
MATRIX GRAPH GRAMMARS

by

Pedro Pablo Pérez Velasco

Dissertation submitted to the Faculty of the Graduate School of Computer

Science of the Universidad Autónoma de Madrid in partial

fulfillment of the requirements for the degree

of Doctor of Philosophy

2008

To my family

VII

ABSTRACT

Title of dissertation: MATRIX GRAPH GRAMMARS
Pedro Pablo Pérez Velasco

Doctor of Philosophy

2008

Dissertation directed by: Professor Juan de Lara Jaramillo

Department of Computer Science

If the aim of this dissertation had to be summarized in a single sentence, it could be

algebraization of graph grammars.

From the point of view of a computer scientist, graph grammars are a natural gener-

alization of Chomsky grammars for which a purely algebraic approach does not exist up

to now. A Chomsky (or string) grammar is, roughly speaking, a precise description of

a formal language (which in essence is a set of strings). On a more discrete mathemati-

cal style, it can be said that graph grammars – Matrix Graph Grammars in particular –

study dynamics of graphs. Ideally, this algebraization would enforce our understanding of

grammars in general, providing new analysis techniques and generalizations of concepts,

problems and results known so far.

VIII

In this dissertation we fully develop such theory over the field GF p2q which covers all

graph cases, from simple graphs (more attractive for a mathematician) to multidigraphs

(more interesting for an applied computer scientist). The theory is presented and its basic

properties demonstrated in a first stage, moving to increasingly difficult problems and

establishing relations among them:

• Applicability, for which two equivalent characterizations (necessary and sufficient

conditions) are provided.

• Independence. Sequential and parallel independence in particular, generalizing pre-

viously known results for two elements.

• Restrictions. The theory developed so far for graph constraints and application

conditions is significantly generalized.

• Reachability. The state equation for Petri nets and related techniques are extended

to general Matrix Graph Grammars. Also, Matrix Graph Grammars techniques are

applied to Petri nets.

Throughout the dissertation many new concepts are introduced such as compatibility,

coherence, initial and negative graph sets, etcetera. Some of them project interesting

insights about a given grammar, while others are used to study previously mentioned

problems.

Matrix Graph Grammars have several advantages. First, many branches of mathe-

matics are at our disposal. It is based on Boolean algebra, so first and second order logics

can be applied almost directly. They admit a functional representation so many ideas

from functional analysis can be used. On the more algebraic side it is possible to use

group theory and tensor algebra. Finally, category theory constructions such as pushouts

are available as well. Second, as it splits the static definition from the dynamics of the

system, it is possible to study to some extent many properties of the grammar without

the need of an initial state. Third, although it is a theoretical tool, Matrix Graph Gram-

mars are quite close to implementation, being possible to develop tools based on this

theory.

IX

RESUMEN

T́ıtulo: GRAMÁTICAS MATRICIALES DE GRAFOS
Pedro Pablo Pérez Velasco

Doctor

2008

Dirección: Profesor Juan de Lara Jaramillo

Escuela Técnica Superior de Ingenieŕıa Informática

Si el objetivo de esta tesis tuviese que ser resumida en una única frase, ésta seŕıa

algebraización de las gramáticas de grafos.

Desde el punto de vista de un ingeniero informático, las gramáticas de grafos son una

generalización natural de las gramáticas de Chomsky, para las que una aproximación

puramente algebraica no existe hasta la fecha. Una gramática de Chomsky (también

conocidas como gramáticas de cadenas) es, grosso modo, una descripción precisa de un

lenguaje formal (que esencialmente es un conjunto de cadenas). Desde un punto de vista

más de matemática discreta podŕıa decirse que las gramáticas de grafos – en particular

las Gramáticas Matriciales de Grafos – estudian dinámica de grafos. Idealmente, esta al-

gebraización debiera mejorar nuestro conocimiento de las gramáticas en general, propor-

X

cionando además nuevas técnicas de análisis y generalizaciones de conceptos, problemas

y resultados.

En esta tesis desarrollamos completamente esta teoŕıa sobre el cuerpo GF p2q que con-

templa todos los tipos de grafos, desde grafos simples (más estudiados en matemática disc-

reta) a multidigrafos (más interesantes para un ingeniero informático). En una primera

fase se introduce la teoŕıa y se enuncian y demuestran sus propiedades básicas. Posteri-

ormente tratamos problemas de dificultad creciente, estableciendo relaciones entre ellos:

• Para aplicabilidad proporcionamos dos caracterizaciones diferentes (condiciones

necesarias y suficientes).

• Independencia. En concreto independencias secuencial y paralela, generalizando

resultados existentes para dos elementos.

• Restricciones. La teoŕıa desarrollada hasta la fecha para restricciones de grafos y

condiciones de aplicabilidad se generaliza de manera significativa.

• Alcanzabilidad. La ecuación de estado para redes de Petri y otras técnicas rela-

cionadas son extendidas para Gramáticas Matriciales de Grafos generales, y viceversa,

técnicas de Gramáticas Matriciales de Grafos se aplican a redes de Petri.

A lo largo de la tesis se introducen una gran cantidad de nuevos conceptos tales

como compatibilidad, coherencia, conjunto inicial de grafos, conjunto negativo de grafos,

etcétera. Algunos de ellos proporcionan una visión interesante de una gramática concreta,

mientras que otros son utilizados para estudiar los problemas anteriormente citados.

Las Gramáticas Matriciales de Grafos tienen varias ventajas. En primer lugar, te-

nemos a nuestra disposición muchas ramas de las matemáticas. Al estar basadas en

álgebra Booleana podemos aplicar casi de manera inmediata lógicas de primer y se-

gundo orden. Además, admiten una representación funcional aśı que muchas ideas de

análisis funcional pueden ser utilizadas. Desde un punto de vista más algebraico es posi-

ble usar teoŕıa de grupos y álgebra tensorial. Por último, construcciones categóricas tales

como pushouts también están disponibles. Segundo, al separar la definición estática de

la dinámica del sistema, es posible estudiar hasta cierto punto muchas propiedades de

la gramática sin necesidad de considerar un estado inicial. Tercero, a pesar de ser una

herramienta fundamentalmente teórica, las Gramáticas Matriciales de Grafos están muy

XI

cerca del nivel de implementación, siendo posible desarrollar herramientas basadas en

esta teoŕıa.

XIII

ACKNOWLEDGEMENTS

These lines are particularly pleasant to write. After all those years, I have a quite

long list of people that have contributed to this dissertation in one way or another.

Unfortunately, I will not be able to include them all. Apologizes for the absences.

First of all my family. Gema, with neverending patience, always supports me in every

single project that I undertake. My unbounded love and gratitude. Hard to return, though

I’ll try. My two daughters, Sof́ıa and Diana, make every single moment worthy. I’m

absolutely grateful for their existence.

My brothers Álex and Nina, now living in Switzerland, with whom I shared so many

moments and that I miss so much. My parents, always supporting with love and patience,

worried if this boy would become a man (am I?).

Juan, my supervisor, whose advice and interest is invaluable. He has been actively

involved in this project despite his many responsibilities. Also, I would like to thank the

people at the series of seminars on complexity theory at U.A.M., headed by Roberto

Moriyón, for their interest on Matrix Graph Grammars.

Many friends have stoically stood some chats on this topic affecting interest. Thank

you very much for your patience and friendship. KikeSim, GinHz, Álvaro Iglesias, Jaime

Guerrero, ... All those who have passed by are not forgotten: People at ELCO (David,

Fabrizio, Juanjo, Julián, Lola, ...), at EADS/SIC (Javier, Sergio, Roberto, ...), at Isban,

at Banco Santander. Almost uncountable.

I am also grateful to those that have worked on the tools used in this dissertation:

Emacs and microEmacs, MikTeX, TeTeX, TeXnicCenter, OpenOffice and Ubuntu. I

would like to highlight the very good surveys available on different topics on math-

XIV

ematics at the web, in particular at websites http://mathworld.wolfram.com and

http://en.wikipedia.org, and the anonymous people behind them.

Last few years have been particularly intense. A mixture of hard work and very

good luck. I feel that I have received much more than I’m giving. In humble return, I

will try to administer http://www.mat2gra.info, with freely available information on

Matrix Graph Grammars such as articles, seminars, presentations, posters, one e-book

and whatever you may want to contribute with.

http://mathworld.wolfram.com
http://en.wikipedia.org
http://www.mat2gra.info

Contents

1 Introduction . 1

1.1 Historical Overview . 2

1.2 Motivation . 6

1.3 Dissertation Outline . 11

2 Background and Theory . 15

2.1 Logics. 15

2.2 Category Theory . 19

2.3 Graph Theory . 26

2.4 Tensor Algebra . 31

2.5 Functional Analysis . 34

2.6 Group Theory . 37

2.7 Summary and Conclusions . 39

3 Graph Grammars Approaches . 41

3.1 Double PushOut (DPO) . 42

3.1.1 Basics . 42

3.1.2 Sequentialization and Parallelism . 44

3.1.3 Application Conditions . 46

3.1.4 Adhesive HLR Categories . 48

3.2 Other Categorical Approaches . 49

XVI Contents

3.3 Node Replacement . 53

3.4 Hyperedge Replacement . 56

3.5 MSOL Approach . 60

3.6 Relation-Algebraic Approach . 62

3.7 Summary and Conclusions . 65

4 Matrix Graph Grammars Fundamentals . 67

4.1 Characterization and Basic Concepts . 68

4.2 Completion . 74

4.3 Sequences and Coherence . 79

4.4 Minimal and Negative Initial Digraphs . 88

4.4.1 Minimal Initial Digraph . 91

4.4.2 Negative Initial Digraph . 97

4.5 Composition and Compatibility . 104

4.6 Summary and Conclusions . 109

5 Matching . 111

5.1 Match and Extended Match . 112

5.2 Marking . 120

5.3 Initial Digraph Set and Negative Digraph Set . 123

5.4 Internal and External ε-productions . 127

5.5 Summary and Conclusions . 130

6 Sequentialization and Parallelism . 133

6.1 G-Congruence. 134

6.2 Sequentialization – Grammar Rules . 148

6.3 Sequential Independence – Derivations . 153

6.4 Explicit Parallelism . 155

6.5 Summary and Conclusions . 158

7 Restrictions on Rules . 161

7.1 Graph Constraints and Application Conditions . 162

7.2 Extending Derivations . 172

Contents XVII

7.3 Functional Representation . 183

7.4 Moving Conditions . 192

7.5 From Simple Digraphs to Multidigraphs . 200

7.6 Summary and Conclusions . 207

8 Reachability . 209

8.1 Crash Course in Petri Nets . 210

8.2 MGG Techniques for Petri Nets . 213

8.3 Fixed Matrix Graph Grammars . 215

8.4 Floating Matrix Graph Grammars . 221

8.4.1 External ε-production . 222

8.4.2 Internal ε-production . 224

8.5 Summary and Conclusions . 226

9 Conclusions and Further Research . 229

9.1 Summary and Short Term Research. 229

9.2 Main Contributions . 232

9.3 Long Term Research Program . 233

10 Conclusiones. Investigación Futura . 237

10.1 Resumen. Investigación a Corto Plazo . 237

10.2 Principales Contribuciones . 240

10.3 Investigación a Largo Plazo . 242

A Case Study . 245

A.1 Presentation of the Scenario . 246

A.2 Sequences . 253

A.3 Initial Digraph Sets and G-Congruence . 258

A.4 Reachability . 263

A.5 Graph Constraints and Application Conditions . 268

A.6 Derivations . 274

B ICM 2006 Presentation . 277

XVIII Contents

References . 279

Index . 287

List of Figures

1.1 Main Steps in a Grammar Rule Application . 3

1.2 Partial Diagram of Problem Dependencies . 9

1.3 Confluence . 10

2.1 Universal Property . 21

2.2 Product, Cone and Universal Cone . 21

2.3 Pushout and Pullback . 22

2.4 Pushout as Gluing of Sets . 23

2.5 Initial Pushout . 24

2.6 Van Kampen Square . 25

2.7 Three, Four and Five Nodes Simple Digraphs . 27

3.1 Example of Simple DPO Production . 42

3.2 Direct Derivation as DPO Construction . 43

3.3 Parallel Independence . 44

3.4 Sequential Independence . 45

3.5 Generic Application Condition Diagram . 47

3.6 Gluing Condition . 48

3.7 SPO Direct Derivation . 50

3.8 SPO Weak Parallel Independence . 50

3.9 SPO Weak Sequential Independence . 50

XX List of Figures

3.10 Sequential and Parallel Independence. 51

3.11 SPB Replication Example . 52

3.12 Example of NLC Production . 54

3.13 edNCE Node Replacement Example . 55

3.14 Edge Replacement . 56

3.15 String Grammar Example . 59

3.16 String Grammar Derivation . 59

3.17 Pushout for Simple Graphs (Relational) and Direct Derivation 64

4.1 Example of Production . 70

4.2 Examples of Types . 75

4.3 Example of Production (Rep.) . 77

4.4 Productions q1, q2 and q3 . 81

4.5 Coherence for Two Productions . 83

4.6 Coherence Conditions for Three Productions . 84

4.7 Coherence. Four and Five Productions . 86

4.8 Productions q1, q2 and q3 (Rep.) . 87

4.9 Example of Sequence . 89

4.10 Non-Compatible Productions . 89

4.11 Minimal Initial Digraph (Intermediate Expression). Four Productions 94

4.12 Non-Compatible Productions (Rep.) . 95

4.13 Minimal Initial Digraph. Examples and Counterexample 95

4.14 Formulas (4.46) and (4.57) for Three Productions . 97

4.15 Equation (4.53) for 3 and 4 Productions (Negation of MID) 98

4.16 Example of Nihilation Matrix . 100

4.17 Productions q1, q2 and q3 (Rep.) . 103

4.18 NID for s3 � q3; q2; q1 (Bold = Two Arrows) . 103

4.19 Minimal Initial Digraphs for s2 � q2; q1 . 105

4.20 Composition and Concatenation of a non-Compatible Sequence 107

5.1 Production Plus Match (Direct Derivation) . 113

5.2 (a) Neighbourhood. (b) Extended Match . 114

List of Figures XXI

5.3 Match Plus Potential Dangling Edges . 115

5.4 Matching and Extended Match . 116

5.5 Full Production and Application . 119

5.6 Example of Marking and Sequence s � p; pε . 122

5.7 Initial Digraph Set for s=remove channel;remove channel 125

5.8 Negative Digraph Set for s=clientDown;clientDown 126

5.9 Complete Negative Initial Digraph N4 . 126

5.10 Example of Internal and External Edges . 128

6.1 G-congruence for s2 � p2; p1 . 136

6.2 G-congruence for Sequences s3 � p3; p2; p1 and s13 � p2; p1; p3 138

6.3 G-congruence for s4 � p4; p3; p2; p1 and s14 � p3; p2; p1; p4 139

6.4 G-congruence (Alternate Form) for s3 and s13 . 140

6.5 G-congruence (Alternate Form) for s4 and s14 . 140

6.6 Positive and Negative DC Conditions, DC�5 and DC�5 143

6.7 Altered Production q13 Plus Productions q1 and q2 . 145

6.8 Composition and Concatenation. Three Productions 146

6.9 Example of Minimal Initial Digraphs . 147

6.10 Advancement. Three and Five Productions . 151

6.11 Three Simple Productions . 151

6.12 Altered Production q13 Plus Productions q1 and q2 (Rep.) 152

6.13 Sequential Independence with Free Matching . 154

6.14 Associated Minimal and Negative Initial Digraphs . 155

6.15 Parallel Execution . 155

6.16 Examples of Parallel Execution . 157

7.1 Application Condition on a Rules’s Left Hand Side . 162

7.2 Finding Complement and Negation . 165

7.3 non-Injective Morphisms in Application Condition . 166

7.4 At Most Two Outgoing Edges. 167

7.5 Example of Precondition Plus Postcondition . 169

7.6 Diagram for Three Vertex Colorable Graph Constraint 171

XXII List of Figures

7.7 Avoidable non-Compatible Application Condition . 174

7.8 non-Coherent Application Condition . 175

7.9 Closure and Decomposition . 177

7.10 Application Condition Example . 180

7.11 Closure Example . 181

7.12 Application Condition Example Corrected . 182

7.13 Production Transformation According to Lemma 7.3.1 184

7.14 Identity idA and Conjugate idA for Edges . 184

7.15 idA as Sequence for Edges . 185

7.16 Decomposition Operator . 186

7.17 Closure Operator . 187

7.18 Example of Diagram with Two Graphs . 189

7.19 Precondition and Postcondition . 190

7.20 (Weak) Precondition to (Weak) Postcondition Transformation 195

7.21 Restriction to Common Parts: Total Morphism . 196

7.22 Precondition to Postcondition Example . 198

7.23 Multidigraph with Two Outgoing Edges . 202

7.24 Multidigraph Constraints . 204

7.25 Simplified Diagram for Multidigraph Constraint . 205

7.26 ε-production and Ξ-production . 206

8.1 Linear Combinations in the Context of Petri Nets . 211

8.2 Petri Net with Related Production Set . 213

8.3 Minimal Marking Firing Sequence t5; t3; t1 . 214

8.4 Rules for a Client-Server Broadcast-Limited System 217

8.5 Matrix Representation for Nodes, Tensor for Edges and Their Coupling . . 218

8.6 Initial and Final States for Productions in Fig.8.4 . 219

8.7 Initial and Final States (Based on Productions of Fig. 8.4) 223

9.1 Diagram of Problem Dependencies. 234

10.1 Diagrama con la Dependencia de los Problemas. 243

List of Figures XXIII

A.1 Graphical Representation of System Actors . 246

A.2 DSL Syntax Specification . 247

A.3 Basic Productions of the Assembly Line . 248

A.4 Productions for Operator Movement . 248

A.5 Break-Down and Fixing of Assembly Line Elements . 249

A.6 Snapshot of the Assembly Line . 253

A.7 Graph Grammar Rule reject . 254

A.8 Minimal Initial Digraph and Image of s0 . 255

A.9 Composition of Sequence s0 . 256

A.10 DSL Syntax Specification Extended . 257

A.11 Production assemble in Greater Detail . 258

A.12 MID and Excerpt of the Initial Digraph Set of s0 � pack ; certify ; assem 259

A.13 MID for Sequences s1 and s2 . 260

A.14 Ordered Items in Conveyors . 262

A.15 Initial and Final Digraphs for Reachability Example 263

A.16 Graph Constraint on Conveyor Load . 268

A.17 Graph Constraint as Precondition and Postcondition 269

A.18 Ordered Items in Conveyors . 271

A.19 Expanded Rule reject . 272

A.20 Rules to Remove Last Item Marks . 273

A.21 Grammar Initial State for s15 . 275

A.22 Production to Remove Dangling Edges (Ordering of Items in Conveyors) . 275

A.23 Grammar Final State for s5 . 276

List of Tables

4.1 Possible Actions for Two Productions . 83

6.1 Coherence for Advancement of Two Productions . 149

7.1 All Possible Diagrams for a Single Element . 178

1

Introduction

If the aim of this dissertation had to be summarized in a single sentence, it could be

algebraization of graph grammars.

From the point of view of a computer scientist, graph grammars are a natural gener-

alization of Chomsky grammars for which a purely algebraic approach does not exist up

to now. A Chomsky (or string) grammar is, roughly speaking, a precise description of

a formal language (which in essence is a set of strings). On a more discrete mathemati-

cal style, it can be said that graph grammars – Matrix Graph Grammars in particular –

study dynamics of graphs. Ideally, this algebraization would enforce our understanding of

grammars in general, providing new analysis techniques and generalizations of concepts,

problems and results known so far.

In this dissertation we fully develop such theory over the field GF p2q which covers all

graph cases, from simple graphs (more attractive for a mathematician) to multidigraphs

(more interesting for an applied computer scientist). The theory is presented and its basic

properties demonstrated in a first stage, moving to increasingly difficult problems and

establishing relations among them:

• Applicability, for which two equivalent characterizations (necessary and sufficient

conditions) are provided.

• Independence. Sequential and parallel independence in particular, generalizing pre-

viously known results for two elements.

2 1 Introduction

• Restrictions. The theory developed so far for graph constraints and application

conditions is significantly generalized.

• Reachability. The state equation for Petri nets and related techniques are extended

to general Matrix Graph Grammars. Also, Matrix Graph Grammars techniques are

applied to Petri nets.

Throughout the dissertation many new concepts are introduced such as compatibility,

coherence, initial and negative graph sets, etcetera. Some of them project interesting

insights about a given grammar, while others are used to study previously mentioned

problems.

Matrix Graph Grammars have several advantages. First, many branches of math-

ematics are at our disposal. It is based on Boolean algebra, so first and second order

logics can be applied almost directly. They admit a functional representation so many

ideas from functional analysis can be utilized. On the more algebraic side it is possible

to use group theory and tensor algebra. Finally, category theory constructions such as

pushouts are available as well. Second, as it splits the static definition from the dynamics

of the system, it is possible to study to some extent many properties of the grammar

without the need of an initial state. Third, although it is a theoretical tool, Matrix Graph

Grammars are quite close to implementation, being possible to develop tools based on

this theory.

This introductory chapter aims to provide some perspective on graph grammars in

general and on Matrix Graph Grammars in particular. In Sec. 1.1 we present a (partial)

historical overview of graph grammars and graph transformation systems taken from

several sources but mainly from [36] and [22]. Section 1.2 introduces those open problems

that have guided our research. Finally, in Sec. 1.3 we brush over the dissertation and see

how applicability, sequential independence and reachability articulate it.

1.1 Historical Overview

Research in graph grammars started in the late 60’s [66][69], strongly motivated by prac-

tical problems in computer science and since then it has become a very active area.

Currently there is a wide range of applications in different branches of computer science

1.1 Historical Overview 3

such as formal language theory, software engineering, pattern recognition and genera-

tion, implementation of term rewriting, logical and functional programming, compiler

contruction, database design and theory, visual programming and modeling languages

and many more (see [23] for references on these and other topics).

There are different approaches to graph grammars and graph transformation sys-

tems.1 Among them, the most prominent are the algebraic, logical, relational and set-

theoretical.

L

m

p

R

m�
G

p�G1 H

Fig. 1.1. Main Steps in a Grammar Rule Application

The main steps – some of which are summarized in Fig. 1.1 – in all approaches for

the application of a grammar rule p : L Ñ R to a host graph G (also known as initial

state) to eventually obtain a final state H are almost the same:

1. Select the grammar rule to be applied (p : L Ñ R in this case). In general this step

is non-deterministic.

2. Find an occurrence of L in G. In general this step is also non-deterministic because

there may be several occurrences of L in G.

3. Check any application condition of the production.

4. Remove elements that appear in L but not in R. There are two possibilities for

so-called dangling edges :2

a) Production is not applied.

1 The only difference between a grammar and a transformation system is that a grammar

considers an initial state while a transformation system does not.
2 Edges not appearing in the rule specification that are incident to one node to be eliminated.

4 1 Introduction

b) Dangling edges are deleted too.

If the production is to be applied, the system state changes from G to G1 (see Fig.

1.1).

5. Glue R with G1. The system state changes from G1 to H (see Fig. 1.1).

Now we shall briefly review previously mentioned families of approaches. The so-called

algebraic approach to graph grammars (graph transformation systems) is characterized

by relying almost exclusively on category theory and using gluing of graphs to perform

operations. It can be divided into at least three main sub approaches, depending on the

categorical construction under use: DPO (Double PushOut, see Sec. 3.1), SPO (Single

PushOut, see Sec. 3.2), pullback and double pullback (also summarized in Sec. 3.2). We

will not comment on others, like sesquipushout for example (see [9]).

DPO was initiated by Ehrig, Pfender and Schneider in the early 70’s [21] as a gener-

alization of Chomsky grammars in order to consider graphs instead of strings. It seems

that the term algebraic was appended because graphs might be considered as a special

kind of algebras and because the pushout construction was perceived more as a concept

from universal algebra than from category theory. Nowadays it is the more prominent

approach to graph rewriting, with a vast body of theoretical results and several tools for

their implementation.3

By mid and late 80’s Raoult [67], Kennaway [41][42] and Löwe [48] developed SPO

approach probably motivated by some “restrictions” of DPO, e.g. the usage of total

instead of partial morphisms. Raoult and Kennaway were focused on term graph rewriting

while Löwe took a more general approach.

In the late 90’s a new approach – although less prominent for now – emerged by

reverting all arrows (using pullbacks instead of pushouts), proposed by Bauderon [5]. It

seems that, in contrast to the pushout construction, pullbacks can handle deletion and

duplication more easily.

DPO has been generalized recently through adhesive HLR categories, which is sum-

marized in Sec. 3.2 (we are not awared of a similar initiative for SPO or pullback). For

a detailed account see [22]. Instead of just considering graphs, all main ideas in DPO

3 For example AGG – see [73] or visit http://tfs.cs.tu-berlin.de/agg/ – and AToM3 – see

[44] or visit http://atom3.cs.mcgill.ca/ –.

http://tfs.cs.tu-berlin.de/agg/
http://atom3.cs.mcgill.ca/

1.1 Historical Overview 5

can be extended to higher level structures like labeled graphs, typed graphs, Petri nets,

etcetera. This is firstly accomplished in [16] and [17], starting the theory of HLR systems

(high level replacement systems). Independently, Lack and Sobociński in [43] introduced

the concept of adhesive category and in [18] both were merged to get adhesive HLR

categories.

In this dissertation we shall refer to these approaches as categorical, to distinguish

from ours which is more algebraic in nature.

The so-called set-theoretic approach (sometimes also known as algorithmic approach)

substitutes one structure by another structure, either nodes or edges. There are two sub-

families, node replacement and edge replacement (also hyperedge replacement), depending

on the type of elements to be replaced. Node replacement (edNCE) was introduced in

[54][55] and further investigated in many papers. It is based on connecting instead of

gluing for embedding one graph into another. Many extensions and particular cases have

been studied so far, and many others, such as C-edNCE when considering confluence,

NCE, NLC, dNLC, edNLC and edNCE (see Sec. 3.3 for the meaning of acronyms) are

currently on going. Hyperedge replacement was introduced in the early 70s by Feder [27]

and Pavlidis [58] and has been intensively investigated since then. Contrary to the node

replacement approach, it is based on gluing. Please, see Secs. 3.3 and 3.4 for a quick

introduction.

It is possible to use logics to express graphs and to encode graph transformation. In

Sec. 3.5 this kind of approach with monadic second order logic is reviewed presenting its

foundations and main results.4.

The relational approach (or algebraic-relational approach) is based on relational meth-

ods to specifying graph rewriting (in fact it could be applied to more general structures

than graphs). Once a graph is characterized as a relational structure it is possible to

apply all relational machinery, substituting categories by allegories and Dedekind cate-

gories. Probably, the main advantage is that it is possible to give local characterization

of concepts. The roots of this approach seem to date back to the early 1970’s with the

papers of Kawahara [38][39][40] establishing a relational calculus inside topos theory. An

overview can be found in Sec. 3.6.

4 Monadic Second Order Logics, MSOL, lie in between first and second order logics

6 1 Introduction

Our approach has been influenced by these approaches to a different extent, heavily

depending on the topic. The basics of Matrix Graph Grammars are most influenced by

the categorical approach, mainly by SPO in the shape of productions and to some extent

of direct derivations. For application conditions and graph constraints, our inspiration

comes almost exclusively from MSOL. Concerning the relational approach, our basic

structure has a natural representation in relational terms but the development in both

cases is very different. The influence of hyperedge replacement and node replacement, if

any, is much more fuzzy.

1.2 Motivation

This dissertation started as a project to study simulation protocols (conservative, opti-

mistic, etcetera) under graph transformation systems. In the first few weeks we missed a

real algebraic approach to graph grammars. “Real” in the sense that there are algebraic

representations of graphs very close to basic algebraic structures such as vector spaces

(incidence or adjacency matrices for example) but the theories available so far do not

make use of them. As commented above, the main objective of this dissertation is to give

an algebraization of graph grammars.

One advantage foreseen from the very beginning was the fact that nice interpretations

in terms of functional analysis and physics could be used to move forward, despite the

fact that the underlying structure is binary so, if necessary, it was possible to bring in

easily logics and its powerful methods.

Our schedule included several increasingly difficult problems to be treated by our

approach with the hope of getting better insight and understanding, trying to generalize

whenever possible and, most importantly, providing a unified body of results in which

all concepts and ideas would fit naturally.

First things first, so we begin with the name of the dissertation: Matrix Graph Gram-

mars. It has been chosen to emphasize the algebraic part of the approach – although

there are also logics, tensors, operators – and to recall matrix mechanics as introducced

by Born, Heisenberg and Jordan in the first half of the twentieth century.5 You are kindly

5 An alternative was YAGGA, which stands for Yet Another Graph Grammar Approach (in

the style of the famous “Yet Another...” series).

1.2 Motivation 7

invited to visit http://www.mat2gra.info for further research, a webpage dedicated to

this topic that I (hopefully) intend to maintain.

Section 1.1 points out that motivations of some graph grammar approaches have

been quite close to practice, in contrast with Matrix Graph Grammars (MGG) which

is more theoretically driven. Nonetheless, there is an on-going project to implement a

graph grammar tool based on AToM3 (see [44] or visit http://atom3.cs.mcgill.ca/)

using algorithms derived from this dissertation (the analysis algortihms are expected to

have a good performance). We will briefly touch on this topic in Sec. 5.3. Appendix A

illustrates all the theory with a more or less realistic case study.

This “basis for theoretical studies” intends to provide us with the capability of solving

theoretical problems as those commented below, which are the backbone of the disserta-

tion.

Informally, a grammar is a set of productions plus an initial graph which we can think

of as a collection of functions plus an initial set. A sequence of productions would then

be a sequence of functions, applied in order. Together with the function we specify the

elements that must be found in the initial set (in its domain), so in order to apply a

function we must first find the domain of the function in the initial set (this process is

known as matching). As productions are applied, the system moves on transforming the

initial set in a sequence of intermediate sets to eventually arrive to a final state (final

set).6 Actually, we will deal neither with sets nor with functions but with directed graphs

and morphisms.

So far we will speak of graphs, digraphs or simple digraphs meaning in all cases simple

digraphs. See Sec. 2.3 for its definition and main properties.

Once grammar rules have been defined and its main properties established, the first

problem we will address is the characterization of applicability, i.e. give necessary and

sufficient conditions to guarantee that a sequence can be applied to an initial state (also

known as host graph) to output a final state (a graph again). Formally stated for further

reference:

6 The natural interpretation is that functions modify sets, so some dynamics arise.

http://atom3.cs.mcgill.ca/

8 1 Introduction

Problem 1 (Applicability) For a sequence sn made up of rules in grammar G and a

simple7 digraph G, is it possible to apply sn to the host graph G?.

No restriction is set on the output of the sequence except that it is a simple digraph.

There is a basic problem when deleting nodes known as dangling condition: Are all

incident edges eliminated too?. Otherwise the output would not a be digraph.

When we have a production and a matching (for that production) we will speak of a

direct derivation. A sequence of direct derivations is called a derivation.

A quite natural progression in the study of grammars is the following question, that

we call independence problem.8

Problem 2 (Independence) For two given derivations dn and d1n applicable to host

graph G, do they reach the same state?, i.e. is dnpGq � d1npGq?.
Mind the similarities with confluence and local confluence (see below). However, in-

dependence is a very general problem and we will be interested in a reduced version of

it, known as sequential independence, which is widely addressed in the graph grammar

literature and also in other branches of computer science. As far as we know, in the

literature [22; 23] this problem is addressed for sequences of two direct derivations, being

longer sequences studied pairwise.

Problem 3 (Sequential Independence) For two derivations dn and d1n � σpdnq ap-

plicable to host graph G, with σ a permutation, do they reach the same state?.

Of course, problems 2 and 3 can be extended easily to consider any finite number of

derivations and, in both cases, there is a dependence relationship with respect to problem

1.

Our next step will be to generalize some theory from Petri nets [53], which can be seen

as a particular case of Matrix Graph Grammars. In particular, our interest is focused on

reachability:

Problem 4 (Reachability) For two given states (initial S0 and final ST), is there any

sequence made up of productions in G that transforms S0 into ST ?.

7 Defined in Sec. 2.3.
8 Independence from the point of view of the grammar. It does not matter which path the

grammar follows because in both cases it finishes in the same state.

1.2 Motivation 9

In the theory developed so far for Petri nets, reachability is addressed using the

state equation (linear system) which is a necessary condition for the existence of such a

sequence (see Chap. 8).

Problem 4 directly relies on problem 1. More interestingly, it is also related to prob-

lems 2 and 3: As every solution provided by the state equation specifies the set of pro-

ductions to be applied but not the order (see Sec. 8.1), sequences associated to different

solutions of the state equation can be independent but not sequential independent (this

is because different sets of solutions apply each production a different number of times).

So, in particular, reachability can be useful to split independence and sequential inde-

pendence.

Fig. 1.2. Partial Diagram of Problem Dependencies

All these problems with their corresponding dependencies are summarized in Fig. 1.2.

Compare with the complete diagram that includes mid-term and long-term research in

Fig. 9.1 on p. 234.

Although we will not study confluence in this dissertation (except some ideas in Chap.

9), just to make a complete account two further related problems are introduced. We will

briefly review them in the last chapter.

Problem 5 (Confluence) For two given states S1 and S2, do there exist two deriva-

tions d1 and d2 such that d1pS1q � d2pS2q?.
Strictly speaking this is not confluence as defined in the literature [74]. On the left

of Fig. 1.3 you can find confluence: For the initial state S0 that independently evolves

10 1 Introduction

to S1 and S2, is it possible to find derivations that close the diamond?.9 On the right of

the same figure we have represented problem 5. The difference is that a common initial

state is not assumed.

Fig. 1.3. Confluence

In mathematics, existence and uniqueness theorems are central to any of its branches.

As it is, the analogous terms in computer science are termination and confluence, respec-

tively.

In some sense we may think of reachability as opening or broadening the state space

of a given grammar while confluence, as introduced here, closes or bounds it.

Problem 5 deals with confluency of confluence. The other part (how to actually get to

the states S1 and S2) is more related to reachability. Note that if one of the derivations

is the identity then problem 5 becomes problem 4 (reachability).

If we limit to permutation of sequences, as in the derivation of problem 3 out of

problem 2, we can pose:

Problem 6 (Sequential Confluence) For two given initial states, do there exist two

derivations (one permutation of the other) with isomorphic final states?.

Again, it is not difficult to make them consider any finite set of derivations instead of

just two. Once we know if a grammar is confluent, the next step is to know how much it

takes to get to its final state. This is very close to complexity. Complexity theory is not

addressed in this dissertation.

9 The difference between local confluence and confluence is that in the former to move from S0

to S1 or S2 it is mandatory to use a direct derivation and not a derivation.

1.3 Dissertation Outline 11

To the best of our knowledge, applicability (problem 1) has not been addressed up to

now. Independence and sequential independence (problems 2 and 3) are very popular.10

See for example Chaps. 3 and 4 in [23]. Reachability is a key concept and has been

studied and partially characterized in many papers, mainly in Petri nets theory. See

[53]. Confluence is a concept of fundamental importance to grammar theory. For term

rewriting systems see [30].

1.3 Dissertation Outline

Based on the problems commented in previous section, the dissertation is organized in

nine chapters plus two appendices. The First three chapters, including this one, are

introductory. Chapter 2 provides a short overview of needed mathematical machinery

which includes some basic results from logics (first and monadic second order), category

theory, tensor algebra, graph theory, functional analysis (notation and some basic results)

and group theory. We have not used advanced results on any of these disciplines so

probably a quick review should suffice, mainly for fixing notation.

Graph grammars approaches are discussed in Chap. 3, which essentially expands

the overview in Sec. 1.1. Sections 3.1 and 3.2 cover algebraic approaches, for which we

prefer the term categorical. Set-theoretic approaches (node and hyperedge replacement)

are covered in Secs. 3.3 and 3.4. Term rewriting through monadic second order logics is

the MSOL approach, to which Sec. 3.5 is devoted. The chapter ends with the relational

approach in Sec. 3.6. The objective of this chapter is to get an idea of each approach

(and not to provide a detailed study) in order to, among other things, ease comparison

with Matrix Graph Grammars.

Chapter 4 introduces the basics of our proposal (Sec. 4.1) and prepares to attack prob-

lem 1 by introducing concepts such as completion (Sec. 4.2), coherence and sequences

(Sec. 4.3), nihilation matrix and minimal and negative initial digraphs (in Sec. 4.4, sub-

sequently generalized to initial digraph set in Sec. 5.3), composition and compatibility

(Sec. 4.5) and theorems related to their properties and characterizations.

10 Actually, it is sequential independence the one normally addressed in the literature. We have

introduced independence for its potential link with confluence.

12 1 Introduction

Chapter 5 covers an essential part of production applicability: Matching the left hand

side (LHS) of a production inside the host graph. Dangling edges are covered, dealing

with them with what we call ε-productions in Sec. 5.1 and further studied and classified

in Sec. 5.4. We deal with marking in Sec. 5.2, which can help in case it is necessary to

guarantee that several productions have to be applied in the same place. Minimal and

negative initial digraphs are generalized to the initial digraph set in Sec. 5.3. In Sec. 5.5

we give two characterizations for applicability (problem 1).

We will cope with sequential independence (problem 3) for quite general families of

permutations in Chap. 6. Sameness of minimal initial digraph (called G-congruence) for

two sequences is addressed in Sec. 6.2; the case of two derivations is seen in Sec. 6.3.

Explicit parallelism is studied in Sec. 6.4 through composition and G-congruence, which

is related to initial digraph sets.

In Chap. 7 graph constraints and application conditions (preconditions and postcon-

ditions) are studied for Matrix Graph Grammars. They are introduced in Sec. 7.1 where

a short overview of related concepts in other graph grammars approaches is carried out.

The notion of direct derivation is extended to cope with application conditions in Matrix

Graph Grammars in a very natural manner in Sec. 7.2 and functionally represented in

Sec. 7.3. In Sec. 7.4 we show how it is possible to transform postconditions into precondi-

tions and viceversa. Both of theoretical and of practical importance is the use of variable

nodes because, among other things, it allows us to automatically extend the theory to

include multidigraphs without any change of the theory of Matrix Graph Grammar in

Sec. 7.5.

In Chap. 8 problem 4 (reachability) is tackled, extending results from Petri nets to

more general grammars. Section 8.1 quickly introduce this theory and summarizes some

basic results. Section 8.2 applies some results from previous chapters to Petri nets. The

rest of the chapter is devoted to extending Petri nets results for reachability to Matrix

Graph Grammars, in particular Sec. 8.3 covers graph grammars without dangling edges

while Sec. 8.4 deals with the general case.

The dissertation ends in Chap. 9 with the conclusions and further research. A sum-

mary of what we think are the most important contributions of this dissertation can be

found there.

1.3 Dissertation Outline 13

Finally, in appendix A a fully worked case study is presented in which all main

theorems are applied together with detailed explanations and implementation remarks

and advices. Appendix B includes the award winning ICM’2006 presentation of Matrix

Graph Grammars.

Most of the material presented in this dissertation has been published [59], [60], [61],

[62], [63] and [64] and presented in international congresses: ICM’2006 (International

Congress of Mathematicians, awarded with the second prize of the poster competition

in Section 15, Mathematical Aspects of Computer Science), ICGT’2006 (International

Conference on Graph Transformations), PNGT’2006 (Petri Nets and Graph Transforma-

tions), PROLE’2007 (VII Jornadas sobre Programación y Lenguajes) and GT-VC’2007

(Graph Transformation for Verification and Concurrency, in CONCUR’2007).

2

Background and Theory

The Matrix Graph Grammar approach uses many mathematical theories which might

seem distant one from the others. Nevertheless, there are some interesting ideas connect-

ing them which we seize to contribute whenever possible. Matrix Graph Grammars do

not depend on any novel theorem that opens a new field of research, but aims to put

“old” problems in a new perspective.

There are excellent books available covering every subject of this topic. There are

also excellent resources on the web. We think that this fast introduction should suffice.

It is intended as a reference chapter. All concepts are highlighted in bold to ease their

location.

2.1 Logics

Logics are of fundamental importance to Matrix Graph Grammars for two reasons. First,

graphs are represented by their adjacency matrices. As we will mainly deal with simple

digraphs, they can be represented by Boolean matrices (we will come back to this in Sec.

2.3).1 Second, Chap. 7 generalizes graph constraints and application conditions using

monadic second order logics. Good references on mathematical logics are [47] and [71].

First-order predicate calculus (more briefly, first order logic, FOL) generalizes propo-

sitional logic, which deals with propositions: A statement that is either true or false.

1 Multidigraphs are also addressed using Boolean matrices. Refer to Sec. 7.5.

16 2 Background and Theory

FOL formulas are constructed from individual constants (a, b, c, etc., typically lower-

case letters from the beginning of the alphabet), individual variables (x, y, z, etc., typically

lower-case letters from the end of the alphabet), predicate symbols (P, Q, R, etc., typically

upper-case letters), function symbols (f, g, h, etc., typically lower-case letters from the

middle of the alphabet), propositional connectives (, ^, _, ñ, �) and quantifiers (�,D). Set C will be that of individual constants, set F will be function symbols and set P will

contain predicate symbols. Besides these elements, punctuation symbols are permitted

such as parenthesis and commas.

A formula in which every variable is quantified is a closed formula (open formula

otherwise). A term (formula) that contains no variable is called ground term (ground

formula). The arity of any predicate function f is its number of arguments, normally

written as an upper index, fn, if needed.

The rules for constructing terms and formulas are recursive: Every element in C is a

term, as it is any individual variable and also fnpt1, . . . , tnq, where fn P F and ti are

terms. Also, P P P is a formula2 and the application of any propositional connective or

quantifier (or both) to two or more predicates is also a formula.

In fact, constants are formulas of arity zero so it would be convenient to omit them

and allow formulas of any arity. Nevertheless we will follow the traditional exposition

and use the term function when arity is at least 1.

Example.�As an example of FOL formula, one of the inference rules of predicate

calculus is written: DxP pxq ^ �xQpxq ñ Dx rP pxq ^Qpxqs .
It reads as if there exists x for which P and for all x Q, then there exists x for which

P and Q. For another example, let’s consider the language of ordered abelian groups. It

has one constant 0, one unary function �, one binary function � and one binary relation¤.

• 0, x, y are atomic terms.

• �px, yq, �px,�py,�pzqqq are terms, usually written in infix notation as x � y, x �py � p�zqq.
2 It is called atomic formula.

2.1 Logics 17

• � p�px, yq, 0q, ¤ p�px,�py,�pzqqq,�px, yqq are atomic formulas, usually written in

infix notation as x� y � 0, x� y � z ¤ x� y.
• p�xDy ¤ p�px, yq, zqq ^ pDx � p�px, yq, 0qq is a formula, more readable if written asp�xDy x� y ¤ zq ^ pDx x� y � 0q.�

The semantics of our language depend on the domain of discourse (D) and on

the interpretation function I. The domain of discourse (also known as universe of

discourse) is the set of objects we use the FOL to talk about and must be fixed in

advance. In the example above, for a fixed abelian group, the domain of discourse are

the elements of the group.

For a given domain of discourseD it is necessary to define an interpretation function I

which assigns meanings to the non-logical vocabulary, i.e. maps symbols in our language

onto the domain:

• Constants are mapped onto objects in the domain.

• 0-ary predicates are mapped onto true or false, i.e. whether they are true or false in

this interpretation.

• N-ary predicates are mapped onto sets of n-ary ordered tuples of elements of the

domain, i.e. those tuples of members for which the predicate holds (for example, a

1-ary predicate is mapped onto a subset of D).

The interpretation of a formula f in our language is then given by this morphism

I together with an assignment of values to any free variables in f . If S is a variable

assignment on I then we can write pI, Sq |ù f to mean that I satisfies f under the

assignment S (f is true under interpretation I and assignment S). Our interpretation

function assigns denotations to constants in the language, while S assigns denotations to

free variables.

First-order predicate logic allows variables to range over atomic symbols in the domain

but it does not allow variables to be bound to predicate symbols, however. A second

order logic (such as second order predicate logic, [47]) does allow this, and sentences

such as �P rP p2qs (all predicates apply to number 2) can be written.

Example.�Starting out with formula:

βpXq � �x, y, z rpP px, yq ^ P px, zq ñ y � zq ^ pP px, zq ^ P py, zq ñ x � yqs

18 2 Background and Theory

which expresses injectiveness of a binary relation P on its domain, it is possible to give

a characterization of bijection (X) between two sets (Y1, Y2):DX rβpXq ^ �x pY1pxq � DyXpx, yqq ^ pY2pxq � DyXpy, xqqs .
The bijection X is a binary relation and the sets Y1 and Y2 are unary relations. Hence,

Y1pxq is the same as x P Y1. See [23], pp. 319-320 for more details.

Another example is the least upper bound (lub) property for sets of real numbers

(every bounded, nonempty set of real numbers has a supremum):�A rpDwpw P Aq ^ Dz�wpw P Añ w ¤ zqq ñ Dx�y p�w P A, pw ¤ yq � x ¤ yqs .
�

Second order logic (SOL) is more expressive than FOL under standard semantics:

Quantifiers range over all sets or functions of the appropriate sort (thus, once the domain

of the first order variables is established, the meaning of the remaining quantifiers is

fixed). It is still possible to increase the order of the logic, for example by allowing

predicates to accept arguments which are themselves predicates.

Chapter 7 makes use of monadic second order logic, MSOL for short,3 which lies

in between first order and second order logics. Instead of allowing quantification over n-

ary predicates, MSOL quantifies 0-ary and 1-ary predicates, i.e. individuals and subsets.

There is no restriction on the arity of predicates.

A theorem by Büchi and Elgot [7][26] (see also [75]) states that string languages

generated by MSOL formulas correspond to regular languages (see also Sec. 3.5), so we

have an alternative to the use of regular expressions, appropriate to express patterns

(this is one of the reasons to make use of them in Chap. 7).4 Another reason is that

properties as general as 3-colorability of a graph (see [23], Chap. 5 and also Sec. 7.1) can

be encoded using MSOL so, for many purposes, it seems to be expressive enough.

3 In the literature there are several equivalent contractions such as MS, MSO and M2L.
4 See [52] for an introduction to monadic second order logic. See [29] for an implementation of

a translator of MSOL formula into finite-state automata.

2.2 Category Theory 19

2.2 Category Theory

Category theory was first introduced by S. Eilenberg and S. Mac Lane in the early forties

in connection with their studies in homology theory (algebraic topology), see [25]. The

reference book in category theory is [49]. There are also several very good surveys on

this topic on the web such as www.cs.utwente.nl/~fokkinga/mmf92b.pdf.

A category C is made up of a class5 of objects, a class of morphisms and a binary

operation called composition of morphisms, pObjpCq, HompCq, �q. Each morphism f has

a unique source object and a unique target object, f : AÑ B. There are two axioms for

categories:

1. if f : AÑ B, g : B Ñ C and h : C Ñ D then h � pg � fq � ph � gq � f (associativity).

2. �X D1X : X Ñ X such that �f : AÑ B it is true that 1B �f � f � f �1A (existence

of the identity morphism).

An object A is initial if and only if �B D!f : AÑ B, and terminal if �B D!g : B Ñ A.

Not all categories have initial or terminal objects, although if they exist then they are

unique up to a unique isomorphism.

Example�One first example is the category Set, where objects are sets and mor-

phisms are total functions. Doing set theory in the categorical language forces to express

everything with function composition only (no explicit arguments, membership, etcetera).

Let’s see that morphisms need not be functions. For example, any directed graph

determines a category in which each node is one object and each directed edge is a

morphism. Composition is concatenation of paths and the identity is the empty path.

This category is at times called Path category.

Similarly, any preordered set pA,¤q can be thought as a category. Objects are in this

case the elements of A (a, b P A), and there is a morphism between two given elements

whenever a ¤ b. The identity is a ¤ a.6

5 A class is a collection of sets, or other mathematical objects. A class that is not a set is called

proper class and has the properties that it can not be an element of a set or a class and is

not subject to the Zermelo-Fraenkel axioms, thereby avoiding some paradoxes from naive set

theory.
6 These three examples can be found in [28].

www.cs.utwente.nl/~fokkinga/mmf92b.pdf

20 2 Background and Theory

The empty set H is the only initial object and every singleton object (one-element

set) is terminal in category Set. If as before pA,¤q is a preordered set, A has an initial

object if and only if it has a smallest element, and a terminal object if and only if A has

a largest element. In the category of graphs (to be defined soon) the null graph – the

graph without nodes and edges – is an initial object. The graph with a single node and

a single edge is terminal, except in the category of simple graphs without loops which

does not have a terminal object.�

Example.�A multigraph G � pV,E, s, tq consists of a set V of vertices and a set E

of edges. Functions source and target s, t : E Ñ V respectively return the initial node

and the final node of an edge.

A graph morphism f : G1 Ñ G2, with f � pfV , fEq, consists of two functions

fV : V1 Ñ V2 and fE : E1 Ñ E2 such that fV � s1 � s2 � fE and fV � t1 � t2 � fE .

Composition is defined componentwise, i.e. given f1 : G1 Ñ G2 and f2 : G2 Ñ G3 then

f2 � f1 � pf2,V � f1,V , f2,E � f1,Eq : G1 Ñ G3.

The category of graphs with total morphisms will be denoted Graph and GraphP

if morphisms are allowed to be partial. GraphP will be more interesting for us.�

Let C and D be two categories. A functor F : C Ñ D is a mapping7 that associates

objects in C with objects in D (for some X P C, F pXq P D) and morphisms in C with

morphisms in D:

f : X Ñ Y, f P C, F pfq : F pXq Ñ F pY q, F pfq P D. (2.1)

Any functor has to keep the category structure (identities and composition), i.e. it must

satisfy the following two properties:

1. �X P C, F p1Xq � 1F pXq.
2. �f : X Ñ Y, g : Y Ñ Z we have that F pg � fq � F pgq � F pfq.

Example.�The constant functor between categories C and D sends every object in

C to a fixed object in D. The diagonal functor is defined between categories C and CD

and sends each object in C to the constant functor in that object.8 Let C denote the

category of vector spaces over a fixed field, then the tensor product V b W defines a

functor C � C Ñ C.�
7 Functors can be seen as morphisms between categories.
8 CD is the class of all morphisms from D to C

2.2 Category Theory 21

C

F

U
g

Y

D F pUq F pgq
X

u f
F pY q

Fig. 2.1. Universal Property

All constructions that follow can be characterized by some abstract property that de-

mands, under some conditions, the existence of a unique morphism, known as universal

properties.

One concept constantly used is that of universal morphism, which can be easily

recognized in the rest of the section: Let F : C Ñ D be a functor and let X P D, a

universal morphism from X to F – where U P C and u : X Ñ F pUq – is the pair pU, uq
such that �Y P C and �f : X Ñ F pY q, D!g : U Ñ Y satisfying:9

f � F pgq � u.
See Fig. 2.1 where blue dotted arrows delimit the commutative triangle pu, f, F pgqq.

P 1
Π1

X
Π1

Y

u

N

γX γY

N

γX γY

u

P

ΠX ΠY

L

δX δY

X Y F pXq
F pfq F pY q F pXq

F pfq F pY q
Fig. 2.2. Product, Cone and Universal Cone

9 In fact, this is a universal property for universal morphisms.

22 2 Background and Theory

The product of objects X and Y is an object P and two morphisms ΠX : P Ñ X

and ΠY : P Ñ Y such that P is terminal. This definition can be extended easily to an

arbitrary collection of objects.

A cone from N P D to functor F : C Ñ D is the family of morphisms γX : N Ñ F pXq
such that �f : X Ñ Y , f P C we have F pfq � γX � γY .

A limit is a universal cone, i.e. a cone through which all other cones factor: A conepL, δXq of a functor F : C Ñ D is a limit of that functor if and only if for any conepN, γXq of F , D!u : N Ñ L such that γX � δX � u (L is terminal). See Fig. 2.2.

X

g

f

Y

γY

δY

PB1
δX

δP B

δY

PB

γY

γX
X

f

Z
γZ

δZ

PO
δP O

PO1 Y
g

Z

Fig. 2.3. Pushout and Pullback

A pullback10 is the limit of a diagram11 consisting of two morphisms f : X Ñ Z

and g : Y Ñ Z with a common codomain.

By reverting all arrows in previous definitions12 we get the dual concepts: Coprod-

uct, cocone, colimit and pushout. A pushout13 is the colimit of a diagram consisting

of two morphisms f : X Ñ Y and g : X Ñ Z with a common domain and can be

informally interpreted as closing the square represented on the left of Fig. 2.3 by defining

the red dashed morphisms γZ and γY . Fine blue dotted morphisms (δY , δZ and δPO)

10 Also known as fibered product or cartesian square.
11 Informally, the diagram is the one appearing on the left of Fig. 2.3. Formally, a diagram of

type I – the index or scheme category – in category C is a functor D : I Ñ C. What objects

and morphisms are in I is irrelevant. Only the way in which they are related is of importance.
12 Reverting arrows is at times called duality.
13 Also known as fibered coproducts or fibered sums.

2.2 Category Theory 23

illustrate the universal property of PO of being the initial object. We will see in Secs. 3.1

and 3.2 that the basic pillars of categorical approaches to graph transformation are the

pushout and pullback diagrams depicted in Fig. 2.3.

Pushout constructions are very important to graph transformation systems, in par-

ticular to SPO and DPO approaches, but also used to some extent by most of the rest

of the categorical approaches. The intuition of a pushout between sets A, B and C as in

Fig. 2.4 is to glue sets B and C through set A or, in other words, put C where A is in B.

Fig. 2.4. Pushout as Gluing of Sets

A pushout complement is a categorical construction very similar to PO and PB.

In this case, following the notation on the left of Fig. 2.3, f and γY would be given and

g, γZ and Z need to be defined.

