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Abstract

The use of Millimetre-Wave images (MMW) has been proposed recently in the biomet-

ric field aiming to overcome certain limitations when using images acquired at visible frequencies.

In this work, a body-shape based biometric system has been developed using the information

of the human contour extracted from MMW images. Images are extracted from the BIOGIGA,

a synthetic database which simulates the effect of the 94 GHz radiation over the human body.

The images of this database are obtained from real measures from 50 people.

We propose several methods for the parameterization and classification stage with the ob-

jective of finding the best configuration of the biometric-system. Among the methods proposed

for the parameterization stage we find: the contour coordinates, which constitutes the baseline

technique; shape contexts descriptor which uses a log-polar histogram to describe the relative

situation of all the points within the shape with respect to an specific point; Fourier Descrip-

tors, that applies the Fourier transform to the contour coordinates; and finally landmarks, a

reduced set of points which describes some singular points within the human-body shape. In

the classification stage, we use two methods: a naive classifier, the Euclidean distance (ED) and

a classifier based on dynamic programming, dynamic time warping algorithm (DTW).

Several experiments are carried out with the objective of selecting the most discriminative

feature set and classifier from all the proposed approaches. The experiments are developed

following two main types of protocols, depending on the number of images use per person in the

training and evaluation stage.

The results show to what extent the DTW improves the performance of the system with the

respect to the baseline Euclidean distance and the necessity of a high resolution of the contour

in order to obtain a good performance of the system. The use of the contour coordinates is the

most suitable feature to use in the system regarding the performance and the computational

cost involved. Even though the results obtained with more complex features such as shape

contexts or Fourier descriptors are quite reasonable, their computational cost makes them less

appropriate for practical scenarios.

The results obtained in this work are compared with other previous works which are based

on geometrical distance measures between some landmarks within the shape of the body. Apart

from improving some of these results obtained in this previous work, we consider that the system

developed in this Masther Thesis based on applying Contour Coordinates with DTW is much

more robust and suitable for real MMW images compared the distance-based system, whose

capability of accurately extracting the body landmarks would drop in realistic scenarios.
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Chapter 1

Introduction

Traditionally, biometric systems have been working in the visible band due to the simplicity

of the acquisition systems. However, this region of the spectrum suffers from several limitations

caused mainly by the light conditions, shadows, and occlusions in the body. Aiming to solve

all this drawbacks, some researchers have proposed to acquire images in other regions of the

spectrum such as X-rays [Chen and Jain, 2005; Shamir et al., 2009], the infrared region [Li

et al., 2007], millimeter waves (MMW, 30-300 GHz) and submillimeter waves (SMW 300-3000

GHz) [Alefs et al., 2010].

In this Dissertation, a work based on person identification through MMW images is carried

out. To this aim, a 1200-images database corresponding to 50 people acquired at 94 GHz has

been used. Although several works based on this database have built a biometric system using

geometric distances between some key points of the human silhouette [Moreno-Moreno et al.,

2011b], in this work a contour-based biometric system has been developed using different shape

matching techniques.

In this chapter biometrics are introduced in Section 1.1, and several aspects, closely related

to the topic at hand, are described: in Section 1.2, multibiometrics are presented and Section

sec:intro:applications describes the main applications in biometrics. Finally, the movitation and

objectives of this work will be briefly explained in Section 1.4.

1.1. Biometric Systems

A biometric system measures one or more physical or behavioral characteristics of an indi-

vidual to determine or verify his identity” [Jain et al., 1999, 2011]. Biometric systems can be

therefore regarded as a specific application of pattern recognition algorithms. Our society has

always considered essential the privacy of the confidential information. Although the scientific

history of biometrics was not developed until 30 years ago, some previous historical facts exist

and show the continuous effort of the human being to find identification techniques.

In Occident, in 1883, the French Alphone Bertillon proposes the anthropometric method,

composed of a set of length and width measures of the body and individual marks with the

1



1. INTRODUCTION

(a) Dynamic biometric trait (b) Static biometric

trait

Figure 1.1: Examples of Dynamic biometric trait (left) and Static biometric trait (right)

objective of identifying criminals [Gloor, 1980]. Nowadays, thanks to the development of com-

puter science within the technological era, we can find in the market reliable solutions based on

biometrics [Jain et al., 1999]. The very first trait that emerges from biometrics is the fingerprint,

conceived as the biometric trait par excellence. Gradually, new biometric traits are considered,

providing a wide variety of options and a high security level as well.

Traditionally, a user could be identified through something known only for the user, such

as a password, or something owned exclusively by him/her, for instance: a card. The main

inconvenience of these methods relies on the high facility of misappropriation of the user’s

identity.

Biometrics appears in order to avoid all these threads. From now on, the subject is not

recognized by what he/she knows nor what he/she has but by what he/she is. Specifically,

biometrics take advantage of physical or behavior features for the identification process. A

biometric trait may be defined as static when the information involved in the system deals with

what the person is, and dynamic when information about what the person does is used to build

the biometric system [Jain et al., 2004]. Fig.1.1 shows an example of these two types of biometric

traits. The static biometrics is based mainly on physical traits while dynamic biometrics is based

on behaviour traits. Another typical classification of biometric traits consist of dividing them

into physical and behavior traits. The main physical traits are fingerprint, face, iris, retina, hand

geometry, palm print, knuckles, vein pattern, DNA, ear. Among the most important behavioral

traits, we find signature, voice, gait, corporal movements, etc. Fig.1.2 show some examples of

different biometric traits.

In order to consider a biometric trait feasible, this has to possess some properties, among

them:

Universality: Every person needs to have this biometric trait.

Distinctiveness: The trait has to be unique of every single person, or at least discrimi-

nating enough to distinguish between two subjects.

2
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1.1 Biometric Systems

Figure 1.2: Examples of common biometrics.

Permanence: must be a trait permanent along time, as steady as possible.

Collectability: this biometric trait has to be easily measured quantitatively.

Apart from these aforementioned characteristics that any biometric trait should have, the

biometric system in which the trait is involved requires to take into account these practical

criteria:

Quality-cost relation: the requirements of any biometric system depend on the type of

scenario which is required for.

Acceptability: the perception the user has to the system need to be taken into account .

Robutness: a biometric system should be robust enough to deal with fraud and risk of

vulnerability.

A biometric system may be performed in two different modes: identification and verifica-

tion. When a system works in the identification mode, the biometric system must answer the

question: ”Who is this person?” On the other hand, when the system works in the verification

mode, the system must answer the question ”Is this person who claims to be?”

The computation cost of each mode is different. In the identification mode, a one-to-

many comparison must be performed in order to compare the model of the input identity

3
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1. INTRODUCTION

versus the remainder models within the database. As a result, the system returns an identity

when the subject is in the database or a negative response, otherwise.

On the contrary, in the verification mode, a one-to-one comparison is accomplished,

contrasting the model of the input identity versus the model of the claimed identity. In this

mode, the system gives back a yes/no response [Jain et al., 2004]

1.2. Multibiometrics

The high quality requirements that society demands cannot be guaranteed by a single biomet-

ric trait. Besides, there is no biometric trait that satisfies all the aforementioned characteristics:

while some biometric traits have a very high discrimination capability, they are relatively easy to

circumvent. Until now, we have not found a biometric trait which is the best option for any kind

of environment. The scientific community has proposed multibiometrics or the combination of

several biometric traits as a promising solution to all these drawbacks: several sources usually

compensate for the inherent limitations of one another [Ross et al., 2006].

Multibiometrics can be accomplished in different ways according to the item that is fused:

Multimodality: refers to the technique which comprises more than one biometric trait

to build the biometric system. For instance: merging information from hand geometry

and palmprint.

Multiinstance: uses several samples of the same biometric trait as it may be the left iris

and the right iris.

Multialgorithm: more than one algorithm is applied to the same sample of biometric

trait. For example: the usage of minutia-based algorithm and globally-based algorithm

for palm print

Multisensor: different sensors are used to acquire the biometric trait. The usage of a

visible camera and an infrared camera is an example of a multisensor scheme.

The information offered by several unimodal biometric systems can be fused at five dif-

ferent levels, namely: i) sensor-level, ii) feature-level, iii) score-level, iv) rank-level, and v)

decision-level. While the first two options fuse the information prior to matching, the remainder

approaches use the information available after matching: either a numeric score or a binary de-

cision (accept/reject). Even though fusion at an earlier processing stage should perform better,

specific and more complex algorithms have to be applied. The development of such algorithms is

not forthright, and therefore most multibiometric systems use score- or decision-level approaches.

4



1.3 Main Applications of Biometric Systems

Figure 1.3: Chip of the Spanish National Identity Document.

1.3. Main Applications of Biometric Systems

The applications of biometrics are countless. In all different types of scenarios where is used,

biometrics aims to improve the security of the subject or some crucial information [Prabhakar

et al., 2003].

Its traditional use has been associated with forensic applications through DNA samples or

fingerprint used to confirm the identity of the subjects.

Biometrics is applied to many different fields. For instance, in airports, the use of biometrics

is emerging. The airport of BenGurion, Israel is considered one of the pioneers as has used

a control security system based on biometrics since 1999 [Ben]. Among commercial security

applications, biometrics can be found in ATM’s, as well as in telematic services such as

internet banking, database access, among others. biometrics also helps to improve the security

of access to commercial buildings, as is the case of Walt Disney World Park Attraction, in

which some hand biometric measures are taken in order to assure that a three-days pass is only

used by the same person. The chip of the Spanish National Identity Document (see Fig.1.3)

holds some biometric information on the subject related to his/her fingerprint, signature and

face.

Biometrics may also be integrated in domotic systems, helping to access the dwelling,

switching-off and switching-on of computers, car aperture, etc. More and more, biometric sys-

tems are being integrated within the design of smartphones, aiming to solve identification needs.

The most common biometrics traits used in this case are speech, fingerprint, face and iris.

Other practical applications related to border control and natality control have emerged in

the last few years. For instance, the US-VISIT program in the States aims to provide biometric

identification services that help federal, state, and local government decision makers accurately

identify people. The Unique Identification (UID) system in India, is collecting different biometric

samples (iris, fingerprint and face) from all their citizens in order to solve the identification of

very large numbers of subjects with negligible error rates [UID].

1.4. Motivation and Objectives

Many biometric characteristics are used to identify individuals: fingerprint, signature, iris,

voice, face, hand, etc. The majority of these biometric traits are acquired with cameras working

5

Chapter1Introduction/Figs/EPS/dni.eps
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at visible frequencies of the electromagnetic spectrum. Such images are affected by, among other

factors, lighting conditions (shadows, reflections, etc.) and the body occlusion (e.g. clothing,

make up, hair, etc.). To overcome these limitations, researchers have proposed the use of images

acquired at other spectral ranges: X-ray (XR) [Chen and Jain, 2005], infrared (IR) [Li et al.,

2007], millimeter (MMW) [Alefs et al., 2010] and submillimeter (SMW) waves [Appleby and

Anderton, 2007; Moreno-Moreno et al., 2009]. The images captured beyond the visible spectrum

circumvent, to some extent, some of the mentioned limitations; furthermore, they are more

robust to spoofing than other biometric images/traits.

