
Supergravedad surgió a finales de los años setenta y desde entonces ha sido estudiada con intensidad por parte de
la comunidad de físicos teóricos. Su relevancia viene dada fundamentalmente, por dos motivos:

1. Presenta una extensión de la Relatividad General de Einstein incorporando una nueva simetría, la Super-
simetría.

2. La Supergravedad es el límite de baja energía de la Teoría de Cuerdas, y contiene además importante
información no perturbativa sobre la misma.

Teoría de Cuerdas [1, 2] es una teoría que se comenzó a desarrollar a finales de los años sesenta y hoy en día se ha
consolidado como un approach consistente al problema de la unificación de las interacciones fundamentales y al
problema de la Gravedad Cuántica.

Como se cree que Teoría de Cuerdas contiene una teoría de Gravedad Cuántica consistente, es preciso estudiar
las predicciones de dicha teoría en situaciones gravitacionalmente no triviales y donde los efectos cuánticos sean
importantes, como en un agujero negro. Dado que la Supergravedad contiene soluciones de tipo agujero negro, y
es a su vez el límite de baja energía de la Teoría de Cuerdas, el estudio de agujeros negros en Supergravedad es
de extrema importancia para poder estudiar los aspectos cuánticos de los mismos en el contexto de la Teoría de
Cuerdas.

Por tanto, el estudio de agujeros negros en Teoría de Cuerdas y Supergravedad es de gran importancia, y a ello
se ha dedicado un gran esfuerzo en la literatura [103, 106–109, 118, 119, 123, 131, 163]. En esta tesis pretendemos
dar un pequeño paso en esa dirección, desarrollando un formalismo para obtener soluciones de tipo agujero negro
en Supergravedad, y obteniendo explítamente una clase de soluciones de tipo agujero negro que se puede embeber
en Teoría de Cuerdas y es, por tanto, relevante para estudiar los aspectos cuántico-gravitacionales de la Teoría de
Cuerdas.
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Appendix B

Conclusiones

En esta tesis hemos estudiado soluciones de tipo agujero negro de Supergravedades en cuatro dimensiones y sin
gaugeos. En concreto, hemos caracterizado primero la solución de tipo agujero negro más general de una clase de
teorías de gravedad, acopladas a escalares y campos vectoriales, que incluye cualquier Supergravedad sin gaugeos
en cuatro dimensiones. Una vez obtenida la forma general de dicha solución, la hemos utilizado para estudiar su
simetría escondida en el límite cercano al horizonte. Es decir, hemos estudiado las simetrías de la ecuación de
Klein-Gordon en el espaciotiempo dado por la métrica general y hemos concluido la existencia de una simetría
SL(2;R) en el límite cercano al horizonte. Asimismo, hemos demostrado, mediante la correspondiente construcción
explícita, que dicha simetría se puede extender de manera canónica a un álgebra de Virasoro, lo que proporciona
la buscada conexión con la teoría conforme dual que describe los grados de libertad microscópicos de la entropía.
Éste ha sido el contenido del capítulo 4.

En el capítulo 5, construimos la métrica de todos los agujeros negros supersimétricos de Supergravedades
extendidas, de uno y varios centros, usando el formalismo presentado en [130] así como las propiedades de los
grupos de tipo E7. Estos agujeros negros son muy relevantes en Teoría de Cuerdas, ya que al ser supersimétricos
no reciben correcciones y sus propiedades físicas pueden creerse más allá del límite de baja energía de Supergravedad
donde fueron obtenidos.

En el capítulo 6 desarrollamos un nuevo formalismo, llamado el formalismo H-F.G.K., que facilita la construc-
ción de soluciones de tipo agujero negro no supersimétricas en Supergravedad sin gaugeos N = 2. El formalismo
está basado en la utilización de un nuevo tipo de variables, que se transforman en una representación lineal y
simpléctica del grupo de U -dualidad de la teoría y que son funciones armónicas en R3 en el caso de agujeros negros
supersimétricos.

En el capítulo 7 aplicamos el formalismo H-F.G.K. a la Teoría de Cuerdas tipo IIA compactificada en una
variedad Calabi-Yau, obteniendo una clase de soluciones llamada agujeros negros cuánticos, que sólo existen
en presencia de correcciones cuánticas en el prepotencial y para los que no existe, ni puede ser asignado, un
límite clásico. Asimismo, obtenemos la primera clase de soluciones en presencia de correcciones cuánticas no
perturbativas. Dichas soluciones vienen dadas en función de funciones multivaluadas, lo cual podría dar lugar a
una violación de la conjetura del no-pelo. No obstante, tal violación no es posible en el contexto de Teoría de
Cuerdas, aunque la posibilidad permanece abierta en el contexto de Supergravedad.

En el capítulo 2 damos una breve introducción a la geometría Special Kähler y a los espacios homogéneos,
relevantes para la formulación de Supergravedad en cuatro dimensiones, que se resume en el capítulo 3.
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