Roughly speaking, an initial pushout is an initial object in the “category of

pushouts”.14 Supose we have a pushout as in the left of Fig. 2.3, then it is said to

be initial over γY if for every pushout f 1 : X 1 Ñ Y and γ1Z : Z Ñ PO (refer to Fig. 2.5)

there exist unique morphisms f : X Ñ X 1 and γZ : Z Ñ Z 1 such that:

1. f � f 1 � f and γZ � γ1Z � γZ .

2. The square defined by overlined morphisms pf, g, γY , γZq is a pushout.

14 Initial pushouts are needed for the gluing condition and to define HLR categories.

24 2 Background and Theory

X

g

f

f

X 1
γ1

Y

f 1 Y

γY

Z
γZ

γZ

Z1 γ1
Z

PO

Fig. 2.5. Initial Pushout

Now we will introduce adhesive HLR categories15 which are very important for a

general study of graph grammars and graph transformation systems. See Sec. 3.2 for an

introduction or refer to [22] for a detailed account.

Van Kampen squares are pushout diagrams closed in some sense under pullbacks.

Given the pushout diagram pp,m, p�,m�q on the floor of the cube in Fig. 2.6 and the

two pullbacks pm, g1,m1, l1q and pp, r1, p1, l1q of the back faces (depicted in dashed red)

then the front faces pp�, h1, p1�, g1q and pm�, h1,m1�, r1q (depicted in dashed blue) are

pullbacks if and only if the top square pp1,m1, p1�,m1�q is a pushout. Even in category

Set not all pushouts are van Kampen squares, unless the pushout is defined along a

monomorphism (an injective morphism). We say that pp,m, p�,m�q is defined along a

monomorphism if p is injective (symmetrically, if m is injective). A category has pushouts

along monomorphisms if at least one of the given morphism is a monomorphism.

We will be interested in so-called adhesive categories. A category C is called adhesive

if it fulfills the following properties:

1. C has pushouts along monomorphisms.

2. C has pullbacks.

3. Pushouts along monomorphisms are van Kampen squares.

There are important categories that turn out to be adhesive categories but others are

not. For example, Set and Graph are adhesive categories but Poset (the category of

partial ordered sets) and Top (topological spaces and continuous functions) are not.

15 HLR stands for High Level Replacement.

2.2 Category Theory 25

L1
l1 p1

m1
G1

g1 p1� R1
m1�

r1H 1
h1 L

m p

G

p� R

m�
H

Fig. 2.6. Van Kampen Square

Axioms of adhesive categories have to be weakened because there are important cat-

egories for graph transformation that do not fulfill them as, e.g. typed attributed graphs.

The main difference between adhesive categories and adhesive HLR categories is that

adhesive properties are demanded for some subclass M of monomorphisms and not for

every monomorphism. A category C with a set of morphisms M is an adhesive HLR

category if:

1. M is closed under isomorphism composition and decomposition (g�f PM, g PMñ
f PM).

2. C has pushouts and pullbacks along M-morphisms and M-morphisms are closed

under pushouts and pullbacks.

3. Pushouts in C along M-morphisms are van Kampen squares.

Symmetrically to previous use of the term along, a pushout along an M-morphism is

a pushout where at least one of the given morphisms is in M.

Among others, category PTNets (place/transition nets) fails to be an adhesive HLR

category so it would be nice to still consider wider sets of graph grammars by further

relaxing the axiomatic of adhesive HLR categories. In particular third axiom can be

weakened if only some cubes in Fig. 2.6 are considered for the van Kampen property. In

this case we will speak of weak adhesive HLR categories:

26 2 Background and Theory

3’. Pushouts in C along M-morphisms are weak van Kampen squares, i.e. the van Kam-

pen square property holds for all commutative cubes with p P M and m P M or

p PM and l1, r1, g1 PM.

Adhesive HLR categories enjoy many nice properties concerning push-out and pull-

back constructions, allowing to move forwards and backwards easily in diagrams. Assum-

ing all involved morphisms to be in M:

1. Pushouts along M-morphisms are pullbacks.

2. If a pushout is the composition of two squares in which the second is a pullback, then

in fact both squares are pushouts and pullbacks.

3. The symmetrical van Kampen property for pullbacks also holds (see Fig. 2.6): If

the top square pG1, H 1, R1, L1q is a pullback and the front squares pG1, G,H,H 1q andpH 1, H,R,R1q are pushouts, then the bottom pG,H,R,Lq is a pullback if and only if

the back faces pG1, G, L, L1q and pL1, L,R,R1q are pushouts.

4. Pushout complements are unique up to isomorphisms.

It is necessary to be cautious when porting concepts to (weak) adhesive categories

as morphisms involved in the definitions and theorems have to belong to the set of

morphisms M.

2.3 Graph Theory

In this section simple digraphs are defined, which can be represented as boolean matrices.

Besides, basic operations on these matrices are introduced. They will be used in later

sections to characterize graph transformation rules. Also, compatibility for a graph16 –

an adjacency matrix and a vector of nodes – is defined and studied. This paves the way

to the notion of compatibility of grammar rules17 and of sequences of productions.18

Graph theory is considered to start with Euler’s paper on the seven bridges of

Könisberg in 1736. Since then, there has been an intense research in the field by, among

others, Cayley, Silvester, Tait, Ramsey, Erdös, Szemerédy and many more. Nowadays

16 See definition 2.3.2.
17 See definition 4.1.5.
18 See Sec. 4.5.

2.3 Graph Theory 27

graph theory is applied to a wide range of areas in different disciplines in both science

and engineering, from computer science, chemistry, physics, topology, etcetera. Among

its main branches we can cite extremal graph theory, geometric graph theory, algebraic

graph theory, probabilistic (also known as random) graph theory and topological graph

theory. We will just use some basic facts from algebraic graph theory.

The category of graphs has been introduced in Sec. 2.2. An easy way to define a

simple digraph G � pV,Eq is as the structure that consists of two sets, one of nodes

V � tVi | i P Iu and one of edges E � tpVi, Vjq P V � V u (think of arrows as connecting

nodes).19 Prefix di means that edges are directed and term simple that at most one arrow

is allowed between the same two nodes. For example, the complete simple digraph with

three vertices and two examples of four and five vertices can be found in Fig. 2.7.

Fig. 2.7. Three, Four and Five Nodes Simple Digraphs

Any simple digraph G is uniquely determined through one of its associated matrices,

known as adjacency matrix AG, whose element aij is defined to be one if there exists

an arrow joining vertex i with vertex j, and zero otherwise. This is not the only possible

characterization of graphs using matrices.

The incidence matrix is an m�n matrix Im
n , where m is the number of nodes and

n the number of edges,20 such that Ii
j � �1 if edge ej leaves the node and Ii

j � 1 if

edge ej enters the node (Ii
j � 0 otherwise). As it is possible to relate the adjacency and

19 Mind the difference between this and having functions s and t, see for example [22].
20 The tensor notation is explained in Sec. 2.4.

28 2 Background and Theory

incidence matrices through line graphs, we will mainly characterize graphs through their

adjacency matrices.21

In addition, a vector that we call node vector VG is associated to our digraph G,

with its elements equal to one if the corresponding node is in G and zero otherwise. It

will be necessary because we will study sequences of productions, which probably apply

to different graphs. Their adjacency matrices will then refer to different sets of nodes.

In order to operate algebraically we will complete all matrices.22 Node vectors are used

to distinguish which nodes belong to the graph and which ones have been added for

algebraic operation consistency. Next example illustrates this point.

Example.�The adjacency matrices AE and CE for first and third graphs of Fig. 2.7

are:

AE � ���1 1 1 0 | 1
1 1 1 0 | 2
1 1 1 0 | 3
0 0 0 0 | 4���AN � ��� 1 | 1

1 | 2
1 | 3
0 | 4���CE � ��� 1 1 1 1 | 1

0 1 1 0 | 2
0 1 0 0 | 3
0 0 0 0 | 4���CN � ��� 1 | 1

1 | 2
1 | 3
1 | 4���

where AN and CN are the corresponding node vectors. A vertically separated column

indicates node ordering, which applies both to rows and columns. Note that edges incident

to node 4 are considered in matrix AE . As there is no node 4 in A, corresponding elements

in the adjacency matrix are zero. To clearly state that this node does not belong to graph

A we have a zero in the fourth position of AN .�

Note that simple graphs (without orientation on edges) can be studied if we limit

to the subspace of symmetric adjacency matrices. In Sec. 7.5 we study how to extend

Matrix Graph Grammars approach to consider multigraphs. The difference between a

simple graph and a multigraph is that simple graphs allow a maximum of one edge

21 The line graph LpGq of graph G is a graph in which each vertex of LpGq represents an edge of

G and two nodes in LpGq are incident if the corresponding edges share an endpoint. Incidence

and adjacency matrices are related throught the equation:

ApLpGqq � BpGqtBpGq � 2I

where ApLpGqq is the adjacency matrix of LpGq, BpGq its incidence matrix and I the identity

matrix.
22 Refer to Sec. 4.2.

2.3 Graph Theory 29

connecting two nodes in each direction, while a multigraph allows a finite number of

them.

In the literature, depending mainly on the book, there is some confusion with termi-

nology. At times, the term graph applies to multigraphs while other times graph refers

to simple graphs (also known as relational graphs). Whenever found in this dissertation,

and unless otherwise stated, the term graph should be understood as simple digraph.

The basic Boolean operations on graphs are defined componentwise on their adjacency

matrices. Let G and H be two graphs with adjacency matrices
�
gi

j

�
and

�
hi

j

�
, i, j Pt1, . . . nu, then:

G_H � �
gi

j _ hi
j

�
G^H � �

gi
j ^ hi

j

�
G � �

gi
j

	
.

Similarly to ordinary matrix product based on addition and multiplication by scalars,

there is a natural definition for a boolean product with the same structure but using

boolean operations and and or.

Definition 2.3.1 (Boolean Matrix Product) For digraphs G and H, let MG ��
gi

j

�
i,jPt1,...,nu and MH � �

hi
j

�
i,jPt1,...,nu be their respective adjacency matrices. The

boolean product is an adjacency matrix again whose elements are defined by:pMG dMHqij � nª
k�1

�
gi

k ^ hk
j

�
. (2.2)

Element pi, jq in the boolean product matrix is one if there exists an edge joining

node i in digraph G with some node k in the same digraph and another edge in digraph

H starting in k and ending in j. The value will be zero otherwise.

If for example we want to check whether node j is reachable starting in node i in n

steps or less, we may calculate
�n

k�1 A
pkq, where Apkq � Ad kq� � � dA, and test if elementpi, jq is one.23 We will consider square matrices only as every node can be either initial

or terminal for any edge.

Another useful product operation that can be defined for two simple digraphs G1 and

G2 is its tensor product (defined in Sec. 2.4) G � G1 bG2:

23 In order to distinguish when we are using the standard or boolean product, in the latter

exponents will be enclosed between brackets.

30 2 Background and Theory

1. The nodes set is the cartesian product V pGq � V pG1q � V pG2q.
2. Two vertices u1 b u2 and v1 b v2 are adjacent if and only if u1 is adjacent to v1 in

G1 and u2 is adjacent to v2 in G2.

In Sec. 2.4 we will see that the adjacency matrix of G coincide with the tensor product

of the adjacency matrices of G1 and G2.

The following definition, definition 2.3.3, proposition 2.3.4 and the introduction above

of the nodes vector is not standard in graph theory (in fact, as far as we know, we are

introducing them). The decission of including them in this introductory section is because

they are simple results very close with what one understands as “basics” of a theory.

Given an adjacency matrix and a vector of nodes, a natural question is whether they

define a simple digraph or not.

Definition 2.3.2 (Compatibility) A boolean matrix M and a vector of nodes N are

compatible if they define a simple digraph: No edge is incident to any node that does not

belong to the digraph.

An edge incident to some node which does not belong to the graph (has a zero in the

corresponding position of the nodes vector) is called a dangling edge.

In the DPO/SPO approaches, this condition is checked when building a direct deriva-

tion, known as dangling condition. The idea behind it is to obtain a closed set of entities,

i.e. deletion of nodes outputs a digraph again (every edge is incident to some node).

Proposition 2.3.4 below provides a criteria for testing compatibility for simple digraphs.

Definition 2.3.3 (Norm of a Boolean Vector) Let N � pv1, . . . , vnq be a boolean

vector. Its norm } �}1 is given by: }N}1 � nª
i�1

vi. (2.3)

Proposition 2.3.4 A pair pM,Nq, where M is an adjacency matrix and N a vector of

nodes, is compatible if and only if���M _M t
�dN��

1
� 0 (2.4)

where t denotes transposition.

2.4 Tensor Algebra 31

Proof�In an adjacency matrix, row i represents outgoing edges from vertex i, while column j

are incoming edges to vertex j. Moreover, pMqik ^ �
N
�
k
� 1 if and only if pMqik � 1

and pNqk � 0, and thus the i� th element of vector M dN is one if and only if there is

a dangling edge in row number i. We have just considered outgoing edges; for incoming

ones we have a very similar term: M t d N . To finish the sufficient part of the proof –

necessity is straightforward – we or both terms and take norms to detect if there is a

1.�

Remark.�We have used in the proof of proposition 2.3.4 distribution of d and _,pM1 _M2q dM3 � pM1 dM3q _ pM2 dM3q. In addition, we also have the distributive

law on the left, i.e. M3dpM1 _M2q � pM3 dM1q_pM3 dM2q. Besides, it will be stated

without proof that }ω1 _ ω2}1 � }ω1}1 _ }ω2}1.�
In Chap. 5 we will deal with matching, i.e. finding the left hand side of a graph

grammar rule in the initial state (host graph). A matching algorithm is not proposed;

our approach assumes that such algorithm is given. This is closely related to the well

known graph-subgraph isomorphism problem (SI) which is an NP-complete decision

problem if the number of nodes in the subgraph is strictly smaller than the number of

nodes in the graph. We will brush over complexity in Chap. 9.3.

2.4 Tensor Algebra

Throughout the dissertation, quantities that can be represented by a letter with sub-

scripts or superscripts attached24 will be used, together with some algebraic structure

(tensorial structure). This section is devoted to a quick introduction to this topic. Two

very good references are [33] (with relations to physics) and the almost classic book [72].

A tensor is a multilinear application between vector spaces. It is at times interesting

to stay at a more abstract level and think of a tensor as a system that fulfills certain

notational properties. Systems can be heterogeneous when there are different types of

elements, but we will only consider homogeneous systems. Therefore we will speak of

systems or tensors, it does not matter which.

24 For example, Ai
jk

32 2 Background and Theory

The rank25 of a system (tensor) is the number of indices it has, taking into account

whether they are superscripts or subscripts. For example, Ai
jk is

�
1

2

�
-valent or of rank

(1,2). Subscripts or superscripts are referred to as indices or suffixes.

Algebraic operations of addition and substraction apply to systems of the same type

and order. They are defined componentwise, e.g. Ci
jk � Ai

jk � Bi
jk, provided that some

additive structure is defined on elements of the system. We do not follow the Einstein

summation convention, which states that when an index appears twice, one in an upper

and one in a lower position, then they are summed up over all its possible values.

The product is obtained multiplying each component of the first system with each

component of the second system, e.g. Cimnl
j � Ai

jbBmnl. Such a product is called outer

product or tensor product. The order of the result is the sum of the orders of the

factors and inherits all the indices of its factors. All linear relations are satisfied, i.e. for

v1, v2 P V , w PW and v b w P V bW the following identities are fulfilled:

1. pv1 � v2q b w � v1 b w � v2 b w.

2. cv b w � v b cw � cpv b wq.
To categorically characterize tensor products note that there is a natural isomorphism

between all bilinear maps from E �F to G and all linear maps from E bF to G. E bF
has all and only the relations that are necessary to ensure that a homomorphism from

E b F to G will be linear (this is a universal property). For vector spaces this is quite

straightforward, but in the case of R-modules (modules over a ring R) this is normally

accomplished by taking the quotient with respect to appropriate submodules.

Example.�The Kronecker product is a special case of tensor product that we will

use in Chap. 8. Given matrices A � �
ai1

j1

�
m�n

and B � �
bi2j2

�
p�q

, it is defined to be

C � AbB � pcijqmp�nq where

cij � ai1
j1
� bi2j2 (2.5)

being i � pi1 � 1qn � i2 and j � pj1 � 1qm � j2. The notation A � �
ai

j

�
m�n

denotes a

matrix with m rows and n columns, i.e. i P t1, . . . ,mu and j P t1, . . . , nu. As an example:

A � �
a1
1 a

1
2

�
1�2

B � �
b11 b

1
2

b21 b
2
2

�
2�2

C � AbB � �
a1
1b

1
1 a

1
1b

1
2 a

1
2b

1
1 a

1
2b

1
2

a1
1b

2
1 a

1
1b

2
2 a

1
2b

2
1 a

1
2b

2
2

�
2�4

25 The terms order and valence are commonly used as synonyms.

2.4 Tensor Algebra 33

Note that the Kronecker product of the adjacency matrices of two graphs is the

adjacency matrix of the tensor product graph (see Sec. 2.3 for its definition).�

The operation of contraction happens when an upper and a lower indices are set

equal and summed up, e.g. Cimnl
j ÞÝÑ Cmnl � °N

j�1 C
jmnl
j � °

i�j C
imnl
j . For example,

the standard multiplication of a vector by a matrix is a contraction: Consider matrix Ai
j

and vector vk with i, j, k P t1, . . . , nu, then matrix multiplication can be performed by

making j and k equal and summing up, ui � °n
j�1 A

i
jv

j .

The inner product is represented by x � , � y and is obtained in two steps:

1. Take the outer product of the tensors.

2. Perform a contraction on two of its indices.

In Sec. 2.5 we will extend this notation to cope with graph grammar rules representation.

Upper indices are called contravariant and lower indices covariant. Contravariance

is associated to the tangent bundle (tangent space) of a variety and corresponds, so to

speak, to columns. Covariance is the dual notion and is associated to the cotangent bundle

(normal space) and rows. As an example, if we have a vector V in a three dimensional

space with basis tE1, E2, E3u then it can be represented in the form A � a1E1 � a2E2 �
a3E3. Components ai can be calculated via ai � �

A,Ei
D

with
�
Ei, Ej

D � δi
j , where the

Kronecker delta function is 1 if i � j and zero if i � j. Basis

Ei

(
and tEiu are called

reciprocal or dual.

We will not enter the representation of δ in integral form or the relation with the Dirac

delta function, of fundamental importance in distribution theory, functional analysis (see

Sec. 2.5) and quantum mechanics. The Kronecker delta can be generalized to an
�
n
n

�
-

valent tensor:

δ
j1,...,jn

i1,...,in
� n¹

k�1

δikjk
. (2.6)

Besides the kronecker delta, there are other very useful tensors such as the metric

tensor, which can be informally introduced by gijEi � Ej and gijE
j � Ei. Note that

g raises or lowers indices, thus moving from covariance to contravariance and viceversa.

Related to δ and to group theory is the important Levi-Civita symbol:

34 2 Background and Theory

εσ �$''&''%�1 if σ is an even permutation.�1 if σ is an odd permutation.

0 otherwise.

(2.7)

where σ � pi1 . . . inq is a permutation of p1 . . . nq. See Sec. 2.6 for definitions and

further results. Symbols δ and ε can be related through matrix A � paklq � δikjl
and:

εi1...εj1... � detpAq. (2.8)

2.5 Functional Analysis

Functional analysis is a branch of mathematics focused on the study of functions – oper-

ators – in infinite dimensional spaces (although its results also apply to finite dimensional

spaces). Besides the algebraic structure (normally a vector space but at times groups)

some other ingredient is added such as an inner product (Hilbert spaces), a norm (Banach

spaces) a metric (metric spaces) or just a topology (topological vector spaces).

An operator is just a function, but the term is normally employed to call attention to

some special aspect. Examples of operators in mathematics are differential and integral

operators, linear operators (linear transformations), Fourier transform, etcetera.

In this dissertation we will call operators to functions that act on functions with

image a function. Operators will be used, e.g. in Chap. 5 to modify productions in order

to get a production or a sequence of productions.

We will need to change productions as commented above and our inspiration comes

from operator theory and functional analysis, but we would like to put it forward in a

quantum mechanics style. So, although it will not be used as it is, we will give a very

brief introduction to Hilbert and Banach spaces, bra-ket notation and duality.

A Hilbert space H is a vector space, complete with respect to Cauchy sequences over

a field K (every Cauchy sequence has a limit in H), plus a scalar (or inner) product.26

26 Inner product x�, �y : H�H Ñ K axioms are:

1. �x, y P H, xx, yy � xy, xy.
2. �a, b P K, �x, y P H, xax, byy � a xx, yy � b xx, yy.
3. �x P H, xx, xy ¥ 0 and xx, xy � 0 if and only if x � 0.

2.5 Functional Analysis 35

Completeness ensures that the limit of a convergent sequence is in the space, facilitating

several definitions from analysis (note that a Hilbert space can be infinite-dimensional).

The inner product – xu, vy, u, v P H – equips the structure with the notions of distance

and angle (in particular perpendicularity). From a geometric point of view, the scalar

product can be interpreted as a projection whereas analytically it can be seen as an

integral.

The inner product gives raise to a norm27 } �} via }x}2 � xx, xy, �x P H. Any norm

can be interpreted as a measure of the size of elements in the vector space. Every inner

product defines a norm but, in general, the opposite is not true, i.e. norm is a weaker

concept than scalar product.

The relationship between row and column vectors can be generalized from an abstract

point of view through dual spaces. The dual space H� of a Hilbert space H over the

field K has as elements x� P H�, linear applications with domain (initial set) H and

codomain (image) the underlying field K, x� : HÑ K.

The dual space becomes a vector space defining the addition �x�1 , x�2 P H�, x P H bypx�1 �x�2 qpxq � x�1 pxq�x�2 pxq and the scalar product �k P K by kx�pxq � x�pkxq. Using

tensor algebra terminology (see Sec. 2.4) elements of H are called covariant and elements

of H� contravariant. Note how in xx, yy it is possible to think of x as an element of the

vector space and y as an element of the dual space.

Any Hilbert space is isomorphic (or anti-isomorphic) to its dual space, H � H�,
which is the content of the Riesz representation theorem. This is particularly relevant to

us because it is a justification of the Dirac bra-ket notation that we will also use.

The Riesz representation theorem can be stated in the following terms: Let H be

a Hilbert space, H� its dual and define φxpyq � xx, yy, φ P H�. Then, the mapping

Φ : H Ñ H� such that x ÞÑ φx is an isometric isomorphism. This means that Φ is a

bijection and that }x} � }φx}.
27 Norm } � } : B Ñ K axioms are:

1. �x, y P B, }x� y} ¤ }x} � }y}.
2. �a P K, �x P B, }ax} � |a| � }x}.
3. �x P B, }x} ¥ 0 and }x} � 0 if and only if x � 0.

36 2 Background and Theory

We will very briefly introduce Banach spaces to illustrate how notions and ideas from

Hilbert spaces, specially notation, is extended in a more or less natural way.

A complete28 vector space plus a norm is known as a Banach space, B. Associated

to any Banach space there exists its dual space, B�, defined as before. Contrary to Hilbert

spaces, a Banach space is not isometrically isomorphic to its dual space.

It is possible to define a distance (also called metric) out of a norm: dpx, yq �}x� y}. Even though there is no such geometrical intuition of projection nor angles, it

is still possible to use the notation we are interested in. Given x P B, x� P B�, instead

of writing x� pxq (the result is an element of K) at times xx, x�y is preferred. Although

the space and its dual live at different levels, we would like to recover this geometrical

intuition of projection. In some (very nice) sense, the result of x� pxq is the projection of

x over x�.
The same applies for an operator T acting on a Banach space B, T : B Ñ B. Suppose

f, g P B, then g � T pfq � xf, T y. This is closer to our situation, so the application of a

production29 can be written

R � xL, py . (2.9)

The left part is sometimes called bra and the right part ket : xbra, kety.
Besides dual elements, the adjoint of an operator is also represented using asterisks.

In our case, the adjoint operator of T , represented by T �, is formally defined by the

identity: xL, Tp y � xT �L, p y . (2.10)

Roughly speaking, T is an operator (a function) that modifies a production, being its

output a production again, so the left hand side in (2.10) is equivalent to T ppq pLq , and

the right hand side is just p pT �Lq. Note that T ppq is a production and T �L is a simple

digraph.

In quantum mechanics the possible states of a quantum mechanical system are repre-

sented by unit vectors – state vectors – in a Hilbert space H or state space (equivalently,

points in a projective Hilbert space). Each observable – property of the system – is de-

fined by a linear operator acting on the elements of the state space. Each eigenstate of an

28 Complete in the same sense as for Hilbert spaces
29 See Sec. 4.1 for definitions.

2.6 Group Theory 37

observable corresponds to an eigenvector of the operator and the eigenvalue to the value

of the observable in that eigenstate. An interpretation of xψ|φy is the probability ampli-

tude for the state ψ to collapse into the state φ, i.e. the projection of ψ over φ. In this

case, the notation can be generalized to metric spaces, topological vector spaces and even

vector spaces without any topology (close to our case as we will deal with graphs with-

out introducing notions such as metrics, scalar products, etcetera). Two recommended

references are [37] and [65].

This disgression on quantum mechanics is justified because along the present con-

tribution we would like to think in graph grammars as having a static definition which

provokes a dynamic behaviour and the duality between state and observable. Besides,

the use of the notation, we would like to keep some “physical” (mechanics) intuition

whenever possible.

2.6 Group Theory

One way to introuce group theory is to define it as the part of mathematics that study

those structures for which the equation a � x � b has a unique solution. There is a very

nice definition due to James Newman [56] that I’d like to reproduce:

The theory of groups is a branch of mathematics in which one does something to

something and then compares the results with the result of doing the same thing

to something else, or something else to the same thing.

We will be interested in groups, mainly in its notation and basic results, when dealing

with sequentialization in Chaps. 4 and 6. A group G is a set together with an operationpG, �q that satisfies the following axioms:

1. Closure: �a, b P G, a � b P G.

2. Associativity: �a, b, c P G, a � pb � cq � pa � bq � c.
3. Identity element: De P G such that a � e � e � a � a.

4. Inverse element: �a P G Db P G such that a � b � e � b � a.
Actually, the third and fourth axioms can be weakened as only one identity per axiom

should suffice, but we think it is worth stressing the fact that if they exist then they work

38 2 Background and Theory

on both sides. Normally, the inverse element of a is written a�1. At times the identity

element is represented by 1G or 0G, depending on the notation (abelian or non-abelian).

A group is called abelian or commutative if �a, b P G, a � b � b � a.
A group S inside a group G is called a subgroup. If this is the case, we need S to

be closed under the group operation, it also must have the identity element e and every

element in S must have an inverse in S. If S � G and �a, b P S we have that a � b�1 P S
then S is a subgroup. Lagrange’s theorem states that the order of a subgroup (number

of elements) necessarily divides the order of the group.

We are almost exclusively interested in groups of permutations: For a given sorted

set, a change of order is called a permutation. This does not reduce the scope because,

by Cayley’s theorem, every group is isomorphic to some group of permutations.

A transposition is a permutation that exchanges the position of two elements whilst

leaving all other objects unmoved. It is known that any permutation is equivalent to a

product of transpositions. Furthermore, if a permutation can result from an odd number

of transpositions then it can not result from and even number of permutations, and

viceversa. A permutation is even if it can be produced by an even number of exchanges

and odd in the other case. This is called parity.

The signature of a permutation σ, sgnpσq, is �1 if the permutation is even and �1

if it is odd. This is the Levi-Civita symbol as introduced in Sec. 2.4 if it is extended for

non-injective maps with value zero.

Any permutation can be decomposed into cycles. A cycle is a closed chain inside a

permutation (so it is a permutation itself) which enjoy some nice properties among which

we highlight:

• Cycles inside a permutation can be chosen to be disjoint.

• Disjoint cycles commute.

Any permutation can be written as a two row matrix where the first row represents the

original ordering of elements and the second the order once the permutation is applied.

Example.�The permutation σ can be decomposed into the product of three cycles:

σ � �
1 2 3 4 5 6 7 8

3 5 7 8 2 4 1 6

� � p1 3 7qp2 5qp4 8 6q.

2.7 Summary and Conclusions 39

Note that this decomposition is not unique because any decomposition into transpo-

sitions would do (and there are infinitely many).�

If the permutation turns out to be a cycle, then a clearer notation can be used: Write

in a row, in order, the following element in the permutation. In the example above we

begin with 1 and note that 1 goes to 3, which goes to 7, which goes back to 1 and hence

it is written p1 3 7q.
A cycle with an even number of elements is an odd permutation and a cycle with

an odd number of elements is an even permutation. In practice, in order to determine

whether a given permutation is even or odd, one writes the permutation as a product of

disjoint cycles: The permutation is odd if and only if this factorization contains an odd

number of even-length cycles.

2.7 Summary and Conclusions

In this chapter we have quickly reviewed some basic facts of mathematics that will be

used throughout the rest of the dissertation: The basics of first order, second order and

monadic second order logics, some constructions of category theory such as pushouts and

pullbacks together with the introduction of some categories useful for future chapters,

graph theory basic definitions and compatibility, tensor algebra and functional analysis

notations and some basic group theory, paying some attention to permutations.

Internet is full of very good web pages introducing these branches of mathematics

with deeper explanations and plenty of examples. It is not possible to give an exhaustive

list of all webpages visited to make this chapter. Nevertheless, I would like to highlight

the very good job being performed by the community at http://planetmath.org/ and

http://www.wikipedia.org/.from where many examples presented

Next chapter summarizes current approaches to graph grammars and graph trans-

formation systems, so it is still introductory. We will put our hands on Matrix Graph

Grammars in Chap. 4.

http://planetmath.org/
http://www.wikipedia.org/

3

Graph Grammars Approaches

Before moving to Matrix Graph Grammars it is necessary to take a look at other ap-

proaches to graph transformation to “get the taste”, which is the aim of this chapter.

We will see the basic foundations leaving comparisons of more advanced topics (like

application conditions) to sporadic remarks in future chapters.

Sections 3.1 and 3.2 are devoted to categorical approaches, probably the most devel-

oped formalitations of graph grammars. On the theoretical side, very nice ideas have put

at our disposal the possibility of using category theory and its generalization power to

study graph grammars, but even more so, a big effort has been undertaken in order to fill

the gap between category theory and practice with tools such as AGG (see [22]). Please,

refer to [1] for a detailed discussion and comparison of tools.

In Secs. 3.3 and 3.4 two completely different formalisms to the categorical approach

are summarized, at times called set-theoretic or even algorithmic approaches. They are

in some sense closer to implementation than those using category theory. There has been

a lot of research in these two essential approaches so unfortunately we will just scratch

the surface.

Interestingly, it is possible to study graph transformation using logics, providing us

with all powerful methods from this branch of mathematics, monadic second order logics

in particular. We will brush over this brilliant approach in Sec. 3.5.

To finish this review we will briefly touch on the very interesting relation-algebraic

approach in Sec. 3.6, which has not attracted as much attention as one should expect.

Finally, the chapter is closed with a summary in Sec. 3.7.

42 3 Graph Grammars Approaches

In this chapter we abuse of bold letters with the intention of facilitating the search

of some definition or result. It is assumed that this chapter as well as Chap. 2 will be

mainly used for reference.

3.1 Double PushOut (DPO)

3.1.1 Basics

In the DPO approach to graph rewriting, a direct derivation is represented by a double

pushout in category Graph (multigraphs and total graph morphisms). Productions can

be defined as three graph components, separating the elements that should be preserved

from the left and right hand sides of the rule.

A production p : pL l�Ý K
rÝÑ Rq consists of a production name p and a pair of

injective graph morphisms l : K Ñ L and r : K Ñ R. Graphs L, R and K are respectively

called the left-hand side (LHS), right-hand side (RHS) and the interface of p. Morphisms

l and r are usually injective and can be taken to be inclusions without loss of generality.

Fig. 3.1. Example of Simple DPO Production

The interface K of a production consists of the elements that should be preserved by

the production application, while elements in L�K are deleted and elements of R�K

3.1 Double PushOut (DPO) 43

are added. Figure 3.1 shows a simple DPO production named del, that can be applied

if a path of three nodes is found. If so, the production eliminates the last node and all

edges and creates a loop edge in the second node.

A direct derivation can be defined as an application of a production to a graph

through a match by constructing two pushouts. A match is a total morphism from the

left hand side of the production onto the host graph, i.e. it is the operation of finding

the LHS of the grammar rule in the host graph. Thus, given a graph G, a production p

: pL l�Ý K
rÝÑ Rq and a match m : L Ñ G, a direct derivation from G to H using p

(based on m) exists if and only if the diagram in Fig. 3.2 can be constructed, where both

squares are required to be pushouts in category Graph.

In Fig. 3.2, red dotted arrows represent the morphisms that must be defined in order

to close the diagram, i.e. to construct the pushouts. D is called the context graph. In

particular, if the context graph can not be constructed then the rule can not be applied.

A direct derivation is written G
p,mùñ H or simply G ùñ H if the production and the

matching are known from context.

L

m

K
l r

d

R

m�
G D

l� r�
H

Fig. 3.2. Direct Derivation as DPO Construction

Figure 3.1 shows the application of rule del to a graph. Morphisms m, d and m� are

depicted by showing the correspondence of the vertices in the production and the graph.

In order to apply a production to a graph G, a pushout complement has to be calcu-

lated to obtain graph D. The existence of this pushout complement is guaranteed if the

so-called dangling and identification conditions are satisfied. The first one establishes

that a node in G cannot be deleted if this causes dangling edges. The second condition

states that two different nodes or edges in L cannot be identified (by means of a non-

injective match) as a single element in G if one of the elements is deleted and the other

44 3 Graph Grammars Approaches

is preserved. Moreover, the injectivity of l : K Ñ L guarantees the uniqueness of the

pushout complement. The identification condition plus the dangling condition is at times

known as gluing condition.

In the example in Fig. 3.1 the match p1, 2, 3q ÞÑ pa, b, cq does not fulfill the dangling

condition, as the deletion of node d would make edges pa, cq and pc, dq become dangling,

so the production cannot be applied at this match. One example (for SPO, but it can be

easily translated into DPO) in which the identification condition fails is depicted on the

right of Fig. 3.7 on p. 50.

3.1.2 Sequentialization and Parallelism

A graph grammar can be defined as G � xpp : L
l�Ý K

rÝÑ RqpPP , G0y (see [11], Chap.

3), where pp : L
l�Ý K

rÝÑ RqpPP is a family of productions indexed by their names and

G0 is the starting graph of the grammar. The semantics of the grammar are all reachable

graphs that can be obtained by successively applying the rules in G. Events changing a

system state can thus be modeled using graph transformation rules.

In real systems, parallel actions can take place. Two main approaches can be followed

in order to describe and analyze parallel computations. In the first one, parallel actions

are sequentialized, giving rise to different interleavings (for example a single CPU simu-

lating multitasking). In the second approach, called explicit parallelism, actions are really

simultaneous (more than one CPU performing several tasks).

R1

m�
1

K1

r1

k1

l1
L1

m1

i
L2

m2

j K2

l2 r2

k2

R2

m�
2

H1 D1
r�
1

l�
1

G D2
l�
2

r�
2

H2

Fig. 3.3. Parallel Independence

In the interleaving approach, two actions (rule applications) are considered to be

parallel if they can be performed in any order yielding the same result. This can be

understood in two different ways.

3.1 Double PushOut (DPO) 45

The first interpretation is called parallel independence and states that two alter-

native direct derivations H1

p1ðù G
p2ùñ H2 are independent if there are direct derivations

such that H1

p2ùñ X
p1ðù H2 (see Fig. 3.3). That is, both derivations are not in conflict,

but one can be postponed after the other. It can be characterized using morphisms in

a categorical style saying that two direct derivations (as those depicted in Fig. 3.3) are

parallel independent if and only ifDi : L1 Ñ D2, j : L2 Ñ D1 | l�2 � i � m1, l
�
1 � j � m2. (3.1)

If one element is preserved by one derivation, but deleted by the other, then the latter

is said to be weakly parallel independent of the first (it is characterized in equation

3.4). Thus, parallel independence can be defined as mutual weak parallel independence.

On the other hand, two direct derivations are called sequential independent if

they can be performed in different order with no changes in the result. That is, both

G
p1ùñ H1

p2ùñ X and G
p2ùñ H2

p1ùñ X yield the same result (see Fig. 3.4). Again,

categorically we say that two derivations are sequential independent if and only ifDi : R1 Ñ D2, j : L2 Ñ D1 | l�2 � i � m�
1 , r

�
1 � j � m2. (3.2)

Mind the similarities with confluence (problem 5) and local confluence.

L1

m1

K1

l1

k1

r1

R1

m�
1

i
L2

m2

j K2

l2 r2

k2

R2

m�
2

G1 D1
l�
1

r�
1

H D2
l�
2

r�
2

G2

Fig. 3.4. Sequential Independence

The conditions for sequential and parallel independence are given in the Local Church

Rosser theorem [11], Chaps. 3 and 4. It says that two alternative parallel derivations

are parallel independent if their matches only overlap in items that are preserved. Two

consecutive direct derivations are sequential independent if the match of the second does

not depend on elements generated by the first, and the second derivation does not delete

an item that has been accessed by the first. Moreover, if two direct alternative derivations

are parallel independent, their concatenation is sequential independent and viceversa.

46 3 Graph Grammars Approaches

The explicit parallelism view [2; 11] abstracts from any application order (no in-

termediate states are produced). In this approach, a derivation is modeled by a single

production, called parallel production. Given two productions, p1 and p2, the parallel

production p1 � p2 is the disjoint union of both. The application of such production is

denoted as G
p1�p2ùñ X .

Two problems arise here: The sequentialization of a parallel production (analysis),

and the parallelization of a derivation (synthesis). In DPO, the parallelism theorem states

that a parallel derivation G
p1�p2ùñ X can be sequentialized into two derivations (G

p1ùñ
H1

p2ùñ X and G
p2ùñ H2

p1ùñ X) that are sequential independent. Conversely, two

derivations can be put in parallel if they are sequentially independent.

This is a limiting case of amalgamation, which specifies that if there are two pro-

ductions p1 and p2, then the amalgamated production p1 `p0
p2 is defined such that the

production p1 and p2 can be applied in parallel and the amalgamated production p0 (that

represents common parts of both) should be applied only once.

The concurrency theorem1 deals with the concurrent execution of productions

that needs not to be sequentially independent. Hence, according to previous results, it is

not possible to apply them in parallel. Anyway, they can be applied concurrently using

a so-called E-concurrent graph production, p1 �E p2. We will omit the details, which can

be consulted in [22].

Let the sequence G
p1,m1ùñ H1

p2,m2ùñ H2 be given. It is possible to construct a direct

derivation G
p1�Ep2ùñ H2. The basic idea is to relate both productions through an over-

lapping graph E, which is a subgraph of H1, E � m�
1 pR1q Ym2pL2q. The corresponding

restrictions m�
1 : R1 Ñ E and m2 : L2 Ñ E of m�

1 and m2, respectively, must be jointly

surjective. Also, any direct derivation G
p1�Ep2ùñ H2 can be sequentialized.

3.1.3 Application Conditions

We will make a brief overview of graph constraints and application conditions. In [14],

graph constraints and application conditions were developed for the Double Pushout

1 The concurrency theorem appeared in [22] for the first time, to the best of our knowledge. A

somehow related concept – more general, though – was introduced simultaneously for Matrix

Graph Grammar in [59]. We will review it in Sec. 6.4.

3.1 Double PushOut (DPO) 47

(DPO) approach to graph transformation and generalized to adhesive HLR categories in

[22]. Atomic constraints were defined to be either positive or negative. A positive atomic

graph constraint PC pcq (where c is an arbitrary morphism c : P Ñ C) is satisfied by

graph G if �mP : P Ñ G injective morphism there exists some mC : C Ñ P injective

morphism such that mP � mC � c, mathematically written G |ù PC pcq (see left part of

Fig. 3.5). It can be interpreted as graph C must exist in G if graph P is found in G.

Graph morphism mL : L Ñ G satisfies the positive atomic application condition

P pc,�n
1 ciq (with c : LÑ P and ci : P Ñ Ci) if assuming G |ù PC pcq, for all associated

morphisms mP : P Ñ G, DmCi
: Ci Ñ G such that G |ù PC pciq. The notation used

is mL |ù P pc,�n
1 ciq, having also a similar interpretation to that of graph constraints:

Suppose L is found in G, if P is also in G then there must be some Ci in G. Refer

to the diagram on the right side of Fig. 3.5. A positive graph constraint is a boolean

formula over positive atomic graph constraints. Positive application conditions, negative

application conditions and negative graph constraints are defined similarly.

C

mC

P
c

mP

G

C1

mC1

P
c1

cn

mP

L
x

mLCn

mCn

G

Fig. 3.5. Generic Application Condition Diagram

Finally, an application condition AC ppq � pAL, ARq for a production p : L Ñ R

consists of a left application condition AL over L (also known as precondition) and a right

application condition or postcondition AR over R. A graph transformation satisfies the

application condition if the match satisfies AL and the comatch satisfies AR. In [14; 32] it

is shown that graph constraints can be transformed into postconditions which eventually

can be translated into preconditions. In this way, it is possible to ensure that starting

with a host graph that meets certain restrictions, the application of the production will

output a graph that still satisfies the same restrictions.

DPO approach has been embedded in the weak adhesive HLR categorical approach,

which we will shortly review in the following subsection.

48 3 Graph Grammars Approaches

3.1.4 Adhesive HLR Categories

This section finishes with a celebrated generalization of DPO.It was during 2004 that

adhesive HLR categories were defined by merging two striking ideas: Adhesive cat-

egories [43] and high level replacement systems [16; 17]. See 2.2 for a quick overview of

category theory.

Basic definitions are extended almost immediately to adhesive HLR systems pC,Mq.
A production p : pL l�Ý K

rÝÑ Rq consists of three objects L, K and R, the left hand

side, the gluing object and the right hand side, respectively, and morphisms l : K Ñ L

and r : K Ñ R with l, r PM. There is a slight change in notation and the term derivation

is subsituted by transformation, and direct derivation by direct transformations.

Adhesive HLR grammars and languages are defined in the usual way.

In order to apply a production we have to construct the pushout complement and a

necessary and sufficient condition for it is the gluing condition. For adhesive HLR systems

this is possible if we can construct initial pushouts, which is an additional requirement

(it does not follow from the axioms of adhesive HLR categories): A match m : L Ñ G

satisfies the gluing condition with respect to a production p : pL l�Ý K
rÝÑ Rq if for the

initial pushout over m in Fig. 3.6 there is a morphism f : X Ñ K such that r � f � f .

X
f

f

L

m

Kr l
R

Z
γZ

G

Fig. 3.6. Gluing Condition

Parallel and sequential independence are defined analogously to what have been pre-

sented in Sec. 3.1 and the local Church-Rosser and the parallelism theorems remain

valid.

3.2 Other Categorical Approaches 49

3.2 Other Categorical Approaches

This section presents other categorical approaches such as single pushout (SPO) and

pullback and compares them with DPO (Sec. 3.1).

In the single pushout approach (SPO) to graph transformation, rules are modeled

with two component graphs (L and R) and direct derivations are built with one pushout

(which performs the gluing and the deletion). SPO relies on category GraphP of graphs

and partial graph morphisms.

A SPO production p can be defined as p : pL rÑ Rq, where r is an injective partial

graph morphism. Those elements for which there is no image defined are deleted, those

for which there is image are preserved and those that do not have a preimage are added.

A match for a production p in a graph G is a total morphism m : L Ñ G. Given a

production p and a match m for p in G, the direct derivation from G is the pushout of

p and m in GraphP. As in DPO, a derivation is just a sequence of direct derivations.

Left part of Fig. 3.7 shows an example of the rule in Fig. 3.1, but expressed in the

SPO approach. The production is applied to the same graph G as in Fig. 3.2 but at a

different match.

An important difference with respect to DPO is that in SPO there is no dangling

condition: Any dangling edge is deleted (so rules may have side effects). In this example,

node c and edges pa, cq and pc, dq are deleted. In addition, in case of a conflict with

the identification condition due to a non-injective matching, the conflicting elements are

deleted.

Due to the way in which SPO has been defined, even though the matching from

the LHS into the host graph is a total morphism, the RHS matching can be a partial

morphism (see the example on the right of Fig. 3.7).

In order to guarantee that all matchings are total it is necessary to ask for the

conflict-free condition: A total morphism m : LÑ G is conflict free for a production

p : LÑ R if and only if

mpxq � mpyq ùñ rx, y P domppq or x, y R domppqs . (3.3)

Results for explicit parallelism are slightly different in SPO. In this approach, a paral-

lel direct derivation G
p1�p2ùñ X can be sequentialized into G

p1ùñ H1

p2ùñ X if G
p2ùñ H2 is

50 3 Graph Grammars Approaches

Fig. 3.7. SPO Direct Derivation

weakly parallel independent of G
p1ùñ H1 (and similarly for the other sequentialization).

So as this condition may not hold, there are parallel direct derivations that do not have

an equivalent interleaving sequence.

R1

m�
1

L1

m1

p1

L2

m2

p2

R2

m�
2

H1 G
p�
1

p�
2

H2

Fig. 3.8. SPO Weak Parallel Independence

These conditions will be written explicitely because we will make a comparison in

Sec. 6.1. Derivation d1 is weakly parallel independent of derivation d2 (see Fig. 3.8) if

mpL2q Xm1 pm1zdompp1qq � H. (3.4)

L1

m1

p1

R1

m�
1

L2

m2

p2

R2

m�
2

G
p�
1

H1

p�
2

H2

Fig. 3.9. SPO Weak Sequential Independence

3.2 Other Categorical Approaches 51

There is an analogous concept, similarly defined, known as weak sequential in-

dependence. Let d1 and d2 be as defined in Fig. 3.9, then d2 is weakly sequentially

independent of d1 if

m2 pL2q Xm�
1 pR1zp1pL1qq � H. (3.5)

If additionally

m�
1 pR1q Xm2 pL2zdompp2qq � H (3.6)

then d2 is sequentially independent of d1.

It is possible to synthesize both concepts (weak sequential independence and parallel

independence) in a single diagram. See Fig. 3.10.

R2

m�
R2 m1�

R2L2

mL2

m1
L2

p2

H2

p1�
1

G
p�
1

p�
2 X

L1

p1

mL1

m1
L1

H1

p1�
2

R1

m�
R1

m1�
R1

Fig. 3.10. Sequential and Parallel Independence.

Due to the fact that approaches based on the pushout construction can not replicate

substructures naturally, Bauderon and others have proposed a different setting by using

pullbacks instead of pushouts [3; 4; 5]. We will call them SPB and DPB approaches,

depending on the number of pullbacks, similarly to SPO and DPO.

Note that pullbacks are subobjects of products (see Sec. 2.2) and that products are (in

some sense) a natural replication mechanism. It has been shown that pullback approaches

are strictly more expressive than those using pushouts, but they have some drawbacks

as well, such as:

52 3 Graph Grammars Approaches

1. The existence condition for pullback complements is much more complicated than

with pushouts (gluing condition).

2. In general, this condition can not be treated with computers [36].

3. There is a loss in comprehensibility and intuitiveness.

In Fig. 3.11 what we understand by a replication that can be handled easily with

SPB but not with SPO is illustrated. The pullback construction is depicted in dashed

red color on the same production, which is drawn twice. On the left, the production on

top with the morphism back to front (its LHS on the right and viceversa) and the system

evolves from left to right (as in SPO or DPO), i.e. the initial state is H1 and the final

state is H2.

On the right of the same figure the production is represented more naturally for us

(the left hand side on the left and the right hand side on the right) but on the bottom

of the figure. The system evolves on top from right to left (it should be more intuitive if

it evolved from left to right). Besides, we notice that what we understand as the initial

state is now given by the RHS of the production while the final state is given by the left

hand side.2

Fig. 3.11. SPB Replication Example

2 Anyway, this is not misleading with some practice.

3.3 Node Replacement 53

3.3 Node Replacement

Node Replacement grammars [23] (Chap. 1) are a class of graph grammars based on the

replacement of nodes in a graph. The scheme is similar to the one described in Sec. 1.1,

on p. 3 but with some pecularities and notational changes. There is a mother graph

(LHS, normally it consists of a single node) and a daughter graph (RHS) together

with a gluing construction that defines how the daughter graph fits in the host graph

once the substitution is carried out. Nodes of the mother graph play a similar role to

non-terminals in Chomsky grammars. The differences among different node replacement

grammars reside in the way the gluing is performed.

We will start with NLC grammars (Node Label Controlled, [23], Chap. 1) which are

defined as the 5-tuple

G � pΣ,∆,P,C, Sq (3.7)

where Σ are all node labels (alphabet set), ∆ are node labels (∆ � Σ) that do not appear

on the LHS of any production (alphabet set of terminals, so non-terminals are Σ �∆),

P is the set of productions, C are the gluing conditions (connection contructions) and S

is the initial graph.

Here only node labels matter. Each production is defined as a non-terminal node

producing a graph with terminals and non-terminals along with a set of connection

instructions. For example, in Fig. 3.12 we see a production p with X in its LHS and a

subgraph in its RHS along with a connection relation c in the box.

Production application (its semantics, also in Fig. 3.12) consists of deleting the LHS

from the host graph, add the RHS and finally connect the daughter graph with the start

graph. There are no application conditions.

The linking part is performed according to a connection relation, which is a pair of

node labels of the form px, yq: If the left hand side node was adjacent to a node labeled

x then all nodes in the RHS with label y will be adjacent to it.

NLC is a class of context-free graph grammars, in particular recursively defined prop-

erties can be described. Also, they are completely local and have no application conditions

which allows to model derivations by derivation trees. However, the yield of a derivation

tree is dependant on the order in which productions are applied. This property is known

54 3 Graph Grammars Approaches

Fig. 3.12. Example of NLC Production

as confluence (see problem 5) and the subclass of NLC grammars that are confluent is

called C-NLC.

At times it is desirable to refer to a concrete node instead of to a whole family

in the gluing instructions. This variation is known as NCE grammar (Neighbourhood

Controlled Embedding) and is formally defined to be the tuple

G � pΣ,∆,P, Sq (3.8)

where Σ, ∆ and S are defined as above but productions in set P are different.

The grammar rule p : X Ñ pD,Cq contains the production p : X Ñ D and the

connection C. The connection is of the form pu, xq where u is a label and x is a particular

node in the daughter graph. Note that NCE graph grammars are still NLC-like grammars,

at least concerning replacement.

NCE can be extended in several ways but the most popular one is adding labels and

a direction to edges, giving rise to edNCE grammars. Productions in edNCE are equal

to those in NCE but connections differ a little bit, being of the formpµ, p{q, x, dq, (3.9)

where µ is a node label, p and q are edge labels, x is a node of D and d P tin, outu (which

specifies the direction of the edge). For example, if d � in the connection in (3.9), it

specifies that the embedding process should establish an edge with label q to node x of

D from each µ-labeled p-neighbour of m PM (the mother graph) that is an in-neighbour

of m.

3.3 Node Replacement 55

The expressive power of edNCE is not increased neither if grammar rules change

directions of edges nor if connection instructions make use of multiple edges.

The graphical representation differs a little from that of DPO and SPO. The daughter

graphD is included in a box and the area surrounding it represents its environment. Non-

terminal symbols are represented by capital letters inside a small box (the large box itself

can be viewed as a non-terminal symbol). Connection instructions are directed lines that

connect nodes inside (new labels) with nodes outside (old labels).

Fig. 3.13. edNCE Node Replacement Example

Example.�The notation G � H2rn{H1s is employed for a derivation, meaning that

graph G is obtained by making the subsitution n ÞÑ H1 in H2, i.e. by replacing node n

in H2 with graph H1. In the example of Fig. 3.13 (with non-terminal node N) we have

substituted the non-terminal node in H1 by H2 attaching nodes according to labels in

arrows (α) to get G.�

Associativity – reviewed in the next section – is a natural property to be demanded on

any context-free rewriting framework and is enjoyed by edNCE grammars. Some edNCE

grammars are context-dependant because they do not need to be confluent, i.e. the result

of a derivation may depend on the order of application of its productions. The class of

confluent edNCE grammars is represented by C-edNCE.

C-edNCE grammars fulfill some nice properties such as being closed under node or

edge relabeling. It is possible to define the notion of derivation tree as in the case of

context-free string grammars (see [23], Chap. 1).

Many subclasses of edNCE grammars have been – and are being – studied. Just to

mention some, apart from C-edNCE, B-edNCE (Boundary, in which non-terminal nodes

56 3 Graph Grammars Approaches

are not connected),3 Bnd-edNCE (non-terminal neighbour deterministic B-edNCE

grammar),4 A-edNCE (in every connection instruction pσ, β{γ, x, dq σ and x are termi-

nal) and LIN-edNCE (linear, if every production has at most one non-terminal node).

3.4 Hyperedge Replacement

The basic idea is similar to node replacement but acting on edges instead of nodes, i.e.

edges are substituted by graphs, playing the role of non-terminals in Chomsky grammars

[23].

Hyperedge replacement systems are adhesive HLR categories that can be rewritten

as DPO graph transformation systems.

We will illustrate the ideas with an edge replacement example (instead of hyperedge

replacement, to be defined below) in a very simple case. Suppose we have a graph as

the one depicted on the left of Fig. 3.14, with a labeled edge e to be substituted by the

graph depicted on the center of Fig. 3.14, in which the special nodes (1 and 2) are used

as anchor points. The result is displayed on the right of Fig. 3.14.

Fig. 3.14. Edge Replacement

A production in essence is what we have done, with a LHS made up of labels and a

graph as RHS. The notation H � re{G1s, also G ñ re{G1s, is standard to mean that

graph (hypergraph) H is obtained by deleting edge e and plugging in graph G1.