Among the spectral bands out of the visible spectrum, the millimeter waves (with frequency

in the band of 30-300 GHz) [Yujiri et al., 2003] present interesting properties that can be ex-

ploited in biometrics: ability to pass through clothing and other occlusions, innocuous to health

and the recent deployment and rapid progress of GHz-THz systems in screening applications.

Unlike imaging technology in the visible or infrared band, GHz-THz technology is under

development [Mait et al., 2009]. This fact, together with the privacy issues that the body

images in this band present, have caused that, to date, there are no public databases with

images of people acquired in that frequency range. In fact, there are just a few works on this

field. Specifically, just one working with real data [Alefs et al., 2010], and some others based on

BIOGIGA database, which is a synthetic database [Moreno-Moreno et al., 2011a]. Alefs et al.

[2010] proposed a holistic recognition approach based on the texture information on the MMW

images. On the other hand, the work by Moreno-Moreno et al. [2011b] proposes a biometric

system based on geometric measures between different key points of the contour using MMW

images from the BIOGIGA database. This shortage of biometric recognition research based on

MMW images is due, in part, to the lack of databases of images of people acquired at GHz. This

lack is a consequence of: i) the privacy concerns these images present, and ii) most of the

imaging systems working at the MMW/SMW band are either in prototype form or not easily

accessible for research.

In this work, we propose a novel approach for biometric recognition based on the comparison

of body contours extracted from images at 94 GHz. This is inspired by previous works, which

show that recognition through the shape and boundary of traits such as hand or signature

are fairly reliable [Jain et al., 2002; Yoruk et al., 2006]. In fact, three approaches based on

the body shape are considered: i) a baseline technique based on the Euclidean Distance, ii) a

programming dynamic technique based on the dynamic time warping algorithm (DTW) and iii)

a Shape Context descriptor. Several experiments are carried out to determine the performance

and behavior of these different approaches. Also, different experimental protocols are followed

varying the quantity of training data for different contour sizes. Finally, a comparison with the

previous works based on geometric measures is also carried out.

The main objectives of this Dissertation are summarized in three points:

Develope a body-shape biometric system: different appproaches to model the silhou-

ette of people and considered. A navie classifier and a complex classifier are studied.
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Carry out a comparison among the chosen shape matching techniques: one of the

main objectives of this work consists of finding the configuration that optimizes the perfor-

mance of the system. This means that a combination of feature and classifier is proposed

as the best configuration in order to improve the performance of the system.

Comparison with the distance-based biometric system proposed by Moreno-Moreno

et al. [2011b].

1.5. Outline of the Dissertation

The Dissertation is structured as follows:

Chapter 1 introduces the topic of biometrics and gives the motivation, outline and objec-

tives of this work.

Chapter 2 summarizes the state of the art in biometrics beyond the visible range and shape

matching, presenting related works.

Chapter 3 describes the methods proposed in the work, either for features to model the

shape of the contour and classifiers.

Chapter 4 presents the experimental protocol followed in the experiments.

Chapter 5 describes the experiments carried out and analyses the results.

Chapter 6 concludes the Dissertation summarizing the main results obtained and outlining

future research lines.
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Chapter 2

Related Works and State of the Art

The goal of this work consists of developing a system able to identify people from their

contours using images acquired in the MMW band.

Bearing this in mind, two main areas are presented in this chapter. First, as images from

the database are acquired in the MMW band of the electromgnetic spectrum. The study of

the state of the art of biometrics beyond the visible band has been based on the work made by

Moreno Moreno [2012].

On the other hand, the novelty of this works relys on the possibility of identifying people

from their contours. Hence, a brief review of the different shape matching techniques which has

been used throughout the years is outlined.

2.1. Biometrics beyond the Visible Range

The ability to capture an image of the whole human body or a part of it has attracted

much interest in many areas such as Medicine, Biology, Surveillance and Biometrics [Richards,

2001]. Images acquired at visible spectrum (VIS) are widely used; however they present some

limitations, especially when they are used in these fields.

0.3GHz      30GHz  300GHz  3THz   4·1014Hz  8·1014Hz 3·1016Hz   3·1019Hz

IR VIS
Micro-

wave
UV X-ray

1m         10mm    1mm     100µm    0.7µm  0.4µm     10nm     0.01nm

f

λMMW SMW

Figure 2.1: Electromagnetic spectrum showing the different spectral bands between the Microwaves and

the X-rays. IR band is sometimes considered to extend to 1 mm including the SMW region.

As can be seen from Fig.2.1, there are other bands down the visible range and up the

visible range that are used in different kind of body-based applications: IR, magnetic resonance,

radioisotope, XR, acoustical, MMW-, SMW-imaging, biometric purposes. Only those bands
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MMW             SMW               IR                  VIS                 UV               XR

Figure 2.2: Images acquired at different spectral bands.

that do not have a high level of intrusiveness are suitable for biometric applications. Among

them: IR, MMW and SMW imaging.

From Fig.2.2 it can be deduced also that the images acquired in different bands of the spec-

trum are very different between them. Depending on the band used, different properties of the

subject such as appearance, temperature, skull, texture, etc. can be extracted. Those properties

need to be considered when choosing a range of the spectrum for any imaging application.

The IR imaging technology is the most used in biometrics beyond the visible spectrum,

followed by XR. On the other hand, the images acquired at the MMW/SMW band have been

hardly used in biometrics. In fact the work by Alefs et al. [2010] and by Moreno-Moreno et al.

[2011b] are, to date, the unique published research work about biometric recognition based on

MMW/SMW images.

In this chapter, a brief review about IR and XR imaging technologies will be exposed. Then,

the MMW/SMW imaging technology will be described in more detail.

2.1.1. Architectures

Imagery can be classified into two architectures: passive or active. In the former group the

image is generated by receiving natural radiation which has been emitted and reflected from

the scene, obtaining a map of brightness temperature. On the other hand, in active imaging

the radiation is transmitted to the scene and then collected after reflection to form the image,

which is a map of reflectivity.

The contrast in the scene in any part of the spectrum is a function of the optical properties

of the object being imaged and its background. The main optical properties that are involved

in this physical phenomenon are: T : Physical temperature of the object; ǫ: emissivity of the

object; r: reflectivity of the object and t: transmissivity of the object.

2.1.2. X-ray Imaging

X-radiation has a wavelength in the range of 10-0.01 nm (3·1016-3·1019 Hz) and enough

energy to pass through cloth and human tissues. In addition to cloth penetration, XR imaging

provides high image resolution. However, this technology presents some disadvantages: low
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speed, limitation to very short distances and the health safety concerns it raises because of using

ionizing radiation. The natural background X-radiation is too weak to form an image, therefore

active imaging is required in both XR imaging modalities: transmission and backscatter X-ray

imaging. X-rays are commonly produced by accelerating charged particles.

2.1.3. Infrared Imaging

The Infrared band of the electromagnetic spectrum lies between the SMW and VIS regions,

with wavelengths in the range of 0.7-100 µm (see Fig.2.1). The human body emits IR radiation

with a wavelength between 3-14 µm hence both active and passive architectures can be used in

IR imaging, depending on the considered IR sub-band.

The radiation that is actually detected by an IR sensor depends on the surface properties

of the object (ǫ, r, t) and on the transmissivity of the medium (atmosphere). According to the

properties of the medium and the spectral ranges of the currently available IR detectors, the

IR spectrum is divided into three sub-bands. The limits of these sub-bands are not completely

fixed and depend on the specific application. In practice, IR imaging systems usually operate

in one of the three following IR sub-bands: the near infrared (NIR), the medium wave

infrared (MWIR) or the long wave infrared (LWIR), where the windows of high atmospheric

transmissivity are located.

2.1.3.1. NIR: Near Infrared Imaging

As the human body emits IR radiation with a wavelength out of the NIR band (0.7-1 µm)

it is necessary to illuminate the body with a NIR source and detect the reflected NIR radiation.

So in this case, an active architecture is needed. Fig.2.3 (left) shows an image acquired at

this band. The images obtained at NIR band are quite similar to the ones acquired at VIS,

however they present several advantages: i) they are environmental illumination and human

body condition invariant, and ii) they can provide a good quality vein pattern near the skin

surface. The last one is due to two facts: i) the incident NIR light can penetrate into the

biological tissue approximately 3 mm and ii) the reduced hemoglobin in venous blood absorbs

more of the incident NIR radiation than the surrounding tissues giving darker contrast. Many

biometric research works have been developed using the NIR band [Ferrer et al., 2009; Li et al.,

2007]. Face and hand vein pattern recognition are the most important modalities investigated

in this band.

2.1.3.2. MWIR: Medium Wave Infrared Imaging

The human body emits IR radiation in this band (3-5 µm) allowing the passive imaging.

Therefore, the images obtained in this frequency range show patterns of radiated heat from the

body’s surface. A comparison between some face images acquired at different IR bands is shown

in Fig.2.3. Very few biometric research works have been developed in this band, probably due to

the high cost of MWIR cameras. Buddharaju et al. [2007] performed face recognition from the
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Figure 2.3: From left to right: Images acquired at a NIR, MWIR and LWIR band. Images extracted

from [Buddharaju et al., 2007; Chen et al., 2005; Li et al., 2007]

thermal imprint of the facial vascular network obtained at the MWIR band. Thermal images of

palm dorsum vein acquired in MWIR have been also used to identify individuals Lin and Fan

[2004].

2.1.3.3. LWIR: Long Wave Infrared Imaging

Although human body emits IR radiation in both MWIR and LWIR bands, LWIR (8-14

µm) is usually preferred due to: i) much higher emissions in it, and ii) the low cost of LWIR

cameras. No external illumination is required in this band. Body images acquired at LWIR are

quite similar to those acquired in MWIR. Both kinds of images are often called thermograms.

Fig.2.3 (right) shows a face image acquired at this band. Recognition of faces from images

obtained at this band has become an area of growing interest [Chen and Jain, 2005; Selinger

and Socolinsky, 2004]. However, the algorithms they used do not differ very much from the

algorithms used in the VIS band. Works on vein pattern recognition have been developed at

this band as well [Wang and Leedham, 2006]. In contrast with NIR; LWIR can only capture

large veins, not necessarily at the skin surface since large veins carry a high amount of blood

giving a higher temperature. In addition, most of the LWIR images have low levels of contrast

and they are sensitive to ambient and body condition.

2.1.4. Millimeter and Submillimeter Wave Imaging

MMW and SMW radiation fill the gap between the IR and the microwaves (see Fig.2.1).

Specifically, millimeter waves lie in the band of 30-300 GHz (10-1 mm) while submillimeter waves

lie in the range of 0.3-3 THz (1-0.1 mm).