3 The daughter does not have edges between non-terminal nodes and in no connection instruc-

tion pσ, β{γ, x, dq σ is non-terminal or, in other words, every non-terminal has a boundary of

terminal neighbours.
4 The idea behind this extension is that every neighbour of a non-terminal is uniquely deter-

mined by their labels and the direction of the edge joining them. Therefore, when rewriting

the non-terminal, it is possible to distinguish among neighbours.

3.4 Hyperedge Replacement 57

A hyperedge is defined in [23] (Chap. 2) as an atomic item with a label and an

ordered set of tentacles. Informally, a hypergraph is a set of nodes with a collection

of hyperedges such that each tentacle is attached to one node (a formal definition is

provided below). Note that directed graphs are a special case of hypergraphs. Normally

it is established that the label of a hyperedge is the number of its tentacles.

For a given string w, the length of the string is denoted by |w|. For a set A, A� is

the set of all strings over A. The free symbolwise extension f� : A� Ñ B� of a mapping

f : AÑ B is defined by

f�pa1 � � � akq � fpa1q � � � fpakq (3.10)�k P N and ai P A, i P t1, . . . , ku.
Let C be a set of labels and let t : C Ñ N be a typing function. A hypergraph H

over C is the tuple pV,E, att, lab, extq (3.11)

where V is the set of nodes, E the set of hyperedges, att : E Ñ V � a mapping that assigns

a sequence of pairwise distinct attachment nodes attpeq to each e P E, lab : E Ñ C a

mapping that labels each hyperedge such that tplabpeqq � |attpeq| and ext P V � are

pairwise distinct external nodes. The type of a hyperedge is its number of tentacles and

the type of a hypergraph is its number of external nodes. The set of hypergraphs will be

denoted H, or HC if we need to explicitely refer to the set of types.

Two hypergraphs H and H 1 are isomorphic if there exist i � piV , iEq, iV : HV Ñ H 1
V ,

iE : HE Ñ H 1
E such that:

1. i�V pattHpeqq � attH1piEpeqq.
2. �e P EH , labHpeq � labH1piEpeqq.
3. i�V pextHq � extH1 .

As it usually happens in algebra, equality is defined up to isomorphism.

If R � te1, . . . , enu � EH is the set of hyperedges to be replaced and there is a

preserving type function r : R Ñ H (�e P R, tprpeqq � tpeq) such that rpeiq � Ri, then

we write it both as Hre1{R1, . . . , en{Rns or as Hrrs.
Hyperedge replacement belongs to the gluing approaches and follows the high level

scheme introduced in Sec. 1.1: The replacement of R in H according to r is performed by

58 3 Graph Grammars Approaches

first removing R from EH , then �e P R the nodes and hyperedges of rpeq are disjointly

added and the i-th external node of rpeq is fused with the i-th attachment node of e.

If a hyperedge is replaced its context is not affected. Therefore, hyperedge replacement

provides a context-free type of rewriting as long as no additional application conditions

are employed.

There are three nice properties fulfilled by hyperedge replacement grammars that we

will briefly comment and that can be compared with the problems introduced in Sec. 1.3,

in particular problems 2, 3 and 5, 6. Let’s assume the hypothesis on hyperedges necessary

so the following formulas make sense:

• Sequentialization and Parallelism: Assuming pairwise distinct hyperedges,

Hre1{H1, . . . , en{Hns � Hre1{H1s � � �Hren{Hns. (3.12)

• Confluence: Let e1 and e2 be distinct hyperedges,

Hre1{H1sre2{H2s � Hre2{H2sre1{H1s. (3.13)

• Associativity:

Hre1{H1sre2{H2s � H re2{H2re1{H1ss . (3.14)

Note however that in hyperedge replacement grammars, confluence is a consequence

of the first property which holds due to disjointness of application of grammar rules.

A production p over the set of non-terminals N � C is an ordered pair p � pA,Rq with

A P N , R P H and tpAq � tpRq. A direct derivation is the application of a production,

i.e. the replacement of a hyperedge by a hypergraph. If H P H, e P EH and plabHpeq, Rq
is a production then H 1 � Hre{Rs is a direct derivation and is represented by H ñ H 1.
As always, a derivation is a sequence of direct derivations.

Formally, a hyperedge replacement grammar is a system HRG � pN,T, P, Sq where

N is the set of non-terminals, T is the set of terminals, P is the set of productions and

S P N is the start symbol.

We will finish this section with a simple example that generates the string-graph

language5 L pAnBnq � tpanbnq |n ¥ 1u. This is the graph-theoretic counterpart of the

Chomsky language that consists of strings of the form panbnq, n ¥ 1, i.e. that has any

5 This example is adapted (simplified) from one that appears in [23], Chap. 2.

3.4 Hyperedge Replacement 59

string with an arbitrary finite number of a’s followed by the same number of b’s, e.g.

aabb, aaabbb, etcetera.

Fig. 3.15. String Grammar Example

A black filled circle represents an external node while non-filled circles � are internal

nodes. A box represents a hyperedge with attachments with the label inscribed in the

box. A 2-edge is represented by an arrow joining the first node with the second.

The grammar is defined as AnBn � ptSu, ta, bu, P, Sq, where the set of productions

P � tp1, p2u is depicted in Fig. 3.15. Production p1 is necessary to get the graph-string

ab and to stop rule application. The start graph and an evolution of the grammar –

derivation p1; p2; p2 – can be found in Fig. 3.16.

Fig. 3.16. String Grammar Derivation

60 3 Graph Grammars Approaches

3.5 MSOL Approach

It is possible to represent graphs as logical structures, expressing their properties by

logical formulas or, in other words, use logical formulas to characterize classes of graphs

and to establish their properties out of their logical description. In this section we will

give a brief introduction to monadic second order logics for graph transformation. Refer

to Chap. 5 of [23] and references therein cited.

Currently it is not possible to define graph transformation in terms of automata (recall

that in language theory it is essential to have transformations that produce outputs while

traversing words or trees). Quoting B. Courcelle (Chap. 5 of [23]):

The deep reason why MSOL logic is so crucial is that it replaces for graphs p. . .q
the notion of a finite automaton p. . .q

The key point here is that these transformations can be defined in terms of MSOL

formulas (called definable transductions).

Graph operations will allow us to define context-free sets of graphs as components

of least solutions of systems of equations (without using any graph rewriting rule) and

recognizable sets of graphs (without using any notion of graph automaton).

Graphs and graph properties are represented using logical structures and relations.

A binary relation R � A � B is a multivalued6 partial mapping that we will call

transduction. Recall from Sec. 2.1 that an interpretation in logics in essence defines

semantically a structure in terms of another one, for which MSOL formulas will be used.

Let R be a finite set of relation symbols and let ρpRq be the arity of R P R. An

R-structure is the tuple S � pD, pRqRPRq such that D is the (possibly infinite) domain

of S and each R is a ρpRq-ary relation on D, this is, a subset of DρpRq. The class of

R-structures is denoted by STRpRq.
As an example of structure, for a simple digraph G made up of nodes in V we have

the associated R-structure |G|1 � pV, edgq, where px, yq P edg if and only if there is an

edge starting in x and ending in y. Note that this structure represents simple digraphs.

The set of monadic second order formulas overR with free variables in Y is represented

by MS pR,Yq. As commented in Sec. 2.1, languages defined by MSOL formulas are regular

languages.

6 One element may have several images.

3.5 MSOL Approach 61

Let Q and R be two finite ranked sets of relation symbols and W a finite set of set

variables (the set of parameters). A pR,Qq-definition scheme is a tuple of formulas of

the form:

∆ � �
φ, ψ1, . . . , ψk, pθwqwPQ�k

	
. (3.15)

The aim of these formulas is to define a structure T in STRpQq out of a structure S

in STRpRq. The notation needs some comments:

• φ P MSpR,Wq defines the domain of the corresponding transduction, i.e. T is defined

if φ is true for some assignment in S of values assigned to the parameters.

• ψi P MSpR,W Y txiuq defines the domain of T as the disjoint union of elements in

the domain of S that satisfy ψi for the considered assignment.

• θw P MSpR,W Y tx1, . . . , xρpqquq for w � pq, jq P Q�k, where we define Q�k �
w | q P Q, j P rksρpqq(and rks � t1, . . . ku, k P N. Formulas θw define the relation qT .

For a more rigurous definition with some examples, please refer to [23], Chap. 5. The

important fact of transductions is that they keep monadic second order properties, i.e.

monadic second order properties of S can be expressed as monadic second order prop-

erties in T . Furthermore, the inverse image of a MS-definable class of structures under

a definable transduction is definable (not so for the image), as well as the composition

and the intersection of a definable structure with the cartesian product of two definable

structures. However, there are some “negative” results apart from the image, e.g. the

inverse of a definable transduction is not defineable neither is the intersection of two

definable transductions.

The theory goes far beyond, for example by defining context free sets of graphs by

systems of recursive equations, generalizing in some sense the concatenation of words in

string grammars. No attention will be paid to rigurous details and definitions (again, see

Chap. 5 in [23]) but a simple classical example of context free grammars will be reviewed:

Let A � ta1, . . . , anu be a finite alphabet, ε the empty word and A� the set of words over

A. Let’s consider the context-free grammar G � tuÑ auuv, uÑ avb, v Ñ avb, v Ñ abu.
The corresponding system of recursive equations would be:

S � xu � a.pu.pu.vqq � a.pv.bq, v � a.pv.bq � a.by

62 3 Graph Grammars Approaches

where “.” is the concatenation. It is possible, although we will not see it, to express node

replacement and hyperedge replacement in terms of systems of recursive equations.

Analogously to the way in which the equational set extends context-freeness, recog-

nizable sets extend regular languages. For example, it is possible to show that every set of

finite graphs or hypergraphs defined by a formula of an appropriate monadic second order

language is recognizable with respect to an appropriate set of operations (the converse

also holds in many cases).

3.6 Relation-Algebraic Approach

We will mainly follow [51] and [36] in this section, paying special attention to the justi-

fication that the category GraphP has pushouts, which will be used in Chap. 5 for one

of the definitions of direct derivation.

We will deviate from standard relational methods7 notation in favor of other which

is probably more immediate for mathematicians not acquainted with it and, besides, we

think eases comparison with the rest of the approaches in this chapter.

A relation r1 from S1 to S2 is a subset of the cartesian product S1 � S2, denoted

by r1 : S1 ã S2. Its inverse r�1 : S2 ã S1 is such that ps2, s1q P r�1
1 � ps1, s2q P r1. If

r2 : S2 ã S3 is a relation, the composition r2r1 � r2 � r1 : S1 ã S3 is again a relation

such that ps1, s3q P r2 � r1 � rDs2 P S2 | ps1, s2q P r1, ps2, s3q P S2s . (3.16)

As relations are sets, naive set operations are available such as inclusion (�), inter-

section (X), union (Y) and difference (�). It is possible to form the category Rel of sets

and relations (the identity relation 1S � S ã S is the diagonal set of S � S), which

besides fulfills the following properties:

•
�
r�1

��1 � r.

• pr2 � r1q�1 � r�1
1 � r�1

2 .

• Distributive law: r2 � p�αPAprαqq � r1 � �
αPA pr2 � rα � r1q.

7 Visit the RelMiCS initiative at http://www2.cs.unibw.de/Proj/relmics/html/.

http://www2.cs.unibw.de/Proj/relmics/html/

3.6 Relation-Algebraic Approach 63

A relation f : S1 ã S2 such that f � f�1 � 1S2
is called a partial function and it is

represented with an arrow instead of a harpoon, f : S1 Ñ S2. If 1S1
� f�1 � f also, then

it is called a total function. Note that these are the standard set-theoretic definitions

of partial function and total function. The function f is injective if f�1 � f � 1S1
and

surjective if f � f�1 � 1S2
.

The category of sets and partial functions is represented by SetP. It can be proved

that SetP has small limits and colimits, so in particular it has pushouts.

For a relation r : S ã T its domain is also a relation d : S ã S and is given by the

formula dprq � �
r�1 � r�X 1S .

In order to define graph rewriting using relations we need a relational representation

of graphs. A graph xS, ry is a set S plus a relation r : S ã S. A partial morphism

between graph xS1, r1y and xS2, r2y, p : S1 Ñ S2, is a partial function p such that:

p � r1 � dppq � r2 � p. (3.17)

It is not difficult to see that the composition of two partial morphisms of graphs

is again a partial morphism of graphs. It is a bit more difficult (although still easy to

understand) to show that the category GraphP of simple graphs and partial morphisms

has pushouts (theorem 3.2 in [51]). The square depicted in Fig. 3.17 is a pushout in SetP

if the formula for the relation h is given by:

h � �
m� � r �m��1

�Y �
p� � g � p��1

�
. (3.18)

A production is defined similarly to the SPO case, as a triple of two graphs xL, ly,xR, ry and a partial morphism p : L Ñ R. A match for p is a morphism of graphs

M : xL, ly Ñ xG, gy. A production plus a match is a direct derivation. As always, a

derivation is a finite sequence of direct derivations.

Equation (3.18) defines a pushout in category SetP which is different than a rewriting

square (a direct derivation). If we want the rewriting rule to be a pushout, the relation

in xH,hy must be defined by the equation:

h � �
m� � r �m��1

�Y �
p� � �g �m�1 � l �m� � p��1

�
. (3.19)

The relation-algebraic approach is based almost completely in relational methods. To

illustrate the main differences with respect to categorical approaches an example taken

from [36] follows that deals with categorical products.

64 3 Graph Grammars ApproachesxL, ly
p

m

xR, ry
m�xG, gy p� xH, hy

Fig. 3.17. Pushout for Simple Graphs (Relational) and Direct Derivation

Example.�In order to define the categorical product – see Sec. 2.2 – it is necessary

to check the universal property of being a terminal object, which is a global condition

(it should be checked against the rest of candidate elements, in principle all elements in

the category). In contrast, in relation algebras, the direct product of two objects X and

Y is a triple pP,ΠX , ΠY q satisfying the following properties:

• ΠX �Π�1
X � 1X and ΠY �Π�1

Y � 1Y .

• ΠY �Π�1
X � U.

•
�
Π�1

X �ΠX

�X �
Π�1

Y �ΠY

� � 1P .

where U is the universal relation (to be defined below). Note that this is a local condition,

in the sense that it only involves functions without quantification (in category theory this

sort of characterizations are more like for all objects in the class there exists a unique

morphism such that...).�

The relational approach is based on the notion of allegory which is a category C as

defined in Sec. 2.2 – the underlying category – plus two operations (�1 and X) with the

following properties:8

•
�
r�1

��1 � r; pr � sq�1 � s�1 � r�1; pr1 X r2q�1 � r�1
1 X r�1

2 .

• r1 � pr2 X r3q � pr1 � r2q X pr1 � r3q.
• Modal rule: pr1 X r2q � r3 � r1 � �r3 X �

r2 � r�1
1

��
.

The universal relation U for two objects X and Y in an allegory is the maximal

element in the set of morphisms from X to Y , if it exists. If there is a least element, then

it is called an empty relation or a zero relation.

8 Compare with those on p. 62.

3.7 Summary and Conclusions 65

It is possible to obtain the other modal rule starting with the axioms of allegories:pr1 � r2q � r3 � �
r3 X �

r2 � r�1
3

�� � r2, (3.20)

which can be synthesized in the so-called Dedekind formula:pr1 � r2q � r3 � �
r3 X �

r2 � r�1
3

�� � �r3 X �
r2 � r�1

1

��
. (3.21)

A locally complete distributive allegory is called a Dedekind category. A distribu-

tive allegory is an allegory with joins and zero element; locally completeness refer to

distributivity of composition with respect to joins.

By using Dedekind categories [36] provides a variation of the DPO approach in which

graph variables and replication is possible. We will not introduce it here because it would

take too long, due mainly to notation and formal definitions, and it is not used in our

approach.

As a final remark, [36] proceeds by defining pushouts, pullbacks, complements and

an amalgamation of pushouts and pullbacks (called pullouts) over Dedekind categories

to define pullout rewriting.

3.7 Summary and Conclusions

The intention of this quick summary is to make an up-to-date review of the main ap-

proaches to graph grammars and graph transformation systems: Categorical, relational,

set-theoretical and logical. The theory developed so far for any of these approaches goes

far beyond what has been exposed here. The reader is referenced to cites spread across

the chapter for further study.

Throughout the rest of the dissertation we will see that their influence in Matrix

Graph Grammars varies considerably depending on the topic. For example, our basic di-

agram for graph rewriting is similar to that of SPO9 but the way to deal with restrictions

on rules (application conditions) is much more “logical”, so to speak.

9 Chapter 5 defines what a derivation is in Matrix Graph Grammars. Two different but equiva-

lent definitions of derivations are provided, one using a pushout construction plus an operator

defined on productions and another with no need of categorical constructions.

66 3 Graph Grammars Approaches

We are now in the position to introduce the basics of our proposal for graph grammars.

This will be carried out in the next chapter, Chap. 4, with the pecularity that (to some

extent) there is no need for a match of the rule’s left hand side, i.e. we have productions

and not direct derivations.

Matching will be studied in detail in Chap. 5, so all concepts and theorems of Chap.

4 for productions can be extended to direct derivations and derivations.

4

Matrix Graph Grammars Fundamentals

In this chapter, ideas outlined in Chap. 1 will be soundly based, assuming a background

knowledge on the material of Secs. 2.1, 2.3 and 2.6. No matching to any host graph is

assumed, although identification of elements (in essence, nodes) of the same type will be

specified through completion.

Analysis techniques developed in this chapter include coherence of sequences, min-

imal and negative initial digraphs and compatibility of productions inside a sequence.

These concepts will be used to tackle applicability (problem 1), sequential independence

(problem 3) and reachability (problem 4).

In Sec. 4.1 the dynamic nature of a single grammar rule is developed together with

some basic facts. The operation of completion is studied in Sec. 4.2, which basically

permits algebraic operations to be performed as one would like. Section 4.3 deals with

sequences, i.e. ordered sets of grammar rules applied one after the other.1 To this end we

will introduce the concept of coherence. Due to its importance, sequences will be studied

in deep detail in Chap. 6. The problem of finding those elements that must be present

(minimal initial digraph) or must not appear (negative initial digraph) is addressed in

Sec. 4.4. At times it is of interest to build a rule that performs the same actions than

a given coherent sequence but is applied in a single step, i.e. no intermediate states

are generated. This is composition, as normally defined in mathematics. As they are

related, the definition of compatibility for a sequence of productions is also defined and

1 At times we will use the term concatenation as a synonym. A derivation is a concatenation

of direct derivations, and not just of productions.

68 4 Matrix Graph Grammars Fundamentals

characterized in Sec. 4.5. Finally, as in every chapter, there is a section with a summary

and some conclusions.

4.1 Characterization and Basic Concepts

A production (also known as grammar rule) is defined as an application which transforms

a simple digraph into another simple digraph, p : LÑ R. We can describe a production

p with two matrices (those with an E superindex) and two vectors (those with an N

superindex), p � pLE , RE , LN , RN q, where the components are respectively the left hand

side edges matrix
�
LE

�
and nodes vector

�
LN

�
, and the right hand side edges matrix�

RE
�

and nodes vector
�
RN

�
.

LE and RE are the adjacency matrices and LN and RN are the nodes vector as

studied in Sec. 2.3. A formal definition is given for further reference:

Definition 4.1.1 (Production - Static Formulation) A grammar rule or produc-

tion p is a partial morphism2 between two simple digraphs L and R, and can be specified

by the tuple

p � �
LE, RE , LN , RN

�
, (4.1)

where E stands for edge and N for node. L is the left hand side and R is the right hand

side.

It might seem redundant to specify nodes as they are already in the adjacency matrix.

The reason is that they can be added or deleted during rewriting. Nodes and edges

are considered separetely, although it could be possible to synthesize them in a single

structure using tensor algebra. See the construction of the incidence tensor – Def. 1 – in

Sec. 8.3.

It is more interesting to characterize the dynamic behaviour of rules for which matrices

will be used, describing the basic actions that can be performed by a production: Deletion

and addition of nodes and edges. Our immediate target is to get a dynamic formulation.

In this dissertation p will be injective unless otherwise stated. A production models

deletion and addition actions on both edges and nodes, carried out in the order just

2 Partial morphisms since some elements in L may not have an image in R.

4.1 Characterization and Basic Concepts 69

mentioned, i.e. first deletion and then addition. Appropriate matrices are introduced to

represent them.

Definition 4.1.2 (Deletion and Addition of Edges) Matrices for deletion and ad-

dition of edges are defined elementwise by the formulas

eE � peqij � #
1 if edge pi, jq is to be erased

0 otherwise
(4.2)

rE � prqij � #
1 if edge pi, jq is to be added

0 otherwise
(4.3)

For a given production p as above, both matrices can be calculated through identities:

eE�LE ^ pLE ^REq � LE ^ �
LE _RE

	 � LE ^RE (4.4)

rE�RE ^ pLE ^ REq � RE ^ �
RE _ LE

	 � RE ^ LE (4.5)

where LE ^ RE are the elements that are preserved by the rule application (similar to

the K component in DPO rules, see Sec. 3.1). Thus, using previous construction, the

following two conditions hold and will be frequently used: Edges can be added if they

do not currently exist and may be deleted only if they are present in the left hand side

(LHS) of the production.

rE ^ LE � RE ^ LE ^ LE � rE (4.6)

eE ^ LE � LE ^RE ^ LE � eE. (4.7)

In a similar way, vectors for the deletion and addition of nodes can be defined:

Definition 4.1.3 (Deletion and Addition of Nodes)

eN � peqi � #
1 if node i is to be erased

0 otherwise
(4.8)

rN � prqi � #
1 if node i is to be added

0 otherwise
(4.9)

70 4 Matrix Graph Grammars Fundamentals

Fig. 4.1. Example of Production

Example.�An example of production is graphically depicted in Fig. 4.1. Its associated

matrices are:

LE
1 � �� 0 1 1 | 2

0 0 0 | 4
1 0 1 | 5�� LN

1 � �� 1 | 2
1 | 4
1 | 5�� RE

1 � ��0 1 1 | 2
0 1 0 | 3
0 1 1 | 5�� RN

1 � �� 1 | 2
1 | 3
1 | 5��

eE
1 � �� 0 1 0 | 2

0 0 0 | 4
1 0 0 | 5�� eN

1 � �� 0 | 2
1 | 4
0 | 5�� rE

1 � �� 0 1 0 | 2
0 1 0 | 3
0 1 0 | 5�� rN

1 � �� 0 | 2
1 | 3
0 | 5��

The last colummn of the matrices specify node ordering, which is assumed to be

equal by rows and by columns. In Sec. 4.4 – Subsec. 4.4.1 – the characterization of

productions through matrices will be completed by introducing the nihilation matrix

and the negative initial digraph. They keep track of all elements that can not be present

in the graph (dangling edges and those to be added by the production). For an example

of production with all its matrices, please see the one on page 77.�

Now we state some basic properties that relate the adjacency matrices and e and r.

Proposition 4.1.4 (Rewriting Identities) Let p : L Ñ R be a production, the fol-

lowing identities are fulfilled:

rE ^ eE � rE rN ^ eN � rN (4.10)

eE ^ rE � eE eN ^ rN � eN (4.11)

RE ^ eE � RE RN ^ eN � RN (4.12)

4.1 Characterization and Basic Concepts 71

LE ^ rE � LE LN ^ rN � LN (4.13)

Proof�It is straightforward to prove these results using basic boolean identities. Only the first

one is included:

rE ^ eE � �
LE ^R	^ �

LE ^RE

	 �� �
LE ^R^ LE

	_ �
LE ^RE ^RE

	 �� �
LE ^RE

	_ �
LE ^RE

	 � rE _ rE � rE . (4.14)

The rest of the identities follow easily by direct substitution of definitions.�

First two equations say that edges or nodes cannot be rewritten – erased and created

or viceversa – by a rule application (a consequence of the way in which matrices e and

r are calculated). This is because, as we will see in formulas (4.16) and (4.17), elements

to be deleted are those specified by e and those to be added are those in r, so common

elements are:

e^ r � e^ r ^ r ^ e � 0. (4.15)

This contrasts with the DPO approach, in which edges and nodes can be rewritten in

a single rule.3 The remaining two conditions state that if a node or edge is in the right

hand side (RHS), then it can not be deleted, and that if a node or edge is in the LHS,

then it can not be created.

Finally we are ready to characterize a production p : L Ñ R using deletion and

addition matrices, starting from its LHS:

RN � rN _ �
eN ^ LN

	
(4.16)

RE � rE _ �
eE ^ LE

	
. (4.17)

The resulting graph R is calculated by first deleting the elements in the initial graph

– e^L – and then adding the new elements – r_pe^ Lq –. It can be demonstrated using

3 It might be useful for example to forbid a rule application if the dangling condition is violated.

This is addressed in Matrix Graph Grammars through ε-productions, see Chap. 5.

72 4 Matrix Graph Grammars Fundamentals

proposition 4.1.4 that, in fact, it doesn’t matter whether deletion is carried out first and

addition afterwards or viceversa.4

Remark.�In the rest of the dissertation we will omit ^ if possible, and avoid unnec-

essary parenthesis bearing in mind that ^ has precedence over _. So, e.g. formula (4.17)

will be written

RE � rE _ eELE. (4.18)

Besides, if there is no possible confusion due to context or a formula applies to both

edges and nodes, superscripts can be omitted. For example, the same formula would read

R � r _ eL.�

There are two ways to characterize a production so far, either using its initial and

final states (see definition 4.1.1) or the operations it specifies:

p � �
eE , rE , eN , rN

�
. (4.19)

As a matter of fact, they are not completely equivalent. Using L and R gives more

information because those elements which are present in both of them are mandatory

if the production is to be applied to a host graph, but they do not appear in the e-r

characterization.5 An alternate and complete definition to (4.1) is

p � �
LE, eE , rE , LN , eN , rN

�
. (4.20)

A dynamic definition of grammar rule is postponed until Sec. 4.4.2, definition 4.4.4

because there is a useful matrix (nihilation matrix) that have not been introduced yet.

Some conditions have to be imposed on matrices and vectors of nodes and edges

in order to keep compatibility when a rule is applied, that is, to avoid dangling edges

once the rule is applied. It is not difficult to extend the definition of compatibility from

adjacency matrices (see definition 2.3.2) to productions:

Definition 4.1.5 (Compatibility) A production p : L Ñ R is compatible if R � ppLq
is a simple digraph.

4 The order in which actions are performed does matter if instead of a single production we

consider a sequence. See comments after the proof of corollary 4.4.3.
5 This usage of elements whose presence is demanded but are not used is a sort of positive

application condition. See Chap. 7.

4.1 Characterization and Basic Concepts 73

From a conceptual point of view the idea is the same as that of the dangling condition

in DPO. Also, what is demanded here is completeness of the underlying space GraphP

with respect to the operations defined.

Next we enumerate the implications for Matrix Graph Grammars of compatibility.

Recall that t denotes transposition:

1. An incoming edge cannot be added
�
rE

�
to a node that is going to be deleted

�
eN

�
:��rE d eN

��
1
� 0. (4.21)

Similarly, for outgoing edges
�
rE

�t
, the condition is:����rE

�t d eN
���
1
� 0. (4.22)

2. Another forbidden situation is deleting a node with some incoming edge, if that edge

is not deleted as well: ���eE LE d eN
���
1
� 0. (4.23)

Similarly for outgoing edges: �����eE LE
	t d eN

����
1

� 0. (4.24)

Note that eELE are elements preserved (used but not deleted) by production p.

3. It is not possible to add an incoming edge
�
rE

�
to a node which is neither present in

the LHS
�
L

N
	

nor added
�
rN

�
by the production:���rE d �

rN LN

	���
1
� 0. (4.25)

Similarly, for edges starting in a given node:����rE
�t d �

rN LN

	���
1
� 0. (4.26)

4. Finally, our last conditions state that it is not possible that an edge reaches a node

which does not belong to the LHS and which is not going to be added:����eELE
	d �

rN LN

	���
1
� 0. (4.27)

And again, for outgoing edges:�����eELE
	t d �

rN LN

	����
1

� 0. (4.28)

74 4 Matrix Graph Grammars Fundamentals

Thus we arrive naturally at the next proposition:

Proposition 4.1.6 Let p : L Ñ R be a production, if conditions (4.21) – (4.28) are

fulfilled then R � ppLq is compatible.6

Proof� We have to check
��pME _M t

Eq dMN

��
1
� 0, with ME � rE _ eELE and MN �

rN

�
eN _ LN

	
. Applying (4.11) in the second equality we havepME _ M t

E

�dMN � ��
rE _ eELE

	_ �
rE _ eELE

	t
�d �

rN

�
eN _ LN

	�� �
rE _ eELE _ �

rE
�t _ �

eELE
	t
�d �

eN _ rN LN

	
. (4.29)

Synthesizing conditions (4.21) – (4.28) or expanding (4.29) the proof is completed.�

A full example is worked out in the next section, together with further explanations

on node identification across productions and types.

4.2 Completion

Besides characterization, it is necessary to represent simple digraphs in some way. Note

that a graph is just a collection of nodes and edges and our aim is to associate some

algebraic structure to it.

Grammars in essence rely on the possibility to apply several morphisms (productions)

in sequence, generating languages. At grammar design time we do not know in general

which actual initial state is to be studied but probably we do know which elements make

up the system under consideration.

For example, in a local area network we know that there are messages, clients, servers,

routers, hubs, switches and cables. When a grammar is designed to study failure depen-

dencies in the net, it can be the case that we do not know the actual net to be considered.

Even more, our aim could be to design a grammar/language to study any possible local

area net dependency, deadlock and failure recovery.7

6 ppLq is given by (4.16) and (4.17).
7 An ambitious project, though.

4.2 Completion 75

It seems natural to introduce types, which are simply a level of abstraction in the set

of elements under consideration. For example, in previous paragraph, messages, clients,

servers, etcetera would be types. So there is a ground level in which real things are (one

actual hub) and another a little bit more abstract level in which families of elements live.

Fig. 4.2. Examples of Types

Example.�Along this dissertation we will use two ways of typing productions. The

first manner will be to use natural numbers N ¡ 0 and primes to distinguish between

elements. On the left side of Fig. 4.2 there is a typical simple digraph with three nodes

1 (they are of type 1). This is correct as long as we do not need to operate with them.

During “runtime”, i.e. if some algebraic operation is to be carried out, it is mandatory to

distinguish between different elements, so primes are appended as depicted on the center

of the same figure.

For the second way of typing productions, check out a small network in Fig. 4.2 where

there are two clients – (1:C) and (2:C) – one switch – (1:SW) – one router – (1:R) – and

one server – (1:S) –. Types are C, SW , R and S and instead of primes we use natural

numbers to distinguish among elements of the same type.

Their adjacency matrices are:��� 1 0 0 0 | 11
0 0 0 0 | 12
0 0 1 1 | 13
1 1 1 0 | 2 ��� �����0 0 1 0 1 | 1 : C

0 0 0 0 1 | 2 : C
0 0 1 1 0 | 1 : R
0 0 0 0 0 | 1 : S
1 0 0 1 1 | 1 : SW

�����
�

Nodes of the same type can be identified across productions or when performing any

kind of operation, while nodes of different types must remain unrelated. A production

can not change the type of any node. In some sense, nodes in the left hand and right

76 4 Matrix Graph Grammars Fundamentals

hand sides of productions specify their types. Matching (refer to Chap. 5) transforms

them in “actual” elements.

Types of edges are given by the type of its initial and terminal nodes. In the example

of Fig. 4.2, the type of edge e is p1, 2q and the type of edge e1 is p2, 1q. For edges, typesp1, 2q and p2, 1q are different. See [10].

A type is just an element of a predefined set T and the assignment of types to

nodes of a given graph G is just a (possibly non-injective) total function from the graph

under consideration to the set of types, tG : GÑ T , such that it defines an equivalence

relation � in G.8 It is important to have disjoint types (something for granted if the

relation is an equivalence relation) so one element does not have two types. In previous

example, the first way of typing nodes would be T1 � N ¡ 0 and the second T2 �tpα : βq|α P N ¡ 0, β P tC, S,R, SW uu.
The notion of type is associated to the underlying algebraic structure and normally

will be specified using an extra column on matrices and vectors. Conditions and restric-

tions on types and the way they relate to each other must be specified using restrictions

(see Chap. 7).

Next we introduce the concept of completion. In previous sections we have assumed

that when operating with matrices and vectors these had the same size, but in general

matrices and vectors represent graphs with different sets of nodes or edges, although

probably there will be common subsets.

Completion modifies matrices (and vectors) to allow some specified operation. Two

problems may occur:

1. Matrices may not fully coincide with respect to the nodes under consideration.

2. Even if they are the same, they may well not be ordered as needed.

To address the first problem matrices and vectors are enlarged, adding the missing

vertices to the edge matrix and settting their values to zero. To declare that these elements

do not belong to the graph under consideration, the corresponding node vector is also

enlarged setting to zero the newly added vertices.

8 A reflexive (�g P G, g � g), symmetric (�g1, g2 P G, rg1 � g2 � g2 � g1s) and transitive

(�g1, g2, g3 P G, rg1 � g2 , g2 � g3 ñ g1 � g3s) relation.

4.2 Completion 77

If for example an and is specified between two matrices, say A ^ B, the first thing

to do is to reorder elements so it makes sense to and element by element, i.e. elements

representing the same node are operated. If we are defining a grammar on a computer,

the tool or environment will automatically do it but some procedure has to be followed.

For the sake of an example, the following is proposed:

1. Find the set C of common elements.

2. Move elements of C upwards by rows in A and B, maintaining the order. A similar

operation must be done moving corresponding elements to the left by columns.

3. Sort common elements in B to obtain the same ordering as in A.

4. Add remaining elements in A to B sorted as in A, immediately after the elements

accessed in previous step.

5. Add remaining elements in B to A sorted as in B.

Addition of elements and reordering (the operations needed for completion) extend

and modify productions syntactically but not from a semantical point of view.

Fig. 4.3. Example of Production (Rep.)

Example.�Consider the production depicted in Fig. 4.3. Its associated matrices are

represented below. As already commented above, the notation for matrices will be ex-

tended a little bit in order to specify node and edges types. It is assumed for the adjacency

matrix that it is equally ordered by rows so we do not add any row. If it is clear from

context or there is a problem with space, this labeling column will not appear, making

it explicit in words if needed.

78 4 Matrix Graph Grammars Fundamentals

LE
1 � �� 0 1 1 | 2

0 0 0 | 4
1 0 1 | 5�� LN

1 � �� 1 | 2
1 | 4
1 | 5�� RE

1 � ��0 1 1 | 2
0 1 0 | 3
0 1 1 | 5�� RN

1 � �� 1 | 2
1 | 3
1 | 5��

eE
1 � �� 0 1 0 | 2

0 0 0 | 4
1 0 0 | 5�� eN

1 � �� 0 | 2
1 | 4
0 | 5�� rE

1 � �� 0 1 0 | 2
0 1 0 | 3
0 1 0 | 5�� rN

1 � �� 0 | 2
1 | 3
0 | 5��

For example, if the operation eE
1 r

E
1 was to be performed, then both matrices must

be completed. Following the steps described above we obtain:

eE
1 � ���0 1 0 0 | 2

0 0 0 0 | 4
1 0 0 0 | 5
0 0 0 0 | 3��� rE

1 � ��� 0 0 0 1 | 2
0 0 0 0 | 4
0 0 0 1 | 5
0 0 0 1 | 3��� LN

1 � ��� 1 | 2
1 | 4
1 | 5
0 | 3��� RN

1 � ��� 1 | 2
0 | 4
1 | 5
1 | 3���

where, besides the erasing and addition matrices, the completion of the nodes vectors for

both left and right hand sides are displayed.

Now we check whether rN
1 _ eN

1 LN
1 and rE

1 _ eE
1 L

E
1 are compatible, i.e. RE

1 and RN
1

define a simple digraph. Proposition 2.3.4 and equation (2.4) are used, so we need to

compute (4.29) and, as

rE
1 _ eE

1 L
E
1 � ���0 0 1 1 | 2

0 0 0 0 | 4
0 0 1 1 | 5
0 0 0 1 | 3��� rN

1

�
eN
1 _ LN

1

	 � ��� 0 | 2
1 | 4
0 | 5
0 | 3���

substituting we finally arrive atp4.29q � ������ 0 0 1 1 | 2
0 0 0 0 | 4
0 0 1 1 | 5
0 0 0 1 | 3���_��� 0 0 0 0 | 2

0 0 0 0 | 4
1 0 1 0 | 5
1 0 1 1 | 3����Æd���0 | 2

1 | 4
0 | 5
0 | 3��� � ���0 | 2

0 | 4
0 | 5
0 | 3���

as desired.�

It is not possible, once the process of completion has finished, to have two nodes

with the same number inside the same production9 because from an operational point of

view it is mandatory to know all relations between nodes. If completion is applied to a

sequence then we will speak of a completed sequence.

9 For example, if there are two nodes of type 8, after completion there should be one with a 8

and the other with an 81.

4.3 Sequences and Coherence 79

Note that up to this point only the production itself has been taken into account.

Although this is half truth – as you will promptly see – we may say that we are starting

the analysis of grammar rules without the need of any matching, i.e. we will analyze

productions and not necessarily direct derivations, with the advantage of gathering in-

formation at a grammar definition stage. Of course this is a desiderable property as long

as results of this analysis can be used for derivations (during runtime).

In some sense completion and matching are complementary operations: Inside a se-

quence of productions, matchings – as side effect – differentiate or relate nodes (and

hence, edges) of productions. Completion imposes some restrictions to possible match-

ings. If we have the image of the evolution of a system by the application of a derivation

as depicted in Fig. 4.9 on p. 89, then matchings can be viewed as vertical identifications,

while completions can be seen as horizontal identifications.

The way completion has been introduced, there is a deterministic part limited to

adding dummy elements and a non-deterministic one deciding on identifications. It should

be possible to define it as an operator whose output would be all possible relations among

elements (of the same type), i.e. completion of two matrices would not be two matrices

anymore, but the set of matrices in which all possible combinations would be considered

(or a subset if some of them can be discarded). This is related to the definition of initial

digraph set in Sec. 5.3 and the structure therein studied.

4.3 Sequences and Coherence

Once we are able to characterize a single production, we can proceed with the study of fi-

nite collections of them.10 Two main operations, composition and concatenation,11 which

are in fact closely related, are introduced in this and next sections, along with notions

that make it possible to speak of “potential definability”: Coherence and compatibility.

Definition 4.3.1 (Concatenation) Let G be a grammar. Given a collection of produc-

tions tp1, . . . , pnu � G, the notation sn � pn; pn�1; . . . ; p1 defines a sequence (concate-

nation) of productions establishing an order in their application, starting with p1 and

ending with pn.

10 The term set instead of collection is avoided because repetition of productions is permitted.
11 Also known as sequentialization.

80 4 Matrix Graph Grammars Fundamentals

In the literature of graph transformation, the concatenation operator is defined back

to front, this is, in the sequence p2; p1, production p2 would be applied first and p1

right afterwards [11]. The ordering already introduced is preferred because it follows the

mathematical way in which composition is defined and represented.12

It is worth stressing that there exists a total order in a sequence, one production being

applied after the previous has finished, and thus intermediate states are generated. These

intermediate states are indeed the difference between concatenation and composition

of productions (see Sec. 4.5). The study of concatenation is related to the interleaving

approach to concurrency, while composition is related to the explicit parallelism approach

(see Sec. 3.1).

A production is moved forward, moved to the front or advanced if it is shifted one

or more positions to the right inside a sequence of productions, either in a composition

or a concatenation (it is to be applied earlier), e.g. p4; p3; p2; p1 ÞÑ p3; p2; p1; p4. On

the contrary, move backwards or delay means shifting the production to the left, which

implies delaying its application, e.g. p4; p3; p2; p1 ÞÑ p1; p4; p3; p2.

Definition 4.3.2 (Coherence) Given the set of productions tp1, . . . , pnu, the completed

sequence sn � pn; pn�1; . . . ; p1 is called coherent if actions of any production do not pre-

vent actions of the productions that follow it, taking into account the effects of interme-

diate productions.

Coherence is a concept that deals with potential applicability to a host graph of

a sequence sn of productions. It does not guarantee that the application of sn and a

coherent reordering of sn, σ psnq, lead to the same result. This latter case is a sort of

generalization13 of sequential independence applied to sequences, which will be studied

in Chap. 6.

Example.�We extend previous example (see Fig. 4.3 on p. 77) with two more pro-

ductions. Recall that our first production q1 deletes edge p5, 2q, which starts in vertex 5

and ends in vertex 2. As depicted in Fig. 4.4, production q2 adds this edge and q3 uses

it. Sequence s3 � q3; q2; q1 would be coherent if only this vertex was considered.�

12 This issue will be raised again in Sec. 8.1.
13 Generalization in the sense that, a priori, we are considering any kind of permutation.

4.3 Sequences and Coherence 81

Fig. 4.4. Productions q1, q2 and q3

Now we study the conditions that have to be satisfied by the matrices associated with

a coherent sequence of productions. Instead of stating a result concerning conditions on

coherence and proving it immediately afterwards, we begin by discussing the case of two

productions in full detail, we continue with three and we finally set a theorem – theorem

4.3.5 – for a finite number of them.

Let us consider the concatenation s2 � p2; p1. In order to decide whether the appli-

cation of p1 does not exclude p2, we impose three conditions on edges:14

1. The first production – p1 – does not delete any edge (eE
1) used by the second pro-

duction (LE
2):

eE
1 L

E
2 � 0. (4.30)

2. p2 does not add (rE
2) any edge preserved (used but not deleted, eE

1 L
E
1) by p1:

rE
2 L

E
1 e

E
1 � 0. (4.31)

3. No common edges are added by both productions:

rE
1 r

E
2 � 0. (4.32)

The first condition is needed because if p1 deletes an edge used by p2, then p2 would

not be applicable. The last two conditions are mandatory in order to obtain a simple

digraph (with at most one edge in each direction between two nodes).

14 Note the similarities with weak sequential independence. See Sec. 3.2.

82 4 Matrix Graph Grammars Fundamentals

Conditions (4.31) and (4.32) are equivalent to rE
2 R

E
1 � 0 because, as both are equal

to zero, we can do

0 � rE
2 L

E
1 e

E
1 _ rE

2 r
E
1 � rE

2

�
rE
1 _ eE

1 L
E
1

	 � rE
2 R

E
1

which may be read “p2 does not add any edge that comes out from p1’s application”. All

conditions can be synthesized in the following identity:

rE
2 R

E
1 _ eE

1 L
E
2 � 0. (4.33)

Our immediate target is to obtain a closed formula to represent these conditions

for the case of an arbitrary finite number of productions. Applying (4.10) and (4.11),

equation (4.33) can be transformed to get:

RE
1 e

E
2 r

E
2 _ LE

2 e
E
1 r

E
1 � 0. (4.34)

A similar reasoning gives the corresponding formula for nodes:

RN
1 e

N
2 r

N
2 _ LN

2 e
N
1 rN

1 � 0. (4.35)

Remark.�Note that conditions (4.31) and (4.32) do not really apply to nodes as

apply to edges. For example, if a node of type 1 is to be added and nodes 1 and 11 have

already been appended, then by completion node 12 would be added. It is not possible

to add a node that already exists.

However, coherence looks for conditions that guarantee that the operations specified

by the productions of a sequence do not interfere one with each other. Suppose the same

example but this time, for some unknown reason, the node to be added is completed as

11 – this one has just been added –. If conditions of the kind of (4.31) and (4.32) are

removed, then we would not detect that there is a potential problem if this sequence is

applied.�

Next we introduce a graphical notation for Boolean equations: A vertical arrow means

and while a fork stands for or. We use these diagrams because formulas grow very fast

with the number of nodes. As an example, the representation of equations (4.34) and

(4.35) is shown in Fig. 4.5.

Lemma 4.3.3 Let s2 � p2; p1 be a sequence of productions. If equations (4.34) and

(4.35) hold, then s2 is coherent.

4.3 Sequences and Coherence 83

Fig. 4.5. Coherence for Two Productions

Proof�Only edges are considered because a symmetrical reasoning sets the result for nodes.

Call D the action of deleting an edge, A its addition and P its preservation, i.e. the

edge appears in both LHS and RHS. Table 4.1 comprises all nine possibilities for two

productions.

D2; D1 (4.30) D2; P1

`
D2; A1

`
P2; D1 (4.30) P2; P1

`
P2; A1

`
A2; D1

`
A2; P1 (4.31) A2; A1 (4.32)

Table 4.1. Possible Actions for Two Productions

A tick means that the action is allowed, while a number refers to the condition that

prohibits the action. For example, P2;D1 means that first production p1 deletes the edge

and second p2 preserves it. If the table is looked up we find that this is forbidden by

equation (4.30).�

Now we proceed with three productions. We must check that p2 does not disturb

p3 and that p1 does not prevent the application of p2. Notice that both of them are

covered in our previous explanation (in the two productions case), and thus we just need

to ensure that p1 does not exclude p3, taking into account that p2 is applied in between.

1. p1 does not delete (eE
1) any edge used (LE

3) by p3 and not added (rE
2) by p2:

eE
1 L

E
3 r

E
2 � 0. (4.36)

84 4 Matrix Graph Grammars Fundamentals

2. Production p3 does not add – rE
3 – any edge stemming from p1 – RE

1 – and not

deleted by p2 – eE
2 –:

rE
3 R

E
1 e

E
2 � 0. (4.37)

Again, the last condition is needed in order to obtain a simple digraph. Performing

similar manipulations to those carried out for s2 we get the full condition for s3, given

by the equation:

LE
2 e

E
1 _ LE

3

�
eE
1 r

E
2 _ eE

2

	_RE
1

�
eE
2 r

E
3 _ rE

2

	_RE
2 r

E
3 � 0. (4.38)

Proceeding as before, identity (4.38) is completed:

LE
2 e

E
1 r

E
1 _ LE

3 r
E
2

�
eE
1 r

E
1 _ eE

2

	__ RE
1 e

E
2

�
rE
2 _ eE

3 r
E
3

	_RE
2 e

E
3 r

E
3 � 0. (4.39)

Its representation is shown in Fig. 4.6 for both nodes and edges.

Fig. 4.6. Coherence Conditions for Three Productions

Lemma 4.3.3 can be extended slightly to include three productions in an obvious way,

but we will not discuss this further because the generalization to cover n productions is

theorem 4.3.5.

Example.�Recall productions q1, q2 and q3 introduced in Figs. 4.3 and 4.4 (on pp.

77 and 81, respectively). Sequences q3; q2; q1 and q1; q3; q2 are coherent, while q3; q1; q2 is

not. The latter is due to the fact that edge p5, 5q is deleted (D) by q2, used (U) by q1 and

added (A) by q3, being two pairs of forbidden actions. For the former sequences we have

4.3 Sequences and Coherence 85

to check all actions performed on all edges and nodes by the productions in the order

specified by the concatenation, verifying that they do not exclude each other.�

Definition 4.3.4 Let F px, yq and Gpx, yq be two boolean functions dependant on param-

eters x, y P I in some index set I. Operators delta △ and nabla ▽ are defined through

the equations:

△t1
t0
pF px, yqq � t1ª

y�t0

�
t1©

x�y

pF px, yqq� (4.40)

▽t1
t0
pGpx, yqq � t1ª

y�t0

�
y©

x�t0

pGpx, yqq� . (4.41)

These operators will be useful for dealing with the general case of n productions. A

simple interpretation for both operators will be given at the end of the section.

Example.�Let F px, yq � Gpx, yq � rxey, then we have:

△3
1 rxey� 3ª

y�1

�
3©

x�y

prxeyq� � r3e3 _ r3r2e2 _ r3r2r1e1 � e3 _ r3e2 _ r3r2e1.
▽5

3rxey� 5ª
y�3

�
x�y©
x�3

prxeyq� � r3e3 _ r3r4e4 _ r3r4r5e5 � e3 _ r3e4 _ r3r4e5.
Expressions have been simplified applying proposition 4.1.4.�

Now we are ready to characterize coherent sequences of arbitrary finite length.

Theorem 4.3.5 The concatenation sn � pn; pn�1; . . . ; p2; p1 is coherent if for edges and

nodes we have:

nª
i�1

�
RE

i ▽n
i�1

�
eE

x r
E
y

	_ LE
i △i�1

1

�
eE

y r
E
x

		 � 0 (4.42)

nª
i�1

�
RN

i ▽n
i�1

�
eN

x rN
y

	_ LN
i △i�1

1

�
eN

y rN
x

		 � 0. (4.43)

Proof�Induction on the number of productions (see cases s2 and s3 studied above).�

Figure 4.7 includes the graph representation of the formulas for coherence for s4 �
p4; p3; p2; p1 and s5 � p5; p4; p3; p2; p1.

86 4 Matrix Graph Grammars Fundamentals

Fig. 4.7. Coherence. Four and Five Productions

Example.�We are going to verify that s1 � q1; q3; q2 is coherent (only for edges),

where qi are the productions introduced in previous examples. Productions are drawn

again in Fig. 4.8 for reader convenience. We start expanding formula (4.42) for n � 3:

3ª
i�1

pRE
i ▽3

i�1

�
eE

x r
E
y

	_ LE
i △i�1

1

�
eE

y r
E
x

		 � RE
1

�
eE
2 r

E
2 _ eE

2 e
E
3 r

E
3

	__RE
2 e

E
3 r

E
3 _ LE

2 r
E
1 e

E
1 _ LE

3

�
rE
1 r

E
2 e

E
1 _ rE

2 e
E
2

	 ��RE
1

�
rE
2 _ eE

2 r
E
3

	_RE
2 r

E
3 _ LE

2 e
E
1 _ LE

3

�
eE
1 r

E
2 _ eE

2

	
.

which should be zero.

Note that this equation applies to concatenation s � q3; q2; q1 and thus we have to

map p1, 2, 3q ÞÑ p2, 3, 1q to obtain

RE
2

�
rE
3 _ eE

3 r
E
1

	loooooooooomoooooooooonp�q _RE
3 r

E
1 _ LE

3 e
E
2loooooooomoooooooonp��q _LE

1

�
eE
2 r

E
3 _ eE

3

	loooooooooomoooooooooonp���q � 0. (4.44)

Before checking whether these expressions are zero or not, we have to complete the

involved matrices. All calculations have been divided into three steps and, as they are

operated with or, the result will not be null if one fails to be zero.

Only the second term (**) is expanded, with ordering of nodes not specified for a

matter of space. Nodes are sorted r2 3 5 1 4s both by columns and by rows, meaning for

example that element p3, 4q is an edge startig in node 5 and ending in node 1.

4.3 Sequences and Coherence 87

Fig. 4.8. Productions q1, q2 and q3 (Rep.)�����1 0 0 1 0
0 0 0 0 0
1 0 1 0 0
0 0 1 0 0
0 0 0 0 0

���������� 0 1 0 0 0
0 1 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0

�����_����� 0 0 0 1 0
1 0 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 0

����������0 1 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

����� � 0,

so the sequence is coherent15 where, as usual, a matrix filled up with zeros is represented

by 0.

Now consider sequence s13 � q2; q3; q1 where q2 and q3 have been swapped with respect

to s3. The condition for its coherence is:

RE
1

�
rE
3 _ eE

3 r
E
2

	loooooooooomoooooooooonp�q _RE
3 r

E
2 _ LE

3 e
E
1loooooooomoooooooonp��q _LE

2

�
eE
1 r

E
3 _ eE

3

	loooooooooomoooooooooonp���q � 0. (4.45)

If we focus just on the first term (*) in equation (4.45)����� 0 1 1 0 0
0 1 0 0 0
0 1 1 0 0
0 0 0 0 0
0 0 0 0 0

��������������� 1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 0 0

�����_����� 1 1 1 1 1
0 1 1 1 1
1 1 1 1 1
1 1 1 0 1
1 1 1 1 1

����������0 0 0 0 1
1 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0

������ÆÆÆ
we obtain a matrix filled up with zeros except in position (3,3) which corresponds to an

edge that starts and ends in node 5. Ordering of nodes has been omitted again due to

lack of space, but it is the same as above: r2 3 5 1 4s.
15 It is also necessary to check that p�q � p� � �q � 0.

88 4 Matrix Graph Grammars Fundamentals

We do not only realize that the sequence is not coherent, but in addition information

on which node or edge may present problems when applied to an actual host graph is

provided.�

Note that a sequence not being coherent does not necessarily mean that the grammar

is not well defined, but that we have to be especially careful when applying it to a host

graph because it is mandatory for the match to identify all problematic parts in different

places.

This information could be used when actually finding the match; a possible strategy,

if parallel matching for different productions is required, is to start with those elements

which may present a problem.16

This section ends providing a simple interpretation of ∇ and ∆, which in essence

are a generalization of the structure of a sequence of productions. A sequence p2; p1 is

a complex operation: To some potential digraph, one should start by deleting elements

specified by e1, then add elements in r1, afterwards delete elements in e2 and finally add

elements in r2. Generalization means that this same structure can be applied but not

limited to matrices e and r, i.e. there is an alternate sequence of “delete” and “add”

operations with general expressions rather than just matrices e and r. For example,

∇3
1 pexRx _ Ly _ ryq.

Operators ∇ and ∆ represent ascending and descending sequences. For example,

∇3
1exry � p1p2pr3q and ∆3

1exry � p3p2pr1q. In some detail:

∇3
1ex ry � e1r1 _ e1 e2 r2 _ e1 e2 e3 r3 �� r1 _ e1r2 _ e1 e2r3 � r1 _ e1 pr2 _ e2r3q � p1 pp2 pr3qq .

We will make good use of this interpretation in Chap. 5 to establish the equivalence

between coherence plus compatibility of a derivation and finding its minimal and negative

initial digraphs in the host graph and its negation, respectively.

4.4 Minimal and Negative Initial Digraphs

Matches find the left hand side of the production in the host graph (see Chap. 5) and, as

side effect, relate and unrelate elements among productions. Recall from previous section

16 The same remark applies to G-congruence, to be studied in Sec. 6.1.

4.4 Minimal and Negative Initial Digraphs 89

that we may think of matching as a vertical identification of nodes – and hence edges –

relating as a side effect elements, so to speak, horizontally (see Fig. 4.9). For example, if

L1 and L2 have each one a node of type 3 and m1 : L1 Ñ G0 and m2 : L2 Ñ G1 match

this node in the same place of G0 and G1 (suppose it is not deleted by p1) then this node

is horizontally related. In Subsec. 4.4.1 we will study in detail this sort of relations.

Compatibility is determined by the result of applying a production to an initial graph

and checking nodes and edges of the result. If we try to define compatibility for a concate-

nation or its composition, we have to decide which is the initial graph, but as mentioned

above we prefer not to begin our analysis of matches yet. These are our main motivations

to introduce minimal and negative initial digraphs.

L1

m1

p1

R1

m�
1

L2

m2

p2

R2

m�
2

L3

m3

p3

R3

m�
3

G0

p�
1

G1

p�
2

G2

p�
3

G3

Fig. 4.9. Example of Sequence

Example.�Consider productions u and v defined in Fig. 4.10. It is easy to see that v;u

is coherent but not compatible. It seems a bit more difficult to define their composition

v � u, as if they were applied to the same nodes, a dangling edge would be obtained.

Although coherence itself does not guarantee applicability of a sequence, we will see that

compatibility is sufficient (generalized to consider concatenations, not only graphs or

single productions as in definitions 2.3.2 and 4.1.5).�

Fig. 4.10. Non-Compatible Productions

90 4 Matrix Graph Grammars Fundamentals

Defining compatibility for a sequence of productions is not straightforward, nor its

composition starting with a coherent concatenation, and it will be necessary to bring in

the concept of minimal initial digraph.

The example shows a problem that led us to consider not only productions, but also

the context in which they are to be applied. In fact, the minimal context in which they

can be applied. This is something we try to avoid as, for the moment, we want to study

productions alone without host graphs and matches.

Two possibilities are found in the literature (for the categorical approach) in order

to define a match, depending whether DPO or SPO is followed (see Secs. 3.1 and 3.2

or [23]). In the latter, deletion prevails so in the present example production v would

delete edge p4, 2q. Our approximation to the match of a production is slightly different,

considering it as an operator that acts on a space whose elements are productions (see

Chap. 5).17

This situation might be overcome if we are able to define a minimal and unique18

“host graph” with enough elements to permit all operations of a given concatenation or

composition of productions. We call it a minimal initial digraph. Note that we were able

to give a definition of compatibility in 2.3.2 for a single production because it is clear

(so obvious that we did not mention it) which one is the minimal initial digraph: Its left

hand side.

Any production demands elements to exist in the host graph in order to be applied.

Also, some elements must not be present. We will touch on “forbidden” elements in

Subsec. 4.4.2. Both are quite useful concepts because on one hand they allow us to

ignore matching if staying at a grammar definition level is desired (to study its potential

behaviour or to define concepts independently of the host graph), and on the other the

applicability problem (see problem 1) can be characterized through them. We will return

to these concepts once matching is introduced and characterized, in Sec. 5.3 and also in

Chap. 7 when we define graph constraints and application conditions.

17 In the SPO approach – see Sec. 3.2 – rewriting has as side effect the deletion of dangling

edges. One important difference is that in our approach it is defined as an operator that

enlarges the production or the sequence of productions by adding new ones.
18 Unique once the concatenation has been completed. Minimal initial digraph makes horizontal

identification of elements explicit.

4.4 Minimal and Negative Initial Digraphs 91

4.4.1 Minimal Initial Digraph

One graph is known which fulfills all demands of coherent sequence sn � pn; . . . ; p1 –

namely L ��n
i�1 Li – in the sense that it has enough elements to carry out all operations

specified in the sequence. Graph L is not completed (each Li with respect to the rest). If

there are coherence issues among all grammar rules, then probably all nodes in all LHS

of the rules will be unrelated giving rise to the disjoint union of Li. If, on the contrary,

there are no coherence problems at all, then we can identify across productions as many

nodes of the same type in Li as desired.

Definition 4.4.1 (Minimal Initial Digraph) Let sn � pn; . . . ; p1 be a completed se-

quence, a minimal initial digraph is a simple digraph which permits all operations of sn

and does not contain any proper subgraph with the same property.

This concept will be slightly generalized in Sec. 5.3, definition 5.3.1, in which we

consider the set of all potential minimal initial digraphs for a given (not-completed)

sequence and analyze its structure. In fact, L is not a digraph but this initial digraph

set. Through completion one actual digraph can be fixed.

Theorem 4.4.2 Given a completed coherent sequence of productions sn � pn; . . . ; p1,

the minimal initial digraph is defined by the equation:

Mn � ∇n
1 prxLyq . (4.46)

Superscripts are omitted to make formulas easier to read (i.e. they apply to both nodes

and edges). In Fig. 4.14 on p. 97, formula (4.46) and its negation (4.57) are expanded for

three productions.

Proof�To properly demonstrate this theorem we have to prove that Mn has enough edges

and nodes to apply all productions in the specified order, that it is minimal and finally

that it is unique (up to isomorphisms). We will proceed by induction on the number of

productions.

By hypothesis we know that the concatenation is coherent and thus the application

of one production does not exclude the ones coming after it. In order to see that there

are sufficient nodes and edges, it is enough to check that sn p�n
i�1 Liq � sn pMnq, as the

92 4 Matrix Graph Grammars Fundamentals

most complete digraph to start with is L ��n
i�1 Li, which has enough elements due to

coherence.19

If we had a sequence consisting of only one production s1 � p1, then it should be

obvious that the minimal digraph needed to apply the concatenation is L1.

In the case of a sequence of two productions, say s2 � p2; p1, what p1 uses pL1q is

again needed. All edges that p2 uses (L2), except those added (r1) by the first production,

are also mandatory. Note that the elements added (r1) by p1 are not considered in the

minimal initial digraph. If an element is preserved (used and not erased, e1 L1) by p1,

then it should not be taken into account:

L1 _ L2r1 pe1L1q � L1 _ L2r1
�
e1 _ L1

� � L1 _ L2R1. (4.47)

This formula can be paraphrased as “elements used by p1 plus those needed by p2’s left

hand side, except the ones resulting from p1’s application”. It provides enough elements

to s2:

p2; p1

�
L1 _ L2R1

� � r2 _ e2 �r1 _ e1 �L1 _ L2R1

�� �� r2 _ e2 �R1 _ r1R1L2 _ e1R1L2

� �� r2 _ e2 pR1 _ r1L2 _ e1L2q �� r2 _ e2 pr1 _ e1 pL1 _ L2qq � p2; p1 pL1 _ L2q .
Let’s move one step forward with the sequence of three productions s3 � p3; p2; p1.

The minimal digraph needs what s2 needed (L1 _ L2R1), but even more so. We have

to add what the third production uses (L3), except what comes out from p1 and is not

deleted by production p2 (R1 e2), and finally remove what comes out (R2) from p2:

M3 � L1 _ L2R1 _ L3pe2R1qR2 � L1 _ L2R1 _ L3R2

�
e2 _R1

�
. (4.48)

Similarly to what has already been done for s2, we check that the minimal initial

digraph has enough elements such that it is possible to apply p1, p2 and p3:

19 Recall that L is not completed so it somehow represents some digraph with enough elements

to apply sn to. This is not necessarily the maximal initial digraph as introduced in Sec. 5.3.

4.4 Minimal and Negative Initial Digraphs 93

p3; p2; p1 pM3q �� r3 _ e3 �r2 _ e2 �r1 _ e1 �L1 _ L2R1 _ L3R2

�
e2 _R1

���� �� r3 _ e3 ��r2 _ e2 ��e1L2 _ e1e2L3R2 _R1 _ L3e1R1R2looooooooomooooooooon�R1_L3e1R2

���� r3 _ e3 ���e2r1 _ e2 e1L1looooooomooooooon�e2R1

_e2 e1L2 _ r2 _ L3e1 e2 r2L2looooooooomooooooooon�r2_L3e1 e2L2

�Æ�� r3 _ e3 pr2 _ e2 pr1 _ e1 pL1 _ L2 _ L3qqq �� p3; p2; p1 pL1 _ L2 _ L3q.
The same reasoning applied to the case of four productions derives the equation:

M4 � L1 _ L2R1 _ L3pe2R1qR2 _ L4pe3 e2R1q pe3R2q R3. (4.49)

Minimality is inferred by construction, because for each Li all elements added by a

previous production and not deleted by any production pj , j i, are removed. If any

other element is erased from the minimal initial digraph, then some production in sn

would miss some element.

Now we want to express previous formulas using operators ∇ and ∆. The expression

LE
1 _ nª

i�2

�
LE

i △i�1
1

�
RE

x e
E
y

	�
(4.50)

is close but we would be adding terms that include RE
1 e

E
1 , and clearly RE

1 e
E
1 � RE

1 ,

which is what we have in the minimal initial digraph.20 Thus, considering the fact that

ab_ a b � a (see Sec. 2.1) we eliminate them by performing or operations:

eE
1 ▽n�1

1

�
RE

x Ly�1

	
. (4.51)

Thus we have a formula for the minimal initial digraph which is slightly different from

that in the theorem:

Mn � L1 _ e1 ▽n�1
1

�
RxLy�1

�_ nª
i�2

�
Li △

i�1
1

�
Rx ey

��
. (4.52)

20 Not in formula (4.46) but in expressions derived up to now for minimal initial digraph:

formulas (4.47) and (4.48).

94 4 Matrix Graph Grammars Fundamentals

Please refer to Fig. 4.11 where, on the right side, expression (4.52) is represented

while on the left the same equation, but simplified, is depicted for n � 4.

Fig. 4.11. Minimal Initial Digraph (Intermediate Expression). Four Productions

Our next step is to show that previous identity is equivalent to:

Mn � L1 _ e1 ▽n�1
1 prxLy�1q _ nª

i�2

�
Li △

i�1
1 prx eyq� (4.53)

illustrating the way to proceed for n � 3. To this end, equation (4.13) is used as well as

the fact that a_ ab � a_ b (see Sec. 2.1):

M3 � L1 _ L2R1 _ L3R2

�
e2 _R1

� �� L1 _ L2r1
�
e1 _ L1

�_ �
L3r2e2 _ L3r2L2

� �
e2 _ r1e1r1L1

� �� L1 _ L2r1L1 _ L2e1 _ L3e2 _ L3e2e1 _ L3e2r1L1 _ L3e2L2loooooooooooooooooomoooooooooooooooooon
disappears due to L3e2

__ L3r2L2r1L1 _ L3r2L2e1 �� L1 _ L2 pr1 _ e1q _ L3L2r2 r1 _ L3e2 _ L3L2r2e1 �� L1 _ L2r1 _ L3r2 pe2 _ r1q .
But (4.53) is what we have in the theorem, because as the concatenation is coherent,

the third term in (4.53) is zero:21

nª
i�2

�
Li △

i�1
1 prx eyq� � 0. (4.54)

21 This is precisely the second term in (4.42), the equation that characterizes coherence.

4.4 Minimal and Negative Initial Digraphs 95

Finally, as L1 � L1 _ e1, it is possible to omit e1 and obtain (4.46), recalling that

rL � L (Prop. 4.1.4).

Uniqueness can be proven by contradiction. Use equation (4.46) and induction on the

number of productions.�

Fig. 4.12. Non-Compatible Productions (Rep.)

Example.�Let s2 � u; v and s12 � v;u (first introduced in Fig. 4.10 on p. 89 and

reproduced in Fig. 4.12 for convenience of the reader). Minimal initial digraphs for these

productions are represented in Fig. 4.13.

The way we have introduced the concept of minimal initial digraph, M2 cannot be

considered as such because either for sequence u; v or v;u there are subgraphs that permit

their application. In the same figure the minimal initial digraphs for productions q3; q2; q1

and q1; q3; q2 are also represented. Productions qi can be found in Fig. 4.8.

Fig. 4.13. Minimal Initial Digraph. Examples and Counterexample

We will explicitly compute the minimal initial digraph for the concatenation q3; q2; q1.

In this example, and in order to illustrate some of the steps used to prove the previous

theorem, formula (4.52) is used. Once simplified, it lays the equation:

96 4 Matrix Graph Grammars Fundamentals

LE
1 _ LE

2 R
E
1loooooomoooooonp�q _LE

3 R
E
2

�
eE
2 _RE

1

	loooooooooomoooooooooonp��q .

The ordering of nodes is r2 3 5 1 4s. We will only display the computation for (*),

being (**) very similar:�����0 0 1 0 1
0 0 0 0 0
1 0 1 0 0
0 0 0 0 0
0 0 0 0 0

�����_����� 0 1 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

���������� 1 0 0 1 1
1 0 1 1 1
1 0 0 1 1
1 1 1 1 1
1 1 1 1 1

����� � ����� 0 0 1 0 1
0 0 0 0 0
1 0 1 0 0
0 0 0 0 0
0 0 0 0 0

�����p�q _ p��q � �����0 0 1 0 1 | 2
0 0 0 0 0 | 3
1 0 1 0 0 | 5
0 0 0 0 0 | 1
0 0 0 0 0 | 4�����_����� 0 0 0 1 0 | 2

0 0 0 0 0 | 3
1 0 0 0 0 | 5
0 0 0 1 0 | 1
0 0 0 0 0 | 4����� � ����� 0 0 1 1 1 | 2

0 0 0 0 0 | 3
1 0 1 0 0 | 5
0 0 0 1 0 | 1
0 0 0 0 0 | 4�����

Depicted on the center of Fig. 4.13.�

A closed formula for the effect of the application of a coherent concatenation can be

useful if we want to operate in the general case. This is where next corollary comes in.

Corollary 4.4.3 Let sn � pn; . . . ; p1 be a coherent concatenation of productions, and

Mn its minimal initial digraph as defined in (4.46). Then,

sn

�
ME

n

� � n©
i�1

�
eE

i M
E
n

	_△n
1

�
eE

x r
E
y

	
(4.55)

sn pME
n q � n©

i�1

�
rE
i ME

n

	_△n
1

�
rE
x eE

y

	
(4.56)

Proof�Theorem 4.4.2 proves that sn

�
ME

n

� � sn p�n
i�1 Liq. To derive the formulas apply in-

duction on the number of productions and (4.10).�

Remark.�Equation (4.56) will be usefull in Sec. 4.5 to calculate the compatibility of

a sequence. More interestingly, note that equation (4.55) has the same shape as a single

production p � r _ eL, where:

e � n©
i�1

�
eE

i

	
r � △n

1

�
eE

x r
E
y

	
.

4.4 Minimal and Negative Initial Digraphs 97

However, in contrast to what happens with a single production, the order of appli-

cation does matter, being necessary to carry out deletion first and addition afterwards.

The first equation are those elements not deleted by any production and the second is

what a grammar rule adds and no previous production deletes (previous with respect to

the order of application).

Equation (4.55) is closely related to composition of a sequence of productions as

defined in Sec. 4.5, Prop. 4.5.3. This explains why it is possible to interpret a coherent

sequence of productions as a single production. Recall that any sequence is coherent if

the appropriate horizontal identifications are performed.�

Fig. 4.14. Formulas (4.46) and (4.57) for Three Productions

The negation of the minimal initial digraph which appears in identity (4.56) – seen

in Fig. 4.14 – can be explicitly calculated in terms of nabla:

Mn � ∇n�1
1

�
Lx ry

�_ n©
i�1

Li. (4.57)

For the sake of curiosity, if we used formula (4.53) to calculate the minimal initial

digraph, the representation of its negation is included in Fig. 4.15 for n � 3 and n � 4.

It might be useful to find an expression using operators ∆ and ∇ for these digraphs.

4.4.2 Negative Initial Digraph

Our plan now is to first make explicit all elements that should not be present in a

potential match of the left hand side of a rule in a host graph, and then characterize

98 4 Matrix Graph Grammars Fundamentals

Fig. 4.15. Equation (4.53) for 3 and 4 Productions (Negation of MID)

them for a finite sequence. This is carried out defining something similar to the minimal

initial digraph, the negative initial digraph. In order to keep our philosophy of making

our analysis as general as possible (independent of any concrete host graph) only the

elements appearing on the LHS of the productions that make up the sequence plus its

actions will be taken into account.

We will refer to elements that should not be present as forbidden elements. There are

two sets of elements that for different reasons should not appear in a potential initial

digraph:

1. Edges added by the production, as we are limited for now to simple digraphs.

2. Edges incident to some node deleted by the production (dangling edges).

To consider elements just described, the notation to represent productions is extended

with a new graph N that we will call the nihilation matrix.22 Note that the concept

of grammar rule remains unaltered because we are just making explicit some implicit

information.

To further justify the naturality of this matrix let’s oppose its meaning to that of the

LHS and its interpretation as a positive application condition (the LHS must exist in the

22 It will be normally represented by N . Just in case there can be any confusion, we will append

to it some subscript, e.g. NL for the left hand side, NR for the right hand side, Np to make

explicit some production or Ns for some sequence.

4.4 Minimal and Negative Initial Digraphs 99

host graph in order to apply the grammar rule). In effect, N can be seen as a negative

application condition: If it is found in the host graph then the production can not be

applied. We will dedicate a whole chapter (Chap. 7) to develop these ideas.23

The order in which matrices are derived is enlarged to cope with the nihilation matrix

N : pL,Rq ÞÝÑ pe, rq ÞÝÑ N. (4.58)

Otherwise stated, a production is statically determined by its left and right hand sides

p � pL,Rq, from which it is possible to give a dynamic definition p � pL, e, rq, to end up

with a full specification including its environmental24 behaviour p � pL,N, e, rq.
Definition 4.4.4 (Production - Dynamic Formulation) A production p is a mor-

phism25 between two simple digraphs L and R, and can be specified by the tuple

p � �
LE , NE, eE , rE , LN , NN , eN , rN

�
. (4.59)

Compare with definition 4.1.1, the static formulation of production. As commented

earlier in the dissertation, it should be possible to consider nodes and edges together

using the tensorial construction of Chap. 8.

Next lemma shows how to calculate N using the production p, by applying it to a

certain matrix:

Lemma 4.4.5 (Nihilation matrix) Using tensor notation (see Sec. 2.4) let’s define

D � eN b peNq t
, where t denotes transposition. Then,

NE � p
�
D
�
. (4.60)

23 In a negative application condition we will be allowed to add information of what elements

must not be present. Probably it is more precise to speak of an implicit negative application

condition.
24 Environmental because N specifies some elements in the surroundings of L that should not

exist. If the LHS has been completed – probably because it belongs to some sequence – then

the nihilation matrix will consider those nodes too.
25 In fact, a partial function since some elements in L do not have an image in R.

100 4 Matrix Graph Grammars Fundamentals

Proof�The following matrix specifies potential dangling edges incident to nodes appearing in

the left hand side of p:

D � di
j � #

1 if
�
ei
�N � 1 or pejqN � 1.

0 otherwise.
(4.61)

Note that D � eN b peN q t
. Every element incident to a node that is going to be

deleted becomes dangling except edges deleted by the production. In addition, edges

added by the rule can not be present, thus we have NE � rE _ eE
�
D
� � p

�
D
�
.�

Fig. 4.16. Example of Nihilation Matrix

Example.�We will calculate the elements appearing in lemma 4.4.5 for the produc-

tion of Fig. 4.16:

eN b peN q t � �� 0
1
1

��b��0
1
1

��t � �� 1 1 1
1 0 0
1 0 0

��
The nihilation matrix is given by equation (4.60):

N � r _ eD � ��0 0 0
0 1 0
0 1 1

��_��1 0 0
1 1 0
1 1 1

���� 1 1 1
1 0 0
1 0 0

�� � ��1 0 0
1 1 0
1 1 1

�� .
This matrix shows that node 1 can not have a self loop (it would become a dangling

edge as it is not deleted by the production) but edges p1, 2q and p1, 3q may be present

(in fact they must be present as they belong to L). Edge p2, 1q must not exist for the

same reason. The self loop for node 2 can not be found because it is added by the rule. A

similar reasoning tells us that no edge starting in node 3 can exist: The self loop and edge

4.4 Minimal and Negative Initial Digraphs 101p3, 2q because they are going to be added and p3, 1q because it would become a dangling

edge.�

Let us move on to sequences. The negative initial digraph Ns for a coherent sequence

sn � pn; . . . ; p1 is the biggest simple digraph whose elements can not be found in the

host graph to guarantee the applicability of sn.26 It is the symmetric concept to minimal

initial digraph, but for nihilation matrices.

Definition 4.4.6 (Negative Initial Digraph) Let sn � pn; . . . ; p1 be a completed se-

quence, a negative initial digraph is a simple digraph containing all elements that can

spoil any of the operations of sn.

Negative initial diagraphs depend on the way productions are completed (minimal

initial digraphs too). In fact, as minimal and negative initial digraphs are normally cal-

culated at the same time for a given sequence, there is a close relationship between them

(in the sense that one conditions the other). This concept will be addressed again in Sec.

5.3, together with minimal initial digraphs and initial sets.

Theorem 4.4.7 Given a completed coherent sequence of productions sn � pn; . . . ; p1,

the negative initial digraph is given by the equation:

Ns � ∇n
1 pexNyq . (4.62)

Proof (Sketch)�We can prove the result taking into account elements added by productions in the

sequence but not dangling edges for now.

Let’s concentrate on what should not be found in the host graph assuming that what

a production adds is not interfered by actions of previous productions. Note that this is

coherence, assumed by hypothesis. Consider for example sequence s2 � p2; p1. Coherence

detects those elements added by both productions (r1r2 � 0) and also if p2 adds what

26 It is not possible to speak of applicability because we are not considering matches yet. This

is just a way to intuitively introduce the concept.

102 4 Matrix Graph Grammars Fundamentals

p1 uses but does not delete (r2e1L2 � 0).27 Hence, we may not care about them. In the

proof of theorem 4.4.2, the final part precisely addresses this point.

Now we proceed by induction. The case for one production p1 considers elements

added by p1, i.e. r1. For two productions s2 � p2; p1, besides what p1 rejects, what p2

is going to add can not be found, except if p1 deleted it: r1 _ r2e1. Three productions

s3 � p3; p2; p1 should reject what s2 rejects and also what p3 adds and no previous

production deletes: r1 _ r2e1 _ r3e2e1. We are using coherence here because the case in

which p1 deletes edge ǫ and p2 adds edge ǫ (we should have a problem if p3 also added

ǫ) is ruled out. By induction we finally obtain:

∇n
i�1 pexryq . (4.63)

Now, instead of considering as forbidden only those elements to be appended by a

production (not deleted by previous ones), any potential dangling edge28 is also taken

into account, i.e. ry can be substituted by Ny (note that eαNα � Nα). A detailed proof

may follow the steps of the demonstration of Theorem 4.4.2.�

Example.�Recall productions q1 (Fig. 4.3 on p. 77), q2 and q3 (Fig. 4.4 on p. 81),

reproduced in Fig. 4.17 for convenience of the reader. We will calculate the negative

initial digraph for sequence s3 � q3; q2; q1. Its minimal initial digraph can be found in

Fig. 4.13, on p. 95).

Expanding equation (4.62) for s3 we get:

N � N1 _ e1N2 _ e1e2N3. (4.64)

In Fig. 4.18 we have represented negative graphs for the productions (Ni) and graph

N for s3. As there are quite a lot of arrows, if two nodes are connected in both directions

then a single bold arrow is used. Adjacency matrices (ordered r2 4 5 3 1s) for first three

graphs are:

27 This is precisely the part of coherence (equation 4.42) not used in the proof of theorem

4.4.2, the one for minimal initial digraphs:
�n

i�1

�
RE

i ▽n
i�1

�
eE

x rE
y

	�
. Another reason for the

naturality of N .
28 Of course edges incident to nodes considered in the productions. There is no information at

this point on edges provided by other nodes that might be in the host graph (to distance one

to a node that is going to be deleted).

4.4 Minimal and Negative Initial Digraphs 103

Fig. 4.17. Productions q1, q2 and q3 (Rep.)

Fig. 4.18. NID for s3 � q3; q2; q1 (Bold = Two Arrows)

N1 � ����� 0 0 0 1 0
1 1 1 1 1
0 1 0 1 0
0 1 0 1 0
0 1 0 0 0

����� ; N2 � r2 � ����� 0 1 0 0 0
0 0 0 0 0
1 0 0 0 0
1 0 0 0 0
0 0 0 0 0

����� ; N3 � ����� 0 0 0 1 0
1 1 1 1 1
0 1 0 1 0
0 1 0 1 0
0 1 0 0 0

�����
The rest of matrices and calculations are omitted for space considerations.�

Matrix N provides information on what will be called internal ε-productions in Sec.

5.4. These ε-productions are grammar rules automatically generated to deal with dangling

edges. We will distinguish between internal and external, being internal (to the sequence)

those that deal with edges added by a previous production.

104 4 Matrix Graph Grammars Fundamentals

4.5 Composition and Compatibility

Next we are going to introduce compatibility for sequences (extending definition 4.1.5)

and also composition. Composition defines a unique production that to a certain extent29

performs the same actions as its corresponding sequence (the one that defines it).

Recall that compatibility is a means to deal with dangling edges, equivalent to the

dangling condition in DPO. When a concatenation of productions is considered, we are

not only concerned with the final result but also with intermediate states – partial results

– of the sequence. Compatibility should take this into account and thus a concatenation

is said to be compatible if the overall effect on its minimal initial digraph gives as result

a compatible digraph starting from the first production and increasing the sequence until

we get the full concatenation. We should then test compatibility for the growing sequence

of concatenations S � ts1, s2, . . . , snu where sm � qm; qm�1; . . . ; q1, 1 ¤ m ¤ n.

Definition 4.5.1 A coherent sequence sn � qn; . . . ; q1 is said to be compatible if the

following identity is verified:

nª
m�1

����sm

�
ME

m

�_ �
sm

�
ME

m

��t
�d sm pMN

m q���
1
� 0. (4.65)

Corollary 4.4.3 – equations (4.55) and (4.56) – give closed form formulas for the terms

in (4.65).

Of course this definition coincides with 4.1.5 for one production and with 2.3.2 for

the case of a single graph (when considering the identity production, for example).

Coherence examines whether actions specified by a sequence of productions are fea-

sible. It warns us if one production adds or deletes an element that should not, as some

later production might need it to carry out an operation that becomes impossible. Com-

patibility is a more basic concept because it examines if the result is a digraph, that is,

if the class of all digraphs is closed under the operations specified by the sequence.

Example.�Consider sequence s3 � q3; q2; q1, with qi as defined in Figs. 4.3 and 4.4.

In order to check equation (4.65) we need the minimal initial digraphs M1 (the LHS of

29 If a production inside a sequence deletes a node and afterwards another adds it, the overall

effect is that the node is not touched. This may affect the deletion of dangling edges in an

actual host graph (those incident to some node not appearing in the producitons).

4.5 Composition and Compatibility 105

Fig. 4.19. Minimal Initial Digraphs for s2 � q2; q1

q1), M21 (coincides with the LHS of q1) and M321 that can be found in Figs. 4.19 and

4.20 on p. 107.

Equation (4.65) for m � 1 is compatibility of production q1 which has been calculated

in the example of p. 77. For m � 2 we have����s2 �ME
21

�_ �
s2

�
ME

21

��t
�d s2 �MN

21

����
1

(4.66)

which should be zero with nodes ordered as before, r2 3 5 1 4s. The evolution of the vector

of nodes is r1 0 1 0 1s q1ÞÝÑ r1 1 1 0 0s q2ÞÝÑ r1 1 1 0 1s. Making all substitutions according

to values displayed in Fig. 4.19 we obtain:p4.66q � ���������� 0 0 1 0 1
1 1 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0

�����_����� 0 1 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 0 0
1 0 0 0 0

������ÆÆÆd����� 0
0
0
1
0

����� � ����� 0 | 2
0 | 3
0 | 5
0 | 1
0 | 4�����

As commented above, we can make use of identities (4.55) and (4.56). The case m � 3

is very similar to m � 2. There is another example below (on p. 108) with the graphical

evolution of the states of the system.�

Once we have seen compatibility for a sequence the following corollary to theorems

4.4.2 and 4.4.7 can be stated:

Corollary 4.5.2 Let M be a minimal initial digraph and N the corresponding negative

initial digraph for a coherent and compatible sequence, then M ^N � 0.

106 4 Matrix Graph Grammars Fundamentals

Proof�Just compare equations M � ∇n
1 prxLyq and N � ∇n

1 pexNyq. We know that elements

added and deleted by a production are disjoint. This implies that the negation of the

corresponding adjacency matrices have no common elements.�

Intuitively, if we interpret matrices M and N as elements that must be and must not

be present in a potential host graph in order to apply the sequence, then it should be

clear that Li and Ni must also be disjoint. This point will be addressed in Chap. 7.

So far we have presented compatibility and the minimal initial digraph and will finish

studying composition and the circumstances under which it is possible to define a single

production starting with a coherent concatenation.

When we introduced the notion of production, we first defined its LHS and RHS

and then we associated some matrices (e and r) to them. The situation for defining

composition is similar, but this time we first observe the overall effect (its dynamics, i.e.

matrices e and r) of the production and then decide its left and right hand sides.

Assume sn � pn; . . . ; p1 is coherent, then the composition of its productions is again

a production defined by the rule c � pn � pn�1 � . . . � p1.
30 The description of its erasing

and its addition matrices e and r are given by equations:

SE � ņ

i�1

�
rE
i � eE

i

�
(4.67)

SN � ņ

i�1

�
rN
i � eN

i

�
. (4.68)

Due to coherence we know that elements of SE and SN are either �1, 0 or �1, so

they can be split into their positive and negative parts,

SE � rE� � eE�, SN � rN� � eN� , (4.69)

where all r� and e� elements are either zero or one. We have:

Proposition 4.5.3 Let sn � pn; . . . ; p1 be a coherent and compatible concatenation of

productions. Then, the composition c � pn � pn�1 � . . . � p1 defines a production with

matrices rE � rE� , rN � rN� and eE � � eE�, eN � � eN� .

30 The concept and notation are those commonly used in mathematics.

4.5 Composition and Compatibility 107

Proof�Follows from comments above.�

The LHS is the minimal digraph necessary to carry out all operations specified by

the composition (plus those preserved by the productions). As it is only one production,

its LHS equals its erasing matrix plus preserved elements and its right hand side is just

the image. The concept of composition is closely related to the formula which outputs

the image of a compatible and coherent sequence. Refer to corollary 4.4.3.

Note that preserved elements do depend on the order of productions in the sequence.

For example, sequence s3 � p3; p2; p1 first preserves (appears in L1 and R1) then deletes

(p2) and finally adds (p3) element α. This element is necessary in order to apply s3.

However, the permutation p13 � p2; p1; p3 first adds α, then preserves it and finally deletes

it. It cannot be applied if the element is present.

Corollary 4.5.4 With the notation as above, c pMnq � sn pMnq.
Composition is helpful when we have a coherent concatenation and intermediate states

are useless or undesired. It will be utilized in sequential independence and explicit par-

allelism (see Secs. 6.2 and 6.4).

Fig. 4.20. Composition and Concatenation of a non-Compatible Sequence

108 4 Matrix Graph Grammars Fundamentals

Example.�We finish this section considering sequence s3 � q3; q2; q1 again, cal-

culating its composition c3 and comparing its result with that of s3. Recall that

SE ps3q � °3

i�1

�
rE
i � eE

i

� � rE� � eE�.

3̧

i�1

rE
i � ����� 1 1 0 0 1 | 2

1 1 0 0 0 | 3
1 1 1 0 0 | 5
0 0 0 0 0 | 1
0 0 0 0 0 | 4����� 3̧

i�1

eE
i � ����� 0 1 0 0 1 | 2

1 0 0 0 0 | 3
1 0 1 0 0 | 5
0 0 0 1 0 | 1
0 0 0 0 0 | 4�����

SE ps3q������ 1 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 0 0 �1 0
0 0 0 0 0

�����������1 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0

�����������0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0

������ rE��eE�.
Sequence s3 has been chosen not only to illustrate composition, but also compatibility

and the sort of problems that may arise if it is not fulfilled. In this case, q3 deletes node

3 and edge (3,2) but does not specify anything about edges (3,3) and (3,5) – the red

dotted elements in Fig. 4.20 –. In order to apply the composition, either the composed

production is changed by considering these elements or elements have to be related in

other way (in this case, unrelated).�

Previous example provides us with some clues with the way the match could be de-

fined. The basic idea is to introduce an operator over the set of productions, so once a

match identifies a place in the host graph where the rule might be applied, the opera-

tor modifies the rule enlarging the deletion matrix so that no dangling edge appear (it

should enlarge the grammar rule to include the context of the original rule in the graph,

adding all elements on both LHS and RHS). In essence, a match should be an injective

morphism (in Matrix Graph Grammars) plus an operator. Pre-calculated information for

coherence, sequentialization, and the like, should help and hopefully reduce the amount

of calculations during runtime. We will study this in Chap. 5.

This section ends noting that, in Matrix Graph Grammars, one production is a mor-

phism between two simple digraphs and thus it may carry out just one action on each

element. When the composition of a concatenation is performed we get a single produc-

tion. Suppose one production specifies the deletion of an element and another its addition,

the overall mathematical result of the composition should leave the element unaltered.

4.6 Summary and Conclusions 109

When a match is considered, depending on the chosen approach, all dangling edges in-

cident to those erased nodes should be removed, establishing an important difference

between a sequence and its composition.

4.6 Summary and Conclusions

In this chapter we have introduced two equivalent definitions of production, one empha-

sizing the static part of grammar rules and the other stressing its dynamics.

Also, completion has been addressed. To some extent it allows us to study productions,

forgetting about the state to which the rule is to be applied. It provides a mean to relate

elements in different graphs, a kind of horizontal identification of elements among the

rules in a sequence.

Sequences of productions have been introduced together with compatibility and co-

herence. The first ensures that the underlying structure (simple digraph) is kept, i.e. it is

closed under the operations defined in the sequence. Coherence guarantees that actions

specified by one production do not disturb productions following it.

Coherence can be compared with critical pairs, used in the categorical approach to

graph grammars to detect conflicts between grammar rules. There are differences though.

The main one is that coherence in our approach covers any finite sequence of productions

while critical pairs are limited to two productions. Among other things, coherence would

be able to detect if a potential problem between two productions is actually fixed by

some intermediate rule.

Minimal and negative initial digraphs are of fundamental importance, demanding the

minimal (maximal) set of elements that must be found (must not be found) in order

to apply the sequence under consideration. In particular they will be used to give one

characterization of the applicability problem (problem 1).

Also, composition and the main differences between this and concatenation have

been addressed. Composition can be a useful tool to study concurrency. Recall from Sec.

4.5 that differences in the image of the composition are not due to the order in which

operations are performed but in those elements needed by the productions, i.e. in the

initial digraph. This also gives information on initial digraphs and its calculation. This

topic – which we call G-congruence – will be addressed in deeper detail in Sec 6.1.

110 4 Matrix Graph Grammars Fundamentals

So far we have developed some analytical techniques independent (to some extent)

of the initial state of the system to which grammar rules are applied. This allows us to

obtain information about grammar rules themselves, for example at design time. This

information may be useful during runtime. We will return to this point in future chapters.

Chapter 5 starts with the semantics of a grammar rule application, so a host graph

or initial state will be considered. Among other things the fundamental concept of direct

derivation is introduced. We will see what can be recovered of what we have developed

so far and how it can be used.

5

Matching

There are two fundamental parts in a grammar: Actions to be performed in every single

step (grammar rules) and where these actions are to be performed in a system (matching).

Previous chapter deals with the former and this chapter with the latter. Also, restrictions

on the aplicability of rules and their embedding in the host graph need to be addressed.

This topic is studied in Chap. 7.

If a rule is applied we automatically have the pair (production, match) – normally

called direct derivation – which in essence specifies what to do and where to do it. If

instead of a single rule we consider a sequence with their corresponding matches then we

will speak of derivation. These initial definitions, together with the matching are studied

in Sec. 5.1 in which we will make use of some functional analysis notation (see Sec. 2.5).

When a match is considered, there is the possibility that a new production (so called

ε-production) is concatenated to the original one.1 Both productions must be applied

(matched) to the same nodes. The mechanism to obtain this effect can be found in Sec.

5.2 (marking). An important issue is to study to what extent the notions introduced at

specification time (coherence, composition, etcetera) can be recovered when a host graph

is considered. They will be revisited considering minimal and negative initial digraphs

(see Sec. 4.4) in a wider context in Sec. 5.3. A classification of ε-productions – helpful in

Chap. 8 – is accomplished in Sec. 5.4. The chapter ends with a summary in Sec. 5.5.

1 ε-productions take care of those edges – dangling edges – not specified by the production and

incident to some node that is going to be deleted.

112 5 Matching

5.1 Match and Extended Match

Matching is the operation of identifying the LHS of a rule inside a host graph. This

identification is not necessarily unique, becoming one source of non determinism.2 The

match can be considered as one of the ways of completing L with respect to G.

Definition 5.1.1 (Match) Given a production p : LÑ R and a simple digraph G, any

tuple m � pmL,mNq is called a match (for p in G), with mL : LÑ G and mN : NE Ñ
GE total injective morphisms. Besides,

mLpnq � mN pnq,�n P LN . (5.1)

The two main differences with respect to matches as defined in the literature is that

definition 5.1.1 demands the non-existence of potential problematic elements and that m

must be injective.

It is useful to consider the structure defined by the negation of the host graph, G �pGE , GN q. It is made up of the graph GE and the vector of nodes GN . Note that the

negation of a graph is not a graph because in general compatibility fails. Of course, the

adjacency matrix alone
�
GE

	
does define a graph.

The negation of a graph is equivalent to taking its complement. In general this com-

plement will be taken inside some “bigger graph”, normally constructed by performing

the completion with respect to other graphs involved in the operations. For example,

when checking if graph A is in GE (suppose that A has a node that is not in G) we

obtain that A cannot be found in GE , unless GE is previously completed with that node

and all its incident edges.

Notice that the negation of a graph G coincides with its complement. Probably it

should be more appropriate to keep the negation symbol (the overline) when there is no

completion (in other words, complement is taken with respect to the graph itself) and

use c when other graphs are involved. From now on the overline will be used in all cases.

This notational abuse should not be confusing.

2 In fact there are two sources of non-determinism. Apart from the one already mentioned, the

rule to be applied is also chosen non-deterministically.

5.1 Match and Extended Match 113

Next, a notion of direct derivation that covers not only elements that must be present

(L) but also those that should not appear (N) is presented. This extends the concept of

derivation found in the literature, which only considers explicitly positive information.

NE

mN

L

mL

p

R

m�
L

GE G
p� H

Fig. 5.1. Production Plus Match (Direct Derivation)

Definition 5.1.2 (Direct Derivation) Given a production p : L Ñ R as in Fig. 5.1

and a match m � pmL,mN q, d � pp,mq is called a direct derivation with result H �
p� pGq if the square is a pushout:

m�
L � p pLq � p� �mL pLq . (5.2)

The standard notation in this case is G
pp,mqùñ H, or even G ùñ H if p, m or both are

not relevant.

We will see below that it is not necessary to rely on category theory to define direct

derivations in Matrix Graph Grammars. It is included to ease comparison with DPO and

SPO approaches.

Figure 5.1 displays a production p and a match m for p in G. It is possible to close the

diagram making it commutative pm� � p � p� �mq, using the pushout construction [22]

on category GraphP of simple digraphs and partial functions. This categorical construc-

tion for relational graph rewiting is carried out in [51]. See Sec. 3.6 for a quick overview

on the relational approach.3

3 There is a slight difference, though, as we have a simpler case. We demand matchings to be

injective which, by Prop. 2.6 in [51], implies that comatches are injective.

114 5 Matching

If a concatenation s � pn; . . . ; p1 is considered together with the set of matchings

m � tm1, . . . ,mnu, then d � ps,mq is a derivation. In this case the notation G ùñ� H
is used.

When applying a rule to a host graph, the main problem to concentrate on is that of

so-called dangling edges, which is differently addressed in DPO and SPO (see Secs. 3.1

and 3.2). In DPO, if one edge comes to be dangling then the rule is not applicable for

that match. SPO allows the production to be applied by deleting any dangling edge.

For Matrix Graph Grammars we propose an SPO-like behaviour as in our case a DPO-

like behaviour4 would be a particular case if compatibility is considered as an application

condition (see Chap. 7).5

L

c

p

R

c�
L

mG

mL

p

R

m�
L

G

mε

p� H

m�
ε

G pp� H

L

iL

mG

mL

p

R

iR

m�
L

GiG

mε

p�
H

iH

m�
εL�Gxm pp R�H xm�

G
pp�

H

Fig. 5.2. (a) Neighbourhood. (b) Extended Match

Figure 5.2 shows our strategy to handle dangling edges:

1. Complete L with respect to G (c and c� on the left of Fig. 5.2). It is necessary to

match L in G to this end.6

2. Morphism mL will identify rule’s left hand side (after completion) in the host graph.

4 In future sections we will speak of fixed and floating grammars, respectively.
5 If ε-productions are not allowed and a rule can be applied if the output is again a simple

digraph (compatibility) then we obtain a DPO-like behaviour.
6 Abusing a little of the notation, graphs before completion and after completion are represented

with the same letter, L and R.

5.1 Match and Extended Match 115

3. A neighbourhood of mpLq � G covering all relevant extra elements is selected taking

into account all dangling edges not considered by match mL with their correspond-

ing source and target nodes. This is performed by a morphism to be studied later,

represented by mε.

4. Finally, p is enlarged erasing any potential dangling edge. This is carried out by an

operator that we will write as Tε. See definition below.

The order of previous steps is important as potential dangling elements must be

identified and erased before any node is deleted by the original rule.

The coproduct in Fig. 5.2 should be understood as a means to couple L and G. The

existence of a morphism p� that closes the top square on the right of Fig. 5.2 is not

guaranteed. This is where mε comes in. This mapping, as explained in point 2 above,

extends the production to consider any edge to distance 1 from nodes appearing in the

left hand side of p. The idea may resemble analytical continuation in complex variable,

when a function defined in a smaller domain is uniquely extended to a larger one.

Note that if it is possible to define p� (to close the square) then mε would be the

identity, and viceversa. In other words, if there are no dangling edges then it is possible

to make the top square in Fig. 5.1 commute and, hence, it is not necessary to carry out

any production “continuation”. The converse is also true.

Γ XmpLq mpLq
Γ Γ YmpLq

Fig. 5.3. Match Plus Potential Dangling Edges

Let be given a production p : L Ñ R, a host graph G and a match m : L Ñ G.

The graph Γ is the set of dangling edges together with their source and target nodes.

Abusing a little bit of notation (justified by the pushout construction in Fig. 5.3) we will

write Γ YmpLq for the graph consisting of the image of L by the match plus its potential

116 5 Matching

dangling edges (and any incident node). Recall nihilation matrix definition, especially

lemma 4.4.5.

Definition 5.1.3 (Extended Match) With notation as above (refer also to Fig. 5.2),

the extended match pm : L�GÑ G is a morphism with image Γ Ym pLq.
As commented above, coproduct in Fig. 5.2 is used just for coupling L and G, being

the first embedded into the second by morphism mL. We will use the notation

L
def� mG pLq def� pmε �mq pLq (5.3)

when the image of the LHS is extended with its potential dangling edges, i.e. extended

digraphs are underlined and defined by composing m and mε.
7

Fig. 5.4. Matching and Extended Match

Example.�Consider the digraph L1, the host graph G and the morphism match

depicted on the left of Fig. 5.4. On the top right side in the same figure m1pL1q is drawn

and mG pL1q on the bottom right side. Nodes 2 and 3 and edges p2, 1q and p2, 3q have

7 There is a notational trick here, where “continuation” is represented as composition of mor-

phisms pmL � mεq. This is not correct unless, as explained in Sec. 4.2, matrices are completed.

Recall that completion extends the domain of morphisms (intepreting matrices as morphisms

between digraphs). This is precisely step 1 on p. 1.

5.1 Match and Extended Match 117

been added to mG pLq which would become dangling in the image “graph” of G by p1 (as

it can not be defined it has been drawn shadowed). This is the reason why p�1 can not be

defined, as node p1 : Cq would be deleted but not edges p1 : C, 2 : Cq nor p1 : C, 1 : Sq.
H 1 would not be a digraph.

As commented above, the composition is performed becausem1 andmε,1 are functions

between boolean matrices that have been completed.�

Actually it is not necessary to rely on category theory to define direct derivations.

The basic idea is given precisely by that of analytical continuation. What morphism mε

does is to extend the left hand side of the production, i.e. it adds elements to L. As

matches are total functions, they can not delete elements (nodes or edges) in contrast

with productions.

Hence, a match can be seen as a particular type of production with left hand side

L and right hand side G. The LHS of the production is enlarged with any potential

dangling edge and the same for the RHS except for edges incident to nodes deleted by

the production (as they are not added to its RHS, these edges will be deleted). This way,

a direct derivation would be

H � pppmpLqq. (5.4)

Advancing some material from next section, m is essentially used to mark nodes in

which p acts. Production p is the identity in almost all elements except in some nodes

(edges) marked by m.8

The rest of the section is devoted to the interpretation of this “continuation technique”

as a production, in particular that of mε.

Once we are able to complete the rule’s LHS we have to do the same with the rest of

the rule. To this end we define an operator Tε : G Ñ G1, where G is the original grammar

and G1 is the grammar transformed once Tε has modified the production. In words, Tε

extends production p such that Tεppq has the same effect than p but also deletes any

dangling edge.

The notation that we use from now on is borrowed from functional analysis (see Sec.

2.5). Bringing this notation to graph grammar rules, a rule is written as R � xL, py
8 Note that p’s erasing and addition matrices, although as big as the entire system state –

probably huge –, are zero almost everywhere.

118 5 Matching

(separating the static and dynamic parts of the production) while the grammar rule

transformation including matching is:

R � xmG pLq , Tεpy . (5.5)

Proposition 5.1.4 With notation as above, production p can be extended to consider

any dangling edge, R � xmG pLq , Tεpy.
Proof�What we do is to split the identity operator in such a way that any problematic element

is taken into account (erased) by the production. In some sense, we first add elements

to p’s LHS and afterwards enlarge p to delete them. Otherwise stated, m�
G � T�1

ε and

T �ε � m�1
G , so we have:

R � xL, py � �
L,

�
T�1

ε � Tε

�
p
D � xmG pLq , Tε ppqy � R.

The equality R � R is valid only for edges as RN has source and target nodes of dangling

edges.�

The effect of a match can be interpreted as a new production concatenated to the

original production. Let pε
def� T �ε ,

R � xmG pLq , Tε ppqy � xT �ε pmG pLqq , py � (5.6)� p pT �ε pmG pLqqq � p ; pε ; mG pLq � p ; pε pLq .
Production pε is the ε-production associated to production p. Its aim is to delete

potential dangling edges. The dynamic definition of pε is given in (5.7) and (5.8).

The fact of taking the match into account can be interpreted as a temporary modifi-

cation of the grammar, so it can be said that the grammar modifies the host graph and

the host graph interacts with the grammar (altering it temporarily).

If we think of mG and T �ε as productions respectively applied to L and mG pLq, it

is necessary to specify their erasing and addition matrices. To this end, recall matrix D

defined in lemma 4.4.5, with elements in row i and column i equal to one if node i is to

be erased by p and zero otherwise, which considers any potential dangling edge.

For mG we have that eN � eE � 0, and r � LL (for both nodes and edges),

as the production has to add the elements in L that are not present in L. Let pε ��
eE

Tε
, rE

Tε
, eN

Tε
, rN

Tε

�
, then

5.1 Match and Extended Match 119

eN
Tε
� rE

Tε
� rN

Tε
� 0 (5.7)

eE
Tε
� D ^ LE . (5.8)

Example.�Consider rules depicted in Fig. 5.5, in which serverDown is applied to

model a server failure. We have:

eE � rE � LE � �
0 1

�
; eN � �

1 1
�

rN � �
0 1

�
; LN � �

1 1
�
; RE � RN � H.

Once mG � �
LE , LN , rE , 0, 0, 0

�
and operator Tε have been applied, giving rise to

pε � �
LE , LN , 0, 0, eE

Tε
, 0
�
, the resulting matrices are:

rE � �� 0 0 0
1 0 0
1 0 0

�� ; LE � �� 0 0 0
1 0 0
1 0 0

�� ; RE � �
0 0
0 0

�
; eE

Tε
� �� 0 0 0

1 0 0
1 0 0

��
where ordering of nodes is r1 : S, 1 : C, 2 : Cs for matrices rE , LE and eE

Tε
and r1 : C, 2 : Cs

for RE . Matrix rE , besides edges added by the production, specifies those to be added by

mG to the LHS in order to consider any potential dangling edge (in this case p1 : C, 1 : Sq
and p2 : C, 1 : Sq). As neither mG nor production serverDown delete any element, eE � 0.

Finally, pε removes all potential dangling edges (check out matrix eE
Tε

) but it does not

add any, so rE
Tε
� 0. Vectors for nodes have been omitted.�

Fig. 5.5. Full Production and Application

120 5 Matching

Let T �ε � �
T �ε N

, T �ε E
	

be the adjoint operator of Tε. We will end this section giving

an explicit formula for T �ε . Define eE
ε and rE

ε respectively as the erasing and addition

matrices of Tε ppq. It is clear that rE
ε � rE � rE and eE

ε � eE _DLE , so

RE � �
LE , Tε ppq D � rE

ε _ eE
ε L

E � rE _ �
eE _DLE

�
LE �� rE _ �

D _ LE
	
eELE � rE _ eEDLE . (5.9)

Previous identities show that RE � �
LE , TE

ε

�
pE

�D � �
DLE , pE

D
, which proves the

identity:

T �ε � �
T �ε N

, T �ε E
	 � pid,Dq . (5.10)

Summarizing, when a match m is considered for a production p, the production

itself is first modified in order to consider all potential dangling edges. Morphism m is

automatically transformed into a match which is free from any dangling element and, in

a second step, a pre-production pε is appended to form the concatenation9pp� � p� ; p�ε . (5.11)

Note that as injectiveness of matches is demanded, there is no problem such as ele-

ments identified by matches that on one hand are deleted and on the other are kept.

Depending on the operator Tε, side effects are permitted (SPO-like behaviour) or

not (DPO-like behaviour). A fixed grammar or fixed Matrix Graph Grammar is one in

which (mandatorily) the operator Tε is the identity. If the operator is not forced to be

the identity, we will speak of a floating grammar or floating Matrix Graph Grammar.

Notice that the existence of side effects is equivalent to transforming a production into a

sequence. This will also be the case when we deal with graph constraints and application

conditions (Chap 7).

5.2 Marking

In previous section the problem of dangling edges has been addressed by adding an ε-

production which deletes any problematic edge, so the original rule can be applied as it is.

9 It is also possible to define it as the composition: pp� � p� � p�ε .

5.2 Marking 121

However there is no way to guarantee that both productions will use the same elements

(recall that in general matches are non-deterministic). The same problem exists with

application conditions (Sec. 7.3) or whenever a rule is split into subrules and applying

them to the same elements in the host graph is desired.

This topic is studied in [70] (for a different reason) and the solution proposed there is

to “pass” the match from one production to the other. We will tackle this problem in a

different way that consists in defining an operator Tµ,α for a label α acting on production

p as follows:

• If no node is typed α in p then a new node labeled α is added and connected to every

already existing node.

• If, on the contrary, there exists a node of that type then it is deleted.

The basic idea is to mark nodes and related productions with a node of type α. The

operator behaves differently depending on whether it is marking the state (it adds node

α) or it is extending the productions (α-typed nodes are removed).

For an example of a short sequence of two productions, please refer to Fig. 5.6. Using

functional analysis notation:

R � xL, py ÞÝÑ R � xmεpLq, Tεppqy ÞÝÑ R � xmεpLq, Tµ � Tεppqy (5.12)

where, as in Sec. 5.1, R is the extended rule’s RHS that considers any dangling edge.

If a production is split into two subproductions, say p ÞÝÑ Tεppq � p ; pε and we want

them to be applied in the same nodes of the host graph, we may proceed as follows:

• Enlarge pε to add one node of some non-existent type (α) together with edges starting

in this node and ending in nodes used by pε.

• Enlarge p to delete α nodes mentioned in previous step.

It is important to note that p must be enlarged to delete only the previously added

node (α) and not the edges starting in α appended by Tµ to pε. The reason is that in case

of a sequence in which the ε-production is advanced several positions, there exists the

possibility to create unreal dependencies between p and some production applied before

p but after pε (the example below illustrates this point in particular).

122 5 Matching

Marking will normally create new ε-productions related to p. Note however that no

recursive process should arise as there shouldn’t be any interest in permuting (advancing)

this new ε-productions.

For ε-productions all this makes sense just in case we do not compose p�pε (no marking

would be needed). Two different operators, one for α nodes addition and another for α

nodes deletion (instead of just one) are not defined because marking always acts this

way. This should not cause any confusion.

Fig. 5.6. Example of Marking and Sequence s � p; pε

Example.�Figure 5.6 illustrates the process for a simple production p that deletes

node 1 and is applied to a host graph in which one or two dangling edges (depending on

the match, 1 or 11) would be generated, p1, 2q or p11, 2q and p11, 3q.
We have chosen node 1 for the match so there should be one dangling edge p1, 2q. In

order to avoid it, an ε-production pε which deletes p1, 2q is appended to p.

The marking process modifies pε and p becoming pε ÞÑ Tµppεq and p ÞÑ Tµppq,
respectively. Note that Tµppq generates two dangling edges – pα, 1q and pα, 2q – so a new

ε-production p1ε oughts to be added.