MMW and SMW radiation has the capability of penetration, mainly in nonpolar dielectric

materials such as paper, plastics, wood, leather, hair and even dry walls with little attenuation.

Clothing is highly transparent to the MMW radiation and partially transparent to the SMW

radiation. This transparency is more efficient when working at transparent windows. These
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transparent windows are centered at 35, 94, 140 and 220 MHz in the MMW range and at 0.34,

0.67, 1.5, 2, 2.1, 25, 3.4 and 4.3 in the SMW range.

Consequently, natural applications of MMW and SMW imaging include security screening,

non-destructive inspection, and medical and biometrics imaging. Low visibility navigation is

another application of MMW imaging [Yujiri et al., 2003]. The detection of concealed weapons

has been the most developed application of MMW/SMW imaging systems so far, in contrast to

the biometrics area, where there are just a few published research works.

Although most of the radiation emitted by the human body belongs to the MWIR and

LWIR bands, it emits radiation in the SMW and MMW regions as well . This allows passive

imaging. However, the sky illumination is a key factor in MMW and SMW passive imaging

that makes indoor and outdoor environments to have very different contrast when working with

passive systems. This is mainly due to the different variation of temperature between the floor

and the sky in outdoors and indoors. While this variation is very large outdoors, it is very small

indoors. Moreover, with passive imaging operation indoors, the signal to noise ratio (SNR) of

the existing cameras is insufficient for identification (as needed for biometrics). The solutions

proposed to overcome this problem are very expensive and difficult to use.

In active imaging, the source that illuminates the scene produces much higher power level

than the emitted from the scene, so it can be considered as an object at very high temperature. If

the source is incoherent and physically large, active imaging is equivalent to passive imaging with

the surroundings at very high temperature, and hence results in much greater contrast within

the image. If the source is small, active imaging becomes more complicated. In any case, the

power level of the radiation source in active imaging strongly affects the detection resolution. In

addition to higher resolution than passive imaging, active imaging provides higher SNR, higher

signal levels, and the ability to obtain depth information in the scene.

In the following subsections the MMW and SMW will be explained in more detail, showing

the difference between passive and active systems.

2.1.4.1. Millimeter Wave Imaging (MMW)

Passive MMW Imaging (PMMW)

There have been many research groups working on passive MMW imaging (PMMW) since

its early developments. Most of them have constructed prototype radiometers that work at a

frequency range centered at 35 GHz [Sinclair et al., 2002] or at 94 GHz [Howald et al., 2007;

Kapilevich et al., 2007; Mait et al., 2009; Sato et al., 2007]. The images obtained with PMMW

imaging systems have low resolution compared to VIS and IR images. This low resolution is a

consequence of the longer wavelengths used relative to the aperture size of the sensor’s collection

optics. Further, images acquired indoors will present less contrast than those acquired outdoors,

as it is shown in Fig.2.4 (left and center). There are multiple commercial PMMW cameras (e.g.

Quinetiq, Brijot, Alfa Imaging, Sago Systems, Millivision, and View Systems).

The applications of most of the cited works are the detection of concealed weapons or vi-
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sion under adverse weather conditions. To date, the unique published biometric application of

MMW/SMW are the one by Alefs et al. [2010] and by Moreno-Moreno et al. [2011b] . Specif-

ically, they use a PMMW system, a multi-view stereo radiometric scanner that operates at 94

GHz. The details of mentioned work (the characteristics of the database composed by these im-

ages, the approaches followed to perform the biometric recognition and the recognition results)

will be briefly presented throughout the document.

Figure 2.4: MMW images. From left to right: Outdoors PMMW Image (94 GHz) of a man carrying a

gun in a bag; Indoors PMMW image (94 GHz) of a man with a gun concealed under clothing; AMMW

image of a man carrying two handguns acquired in 27-33 GHz. Extracted from [Sheen et al., 2001;

www.alfaimaging.com; www.vision4thefuture.org]

Active MMW Imaging (AMMW)

Active MMW imaging (AMMW) has gained more and more attention during the last few

years for indoor security applications [Derham et al., 2007; Sheen et al., 2001, 2009; Timms et al.,

2007]. Sheen et al. [2001] demonstrated an AMMW image operating at 27-33 GHz and good

quality images were obtained (see Fig.2.4 (right)). Derham et al. [2007] showed the performance

of a prototype AMMW imaging system operating at 60 GHz that uses the frequency-encoding

technique.Timms et al. [2007] developed a 190 GHz active imaging system.

In the active systems, as the image is formed collecting the transmitted and the reflected

radiation from the emitting source, the appearance of the images acquired indoors and outdoors

is the same (the surrounding temperature does not affect as in the case of PMMW imaging).

An image obtained with AMMW imaging systems is shown in Fig.2.4 (right). The higher
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quality of the images acquired with active systems, when compared with PMMW systems, is

clearly noticeable (see Fig.2.4 (left and center)) . Again, most of AMMW imaging systems are

used as security portals. Some AMMW images are currently available on the market (Agilent and

L3-Communications). Agilent’s MMW imaging system works at 30 GHz and has a transverse

resolution of 1 cm.

2.1.4.2. Submillimeter Wave Imaging (SMW)

The shorter the radiation wavelength is, the better image resolution is available, and hence

SMW imaging would provide better resolution than MMW imaging (see Fig.2.1). On the other

hand, as the wavelength decreases, the penetration capability decreases. Further, the technology

available in the SMW imaging systems is much less mature than the MMW technology [Petkie

et al., 2008].

Passive SMW Imaging (PSMW)

In passive SMW imaging (PSMW) the contrast in the image depends on the operation

frequency: at frequencies below 0.5 THz it will be dominated by the reflectivity of the items,

while at frequencies of 0.5 THz and above, it will be dominated by the emissivity of the objects

and their physical temperature (similar to thermography).

Some of the more relevant and recent research works on PSMW imaging include [Luukanen

et al., 2006] and [Shen et al., 2008]. Luukanen et al. [2006] developed an imaging system working

at 0.1-1 THz. Shen et al. [2008] performed detection and segmentation of concealed objects in

images acquired by the imaging system described in [Luukanen et al., 2006]. They obtain good

quality images as it can be seen in Fig.2.5 (left). Fig.2.5 (right) shows another PSMW image of

a man with a spanner hidden under his T-shirt (acquired at 1.5 THz [Luukanen et al., 2006]).

These two images show that cloth is less transparent to submilliter waves compared to MMW

radiation (collar and folds of the weave are visible). A passive system required to penetrate all

types of clothing should operate below 0.3-0.5 THz [Appleby and Anderton, 2007; Bjarnason

et al., 2004].

The higher resolution of SMW images compared to MMW makes SMW more suitable for

biometric recognition applications. However the partial clothing opacity to SMW radiation

would hinder the performance of biometric systems. To the best of our knowledge, no biometric

works have been performed using PSMW imaging. Regarding commercial PSMW imaging

systems, Thruvision currently produces what it seems to be the only commercially available

passive THz imaging system [Thruvision].

Active SMW Imaging (ASMW)

Research works on active SMW imaging (ASMW) have only appeared recently [Cooper et al.,
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Figure 2.5: SMW images. From left to right: PSMW image (0.1-1 THz) of a man with concealed

objects beneath his jacket; PSMW image of a man with a spanner under his T-shirt; ASMW image of a

man hiding a gun beneath his shirt. Images extracted from [Cooper et al., 2008; Luukanen et al., 2008;

Shen et al., 2008]

2008; Lee et al., 2006; Sheen et al., 2009; Tamminen et al., 2008]. Some of them can image a

body part at a distance at 0.6-0.8 THz with a spatial resolution of less than 1 cm [Cooper et al.,

2008]; Tamminen et al. [2008] and, Lee et al. [2006] present much better resolution ( 2mm)

working with relatively close targets at 310 GHz ([Tamminen et al., 2008]), or beyond 1 THz

([Cooper et al., 2008]). Finally Sheen et al. [2009] developed a prototype system that operates

near 350 GHz. Fig.2.5 (right) shows an image acquired at SMW with the active architecture.

Although images acquired at a distance with ASMW imaging systems present not very high

spatial resolution, extracting signals from the noisy scene clutter is possible [Cooper et al., 2008].

Furthermore, images acquired from targets near the system present a reasonable resolution for

biometric applications, as it happens with fingerprints.

2.2. Shape Matching

Visual information plays an important role in our society. An image has the ability to

communicate a complex story or a set of ideas by simply watching to it. There is a growing

interest in finding images in large collections, localizing certaing types of objects within images.

In order to find an object within the image, it has to be described or represented by certain

features. Past work on object recognition has developed the use of two major cues: appearance

and shape.

The appearance-based recognition, makes direct use of pixel brightness values.

Shape is an important visual feature and it is one of the basic features used to describe image

content. However, shape representation and description is a difficult task. This is mainly due

to the loss of one dimension when projecting objects onto a 2-D image plane. As a result, the

shape extracted from the image only partially represents the projected object. Adittionaly, the

problem worsens as shape is corrupted with noise, defects, arbitrary distorsion and occlusion.

Shape representation generally looks for effective and perceptually important shape features
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based on either shape boundary information or boundary plus interior content. According to

[Yang et al., 2008], efficient shape features require to possess some requirements such as:

identifiability: similar shapes need to have a feature able to recognize them from other

types of shapes.

translation, rotation and scale invariance: the chosen feature needs to be invariant

to translation, rotation and scale changes.

affine invariance: when an affine transform is applied to a shape, the 2D coordinates

are changed. The shape features requires being as independent as possible to this trans-

formations.

noise resistance: features must be as robust as possible againts noise.

occlusion invariance: when some parts of a shape are occluded by other objects, the

feature of the visible part must not change.

satistically independence: if more than one feature is used to represent a shape, they

must be statistically independent.

There is a wide variety of techniques to model a shape and different classifications can be

found according to different aspects. In [Zhang and Lu, 2004] a classification is exposed. Shape

representation can be generally classified into two classes of methods: contour-based methods

and region-based methods. The classification is based on whether shape features are extracted

from the contour only or are extracted from the whole shape region. Under each class, the

different methods are further divided into structural approaches and global approaches. This

sub-class is based on whether the shape is represented as a whole or represented by segments.

Yang et al. [2008] classifies the techniques according to their processing approaches. It

describes in detail the main types of object recognition techniques. We found: one-dimension

functions such as complex coordinates, polynomial approximations, spacial features, moments,

space-scalars techniques and techniques to project to other domains. Fig.2.6 shows the hierarchy

of the classification of shape feature extraction approaches.

Alternatively, shape can be represented by a set of numbers called descriptors. A descriptor

attempts to quantify shape in ways that agree with human intuition. Usually, the descriptors

are in the form of a vector. Shape descriptors should obey some requirements [Yang et al., 2008]

completeness: the descriptors should be as complete as possible to represent the content

of the information items.

compact size: the descriptors should be represented and stored compactly. The size of

descriptor vector must not be too large.

reasonable computation cost: the computation of distance between descriptors should

be simple so as to reach reasonable computation time.
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Figure 2.6: Shape matching classification according to Yang et al. [2008]

The simplest descriptor is a vector of image pixels. However, the high dimensionality of the

descriptor results in a high computational complexity for recognition which is not feasible for

commercial systems. Mikolajczyk and Schmid [2005], presents a wide study about the different

types of descriptors that can be used in the field of object recognition. For instance: distribution-

based descriptors, descriptors containing space-frequential informacion, differential descriptors,

etc.