When the production is applied, a sequence is generated as operators act on the

production – p ÞÑ Tεppq ÞÑ Tµ � Tεppq ÞÑ Tε � Tµ � Tεppq – giving rise to the following

sequence of productions:

p ÞÝÑ p ; pε ÞÝÑ Tµppq; p1ε;Tµppεq. (5.13)

5.3 Initial Digraph Set and Negative Digraph Set 123

The reason why it is important to specify only the new node deletion (α) and not the

edges starting in this node is not diffcult but may be a bit subtle. It has been mentioned

above. The rest of the example is devoted to explaining it.

If we specified the edges also, say pα, 1q and pα, 2q as above, then the transformed

production Tµppq would use node 2 as it should appear in its LHS and RHS (remember

that p did not act on node 2).

Now imagine that we are interested in advancing the ε-production three positions, for

example because we know that it is external (see Sec. 5.4) and independent: p ; pε; p2; p1 ÞÑ
p ; p2; p1; pε. Suppose that production p1 (placed between p and the new allocation of pε)

deletes node 2 and production p2 adds it. If p was sequential independent with respect

to p1 and p2 then it would not be anymore due to the edge ending in node 2 because

now p uses node 2 (appears in its left and right hand sides).�

Note that as the marking process can be easily automated, we can safely ignore it and

assume that it is somehow being performed, by the runtime environment for example.

5.3 Initial Digraph Set and Negative Digraph Set

Concerning minimal and negative initial digraphs there may be different ways to complete

rule matrices, depending on the matches. Therefore, we no longer have a unique initial

digraph but a set (if we assume any possible match). In fact two sets, one for elements

that must be found in the host graph and another for those that must be found in its

complement. This section is closely related to Subsecs. 4.4.1 and 4.4.2 and extends results

therein proved.

The initial digraph set contains all graphs that can be potentially identified by

matches in concrete host graphs.

Definition 5.3.1 (Initial Digraph Set) Given sequence sn, its associated initial di-

graph set M psnq is the set of simple digraphs Mi such that �Mi PM psnq:
1. Mi has enough nodes and edges for every production of the concatenation to be applied

in the specified order.

2. Mi has no proper subgraph with previous property (keeping identifications).

124 5 Matching

Every element Mi P M psnq is said to be an initial digraph for sn. It is easy to see

that �sn finite sequence of productions we have M psnq � H.

In Sec. 4.3 coherence was used in a more or less absolute way when dealing with

sequences, assuming some horizontal identification of elements. Now we see that, due

to matching, coherence is a property that may depend on the given initial digraph so,

depending on the context, it might be appropriate to say that sn is coherent with respect

to initial digraph Mi (just in case direct derivations are considered). Note that what we

fix by choosing an initial digraph is the relative matching of nodes across productions

(one of the actions of completion).

For the initial digraph set we can define the maximal initial digraph as the element

Mn PM psnq that considers all nodes in pi to be different. This element is unique up to

isomorphism, and corresponds to considering the parallel application of every production

in the sequence, i.e. the LHS of every production in the sequence is matched in disjoint

parts of the host graph.

This concept has already been used although it was not explicitly mentioned: In the

proof of theorem 4.4.2 we started with
�n

i�1 Li, a digraph that had enough nodes to

perform all actions specified by the sequence.

In a similar way, Mi P M psnq in which all possible identifications are performed are

known as minimal initial digraphs. Contrary to maximal initial digraph, minimal initial

digraphs need not be unique as the following example shows.

Example.�In Fig. 5.7 we have represented the minimal digraph set for sequence s

= removeChannel;removeChannel. The production is also depicted in the figure where

S stands for server and C for client. Note that it is not coherent if all nodes in L3 are

identified because the link between two clients is deleted twice. Therefore, the initial

digraphs should provide at least (in fact, at most) two different links between clients.

In the figure we have associated colour orange to the maximal initial digraph and

blue to two (absolute) minimal initial digraphs (of course they are all minimal for some

appropriate identification of nodes). Identifications are written as i � j meaning that

nodes i and j become one and the same. A top-bottom procedure has been followed,

starting out with the biggest digraph M7 and ending in the smallest. Numbers on labels

are all different to ease identifications on the initial digraph tree on the the right of Fig.

5.7.�

5.3 Initial Digraph Set and Negative Digraph Set 125

Fig. 5.7. Initial Digraph Set for s=remove channel;remove channel

It is possible to provide some structure T psnq to set M psnq (see the right side of Fig.

5.7). Every node in T represents an element of M. A directed edge from one node to

another stands for one operation of identification between corresponding nodes in LHS

and RHS of productions of the sequence sn.

Following with the example above, node M7 is the maximal initial digraph, as it only

has outgoing edges. Nodes M1 and M3 are minimal as they only have ingoing edges.

The structure T is an acyclic digraph with single root node (recall that there is just one

maximal initial digraph), known as graph-structured stack.

It is possible to make a similar construction for negative initial digraphs that we will

call negative initial set. It will be represented by Npsnq where sn is the sequence under

study.

Definition 5.3.2 (Negative Initial Set) Given sequence sn, its associated negative

initial set N psnq is the set of simple digraphs Ni such that �Ni P N psnq:
1. Ni specifies all edges that can potentially prevent the application of some production

of sn.

2. Ni has no proper subgraph with previous property (keeping identifications).

126 5 Matching

Fig. 5.8. Negative Digraph Set for s=clientDown;clientDown

Example.�We study the sequence s=clientDown;clientDown very similar to that

in the example of p. 124 but deleting one node and two edges. It is depicted in Fig. 5.8

and represents the failure of a client connected to a server and to another client.

The same labeling criteria has been followed to ease comparison. Minimal digraphs are

very similar to those in Fig. 5.7 and in fact identifications have been performed such that

Ni corresponds to Mi. Graphs do not include all edges that should not appear because

there would be many edges, probably being a confusing instead of a clarifying example.

For instance, in N4 there can not be any edge incident to node 6 : C (except those coming

from 1 : S and 4 : S), in particular edge p2 : C, 6 : Cq which is not represented. Complete

graph N4 can be found in Fig. 5.9. Note that for N4 the order of deletion is important,

first node p2 : Cq and then node p3 : Cq.�
Fig. 5.9. Complete Negative Initial Digraph N4

5.4 Internal and External ε-productions 127

The relationship between elements in M and N is compiled in corollary 4.5.2. Note

that the cardinality of both sets do not necessarily coincide. In the example of p. 124,

production s does not add any edge nor deletes any node (hence, no forbidden element)

so its negative digraph set is empty.

Although in this dissertation we are staying at a more theoretical level, we will make

a small digression on application of these concepts and possible implementations.

Let’s take as an example the calculation of M0 in proposition 6.3.2, which states that

two derivations d and d1 are sequential independent if they have a common initial digraph

for some identification of nodes, i.e. if Mpdq XMpd1q � H. We see that it is possible to

follow two complementary approaches:

• Top-bottom. Begin with the maximal initial digraph and start identifying elements

until we get the desired initial digraph or eventually get a contradiction.

• Bottom-up. Start with different initial digraphs and unrelate nodes until an answer

is reached.

In Fig. 5.7 on p. 125 either we begin with M7 and start identifying nodes, eventually

getting any element of the minimal initial set, or we start with M1 – which is not neces-

sarily unique – and build up the whole set, or stop as soon as we get the desired minimal

initial digraph.

Let the matrix filled up with 1’s in all positions be represented by 1. For the first

case the following identity may be of some help:

Md �Md1 �MdMd1 _MdMd1 � 1. (5.14)

A SAT solver can be used on (5.14) to obtain conditions, setting all elements in M

as variables except those already known. In order to store M , binary decision diagrams

– BDD – can be employed. Refer to [8].

The same alternative processes might be applied to the negative initial set to even-

tually reach any of its elements.

5.4 Internal and External ε-productions

Dangling edges can be classified into two disjoint sets according to the place where they

appear, whether they have been added by a previous production or not.

128 5 Matching

For example, given sequence p2; p1, suppose that rule p1 uses but does not delete edgep4, 1q, that rule p2 specifies the deletion of node 1 and that we have identified both nodes

1. It is mandatory to add one ε-production pε,2 to the grammar with the disadvantage

that there is an unavoidable problem of coherence between p1 and pε,2 if we wanted to

advance the application of pε,2 to p1, i.e. they are sequentially dependent.

Hence, edges of ε-productions are of two different types:

• External. Any edge not appearing explicitly in the grammar rules, i.e. edges of the

host graph “in the surroundings” of the actual initial digraph.10 Examples are edgesp1 : C, 1 : Sq and p2 : C, 1 : Sq in Fig. 5.5 on p. 119.

• Internal. Any edge used or appended by a previous production in the concatenation.

One example is edge p4, 1q mentioned above.

ε-productions can be classified in internal ε-productions if any of its edges is internal

and external ε-productions otherwise.

The “advantage” of internal over external ε-productions is that the former can be

considered (are known) during rule specification while external remain unknown until

the production is applied. This, in turn, may spoil coherence, compatibility and other

calculations performed during grammar definition.

On the other hand, external ε-productions do not interfere with grammar rules so

they can be advanced to the beginning and even composed to get a single production if

so desired (these are called exact derivations, defined below).

Fig. 5.10. Example of Internal and External Edges

10 Among all possible initial digraphs in the initial digraph set for a given concatenation, if one

is already fixed (matches have already been chosen), it will be known as actual initial digraph.

5.4 Internal and External ε-productions 129

Example.�Let’s consider derivation d2 � p2; p1 (see Fig. 5.10). Edge p1, 2q in graph

G1 is internal (it has been added by production p1) while edge p2, 3q in the same graph

is external (it already existed in G0).�

Given a host graph G in which sn – coherent and compatible – is to be applied,

and assuming a match which identifies sn’s actual initial digraph (Mn) in G (defining

a derivation dn out of sn), we check whether for some pm and xTε, which respectively

represent all changes to be done to Mn and all modifications to sn, it is correct to write

Hn � dn pMnq � Apm pMnq ,xTε psnqE , (5.15)

where Hn is the subgraph of the final state H corresponding to the image of Mn.

Equation (4.55) allows us to consider a concatenation almost as a production, justi-

fying operators xTε and pm and our abuse of notation (recall that bra and kets apply to

productions and not to sequences).

All previous considerations together with the following example are compiled into the

definition of exact sequence.

Example.�Let s2 � p2; p1 be a coherent and compatible concatenation. Using oper-

ators we can write

H � xmG,2 pxmG,1 pM2q , Tε,1 pp1qyq , Tε,2 pp2qy , (5.16)

which is equivalent to H � p2; pε,2; p1; pε,1

�
M2

�
, with actual initial digraph twice mod-

ified M2 � mG,2 pmG,1 pM2qq � pmG,2 �mG,1q pM2q. �

Definition 5.4.1 (Exact Derivation) Let dn � psn,mnq be a derivation with actual

initial digraph Mn, sequence sn � pn; . . . ; p1, matches mn � tmG,1, . . . ,mG,nu and ε-

productions tpε,1, . . . , pε,nu. It is an exact derivation if there exist pm and pTε such that

equation (5.15) is fulfilled.

Equation (5.15) is satisfied if once all matches are calculated, the following identity

holds:

pn; pε,n; . . . ; p1; pε,1 � pn; . . . ; p1; pε,n; . . . ; pε,1. (5.17)

Proposition 5.4.2 With notation as in definition 5.4.1, if pε,jK ppj�1; . . . ; p1q, �j, then

dn is exact.

130 5 Matching

Proof�Operator xTε modifies the sequence adding a unique ε-production, the composition of all

ε-productions pε,i. To see this, if one edge is to dangle, it should be eliminated by the

corresponding ε-production so no other ε-production deletes it unless it is added by a

subsequent production. But by hypothesis there is sequential independence of every pε,j

with respect to all preceeding productions and hence pε,j does not delete any edge used

by pj�1, . . . , p1. In particular no edge added by any of these productions is erased.

In definition 5.4.1, pm is the extension of the match m which identifies the actual

initial digraph in the host graph, so it adds to m pMnq all nodes and edges to distance

one to nodes that are going to be erased. A symmetrical reasoning to that of xTε shows

that pm is the composition of all mG,i. �

With definition 5.4.1 and proposition 5.4.2 it is feasible to obtain a concatenation

where all ε-productions are applied first, and all grammar rules afterwards, recovering the

original concatenation. Despite some obvious advantages, all dangling edges are deleted

at the beginning which may be counterintuitive or even undesired if, for example, the

deletion of a particular edge is used for synchronization purposes.

The following corollary states that exactness can only be ruined by internal ε-

productions.

Corollary 5.4.3 Let sn be a sequence to be applied to a host graph G and Mk PM psnq.
Assume there exists at least one match in G for Mk that does not add any internal

ε-production. Then, dn is exact.

Proof (sketch)�All potential dangling elements are edges surrounding the actual initial digraph. It

is thus possible to adapt the part of the host graph modified by the sequence at the

beginning, so applying proposition 5.4.2 we get exacteness. �

5.5 Summary and Conclusions

In this chapter we have seen how it is possible to match the left hand side of a production

in a given graph. We have not given a matching algorithm, but the construction of

derivations out of productions.

5.5 Summary and Conclusions 131

There are two properties that we would like to highlight. The expressive power of

Matrix Graph Grammars lies in between that of other approaches such as DPO and

SPO:

• We find it more intuitive and convenient to demand injectiveness on matches. This can

be seen as a limitation on the semantics of the grammar but, on the other hand, not

asking for injectiveness might present a serious problem. For example, when injectivity

is necessary for some rules or non-injectivity is not allowed in some parts of the host

graph. In a limit situation, it can be the case that several nodes and edges collapse

to a single node and a single edge.

• Rules can be applied even if they do not consider every edge that can appear in

some given state. The grammar designer can concentrate on the algorithm at a more

abstract level, without worrying about every single case in which a concrete rule needs

to be applied.11

An advantage of ε-productions over previous approaches to dangling edges is that

they are erased by productions. This increases our analysis abilities as there are no side

effects.

We have also introduced marking, useful in many situations in which it is necessary

to guarantee that some parts of two or more rules will be matched in the same area of

the host graph. It will be used throughout the rest of the dissertation.

Initial and negative digraph sets are a generalization of minimal and negative initial

digraphs in which some or all possible identifications are considered. Actually, these

concepts could have been introduced in Chap. 4, but we have postponed their study

because we find it more natural to consider them once the matching has been introduced.

We have classified the productions generated at run-time in internal and external.

In fact, it would be more appropriate to speak of internal and external edges, but this

classification suffices for our purposes.

11 In cases of hundreds of rules, when every rule adds and deletes nodes and edges, it can be

very difficult to keep track if some actions are still available. The canonical example would be

a rule p that deletes some special node but can not be applied because some other production

eventually added one incident edge that is not considered in the left hand side of p.

132 5 Matching

We are now in the position to characterize applicability, problem 1 stated on p. 7.

In essence, applicability characterizes when a sequence is a derivation with respect to a

given initial graph.

Theorem 5.5.1 (Applicability Characterization) A sequence sn is applicable to G

if there are matches for every production (define the derivation dn as the sequence sn

plus these matches) such that any of the two following equivalent conditions is fulfilled:

• Derivation dn is coherent and compatible.

• dn’s minimal initial digraph is in G and dn’s negative initial digraph is in G.

Proof��
Applicability will be used in Chap. 7 to characterize consistency of application con-

ditions and graph constraints.

In the next chapter sequentialization and parallelism are studied in detail. Problem

3, sequential independence (stated on p. 8), will be addressed and, in doing so, we will

touch on parallelism and related topics.

Chapter 7 generalizes graph constraints and application conditions and adapts them

for Matrix Graph Grammars. This step is not necessary but convenient to study reach-

ability, problem 4 stated on p. 8, which will be carried out in Chap. 8.

6

Sequentialization and Parallelism

In this chapter we will study in some detail problem 3 (sequential independence, p. 8)

which is a particular case of problem 2 (independence, p. 8). Recall from Chap. 1 that

two derivations d and d1 are independent for a given state G if dpGq � H � H 1 � d1pGq.
We call them sequential independent if, besides, D σ permutation such that d1 � σpdq.

Applicability (problem 1) is one of the premises of independence, establishing an obvi-

ous connection between them. In Chap. 8 we will sketch the relationship with reachability

(problem 4) and conjecture one with confluence (problem 5) in Chap. 9.

In Sec. 6.1 G-congruence is presented, which in essence poses conditions for two

derivations (one permutation of the other) to have the same minimal and negative initial

digraphs. The idea behind sequential independence is that changes of order in the position

of productions inside a sequence do not alter the result of their application. This is

addressed in Sec. 6.2 for sequences and in Sec. 6.3 for derivations. If a quick review of

permutation groups notation is needed, please see Sec. 2.3. In Sec. 6.4 we will see that

there is a close link between sequential independence and parallelization (see Church-

Rosser theorems in, e.g. [11]). As in every chapter, we will close with a summary (Sec.

6.5).

134 6 Sequentialization and Parallelism

6.1 G-Congruence

Sameness of minimal and negative initial digraphs for two sequences – one a permutation

of the other – or for two derivations if some matches have been given, will be known as

G-congruence. This concept helps in characterizing sequential independence.

Definition 6.1.1 (G-congruence) Two coherent sequences sn and σ psnq, where σ is

a permutation, are called G-congruent if they have the same minimal and negative initial

digraphs, Msn
�Mσpsnq and Nsn

� Nσpsnq.
We will identify the conditions that must be fulfilled in order to guarantee equality of

initial digraphs, first for productions advancement and then for delaying, starting with

two productions, continuing with three and four to end up setting the theorem for the

general case.

The basic remark that justifies the way we tackle G-congruence is that a sequence

and a permutation of it perform the same actions but in different order. Initial digraphs

depend on actions and the order in which they are performed. The idea is to concentrate

on how a change in the order of actions may affect initial digraphs.

Suppose we have a coherent sequence made up of two productions s2 � p2; p1 with

minimal initial digraphM2 and, applying the (only possible) permutation σ2, get another

coherent concatenation s12 � p1; p2 with minimal initial digraph M 1
2. Production p1 does

not delete any element added by p2 because, otherwise, if p1 in s2 deleted something,

it would mean that it already existed (as p1 is applied first in s2) while p2 adding that

same element in s12 would mean that this element was not present (because p2 is applied

first in s12). This condition can be written:

e1r2 � 0. (6.1)

A similar reasoning states that p1 can not add any element that p2 is going to use:

r1L2 � 0. (6.2)

Analogously for p2 against p1, i.e. for s12 � p1; p2, we have:

e2r1 � 0 (6.3)

r2L1 � 0. (6.4)

6.1 G-Congruence 135

As a matter of fact two equations are redundant – (6.1) and (6.3) – because they are

already contained in the other two. Note that eiLi � ei, i.e. in some sense ei � Li, so it

is enough to ask for:

r1L2 _ r2L1 � 0. (6.5)

It is easy to check that these conditions make minimal initial digraphs coincide,

M2 �M 1
2. In detail:

M2 �M2 _ r1L2 � L1 _ r1L2 _ r1L2 � L1 _ L2

M 1
2 �M 1

2 _ r2L1 � L2 _ r2L1 _ r2L1 � L2 _ L1.

We will very briefly compare conditions for two productions with those of the SPO

approach. In references [23; 24], sequential independence is defined and categorically

characterized (see also Secs. 3.1 and 3.2, in particular equations 3.5 and 3.6). It is not

difficult to translate those conditions to our matrix language:

r1L2 � 0 (6.6)

e2R1 � e2r1 _ e2 e1 L1 � 0. (6.7)

First condition is (6.2) and, as mentioned above, first part of second condition

(e2r1 � 0) is already considered in (6.2). Second part of second equation (e2 e1 L1 =

0) is demanded for coherence, in fact something a bit stronger: e2L1 � 0. Hence G-

congruence plus coherence imply sequential independence in the SPO case, at least for a

sequence of two productions. The converse does not hold in general. Our conditions are

more demanding because we consider simple digraphs.

Let’s now turn to the negative initial digraph, for which the first production should

not delete any element forbidden for p2 (in such a case these elements would be in G for

p1; p2 and in G for p2; p1):

0 � e1N2 � e1r2 _ e1e2D2. (6.8)

Note that we already had e1r2 � 0 in equation (6.1). A symmetrical reasoning yields

e2e1D1 � 0, and altogether:

e1e2D2 _ e2e1D1 � 0. (6.9)

136 6 Sequentialization and Parallelism

First monomial in (6.9) simply states that no potential dangling edge for p2 (not

deleted by p2) can be deleted by p1. Equations (6.5) and (6.9) are schematically repre-

sented in Fig. 6.1.

Fig. 6.1. G-congruence for s2 � p2; p1

It is straightforward to show that equation (6.9) guarantees the same negative initial

digraph. In p2; p1 the negative initial digraph is given by N1 _ e1N2. Condition (6.8)

demands e1N2 � 0 so we can or them to get:

N1 _ e1N2 _ e1N2 � N1 _N2. (6.10)

A similar reasoning applies to p1; p2, obtaining the same result.

We will proceed with three productions so, following a consistent notation, we set

s3 � p3; p2; p1, s
1
3 � p2; p1; p3 with permutation σ3 � r 1 3 2 s and their corresponding

minimal initial digraphs M3 � L1 _ r1 L2 _ r1 r2 L3 and M 1
3 � r3 L1 _ r3 r2 L2 _ L3.

Conditions are deduced similarly to the two productions case:1

r3L1 � 0 r3L2r1 � 0 r1L3 � 0 r2L3e1 � 0. (6.11)

Let’s interpret them all. r3L1 � 0 says that p3 cannot add an edge that p1 uses. This

is because this would mean (by s3) that the edge is in the host graph (it is used by p1)

but s13 says that it is not there (it is going to be added by p3). The second condition is

almost equal but with p2 in the role of p1, which is why we demand p1 not to add the

1 As far as we know, there is no rule of thumb to deduce the conditions for G-congruence. They

depend on the operations that productions define and their relative order.

6.1 G-Congruence 137

element pr1q. Third equation is symmetrical with respect to the first. The fourth states

that we would derive a contradiction if the second production adds something pr2q that

production p3 uses pL3q and p1 does not delete pe1q. This is because by s3 the element

was not in the host graph. Note that s13 says the opposite, as p3 (to be applied first) uses

it. All can be put together in a single expression:

L3 pr1 _ e1 r2q _ r3 pL1 _ r1 L2q � 0. (6.12)

For the sake of completeness let’s point out that there are other four conditions but

they are already considered in (6.12):

e1r3 � 0 r3e2r1 � 0 e3r1 � 0 r2e3e1 � 0. (6.13)

Now we deal with those elements that must not be present. Four conditions similar

to those for two productions – compare with (6.8) – are needed:

e1N3 � e1r3 _ e1e3D3 � 0

e3N1 � e3r1 _ e3e1D1 � 0

e3N2e1 � e3r2e1 _ e3e1e2D2 � 0

e2N3r1 � e2r3r1 _ e2r1e3D3 � 0. (6.14)

Note that first monomial in every equation can be discarded as they are already

considered in (6.12). We put them altogether to get:

e1e3D3 _ e3e2e1D2 _ e3e1D1 _ e2e3r1D3 �� e3
�
e1D1 _ e1e2D2

�_ e3D3 pe1 _ r1e2q . (6.15)

In Fig. 6.2 there is a schematic representation of all G-congruence conditions for

sequences s3 � p3; p2; p1 and s13 � p2; p1; p3. These conditions guarantee sameness of

minimal and negative initial digraphs, which will be proved below, in theorem 6.1.6.2

Moving one production three positions forward in a sequence of four productions,

i.e. p4; p3; p2; p1 ÞÑ p3; p2; p1; p4, while maintaining the minimal initial digraph has as

associated conditions those given by the equation:

2 Notice that by Prop. 4.1.4, equations (4.10) and (4.13) in particular, we can put riLi instead

of just Li and eiri instead of just ri. It will be useful in order to find a closed formula in

terms of ∇.

138 6 Sequentialization and Parallelism

Fig. 6.2. G-congruence for Sequences s3 � p3; p2; p1 and s13 � p2; p1; p3

L4 pr1 _ e1 r2 _ e1 e2 r3q _ r4 pL1 _ r1 L2 _ r1 r2 L3q � 0. (6.16)

and the negative initial digraph by:

e4
�
e1D1 _ e1 e2D2 _ e1 e2 e3D3

�_ e4D4 pe1 _ r1 e2 _ r1 r2 e3q � 0. (6.17)

Equations (6.16) and (6.17) together give G-congruence for s4 and s14 are depicted on

Fig. 6.3.

Before moving to the general case, let’s briefly introduce and put an example of a

simple notation for cycles moving forward and backward a single production:

1. Advance production n� 1 positions: φn � r 1 n n� 1 . . . 3 2 s.
2. Delay production n� 1 positions: δn � r 1 2 . . . n� 1 n s.

Example.�Consider advancing three positions the production p5 inside the sequence

s5 � p5; p4; p3; p2; p1 to get φ4 ps5q � p4; p3; p2; p5; p1, where φ4 � r 1 4 3 2 s.
To illustrate the way in which we represent delaying a production, moving backwards

production p2 two places p5; p4; p3; p2; p1 ÞÝÑ p5; p2; p4; p3; p1 has as associated cycle

δ4 � r 2 3 4 s. Note that numbers in the permutation refer to the place the production

occupies in the sequence, numbering from left to right, and not to its subindex.�

Conditions that must be fulfilled in order to maintain the minimal and negative initial

digraphs will be called congruence conditions and will be abbreviated as CC, positive CC

if they refer to minimal initial digraph and negative CC for the negative initial digraph.

6.1 G-Congruence 139

Fig. 6.3. G-congruence for s4 � p4; p3; p2; p1 and s14 � p3; p2; p1; p4

By induction it can be proved that for advancement of one production n�1 positions

inside the sequence of n productions sn � pn; . . . ; p1, the equation which contains all

positive CC can be expressed in terms of operator ∇ and has the form:

CC�n pφn, snq � Ln∇
n�1
1 pex ryq _ rn∇n�1

1 prx Lyq � 0. (6.18)

and for negative CC :

CC�n pφn, snq � Dn en∇
n�1
1 prx eyq _ en∇

n�1
1

�
exDy

� � 0. (6.19)

Remark.�Some monomials were discarded in (6.14) because they were already con-

sidered in (6.12). If (6.19) is not used in conjunction with (6.18), then the more complete

form

CC�n pφn, snq � Nn∇
n�1
1 prxeyq _ en∇

n�1
1 pexNyq (6.20)

should be preferred. Recall that Nh � rh _ ehDh. The point is that ehDh considers

potential dangling edges while Nh also includes those to be added.�

It is possible to put (6.18) and (6.19) in terms of Li and Ni. We will do it for sequences

s3 and s13 to obtain an equivalent form of Fig. 6.2 (represented in Fig. 6.4).

What we do is to merge first branch in Fig. 6.2 with third branch and second branch

with fourth. One illustrating example should suffice:3

3 The term r1 can be omitted.

140 6 Sequentialization and Parallelism

Fig. 6.4. G-congruence (Alternate Form) for s3 and s13
r3r1L1 _D3e3r1e1 � r1L1

�
r3 _ e1e3D3

� �� r1L1

�
r3e1 _ r3e1 _ e1e3D3

� �� r1L1 pe1N3 _ r3e1q � r1L1N3 pe1 _ r3q . (6.21)

Last equality holds because Niri � ri _ riDi � ri and a_ ab � a_ b. We have also

used that Niei � ei

�
ri _ eiDi

� � Ni. The same sort of calculations for s4 and s14 are

summarized in Fig. 6.5.

Fig. 6.5. G-congruence (Alternate Form) for s4 and s14

6.1 G-Congruence 141

A formula considering the positive (6.18) and the negative (6.19) parts can be derived

by induction. It is presented as a proposition:

Proposition 6.1.2 Positive and negative congruence conditions for sequences sn and

s1n � φnpsnq are given by:

CCn pφn, snq � Ln∇
n�1
1 exNy pry _ enq _Nn∇

n�1
1 rxLy pey _ rnq . (6.22)

Proof��
G-congruence is obtained when CCn pφn, snq � 0. An equivalent reasoning does it for

production delaying n�1 positions, giving very similar formulas. Suppose that production

p1 is moved backwards in concatenation sn to get s2n � p1; pn; . . . ; p2, i.e. δn is applied.

The positive part of the condition is:

CC�n pδn, snq � L1∇
n
2 pex ryq _ r1∇n

2 prx Lyq � 0 (6.23)

and the negative part:

CC�n pδn, snq � D1 e1∇
n
2 prx eyq _ e1∇n

2

�
exDy

� � 0. (6.24)

As in the positive case it is possible to merge equations (6.23) and (6.24) to get a

single expression:

Proposition 6.1.3 Positive and negative congruence conditions for sequences sn and

s2n � δnpsnq are given by:

CCn pδn, snq � L1∇
n
2 exNy pry _ e1q _N1∇

n
2 rxLy pey _ r1q . (6.25)

Proof��
It is necessary to show that these conditions guarantee sameness of minimal and

negative initial digraphs, but first we need a technical lemma that provides us with some

identities used to transform the minimal initial digraphs. Advancement and delaying are

very similar so only advancement is considered in the rest of the section.

142 6 Sequentialization and Parallelism

Lemma 6.1.4 Suppose sn � pn; . . . ; p1 and s1n � σ psnq � pn�1; . . . ; p1; pn and that

CC�n pφnq is satisfied. Then the following identity may be or’ed to sn’s minimal initial

digraph Mn without changing it:

DC�n pφn, snq � Ln∇
n�2
1 prx eyq . (6.26)

Proof�Let’s start with three productions. Recall that M3 � L1_ other terms and that L1 �
L1 _ e1 � L1 _ e1 _ e1L3 (last equality holds for any logical formula a_ ab � a). Note

that e1L3 is (6.26) for n � 3.

For n � 4, apart from e1L4, we need to get e2r1L4 (because the full condition is

DC�4 � L4 pe1 _ r1e2q). Recall again the minimal initial digraph for four productions

whose first two terms are M4 � L1 _ r1L2. It is not necessary to consider all terms in

M4 to get DC�4 :

M4 � pL1 _ e1q _ pr1L2 _ r1e2q _ . . . �� pL1 _ e1 _ e1L4q _ pr1L2 _ r1e2 _ r1e2L4q _ . . . �� pL1 _ e1L4q _ pr1L2 _ r1e2L4q _ . . . ��M4 _DC�4 .
The proof can be finished by induction.�

Next lemma states a similar result for negative initial digraphs. We will need it to

prove invariance of the negative initial digraph.

Lemma 6.1.5 With notation as above and assuming that CC�n pφnq is satisfied, the

following identity may be or’ed to the negative initial digraph N without changing it:

DC�n pφn, snq � enDn∇
n�2
1 pex ryq . (6.27)

Proof�We follow the same scheme as in the demonstration of lemma 6.1.4. Let’s start with

three productions. Recall that N3 � N1_ other terms and that N1 � N1 _ r1 � N1 _
r1 _ r1e3D3. Note that r1e3D3 is (6.27) for n � 3.

For n � 4, besides the term r1e4D4 we need to get e1r2e4D4 (because DC�4 �
e4D4 pr1 _ e1r2q). The first two terms of the negative initial digraph for four productions

are N4 � N1 _ e1N2. Again, it is not necessary to consider the whole formula for N4:

6.1 G-Congruence 143

N4 � pN1 _ r1q _ pe1N2 _ r2e1q _ . . . �� �
N1 _ r1 _ r1e4D4

�_ �
e1N2 _ e1r2 _ e1r2e4D4

�_ . . . �� �
N1 _ r1e4D4

�_ �
e1N2 _ e1r2e4D4

�_ . . . �� N4 _DC�4 .
The proof can be finished by induction.�

Fig. 6.6. Positive and Negative DC Conditions, DC�
5

and DC�
5

Both, DC�5 and DC�5 are depicted in Fig. 6.6 for advancement of a single production

s5 � p5; p4; p3; p2; p1 ÞÝÑ s13 � p4; p3; p2; p1; p5. Note the similarities with first and fourth

branches of figure 6.3.

Remark.�If CC�n and DC�n are applied independently of CC�n and DC�n then the

expression

DC�n pφn, snq � Nn∇
n�2
1 pex ryq (6.28)

should be used instead of definition given by equation (6.27).�

We are ready to formally state a characterization of G-congruence in terms of con-

gruence conditions CC:

Theorem 6.1.6 With notation as above, if sn and s1n � φn psnq are coherent and con-

dition CC pφn, snq is satisfied then they are G-congruent.

144 6 Sequentialization and Parallelism

Proof�First, using CC�i and DC�i , we will prove Mi � M 1
i for three and five productions.

Identities a_ a b � a_ b and a_ a b � a_ b will be used in this demonstration.

M3 _ CC�3 _DC�3 � rL1 _ r1 L2 _ r1 r2 L3s _ rr1L3 _ e1 r2L3 _ r3L1__ r1 r3L2s _ re1L3s � L1 _ r1 L2_ �r1 r2 L3 _ r1L3 __ �e1 r2L3 _ e1L3 � L1 _ r1 L2_ �r2 L3 _ r2L3 __ L3 pr1 _ e1q � L1 _ r1 L2 _ L3.

In our first step, as neither r3L1 nor r1 r3L2 are applied to M3, they have been

omitted (for example, L1_ r3L1 � L1). Once r1L3, e1L3 and r2L3 have been used, they

are omitted as well.

Let’s check out M 1
3, where in second equality r1L3 and r2 e1 L3 are ruled out since

they are not used:

M 1
3 _ CC�3 � rr3 L1 _ r1 r3 L2 _ L3s _ rr1L3 _ r2 e1 L3 _ r3L1 _ r1 r3L2s �� �r3 L1 _ r1 �r3 L2 _ L3 _ r3L1 _ r1 r3L2 �� L1 _ r1 L2 _ L3.

The case for five productions is almost equal to three productions but it is useful

to illustrate in detail how CC�5 and DC�5 are used to prove that M5 � M 1
5 in a more

complex situation. The key point is the transformation r1 r2 r3 r4 L5 ÞÝÑ L5 and the

following identities show the way to proceed:�r1 r2 r3 r4 L5 _ r1L5 � r2 r3 r4 L5�r2 r3 r4 L5_ �e1 r2L5 _ e1L5 � r3 r4 L5�r3 r4 L5_ �e1 �e2r3L5 _ e1L5_ �r1e2L5 _ r1L5 � r4 L5�r4L5_ �e1 �e2 �e3r4L5 _ e1L5_ �r1e2L5 _ r1L5_ �r1 �r2e3L5_ �e1r2L5 � L5.

Note that we are in a kind of iterative process: What we get on the right of the

equality is inserted and simplified on the left of the following one, until que get L5. For

L4 the process is similar but shorter.

6.1 G-Congruence 145

Now one example for the negative initial digraph is studied, N3 _ CC�3 _ DC�3 �
N 1

3 _ CC�3 :

N3 _ CC�3 _DC�3 � rN1 _ e1N2 _ e1 e2N3s _ re3N1 _ e1 e3N2 _ e1N3__ r1 e2N3s _ rr1N3s � N1 _ e1N2_ �e1 e2N3 _ e1N3 __ �r1 e2N3 _ r1N3 � N1 _ e1N2_ �e2N3 _ e2N3 __ N3 pr1 _ e1q � N1 _ e1N2 _ N3.

N 1
3 _ CC�3 � re3N1 _ e1 e3N2 _N3s _ re1N3 _ e2 r1N3 _ e3N1 _ e1 e3N2s� �e3N1 _ e1 �e3N2 _N3 _ e3N1 _ e1 e3N2 �� N1 _ e1N2 _N3.

The procedure followed to show N3 � N 1
3 is completely analogous to that of M3 �M 1

3.�

Fig. 6.7. Altered Production q13 Plus Productions q1 and q2

Remark�Congruence conditions report what elements prevent G-congruence. In this

way not only information of sameness of minimal and negative initial digraphs is avail-

able but also what elements prevent G-congruence. For example, another way to see

congruence conditions is as the difference of the minimal initial digraphs in the positive

case.�

146 6 Sequentialization and Parallelism

Example.�Reusing productions introduced so far (q1, q2 and q3),
4 we are going to

check G-congruence for a sequence of three productions in which one is directly delayed

two positions, i.e. it is not delayed in two steps but just in one. As commented before,

it is mandatory to change q3 in order to keep compatibility, so a new production q13 is

introduced, depicted in Fig. 6.7.

The minimal initial digraph for the sequece q13; q2; q1 remains unaltered, i.e.Mq1
3
;q2;q1

�
Mq3;q2;q1

(compare with Fig. 4.20 on p. 107), but the one for q1; q
1
3; q2 is slightly different

and can be found in Fig. 6.8 along with the concatenation s1123 � q1; q
1
3; q2 and its

intermediate states.

Fig. 6.8. Composition and Concatenation. Three Productions

In this example, production q1 is delayed two positions inside s3 � q13; q2; q1 to obtain

δ3 ps3q � q1; q
1
3; q2. Such permutation can be expressed as δ3 � r1 2 3s.5 Only the positive

case CC�3 pδ3, s3q is illustrated. Formula (6.23) expanded and simplified is:

4 In examples on pp. 77, 80, 95 and 108.
5 Numbers 1, 2 and 3 in the permutation mean position inside the sequence, not production

subindex.

6.1 G-Congruence 147

L1 pr2 _ e2r3qlooooooomooooooonp�q _ r1 �L2 _ r2L13�loooooooomoooooooonp��q . (6.29)

If the minimal initial digraphs are equal, then equation (6.29) should be zero. Node

ordering is r2 3 5 1 4s, not included due to lack of space.����� 0 0 1 0 1
0 0 0 0 0
1 0 1 0 0
0 0 0 0 0
0 0 0 0 0

��������������� 0 0 0 0 1
1 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0

�����_����� 1 0 1 1 1
1 1 1 1 1
1 1 0 1 1
1 1 1 1 1
1 1 1 1 1

����������1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 0 0

������ÆÆÆ
and the same for p��q:����� 0 1 0 0 0

0 1 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0

��������������� 0 1 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

�����_����� 1 1 1 1 0
0 1 1 1 1
0 1 1 1 1
1 1 1 1 1
1 1 1 1 1

����������0 0 0 1 0
1 1 0 0 0
1 1 0 0 0
0 0 0 1 0
0 0 0 0 0

������ÆÆÆ
We detect nonzero elements p1, 5q and p3, 1q in (*) and p1, 2q, p2, 3q and p3, 2q in (**).

They correspond to edges p2, 4q, p5, 2q, p2, 3q, p3, 3q and p5, 3q, respectively. Both minimal

initial digraphs are depicted together in Fig. 6.9 to ease comparison.�

Fig. 6.9. Example of Minimal Initial Digraphs

Previous results not only detect if the application of a permutation (limited to ad-

vancing or delaying a single element) let minimal initial digraphs unaltered, but also

what elements are changed.

148 6 Sequentialization and Parallelism

6.2 Sequentialization – Grammar Rules

In this section we will deal with position interchange inside a sequence of productions.

For example, let s3 � p3; p2; p1 be a coherent sequence made up of three productions and

suppose we wanted to move p3 forward one position to obtain σ ps3q � p2; p3; p1. This

can be seen as a permutation σ acting on s3’s indices.6

Although we are not considering matches yet, there is a close relationship between

this definition and problem 3 that we will explore in this and next sections.

This section first introduces sequential independence for productions and a character-

ization through G-congruence, compatibility and coherence. G-congruence and related

conditions have been studied in Sec. 6.1. Similar results for coherence (advancement and

delaying of a single production) are also derived.

Definition 6.2.1 (Sequential Independence) Let sn � pn; . . . ; p1 be a sequence and

σ a permutation. Then, sn and σ psnq are said to be sequential independent if both add

and remove the same elements and have the same minimal and negative initial digraphs.

Compatibility and coherence imply sequential independence provided sn and σpsnq
have the same minimal and initial digraphs.

Theorem 6.2.2 With notation as above, if sn is compatible and coherent and σ psnq is

compatible and coherent and both are G-congruent, then they are sequential independent.

Proof�By hypothesis we can define two productions cs, cσpsq which are respectively the com-

positions coming from sn and σpsnq. Using commutativity of sum in formulas (4.67) and

(4.68) – i.e. the order in which elements are added does not matter – we directly see that

sn and σpsnq add and remove the same elements. G-congruence guarantees sameness of

minimal and negative initial digraphs.�

Note that, even though the final result is the same when moving sequential indepen-

dent productions inside a given concatenation, intermediate states can be very different.

In the rest of this section we will discuss permutations that move one production for-

ward or backward a certain number of positions, yielding the same result. This means,

6 Notation of permutation groups is summarized in Sec. 2.6

6.2 Sequentialization – Grammar Rules 149

using theorem 6.2.2 and assuming compatibility and G-congruence, finding out the con-

ditions to be satisfied such that starting with a coherent sequence we again obtain a

coherent sequence after applying the permutation.

Theorem 6.2.3 Consider coherent sequences tn � pα; pn; pn�1; . . . ; p2; p1 and sn �
pn; pn�1; . . . ; p2; p1; pβ and permutations φn�1 and δn�1.

1. φn�1 ptnq – advances pα application – is coherent if

eE
α ▽n

1

�
rE
x LE

y

	_RE
α ▽n

1

�
eE

x r
E
y

	 � 0. (6.30)

2. δn�1 psnq – delays pβ application – is coherent if

LE
β △n

1

�
rE
x e

E
y

	_ rE
β △n

1

�
eE

x R
E
y

	 � 0. (6.31)

Proof�Both cases have a very similar demonstration so only production advancement is in-

cluded. The way to proceed is to check differences between the original sequence tn and

the swapped one, φn ptnq, discarding conditions already imposed by tn.

We start with t2 � pα; p2; p1 ÞÝÑ φ3 pt2q � p2; p1; pα, where φ3 � r1 3 2s. Coherence

of both sequences specify several conditions to be fulfilled, included in table 6.1. Note

that conditions (t.1.7) and (t.1.10) can be found in the original sequence – (t.1.2) and

(t.1.5) – so they can be disregarded.

Coherence of pα; p2; p1 Coherence of p2; p1; pα

eE
2 LE

α � 0 pt.1.1q eE
1 LE

2 � 0 pt.1.7q
eE
1 LE

2 � 0 pt.1.2q eE
α LE

1 � 0 pt.1.8q
eE
1 LE

α rE
2
� 0 pt.1.3q eE

α LE
2 rE

1
� 0 pt.1.9q

rE
α RE

2 � 0 pt.1.4q rE
2 RE

1 � 0 pt.1.10q
rE
2 RE

1 � 0 pt.1.5q rE
1 RE

α � 0 pt.1.11q
rE

α RE
1 eE

2
� 0 pt.1.6q rE

2 RE
α eE

1
� 0 pt.1.12q

Table 6.1. Coherence for Advancement of Two Productions

We would like to express previous identities using operators delta (4.40) and nabla

(4.41) for which equation (4.13) is used on (t.1.8) and (t.1.9):

150 6 Sequentialization and Parallelism

eE
α L

E
1 r

E
1 � 0 (6.32)

eE
α L

E
2 r

E
2 r

E
1 � 0. (6.33)

For the same reason, applying (4.10) to conditions (t.1.11) and (t.1.12):

rE
1 e

E
1 R

E
α � 0 (6.34)

rE
2 e

E
2 R

E
α e

E
1 � 0. (6.35)

Condition (t.1.4) can be split into two parts – recall (4.31) and (4.32) – being rE
2 r

E
3 � 0

one of them. Doing the same operation on (t.1.12), rE
2 r

E
3 e

E
1 � 0 is obtained, which is

automatically verified and therefore should not be considered. It is not ruled out since,

as stated above, we want to get formulas expressible using operators delta and nabla.

Finally we get the equation:

RE
α e

E
1

�
rE
1 _ eE

2 r
E
2

	_ eE
α r

E
1

�
LE

1 _ rE
2 L

E
2

	 � 0. (6.36)

Performing similar manipulations on the sequence t3 � pα; p3; p2; p1 we get φ4 pt3q �
p3; p2; p1; pα (with φ4 � r 1 4 3 2 s); we find out that the condition to be satisfied is:

RE
α e

E
1

�
rE
1 _ eE

2

�
rE
2 _ eE

3 r
E
3

��__ eE
α r

E
1

�
LE

1 _ rE
2

�
LE

2 _ rE
3 L

E
3

�� � 0. (6.37)

Figure 6.10 includes the associated graphs to previous example and to n � 4. The

proof can be finished by induction.�

Previous theorems foster the following notation: If (6.30) is satisfied and we have

sequential independence, we will write pαK ppn; . . . ; p1q whereas if equation (6.31) is true

and again they are sequential independent, it will be represented by ppn; . . . ; p1q K pβ.

Note that if we have the coherent sequence made up of two productions p2; p1 and we

have that p1; p2 is coherent we can write p2Kp1 to mean that either p2 may be moved to

the front or p1 to the back.

Example.�It is not difficult to put an example of three productions t3 � w3;w2;w1

where the advancement of the third production two positions to get t13 � w2;w1;w3

has the following properties: Their associated minimal initial digraphs – M and M 1,

6.2 Sequentialization – Grammar Rules 151

Fig. 6.10. Advancement. Three and Five Productions

respectively – coincide, they are both coherent (and thus sequential independent) but

t23 � w2;w3;w1 can not be performed, so it is not possible to advance w3 one position

and, right afterwards, another one, i.e. the advancement of two places must be carried

out in a single step.

Fig. 6.11. Three Simple Productions

As drawn in Fig. 6.11, w1 deletes edge p1, 2q, w2 adds it while it is preserved by w3

(appears on its left hand side but it is not deleted).

Using previous notation, this is an example where w3K pw2;w1q but w3Mw2. As far

as we know, in SPO or DPO approaches, testing whether w3K pw2;w1q or not has to

be performed in two steps: w3Kw2, that would allow for w3;w2;w1 ÞÑ w2;w3;w1, and

w3Kw1 to get the desired result: w2;w1;w3.�

152 6 Sequentialization and Parallelism

Fig. 6.12. Altered Production q13 Plus Productions q1 and q2 (Rep.)

Example.�We will use productions q1, q2 and q13 (reproduced again in Fig. 6.12).

Production q13 is advanced two positions inside q13; q2; q1 to obtain q2; q1; q
1
3. Such per-

mutation can be expressed as φ3 � r1 3 2s.7 Formula (6.30) expanded, simplified and

adapted for this case is:

e3 pL1 _ r1L2qlooooooomooooooonp�q _R3 pr1 _ e1r2qlooooooomooooooonp��q . (6.38)

Finally, all elements are substituted and the operations are performed, checking that

the result is the null matrix. Node ordering is r2 3 5 1 4s, not included due to lack of

space. The first part p�q is zero:����� 0 0 0 0 0
1 1 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 0

��������������� 0 0 1 0 1
0 0 0 0 0
1 0 1 0 0
0 0 0 0 0
0 0 0 0 0

�����_�����1 0 1 1 1
1 0 1 1 1
1 0 1 1 1
1 1 1 1 1
1 1 1 1 1

���������� 0 1 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

������ÆÆÆ
and the same for p��q:
7 Numbers 1, 2 and 3 in the permutation mean position inside the sequence, not production

subindex.

6.3 Sequential Independence – Derivations 153����� 1 0 0 1 0
0 0 0 0 0
1 0 1 0 0
0 0 1 0 0
0 0 0 0 0

��������������� 0 1 0 0 0
0 1 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0

�����_����� 1 1 1 1 0
1 1 1 1 1
0 1 1 1 1
1 1 1 1 1
1 1 1 1 1

����������0 0 0 0 1
1 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

������ÆÆÆ
and hence the permutation is also coherent.�

6.3 Sequential Independence – Derivations

Sequential independence for derivations is very similar to sequences studied in previous

section, the main difference being that there is a state now to be taken into account.

Here σ will represent an element of the group of permutations and derivation dn will

have associated sequence sn. Note that two sequences sn and s1n � σpsnq carry out the

same operations but in different order.

Definition 6.3.1 Two derivations dn and d1n � σ pdnq are sequential independent with

respect to G if dn pGq � Hn � H 1
n � d1n pGq.

Compare with problem 3 on p. 8. Even though s1n � σpsnq, if ε-productions appear

because the same productions are matched to different places in the host graph, then it

might not be true that d1n � σpdnq.
A restatement of definition 6.3.1 is the following proposition. The existence of an

initial digraph guarantees coherence for both derivations.

Proposition 6.3.2 If for two applicable derivations dn and d1n � σpdnq
1. DM0 � G such that H �M0 PM psnq X M ps1nq and

2. the corresponding negative initial digraph N0 P N psnq X N ps1nq,
then dnpM0q and d1npM0q are sequential independent.

Proof�Existence of a minimal initial digraph and its corresponding negative initial digraph

guarantees coherence and compatibility. As it is the same in both cases, they are G-

congruent. A derivation and any of its permutations carry out the same actions, but in

different order. Hence, their result must be isomorphic.�

154 6 Sequentialization and Parallelism

If two derivations (with underlying permuted sequences) are not a permutation of

each other due to ε-productions but are confluent (their image graphs are isomorphic),

then in fact it is possible to write them as a permutation of each other:

Proposition 6.3.3 If dn and d1n are sequential independent and s1n � σpsnq, thenD σ̂ | d1n � σ̂pdnq for some appropriate composition of ε-productions.

Proof�Let pT : pε ÞÑ pT ppεq be an operator acting on ε-productions, which splits them into a

sequence of n productions each with one edge.8

If pT is applied to dn and d1n we must get the same number of ε-productions. Morover,

the number must be the same for every type of edge or a contradiction can be derived

as ε-productions only delete elements.�

Example.�Define two productions p1 and p2, where p1 deletes edge p2, 1q and p2

deletes node 1 and edge p1, 3q. Define sequences s2 � p2; p1 and s12 � p1; p2 and apply

them to graph G depicted in Fig. 6.13 to get Hn and H 1
n, respectively. Note that p1 and

p2 are not sequential independent in the sense of Sec. 6.2 with this identification.

Fig. 6.13. Sequential Independence with Free Matching

Suppose that in s12 the match m2 for production p2 identifies node 1. In this case an

ε-production pε,2 should appear deleting edge p2, 1q, transforming the concatenation to

s12 � p1; p2; pε,2 and making p1 inapplicable. If m2 identifies node 11 instead of 1, then

we have Hn � H 1
n with the obvious isomorphism p1, 2, 3q ÞÑ p11, 2, 3q, getting in this case

p2Kp1. Note that M0 ps12q PM ps2q XM ps12q (see Fig. 6.14).

Neither sequence s2 nor s12 add any edge and only p2 deletes one node. The negative

digraph set has just one element that has been called N2, also depicted in Fig. 6.14.�

8 More on operator pT in Chap. 7. It is used in Sec. 7.3 for application conditions.

6.4 Explicit Parallelism 155

Fig. 6.14. Associated Minimal and Negative Initial Digraphs

The theory developed so far fits well here. Results for sequential independence such

as theorem 6.2.2, for coherence (theorems 4.3.5, 6.2.3 and 6.2.3) and for minimal and

negative initial digraphs are recovered.

Marking (see Sec. 5.2) can be used to freeze the place in which productions are applied.

For example, if a production is advanced and we already know that there is sequential

independence, any node identification across productions should be kept because if the

production was applied at a different match sequential independence could be ruined.

6.4 Explicit Parallelism

This chapter finishes analyzing which productions or group of productions can be com-

puted in parallel and what conditions guarantee this operation. Firstly we will take into

account productions only, without initial state.

X1

p2

G

p1

p2

p1�p2

H

X2

p1

Fig. 6.15. Parallel Execution

156 6 Sequentialization and Parallelism

In the categorical approach the definition for two productions is settled considering

the two alternative sequential ways in which they can be composed, looking for equality in

their final state. Intermediate states are disregarded using categorical coproduct of the

involved productions (see Sec. 3.1). Then, the main difference between sequential and

parallel execution is the existence of intermediate states in the former, as seen in Fig.

6.15. We follow the same approach saying that it is possible to execute two productions

in parallel if the result does not depend on generated intermediate states.

Definition 6.4.1 Two productions p1 and p2 are said to be truly concurrent if it is

possible to define their composition and it does not depend on the order:

p2 � p1 � p1 � p2. (6.39)

We use the notation p1 ‖ p2 to denote true concurrency. True concurrency defines a

symmetric relation so it does not matter whether p1 ‖ p2 or p2 ‖ p1 is written.

Next proposition compares true concurrency and sequential independence for two pro-

ductions, in the style of the parallelism theorem – see [11] –.9 The proof is straightforward

in our case and is not included.

Proposition 6.4.2 Let s2 � p2; p1 be a coherent concatenation and assume compatibil-

ity, then:

p1 ‖ p2 ðñ p2Kp1. (6.40)

Proof�Assuming compatibility frees us from ε-productions.�

So far we have just considered one production per branch when parallelizing, as

represented on the left of Fig. 6.16. One way to deal with more general schemes – center

and right of the same figure – is to test parallelism for each element in one branch against

every element in the other.

Consider the scheme in the middle of Fig. 6.16. Sequences s1 � p6; p5; p4 and

s2 � p3; p2; p1 can be computed in parallel if there is sequential independence for ev-

ery interleaving. This is true if pi ‖ pj , �i P t4, 5, 6u, �j P t1, 2, 3u. There are many

9 However, in DPO it is possible to identify elements once the coproduct has been performed

through non-injective matches.

6.4 Explicit Parallelism 157

combinations that keep the relative order of s1 and s2, for example p6; p3; p2; p5; p1; p4

or p3; p6; p2; p5; p1; p4. In order to apply these two sequences in parallel, all interleavings

that maintain the relative order should have the same result.

p3

p2

p0p3

p1

p0 p7

p6; p5; p4

p0p7

p3; p2; p1

p0 w4

w3

w0w4

w2; w1

w0

Fig. 6.16. Examples of Parallel Execution

Although it is not true in general, in many cases it is not necessary to check true

concurrency for every two productions. The following example illustrates the idea.