Mikolajczyk and Schmid [2005] exposes that in order to solve the multiobject recognition

problem; it is desirable to use more than one feature, or a combination between characteristics

(color information, texture information, and principal component analysis). This is because it

has been proved that there is no single feature that works optimally for all kinds of classes.

The aim of this work consists of building a biometric system using the information of the

human contour extracted from images acquired at 94 GHz. In the following chapter, the tech-

niques chosen to build this biometric system for MMW-images will be described in more detail.

At the same time, several types of distances to compute the score will be summarized.
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Chapter 3

Methods Implemented

In this chapter, we introduce the methods proposed for modeling the silhouettes of people

using their contours. As it has been mentioned before, the goal of this Dissertation consists of

building a biometric system based on the contour information. To this aim, different techniques

are implemented and compared between them in order to discover which configuration optimizes

the performance of the system.

Fig.3.1 draws a simple diagram explaining the different stages of the body-shape based

biometric system. As can be seen, there are two principal stages: the contour extraction, the

parameterization stage and the classification stage.

Input Image A

Input Image B

Contour

Coordinates

Shape

ContextsContour

Extraction

Euclidean

Distance

Dynamic

Time Warping

Similarity

measure
Fourier

descritpors

Landmarks

Figure 3.1: General scheme of the combination of the different techniques that are used in this work

Within the parameterization and the classification stage, there are several techniques that

may be applied. We have selected for the parameterization stage four different approaches:

Contour Coordinates themselves, Shape Contexts (a complex descriptor proposed by Be-

longie et al. [2002]) and using Fourier Descriptors of the coordinates [Persoon and Fu, 1977]

and Landmarks which are a reduced set of points which describe the more discriminative parts

of the silhouette.

Regarding the classification stage, two types of distances are employed: the naive approach:

Euclidean Distance and the DTW algorithm, a more complex technique to compute a
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similarity between sequences of points proposed by Yasuhara and Oka [1977].

Bellow, we will proceed to outline some of the aforementioned techniques, among them:

Dynamic Time Warping, Shape Contexts descriptors, Fourier Descriptors and Landmarks.

3.1. Shape Contexts (SC)

Shape Contexts descriptors were first introduced by Belongie et al. [2002]. This technique

addresses to describe the feasibility of a specific point by pointing out the relative distance and

angle of the rest of the points within a shape. The number of radial bins and theta bins are

the main parameters of this descriptor. The shape of an object is represented as a discrete set

of points on the contour. A subset of the contour points is selected as centers for computing

the shape contexts descriptor, defined as a log-polar histogram. Each point of the shape is

situated in its corresponding bin, providing a description of the entire shape relative to the

specific point. As a result, the shape contexts descriptor of each point of a shape is fixed to a

(r bins ∗ θ bins)-vector.

For a point pi on the shape, we compute a coarse histogram hi of the relative coordinates of

the remaining n-1 points of the shape:

hi(k) = #{q 6= pi : (q − pi) ∈ bin(k)} (3.1)

The basic idea of shape contexts is illustrated in Fig.3.2, which shows an example of a shape

context descriptor for two points in the eigth digit. Note that the log-polar histogram used in

this case is a 12∗5− length vector. Dark colors mean a high density of points within a bin, while

ligther colors imply less density of points. In both cases the majority of points are quite distant

from the specific point. Regarding the angle distance, in the first case (see Fig.3.2 (a) and (b))

the major density of points relies on the farthest angle distances, while for the second case (see

Fig.3.2 (c) and (d)) there are approximately as many points in a medium angle distance as in

the far angle distance.

Given two shape contexts, which are histograms, one can measure how likely they come

from the same underlying distribution. In order to compute the similarity between two shape

contexts, different distance method or standard statistical methods may be applied.

This work attempts to study whether this complex descriptor may improve the performance

of the system or not. Once the shape contexts descriptors are computed for all the points

describing a contour, DTW algorithm is applied to find the best alignment between them instead

of using the contour coordinates.

3.2. Fourier Descriptors (FD)

Although, Fourier descriptors (FD) are a 40-year-old technique, it is still considered as a

valid description tool [Yang et al., 2008]. These descriptors are simple to compute and robust
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(a) Point a (b) Point b

(c) Histogram point a (d) Histogram point b

Figure 3.2: Example of the computation of a shape contexts descriptor for two single points within the

eight digit. a) and c) represent a point within the eight digit and its respective log-polar histogram; b)

and d) for point within the digit and its associated log-polar histogram. Extracted from [Zhang and Malik,

2003])

against translations and rotations since the effect these transformations cause on the descriptors

is completely known. For more details, see [Theodoridis et al., 2010].

First, in order to compute the Fourier descriptors we need to represent the Contour Coordi-

nates as complex numbers (see Equation 3.2). Secondly, we apply the Fourier Transform to the

complex numbers to obtain the Fourier description (see Equation 3.3).

Let (xk,yk), K = 0,1,...N − 1 be the coordinates of N samples on the boundary of an image

region, see Fig. 3.3. For each pair (xk,yk) we define the complex variable:

uk = xk + jyk (3.2)

For the N uk points we obtain the DFT fl

fl =

N−1∑

k=0

ukexp(−j
2π

N
lk), l = 0, 1, ..., N − 1 (3.3)

The coefficients fl are also known as Fourier descriptors of the boundary. Once the fl are
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Figure 3.3: A digital boundary and its representation as a complex sequence. Starting point x0 and y0,

selected arbitrarily

available, the uk can be recovered and the boundary can be reconstructed. The inverse Fourier

transform of these coefficients that restores uk is:

uk =
1

N

N−1∑

l=0

flexp(j
2π

N
lk), k = 0, 1, ..., N − 1 (3.4)

If, instead of using all Fourier descriptors, we use only the first P coefficients in computing

the inverse transformation, this is equivalent to setting fl = 0 for l > P − 1. The result of the

inverse transformation is not 100% accurate, but an approximation to uk:

ûk =
1

N

P−1∑

l=0

flexp(j
2π

N
lk), k = 0, 1, ..., N − 1 (3.5)

Although only P terms are used to obtain each component of ûk, k still ranges from 0

to N-1. Hence, the same number of points exists in the approximate boundary, but not as

many terms are used in the reconstruction of each point. Bearing in mind that high-frequency

components account for fine detail, and low-frequency components determine global shape, the

discriminatory information of the shape is not lost.

3.3. Landmarks (LM)

This last approach is proposed as a possible feature for the parameterization stage of the sys-

tem. These landmarks consists of a reduced set of points obtained in the work by Moreno Moreno

[2012]. These landmarks were used as reference points from which some of the 21 distance mea-

sures were taken. Fig.3.4 depict an example of the situation of these 14 points. In particular,
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they try to represent the most singular parts of the people silhouette:

1 point describing the top center of the head

2 points describing both sides of the neck

2 points describing the limits of the hands

2 points describing the underarms

2 points describing both sides of the waist

2 points describing each side of the hip

1 point describing the pubis

2 points describing the two feet

LandMarks, User 1

Figure 3.4: Set of 14 points describing the silhouette of a user 1

In this work, we aim to use these landmarks as features with the DTW or ED classifier,

evaluate the results obtained and compare them with the results achieved with the other ap-

proaches.

3.4. Dynamic Time Warping (DTW)

Dynamic Time Warping is an application of Dynamic Programming to the problem of match-

ing time sequences. Yasuhara and Oka [1977] were the first to report its suitability for dynamic

signature verification. This Dynamic Programming technique aims to find the best alignment

between two sets of points that do not share their dimension (different number of points) min-

imizing a given distance measure. This algorithm deals with some global and local restrictions
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which describes the boundaries of correspondences that may be established between these two

sets of points. In the biometric field, it was first used for speech recognition and signature

verification [Jain et al., 2002; Kholmatov and Yanikoglu, 2005].

The correspondence may be established by using some specific characteristic of the point.

The characteristics that have been used in different experiments of signature recognition [Jain

et al., 2002; Kholmatov and Yanikoglu, 2005] are based on local features and global features. The

main local features are the coordinates (x,y), difference of coordinates (δx, δy), angle features

(sin(α), cos(α)), absolute and relative speed, gray values, pressure values, etc. The main global

features are the number of coordinates, total amount of time, bounding box, number of strokes,

etc.

DTW algorithm is useful for our work since this algorithm do not require having sequences

with the same dimensionality. The contours extracted from the BIOGIGA images do not have

the same amount of points so, in order to compute a similarity measure between sequences of

points from different silhouettes, we use the DTW algorithm which obtains a cumulative distance

between the Contour Coordinates of two subjects. In Chapter 4, we study the variation in the

dimensionality of the contours from the same user and from different users.

3.4.1. DTW Algorithm

In this section, we introduce the DTW algorithm. We base on the work by [Mart́ınez-Dı́az,

2008] to explain the details of this algorithm. Let’s define two sequences, in this case, the

sequences refers to the Contour Coordinates of two people.

X = x1, x2, ...., xi, .....xI

Y = y1, y2, ...., yi, .....yJ

and a distance measure as

d(i, j) = ||xi − yj|| (3.6)

between sequence samples. A warping path can be defined as

C = c1, c2, ..., ck, ..., cK (3.7)

where each ck represents a correspondence (i,j) between samples of X and Y. The initial

condition of the algorithm is set to

g1 = g(1, 1) = d(1, 1)w(1) (3.8)

Where gk represents the accumulated distance after k steps and w(k) is a weighting factor

that must be defined. For each iteration, gk is computed as

gk = g(i, j) = min
ck−1

[gk−1 + d(ck)w(k)] (3.9)
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until the (I’th) and (J’th) sample of both sequences respectively is reached. The resulting

normalized distance is

D(X,Y ) =
gk∑K

k=1
w(k)

(3.10)

The weighting factors wk are defined in order to restrict which correspondences among

samples of both sequences are allowed. In Fig.3.5 (left), a possible definition of wk is depicted.

In this case, only three transitions are allowed in the computation of gk.

In Fig.3.5 (right), an example of point correspondences between two signatures is depicted

to visually show the results of the elastic alignment.

The algorithm has been further refined for signature verification by many authors [Kholma-

tov and Yanikoglu, 2005; Martens and Claesen, 1997; Sato et al., 2007]. Although the DTW

algorithm has been replaced by more powerful ones such as HMMs or SVMs for speech appli-

cations, it remains a highly effective tool for signature verification as it is best suited for small

amounts of training data, which is the common case in signature verification.

Figure 3.5: Example of symmetrical weighting factors w(k) for Dynamic Time Warping (left). Example

of point-to-point correspondences between two genuine signatures obtained using DTW extracted from

[Mart́ınez-Dı́az, 2008] (right).

In this work, DTW is used to obtain a cumulative distance between two strings of coordinates

that is known to be minimal. Equation 3.11 shows the transformation of this minimal distance

into a matching score where K is a normalization factor that takes into account the number of

aligned points between two sequences.

score = exp
−dist

K (3.11)
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Chapter 4

Experimental Framework

The lack of databases in the MMW band due to the privacy concerns the MMW body

images present hinders the acquisition of images in this band. To the best of the author’s

knowledge, there are few databases of MMW body images. In particular, we are aware of

the TNO database, which was created by Alefs et al. [2010] and has captured real images

from people bodies and the BIOGIGA database, which is a synthetic database developed by

Moreno-Moreno et al. [2011a] which simulates the effect of the MMW band. Due to the privacy

concerns that the TNO database presents, we decide to use the BIOGIGA database. A

more complex description about the BIOGIGA database is given throughout this chapter.

This chapter also covers the procedure to extract the contours from the images and the exper-

imental procedure carried out to analyze the performance of the different approaches described

in Chapter 3.

4.1. BIOGIGA Database

The corpus of the BIOGIGA database consists of synthetic images at 94 GHz of the body

of 50 individuals: 25 males and 25 females with ages ranging from 15 to 55 years old. The

corporal models were previously generated using the software MakeHuman [2011] based on

body measurements taken from the subjects. Then, these models were imported to Blender

[2011], which simulates the effect of the 94 GHz radiation over the human models. The images

are the result of simulations carried out on corporal models at two types of scenarios (outdoors

and indoors) and with two kinds of imaging systems (passive and active, see subsection 2.1.1 for

more details).Then, for each user, the database has four sets of images, each of them simulated

by:

A passive system outdoors (PO).

A passive system indoors (PI).

An active system outdoors (AO).
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An active system indoors (AI).

Synthetic Images at 94 GHz for a Passive System Outdoors
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Figure 4.1: Synthetic images acquired at 94 GHz and extracted from the BIOGIGA database [Moreno-

Moreno et al., 2011a]. The six images represent the user id=1 user with a passive system and outdoors.

The figure shows the three different camera angles, and images with clothes and without clothes

In each of these four scenarios, six different images from each user are taken. Three of them

are simulated with clothes, and the other three are simulated without clothes to analyze the

effect of clothing and have some variability between the images of the same person. For this,

three angles between the subject and the camera were considered, having images with -10, 0 and

+10 degrees. Therefore, the BIOGIGA database acquires six images per user and per scenario.

So, finally, we have 6 images * 50 users * 4 scenarios = 1200 images

In this Dissertation, only passive images at outdoor scenarios are considered (PO). We choose

this subset of the database due to the more similarity of this subset with the TNO database and

its major resolution. This subset of the database is comprised of 50 subjects, with 6 images per

user, making a total of 300 images. Fig. 4.1 shows an example of the images from a single subject

of the database with passive system and outdoors scenarios. As it can be seen, images with and

without clothes are very similar since the 94 GHz band is transparent to clothes; however, the

pixel intensity is a bit darker in the images with clothes and small parts of the clothes are still

noticeable in the waist and neck.

Further information about the description of the generation of the BIOGIGA database can

be found in [Moreno Moreno, 2012; Moreno-Moreno et al., 2011a].
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4.2. Preprocessing Steps: Contour Extraction

The extraction of the contours is obtained as follows. The first step consists of binarizing the

images, that is, separate the background from the body. A characteristic of the images simulated

by passive systems is the different grey level they present in different parts of the body. For

instance the abdomen is much darker than the feet. This fact worsens the segmentation process.

This problem is overcome performing the segmentation in two steps: i) border detection and ii)

morphological detection.

A Canny border detector (whose parameters are previously tuned) is first applied to the

image. After that, various morphological operations are conducted on the resulting border

image. These morphological operations consist of closing operations with different structural

elements in different areas of the image (head, arms, from arms to calf, and feet). Finally, another

set of morphological closing removes spurious irregularities, and obtains the final contour of the

human body, which is used in the following experimental sections. Fig.4.2 shows an example of

the process of segmentation and contour extraction.

Input Image Segmentation Contour extraction

Figure 4.2: Main steps followed in our system to extract the contour. From left to right: Original image

(of a subject with clothing and a camera angle of -10 degrees), segmented image, contour extraction.

This step was based on the preprocessing stage made in [Moreno Moreno, 2012], but it was

necessary to retune the parameters so as to obtain contour sequences valid for the purpose of

this work.

4.3. Experimental Framework

In this work, we use protocols in the form of Px : y. where the x refers to the number of

training images considered per user, and y stands for the number of test images per user. The

training images are the ones that the system previously has of each subject and are used to

enroll the user into the system, while the test images are the ones given by the user when he or

she tries to be accepted by the system.

Taking this into account, two different kinds of protocols are selected: those which use three
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images as test images, and those which use just one image as test image. From the first type

of protocols we have: i) protocol 1:3, ii) protocol 2:3 and iii) protocol 3:3 and from the second

type of protocols we have: i) protocol 1:1, ii) protocol 2:1 and iii) protocol 3:1. The reason of

using the first type of protocols relies on the interest of having the same experimental framework

than the previous work developed by Alefs et al. [2010] and Moreno-Moreno et al. [2012].

It is worth noting that, in the experiments, all the training images are images simulated

with clothes, and the test images without clothes. This configuration is made in order to have

the most challenging scenario with severe mismatch between enrollment and testing regarding

clothing. The configuration for each protocol is as follows:

P1:3, train (cr∗), test: (sra, srb, src)

P2:3, train (cr∗, cr∗), test: (sra, srb, src)

P3:3, train (cra, crb, crc) test: (sra, srb, src)

P1:1, train (cr∗), test: (sr∗)

P1:2, train (cr∗), test: (sr∗, sr∗)

P1:3, train (cr∗), test: (sra, srb, src)

Where cr∗ stands for images with clothes for the three angles between subject and camera

(-10, 0 and 10); sr stands for images without clothes and a, b, c refers to every single camera

angle. We have to bear in mind that, when we have 2 or 3 images for training or testing, the

fusion of the information contained in the images is carried out at the score-level, i.e., all

single comparisons between training and test are done image by image, and then the scores are

fused using a sum rule. This is mainly due to the fact that contours do not have the same

dimensionality in all cases, so it is unfeasible to make the fusion at the feature-level.

A major issue to bear in mind relies on the importance of having contours of the same size

or not. Since the database contains six different images per individual, every single contour

obtained from its respective image has a number of coordinates that do not necessarily coincide

with the number of coordinates of the remainder images from the same subject. The same

happens when comparing contours from images from different subjects.

Fig.4.3 shows some examples of histograms of dimensionality of the images for single users.

As can be observed, the variation between the same subjects differs in 20-30 points approxi-

mately. Apart from the intra-person variability, there is also a large inter-person difference

regarding the size of contours belonging to different subjects. From Fig.4.4 can be seen that

dimensionality of the contours ranges from 2500 to 3100 points approximately.

In some experiments of this work the contours are normalized (specified in the name of the

experiment as NormS), that is, all the contours of all the images of the database are truncated

or interpolated to the medium amount of points of all the contours. If the original contour has

fewer points than the average, an interpolation is carried out while a truncation is computed
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Figure 4.3: Histogram of the dimensionality of the contours for single users: user id 10 (a), user id

20(b), user id 30(c) and user id 50(d)

otherwise. In other experiments, the contour of each single image remains with its original

size (specified in the name of the experiment as MeanS). If we reduce the dimensionality of

the contours and we want to have MeanS contours, the original size of the contours is not

maintained. In this case, a subsampling operation is carried out so as to have a number of

coordinates whose average is the desired resolution.

The last part of this chapter describes the experiments carried out in this paper. The

objective of these experiments is to find the combination of features and classifiers that optimizes

the performance of the system bearing in mind also the computational cost. The simulations

fulfilled combine the different type of features which can describe the silhouette of the person:

Contour Coordinates (CC), Shape Contexts (SC), Fourier Descriptors (FD) and the Landmarks

(LM) with the two classifiers proposed in the work: Euclidean Distance (ED) and Dynamic

Time Warping algorithm (DTW):

CC ED: Contours Coordinates using Euclidean Distance

CC DTW: Contours Coordinates using Dynamic Time Warping.
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Figure 4.4: Histogram of the dimensionality of the contours for all the users

CC DTW: Contours Coordinates using Dynamic Time Warping.

SC DTW: Shape Contexts using Dynamic Time Warping.

SC ED: Shape Contexts using Euclidean Distance.

FD DTW: Fourier Descriptors using Dynamic Time Warping.

FD ED: Fourier Descriptors using Euclidean Distance.

LM DTW: Landmarks using Dynamic Time Warping.

LM ED: Landmarks using Euclidean Distance.

So, to achieve the aforementioned goal, we need to explore the capability of the different

features proposed and the different classifiers, the effect of normalizing the contours and the

influence of the resolution of the contours. Finally, results achieved here are compared to the

results from Moreno-Moreno et al. [2012].

4.4. Performance Evaluation

The evaluation of the performance of the system is done through well-known quantitative

measures, obtained from experiments, that reveal how well the system works and allow to

compare its performance with the performance of other biometric systems [Jain et al., 1999].

When working in verification mode the main metrics used to quantify the performance of the

biometric system are:

32

Chapter4ExperimentalFramework/Figs/EPS/histogram_of_dimensionality_of_contours.eps


4.4 Performance Evaluation

False-Rejection Rate, FRR: reflects the probability that a genuine user is rejected by

the system.

False-Acceptance Rate, FAR: represents the percentage of users that have been falsely

accepted as genuine user.

Equal Error Rate, EER: is the point at which FAR = FRR, and gives a measure of the

system performance: the lower the EER, the better the performance.

Error Detection Trade Off, DET: Draws the representation of the FAR curve against

FRR curve. It is considered as an alternative measure to evaluate the performance of the

biometric system.

Note that EER and DET measures are obtained from the FRR and FAR. For the experiments

carried out in this work, results are presented in the form of DET Curves and Equal Error Rates

, EER. As it has been outlined in Section 1.1, biometric systems can operate in two modes:

verification mode and identification mode. In this Dissertation, only verification results are

presented.
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Chapter 5

Experimental Results

The experimental results of this work are covered in this chapter. Here, we have carried

out different experiments with the objective of extracting a reliable conclusion regarding the

feasibility and the performance of the system with the different features and classifiers proposed

in Chapter 3.

In particular, this chapter is organized as follows. First of all, results are presented according

to the features used, that is, first results based on Contour Coordinates are depicted and then

results based on Shape Contexts, Fourier Descriptors and Landmarks.

In each case, a deep study of the technique is accomplished to get conclusions about the type

of classifier (DTW or ED), the type of normalization (MeanS or NormS) and the dimensionality

of the features that optimizes the performance of the system (2800, 1000, 500, 200, 100 points).