Example.�Let be given the concatenation w4;w3;w2;w1;w0. Some of its productions

are depicted in Fig. 6.11 on p. 151. Rule w1 deletes one edge, w2 adds the same edge

while w3 preserves it.

We already know that w3;w2;w1 is compatible and coherent and that w3K pw2;w1q.
Both have the same minimal initial digraph. Following our previous study for two pro-

ductions we would like to put w3 and w2;w1 in parallel, as depicted on the right of Fig.

6.16.

From a sequential point of view this diagram can be interpreted in different ways,

depending on how they are computed. There are three dissimilar interleavings: (1)

w3;w2;w1, (2) w2;w1;w3 and (3) w2;w3;w1.

Any problem involving the first two possibilities is ruled out by coherence. As a matter

of fact, w3 and w2;w1 can not be parallelized because it could be the case that w3 is

using edge p1, 2q when w1 has just deleted it and before w2 adds it, which is what the

third case expresses, leaving the system in an inconsistent state. Thus, we do not have

w3 ‖ w2 nor w3 ‖ w1 – we do not have sequential independence – but both w3;w2;w1

and w2;w1;w3 are coherent.�

One possibility to proceed is to use the fact that although it could be the case that

p3 M p2, it still might be possible to advance the production with the help of another

production, i.e. p3 K pp2; p1q as seen in Secs. 6.2 and 6.3.

158 6 Sequentialization and Parallelism

Although there are some similarities between this concept and the theorem of con-

currency,10 here we rely on the possibility to characterize production advancement or

delaying inside sequences more than just one position, hence, being more general.

Theorem 6.4.3 Let sn � pn; . . . ; p1 and tm � qm; . . . ; q1 be two compatible and coherent

sequences with the same minimal initial digraph, where either n � 1 or m � 1. Suppose

rm�n � tm; sn is compatible and coherent and either tmKsn or snKtm. Then, tm ‖ sn

through composition.

Proof�Using proposition (6.4.2).�

Through composition means that the concatenation with length greater than one must

be transformed into a single production using composition. This is possible because it is

coherent and compatible – refer to proposition 4.5.3 –. In fact it should not be necessary

to transform the whole concatenation using composition, but only the parts that present

a problem.

Setting n � 1 corresponds to advancing a production in sequential independence,

while m � 1 to moving a production backwards inside a concatenation. In addition, in

the hypothesis we ask for coherence of rn and either tmKsn or smKtn. In fact, if rm�n

is coherent and tmKsn, then snKtm. It is also true that if rm�n is coherent and snKtm,

then tmKsn (it could be proved by contradiction).

The idea behind theorem 6.4.3 is to erase intermediate states through composition

but, in a real system, this is not always possible or desirable if for example these states

were used for synchronization of productions or states. All this section can be extended

easily to consider derivations.

6.5 Summary and Conclusions

In this chapter we have studied in more detail sequences and derivations, paying special

attention to sequential independence. We remark once more that certain properties of

sequences can be gathered during grammar specification. This information can be used

10 See Sec. 3.1 or [22].

6.5 Summary and Conclusions 159

for an a-priori analysis of the graph transformation system (grammar if an initial state

is also provided) or, if properly stored, during runtime.

In essence, sequential independence corresponds to the concept of commutativitypa ; b � b ; aq or a generalization of it, because commutativity is defined for two elements

and here we allow a or b to be sequences. It can be used to reduce the size of the state

space associated to the grammar. From a theoretical or practical-theoretical point of view,

sequential independence helps by reducing the amount of productions combinatorics in

sequences or derivations. This is of interest, for example, for confluence (problem 5 on p.

9).

Besides sequential independence for concatenations and derivations, we have also

studied G-congruence, which guarantees sameness of the minimal and negative initial

digraphs, and explicit parallelism, useful for parallel computation.

One of the objectives of the present dissertation is to tackle problems 2 and 3, in-

dependence and sequential independence, respectively, defined in Sec. 1.2. The whole

chapter is directed to this end, but with success in the restricted case of advancing or

delaying a single production an arbitrary number of positions in a sequence. This is

achieved in theorems 6.2.2 and 6.2.3, which rely on theorem 6.1.6 (G-congruence), and

also in propositions 6.3.2 and 6.3.3.

These results can be generalised by addressing other types of permutations such as

advancing or delaying blocks of productions. Another possibility is to study the swap

of two productions inside a sequence. It can be addressed following the same sort of

development along this chapter. Swaps of two productions are 2-cycles and it is well

known that any permutation is the product of 2-cycles.

In order to link this chapter with the next one, which deals with application conditions

and restrictions on graphs, let’s note that conditions that need to be fulfilled in order to

obtain sequential independence can be interpreted as graph constraints and application

conditions. Graph constraints and application conditions are important both from the

theoretical and practical points of view.

In Chap. 8 reachability – problem 4 – will be studied and extended from Petri nets

to Matrix Graph Grammars. Petri nets will be interpreted as a proper subset of Matrix

Graph Grammars.

7

Restrictions on Rules

In this chapter graph constraints and application conditions – that we call restrictions

– for Matrix Graph Grammars will be studied, generalizing previous approaches to this

topic. See for example [77; 78; 79]. For us, a restriction is just a condition to be fulfilled

by some graph.

In the literature there are two kinds of restrictions: Application conditions and graph

constraints. Graph constraints express a global restriction on a graph while application

conditions are normally thought as local properties, namely in the area where the match

identifies the LHS of the grammar rule. By generalizing graph constraints and application

conditions we will see that they can express both local and global properties, and further,

that application conditions are a particular case of graph constraints.

It is at times advisable to speak of properties rather than restrictions. For a given

grammar, restrictions can be set either during rule application (application conditions,

to be checked prior to rule execution or after it) or on the shape of the state (graph

constraints, which can be set on the input state or on the output state).

Application conditions are important from both practical and theoretical points of

view. On the practical side, they are convenient to concisely express properties or to

synthesize productions, despite the fact that they open the possibility to partially act on

the nihilation matrix. On the theoretical side, application conditions provide us with a

new perspective to look at the left and right hand sides of a production and enlarges the

scope of Matrix Graph Grammars, including multidigraphs.

162 7 Restrictions on Rules

This dissertation extends previous approaches using monadic second order logic

(MSOL, see Sec. 2.1 for a quick overview). Section 7.1 sets the basis for graph con-

straints and application conditions by introducing diagrams and their semantics. In Sec.

7.2 derivations and diagrams are put together, showing that diagrams are a natural gen-

eralization of graphs L and N (in the precondition case). Section 7.3 expresses all these

results using the functional notation introduced in Sec. 5.1 (see also Sec. 2.5), proving

consistency of Matrix Graph Grammars with restrictions. Section 7.4 tackles the topic of

transforming application conditions imposed to a rule’s LHS into one equivalent but on

rule’s RHS. The converse, more natural from a practical point of view, is also addressed.

Probably the main drawback of Matrix Graph Grammars as presented so far is the fact

that they are limited to simple digraphs. Section 7.5 shows that multidigraphs can also be

considered with no major modification of the theory, by using graph constraints. Section

7.6 closes the chapter with a summary and some more comments.

7.1 Graph Constraints and Application Conditions

A graph constraint in Matrix Graph Grammars is defined as a diagram (a set of graphs

and partial morphisms) plus a MSOL formula.1 The diagram specifies the relationship

between elements of the graphs that make up the constraint and the formula specifies the

conditions to be fulfilled in order to make the host graph G satisfy the graph constraint.

A0

mA0

A1

d10

mA1

L

dL0

dL1 p

mL

R

G H

Fig. 7.1. Application Condition on a Rules’s Left Hand Side

1 MSOL corresponds to regular languages [12], which are appropriate to express patterns.

7.1 Graph Constraints and Application Conditions 163

Example.�Figure 7.1 shows a diagram associated to the left hand side of a production

p : LÑ R matched to a host graph G by mL. An example of associated formula can be

f � DL�A0DA1 rL pA0 ñ A1qs.�
We will focus on logical expressions representing that one simple digraph is contained

in another, because this is in essence what matching does. To this end, the following two

formulas are introduced:

P pX1, X2q � �erF pe,X1q ñ F pe,X2qs (7.1)

QpX1, X2q � DerF pe,X1q ^ F pe,X2qs (7.2)

which rely on predicate F pe,Xq, “element e is in digraph X”.

The domain of discourse are simple digraphs, and the diagram is a means to represent

the interpretation function I (see Sec. 2.1 for definitions). Note that P pX1, X2q holds if

and only if X1 � X2 and QpX1, X2q is true if and only if X1 X X2 � H. Formula P

will deal with total morphisms and Q with non-empty partial morphisms (see graph

constraint fulfillment, definition 7.1.6).

Remark.�PEpX1, X2q says that every edge2 in graph X1 should also be present in

X2, so a morphism d12 : X1 Ñ X2 is demanded. The diagram may already include one

such morphism (which can be seen as restrictions imposed on function I) and we can

either allow extensions of d12 (relate more nodes if necessary) or keep it as defined in

the diagram. This latter possibility will be represented appending the subscript U to

PE ÞÑ PE
U . Predicate PE

U can be expressed3 using PE :

PE
U pX1, X2q � �ar pF pa,Dq ` F pa, coDqqs � PEpD, coDq ^ PEpDc, coDcq (7.3)

where D � Dompd12q, coD � coDompd12q, c stands for the complement and ` is the

xor operation. For example, following the notation in Fig. 7.4, PU pA1, A0q would mean

that it is not possible to further relate another element apart from 1 between A0 and A1.

This could only happen when A0 and A1 are matched in the host graph.

2 Mind the superscript E in P E . As in previous chapters, an E superscript means edge and an

N superindex stands for node.
3 Non-extensible existence of d10 for a graph constraint is �x P A0,�y P A1, mA0

pxq � mA1
pyq �

y � d10pxq, with notation as in Fig. 7.4. In words: When elements are matched in the host

graph (or in other graphs through different dij), elements unrelated by d10 remain unrelated.

164 7 Restrictions on Rules

PU will be used as a means to indicate that elements not related by their morphisms

in the diagram must remain unrelated. These relationships (forbidden according to PU)

could be specified either by other morphisms in the diagram or by matches in the host

graph. For example, two unrelated nodes of the same type in different graphs of the

diagram can be identified as the same node by the corresponding matches in the host

graph. Hence, even though not explicitely specified, there would exist a morphism relating

these nodes in the diagram. PU prevents this side effect of matches. The same can happen

if there is a chain of morphisms in the diagram such as A0 Ñ A1 Ñ A2. There might

exist an implicit unspecified morphism A0 Ñ A2.�

It is interesting for restrictions to be able to express negative conditions, that is, to

express that some elements should not be present in the host graph. By elements we

mean nodes, edges or both. When some elements are requested not to exist in G, one

possibility is to find them in the complementary graph.

To this end we will define a structure G � �
GE , GN

	
that in first instance consists

of the negation of the adjacency matrix of G and the negation of its vector of nodes.

We speak of structure because the negation of a digraph is not a digraph. In general,

compatibility fails for G.4

Although it has been commented already, we will insist in the difference between

completion and negation of the adjacency matrix. The complement of a graph coincides

with the negation of the adjacency matrix, but while negation is just the logical oper-

ation, taking the complement means that a completion operation has been performed

before. Hence, taking the complement of a matrix G is the negation with respect to some

appropriate completion of G. As long as no confusion arises negation and complements

will not be syntactically distinguished. Graph whith respect to which the completion (if

any) is performed will not be explicetly written from now on.

Example.�Suppose we have two graphs A and G as those depicted in Fig. 7.2 and

that we want to check that A is not in G. Note that A is not contained in G (node 3

4 In Chap. 4 a matrix for edges and a vector for nodes were introduced to differentiate one

from the other, mainly because operations could be performed on nodes or on edges. Recall

that compatibility related both of them and completion permitted operations on matrices of

different size (with a different number of nodes).

7.1 Graph Constraints and Application Conditions 165

Fig. 7.2. Finding Complement and Negation

does not even appear), but it does appear in the negation of the completion with respect

to A of G (graph GA in the same figure).�

The notation (syntax) will be alleviated a bit more by making the host graph G

the default second argument for predicates P and Q. Besides, it will be assumed that

by default total morphisms are demanded. That is, predicate P will be assumed unless

otherwise stated. Our proposal to simplify the notation is to omit G and P in these cases.

Also, it is not necessary to repeat quantifiers that are together, e.g. �A0DA1DA2�A3 can

be abbreviated as �A0DA1A2�A3.

Example.�A sophisticated way of demanding the existence of one graph DArAs is:DANDAE
�
P
�
AN , AE

�^AN ^AE
�

that reads it is possible to find in G the set of nodes of A and its set of edges in the same

place – P
�
AN , AE

�
–. In this case it is possible to use the universal quantifier instead,

as there is a single occurrence of AN in AE up to isomorphisms:�ANDAE
�
P
�
AN , AE

�^AN ^AE
�
.

As another example, the following graph constraint is fulfilled if for every A0 in G it

is possible to find a related A1 in G:�A0DA1 rA0 ñ A1s , (7.4)

which by definition is equivalent to�A0DA1 rPpA0, Gq ñ PpA1, Gqs . (7.5)

These syntax simplications just try to simplify most commonly used rules.�

Negations inside abbreviations must be applied to the corresponding predicate, e.g.DA �
A
� � DA �

P pA,Gq� is not the negation of A’s adjacency matrix. For the case of

edges, the following identity is fulfilled:

166 7 Restrictions on Rules

PEpA,Gq � QpA,GEq. (7.6)

The part that takes care of the nodes is easier, so from now on we will mainly con-

centrate on edges and adjacency matrices.5

Definition 7.1.1 (Diagram) A diagram d is a set of simple digraphs tAiuiPI and a set

of partial injective morphisms tdkukPK , dk : Ai Ñ Aj, i, j P I.
The term ground formula will mean a MSO closed formula which uses P and Q with

constant nodes (i.e. nodes of a concrete type which can be matched with nodes of the

same type).

We will say that a diagram is well-defined if every cycle of morphisms commute and

injectivity of dij is kept. For example, in the diagram of Fig. 7.3, node typed 2 has two

different images, 22 and 23, depending if morphism d12 � d01 is considered or d02.

Fig. 7.3. non-Injective Morphisms in Application Condition

Definition 7.1.2 (Graph Constraint) For a given simple digraph G (host graph), the

tuple

GCG � pd, fq � pptAiuiPI , tdkukPKq , fq (7.7)

is a (constant) graph constraint if d is a diagram and f is a (ground) formula as defined

above.

5 Using the tensor product it is possible to embed the node vector into the adjacency matrix.

This has not been used in this dissertation except in Chap. 8. See the definition of the

incidence tensor in Sec. 8.3.

7.1 Graph Constraints and Application Conditions 167

How graph constraints can be expressed using diagrams and logic formulas will be

illustrated with some examples6 throughout this section, comparing with the way they

should be written using FOL and MSOL.

Fig. 7.4. At Most Two Outgoing Edges

Example (at most two outgoing edges).�Let’s characterize graphs in which every

node of type 1 has at most two outgoing edges. Using FOL:

f1 � �y1, y2, y3redg p1, y1q ^ edg p1, y2q ^^ edg p1, y3q ñ y1 � y2 _ y1 � y3 _ y2 � y3s (7.8)

where function edg px, yq is true if there exists an edge starting in node x and ending in

y. In our case, we consider the diagram on the left of Fig. 7.4 together with the formula:

f1 � �A0EA1 rA0 ñ pA1 ^ PU pD, coDqqs (7.9)

where D � Dompd10q and coD � coDompd10q.
There must be two total injective morphisms mA0

: A0 Ñ G, mA1
: A1 Ñ G and a

partial injective morphism mA1A0
: A1 Ñ A0 which does not extend d10 (mA1A0

� d10),

i.e. elements of type 1 are related and variables y1 and y2 remain unrelated with y3.

Hence, two outgoing edges are allowed but not three.

In this case it is also possible to consider the diagram on the right of Fig. 7.4 together

with the much simpler formula f2 � EA2rA2s. This form will be used when the theory is

extended to cope with multidigraphs in Sec. 7.5.�

6 Examples “at most two outgoing edges” below and “3-vertex colorable graph” on p. 172 have

been adapted from [12].

168 7 Restrictions on Rules

For now we will limit to ground formulas and it will not be until Sec. 7.5 that variable

nodes are considered. A variable node is one whose type is not specified.

A graph constraint is a limitation on the shape of a graph, i.e. what elements it is

made up of. This is something that can always be demanded on any graph, irrespective

of the existence of a grammar or rule. This is not the case for application conditions

which need the presence of productions.

In the following few paragraphs, application conditions will be introduced. Out of the

definition it is not difficult to see application conditions as a particular case of graph

constraints in this framework.

Definition 7.1.3 (Weak Precondition) Given a production p : LÑ R with nihilation

matrix N , a weak precondition is a graph constraint over G satisfying:

1. D!i, j such that Ai � L and Aj � N .

2. f must demand the existence of L in G.

3. f must demand the existence of N in GE.

For technical reasons to be clarified in Sec. 7.4, it is better not to have morphisms

whose codomains are L nor N , for example di : Ai Ñ L or dj : Aj Ñ N . This is not a big

issue as we may always use their inverses due to di’s injectiveness, i.e. one may consider

d�1
i : LÑ Ai and d�1

j : N Ñ Aj instead.

Note the similarities between definition 7.1.3 and that of derivation in Sec. 5.1.2. Ac-

tually, this definition interprets the left hand side of a production and its nihilation matrix

as a weak precondition. Hence, any well defined production has a natural associated weak

precondition.

Starting with the definition of weak precondition we define weak postconditions sim-

ilarly but using the comatch mR : R Ñ H , H � p pGq. A precondition is a weak pre-

condition plus a match mL : L Ñ G and, symmetrically, a postcondition is a weak

postcondition plus a comatch mR : RÑ H .

Every production naturally specifies a weak postcondition. Elements that must be

present are those found at R, while e_D should not be found by the comatch.

Weak application conditions, weak preconditions and weak postconditions permit the

specification of restrictions at a grammar definition stage with no need for matches, as

in Chap. 4.

7.1 Graph Constraints and Application Conditions 169

Definition 7.1.4 ((Weak) Application Condition) For a production p, a (weak)

application condition is a (weak) precondition plus a (weak) postcondition, AC �pACL, ACRq.
Fig. 7.5. Example of Precondition Plus Postcondition

Example.�Figure 7.5 depicts a production with diagram dLHS � tAu for its LHS

and diagram dRHS � tBu for its RHS. If the associated formula for dLHS is fLHS �DLDA �
LA

�
then there are two different possibilities depending on how morphism dA is

defined:

1. dA identifies node 1 in L and A. Whenever L is matched in a host graph there can

not be at least one A, i.e. at least for one matching of A – with node 1 in common

with L – in the host graph either edge p1, 1q or edge p1, 3q are missing.

2. dA does not identify node 1 in L and A. This does not necessarily mean that they

must be different when matched in an actual host graph. Now, it is sufficient not to

find one A which would be fine for any match of L in the host graph.

Recall that the interpretation of the quantified parts DL and DA are, respectively, to

find nodes 1 and 2 and 1 and 3 (edges too). In the first bullet above, both nodes 1 must

coincide while in the second case they may coincide or they may be different.

The story varies if formula fLHS � DL�A �
LA

�
is considered. There are again two

cases, but now:

1. dA identifies node 1 in L and A. No other node 3 can be linked to node 1 if it has a

self loop.

2. dA does not identify node 1 in L and A. The same as above, but now both nodes 1

need not be the same.

170 7 Restrictions on Rules

A similar interpretation can be given to the postcondition dRHS together with formula

fRHS � DRDA �
RA

�
and fRHS � DR�A �

RA
�
.�

Remark.�As commented in the introduction of this chapter, graph constraints are

normally thought as global conditions on the entire graph while application conditions

are local properties, defined in the neighbourhood of the match (and usually not beyond).

In our setting, the use of quantifiers on restrictions permit “local” graph constraints

and “global” application conditions. The first by using existential quantifiers (so as soon

as the restriction is fulfilled in one piece of the host graph, the graph constraint is fulfilled)

and the latter through universal quantifiers (for every potential match of the application

condition it must be fulfilled).�

Some notation for the set of morphisms and isomorphisms between two graphs is

needed in order to interpret basic constraints fulfillment.

parmaxpAi, Ajq � tf : Ai Ñ Aj | f maximal non-empty partial morphism

with DompfqN � AN
(

totpAi, Ajq � tf : Ai Ñ Aj | f is a total morphismu
Definition 7.1.5 (Basic Graph Constraints Fulfillment)

Graph G satisfies DArAs iff Df P parmaxpA,Gq | f P totpA,Gq.
Graph G satisfies �ArAs iff �f P parmaxpA,Gq | f P totpA,Gq.
Graph G satisfies EArAs iff �f P parmaxpA,Gq | f R totpA,Gq.
Graph G satisfies � �ArAs iff Df P parmaxpA,Gq | f R totpA,Gq.

Given a graph G and a graph constraint GC, the next step is to state when G fulfills

GC. This definition also applies to application conditions.

Definition 7.1.6 (Graph Constraint Fulfillment) A simple digraph G satisfies the

graph constraint GC � pd, fq, written G |ù GC, if there exists a model for the following

interpretation:

1. I pP pXi, Xjqq � mT : Xi Ñ Xj total injective morphism.

2. I pQ pXi, Xjqq � mP : Xi Ñ Xj partial injective morphism, non-empty in edges.

7.1 Graph Constraints and Application Conditions 171

where mT |D � dk � mP |D with dk : Xi Ñ Xj and D � Dom pdkq. It can be the case

that Dom
�
mP

�XDom pdkq � H.

Recall that we say that a morphism is total if its domain coincides with the initial

set and partial if it is a proper subset.

Remark.�There can not exist a model if there is any contradiction in the definition of

the graph constraint. A contradiction is to ask for an element to appear in G and also to

be in G. In the case of an application condition, some contradictions are avoidable while

others are not. We will return to this point in Sec. 7.2 with an example and appropriate

definitions.�

Bearing in mind that the only thing that makes a precondition (postcondition) special

is that one match mAi
� mL (mAi

� mR) is already fixed, it seems adequate to think

that application conditions are fulfilled by graphs and not by matches, i.e. in contrast to

the approach in [14], we do not write mL |ù ACL but G |ù ACL.

More correctly, we should write pI, dq |ù f to mean that under interpretation given

by I and assignments given by morphisms specified in d, formula f is fulfilled (see Sec.

2.1). In our opinion, the notation becomes a bit cumbersome and, in the end, what we

try to express is that G is such that all restrictions can be accomplished. We do not see

any inconsistency if it is properly interpreted.

Fig. 7.6. Diagram for Three Vertex Colorable Graph Constraint

172 7 Restrictions on Rules

Example (3-vertex colorable graph).�In order to express that a graph G is 3-

vertex colorable we need to state two basic facts: First, every single node belongs to one

of three disjoint sets, called X1, X2 and X3: Check first three lines in formula (7.10).

Second, every two nodes joined by one edge must belong to different Xi, i � 1, 2, 3, which

is stated in the last two lines of (7.10). Using MSOL:

f2 � DX1, X2, X3r�x px P X1 _ x P X2 _ x P X3q ^�x pψ px,X1, X2, X3q ^ ψ px,X2, X1, X3q ^
ψ px,X3, X2, X1qq ^�x, y pedg px, yq ^ px � yq ñ φ px, y,X1q ^

φ px, y,X2q ^ φ px, y,X3qqs (7.10)

where,

ψ px,X, Y, Zq � rx P X ñ x R Y ^ x R Zs
φ px, y,Xq � r px P X ^ y P Xqs � rx R X _ y R Xs .

In our case, we consider the diagram of Fig. 7.6 and formula

f2 � DX1DX2DX3�AxEAy

��
3©

i�1

Xi

�ñ rA^Ays� (7.11)

whereA � pP pAx, X1qYP pAx, X2qYP pAx, X3qq. DigraphsXi splitsG into three disjoints

subsets (the three colors) thorugh predicate A, which states the disjointness of Xi and,

with the rest of the clause, the coverability of G, G � X1

�
X2

�
X3.�

For an example of a natural application condition that to the best of our knowledge

can not be expressed using previous approaches to this topic, refer to the one on p. 180.

More examples will be given in the rest of the chapter.

7.2 Extending Derivations

The question of whether our definition of direct derivation is powerful enough to deal

with application conditions (from a semantical point of view) will be proved in theorem

7.2 Extending Derivations 173

7.2.4 and corollary 7.2.5 in this section. It is necessary to check that direct derivations

can be the codomain of the interpretation function, i.e. “MGG + AC = MGG” and

“MGG + GC = MGG”.

Note that a direct derivation in essence corresponds to the formula:DLDN �
L^ P �

N,GE

	�
(7.12)

but additional application conditions (AC) may represent much more general properties,

due to universal quantifiers and partial morphisms. Normally, for different reasons, other

approaches to graph transformation do not care about elements that can not be present

at a rule specification level. If so, a direct derivation would be as simple as:DLrLs. (7.13)

Another point is that of contradictions inside application conditions, briefly com-

mented in previous section, which turns a rule into a logical fallacy preventing its appli-

cation on any scenario.

Definition 7.2.1 (Consistency, Coherence, Compatibility) Let AC � pd, fq be a

weak application condition on rule p : LÑ R, then:

• AC is consistent if there exists some host graph G such that G |ù AC.

• AC is coherent if it is not a fallacy.

• AC is compatible if it describes a simple digraph.7

According to the set of morphisms tdij : Ai Ñ Aju.
The definitions for application conditions instead of their weak counterparts are al-

most the same, except that consitency does not ask for the existence of some host graph

but takes into account the one already considered.

We will see in Sec. 7.3 (theorem 7.3.5 on p. 191) that there is a very close relationship

between application conditions and sequences, being in fact possible to transform appli-

cation conditions into sequences of productions. An application condition will be coherent

if and only if its associated sequence is coherent and the same for compatibility (this is

7 If a graph of the AC demands the existence of some edge, it can not be incident to a node

that is deleted by production p.

174 7 Restrictions on Rules

why these concepts have been named this way). We will see that an application condition

is consistent if its associated sequence is applicable. Here, morphisms play a similar role

in the graphs that make up the application condition to completion in sequences of rules.

Typically, coherence is not fulfilled if the condition simultaneously asks for the exis-

tence and non-existence of some element. Non-compatibility deals with internal simple

digraph structure inconsistencies. Examples of non-compatible and non-coherent appli-

cation conditions follow.

Fig. 7.7. Avoidable non-Compatible Application Condition

Example.�Non-compatibility can be avoided at times just rephrasing the condition

and the rule. Consider the weak precondition A as represented on the left of Fig. 7.7.

There is a diagram d � tAu with associated formula f � DArAs, being morphism dAp1q �
1. As the production deletes node 1 and the application condition asks for the existence

of edge p1, 3q, it is for sure that if the rule is applied we will obtain at least one dangling

edge.

The key point is that the condition asks for the existence of edge p1, 3q but the

production demands its non-existence as it is included in the nihilation matrix N . In this

case, the rule p1 depicted on the right of the same figure is completely equivalent to p

but with no potential compatibility issues.

A non-coherent application condition can be found in Fig. 7.8. Morphisms identify

all nodes: dLipt1uq � t1u � d12pt1uq, dLipt2uq � t2u, d12pt3uq � t3u with formula

f � DL�A1DA2

�
Lñ A1 ^ P �

A2, G
��

. There is no problem with edge p1, 2q but withp1, 1q there is one. Note that due to A1, it must appear in any potential host graph but

A2 says that it should not be present.�

To include application conditions in the Matrix Graph Grammars framework as de-

veloped so far, two operations on basic diagrams are introduced: Closure (C) and De-

7.2 Extending Derivations 175

Fig. 7.8. non-Coherent Application Condition

composition (D). The first deals with universal quantifiers and the second with partial

morphisms. In some sense they are complementary (compare equations (7.14) and (7.15)).

In this dissertation we only consider injective graph morphisms which keep types of

nodes: Only nodes of the same type can be related by a graph morphism. That is the

reason why we use the notation Homt and Isot instead of the more common Hom and

Iso. In the rest of the section, AC will represent a weak application condition unless

otherwise stated.

Definition 7.2.2 (Closure) Given AC � pd, fq with diagram d � tAu, ground formula

f � �ArAs and a host graph G, the result of applying C to AC is calculated as follows:

d ÞÝÑ d1 � �tA1, . . . , Anu, dij : Ai Ñ Aj
�

f ÞÝÑ f1 � DA1 . . . DAn

�
n©

i�1

Ai
©

i,j�1, j¡i

PU pAi, Ajq� (7.14)

with Ai � A, dij R tottpAi, Ajq, C pACq � AC 1 � pd1, f1q and n � |parmaxpA,Gq|.
The condition that morphism dij must not be a total morphism means that at least

one element of Ai and Aj will be identified in different places of G. There is an example

right after the definition of the decomposition operator, on p. 177.

The interpretation of the closure operator is that demanding the universal appearance

of a graph is equivalent to the existence of all of its potential instances in the specified

digraph (G, G or whatever). Whenever nodes in A are identified in G, edges of A must

176 7 Restrictions on Rules

also be found. Therefore, each Ai contains the image of a possible match of A in G (there

are n possible occurrences of A in G) and dij identifies elements considered equal.

Now we turn to decomposition. The idea behind it is to split a graph into its compo-

nents to transform partial morphisms into total morphisms of one of its parts. If nodes

are considered as the building blocks of graphs for this purpose, then if two graphs share

a node of the same type there would be a partial match between them, irrespective of the

links established by the edges of the graphs. Also, as stated above, we are more interested

in the behaviour of edges (which to some extent comprises nodes as source and target

elements of the edges, except for isolated nodes) than on nodes alone as they define the

topology of the graph. These are the reasons why decomposition operator D is defined to

split a digraph A into its edges, generating as many digraphs as edges in A.

If so desired, in order to consider isolated nodes, it is possible to define two decompo-

sition operators, one for nodes and one for edges. Note however that decomposition for

nodes makes sense mostly for graphs made up of isolated nodes, or for parts of graphs

consisting of isolated nodes only. In this case, we would be dealing with sets more than

with graphs.

Definition 7.2.3 (Decomposition) Given an AC � pd, fq with ground formula f �DArQpAqs, diagram d � tAu and host graph G, D acts on AC – D pACq � AC 1 � pd1, f1q
– in the following way:

d ÞÝÑ d1 � �tA1, . . . , Anu, dij : Ai Ñ Aj
�

f ÞÝÑ f1 � DA1 . . . DAn

�
nª

i�1

Ai

�
(7.15)

where n � #tedgpAqu, the number of edges of A. So Ai � A, containing a single edge of

digraph A.

In words: Demanding a partial morphism is equivalent to ask for the existence of a

total morphism of some of its edges, i.e. each Ai contains one and only one of the edges of

A. It does not seem to be relevant whether Ai includes all nodes of A or just the source

and target nodes.

Example.�We will consider conditions represented in Fig. 7.9, A0 for closure and A1

for decomposition, to illustrate definitions 7.2.2 and 7.2.3.

7.2 Extending Derivations 177

Fig. 7.9. Closure and Decomposition

Recall that the formula associated to closure is f � �ArAs. Closure applied to A0

outputs two digraphs, A1
0 and A2

0, and a morphism d0
12 that identifies nodes 1 and 3. Any

further match of A0 in G would imply an isomorphism. Equation (7.14) for A0 is

f1 � DA1
0DA2

0

�
A1

0 ^A2
0

�
(7.16)

with associated diagram

d1 � �tA1
0, A

2
0u, d0

12 : A1
0 Ñ A2

0

�
(7.17)

depicted on the center of Fig. 7.9. Note that the maximum number of non-empty partial

morphisms not being isomorphisms is 2.

Formula associated to D is f � DArQpA,Gqs. Decomposition can be found on the

right of the same figure, in this case with associated formulas:

d1 � �tA1
1, A

2
1u, d1

12 : A1
1 Ñ A2

1

�
f1 � DA1

1DA2
1

�
A1

1 _A2
1

�
. (7.18)

The number of edges that make up the graph is 2, which is the number of different

graphs Ai
1.�

Now we get to the main result of this section. The following theorem states that it

is possible to reduce any formula in an application condition to one using existential

quantifiers and total morphisms. Recall that, in Matrix Graph Grammars, matches are

total morphisms.8

8 In fact in any approach to graph transformation, to the best of our knowledge.

178 7 Restrictions on Rules

Theorem 7.2.4 Let GC � pd, fq be a graph constraint such that f � f pP,Qq is a ground

function. Then, f can be transformed into f1 � f1pP q where only existential quantifiers are

used.

Proof�Define the depth of a graph for a fixed node n0 to be the maximum over the shortest path

(to avoid cycles) starting in any node different from n0 and ending in n0. The diagram d

is a graph9 with a special node G. We will use the notation depth pGCq � depth pdq, the

depth of the diagram.

In order to prove the theorem we apply induction on the depth, checking out every

case. There are sixteen possibilities for depth pdq � 1 and a single element A, summarized

in table 7.1.

(1) DArAs (5) � �ArAs (9) DArQpAqs (13) � �ArQpAqs
(2) DArAs (6) � �ArAs (10) DArQpAqs (14) � �ArQpAqs
(3) EArAs (7) �ArAs (11) EArQpAqs (15) �ArQpAqs
(4) EArAs (8) �ArAs (12) EArQpAqs (16) �ArQpAqs

Table 7.1. All Possible Diagrams for a Single Element

Elements in the same row for each pair of columns are related using equalities EArAs ��ArAs and ��ArAs � DArAs, so it is possible to reduce the study to cases (1)–(4) and

(9)–(12).10

Identities QpAq � P pA,Gq and QpAq � P pA,Gq (see also equation (7.6)) reduce

(9)–(12) to formulas (1)–(4): DArQpAqs � DA �
P pA,Gq�DArQpAqs � DA �
P pA,Gq�EArQpAqs � EA �
P pA,Gq�EArQpAqs � EA �
P pA,Gq� .

9 Where nodes are digraphs Ai and edges are morphisms dij .
10 Notice that � � should be read “not for all. . . ” and not “there isn’t any. . . ”.

7.2 Extending Derivations 179

What we mean with this is that it is enough to study the first four cases, although it

will be necessary to specify if A must be found in G or in G. Finally, every case in the

first column can be reduced to (1):

• (1) is the definition of match in Sec. 5.1.

• (2) can be transformed into total morphisms (case 1) using operator D:DA �
A
� � DA �

QpA,Gq� � DA1 . . . DAn

�
nª

i�1

P
�
Ai, G

��
. (7.19)

• (3) can be transformed into total morphisms (case 1) using operator C:EA �
A
� � �ArAs � DA1 . . . DAn

�
n©

i�1

Ai

�
. (7.20)

The conditions on PU are supposed to be fulfilled and thus have not been included.

• (4) combines (2) and (3), where operators C and D are applied in order D � C (see

remark below). Again, conditions on PU are supposed to be fulfilled and thus have

been omitted: EArAs � �A �
A
� � DA11 . . . DAmn

�
m©

i�1

nª
j�1

P
�
Aij , G

��
. (7.21)

If there is more than one element at depth 1, this same procedure can be applied

mechanically. Note that if depth is 1, graphs on the diagram are unrelated (otherwise,

depth ¡ 1). Well-definedness guarantees independence with respect to the order in which

elements are selected.

For the induction step, when there is a universal quantifier �A, according to (7.14),

elements of A are replicated as many times as potential instances of this graph can

be found in the host graph. Suppose the connected graph is called B. There are two

possibilities: Either B is existentially �ADB or universally �A�B quantified.

If B is existentially quantified then it is replicated as many times as A. There is no

problem as morphisms dij : Bi Ñ Bj can be isomorphisms.11 Mind the importance of

the order: �ADB � DB�A.

11 If for example there are three instances of A in the host graph but only one of B, then the

three replicas of B are matched to the same part of G.

180 7 Restrictions on Rules

If B is universally quantified, again it is replicated as many times as A. Afterwards,

B itself needs be replicated due to its universality. Note that the order in which these

replications are performed is not relevant, �A�B � �B�A.

Neddless to say that the replication of any graph has to preserve the shape of the

original diagram. For example, for the case DB�A, if there is a morphism d : B Ñ A, then

each di : B Ñ Ai has to preserve the identifications of d (this means that we keep only

those Ai that preserve the structure of the diagram). Otherwise we would be defining a

new application condition. The order in the general case is given by the formula f.�

Remark.�Operations C and D are defined for � and D quantifiers, respectively. To

tackle with their negations, they should be transformed in their positive counterparts:E ÞÑ � and � � ÞÑ D.�

Fig. 7.10. Application Condition Example

Examples.�Let be given a diagram like the one in Fig. 7.10 with formula f �DA1�A2DA3 rA2 ñ pA1 ^A3qs. Say C stands for conveyor.12 If a conveyor is connected

to three conveyors, then they are eventually joint into a single conveyor. Graph G in the

same figure satisfies the application condition as elements p2 : Cq, p4 : Cq and p5 : Cq are

connected to a single node p3 : Cq. Graph G1 does not satisfy the application condition.

Note that:

f � DA1�A2DA3 rA2 ñ pA1 ^A3qs � DA1�A2DA3

�
A2 _ pA1 ^A3q� . (7.22)

12 Taken from the study case in App. A.

7.2 Extending Derivations 181

Suppose that the second form of f in (7.22) is used. Closure applies to A2, so it

is copied three times with the additional property of mandatorily being identified in

different parts of the host graph. As A3 is connected to A2 it is also replicated. A1 has

no common element with A2 so it needs not be replicated. Hence, a single A1 appears

when the closure operator is applied. Note however that there is no difference if A1 is

also replicated because all different copies can be identified in the same part of the host

graph.

Fig. 7.11. Closure Example

The key point is that A2 must be matched in different places of the host graph

(otherwise there should be some isomorphism) and the same may apply to A3 (as long as

node p4 : Cq in A3 is different for A3, A
1
3 and A23) but A1, A

1
1 and A21 can be matched in

the same place. Here there is no difference in asking for three matches of A1 or a single

match, as long as they can be matched in the same place. A1, A
1
1 and A21 are depicted

on the right of Fig. 7.11.

In fact, there is something wrong in our previous reasoning because �A2 demands all

potential matches of A2. This includes the graph made up of nodes 1 : C and 3 : C and

the edge joining the first with the second. To obtain the behaviour described in preciuos

paragraphs we need to add another graph A4 that has only nodes 1 : C and 4 : C, modify

the formula

f � DA1�A4DA2DA3 rpA4 ^A2q ñ pA1 ^A3qs (7.23)

and also the morphisms in the diagrams. It is all depicted in Fig. 7.12.�

182 7 Restrictions on Rules

Fig. 7.12. Application Condition Example Corrected

Theorem 7.2.4 is of interest because derivations as defined in Matrix Graph Grammars

(the matching part) use only total morphisms and existential quantifiers. An application

condition AC � pdAC , fACq is a graph constraint GC � pdGC , fGCq with13

fAC � DLDN �
L^ P �

N,G
�^ fGC

�
, (7.24)

so theorem 7.2.4 can be applied to application conditions.

Corollary 7.2.5 Any application condition AC � pd, fq such that f � f pP,Qq is a ground

function can be embedded into its corresponding direct derivation.

This corollary asserts that any application condition can be expressed in terms of

Matrix Graph Grammars rules. So we have proved the informal equations MGG + AC

= MGG + GC = MGG. Examples illustrating formulas (7.19), (7.20) and (7.21) and

previous corollary can be found in Sec. 7.3.

Remark.�It is not difficult to see that C and D commute, i.e. C �D � D � C. In fact

in equation (7.21) it does not matter whether D � C or D � C is considered.

Composition D � C is a direct translation of �ArAs which, in first instance, considers

all appearances of nodes in A and then splits these occurrences into separate digraphs.

This is the same as considering every pair of single nodes connected in A by one edge

and take their closure, i.e. C �D.�

13 Actually, it is not necessary to demand the existence of the nodes of N because they are the

same as those of L.

7.3 Functional Representation 183

7.3 Functional Representation

In this section, operators C and D are translated into the functional notation of previous

sections (see Sec. 2.5 for a quick introduction), inspired by the Dirac or bra-ket notation,

where productions can be written as R � xL, py. This notation is very convenient for

several reasons, for example, it splits the static part (initial state, L) from the dynamics

(element addition and deletion, p). Besides, this will permit us to interpret application

conditions as sequences or sets of sequences and to study their consistency through

applicability.

Operators C and D will be formally represented as qT and pT , respectively. Recall thatpT has been used in the demonstration of proposition 6.3.3.

Let p : LÑ R be a production with application condition AC � pd, fq. We will follow

a case by case study of the demonstration of theorem 7.2.4 to structure this section.

The first case addressed in the proof of theorem 7.2.4 is the most simple: If the nodes

of A are found in G then its edges must also be matched.

d � pA, d : LÑ Aq , f � DArAs. (7.25)

Let idA be the production that does nothing on A and also the operator that de-

mands14 the existence of A. The set of identitiesxL_A, py � xL, idAppqy � xL, p � idAy (7.26)

proves that

id�ApLq � L_A, (7.27)

which is the adjoint operator of idA. Here, or is carried out according to identifications

specified by d. Production idA can be seen as an operator (adjoints are defined only for

operators). As a matter of fact, it is easy to prove that any production is in particular

an operator.15

So if AC asks for the existence of a graph like in (7.25), it is possible to enlarge the

production p ÞÑ p � idA. The marking operator Tµ (Sec. 5.2) enables us to use concate-

nation instead of composition as in equation (7.26):

14 Operator id!Appq could be thought as a “production” that in a single step deletes and adds

the elements of A.
15 Just define its action.

184 7 Restrictions on Rules xL_A, py � p; idA, (7.28)

to be understood in the sense of applicability. The following lemma has just been proved:

Lemma 7.3.1 (Match) Let p : L Ñ R be a production together with an application

condition as in (7.25). Its applicability is equivalent to the applicability of the sequence

p; idA, as in equation (7.28).

Fig. 7.13. Production Transformation According to Lemma 7.3.1

Example.�On the left of Fig. 7.13 a production and the diagram of its weak appli-

cation condition is depicted. Let its formula be DArAs. On the right, its transformation

according to (7.28) is represented, but using composition instead of concatenation.�

We will introduce a kind of conjugate of production idA, to be written idA. On the

left of Fig. 7.14 there is a representation of idA. It simply preserves (uses but does not

delete) all elements of A, which is equivalent to demand their existence. On the right we

have its conjugate, idA, which asks for nothing to the host graph except the existence of

A in the complement of G.

AN A
idA

A A AN
R

idA

AN
R

GE G G GE G G

Fig. 7.14. Identity idA and Conjugate idA for Edges

If instead of introducing idA directly, a definition on the basis of already known

concepts is preferred we may proceed as follows. Recall that N � r _ eD, so our only

7.3 Functional Representation 185

chance to define idA is to act on the elements that some production adds. Let

pe; pr (7.29)

be a sequence such that the first production pprq adds elements whose presence is to be

avoided and the second ppeq deletes them (see Fig. 7.15). The overall effect is the identity

(no effect) but the sequence can be applied if and only if elements of A are in GE .

Note that a similar construction does not work for nodes because if a node is already

present in the host graph, a new one can be added without any problem (adding and

deleting a node does not guarantee that the node is not in the host graph).

The way to proceed is to care only about nodes that are present in the host graph

as the others, together with their edges, will be present in the completion of the comple-

ment of G. This is represented by AN
R , where R stands for restriction. Restriction and

completion are in some sense complementary operations.

AN
R

A_AN
R

A
A A

AN
R

G H G

Fig. 7.15. idA as Sequence for Edges

Our analysis continues with the second case in the proof of theorem 7.2.4, which

states that some edges of A can not be found in G for some identification of nodes in G,

i.e. � �A rAs � DA �
A
�
. This corresponds to operator pTA (decomposition), defined by:pTA ppq � tp1, . . . , pnu . (7.30)

Here, pi � p � idAi with Ai a graph consisting of one edge of A (together with its

source and target nodes) and n � #tedgpAqu, the number of edges of A. Equivalently,

the formula is transformed into:

f � DArAs ÞÝÑ f1 � DxA1 . . . DxAn

�
nª

i�1

P
�xAi, G

	�
, (7.31)

186 7 Restrictions on Rules

i.e. the matrix of edges that must not appear in order to apply the production is enlarged

Ni � N _Ai (being Ni the nihilation matrix of pi).

If composition is chosen, the grammar is modified by removing rule p and adding the

set of productions tp1, . . . , pnu. If the production is part of the sequence q2; p; q1 then we

are allowing variability on production p as it can be substituted by any pi, i P t1, . . . , nu,
i.e. q2; p; q1 ÞÝÑ q2; pi; q1.

A similar reasoning applies if we use concatenation instead of composition but it is

not necessary to eliminate production p from the grammar: q2; p; q1 ÞÑ q2; p; idAi ; q1.

Production p and sequence idAi are related through marking.

Lemma 7.3.2 (Decomposition) With notation as above, let p : LÑ R be a production

together with an application condition as in (7.31). Its applicability is equivalent to the

applicability of any of the sequences

si � p; idxAi
(7.32)

where xAi is defined as in equations (7.19) or (7.31).

Before moving on to the third case in the proof of theorem 7.2.4, previous results will

be clarified with a simple example with similar conditions to those of Fig. 7.9.

Fig. 7.16. Decomposition Operator

Example.�Consider production p to the left of Fig. 7.16 and application condition

A on the center of the same figure. If the associated formula for A is f � DA �
A
�

then

three sequences are derived (pi, i P t1, 2, 3u) with pi � p; idxAi
, being xAi those depicted

to the right of Fig. 7.16.�

The third case in the proof of theorem 7.2.4 demands that for any identification of

nodes in the host graph every edge must also be found. Recall that EArAs � �A rAs which

is associated to operator qTA (closure). We will assume that all instances are matched in

7.3 Functional Representation 187

their corresponding parts, so the PU part of equation (7.14) is always fulfilled (is always

true).16 Hence,

f � EArAs ÞÝÑ D|A1 . . . D|An

�
n©

i�1

|Ai

�
. (7.33)

This means that more edges must be present in order to apply the production, L ÞÝÑ�n
i�1

�
L_Ai

�
. By a similar reasoning to that in (7.27):C

nª
i�1

�|Ai _ L	 , pG � A
L, qTAppqE � �

L,
�
id|A1

� . . . � id}An

� ppqD � �
L, p � id qAD , (7.34)

– where id qA � id|A1
� . . . � id}An – the adjoint operator can be calculated:qT �A pLq � L_�

nª
i�1

|Ai

�
. (7.35)

As commented above, the marking operator Tµ allows us to substitute composition

with concatenation:C
nª

i�1

�|Ai _ L	 , pG � p; id|A1
; . . . ; id}An � p; id qA, (7.36)

to be understood in the sense of applicability. We have proved the following lemma:

Lemma 7.3.3 (Closure) With notation as above, let p : L Ñ R be a production to-

gether with an application condition as in (7.33). Its applicability is equivalent to the

applicability of the sequence p; id qA.

Fig. 7.17. Closure Operator

16 When dealing with morphisms PU was used. For operators, the marking operator Tµ acting

on the host graph and on Ai suffices. This remark applies to the rest of the chapter.

188 7 Restrictions on Rules

Example.�Consider production p to the left of Fig. 7.17 and application condition

A on the center of the same figure. If the associated formula for A is f � �A rAs then

two sequences are derived (pi, i P t1, 2u) with pi � p; id|Ai
, being |Ai those depicted to the

right of Fig. 7.17.�

The fourth case is equivalent to that known in the literature as negative application

condition, NAC, which is a mixture of (2) and (3), in which order of composition does

not matter due to the fact that qT and pT commute.17 It says that there does not exist an

identificaction of nodes of A for which all edges in A can also be found, EArAs, i.e. for

every identification of nodes there is at least one edge in G. If we definerTAppq � �pTA � qTA

	ppq � �qTA � pTA

	ppq, (7.37)

then

f � �ArAs ÞÝÑ D�A11 . . . D�Amn

�
m©

i�1

nª
j�1

�Aij

�
. (7.38)

In more detail, if we first apply closure to A then we obtain a sequence of m � 1

productions, p ÞÝÑ p; id|A1
; . . . ; id}Am , assuming m different matches of A in the host

graph G. Right afterwards, decomposition splits every |Ai into its components (in this

case there are n edges in A). So every match of A in G is transformed to look for at least

one missing edge, id|A1
ÞÝÑ id�A11

_ . . ._ id�A1n
.

Operator rTA acting on a production p with a weak precondition A results in a set of

productions rTA ppq � tp1, . . . , pru
where r � mn. Each pk is the composition of m � 1 productions, defined as pk �
p� id�Au0v0

� . . .� id �Aumvm
. Marking operator Tµ of Sec. 5.2 permits concatenation instead

of composition: rTAppq �
pk | pk � p; id�Au0v0

; . . . ; id �Aumvm

(
kPt1,...,mnu . (7.39)

Lemma 7.3.4 (Negative Application Conditions) Keeping notation as above, let

p : L Ñ R be a production together with an application condition as in (7.38), then

its applicability is equivalent to the applicability of some of the sequences derived from

equation (7.39).

17 See remark by the end of Sec. 7.2, on p. 182.

7.3 Functional Representation 189

Example.�If there are two matches and A has three edges, i � 3 and j � 2, then

equation (7.38) becomes:

3©
i�1

2ª
j�1

�Aij � ��A11 _�A12

	��A21 _�A22

	��A31 _�A32

	� �A11�A21�A31 _�A11�A21�A32 _ . . ._�A12�A22�A31 _�A12�A22�A32.

For example, the first monomial �A11�A21�A31 is the sequence

p; id�A11
; id�A21

; id�A31
.�

Summarizing in a sort of rule of thumb, there are two operations – and and or – that

might be combined using the rules of monadic second order logics. These operations are

transformed in the following way:

• Operation and in the f of an application condition becomes an or when calculating

an equivalent production.

• Operation or enlarges the grammar with new productions, removing the original rule

if composition instead of concatenation is chosen.

A0

mA0

A1

d10

mA1

L

dL0

dL1 p

mL

R

G H

Fig. 7.18. Example of Diagram with Two Graphs

Example.�Let AC � pd, fq be a graph constraint with diagram d depicted in Fig.

7.18 (graphs shown in Fig. 7.19) and associated formula f � DL�A0DA1 rL pA0 ñ A1qs,
dL0 pt1uq � t1u. Let morphisms be defined as follows: dL1 pt1uq � t1u, d10 pt1uq � t1u
and d10 pt2uq � t2u.

190 7 Restrictions on Rules

The interpretation of f is that L must be found in G (for simplicity N is omitted)

and whenever nodes of A0 are found then there must exist a match for the nodes of A1

such that there is an edge joining both nodes.

Note that matching of nodes of A0 and A1 must coincide (this is what d10 is for) and

that node 1 has to be the same as that matched by mL for L in G (morphisms dL0 and

dL1).

Fig. 7.19. Precondition and Postcondition

Application of operator qT for the universal quantifier yields six digraphs forA0 and an-

other six for A1, represented in Fig. 7.19. Note that in this case we have Ai
0 � PE

�
Ai

0, G
�

because Ai
0 has only one edge. Suppose that mLpt1, 2, 3uq � t12, 21, 3u, then f becomes

f1 � DLDA4
0DA5

0DA4
1DA5

1

�
L
�
A4

0 _A4
1

	�
A5

0 _A5
1

	�
. (7.40)

Different matches and relations among components of the application condition derive

different formulas f. For example, we could fix only node 1 in d10, allowing node 2 to

be differently matched in G. Notice that neither A3
1 nor A6

1 exist in G so the condition

would not be fulfilled for A3
0 or A6

0 because terms A3
0 _ A6

0 and A3
1 _ A6

1 would be false

(A3
0 and A6

0 are in G for any identification of nodes).�

7.3 Functional Representation 191

Previous lemmas prove that weak preconditions can be reduced to studying sequences

of productions. If instead of weak preconditions we have preconditions then we should

study derivations (or sets of derivations) instead of sequences.

Theorem 7.3.5 Any weak precondition can be reduced to the study of the corresponding

set of sequences.

Proof�This result is the sequential version of theorem 7.2.4. The four cases of its proof corre-

spond to lemmas 7.3.1 through 7.3.4.�

Example.�Continuing example on p. 189, equation (7.40) put in normal disjuntive

form reads

f1 � DLDA4
0DA5

0DA4
1DA5

1

�
LA4

0A
5
0 _ LA4

0A
5
1 _ LA4

1A
5
0 _ LA4

1A
5
1

�
(7.41)

which is equivalent to

f1 � DLDA4
0DA5

0DA4
1DA5

1

�
LA4

1A
5
1

�
because A4

0 and A5
0 can be found in G. This is the same as applying the sequence

p; idA4

1
; idA5

1
or p; idA5

1
; idA4

1
(because idA4

1
KidA5

1
).

So fulfillment ofAC, once matchmL has been fixed,18 is equivalent to the applicability

of the sequence to which equation (7.41) gives rise.�

One application of this theorem is to test if a weak precondition specifies a tautology

or a fallacy by using the theory developed so far for sequences. It will also be used

in the next section to study how to construct weak postconditions equivalent to given

weak preconditions. It is also useful to proceed in the opposite way, i.e. to transform

postconditions into equivalent preconditions.

Corollary 7.3.6 A weak precondition is coherent if and only if its associated sequence

(set of sequences) is coherent. Also, it is compatible if and only if its sequence (set of

sequences) is compatible and it is consistent if and only if its sequence (set of sequences)

is applicable.