All results are presented following the experimental framework described in Section 4.3.

5.1. Contour Coordinates

In this experiment we analyze the performance of a system based on coordinates of the

contour. Several classifiers are studied with these features: DTW and ED. In Section 5.1.1

results of the naive system based on Contour Coordinates and ED are presented while results

of the system based on Contour Coordinates and DTW are presented in Section 5.1.2.

5.1.1. Contour Coordinates with ED

This is the baseline configuration of our system. In this case, the Contour Coordinates are

used as the features of the system and then the Euclidean Distance is used to measure the

performance of the system. The results obtained with this configurations are drawn in Table

5.1. As can be seen, different resolutions of the contour are evaluated ranging from 200 points

to approximately the original size of the contour: 2800 points.

Note that in this case, only NormS contours can be used, as the Euclidean Distance algorithm

requires sequences of the same length. Results are presented for all the protocols defined in
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section 4.3. From Table 5.1, we conclude that a change in the resolution of the contour does

not entail an improvement of the system. The best configurations of protocols are in order: 3:3,

2:3, 1:3, 3:1, 2:1 and 1:1. However, we have to bear in mind that protocols using 3 images as

test images are not so realistic. Protocol 3:1 is the most suitable protocol to develop in practical

environments.

Table 5.1: EER results using the coordinates of the contours as features and ED as classifier changing

the resolution of the contour for protocols 1:3, 2:3, 3:3, 1:1, 2:1 and 3:1

CC ED EER for protocols: 1:3, 2:3, 3:3, 1:1, 2:1, 3:1

Experiment 1:3 2:3 3:3 1:1 2:1 3:1

CC 200 NormS ED 5,33% 5,33% 4,85% 9,28% 8,22% 7,55%

CC 500 NormS ED 5,33% 5,33% 4,89% 9,33% 8,22% 7,67%

CC 1000 NormS ED 5,33% 5,33% 4,89% 9,33% 8,22% 7,67%

CC 2800 NormS ED 5,33% 5,33% 4,89% 9,33% 8,22% 7,67%

5.1.2. Contour Coordinates with DTW

In this section we implement a system that uses Contour Coordinates as features and the

DTW algorithm as the classifier. As we have contours that do not have the same amount of

points (referred in the algorithm as MeanS contours), we need to use an algorithm capable

of finding a correspondence between two sequences of points with different resolution. This

algorithm is the Dynamic Time Warping. With some initial restrictions, this algorithm is able

to reach an alignment between pairs of points with a minimum distance.
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Figure 5.1: Performance of the system for different contour resolution: 2800, 1000, 500, 200, 100

Results of the system based on contour coordinates and DTW are depicted in Table 5.2. In
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5.1 Contour Coordinates

Table 5.2: EER results using the coordinates of the contours as features and DTW as classifier changing

the resolution of the contour and Normalizing its size or not for protocols 1:3, 2:3, 3:3, 1:1, 2:1 and 3:1

CC DTW EER for protocols: 1:3, 2:3, 3:3, 1:1, 2:1, 3:1

Experiment 1:3 2:3 3:3 1:1 2:1 3:1

CC 100 MeanS DTW 6,66% 5,60% 4,93% 14,22% 10,07% 7,33%

CC 100 NormS DTW 6,66% 3,23% 2,00% 10,62% 7,75% 6,00%

CC 200 MeanS DTW 5,41% 4,46% 2,81% 10,44% 7,11% 5,30%

CC 200 NormS DTW 5,33% 4,66% 3,22% 10,07% 6,89% 5,33%

CC 500 MeanS DTW 2,00% 1,18% 1,30% 10,23% 6,37% 1,53%

CC 500 NormS DTW 2,00% 2,00% 2,00% 10,02% 6,00% 2,00%

CC 1000 Means DTW 1,49% 1,49% 1,95% 10,31% 6,66% 1,46%

CC 1000 NormS DTW 2,00% 2,00% 2,00% 9,33% 6,42% 2,00%

CC 2800 MeanS DTW 1,33% 1,23% 1,59% 10,06% 6,66% 1,33%

CC 2800 NormS DTW 1,33% 1,17% 1,51% 9,89% 6,78% 1,33%

this table, we also study the effect of varying the resolution of the contour from 2800 points (the

original size of the contour) to 100 points. This reduction is accomplished to discover how many

points are really needed to represent accurately the human contours.

According to these results, we conclude that the resolution of the contour is essential to

achieve a good performance of the system. As can be seen from all the columns from Table 5.2,

as the resolution of the contour decreases, the performance of the systems worsens. In fact, the

average relative improvement between the worst (CC 100 MeanS) and the best scenario (CC

2800 Means) is about 76, 16% for protocol x:3 and 48.33% for protocol x:1.

Fig.5.1 represents the EER against the resolution of the contour for protocols 1:3, 3:1 and 3:3.

We observe, that in order to obtain EER results below the 2%, we need to work with contours

with more than 500 or 1000 points. However, if we desire to obtain the best performance possible,

we need to work with the higher resolution of the contour, 2800 points. Table 5.2 shows through

a color code how these results worsen as the resolution decreases. The darker red colors means

a low performance of the system while the darker green colors shows a high performance of the

system. For instance when we use the highest resolution of the system, that is 2800 points, and

protocols 1:3 or 3:1 we obtain the best EER rates: 1.33%. On the other hand, with contours

with poor resolution, such as the case of 100 points, we obtain low EER rates as 10, 07% for

protocol 2:1 and 14, 22% for protocol 1:1.
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From these results we also study the influence of normalizing the contour, NormS, or having

contours from the same subject with different size (different size, but with a short variation of

points between them, MeanS (see Section 4.3 for more details). From the table, we conclude that

for contours with the higher resolution such as the case of 2800 points, there is no appreciable

improvement between NormS and MeanS contours. When we use contours with 1000 points

or 500 points, the majority of protocols do show a little but sufficient variation of performance

bewteen NormS and MeanS contours. On the other hand, in the majority of cases of the smaller

resolutions, we observe that there is a small variation between MeanS and Norms results or

for other protocols, we obtain better results using NormS contours. However, we need to focus

on applying NormS or MeanS for the resolution of contour that gets best results which is the

CC-2800 resolution. In this particular case, using NormS contours or MeanS contours do not

change sufficiently the results.

DET curves for this experiment are depicted in Fig. 5.3 (at the end of this chapter) and help

us to have a more reliable vision of the performance of the different configurations. There are

six curves, one for each protocol described previously. Comparing the results from the different

protocols, we can see how all the DET curves approach the origin when more data is used for

the training stage. The best protocols are the ones that use a larger number of images in the

training stage: protocols 3:3 and protocols 3:1. It is worth noting that in the case of protocol

3:3 the number of scores is smaller compared to the other protocols, making more difficult to

draw an accurate DET curve. For instance in this case, the configuration with the best EER

according to Table 5.2 is the CC-500 MeanS DTW. However, we observe from Fig.5.3(e) that

for the limit values of FAR and FRR of 0, 5% we have a corresponding value of FRR and FAR of

2% for the CC-2800 NormS DTW respectively. For the case of CC-500 MeanS DTW, however,

for the limits values of FAR and FRR of 0, 5%, we have a corresponding value of 6% of FRR

and 2% of FAR respectively. Therefore, we understand that although the EER results of the

CC-500 MeanS DTW curve are slightly better, the CC-2800 configurations are more suitable

for the system.

Comparison between DTW and ED

Comparing the last row of Table 5.1 with the last row of 5.2, we confirm that using DTW

results in a higher performance of the system, having an average relative improvement of 74, 10%

for protocols x:3 and 31, 39% for protocols x:1. This is mainly due to the capability of the DTW

algorithm to find the best alignment between two sequences of points, in this case, between two

sequences of Contour Coordinates.

There is also a huge difference regarding the computational cost of both classifiers. The

computational time involved in the DTW algorithm is at least 5 times the computational cost

involved when applying the ED algorithm.
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5.2. Shape Contexts

In this section we evaluate the performance of a system based on Shape Contexts. As it has

been described in section 3, Shape Contexts are complex descriptors of the shape that describe

each point within the shape with a log-polar histogram. In this specific case, the Shape Contexts

approach was set with a log-polar histogram of 12 bins of radial distance and 5 bins of angle

distance (it has been proved its good results in [Belongie et al., 2002]), resulting a vector of 60

components for each point of the contour. Different resolutions of the contours are considered

and both classifiers DTW and ED are studied. In the last part of the section a brief analysis of

the parameters of the Shape Contexts (described in section 4.3) is carried out.

5.2.1. Shape Contexts with DTW

The experiments carried out in this section use Shape Contexts as features and DTW as

classifier. It is worth noting that in this case the score of DTW is computed as following:

score = −
DIST

K
(5.1)

The exponential is not applied as in section 5.1.2, because Shape Contexts turn out to provide

much better results without applying the exponential function. We study SC with resolutions

which range from 200 points to 2800 points being in this case always normalized to the same

size, NormS.

Results are depicted in Table 5.3. As we can observe, as the resolution decreases, results

worsen in the majority of cases. For example, the average relative improvement between the SC

2800 configuration and the SC 200 configuration is about 16, 28% for protocols x:3,and 45, 40%

for protocols x:1. The same colors code is applied than in section 5.1.2.

If we compare the SC 2800 configuration from Table 5.3 with the CC 2800 NormS configura-

tion from Table 5.2, we observe that for protocols x:3 we obtain an average relative improvement

of 33, 17% between applying CC instead of SC. However for protocols x:1, applying SC yields

an average relative improvement of 39, 60% with respect to the CC features.

5.2.2. Shape Contexts with ED

Only one case of Shape Contexts using ED classifier is studied. In this case, we use the best

resolution of points: 2800. As can be seen from the last row of Table 5.3, using DTW algorithm

improves the EER of the system for all protocols. When using DTW compared to using ED,

the relative improvement of the system on average is of 76, 15%

The computation cost invested when we work with SC as features increases due to the huge

dimensionality of each vector, which needs r bin ∗ theta bin ∗ N values to build the model of

each user. This yield an increase of the computational cost that is magnified even more when

applying the DTW algorithm. In particular, the computation cost involved in an algorithm
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Table 5.3: EER results using Shape Contexts as features and ED and DTW as classifier changing the

resolution of the contour for protocols 1:3, 2:3, 3:3, 1:1, 2:1 and 3:1

SC DTW EER for protocols: 1:3, 2:3, 3:3, 1:1, 2:1, 3:1

Experiment 1:3 2:3 3:3 1:1 2:1 3:1

SC 200 NormS DTW 3,91% 2,00% 2,00% 10,66% 6,23% 4,66%

SC 500 NormS DTW 2,38% 2,00% 2,00% 9,84% 5,77% 4,00%

SC 1000 NormS DTW 2,00% 2,66% 2,00% 9,57% 5,04% 4,00%

SC 2800 NormS DTW 2,00% 2,00% 2,00% 6,09% 3,33% 2,48%

SC 2800 NormS ED 10,00% 8,66% 9,18% 16,26% 15,11% 13,25%

based on SC and DTW may increase the computation cost of an algorithm based on SC and

ED at least ten times.

5.2.3. Studying Shape Contexts

In this last part of the section, we study the results obtained when different parameters of

Shape Contexts are changed. Specifically, the parameters we study are the number of radial bins

(R bins), the number of theta bins (R theta), the relative distance from the point to the first

radial bin (R inner) and to the last radial bin (R outer). In all cases, we use the higher resolution

of points, that is, 2800 points. Table 5.4 explains the different combinations of parameters and

the results obtained, being SC0 the reference configuration that are studied. Note that R theta

is set to 12 and R inner is set to 1/8 in all cases.

As can be seen, using less radial bins such as SC1 which uses 3 bins, results in worst perfor-

mance. Experiment SC2 uses 10 bins, and these results are slightly better than the SC0 results

(mainly for protocols 1:1, 2:1 and 3:1) having an average relative improvement of 12.15%. SC3

and SC4 study whether enlarging R outer parameter results in better performance of the system

or not. We observe from rows fourth and fifth of Table 5.4 that the performance of the system

on average are quite similar to the results obtained with SC0. We conclude from this evaluation

that the best way to improve the results using SC is using a larger number of radial bins.

5.3. Fourier Descriptors

In this section, we analyze the system based on Fourier Descriptors. In this case, both

classifiers DTW and ED are used. Contours may be NormS and MeanS. To carry out this study

we use a resolution of 2800 points.
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Table 5.4: EER results of the different configuration of Shape Contexts using DTW in all cases for

protocols 1:3, 2:3, 3:3, 1:1, 2:1 and 3:1 with R theta=12 and R inner=1/8 for all cases

SC EER for protocols: 1:3, 2:3, 3:3, 1:1, 2:1, 3:1

EXP R_bins R_outer 1:3 2:3 3:3 1:1 2:1 3:1

SC 0 5 2 2,00% 2,00% 2,00% 6,09% 3,33% 2,48%

SC 1 3 2 5,60% 4,00% 4,00% 14,00% 9,04% 6,00%

SC 2 10 2 2,00% 2,00% 2,00% 5,65% 3,00% 2,40%

SC 3 5 4 2,00% 2,00% 2,00% 6,22% 3,11% 2,66%

SC 4 5 8 2,00% 2,00% 2,00% 6,72% 3,18% 2,00%

It is worth noting that, in order to apply DTW and ED algorithm, we need to work with the

module of the descriptor. Besides, when using DTW algorithm, the score is computed without

the exponential as in section 5.2.1.

From Table 5.5, we observe comparing the first and second row that when using the DTW

algorithm, results improve with MeanS contours. This is mainly due to the larger number of

possible alignments between pair of points when using MeanS contours. However, using MeanS

or NormS makes no important difference when using ED classifier.

When comparing the first and third row of Table 5.5, we observe that in the majority of

cases there is not any considerable difference of results. In fact, the average EER for each row

is 4, 39% and 4, 33% respectively. So, taking into account these results and the fact that the

computation cost of applying DTW algorithm is quite higher than applying the ED, we conclude

that in this case, using DTW with Fourier Descriptor as features is not worthwhile.

Table 5.5: EER results using Fourier Descriptor as features and DTW and ED as classifiers for protocols

1:3, 2:3, 3:3, 1:1, 2:1 and 3:1

FD EER for protocols: 1:3, 2:3, 3:3, 1:1, 2:1, 3:1

Experiment 1:3 2:3 3:3 1:1 2:1 3:1

FD 2800 MeanS DTW 3,30% 3,33% 4,00% 5,33% 5,29% 5,14%

FD 2800 NormS DTW 4,28% 4,95% 5,55% 6,8481% 6,88% 7,33%

FD 2800 NormS ED 2,43% 3,33% 4% 5,61% 5,40% 5,22%
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5.4. Landmarks

The last experiment aims to evaluate how efficiently can be a system which describes the

subjects with a few points. These points specify the position of certain parts of the silhouette

such as the top central point of the head, arms, feet, hips, key points of the silhouette.

Specifically, we have used 14 points extracted from the work by [Moreno Moreno, 2012] and

described briefly in section 4.3. Table 5.6 presents the results obtained with these set of points

when using either DTW or ED classifiers. From these results we conclude that using a vector

with a dimensionality quite shorter than the vectors used in any of the previous sections of this

chapter, produce results comparable to the rest of experiments. In particular, ED classifiers

produce better results than the DTW algorithm. In fact, the use of the DTW algorithm for this

reduced amount of points is not worthwhile.

However, it is worth noting that this database is ideal since is synthetic and the resulting

images do not present any problem due to illumination, occlusions, change of pose, etc. In a

more realistic database, the capability of extracting these landmarks with a high precision would

drop considerably.

Table 5.6: EER results using landmarks as features and DTW or ED as classifier for protocols 1:3, 2:3,

3:3, 1:1, 2:1 and 3:1

LM EER for protocols: 1:3, 2:3, 3:3, 1:1, 2:1, 3:1

Experiment 1:3 2:3 3:3 1:1 2:1 3:1

LM 14 NormS DTW 2,31% 2,0% 2,01% 12,60% 9,344% 3,35%

LM 14 NormS ED 2,06% 2,00% 2,00% 7,53% 4,81% 2,40%

5.5. Discussion

In this last section of the chapter, we analyze and evaluate all the methods proposed in

the previous sections. All protocols described in section 4.3 are considered. Only the higher

resolution of contours is used, except for the LM experiment, which only uses 14 points.

Table 5.7 shows all the results for all the experiments considered and includes an extra

column showing the average performance of each type of protocols: protocols x:3 and protocols

x:1. From the table, we conclude that the best methods are CC 2800 NormS DTW, SC 2800

NormS DTW and LM 14 NormS ED. With the x:3 protocols, we obtained higher performance

than we we use x:1 protocols.

However, if we compare the CC 2800 NormS DTW configuration and the SC 2800 NormS

DTW configuration we need to evaluate also the computational cost of each case in order to
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Table 5.7: Comparison between CC-DTW, CC-ED, SC-DTW, SC-ED, FD-DTW, FD-ED, LM-DTW

methods for protocols 1:3, 2:3, 3:3, 1:1, 2:1 and 3:1

EER for protocols: 1:3, 2:3, 3:3, 1:1, 2:1, 3:1

Experiment 1:3 2:3 3:3 Average 1:1 2:1 3:1 Average.

CC 2800 NormS DTW 1,33% 1,17% 1,51% 1,33% 9,89% 6,78% 1,33% 6,00%

CC 2800 NormS ED 5,33% 5,33% 4,89% 5,18% 9,33% 8,22% 7,67% 8,40%

SC 2800 NormS DTW 2,00% 2,00% 2,00% 2,00% 6,09% 3,33% 2,48% 3,96%

SC 2800 NormS ED 10,00% 8,66% 9,18% 9,28% 16,26% 15,11% 13,25% 14,87%

FD 2800 NormS DTW 4,28% 4,95% 5,55% 4,93% 6,84% 6,88% 7,33% 7,02%

FD 2800 NormS ED 2,43% 3,33% 4% 3,25% 5,61% 5,40% 5,22% 5,41%

LM 14 NormS DTW 2,31% 2,0% 2,01% 2,10% 12,60% 9,344% 3,35% 8,43%

LM 14 NormS ED 2,06% 2,00% 2,00% 2.02% 7,53% 4,81% 2,40% 4,91%

be able to give a reliable decision. In this case, the amount of time investing in computing the

EER for the SC 2800 NormS DTW configuration exceed at least ten times the time investing in

computing the EER for the CC 2800 NormS DTW configuration. This is because of the difference

of dimensionality between these two cases. If in the first case, every subject is modeled with a

2×N points-vector, the SC configurations needs 60×N points-vector to model each subject.

On the other hand, if we evaluate the LM 14 NormS ED configuration, we observe that its

average EER is better than the average for the CC 2800 NormS DTW. Nevertheless, we need to

bear in mind what was said in section 5.4, that these few points are acquired from ideal images,

which is not the real case.

Besides, comparing the single EER rate for protocol 3:1, which is one of the most suitable to

implement in practical environments, we observe that we have a relative improvement of 46, 37%

when using the Contour Coordinates instead of the Shape Contexts descriptor, and 44, 6% when

using the Contour Coordinates instead of the Landmarks.

The worst scenarios are those which use CC with ED and SC with ED. Comparing every

pair of experiments changing its classifier between DTW and ED, we confirm that ED is not

suitable when using Contour Coordinates or Shape Contexts as features, but it helps to improve

the results when we utilize Fourier Descriptors or Landmarks as features.

When analyzing the DET curves depicted in Fig. 5.2 for protocols 3:3 and 3:1 respectively, we

obtain the same conclusions. In fact, the best curve for both protocols is CC-2800 NormS DTW

curve and the worst is SC-2800 NormS ED curve, as it has been mentioned when comparing the

EER results. It is also worth noting that the amount of scores in the curves for protocol 3:3 is

lower than the curves drawn for protocol 3:1.

Finally, the results achieved in this work can be compared to previous experiments using the
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Figure 5.2: DET Curve for CC-DTW, CC-ED, SC-DTW, SC-ED, FD-DTW, FD-ED, LM-DTW,

LM-ED for protocol 3:3 (a) and for protocol 3:1 (b)

same database and protocols [Moreno-Moreno et al., 2012]. In that work, the biometric system

was based on 21 geometric distances between different key points of the contour. In that case,

results of 2% EER were achieved for the protocols 1:3, 2:3 and 3:3. In this work we obtain an

average relative improvement of 33.17% EER for the best case (CC 2800 NormS DTW), having

in average 1.33% EER.

For protocols 1:1, 2:1, 3:1 we do not achieve to improve the results for protocols 1:1 and

2:1, but at least we achieve the same results than Moreno Moreno [2012], 1, 33%. This previous

work by Moreno-Moreno et al. [2012] also applied a SFFS feature selection algorithm improving

their EER results very significantly.