Example.�For coherence we will change the formula of previous examples a little.

Consider f2 � DL�A0DA1

�
L
�
A1 ñ A0

��
. Note that f2 cannot be fulfilled because on the

18 In this example. In general it is not necessary to fix the match in advance.

192 7 Restrictions on Rules

one hand edges p1, 1q and p1, 2q must be found in G and on the other edge p1, 1q must

be in G.

To simplify the example, suppose that some match is already given. The sequence to

study is p; idA1
; idA0

, which is not coherent because in its equivalent form p; idA1
; pe

0; p
r
0

production pe
0 deletes edge p1, 1q used by idA1

.�

Corollary 7.3.7 A weak precondition is consistent if and only if it is coherent and com-

patible.

Remark.�Something left undefined is the order of productions idA and idA in the

sequence. Consistency does not depend on the ordering of productions as long as the

last to be applied is production p. Either there is sequential independence or, if not, any

sequence detects the inconsistency.�

7.4 Moving Conditions

Roughly speaking, there have been two basic ideas in previous sections that allowed us

to check consistency of the definition of direct derivations with weak preconditions, and

also provided us with some means to use the theory developed so far in order to continue

the study of application conditions:

• Embed application conditions into the production or derivation. The left hand side L

of a production receives elements that must be found – P pA,Gq – and N those whose

presence is forbidden – P pA,Gq –.

• Find a sequence or set of sequences whose behaviour is equivalent to that of the

production plus the application condition.

In this section we will care about how (weak) preconditions can be transformed into

(weak) postconditions and viceversa: Given a weak precondition A, what is the equivalent

weak postcondition (if any) and how can one be transformed into the other?. Before this,

it is necessary to state the main results of previous sections for postconditions.

The notation needs to be further enlarged so we will append a left arrow on top

of conditions to indicate that they are (weak) preconditions and an upper right arrow

7.4 Moving Conditions 193

for (weak) postconditions. Examples are
�
A for a weak precondition and

Ñ
A for a weak

postcondition. If it is clear from context, we will omit arrows.

There is a direct translation of theorem 7.2.4 for postconditions. Operators pTÑ
A

andqTÑ
A

are defined similarly for weak postconditions. Again, if it is clear from context, it will

not be necessary to overelaborate the notation.

Equivalent results to lemmas in Sec. 7.3, in particular to equations (7.28), (7.32),

(7.36) and (7.39) are given in the following proposition:

Proposition 7.4.1 Let
Ñ
A� pf, dq � pf, ptAu, d : RÑ Aqq be a weak postcondition. Then

we can obtain a set of equivalent sequences to given basic formulae as follows:

(Match) f � DArAs ÞÝÑ TA ppq � idA; p. (7.42)

(Decomposition) f � DArAs ÞÝÑ pTA ppq � idA; p. (7.43)

(Closure) f � EArAs ÞÝÑ qTA ppq � idA1 ; . . . ; idAm ; p. (7.44)

(NAC) f � EArAs ÞÝÑ rTA ppq � idAu0v0 ; . . . ; idAumvm ; p. (7.45)

Proof��
There is a symmetric result to theorem 7.3.5 for weak postconditions that directly

stems from proposition 7.4.1. The development and ideas are the same, so we will not

repeat them here.

Theorem 7.4.2 Any weak postcondition can be reduced to the study of the corresponding

set of sequences.

Proof��
Corollaries 7.3.6 and 7.3.7 have their versions for postconditions which are explicitely

stated for further reference.

Corollary 7.4.3 A weak postcondition is coherent if and only if its associated sequence

(set of sequences) is coherent. Also, it is compatible if and only if its sequence (set of

sequences) is compatible and it is consistent if and only if its sequence (set of sequences)

is applicable.

194 7 Restrictions on Rules

Corollary 7.4.4 A weak prostcondition is consistent if and only if it is coherent and

compatible.

Let p : L Ñ R be a production applied to graph G such that ppGq � H . Elements

to be found in G are those that appear in L. Similarly, elements that are mandatory in

the “post” side are those in R. The evolution of the positive part (to be added to L) of

a weak application condition is given by the grammar rule itself.

The evolution of the negative part N has not been addressed up to now as it has not

been needed. Let’s represent by NL the negative elements of the LHS of the production

and by NR those elements that must not be present in the RHS.

Proposition 7.4.5 Let p : L Ñ R be a compatible production with negative left hand

side NL and negative right hand side NR. Then,

NR � p�1 pNLq . (7.46)

Proof�First suppose that NL is the one naturally defined by the production, i.e. the one found

in lemma 4.4.5. The only elements that should not appear in the RHS are potential

dangling edges and those deleted by the production: e _D. It coincides with (7.46) as

shown by the following set of identities:

p�1 pNLq � e_ r NL � e_ r �r _ eD� � e_ e r D � e_ r D � e_D. (7.47)

In the last equality of (7.47) compatibility has been used, rD � D. Now suppose that

NL has been modified, adding some elements that should not be found in the host graph

(theorem 7.3.5). There are three possibilities:

• The element is erased by the production. This case is ruled out by corollary 7.3.6 as

the weak precondition could not be coherent.

• The element is added by the production. Then, in fact, the condition is superfluous

as it is already considered in NL without modifications, i.e. (7.47) can be applied.

• None of the above. Then equation (7.46) is trivially fulfilled because the production

does not affect this element.

Just a single element has been considered to ease exposition.�

7.4 Moving Conditions 195

Remark.�Though strange at a first glance, a dual behaviour of the negative part

of a production with respect to the positive part should be expected. The fact that NL

uses p�1 rather than p for its evolution is quite natural. When a production p erases one

element, it asks its LHS to include it, so it demands its presence. The opposite happens

when p adds some element. For N things happen quite in the opposite direction. If the

production asks for the addition of some element, then the size of NL is increased while

if some element is deleted, NL shrinks.�

Now we can proceed to prove that it is possible to transform preconditions into

postconditions and back again. Proposition 7.4.5 allows us to consider the positive part

only. The negative part would follow using the inverse of the productions.

There is a restricted case that can be directly addressed using equations (7.42) –

(7.45), theorems 7.3.5 and 7.4.2 and corollaries 7.3.6 and 7.4.3. It is the case in which the

transformed postcondition for a given precondition does not change.19 The question of

whether it is always possible to transform a precondition into a postcondition – and back

again – would be equivalent to asking for sequential independence of the production and

identities, i.e. whether idAi K p or not.

In general the production may act on elements that appear on the definition of the

graphs of the precondition. Recall that one demand on precondition specification is that

L and N are always the domain of their respective morphisms dL and dN (refer to

comments on p. 168). The reason for doing so will be clarified shortly.�
A

m�
A

pA

Ñ
A

mÑ
A

�m��
A

L p

dL

R

d�
LL

p

mL

dL

R

m�
L

d�
L

G
p�

H
�
A

pA Ñ
A

Fig. 7.20. (Weak) Precondition to (Weak) Postcondition Transformation

19 Note that this is not so unrealistic. For example, if the production preserves all elements

appearing in the precondition.

196 7 Restrictions on Rules

Theorems on this and previous sections make it possible to interpret preconditions

and postconditions as sequences. The only difference is that preconditions are represented

by productions to be applied before p while postconditions need to be applied after p.

Hence, the only thing we have to do to transform a precondition into a postcondition (or

viceversa) is to pass productions from one part to the other. The case in which we have

sequential independence has been studied above. If there is no sequential independence

the transformation can be reduced to a pushout construction20 – as for direct derivation

definition – except for one detail: In direct derivations matches are total morphisms while

here dL and dN need not be (see Fig. 7.20).

The way to proceed is to restrict to the part in which the morphisms are defined (they

are trivially total in that part). For example, the transformation for the weak application

condition depicted to the left of Fig. 7.21 is a pushout. It is again represented to the

right of the same figure.

Fig. 7.21. Restriction to Common Parts: Total Morphism

The notation is extended to represent this transformation of preconditions into post-

conditions as follows: Ñ
A� p

��
A

	
. (7.48)

20 The square made up of L, R,
�
A and

Ñ
A is a pushout where p, L, dL, R and

�
A are known andÑ

A, pA and dL need to be calculated. Recall from Sec. 5.1 that production composition can

be used instead of pushout constructions. The same applies here, but we will not enter this

topic for now.

7.4 Moving Conditions 197

To see that precondition fulfillment is equivalent to postcondition fulfillment all we

have to do is to use their representation as sequences of productions (theorems 7.3.5

and 7.4.2). Note that applying p delays the application of the result (the idA or idA

productions) in the sequence, i.e. we have a kind of sequential independence except that

productions can be different (id�
A
� idÑ

A
) because they may be modified by p:

p; id�
A
ÞÝÑ idÑ

A
; p. (7.49)

If the weak precondition is consistent so must the weak postcondition be. There can

not be any compatibility issue and coherence is maintained (again, idA and idA may be

modified by the production). Production p deals with the positive part of the precondition

and, by proposition 7.4.5, p�1 will manage the part associated to N . For the post-to-pre

transformation roles of p and p�1 are interchanged.

Pre-to-post or post-to-pre transformations do not affect the shape of the formula

associated to a diagram except in the case where redundant graphs are discarded. There

are two clear examples of this:

• The application condition requires the graph to appear and the production deletes

all its elements.

• The application condition requires the graph not to appear and the production adds

all its elements.

Recalling that there can not be any compatibility nor coherence problem due to

precondition consistency, consistency permits the transformation, proving the main result

of this section:

Theorem 7.4.6 Any consistent (weak) precondition is equivalent to some consistent

(weak) postcondition and viceversa.

Proof (Sketch)�What has been addressed in previous pages is the equivalent to the first case in the

proof of theorem 7.2.4 or to lemma 7.3.1. Hence, a similar procedure using closure,

decomposition or both proves the result. Notice that it is necessary to consider the host

graph in order to calculate the equivalence.�

This result allows us to extend the notation to consider the transformation of a

precondition. A postcondition is the image of some precondition, and viceversa:

198 7 Restrictions on Rules Ñ
A� A�

A, p
E
. (7.50)

As commented above, for a given application condition AC it is not necessarily true

that A � p�1; ppAq because some new elements may be added and some obsolete elements

can be discarded. What we will get is an equivalent condition adapted to p that holds

whenever A holds and fails to be true whenever A is false.

Fig. 7.22. Precondition to Postcondition Example

Example.�In Fig. 7.22 there is a very simple transformation of a precondition into

a postcondition, through morphism ppAq. The production deletes one arrow and adds a

new one. The overall effect is reverting the direction of the edge between nodes 1 and 2.

The opposite transformation, from postcondition to precondition, can be obtained by

reverting the arrow, i.e. through p�1pAq. More general schemes can be studied apply-

ing the same principles, although diagrams will be a bit cumbersome with only a few

application conditions.

Let A � p�1 � p��A	. If a pre-post-pre transformation is carried out, we will have�
A� A because edge (2,1) would be added to

�
A. However, it is true that A � p�1 �p pAq.

Note that in fact id�
A
Kp if we limit ourselves to edges, so it would be possible to simply

move the precondition to a postcondition as it is. Nonetheless, we have to consider nodes

1 and 2 as the common parts between L and
�
A. This is the same kind of restriction than

the one illustrated in Fig. 7.21.�

7.4 Moving Conditions 199

If the pre-post-pre transformation is thought as an operator Tp acting on application

conditions, then it fulfills

T 2
p � id, (7.51)

where id is the identity. The same would also be true for a post-pre-post transformation.

Theorem 7.4.6 can be generalized at least in two ways. We will just sketch how to

proceed as it is not difficult with the theory developed so far.

Firstly, an application condition has been transformed into an equivalent sequence

of productions (or set of sequences) but no ε-productions have been introduced to help

with compatibility of the application condition. Think of a production that deletes one

node and that some graph of the application condition has an edge incident to that node

(and that edge is not deleted by the production). So to speak, we have a DPO-like pre

to post transformation theorem. It should not be very difficult to proceed as in Chap. 5

to define a SPO-like behaviour.

Secondly, application conditions can now be thought as properties of the production,

and not necessarily as part of its left or right hand sides. It is not difficult to see that, for

a given sequence of productions, application conditions are to some extent delocalized in

the sequence. In particular it would be possible to pass conditions from one production

to others inside a sequence (paying due attention to compatibility and coherence). Note

that a postcondition for p1 in the sequence p2; p1 might be translated into a precondition

for p2, and viceversa.21

When defining diagrams some “practical problems” may turn up. For example, if the

diagram d � �
L

dL0Ñ A0
d10� A1

	
is considered then there are two potential problems:

1. The direction in the arrowA0 � A1 is not the natural one. Nevertheless, injectiveness

allows us to safely revert the arrow, d01 � d�1
10 .

21 This tranformation can be carried out under appropriate circumstances, but we are not limited

to sequential independence. Recall that productions specifying constraints can be advanced

or delayed even though they are not sequential independent with respect to the productions

that define the sequence.

200 7 Restrictions on Rules

2. Even though we only formally state dL0 and d10, other morphisms naturally appear

and need to be checked out, e.g. dL1 : RÑ A1. New morphisms should be considered

if they relate at least one element.22

Also, a possible interpretation of (7.51) is that the definition of the application con-

dition can vary from the natural one, according to the production under consideration.

Pre-post-pre or post-pre-post transformations adjust application conditions to the cor-

responding production.

Let’s end this section relating graph constraints and moving conditions. Recall equa-

tion (7.24), in which a first relationship between application conditions and graph con-

straints is established. That equation states how to enlarge the requirements already

imposed by a graph constraint to a given host graph if, besides, a given production is to

be applied.

Another different though related point is how to make productions respect some

properties of a graph. This topic is addressed in the literature, for example in [22]. The

proposed way to proceed is to transform a graph constraint into a postcondition first and

a precondition right afterwards. The equivalent condition to (7.24) would be

fPC � DRDNR

�
R^ P �

NR, G
�^ fGC

�
(7.52)

being fGC the graph constraint to be kept by the production.

7.5 From Simple Digraphs to Multidigraphs

In this section we show how it is possible to consider multidigraphs (directed graphs

allowing multiple parallel edges) without changing the theory developed so far. At first

sight this might seem a hard task as Matrix Graph Grammars heavily depend on ad-

jacency matrices. Adjacency matrices are well suited for simple digraphs but can not

deal with parallel edges. This section is a theoretical application of graph constraints and

application conditions to Matrix Graph Grammars.

22 Otherwise stated: Any condition made up of n graphs Ai can be identified as the complete

graph Kn, in which nodes are Ai and morphisms are dij . Whether this is a directed graph or

not is a matter of taste (morphisms are injective).

7.5 From Simple Digraphs to Multidigraphs 201

Before addressing multidigraphs, variable nodes are introduced as one depends on the

other. We will follow reference [34] to which the reader is referred for further details.

If instead of nodes of fixed type variable types are allowed, we get a so called graph

pattern. A rule scheme is just a production in which graphs are graph patterns. A substitu-

tion function ι specifies how variable names taking place in a production are substituted.

A rule scheme p is instantiated via substitution functions producing a particular produc-

tion. For example, for substitution function ι we get p ι. The set of production instances

for p is defined as the set Ippq � tp ι | ι is a substitutionu.
The kernel of a graph G, kerpGq, is defined as the graph resulting when all variable

nodes are removed. It might be the case that kerpGq � H.

The basic idea is to reduce any rule scheme to a set of rule instances. Note that it

is not possible in general to generate Ippq because this set can be infinite. The way to

proceed is simple:

1. Find a match for the kernel of L.

2. Induce a substitution ι such that the match for the kernel becomes a full match

m : Lι Ñ G.

3. Construct the instance R ι and apply p ι to get the direct derivation G
p ιùñ H .

Mind the non-determinism of step (2), which is matching. Rule schemes are required

to satisfy two conditions:

1. Any variable name occurs at most once in L.

2. Rule schemes do not add variable nodes.

These two conditions greatly simplify rule application when there are variable nodes,

specially for the DPO approach. In our case they are not that important because, among

other things, matches in Matrix Graph Grammars are injective.

Let’s start with multidigraphs and how it is possible to extend Matrix Graph Gram-

mars to cope with them without any major modification. The idea is not difficult: A

special kind of node (call it multinode) associated to every edge in the graph is intro-

duced. Graphically, they will be represented by a filled square.

Now two or more edges can join the same nodes, as in fact there are multinodes in

the middle that convert them into simple digraphs. The term multinode is just a means

to distinguish them from the rest of “normal” nodes that we will call simple nodes and

202 7 Restrictions on Rules

will be represented as usual with colored circles. They are not of a different kind as for

example hyperedges with respect to edges (see Sec. 3.4). In our case, simple nodes and

multinodes are defined similarly and obey the same rules, although their semantics differ.

There are some restrictions to be imposed on the actions that can be performed on

multinodes (application conditions) or, more precisely, the shape or topology of permitted

graphs (graph constraints).

Operations previously specified on edges now act on multinodes. Edges are managed

through multinodes: Adding an edge is transformed into a multinode addition and edge

deletion becomes multinode deletion. Still, there are edges in the “old” sense, to link

multinodes to their source and target simple nodes. We will touch on ε-productions later

in this section.

Fig. 7.23. Multidigraph with Two Outgoing Edges

Example.�Consider the simple production in Fig. 7.23 with two edges between nodes

1 and 3. Multinodes are represented by square nodes while normal nodes are left un-

changed. When p deletes an edge, pτ deletes a multinode. Adjacency matrices for pτ

are:

L � ������ 0 0 0 1 1 1 | 1
0 0 0 0 0 0 | 2
0 0 0 0 0 0 | 3
0 0 1 0 0 0 | a1

0 0 1 0 0 0 | a2

0 1 0 0 0 0 | b ������ R � ����� 0 0 0 1 1 | 1
0 0 0 0 0 | 2
0 0 0 0 0 | 3
0 0 1 0 0 | a2

0 1 0 0 0 | b �����
N � ������ 0 0 0 0 0 0 | 1

0 0 0 1 0 0 | 2
0 0 0 1 0 0 | 3
1 1 0 1 1 1 | a1

0 0 0 1 0 0 | a2

0 0 0 1 0 0 | b ������ e � ������ 0 0 0 1 0 0 | 1
0 0 0 0 0 0 | 2
0 0 0 0 0 0 | 3
0 0 1 0 0 0 | a1

0 0 0 0 0 0 | a2

0 0 0 0 0 0 | b ������

7.5 From Simple Digraphs to Multidigraphs 203

�

Adjacency matrices are more sparse because simple nodes are not directly connected

by edges anymore. Note that the number of edges must be even.

In a real situation, a development tool such as AToM3 should take care of all these

representation issues. A user would see what appears on the left of Fig. 7.23 and not

what is depicted on the right of the same figure. From a representation point of view we

can safely draw p instead of pτ . In fact, according to theorem 7.5.1, it does not matter

which one is used.

Some restrictions on what a production can do to a multidigraph are necessary in

order to obtain a multidigraph again. Think for example the case in which after applying

some productions we get a graph in which there is an isolated multinode (which would

stand for an edge with no source nor target nodes).

The question is to find the properties that define one edge and impose them on

multinodes as graph constraints. This way, multinodes will behave as edges. In the bullets

that follow, graphs between brackets can be found in Fig. 7.24:

• One edge always connects two nodes (diagram d1, digraphs C0 and C1).

• Simple nodes can not be directly connected by one edge (D0 and E0). Now edges

start in a simple node and end in a multinode or viceversa, linking simple nodes with

multinodes but not simple nodes between them.

• A multinode can not be directly connected to another multinode (D1 and E1). The

contrary would mean that an edge in the simple digraph case is incident to another

edge, which is not possible.

• Edges always have a single simple node as source (E2) and a single simple node as

target (E3).
23

The graph constraint consists of three parts: First diagram d1 is closely related to

compatibility of the multidigraph24 and has associated formula:

f1 � �XDC0DC1DADB rXA pC0 _BC1qs . (7.53)

23 This condition can be relaxed in case hyperedges were considered. See Sec. 3.4.
24 Note that now there are “two levels” when talking about a graph. For example, if we say

compatibility we may mean compatibility of the multidigraph (left side in Fig. 7.23) or of the

underlying simple digraph (right side in Fig. 7.23) which are quite different. In the first case

204 7 Restrictions on Rules

Fig. 7.24. Multidigraph Constraints

Diagram d2 and formula

f2 � �D0�D1

�
D0D1

�
(7.54)

prevents that a simple node or a multinode could be linked by an edge to itself. Self loops

should be represented as in C0.

Finally, when considering two or more simple nodes or multinodes, configurations in

diagram d3 are not allowed. Its associated formula is:

f3 � �E0�E1�E2�E3

�
Q pE0qQ pE1qE2E3

�
. (7.55)

This set of constraints will be known as multidigraph constrains, and the abbreviation

MC � pd1 Y d2 Y d3, f1 ^ f2 ^ f3q will be used. Please, refer to Fig. 7.24.

Some of these diagrams could be merged, also unifying (and simplifying a little bit)

their corresponding formulas. For example, instead of D0, D1, E0 and E1 we could

have considered the diagram in Fig. 7.25. Its associated formula would have been f4 ��F0

�
QpF0q�. However, a new constraint needs to consider the case in which a single

we talk about edges connecting nodes while in the second we speak of edges connecting some

node with some multinode.

7.5 From Simple Digraphs to Multidigraphs 205

Fig. 7.25. Simplified Diagram for Multidigraph Constraint

simple node or a single multinode is found in the host graph (as these two cases are not

taken into account by pd4, f4q).
Theorem 7.5.1 (Multidigraphs) Any multidigraph is isomorphic to some simple graph

G together with multidigraph constraint MC � pf, dq, with d as defined in Fig. 7.24 and

f as in (7.53), (7.54) and (7.55).

Proof (sketch)�A graph with multiple edges M � pV,E, s, tq consists of disjoint finite sets V of nodes

and E of edges and source and target functions s : E Ñ V and t : E Ñ V , respectively.

Function v � speq, v P V , e P E returns the node source v for edge e. We are considering

multidigraphs because the pair function ps, tq : E Ñ V � V need not be injective, i.e.

several different edges may have the same source and target nodes. We have digraphs

because there is a distinction between source and target nodes. This is the standard

definition found in any textbook.

It is clear that any M can be represented as a mutidigraph G satisfying MC. The

converse also holds. To see it, just consider all possible combinations of two nodes and

two multinodes and check that any problematic situation is ruled out by MC.�

The multidigraph constraint MC � pf, dq must be fulfilled by any host graph. If there

is a production p : LÑ R involved, MC has to be transformed into an application condi-

tion over p. In fact, the multidigraph constraint should be demanded both as precondition

and postcondition (recall that we can transform preconditions into postconditions and

viceversa). In Sec. 7.1 we saw that this is an easy task in Matrix Graph Grammars: See

equation (7.24) and also (7.52). This is a clear advantage of being able to relate graph

constraints and application conditions.

206 7 Restrictions on Rules

This section is closed analysing what behaviour we have for multidigraphs with respect

to dangling edges. With the theory as developed so far, if a production specifies the

deletion of a simple node then an ε-production would delete any edge incident to this

simple node, connecting it to any surrounding multinode. But restrictions imposed by

the multidigraph constraint do not allow this so any production with potential dangling

edges can not be applied. Thus, we have a DPO-like behaviour with respect to dangling

edges for multidigraphs.

In order to have a SPO-like behaviour ε-productions need to be restated, defining

them at a multidigraph level, i.e. ε-productions have to delete any potential “dangling

multinode”. A new type of productions (Ξ-productions) are introduced to get rid of

annoying edges25 that would dangle when multinodes are also deleted by ε-productions.

We will not develop it in detail and will limit to describe the concepts. The way to

proceed is very similar to what has been studied in Sec. 5.1, by defining the appropriate

operator TΞ and redefining Tε.

Fig. 7.26. ε-production and Ξ-production

A production p : L Ñ R between multidigraphs that deletes one simple node may

give rise to one ε-production that deletes one or more multinodes. This ε-production can

in turn be applied only if any edge has already been erased, hence possibly provoking

the appearance of one Ξ-production.

This process is depicted in Fig. 7.26 where, in order to apply production p, productions

pε and pΞ need to be applied before

25 Edges connect simple nodes and multinodes.

7.6 Summary and Conclusions 207

p ÝÑ p; pε; pΞ (7.56)

Eventually, one could simply compose the Ξ-production with its ε-production, renam-

ing it to ε-production and defining it as the way to deal with dangling edges in case of

multiple edges, fully recovering a SPO-like behaviour. As commented above, a potential

user of a development tool such as AToM3 would still see things as in the simple digraph

case, with no need to worry about Ξ-productions.

7.6 Summary and Conclusions

In this chapter, graph constraints and aplication conditions have been introduced and

studied in detail for the Matrix Graph Grammar approach. Our proposal considerably

generalizes previous efforts for other approaches such as SPO or DPO.

Generalization is not necessarily good in itself, but in our opinion it is interesting in

this case. We have been able to “reduce” graph constraints and application conditions

one to each other, which turned out to be an interesting property in Sec. 7.5. Besides,

the left hand side, right hand side and nihilation matrices appear as particular cases of

this more general framework, giving the impression of being a very natural extension of

the theory. Also, it is always possible to embed application conditions in Matrix Graph

Grammars direct derivations (theorem 7.2.4 and corollary 7.2.5). We have managed to

study preconditions, postconditions and their weak counterparts, independently to some

extent of any match.

Other interesting points are that application conditions seem to be a good way to

synthesize closely related grammar rules. Besides, they allow us to partially act on the

nihilation matrix (recall that the nihilation matrix was directly derived out of L, e and

r).

Representing application conditions using the functional notation introduced for pro-

ductions and direct derivations allowed us to prove a very useful fact: Any aplication

condition is equivalent to some sequence of productions (or a set of them). Theorems

7.3.5 and 7.4.2.

It is worth stressing the importance of the relationship between application condi-

tions and sequences of productions. This for example permitted the translation of the

208 7 Restrictions on Rules

notion of consistency of application condition to applicability of a sequence – problem 1 –

(corollaries 7.3.6 and 7.4.3). Hence, consistency of application conditions can be studied

through any of the two characterizations given in theorem 5.5.1 (for example corollaries

7.3.7 and 7.4.4). This is another point that makes us think that application conditions

as introduced here are a natural extension of the theory.

Preconditions and postconditions happen to be closely related and any consistent

precondition can be translated into a consistent postcondition. In this way, restrictions

– which at times are better thought as properties – are actually delocalized inside the

production (theorem 7.4.6). For future work, the fact that application conditions are

delocalized along productions of a sequence and how to deal with SPO-like application

conditions (more flexible than DPO-like ones) will be further investigated. Just as ap-

plicability helps with consistency of an application condition, sequential independence –

problem 3 – applies to application condition delocalization. It could then be possible to

apply the corresponding theorems of Chap. 6 to study delocalization.

After variable nodes are introduced, it is not difficult to “generalize” the theory to

deal with multidigraphs instead of simple digraphs without any major modification.

The next chapter addresses one fundamental topic in grammars: Reachability. This

topic has been stated as problem 4 and is widely addressed in the literature, specially in

the theory of Petri nets. Chapter 9 closes this dissertation with a general summary, some

more conclusions and proposals for further research. Appendix A presents a worked out

example to illustrate all the theory developed in this dissertation, focusing more on the

practical side of the theory.

8

Reachability

In this chapter we will brush over reachability, presented as problem 4 in Sec. 1.2. It is

an important concept both from practice and theory. Given a grammar G recall that,

for fixed initial S0 and final ST states, reachability solves the question of whether it is

possible to go from S0 to ST with productions in G. It should be of capital importance to

provide one or more sequences that carry this out, or identify that ST is unreachable. At

least, it should be very valuable to gather some information of what productions would

be involved and their number.

So far, this problem is easily related (in the sense that it depends on) to problem 1,

applicability, because we look for a sequence applicable to S0. Also problem 3 contributes

because if it is not possible to give a concrete sequence but a set of productions (the order

is unkonwn) together with the number of times that production appears in the sequence,

problem 3 may reduce the size of the search space (to find out one concrete sequence

that transforms S0 into ST).

The chapter is organized as follows. Section 8.1 introduces Petri nets and explains

why the state equation is a necessary but not a sufficient condition. In Sec. 8.2 Petri

nets are interpreted as a proper subset of Matrix Graph Grammars. Also, the concept

of initial marking (minimal initial digraph) is defined and the main concepts of Matrix

Graph Grammars are revisited for Petri nets. The rest of the chapter enlarges the state

equation to cope with more general graph grammars. We will make use of the tensor

notation introduced in Sec. 2.4. First, in Sec. 8.3 for fixed Matrix Graph Grammars

(grammars with no dangling edges) and Sec. 8.4 for general Matrix Graph Grammars

210 8 Reachability

(floating grammars). As in every chapter, we finish with a summary in Sec. 8.5 with

some further comments, in particular on other problems that can be addressed similarly

to what is done here for reachability.

8.1 Crash Course in Petri Nets

A Petri net (also a Place/Transition net or P/T net) is a mathematical representation of

a discrete distributed system, [53]. The structure of the distributed system is depicted as

a bipartite digraph. There are place nodes, transition nodes and arcs connecting places

with transitions. A place may contain any number of tokens. A distribution of tokens

over the places is called a marking. A transition is enabled if it can fire. When a transition

fires consumes tokens from its input places and places a number of tokens in its output

places. The execution of Petri nets is non-deterministic, so they are appropriate to model

concurrent behaviour of distributed systems. More formally,

Definition 8.1.1 (Petri Net) A Petri net is a 5-tuple PN � pP, T, F,W,M0q where

• P � tp1, . . . , pmu is a finite set of places.

• T � tt1, . . . , tnu is a finite set of transitions.

• F � pP � T q Y pT � P q is a set of arcs.

• W : F Ñ N ¡ 1 is a weight function.

• M0 : P Ñ N is the initial marking.

• P X T � H and P Y T � H.

The set of arcs establishes the flow direction. A Petri net structure is the 4-tuple

N � pP, T, F,W q, in which the initial marking is not specified. Normally, a Petri net

with a initial marking is written PN � pN,M0q.
Algebraic techniques for Petri nets are based on the representation of the net with

an incidence matrix A in which columns are transitions. Element Ai
j is the number of

tokens that transition i removes – negative – or adds – positive – to place j.

One of the problems that can be analyzed using algebraic techniques is reachability.

Given an initial marking M0 and a final marking Md, a necessary condition to reach Md

from M0 is to find a solution x to the equation Md �M0 �Ax, which can be rewritten

as the linear system

8.1 Crash Course in Petri Nets 211

M � Ax. (8.1)

Solution x – known as Parikh vector – specifies the number of times that each tran-

sition should be fired, but not the order to fire them. Identity (8.1) is the state equation.

Refer to [53].

The ideas presented up to the end of the section are interpretations of the author and

should not be considered as standard in the theory of Petri nets.

The state equation introduces a matrix, which conceptually can be thought of as

associating a vector space to the dynamic behaviour of the Petri net. It is interesting

to graphically interpret the operations involved in linear combinations: Addition and

multiplication by scalars, as depicted in Fig. 8.1.

The addition of two transitions is again a transition tk � ti�tj for which input places

are the addition of input places of every transition and the same for output places. If a

place appears as input and output place in tk, then it can be removed.

Multiplication by �1 inverts the transition, i.e. input places become output places

and viceversa, which in some sense is equivalent to disapplying the transition.

Fig. 8.1. Linear Combinations in the Context of Petri Nets

One important issue is that of notation. Linear algebra uses an additive notation

(addition and subtraction) which is normally employed when an abelian structure is

under consideration. For non-commutative structures, such as permutation groups, the

multiplicative notation (composition and inverses) is preferred. The basic operation with

212 8 Reachability

productions is the definition of sequences (concatenation), for which historically a multi-

plicative notation has been chosen, but substituting composition “�” by the concatenation

“;” operation.1

From a conceptual point of view, we are interested in relating linear combinations

and sequences of productions.2 Note that, due to commutativity, linear combinations do

not have an associated notion of ordering, e.g. linear combination PV1 � p1 � 2p2 � p3

coming from Parikh vector r1, 2, 1s can represent sequences p1; p2; p3; p2 or p2; p2; p3; p1,

which can be quite different. The fundamental concept that deals with commutativity is

precisely sequential independence.

Following this reasoning, we can find the problem that makes the state equation

a necessary but not a sufficient condition: Some transition can temporarily owe some

tokens to the net. The Parikh vector specifies a linear combination of transitions and

thus, negatives are temporarily allowed (substraction).

Proposition 1 Sufficiency of the state equation can only be ruined by transitions tem-

porarily borrowing tokens from the Petri net.

Proof�If there are enough tokens in every places then the transitions can be fired (equiv.,

productions can be applied). In this case the state equation guarantees reachability. A

negative number of tokens in one place (temporarily) represents a coherence problem in

the sequence. Note that due to the way in which Petri nets are defined there can not be

compatibility issues, hence reachability depends exclusively on coherence.�

In the proof we have used Matrix Graph Grammars concepts such as sequences and

coherence. Notice that we have not stated how a Petri net is coded in Matrix Graph

Grammars. This point is addressed in Sec. 8.2.

Proposition 1 does not provide any criteria based on the topology of the Petri net,

as theorems 16, 17, 18 and corollaries 2 and 3 in [53], but contains the essential idea in

1 This is the reason why Chap. 4 introduces “;” to be read from right to left, contrary to the

Graph Transformation Systems literature.
2 Linear combinations are the building blocks of vector spaces, and the structure to be kept by

matrix application.

8.2 MGG Techniques for Petri Nets 213

their proofs: The hypothesis in previously mentioned theorems guarantee that cycles in

the Petri net will not ruin coherence.

8.2 MGG Techniques for Petri Nets

In this section we will brush over some of the most important concepts developed so far

for Matrix Graph Grammars and see how they can be applied to Petri nets. Given a

Petri net, we will consider it as the initial host graph in our Matrix Graph Grammar.

One production is associated to every transition in which places and tokens are nodes

and there is an arrow joining each token to its place. In fact, we represent places for

illustrative purposes only as they are not strictly necessary (including tokens alone is

enough). Figure 8.2 shows an example, where production pi corresponds to transition ti.

The firing of a transition corresponds to the application of a rule.

Fig. 8.2. Petri Net with Related Production Set

Thus, Petri nets can be considered as a proper subset of Matrix Graph Grammars

with two important properties:

1. There are no dangling edges when applying productions (firing transitions).

214 8 Reachability

2. Every production can only be applied in one part of the host graph.

Properties (1) and (2) somehow allow us to safely “ignore” matchings as introduced in

Chap. 5. In addition, we consider Petri nets with no self-loops.3 Translating to Matrix

Graph Grammars, this means that one production either adds or deletes nodes of a

concrete type, but there is never a simultaneous addition and deletion of nodes of the same

type. This agrees with the expected behaviour of Matrix Graph Grammars productions

with respect to nodes (which is the behaviour of edges as well, see Sec. 4.1) and will

be kept throughout the present chapter, mainly because rules in floating grammars are

adapted depending on whether a given production deletes nodes or not (refer to Sec.

8.4).

It is advisable that elements are not relative integers. A number four must mean that

production p adds four nodes of type x and not that p adds four nodes more than it

deletes of type x. If we had one such production p, a possible way to proceed is to split p

into two rules, one performing the addition actions, pr, and the other the deletion ones,

pe. Sequentially, p should be decomposed as p � pr; pe.

Minimal Marking. The concept of minimal initial digraph can be used to find the

minimum marking able to fire a given transition sequence. For example, Fig. 8.3 shows

the calculation of the minimal marking able to fire transition sequence t5; t3; t1 (from

right to left). Notice that pr1L1q_pr1L2qpr2L2q_ � � �_pr1Lnq � � � prnLnq is the expanded

form of equation (4.46). The formula is transformed according to r1 2 3s ÞÝÑ r1 3 5s.
Fig. 8.3. Minimal Marking Firing Sequence t5; t3; t1

Reachability. The reachability problem can also be expressed using Matrix Graph

Grammar concepts, as the following definition shows.

3 Petri nets without self-loops are called pure Petri nets. A place p and a transition t are on a

self-loop if p is both an input and an output place of t.

8.3 Fixed Matrix Graph Grammars 215

Definition 8.2.1 (Reachability) For a grammar G � pM0, tp1, . . . , pnuq, a state Md

is called reachable starting in state M0, if there exists a coherent concatenation made up

of productions pi P G with minimal initial digraph contained in M0 and image in Md.

This defintion will be used to extend the state equation from Petri nets to Matrix

Graph Grammars.

Compatibility and Coherence. As pointed out in the proof of proposition 1, there

can not be compatibility issues for Petri nets as no dangling edge may ever happen.

Coherence of the sequence of transitions firing implies applicability (problem 1). It will

be possible to unrelate problematic nodes (make the sequence coherent) if there are

enough nodes in the current state, which eventually depends on the initial marking.

8.3 Fixed Matrix Graph Grammars

In this and next sections we will be concerned with the generalization of the state equation

to wider types of grammars.

Recall from Sec. 5.1 that by a fixed Matrix Graph Grammar we understand a grammar

as introduced in Chap. 4, but in which rule application is not allowed to generate dangling

edges, i.e. any production p that deletes a node but not all of its incoming and outgoing

edges can not be applied. In other words, operator Tε is forced to be the identity. Property

2 of Petri nets (see Sec. 8.2, p. 213) is relaxed because now a single production may

eventually be applied in several different places of the host graph.

The approach of this section can be used with classical Double Pushout graph gram-

mars [22]. However, following the discussion after proposition 4.1.4, we restrict to DPO

rules in which nodes (or edges) of the same type are not rewritten (deleted and created)

in the same rule.

In order to perform an a priori analysis it is mandatory to get rid of matches. To

this end, either an approach as proposed in Chaps. 4 and 5 is followed (as we did in Sec.

8.2), or types of nodes are taken into account instead of nodes themselves. The second

alternative is chosen so productions, initial state and final state are transformed such

that types of elements are considered, obtaining matrices with elements in Z. Notice that

this abstraction provokes some information loss.

216 8 Reachability

Tensor notation will be used in the rest of the chapter to extend the state equation.

Although it will be avoided whenever possible, four indices may be used simultaneously,
E
0Ai

jk. Top left index indicates whether we are working with nodes (N) or with edges (E).

Bottom left index specifies the position inside a sequence, if any. Top right and bottom

right are contravariant and covariant indices, respectively, where k � k0 is the adjacency

matrix (with types of elements, as comented above) corresponding to production pk0
.

Definition 1 Let G � p0M, tp1, . . . , pnuq be a fixed graph grammar and m the number

of different types of nodes in G. The incidence matrix for nodes NA � �
Ai

k

�
where

i P t1, . . . , nu and k P t1, . . . ,mu is defined by the identity

Ai
k � #�r if production k adds r nodes of type i�r if production k deletes r nodes of type i

(8.2)

It is straightforward to deduce for nodes an equation similar to (8.1):

N
d Mi � N

0 Mi � ņ

k�1

NAi
kxk. (8.3)

The case for edges is similar, with the peculiarity that edges are represented by

matrices instead of vectors and thus the incidence matrix becomes the incidence tensor
EAi

jk. Again, only types of edges, and not edges themselves, are taken into account. Two

edges e1 and e2 are of the same type if their starting nodes are of the same type and

their terminal nodes are of the same type.

Source nodes will be assumed to have a contravariant behaviour (index on top, i) while

target nodes (first index, j) and productions (second index, k) will behave covariantly

(index on bottom). See diagram on the center of Fig. 8.5.

Example.�Some rules for a simple client-server system are defined in Fig. 8.4. There

are three types of nodes: Clients (C), servers (S) and routers (R), and messages (self-loops

in clients) can only be broadcasted.

In the Matrix Graph Grammar approach, this transformation system will behave as

a fixed or floating grammar depending on the initial state. Note that production p4 adds

and deletes edges of the same type pC,Cq. For now, the rule will not be split into its

addition and deletion components as suggested in Sec. 8.2. See Sec. 8.4.1 for an example

of this.

8.3 Fixed Matrix Graph Grammars 217

Fig. 8.4. Rules for a Client-Server Broadcast-Limited System

Incidence tensor (edges) for these rules can be represented componentwise, each com-

ponent being the matrix associated to the corresponding production.

EAi
j1 � �� 0 0 0 | C

0 0 1 | R
0 1 0 | S �� ; EAi

j2 � �� 0 �2 0 | C�2 0 �1 | R
0 �1 0 | S ��

EAi
j3 � ��0 2 0 | C

2 0 0 | R
0 0 0 | S �� ; EAi

j4 � �� 1 0 0 | C
0 0 0 | R
0 0 0 | S ��

Columns follow the same ordering rC R Ss.�
Lemma 8.3.1 With notation as above, a necessary condition for state dM to be reachable

from state 0M is

dM� 0M � EM � EMi
j � ņ

k�1

EAi
jkx

k
j � ņ

k�1
p�k

�
EAb x�ip

jk
, (8.4)

where i, j P t1, . . . ,mu.
Last equality in equation (8.4) is the definition of inner product – see Sec. 2.4 – so

we further have:

dM� 0M � �
EA, x

D
. (8.5)

Proof�Consider the construction depicted on the center of Fig. 8.5 in which tensor Ai
jk is

represented as a cube. Setting k � k0 fixes production pk0
. A product for this object is

defined in the following way: Every vector in the cube perpendicular to matrix x acts

218 8 Reachability

on the corresponding row of the matrix in the usual way, i.e. for every fixed i � i0 and

j � j0 in (8.4),

E
dMi0

j0
� E

0Mi0
j0
� ņ

k�1

EAi0
j0kxk

j0
. (8.6)

Fig. 8.5. Matrix Representation for Nodes, Tensor for Edges and Their Coupling

Every column in matrix x is a Parikh vector as defined for Petri nets. Its elements

specify the amount of times that every production must be applied, so all rows must be

equal and hence equation (8.6) needs to be enlarged with some additional identities:$'&'%Mi
j � ņ

k�1

Ai
jkxk

j

xk
p � xk

q

(8.7)

with p, q P t1, . . . ,mu. This uniqueness together with previous equations provide the

intuition to raise (8.4).

Informally, we are enlarging the space of possible solutions and then projecting ac-

cording to some restrictions. To see that it is a necessary condition suppose that there

exists a sequence sn such that sn p0Mq � dM and that equation (8.6) does not provide

any solution. Without loss of generality we may assume that the first column fails (the

one corresponding to nodes emerging from the first node), which produces an equation

completely analogous to the state equation for Petri nets, deriving a contradiction.�

Example (Cont’d).�Let’s test whether it is possible to move from state S0 to state

Sd (see Fig. 8.6) with the productions defined in Fig. 8.4 on p. 217. Matrices for the

8.3 Fixed Matrix Graph Grammars 219

Fig. 8.6. Initial and Final States for Productions in Fig.8.4

states (edges only) and their difference are:

ES0 � ��1 0 0 | C
0 0 0 | R
0 0 0 | S �� ; ESd � �� 3 1 0 | C

1 0 1 | R
0 1 0 | S �� ; ES � ESd � ES0 � ��2 1 0 | C

1 0 1 | R
0 1 0 | S ��

The proof of proposition 8.3.3 poses the following matrices, where the ordering on

rows and columns is rC R Ss:
EAi

1k � �� 0 0 0 1
0 �2 2 0
0 0 0 0

�� ; EAi
2k � ��0 �2 2 0

0 0 0 0
1 �1 0 0

�� ; EAi
3k � �� 0 0 0 0

1 �1 0 0
0 0 0 0

��
These matrices act on matrix x � �

xp
q

�
, p P t1, 2, 3, 4u, q P t1, 2, 3u to obtain:

ES1 � 4̧

k�1

EA1kx
k
1 � ���� x4

1�2x2
1 � 2x3

1

0

����
ES2 � 4̧

k�1

EA2kx
k
2 � �����2x2

2 � 2x3
2

0

x1
2 � x2

2

����
ES3 � 4̧

k�1

EA3kx
k
3 � ���� 0

x2
3 � x3

3

0

����
(8.8)

Recall that x must satisfy:

x1
1 � x1

2 � x1
3; x2

1 � x2
2 � x2

3; x3
1 � x3

2 � x3
3; x4

1 � x4
2 � x4

3.

A contradiction is derived for example with equations x2
3 � x2

2, 1 � x2
3 � x3

3, x
3
2 � x3

3

and 1 � �2x2
2 � 2x3

2.�

220 8 Reachability

Remark.�If there is no development tool handy and you need to write equations

(8.8) it is useful to remember the following rules of thumb:

• The subscript of S coincides with the subscripts of all x and it is the terminal node

for edges. Hence, there will be as many equations in Si as types of terminal nodes to

which modified edges arrive. The first thing to do is a list of these nodes.

• For a fixed Sj , there will be as many equations in the vector of variables as initial

nodes for modified edges. The terminal node is j in this case.

• The superscript of x is the production. To derive each equation just count how many

edges of the same type are added and deleted and sum up.

for a larger example see Sec. A.4. �

It is straightforward to derive a unique equation for reachability which considers

both nodes and edges, i.e. equations (8.3) plus (8.4). This is accomplished extending the

incidence matrix M from M : E Ñ E to M : E �N Ñ E (from Mm�m to Mm�pm�1q),
where column m� 1 corresponds to nodes.

Definition 8.3.2 (Incidence Tensor) Let G � p0M, tp1, . . . , pnuq be a Matrix Graph

Grammar. The incidence tensor Ai
jk with i P t1, . . . ,mu and j P t1, . . . ,m� 1u is defined

by (8.4) if 1 ¤ j ¤ m and by (8.3) if j � m� 1.

Top left index in our notation works as follows: NA refers to nodes, EA to edges and A

to their coupling. Note that a similar construction can be carried out for productions if it

was desidered to consider nodes and edges in a single expression. Almost all the theory as

developed so far would remain without major notational changes. The exception would

probably be compatibility, which would need to be rephrased.

An immediate extension of lemma 8.3.1 is:

Proposition 8.3.3 (State Equation for Fixed MGG) Let notation be as above. A

necessary condition for state dM to be reachable (from state 0M) is:

Mi
j � ņ

k�1

Ai
jkx

k. (8.9)

Proof��

8.4 Floating Matrix Graph Grammars 221

Equation (8.9) is a generalization of (8.1) for Petri nets. If there is just one place

of application for each production then the state equation as stated for Petri nets is

recovered.

8.4 Floating Matrix Graph Grammars

Our intention now is to relax the first property of Petri nets (Sec. 8.2, p. 213) and allow

production application even though some dangling edge might appear (see Chap. 5).

The plan is carried out in two stages which correspond to the subsections that follow,

according to the classification of ε-productions in Sec. 5.4.

In Matrix Graph Grammars, if applying a production p0 causes dangling edges then

the production can be applied but a new production (a so-called ε-production) is created

and applied first. In this way a sequence p0; pε0 is obtained with the restriction that pε0

is applied at a match that includes all nodes deleted by p0. See Chap. 5 for details.

Inside a sequence, a production p0 that deletes an edge or node can have an external or

internal behaviour, depending on the identification carried out by the match. Following

Chap. 5, if the deleted element was added or used by a previous production the production

is labeled as internal (according to the sequence). On the other hand, if the deleted

element is provided by the host graph and it is not used until p0’s turn, then p0 is an

external production.

Their properties are (somewhat) complementary: While external ε-productions can

be advanced and composed to eventually get a single initial production which adapts the

host graph to the sequence, internal ε-productions are more static4 in nature. On the

other hand, internal ε-productions depend on productions themselves and are somewhat

independent of the host graph, in contrast to external ε-productions. Note however that

internal nodes can be unrelated if, for example, matchings identified them in different

parts of the host graph, thus becoming external.

4 Maybe it is possible to advance their application but, for sure, not to the beginning of the

sequence.

222 8 Reachability

8.4.1 External ε-production

The main property of external ε-productions, compared to internal ones, is that they act

only on edges that appear in the initial state, so their application can be advanced to the

beginning of the sequence. In this situation, the first thing to know for a given Matrix

Graph Grammar G � p0M, tp1, . . . , pnuq – with at most external ε-productions – when

applied to 0M is the maximum number of edges that can be erased from its initial state.

The potential dangling edges (those with any incident node to be erased) are given by

e � nª
k�1

�
N
k eb N

k e
	

(8.10)

This is the nihilation matrix introduced in Sec. 4.4.2, in particular in lemma 4.4.5.

The notation is changed in order to distinguish N of nodes from N of nihilation.

Proposition 8.4.1 A necessary condition for state dM to be reachable (from state 0M)

is:

M i
j � ņ

k�1

�
Ai

jkx
k
�� bij , (8.11)

with the restriction 0Me ¤ bij ¤ 0.

Proof (Sketch)�According to Sec. 5.4, all ε-productions can be advanced to the beginning of the sequence

and can be composed to obtain a single production, adapting the initial digraph before

applying the sequence, which in some sense interprets matrix b as the production number

n�1 in the sequence (the first to be applied). Because it is not possible to know in advance

the order of application of productions, all we can do is to provide bounds for the number

of edges to be erased. This is in essence what b does.�

Note that equation (8.9) in proposition 8.3.3 is recovered from (8.11) if there are no

external ε-productions.

Example.�Consider the initial and final states shown in Fig. 8.7. Productions of

previous examples are used, but two of them are modified (p2 and p3).

In this case there are sequences that transform state 0S in dS, for example, s4 �
p4; p

1
3; p1; p

1
2. Note that the problems are in edges p1 : S, 1 : Rq and p1 : C, 1 : Rq of the

8.4 Floating Matrix Graph Grammars 223

Fig. 8.7. Initial and Final States (Based on Productions of Fig. 8.4)

intial state: Router 1 is able to receive packets from server 1 and client 1, but not to send

them.

Next, matrices for the states and their difference are calculated. The first three

columns correspond to edges (first to clients, second to routers and third to servers)

and fourth to nodes which has been split by a vertical line for illustrative purposes only.

The ordering of nodes is rC R Ss both by columns and by rows.

0S � �� 1 1 0 | 3
2 0 0 | 2
0 2 0 | 1�� ; dS � �� 2 1 0 | 3

3 0 1 | 2
0 2 0 | 1�� ; S � dS � 0S � ��1 0 0 | 0

1 0 1 | 0
0 0 0 | 0��

The incidence tensors for every production (recall that p2 and p3 are as in Fig. 8.7)

have the form

Ai
j1 � ��0 0 0 | 0 | C

0 0 1 | 1 | R
0 1 0 | 0 | S �� Ai

j2 � �� 0 0 0 | 0 | C
0 0 0 | � 1 | R
0 0 0 | 0 | S ��

Ai
j3 � ��0 1 0 | 0 | C

1 0 0 | 0 | R
0 0 0 | 0 | S �� Ai

j4 � �� 1 0 0 | 0 | C
0 0 0 | 0 | R
0 0 0 | 0 | S ��

Although it does not seem to be strictly necessary here, more information is kept and

calculations are more flexible if production p4 is split into the part that deletes messages

and the part that adds them, p4 � p�4 ; p�4 . Refer to comments on this in Sec. 8.2.

Ai�
j4 � ���1 0 0 | 0 | C

0 0 0 | 0 | R
0 0 0 | 0 | S �� Ai�

j4 � �� 2 0 0 | 0 | C
0 0 0 | 0 | R
0 0 0 | 0 | S ��

224 8 Reachability

As in the example of Sec. 8.3, the following matrices are more appropriate for calcu-

lations:

Ai
1k��� 0 0 0 �1 2

0 0 1 0 0
0 0 0 0 0

�� Ai
2k��� 0 0 1 0 0

0 0 0 0 0
1 0 0 0 0

��
Ai

3k��� 0 0 0 0 0
1 0 0 0 0
0 0 0 0 0

�� Ai
4k���0 0 0 0 0

1 �1 0 0 0
0 0 0 0 0

��
If equation (8.9) was directly applied, we would get x1 � 0 and x1 � 1 (third row of

Ai
2k and second of Ai

3k) deriving a contradiction. The variations permitted for the initial

state are given by the matrix

0Me � ���� 0 α1
2 0 0

α2
1 0 0 0

0 α3
2 0 0

���� (8.12)

with α1
2 P t0,�1u, α2

1, α
3
2 P t0,�1,�2u. Setting b12 � �1 and b32 � �1 (one edge pS,Rq

and one edge pC,Rq removed) the system to be solved is����1 1 0 0

1 0 1 0

0 1 0 0

���� � �����x4 � 2x4 x3 0 0

x3 0 x1 x1 � x2

0 x1 0 0

����
with solution x1 � x2 � x3 � x4 � 1, s4 being one of its associated sequences. Note that

the restriction in proposition 8.4.1 is fulfilled, see equation (8.12).�

In previous example, as we knew a sequence (s4) answer to the reachability problem,

we have fixed matrix b directly to show how proposition 8.4.1 works. Although this

will not be normally the case, the way to proceed is very similar: Relax matrix M by

substracting b, find a set of solutions tx, bu and check whether the restriction for matrix

b is fulfilled or not.

8.4.2 Internal ε-production

Internal ε-productions delete edges appended or used by productions preceding it in the

sequence. In this subsection we first limit to sequences which may have only internal

8.4 Floating Matrix Graph Grammars 225

ε-productions and, by the end of the section, we will put together proposition 8.4.1 from

Subsec. 8.4.1 with results derived here to state theorem 8.4.3 for floating Matrix Graph

Grammars.

The proposed way to proceed is analogous to that of external ε-productions. The

idea is to allow some variation in the amount of edges erased by every production, but

this variation is constrained depending on the behaviour (definition) of the rest of the

rules. Unfortunately, not so much information is gathered in this case and what we are

basically doing is ignoring this part of the state equation.

Define hi
jk � �

Ai
jk peb Ikq�� � max pApeb Iq, 0q, where vector Ik � r1, . . . , 1sp1,kq.5

Proposition 8.4.2 A necessary condition for state dM to be reachable (from state 0M)

is:

M i
j � ņ

k�1

�
Ai

jk � V �xk (8.13)

with the restriction hi
jk ¤ V i

jk ¤ 0.