Table 5.8 summarizes all experiments carried out in this work. The experiments are classified

according to the kind of features used: Contour Coordinates (CC), Shape Contexts (SC), Fourier

Descriptors (FD) and Landmarks (LM).
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Figure 5.3: DET Curve for contour coordinates as features and DTW as classifier changing the reso-

lution of the contour and with NormS or MeanS contours for protocols 1:3 (a), 1:1 (b), 2:3 (c), 2:1 (d),

3:3 (e) and 3:1(f)
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Table 5.8: Experiments carried out in this work for protocols 1:3, 2:3, 3:3, 1:1, 2:1 and 3:1. A color

code is also applied. The darker red colors means a low performance of the system while the darker green

colors shows a high performance of the system. The best EER results from all experiments are also framed

EER for protocols: 1:3, 2:3, 3:3, 1:1, 2:1, 3:1

Nº Experiment 1:3 2:3 3:3 1:1 2:1 3:1

1 CC 100 MeanS DTW 6,66% 5,60% 4,93% 14,22% 10,07% 7,33%

2 CC 100 NormS DTW 6,66% 3,23% 2,00% 10,62% 7,75% 6,00%

3 CC 200 MeanS DTW 5,41% 4,46% 2,81% 10,44% 7,11% 5,30%

4 CC 200 NormS DTW 5,33% 4,66% 3,22% 10,07% 6,89% 5,33%

5 CC 500 MeanS DTW 2,00% 1,18% 1,30% 10,23% 6,37% 1,53%

6 CC 500 NormS DTW 2,00% 2,00% 2,00% 10,02% 6,00% 2,00%

7 CC 1000 Means DTW 1,49% 1,49% 1,95% 10,31% 6,66% 1,46%

8 CC 1000 NormS DTW 2,00% 2,00% 2,00% 9,33% 6,42% 2,00%

9 CC 2800 MeanS DTW 1,33% 1,23% 1,59% 10,06% 6,66% 1,33%

10 CC 2800 NormS DTW 1,33% 1,17% 1,51% 9,89% 6,78% 1,33%

11 CC 2800 NormS ED 5,33% 5,33% 4,89% 9,33% 8,22% 7,67%

12 CC 1000 NormS ED 5,33% 5,33% 4,89% 9,33% 8,22% 7,67%

13 CC 500 NormS ED 5,33% 5,33% 4,89% 9,33% 8,22% 7,67%

14 CC 200 NormS ED 5,33% 5,33% 4,85% 9,28% 8,22% 7,55%

15 SC 2800 NormS DTW 2,00% 2,00% 2,00% 6,09% 3,33% 2,48%

16 SC 1000 NormS DTW 2,00% 2,66% 2,00% 9,57% 5,04% 4,00%

17 SC 500 NormS DTW 2,38% 2,00% 2,00% 9,84% 5,77% 4,00%

18 SC 200 NormS DTW 3,91% 2,00% 2,00% 10,66% 6,23% 4,66%

19 SC 2800 NormS ED 10,0% 8,66% 9,18% 16,26% 15,11% 13,25%

20 FD 2800 MeanS DTW 3,30% 3,33% 4,00% 5,33% 5,29% 5,14%

21 FD 2800 NormS DTW 4,28% 4,95% 5,55% 6,8481% 6,88% 7,33%

22 FD 2800 NormS ED 2,43% 3,33% 4,00% 5,61% 5,40% 5,22%

23 LM 14 NormS DTW 2,31% 2,00% 2,01% 12,60% 9,344% 3,35%

24 LM 14 NormS ED 2,06% 2,00% 2,00% 7,53% 4,81% 2,40%
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Chapter 6

Conclusions and Future Work

6.1. Conclusions

In this work, a complete body-shape based biometric system has been developed for MMW

body images extracted from BIOGIGA database. We have mentioned in Chapter 2 that the use

of MMW images instead of images acquired at other spectral bands presents some advantages,

mainly the transparency of clothing at that frequency allowing to extract easily the contours

from the images.

The main objective of this work consists of building a biometric system using the informa-

tion of the human contour extracted from images at 94 GHz. The methods proposed in this

Dissertation improve the performance of previous works based on geometric measures between

key points of the contour carried out over the same database. Even more, we consider that the

system based on contour information is much more robust and suitable for real MMW images

than the distance-based system, whose capability of extracting body landmarks would drop

drastically with real MMW images.

To this aim, we have proposed different features such as using the Contour Coordinates (CC)

and three other extracted from the Contour Coordinates such as Shape Contexts descriptor

(SC), Fourier Descriptors (FD) and body LandMarks (LM). For classifiers we have studied the

Euclidean Distance (ED) as a baseline classifier and the DTW algorithm as an alternative and

more complex classifier. Some of these approaches have been studied more in depth in Chapter

3.

In chapter 4, we described the BIOGIGA database and the proccess carried out to extract the

body contours from images. In Chapter 5 the experimental framework and protocols followed

during the experiments are outlined. In this last chapter, we have studied all the experiments

with the objective of finding the best configuration of techniques that yield the best performance

of the system. In particular, we have divided the experiments according to the feature used:

CC, SC, FD and LM. For each case, we compared the results obtained with the two proposed

classifiers. In the majority of the experiments we also study the influence of the resolution of
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the contours.

We also accomplished a comparison between the different features used. We conclude that

the best results are obtained when using the DTW algorithm directly to the Contour Coordinates

for the contours with the highest resolution: 2800 points. In this case we get obtain results of

1, 33% for protocols 1:3 and 3:1.

The best case, CC 2800 NormS DTW, has a relative improvement of 33% EER compared

to previous works based on geometric measures between key points of the contour carried out

over the same database [Moreno-Moreno et al., 2011b, 2012].

Considering all protocols evaluated (1:3, 2:3, 3:3, 1:1, 2:1, 3:1), we conclude that the best

protocols to use in a body-shape based biometric system are those which can have a more

robust model of the subject, that is: protocols 3:3 and 3:1 as they include 3 images per person

in the train stage. Besides, having a protocol 3:3 is not very common in realistic scenarios. For

this reason, protocol 3:1 is the most suitable protocol to consider when building a commercial

body-shape based biometric system.

The limitations of this work are related to the special characteristics of the database used.

Images from BIOGIGA database are limited when compared to real images acquired in practice,

but there are not publicly available databases for the moment. In our case, the synthetic images

were obtained from measures of real people and are similar to some extent to real data captured

at 94 GHz [Alefs et al., 2010]

6.2. Future Work

For future work, we propose to keep investigating other techniques or a combination of

techniques that may improve even more the performance of the system. We also have in mind

to carry out a fusion of the body-shape based biometric system proposed in this work, and the

geometric-based biometric system proposed by [Moreno-Moreno et al., 2011b]. Another major

area of interest is to apply all the techniques proposed in this Dissertation to a real database.

This would allow to have a more reliable vision of the approaches described and evaluated in

this work.

In real data, other information such as the texture of the human body can be also extracted

and could be used for person recognition.
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Chapter 7

Glossary

AI: Active Indoors (referring to imaging system).

Active imaging system working indoors. See AMMW or ASMW.

AMMW: Active Millimeter Wave (Imaging System).

Imaging system that emits millimeter wave radiation to the scene and then collects the

reflected radiation to form the image.

AO: Active Outdoors (referring to imaging system).

Active imaging system working outdoors. See AMMW or ASMW.

ASMW: Active Subillimeter Wave (Imaging System).

Imaging system that emits submillimeter wave radiation to the scene and then collects the

reflected radiation to form the image.

CC : Contour Coordinates.

In some cases, we use the contour coordinates as features of the system.

cr : With Clothing (from the Spanish expression ”con ropa”).

Abbreviation used to describe the clothing condition of a user in the images used in the

experiments.

DET: Detection Error Tradeoff Curve.

Curve widely used to show graphically the verification performance of a biometric system.

It plots the FRR versus the FAR for all the different threshold values with logarithmic

axes.

DTW: Dyamic Time Warping.

A dynamic programming technique whose aim is to find an elastic match among of a pair

of sequences that minimizea given distance measure.

ED: Euclidean Distance.

It the naive metric distance between two sequences of points in any dimension.
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EER: Equal Error Rate.

Error rate at which both error rates (FRR and FAR) coincide, for a certain threshold

value.

FAR: False Acceptance Rate.

Probability that an impostor is accepted by a biometric system as a genuine user.

FD: Fourier Descriptors.

Descriptors which convert the coordinates of a shape into complex numbers, and then

applies the Fourier transform.

FRR: False Rejection Rate.

Probability that a genuine user is rejected by a biometric system.

IR: Infrared.

Electromagnetic radiation with wavelength in the range of 0.7-100 µm (4.3·1014-3·1012 Hz).

LM: LandMark.

A small set of points that describe the most discriminative points of a shape.

LWIR: Long Wave Infrared.

Infrared radiation with wavelength in the range of 8-14 µm.

MeanS: Mean Size.

With this configuration, the contours belonging to the same user do not have the same

dimensionality altough the variation is restricted to 20-30 points.

MMW: Millimeter Waves.

Electromagnetic radiation that, together with the submillimeter waves, fills the gap be-

tween the infrared and microwave bands in the electromagnetic spectrum. Millimeter

waves lie in the band of 1-10 mm (300-30 GHz). Clothing is highly transparent to the

MMW radiation.

MWIR: Medium Wave Infrared.

Infrared radiation with wavelength in the range of 3-5 µm.

NIR: Near Infrared.

Infrared radiation with wavelength in the range of 0.7-1 µm.

NormS: Normalized Size.

With this configuration, all the contours belonging to the same user have the same dimen-

sionality.

PI: Passive Indoors (referring to imaging system).

Passive imaging system working indoors. See PMMW or PSMW.
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PMMW: Passive Millimeter Wave (Imaging System).

Imaging system that collects natural millimeter wave radiation that has been emitted and

reflected from the scene, to form the image.

PO: Passive Outdoors (referring to imaging system).

Passive imaging system working outdoors. See PMMW or PSMW.

PSMW: Passive Submillimeter Wave (Imaging System).

Imaging system that collects natural submillimeter wave radiation that has been emitted

and reflected from the scene, to form the image.

SC: Shape Contexts descriptor.

A complex descriptor that describes each point within a shape by pointing out the relative

distance and angle of the remainder points of the shape through a log-polar histogram.

SMW: Submillimeter Waves.

Electromagnetic radiation that, together with the millimeter wave radiation, fills the gap

between the infrared and microwave bands in the electromagnetic spectrum. Submillimeter

waves lie in the range of 0.1-1 mm (0.3-3 THz). Clothing is partially transparent to the

SMW radiation.

sr : Without Clothing (from the Spanish expression ”sin ropa”).

Abbreviation used to describe the clothing condition of a user in the images used in the

experiments.

SWIR: Short Wave Infrared.

Infrared radiation with wavelength in the range of 1-3 µm.

VIS: Visible Spectrum.

Portion of the electromagnetic spectrum that is visible to the human eye. Electromagnetic

radiation in this range of wavelengths (400-700 nm) is usually called light.

VLWIR: Very Long Wave Infrared.

Infrared radiation with wavelength in the range of 14-100 µm.

XR: X-ray.

Electromagnetic radiation with a wavelength that lies between 0.01-10 nm (3·1019-3·1016

Hz).
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Appendix A

Publications

Part of the work of this Dissertation has been accepted in the ICCST Conference that will

take place in Medelĺın, Colombia on 8-11th October.

E. González-Sosa, R. Vera-Rodŕıguez, J. Fiérrez and Javier Ortega, “Body Shape-based

Biometric Recognition using Millimeter Wave Images”, in Proc. IEEE Int. Carnahan

Conf. on Security Technology, ICCST, 2013.
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