Proof��
In some sense, external ε-productions are the limiting case of internal ε-productions

and can be seen almost as a particular case: As ε-productions do not interfere with

previous productions they have to act exclusively on the host graph.

The full generalization of the state equation for non-restricted Matrix Graph Gram-

mars is given in the next theorem.

Theorem 8.4.3 (State Equation) With notation as above, a necessary condition for

state dM to be reachable (from state 0M) is

M i
j � ņ

k�1

�
Ai

jk � V �xk � bij , (8.14)

with bij satisfying restrictions specified in proposition 8.4.1 and V satisfying those in

proposition 8.4.2.

5 eb Ipkq defines a tensor of type (1,2) wich “repeats” matrix e “k” times.

226 8 Reachability

Proof��
One interesting possibility of 8.14 is that we can specify if productions acting on some

edges must have a fixed or floating behaviour, depending whether variances are permitted

or not.

Strengthening hypothesis, formula (8.4.3) becomes those already studied for floating

grammars with internal ε-productions (b � 0), with external ε-productions (V � 0), fixed

grammars (from multilinear to linear transformations) or Petri nets, fully recovering the

original form of the state equation.

8.5 Summary and Conclusions

The starting point of the present chapter is the study of Petri nets as a particular case

of Matrix Graph Grammars. We have adapted concepts of Matrix Graph Grammars to

Petri nets, such as initial marking. Next, reachability and the state equation have been

reformulated and extended with the language of this approach, trying to provide tools

for grammars as general as possible.

Matrix Graph Grammars have also benefitted from the theory developed for Petri

nets: Through the generalized state equation (8.14) it is possible to tackle problem 4.

Despite the fact that the more general the grammar is, the less information the state

equation provides, theorem 8.4.3 can be considered as a full generalization of the state

equation.

Equation (8.14) is more accurate as long as the rate of the amount of types of nodes

with respect to the amount of nodes approaches one. Hence, in general, it will be of little

practical use if there are many nodes but few types.

Although the use of vector spaces (as in Petri nets) and multilinear algebra is almost

straightforward, many other algebraic structures are available to improve the results

herein presented. For example, Lie algebras seem a good candidate if we think of the Lie

bracket as a measure of commutativity (recall Subsec. 8.1 in which we saw that this is

one of the main problems of using linear combinations).

8.5 Summary and Conclusions 227

It should be possible to extend a little the Lie bracket to consider two sequences

instead of just two productions.6 With the theory of Chap. 6 the case of one production

and one sequence can be directly addressed.

Other Petri nets concepts have algebraic characterizations and can be studied with

Matrix Graph Grammars. Also, it is possible to extend their definition from Petri nets

to Matrix Graph Grammars. A short summary of some of them follows:

• Conservative Petri nets are those for which the sum of the tokens remains constant.

For example, think of tokens as resources of the problem under consideration.

• An invariant is some quantity that does not change during runtime. They are divided

in two main families: Place invariants and transition invariants.

• Liveness studies whether transitions in a Petri net can be fired. There are five levels

(L0 to L4) with algebraic characterizations of necessary conditions.

• Boundedness of a Petri net studies the number of tokens in places (in particular if

this number remains bounded). Sufficient conditions are known.

Note that reachability can be directly used to study invariance under sequences of

initial states. If the initial state must not change, set the initial and the final states as

one and the same. This way, the state equation must be equalized to zero. This is related

to termination because if there are sequences that leave some state invariant, then there

are cycles in the execution of the grammar, preventing termination.

The dissertation finishes in Chap. 9, a summary with further research proposals. Also,

the main contributions are listed.

Appendix A presents a full worked out example that illustrates all relevant concepts

presented in this dissertation in a more or less realistic case. Its main objective is to show

the use and practical utility of compatibility, coherence, minimal and negative initial

digraphs, applicability, sequential independence and reachability. In particular properties

of the system related to problems 1, 3 and 4 are addressed.

Appendix B includes the presentation performed during August 2006 at ICM (Inter-

national Congress of Mathematicians) awarded with the second prize in its category.

6 If sequences are coherent, composition can be used to recover a single production.

9

Conclusions and Further Research

This chapter closes the main body of the dissertation. There are still two appendices.

Appendix A includes a detailed real world case study in which much of the theory devel-

oped so far is applied. It is of interest because we can see the theory at a practical level

and the power of the results. Appendix B includes the ICM’2006 award wining poster in

which the basics of Matrix Graph Grammars are illustrated.

This chapter is organized in three sections. In Sec. 9.1 we summarize the theory and

highlight some topics that can be further investigated with Matrix Graph Grammars as

developed so far. Section 9.2 lists what in our understanding are the main contributions

of this dissertation. Finally, Sec. 9.3 exposes a long term program to address termination,

confluence and complexity from the point of view of Matrix Graph Grammars.

9.1 Summary and Short Term Research

In this dissertation we have presented a new theory to study graph dynamics. Also,

increasingly difficult problems of graph grammars have been addressed: Applicability,

sequential independence and reachability.

First, two characterizations of action over graphs (also production or grammar rule)

are defined, one emphasizing its static part and one its dynamics. To some extent it is

possible to study these actions without taking into account the initial state of the system.

Hence, information on the grammar can be gathered at design time, being potentially

useful during runtime. Nodes and edges are considered independently, although related

230 9 Conclusions and Further Research

by compatibility. It should be possible, using the tensorial construction of Chap. 8, to

define a single (algebraic) structure and set compatibility as one of its axioms (a property

to be fulfilled).

Sequences of productions are studied in great detail as they are responsible for the

dynamics of any grammar. Composition, parallelism and true concurrency have also been

addressed.

The effect of a rule on a graph depends on where the rule is applied (matching). In

Matrix Graph Grammars, matches are injective morphisms. As different productions in

a sequence can be applied at different places non-deterministically, marking links parts

of productions guaranteeing their applicability to the same elements. It is possible to

define both matching and marking as operators acting on productions.

Production application may have side effects, e.g. the deletion of dangling edges. A

special type of productions, known as ε-productions, appear to keep compatibility. It

is shown that they are the output of some operator acting on productions as well as

matching and marking.1 Operators can be translated into productions of a sequence.

This new perspective eases their analysis.

Minimal and negative initial digraphs are respectively generalized to initial and neg-

ative digraph sets. Two characterizations for applicability are given. One depends on

coherence and compatibility and the other on minimal and negative initial digraphs.

Sequential independence is closely related to commutativity, but with the possibility

to consider more than two elements at a time. This has been studied in the case of one

production being advanced or delayed an arbitrary (but finite) number of positions.

One interesting question is whether two sequences need the same initial elements

or not, especially when one is a permutation of the other. G-congruence and congru-

ence conditions tackle this point again for one production being advanced or delayed a

finite number of positions inside a sequence. An interesting topic for further study is

to get similar results but considering moving blocks of productions instead of a single

production.

1 Compatibility is a must. The operator may act appending new ε-productions, recovering a

floating behaviour or it can be “deactivated” getting a fixed behaviour. Throughout this

dissertation we have focused on floating grammars, which are more general.

9.1 Summary and Short Term Research 231

Graph constraints and particularly application conditions are of great interest, mainly

for two reasons: First, the left hand side and the nihilation matrix are particular cases,

and second it is possible to deal with multidigraphs without any major modifications

of the theory. We have seen that application conditions are a particular case of graph

constraints and that a graph constraint can be reduced to an application condition in the

presence of a production. Application conditions can again be seen as operators acting on

productions. This, once more, means that they are equivalent to sequences of a certain

kind.

Any application condition can be transformed into an equivalent (set of) produc-

tion(s). Among many other things, this reduces the study of consistency of application

conditions to that of applicability. As it is possible to transform preconditions into post-

conditions and back again, they are in some sense delocalized in a production. Although

this is sketched in some detail in Chap. 7, no concrete theorem is established concern-

ing the possibility to move application conditions among productions inside a sequence.

We do not foresee, to the best of our knowledge, any special difficulty in addressing

this topic with the theory developed so far. This would be one application of sequential

independence – problem 3 – to application conditions.

Finally, in order to consider reachability – problem 4 – Petri nets are presented as

a particular case of Matrix Graph Grammars. From this perspective, notions of Matrix

Graphs Grammars like the minimal initial digraph are directly applied to Petri nets.

Also it is interesting that concepts and results from Petri nets can be generalized to be

included in Matrix Graph Grammars. Precisely, one example of this is reachability. Some

other concepts can also be investigated such as liveness, boundedness, etcetera, and are

left for future work.

For our research in reachability we have almost directly generalized previous ap-

proaches (vector spaces) to reachability by using tensor algebra. It is worth studying

other algebraic structures such as Lie algebras. Also, our study of reachability has not

taken into account the nihilation matrix nor application conditions, other two possible

directions for further research.

232 9 Conclusions and Further Research

9.2 Main Contributions

In our opinion, the main contribution of this dissertation is the novelty of the graph

grammar representation, simple and powerful. It naturally brings in several branches of

mathematics that can be applied to Matrix Graph Grammars, allowing a potential use

of advanced results to solve old and new problems: First and second order logics, group

theory, tensor algebra, graph theory, category theory and functional analysis.

In this dissertation we have made some contributions that we would like to highlight,

together with the chapter or section in which they are addressed:

1. Algebraic characterization of productions:

• Static and dynamic formulations of grammar rules (Secs. 4.1 and 4.4), which allow

studying rules independently (to some extent) of any host graph.

• Compatibility for graphs (Sec. 2.3), rules (Sec. 4.1) and sequences (Sec. 4.5), as

well as coherence for sequences (Sec. 4.3).

• Minimal and Negative initial digraphs (together with the nihilation matrix) de-

fined and characterized for sequences. Sections 4.4.1 and 4.4.2. This is later gen-

eralized as initial and negative digraph sets in Sec. 5.3.

• Composition and its relation with concatenation are addressed. Section 4.5.

2. Rewriting step:

• The operation of matching is characterized as an operator Tε acting on produc-

tions (extended match). Chapter 5.

• Matrix Graph Grammars can have a fixed or a floating behaviour, depending on

operator Tε, allowing the definition of ε-productions. Side effects are characterized

as a sequence of productions. Chapter 5.

• The marking operation can be also characterized as an operator, Tµ. It makes it

possible to get rid of non-determinism when splitting productions into sequences.

Section 5.2.

• Grammar rule side effects are classified in internal and external ε-productions.

The concept of exact derivation is introduced. Section 5.4.

• Two alternative characterizations are provided for applicability. Section 5.5.

3. Analysis of rule independence:

9.3 Long Term Research Program 233

• Characterization of the equality between initial digraphs is carried out through

G-congruence, together with congruence conditions. Section 6.1.

• Necessary and sufficient conditions for sequential independence of sequences and

derivations are proved. Sequential independence is extended to cope with the

simultaneous advance (delay) of an arbitrary finite number of productions inside

a sequence. Sections 6.2 and 6.3.

4. Graph constraints and application conditions:

• Graph constraints and application conditions are introduced using MSOL (Sec.

7.1). A characterization of consistent, coherent and compatible application con-

ditions is given (Sec. 7.2).

• A functional analysis representation of application conditions is given, which al-

lows establishing an equivalence between application conditions and certain sets

of sequences (Sec. 7.3).

• Preconditions can be transformed into equivalent postconditions and viceversa.

Productions are capable of transforming not only the LHS of a grammar rule, L,

but also its nihilation matrix N . Section 7.4.

• Variable nodes can be used as part of the graph constraint or application condition

(not limited to constant nodes). Matrix Graph Grammars can deal with no major

modifications with multidigraphs. Section 7.5.

5. Reachability and relation with Petri net theory:

• Petri nets can be seen as a particular case of Matrix Graph Grammars. MGG

theory can be applied to Petri nets. Section 8.2.

• It is possible to extend Petri nets results to Matrix Graph Grammars. As an

example, the state equation for reachability in Petri nets is generalized. Chapter

8.

9.3 Long Term Research Program

On the practical side, as Appendix A shows, some tasks need to be automated to ease

further research. Manipulations can get rather tedious and error prone. The develop-

ment or improvement of a tool such as AToM3 would be very valuable. Besides, a good

behaviour of an implementation of Matrix Graph Grammars is expected.

234 9 Conclusions and Further Research

At a more theoretical level we propose to study other three increasingly difficult

problems: Termination, confluence and complexity. We think that the theory developed

in this dissertation can be useful. See Fig. 9.1.

Fig. 9.1. Diagram of Problem Dependencies.

Termination, in essence, asks whether there is a solution for a given problem (if some

state is reached). In other branches of mathematics this is the well-known concept of

existence. Reachability with some improvements can be of help in two directions. Starting

in some initial state, if for some sequence of productions some invariant state is reached,

then the grammar can not be terminating (as it enters a cycle as soon as it is reached).

Second, to test the invariance for a given state (if there exists some sequence that leave

the graph unaltered), the state equation can also be used by setting equal initial and

final states.

If we have a terminating grammar, we may wonder whether there is a single final state

or more than one: Confluence. In other branches of mathematics this is the well-known

concept of uniqueness. Sequential independence can be used in this case.

If a grammar is terminating and confluent, the next natural question seems to be how

much it takes to get to its final state. This is complexity, which can also be addressed

using Matrix Graph Grammars. It is not difficult to interpret Matrix Graph Grammars

as a new model of computation, just as Boolean Circuits [76] or Turing machines [57].

This is currently our main direction of research.

9.3 Long Term Research Program 235

Notice that there are two properties that make Matrix Graph Grammars differ from

standard Turing machines: Its potential non-uniformity (shared with Boolean Circuits)

and the use of an oracle, in its strongest version, whose associated decision problem is

NP-complete.

Non-uniformity is widely addressed in the theory of Boolean Circuits. The same ideas

possibly with some changes can be applied to Matrix Graph Grammars.

The strongest version of Matrix Graph Grammars as introduced here use an oracle

whose associated decision problem is NP-complete: The subgraph isomorphism problem,

SI, to match the left hand side of a production in the host graph. If problems that need to

distinguish lower level complexity classes (assuming P�NP) such as P are considered,

it is possible to restrict ourselves to some proper submodel of computation. For example,

the match operation can be forced to use GI instead.2

Limitations on matching are not the only natural submodels of Matrix Graph Gram-

mars. The permitted operations can be constrained, for example forbidding the addition

and erasing of nodes (this would be closely related to non-uniformity and the use of a

GI-complete problem rather than SI). Also, we can act on the set of permitted graphs to

derive submodels of computation. For example, consider only those graphs with a single

incoming and a single outgoing edge in every node.3

2 GI, Graph Isomorphism, is widely believed not to be NP-complete, though this is still a

conjecture. Problems that can be reduced to GI define the complexity class GI.
3 By the way, what standard and very well known mathematical structure is isomorphic to

these graphs?.

10

Conclusiones. Investigación Futura

Este caṕıtulo, que es una traducción lo más fiel posible del Cap. 9, cierra la parte central

de la tesis. Hay dos apéndices más inclúıdos en la tesis. En el Apéndice A se trata en

detalle un caso de estudio real en el que se aplica gran parte de la teoŕıa desarrollada. Es

de interés, entre otras cosas, porque puede verse cómo aplica la teoŕıa a un nivel práctico

y la potencia de los resultados. En el Apéndice B se incluye el póster presentado en

ICM’2006 y por el que se nos concedió el segundo premio. En él se ilustran los conceptos

básicos de las Gramáticas Matriciales de Grafos.

El caṕıtulo se organiza en tres secciones. En la Sec. 10.1 se resume la teoŕıa y resalta-

mos algunos temas que pueden ser investigados con Gramáticas Matriciales de Grafos. La

Sec. 10.2 es una lista de las que en nuestra opinión son las principales contribuciones de

la presente tesis. Finalmente, la Sec. 10.3 propone un programa de investigación a largo

plazo con el que abordar terminación, confluencia y complejidad desde la perspectiva de

las Gramáticas Matriciales de Grafos.

10.1 Resumen. Investigación a Corto Plazo

En esta tesis hemos presentado una nueva teoŕıa que nos permite estudiar dinámica

de grafos. Problemas de dificultad creciente en gramáticas de grafos han sido tratados:

Aplicabilidad, independencia secuencial y alcanzabilidad.

En primer lugar, hemos introducido dos caracterizaciones de acción sobre grafos

(también denominada producción o regla de una gramática), una enfatiza su parte estática

238 10 Conclusiones. Investigación Futura

y la otra su parte dinámica. Hasta cierto punto se pueden estudiar estas acciones sin tener

en cuenta el estado inicial del sistema. De esta manera, es posible obtener y almacenar

información sobre la gramática durante la fase de diseño. Esta información puede ser

muy útil durante la fase de ejecución. Los nodos y las aristas se consideran de manera

independiente, aunque están relacionados mediante la noción de compatibilidad. Debiera

ser posible, usando la construcción tensorial del Cap. 8, definir una única estructura (al-

gebraica) y establecer la compatibilidad como uno de sus axiomas (una propiedad que

debe ser satisfecha).

Las sucesiones de producciones han sido estudiadas en detalle, ya que son respon-

sables de la dinámica de cualquier gramática. Composición, paralelismo y concurrencia

verdadera han sido también tratados.

El efecto de una regla en un grafo depende de dónde se aplique la regla (matching,

emparejamiento). En las Gramáticas Matriciales de Grafos estos son morfismos. Por

hipótesis son inyectivos y pueden ser aplicados incluso si la regla no considera cada

elemento que pudiera aparecer en el grafo anfitrión. Como producciones distintas en una

sucesión pudieran ser aplicadas en diferentes sitios de manera indeterminista, la operación

de marcado relaciona las partes de las producciones garantizando su aplicabilidad en los

mismos elementos. Es posible definir el emparejado y el marcado como operadores que

actúan sobre las producciones.

La aplicación de producciones puede tener efectos colaterales, e.g. la eliminación de

aristas colgantes. Un tipo especial de producción, denominada ε-producción, es generada

para mantener la compatibilidad. Se ha demostrado que son la imagen de cierto operador

que actúa tanto a nivel de producciones como de emparejamiento y marcado.1

Los digrafos iniciales mı́nimo y negativo han sido generalizados y han pasado a ser los

conjuntos inicial de digrafos y negativo de digrafos, respectivamente. Hemos demostrado

dos caracterizaciones de aplicabilidad. Una depende de las nociones de coherencia y

compatibilidad mientras que la otra utiliza los digrafos mı́nimo inicial y negativo inicial.

1 La compatibilidad es obligatoria. El operador puede actuar añadiendo una nueva ε-

producción, recuperando una gramática con comportamiento flotante, o puede ser “desacti-

vado” y tener un comportamiento fijo. En la tesis nos hemos centrado en el caso más general,

comportamiento flotante.

10.1 Resumen. Investigación a Corto Plazo 239

La independencia secuencial está ı́nitmamente relacionada con la conmutatividad,

pero con la posibilidad de considerar más de dos elementos al mismo tiempo. Se ha

estudiado en profundidad el caso en el que una producción se avanza o retrasa un número

arbitrario (aunque finito) de posiciones.

Una cuestión interesante es la de si dos sucesiones necesitan los mismos elementos

iniciales, especialmente cuando una es una permutación de la otra. G-congruencia y

las condiciones de congruencia tratan este punto, de nuevo para una producción que

se adelanta o atrasa un número finito de posiciones dentro de una sucesión. Un tema

interesante para estudio futuro es intentar obtener resultados similares pero considerando

el avance o atraso de bloques de producciones en lugar de una única producción.

Las restricciones de grafos y en especial las condiciones de aplicación son de gran

interés, fundamentalmente por dos razones: En primer lugar, la parte izquierda y la

matriz de anulación pueden verse como casos particulares, y en segundo lugar es posible

tratar con multidigrafos sin modificaciones de importancia de la teoŕıa. Hemos visto que

las condiciones de aplicabilidad son casos particulares de restriccines de grafos y que una

restricción de grafos puede ser reducida a una condición de aplicabilidad en presencia de

una producción. Las condiciones de aplicabilidad pueden de nuevo verse como operadores

actuando sobre producciones. Esto, una vez más, significa que son equivalentes a cierto

tipo de sucesiones.

Cualquier condición de aplicabilidad puede ser transformada en una producción (o

producciones o conjunto de producciones) equivalente. Entre otras muchas cosas esto

reduce el estudio de consistencia de las condiciones de aplicación al problema de aplica-

bilidad. Como es posible transformar precondiciones en postcondiciones y viceversa, en

cierto sentido están deslocalizadas en la producción. Aunque esto se ha esbozado en cierto

detalle en el Cap. 7, no se ha establecido ningún teorema concreto sobre la posibilidad

de mover las condiciones de aplicación entre las diferentes producciones que forman una

sucesión. No prevemos ninguna dificultad especial al tratar este tema con la teoŕıa de-

sarrollada en esta tesis. Esto seŕıa una aplicación de independenca secuencial (problema

3) a las condiciones de aplicación y a las restricciones de grafos.

Para finalizar, las redes de Petri han sido reducidas a un caso particular de Gramática

Matricial de Grafos. Esto es útil para considerar alcanzabilidad – problema 4 –. Desde

esta perspectiva, los conceptos de las Gramáticas Matriciales de Grafos como el digrafo

240 10 Conclusiones. Investigación Futura

mı́nimo inicial aplican directamente a redes de Petri. También es interesante que los

conceptos y los resultados de redes de Petri puedan ser generalizados e inclúıdos en las

Gramáticas Matriciales de Grafos. Precisamente un ejemplo de esto es alcanzabilidad.

Otros tales como liveness (vivacidad), boundedness (acotabilidad), etcétera pueden ser

investigados y se dejan como trabajo futuro.

Para nuestra investigación en alcanzabilidad hemos generalizado directamente aproxi-

maciones previas a alcanzabilidad (espacios vectoriales) usando álgebra tensorial. Parece

prometedor estudiar otras estructuras algebraicas tales como álgebras de Lie. Nuestro

estudio sobre alcanzabilidad no ha tenido en cuenta la matriz de anulación ni las condi-

ciones de aplicabilidad, otras dos posibles direcciones de trabajo futuro.

10.2 Principales Contribuciones

Desde nuestro punto de vista, la principal contribución de esta tesis es la novedosa re-

presentación de las gramáticas de grafos, sencilla y potente. De manera natural introduce

varias ramas de las matemáticas que pueden ser aplicadas a las Gramáticas Matriciales

de Grafos, permitiendo un uso potencial de resultados avanzados para resolver viejos y

nuevos problemas: Lógicas de primer y segundo orden, teoŕıa de grupos, álgebra tensorial,

teoŕıa de grafos, teoŕıa de categoŕıas y análisis funcional.

En esta tesis se hacen algunas contribuciones que quisiéramos resaltar, junto con el

caṕıtulo o sección en las que son tratadas:

1. Caracterización algebraica de las reglas gramaticales:

• Formulaciones estática y dinámica de las producciones de una gramática (Secs. 4.1

y 4.4), que permiten estudiar las reglas gramaticales independientemente (hasta

cierto punto) de cualquier grafo anfitrión.

• Definición y caracterización de compatibilidad para grafos (Sec. 2.3), reglas gra-

maticasles (Sec. 4.1) y sucesiones (Sec. 4.5), aśı como coherencia para sucesiones

(Sec. 4.3).

• Definición y caracterización para sucesiones de los Digrafos iniciales mı́nimo y

negativo (junto con la matriz de aniquilación). Secciones 4.4.1 y 4.4.2. Posteri-

10.2 Principales Contribuciones 241

ormente generalizados a los conjuntos de digrafos inicial y negativo en la Sec.

5.3.

• La composición de producciones y su relación con la operación de concatenación

son estudiadas. Sección 4.5.

2. Paso de rescritura:

• La operación de emparejamiento (matching) es caracterizada como un operador

Tε que actúa sobre producciones (emparejamiento extendido). Caṕıtulo 5.

• Las Gramáticas Matriciales de Grafos pueden tener un comportamiento fijo o

flotante, dependiendo del operador Tε, permitiendo la definición de ε-producciones.

Los efectos colaterales son caracterizados como sucesiones de producciones. Caṕıtulo

5.

• El operador de marcado puede también caracterizarse como un operador, Tµ.

Esto hace posible el evitar el indeterminismo cuando se dividen producciones en

sucesiones. Sección 5.2.

• Los efectos colaterales de las reglas gramaticales se clasifican en ε-producciones

internas y externas. La noción de derivación exacta se introduce en la Sec. 5.4.

• Se dan dos caracterizaciones alternativas para la aplicabilidad. Sección 5.5.

3. Análisis de la independencia de reglas gramaticales:

• Gracias a las nociones de G-congruencia y a las condiciones de congruencia es

posible caracterizar la igualdad entre digrafos iniciales. Sección 6.1.

• Se demuestran condiciones necesarias y suficientes para la independencia secuen-

cial de sucesiones y derivaciones. La independencia secuencial es generalizada para

poder tratar con el avance (retraso) simultaneo de una producción un número

finito de posiciones dentro de una sucesión. Secciones 6.2 y 6.3.

4. Restricciones de grafos y condiciones de aplicabilidad:

• Utilizando MSOL (7.1) se introducen las restricciones de grafos y las condiciones

de aplicabiliadad. Se dan caracterizaciones de la consistencia, coherencia y com-

patibilidad de las condiciones de aplicabilidad (Sec. 7.2).

• Se da una representación utilizando análisis funcional de las condiciones de apli-

cabilidad, lo que permite establecer una equivalencia entre las condiciones de

aplicabilidad y ciertos conjuntos de sucesiones (Sec. 7.3).

242 10 Conclusiones. Investigación Futura

• Las precondiciones pueden ser transformadas en postcondiciones equivalentes y

viceversa. Las producciones son capaces no sólo de transformar la parte izquierda

de una regla gramatical, L, sino también su parte negativa, N . Sección 7.4.

• Los nodos variables pueden ser utilizados como parte de las restricciones de grafos

o de las condiciones de aplicabilidad (no hay que limitarse a nodos constantes). Las

Gramáticas Matriciales de Grafos pueden tratar sin modificaciones de importancia

con multidigrafos. Sección 7.5.

5. Alcanzabilidad y relación con la teoŕıa de redes de Petri:

• Las redes de Petri pueden verse como un caso particular de Gramática Matricial

de Grafos. La teoŕıa MGG puede ser aplicada a redes de Petri. Sección 8.2.

• Es posible extender los resultados de redes de Petri a Gramáticas Matriciales de

Grafos. Como ejemplo, la ecuación de estado para la alcanzabilidad en redes de

Petri es generalizada. Caṕıtulo 8.

10.3 Investigación a Largo Plazo

Como el Apéndice A muestra, algunas tareas necesitan ser automatizadas para facilitar

futuras investigaciones. Las manipulaciones pueden volverse bastante tediosas y propen-

sas a errores. El desarrollo o la mejora de una herramienta del tipo de AToM3 seŕıa real-

mente deseable. Además, se espera un buen comporatamiento de una implementación de

las Gramáticas Matriciales de Grafos.

A un nivel más teórico se propone el estudio de otros tres problemas de dificultad

creciente: Terminación, confluencia y complejidad. Creemos que la teoŕıa desarrollada en

esta tesis puede ser de utilidad. Véase la Fig. 10.1.

Esencialmente terminación pregunta por la existencia de solución para un problema

dado (si algún estado se termina alcanzando). En otras ramas de las matemáticas este

mismo concepto se conoce como existencia. Alcanzabilidad, con algunas mejoras, puede

ser de ayuda en dos sentidos. Empezando en algún estado inicial, si para alguna sucesión

de producciones algún estado invariante es alcanzado, entonces la gramática no puede

ser terminal (ya que se entra en un ciclo tan pronto se alcance dicho estado). En segundo

lugar, podemos comprobar la invarianza de un estado dado (si existe alguna sucesión que

10.3 Investigación a Largo Plazo 243

Fig. 10.1. Diagrama con la Dependencia de los Problemas.

deja el estado invariante). En este caso usaŕıamos la ecuación de estado haciendo iguales

el estado inicial y el final.

Si tenemos una gramática terminal, podemos preguntarnos si hay un único estado

final o más de uno: Confluencia. En otras ramas de las matemáticas este mismo concepto

se conoce como unicidad. Independencia secuencial puede usarse en este caso.

Si una gramática es terminal y confluente, la siguiente pregunta natural parece ser

cuánto se tarda en llegar al estado final. Esto es complejidad, que también puede ser

tratada usando Gramáticas Matriciales de Grafos. No es dif́ıcil interpretar las Gramáticas

Matriciales de Grafos como un nuevo modelo de computación, de la misma manera que

Circuitos Booleanos [76] o Máquinas de Turing [57]. Esta es nuestra principal dirección

de investigación en la actualidad.

Observemos que hay dos propiedades que hacen a las Gramáticas Matriciales de

Grafos diferir con respecto a las Máquinas de Turing estándar: Su potencial no-uniformidad

(propiedad compartida con los Circuitos Booleanos) y el uso de un oráculo, en su versión

más fuerte, cuyo problema de decisión asociado es NP-completo.

La no-uniformidad es un tema ampliamente tratado en el teoŕıa de Circuitos Booleanos.

Las mismas ideas, posiblemente con algunos cambios, pueden ser aplicadas a las Gramáticas

Matriciales de Grafos.

La versión más fuerte de las Gramáticas Matriciales de Grafos usan un oráculo cuyo

problema decisión asociado es NP-completo: El problema de isomorfismo de subgrafos,

SI, para emparejar la parte izquierda de una producción en el grafo anfitrión. Si debemos

244 10 Conclusiones. Investigación Futura

considerar problemas que necesitan distinguir clases de complejidad de un nivel más bajo

tales como P (suponiendo que P�NP), es posible restringirnos a algún submodelo propio

de computación. Por ejemplo, la operación de emparejamiento puede ser obligada a usar

GI en lugar de SI.2

Las limitaciones en el emparejamiento no son los únicos submodelos de computación

naturales para las Gramáticas Matriciales de Grafos. Las operaciones permitidas pueden

ser restringidas, por ejemplo prohibiendo la adición y la eliminación de nodos (esto estaŕıa

muy relacionado con la no-uniformidad y el uso de un problema GI-completo en lugar de

SI). También podemos actuar en el conjunto de grafos permitidos para derivar submodelos

de computación. Por ejemplo, únicamente se permiten aquellos grafos en los que cada

nodo tenga exactamente una arista de entrada y una de salida.3

2 GI, isomorfismo de grafos, está considerado como un problema que no es NP-completo,

aunque esto es aún una conjetura. Aquellos problemas que pueden ser reducidos a GI forman

la clase de complejidad GI.
3 ¿Qué estructura estándar de matemáticas es isomorfa a estos grafos?.

A

Case Study

This Appendix presents a full worked out example that illustrates many of the concepts

and results of this dissertation (more conceptual aspects such as functional representa-

tions, adjoints and the like are omitted in this appendix). Although the aim of Matrix

Graph Grammars is to be a theoretical tool for the study of graph grammars and graph

transformation systems, we will see that it is also of practical interest.

The case study herein presented tries to be simple enough to be approached with

paper and pencil but complex enough to look realistic.

As will be noticed throughout this chapter, Matrix Graph Grammars (as well as any

approach to graph transformation) encourages the definition of a particular language to

solve a particular problem. These are known as Domain-Specific languages (DSL). See

[35].

Section A.1 presents an assembly line with four types of machines (assembler, dis-

assembler, quality and packaging), one or more operators and some items to process.

Section A.2 presents some sequences and derivations, together with possible states of

the system. Section A.3 tackles minimal and negative initial digraphs and G-congruence.

As we progress, the example will be enlarged to be more detailed. Section A.6 returns

to derivations, adding and modifying productions. Section A.4 deals with applicability,

sequential independence, reachability and confluence. Graph constraints and applica-

tion conditions are exemplified in Sec. A.5. Dangling edges and their treatment with

ε-productions will show up throughout the case study.

246 A Case Study

A.1 Presentation of the Scenario

In this section our sample scenario is set up. Some basic concepts will be illustrated:

Matrix representation of graphs and productions (Sec. 4.1), compatibility (Secs. 2.3, 4.1

and 4.5), completion (Sec. 4.2) and the nihilation matrix (Subsec. 4.4.2).

Our initial assembly line will consist of four machines that take as input one or more

items and output one or more items. Depending on the machine, items are processed

transforming them into other items or some decission is taken (reject, accept items),

with no modification.

There are four types of items, item1 – item4. One assembly machine (named

assembler, connected to two input conveyors) processes one piece of item1 and one

piece of item2 to output in another conveyor one piece of type item3. There is a quality

assurance machine – quality – that checks if item3 fulfills certain quality standards. If

it does, then item3 is accepted and packed to further produce item4 through a packaging

machine. On the contrary, it is rejected and recycled thorugh machine disassembler.

Elements are graphically represented in Fig. A.1.

Fig. A.1. Graphical Representation of System Actors

In this case study types are those in Fig. A.1. There can be more than one element of

each type, e.g there are six elements of type conveyor in Fig. A.6, which shows a snapshot

of the state of an example of assembly line. For typing conventions refer to comments on

the example of page 75.

Note that for now conveyors have infinite load capacity, elements in a conveyor are not

ordered and one operator can simultaneously manage two or more machines. It should

be desiderable that one operator might look after different machines but only one at a

A.1 Presentation of the Scenario 247

time. This can be guaranteed only with graph constraints although if the initial state

fulfills this condition and productions observe this fact, there should not be any problem.

We will return to this point in Sec. A.5.

Fig. A.2. DSL Syntax Specification

When dealing with DSLs, it is customary to specify its syntax through a meta-model.

We will restrict connections among the different actors of the system:

• Operators can only be connected to machines (by the end of Sec. A.2 this will be

relaxed).

• Items can only be connected to conveyors (until Sec. A.5 in which they will be allowed

to be connected to other items).

• Conveyors can only be connected to machines or to other conveyors.

• Machines can be connected only to conveyors (by the end of Sec. A.2 this will be

relaxed).

These restrictions have a natural graph representation (see Fig. A.2), which is some-

times referred as typed graphs, [10]. Notice that for simplicity all actual types have

been omitted. For example, there should be four nodes for the different types of items

(item1, . . . , item4), and the same for the machines.

Now we describe the actions that can be performed. These are the grammar rules.

The state machine will evolve according to them. See Fig. A.3 for the basic productions.

We will enlarge or amend them and add some others in future sections.

Machines are not fully automatic so in this four productions one operator is needed.

The four basic actions are assemble, disassemble, certify and pack. They correspond to

productions assemble, recycle, certify and pack. Identifications are obvious so they

have not been made explicit (numbers between different productions need not be related,

248 A Case Study

Fig. A.3. Basic Productions of the Assembly Line

i.e. 1:conv in production assem and 1:conv in certify can be differently identified in

a host graph).

There are four rules that permit operators to change from one machine to another.

This movement is cyclic (to make the grammar a little bit more interesting). A practical

justification could be that the responsible of the department obligues every operator

passing near a machine to check if there is any task pending, attending it just in case.

We will start with a single operator to avoid collapses. See grammar rules move2A, move2Q,

move2P and move2D in Fig. A.4.

Fig. A.4. Productions for Operator Movement

A.1 Presentation of the Scenario 249

The last set of productions specify machines and operators break-down (the ’b’ in

front of the productions). Fortunately for the company they can be fixed or replaced

(the ’f’ in front of the productions). See Fig. A.5 for the productions, where as usual H
stands for the empty graph. In order to save some space we have summarized four rules

(one per machine) substituting the name of the machine by an X . This is notationally

convenient but we should bear in mind that there are four rules for machines break down

(bMachA, bMachQ, bMachP and bMachD) and another four for machines fixing (fMachA,

fMachQ, fMachP and fMachD). Also, they can be thought of as abstract rules1 or variable

nodes as in Sec. 7.5. The total amount of grammar rules up to now is twenty.

Fig. A.5. Break-Down and Fixing of Assembly Line Elements

Here we face the problem of ε-productions for the first time. If a conveyor with two

items breaks (disappears) due to rule bConv, there will be at least two dangling edges,

one from its input machine and another to its output machine. These dangling edges

could be avoided defining one production per conveyor that takes them into account.

If the conveyor had any item, then the corresponding edge would also dangle. Again

this can be avoided if there is a limit in the number of pieces that a conveyor can

carry, but a rule for each one is again needed.2 Another possibility for DPO-like graph

transformation systems (what we have called fixed graph grammars) is to define a sort of

subgrammar that takes care of potential dangling edges. This subgrammar productions

would be applied iteratively until no edge can dangle. This is a characteristic of fixed

1 See reference [46].
2 A rule for the case in which a conveyor has one item, another for the case in which the

conveyor has two items, etcetera.

250 A Case Study

graph tranformation systems and in some situations can be a bit annoying. If there

is no limit to the number of items (or the limit is too high, e.g. a memory stack in

a CPU RAM), it is possible to use fixed graph grammars only to some extent. Thus,

ε-productions are useful – at times essential – from a practical point of view, among

other things, to decrease the number of productions in a grammar (this probably eases

grammar definition and maintenance and increases runtime efficiency).

Matrix representation of these rules is almost straightforward according to Sec. 4.1.

We will explicitely write the static (left and right hand sides) and dynamic representations

(deletion, addition and nihilation matrices) of production assemble.

Elements are ordered [1:item1 1:item2 1:conv 2:conv 3:conv 1:macA 1:op] for

LE
assem and LN

assem, i.e. element p1, 3q of matrix LE
assem is the edge that starts in node

(1:item1) and ends in first conveyor, (1:conv). The ordering for productions RE
assem

and RN
assem is [1:item3 1:conv 2:conv 3:conv 1:macA 1:op]. Numbers in front of

types are a means to distinguish between elements of the same type in a given graph

(these are the numbers that appear in Fig. A.3).

LE
assem���������0 0 1 0 0 0 0

0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

��������RE
assem������� 0 0 0 1 0 0

0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

������LN
assem���������1

1
1
1
1
1
1

��������RN
assem�������1

1
1
1
1
1

������
For eE, eN , rE and rN we have the same ordering of elements.

eE
assem��������� 0 0 1 0 0 0 0

0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

�������� rE
assem������� 0 0 0 1 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

������ eN
assem���������1

1
0
0
0
0
0

�������� rN
assem������� 1

0
0
0
0
0

������
The production is defined R � ppLq � r_eL both for edges and for nodes. To operate

it is mandatory to complete the matrices. See equation (A.2) for the implicit ordering of

elements.

A.1 Presentation of the Scenario 251��������� 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

���������loooooooooomoooooooooon
RE

assem

� ��������� 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

���������loooooooooomoooooooooon
rE

assem

_���������0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

���������loooooooooomoooooooooon
eE

assem

���������0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

���������loooooooooomoooooooooon
LE

assem

(A.1)

The expression for nodes is similar. As pointed out in Sec. 8.5, using a similar con-

struction to that of Sec. 8.3 (in the definition of the incidence tensor 8.3.2) it should be

possible to get a single expression for both nodes and edges instead of a formula for edges

and a formula for nodes. This might be of interest for implementations of Matrix Graph

Grammars as more compact expressions are derived.

We will normally concentrate on edges because they define matrices instead of just

vectors and all problems such as inconsistencies (dangling elements) come this way.��������� 0 | 1:item1
0 | 1:item2
1 | 1:item3
1 | 1:conv
1 | 2:conv
1 | 3:conv
1 | 1:machA
1 | 1:op

���������loooooooomoooooooon
RN

assem

� ���������0 | 1:item1
0 | 1:item2
1 | 1:item3
0 | 1:conv
0 | 2:conv
0 | 3:conv
0 | 1:machA
0 | 1:op

���������loooooooomoooooooon
rN

assem

_���������1 | 1:item1
1 | 1:item2
0 | 1:item3
0 | 1:conv
0 | 2:conv
0 | 3:conv
0 | 1:machA
0 | 1:op

���������loooooooomoooooooon
eN

assem

��������� 1 | 1:item1
1 | 1:item2
0 | 1:item3
1 | 1:conv
1 | 2:conv
1 | 3:conv
1 | 1:machA
1 | 1:op

���������loooooooomoooooooon
LN

assem

(A.2)

Note that some elements in the node vectors are zero. This means that these nodes

appear in the algebraic expressions but are not part of the graphs.

The nihilation matrix in this case includes all edges incident to any node that is

deleted plus edges that are added by production assem. See lemma 4.4.5 for its calculation

formula:

252 A Case Study

Nassem � ��������� 1 1 1 0 1 1 1 1 | 1:item1
1 1 1 1 0 1 1 1 | 1:item2
1 1 0 0 0 1 0 0 | 1:item3
1 1 0 0 0 0 0 0 | 1:conv
1 1 0 0 0 0 0 0 | 2:conv
1 1 0 0 0 0 0 0 | 3:conv
1 1 0 0 0 0 0 0 | 1:machA
1 1 0 0 0 0 0 0 | 1:op

��������� (A.3)

Let’s consider sequence bOp;assem to see how formula (2.4) works to check compati-

bility (propositions 2.3.4 and 4.1.6). We can foresee a problem with edge (1:op,1:machA)

because the node disappears but not the edge.

According to (4.65) we need to check compatibility for the increasing set of sequences

s1 = assem and s2 = bOp;assem. Note that the minimal initial digraph is the same

for both sequences and coincides with the left hand side of assem. Sequence assem

is compatible, as the output of production assem is a simple digraph again, i.e. rule

assemble is well defined:���s1 �ME
assem

� _ �
s1

�
ME

assem

��t
�d s1 pMN

assemq���
1
� ����RE

assem _ �
RE

assem

�t
�dRN

assem

���
1
�� �������������

������������������ 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

���������_��������� 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0
0 0 0 1 1 0 0 1
0 0 0 0 0 0 0 0

����������ÆÆÆÆÆÆÆd���������1
1
0
0
0
0
0
0

���������
�������������
1

� 0

Thus, there is no problem with s1. Let’s check s2 out. Operations are also easy for it.

Note that rbOp _ ebOp �RE
assem

� � RE
assem, so:���s2 �ME

� _ �
s2

�
ME

��t
�d s1 pMN q���

1
� ����bOp �RE

�_ �
bOp

�
RE

��t
�d bOp pRN q���

1� ����RE _ �
RE

�t
�d bOp pRN q���

1
� �������������

��������� 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 1 0
0 0 0 1 1 1 0 1
0 0 0 0 0 0 1 0

���������d���������1
1
0
0
0
0
0
1

���������
�������������
1

� 1

A.2 Sequences 253

This kind of formulas do not only assert compatibility for the sequence, but also tell

us which elements are problematic. In previous equation we see that the final answer is

1 because of element in position p7, 8q (bolded).

In our case study as defined up to now, compatibility can only be ruined by produc-

tions starting with a ’b’ (bOp, etcetera). Either an ε-production is appended or the result

is not a simple digraph (not a graph, actually). Some information about compatibility

can be gathered at design time, on the basis of required elements appearing on the left

hand side of the productions, or elements added. For example, according to productions

considered so far any operator is connected to some machine so if production bOp is

applied it is very likely that some dangling edge will appear. Nihilation matrices can be

automatically calculated as well as completion of rules with respect to each other.

A typical snapshot of the evolution of our assembly line can be found in Fig. A.6. It

will be used in future sections as initial state.

Fig. A.6. Snapshot of the Assembly Line

A.2 Sequences

One topic not addressed in previous sections is how rules in a graph grammar are selected

for its application to an actual host graph. There are several possibilities. To simplify

the exposition rules will be chosen randomly. As commented in Secs. 5.1 and 7.5, this is

254 A Case Study

the first – out of two – source of non-determinism in graph transformation systems, in

particular in Matrix Graph Grammars.

We will add another rule – reject – that discards one element once it has been

assembled. It is represented in Fig. A.7.

Fig. A.7. Graph Grammar Rule reject

We have two comments on this rule. First, reject does not need the presence of an

operator to act, but it may also be applied if an operator is on the machine. Second,

if grammar rules are applied randomly following some probability distribution, elements

will be rejected according to the selected probability measure.

Let’s begin with one sequence that starts with one piece of type item1 and one of

type item2 and produces one of type item4:

s0 � pack;certify;assem (A.4)

which is compatible as no production generates any dangling edge. Recall that compati-

bility also depends on the host graph: If item1 was connected to two different conveyors

(should this make any sense) then rule assem would produce one dangling edge.

The minimal initial digraph of s0 can be calculated using (4.46), Ms0 � ∇3
1 prxLyq,

where order of nodes is [1:item1 1:item2 1:item3 1:item4 1:conv 2:conv 3:conv

4:conv 5:conv 1:machA 1:machQ 1:machP 1:op]. The completion we have performed

identifies operators in the productions as being the same. Also, element 1:conv in rule

certify (Fig. A.3) becomes 3:conv and 2:conv is now 4:conv. Similar manipulations

have been performed for pack. Theorem 4.4.2 demands coherence in order to apply (4.46),

which is checked out in (A.7). More attention will be paid to initial digraphs in the next

section.

A.2 Sequences 255

Fig. A.8. Minimal Initial Digraph and Image of s0

Ms0 � Lassem _ rassemLcertify _ rassemrcertifyLpack �
�����������������

0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 0

����������������� (A.5)

The negative initial digraph is calculated using (4.62), Ns0 � ∇3
1 pexNyq. It is not

shown in any figure because it has many edges. In order to calculate Ns0 , the nihilation

matrices of productions assem (A.3), certify and pack are needed. Equation (4.60),

N � p
�
D
�
, can be used with the same ordering of nodes as for Ms0 .

Ns0 � Nassem _ eassemNcertify _ eassemecertifyNpack �
�����������������

1 1 1 1 0 1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1 1 1
1 1 1 1 1 1 0 1 1 1 1 1 1
0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0

����������������� (A.6)

256 A Case Study

The result of applying s0 to Ms0 is given by (4.55), s0
�
ME

s0

� � �3

i�1

�
eE

i M
E
s0

	 _
△3

1

�
eE

x r
E
y

	
, and can be found on the right of Fig. A.8. For its calculation, it is possible

to interpret s0 as a production according to the remark that appears right after (4.55).

Sequence s0 is coherent according to the identifications proposed in its minimal initial

digraph (Fig. A.8). To see this (4.42) in theorem 4.3.5 can be used, which once simplified

is (4.38):

Lcerteassem _ Lpack peassem rcert _ ecertq __ Rassem

�
ecertrpack _ rcert�_Rcertrpack � 0. (A.7)

A very simple non-coherent sequence – assuming that both rules act on the same

elements – is t0 � reject; certify. It is obvious as both consume the same item. When

calculating its coherence, not only will we be informed that coherence fails but also what

elements are responsible for this failure.

According to Prop. 4.5.3 the rules in s0 can be composed if they are coherent and

compatible. Let c0 � pLc, ec, rcq be the rule so defined. Using equations (4.67) and (4.68)

its matrices can be found. Also, taking advantage of previous calculations for the image

and according to corollary 4.4.3, we can see that the composition is the one given in Fig.

A.9, closely related to Fig. A.8.

Fig. A.9. Composition of Sequence s0

Let mv1 � move2A; move2D and mv2 � move2P; move2Q and define the sequence

s4 � pack; mv2; assem; mv1. Production pack is not sequentially independent of mv1 nor

of mv2; assem. This is a simple example in which it is possible to advance productions

inside sequences only if jumps of length strictly greater than one are allowed. To see that

A.2 Sequences 257

packK pmv2; assem ; mv1q it is necessary – according to theorem 6.2.2 – to test coherence

of both sequences and G-congruence.

Coherence for advancement of a single production inside a sequence is given by (6.30)

in theorem 6.2.3, which should be zero. It is straightforward to check that:

epack ▽
5
1 prx Lyq _Rpack ▽

5
1 pex ryq � 0. (A.8)

Fig. A.10. DSL Syntax Specification Extended

By increasing the number of productions the system can be modelled in greater detail.

For example, one operator can be busy or idle. The operator is busy if some action needs

his attention. This will be represented by a self loop attached to the operator under

consideration. The same applies to a machine. The syntax as a DSL of our grammar

changes because there can exist self-loops for machines and operators. This is not allowed

in Fig. A.2. However, negative conditions are needed in the type graph (there can be self-

loops in machines or operators but not connections between two operators or between

two machines). See Fig. A.10. We need to demand A1 for every single edge (using the

decoposition operator pT of Sec. 7.3) and the nonexistence of matchings with A2 and A3.

Up to now a single operator could be in charge of more than one machine so if there

are edges from the operator to several machines, all machines may work simultaneously.

Besides, there can be more than one operator working on the same machine. In a probably

more realistic grammar, these two scenarios could not take place. These restrictions will

be addressed in section A.5.

The production process of any machine can be split into two phases: If there are

enough elements to start its job, then the input pieces disappear and the machine and

the operator become busy. After that, some output piece is produced and the machine

258 A Case Study

Fig. A.11. Production assemble in Greater Detail

and the operator become idle again. This is represented in the sequence of Fig. A.11.

Note that assemble� assemble1 � assemble2.
If we limit our Matrix Graph Grammar to deal with simple digraphs we have a built-in

application condition “for free”. Even though one operator can still be in charge of several

machines simultaneously, he will manage at most one machine at a time. Otherwise, two

self-loops would be added violating compatibility.

Application conditions are needed if productions we want to set restrictions on pro-

ductions move. This can be permitted if the machine has a kind of “pause”, so the machine

(which is busy as it has a self loop) can resume as soon as an operator moves to it. It is

not necessary to specify a restriction to state that a machine can not start a job when

the operator is busy, as the rule would try to append a second self-loop to the operator

(something not allowed if we are limited to simple digraphs).

Sequences can be generated at design time to debug the grammar or during runtime to

force a set of events. They can also be automatically generated by application conditions

or can be associated to other concepts, such as reachability.

A.3 Initial Digraph Sets and G-Congruence

To calculate the initial digraph set of sequence s0 � pack ; certify ; assem we start with

the maximal initial digraph M0, the digraph that unrelates all elements for different pro-

ductions. It is formed by the disjoint union of the left hand sides of the three productions

in sequence s0. The rest of elements Mi of the initial digraph set M ps0q are derived by

identifying nodes and edges in M0. These identifications however can not be carried out

arbitrarily because any Mi P M ps0q must satisfy (4.46). Hence, there are identifications

A.3 Initial Digraph Sets and G-Congruence 259

that make some elements unnecessary. For example, if the output conveyor of production

certify is identified with the input conveyor of pack, then item3 (mandatory for the

application of pack) is not needed anymore because it will be provided by certify.

Fig. A.12. MID and Excerpt of the Initial Digraph Set of s0 � pack ; certify ; assem

For s0 we will label c1 and c2 the input conveyors of assemble and c3 its ouput

conveyor. Similarly, we have c4 and c5 for certify and c6 and c7 for pack. Operators

will be labelled accordingly so o1 is the one in assemble, o2 in certify and o3 in pack.

There are two machines for packing, m1 the one in certify and m2 in pack. See the

graph on the left of Fig. A.13. No identification prevents any other3 in M ps0q, so the

number of elements in M ps0q grows factorially. In this case, since there are 6 possible

identifications we have 720 possibilities. In Fig. A.12 a part of the initial digraph set

can be found on the right. The string that appears close to each arrow specifies the

identification (top-bottom) performed to derive the corresponding initial digraph.

Initial digraph sets can be useful to debug a grammar. By choosing certain testing

sequences it is possible to automatically select “extreme” cases in which as many elements

3 For an example in which not all identifications are permitted refer to Sec. 5.3, Fig. 5.7.

260 A Case Study

as possible are identified or unrelated. For example, the development framework can tell

that a single operator may manage all machines with the grammar as defined so far, but

maybe this was not the intended behaviour.

Fig. A.13. MID for Sequences s1 and s2

G-congruence and congruence conditions guarantee the sameness of the minimal ini-

tial digraph. They also provide information on what elements are spoiling this property.

Consider the sequences s1 � reject ; assemble ; recycle and s2 � assemble ; recycle ;

reject, where in s2 the application of production reject has been advanced two posi-

tions with respect to s1. The minimial initial digraphs of both sequences can be found

in Fig. A.13. By the way, notice that Mpsiq are invariants for these transformations, i.e.

si pM psiqq �M psiq.
G-congruence is characterized in terms of congruence conditions in theorem 6.1.6.

Congruence conditions for the advancement of a single production inside a sequence

are stated in proposition 6.1.2, in particular in (6.22). Simplified and adapted for this

case with nodes ordered [1:item1 1:item2 1:item3 1:conv 2:conv 3:conv 4:conv

1:macA 1:macQ 1:macD 1:op]:4

4 Where subscript 1 stands for rule recycle, subscript 2 is assemble and subscript 3 reject.

A.3 Initial Digraph Sets and G-Congruence 261

CC � L3∇
2
1exNy pry _ e3q _N3∇

2
1rxLy pey _ r3q �� L3 rN1 pr1 _ e3q _ e1N2 pr2 _ e3qs _N3 rL1 pe1 _ r3q _ r1L2 pe2 _ r3qs �

� ��������������
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

��������������
��������������
��������������

0 0 1 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0
1 1 1 1 1 0 1 1 1 1 1
0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0

��������������
��������������
��������������

0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

��������������_
_ ��������������

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

��������������
�ÆÆÆÆÆÆÆÆÆÆÆÆ_

��������������
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1

��������������
��������������

1 1 1 0 1 1 1 1 1 1 1
1 1 1 1 0 1 1 1 1 1 1
1 1 0 0 0 0 1 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0

����������������������������
��������������

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

��������������_
��������������

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

��������������
�ÆÆÆÆÆÆÆÆÆÆÆÆ
��������������_

��������������
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

����������������������������
��������������

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0

��������������
��������������
��������������

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

��������������_
��������������

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

��������������
�ÆÆÆÆÆÆÆÆÆÆÆÆ_

262 A Case Study��������������
1 1 1 0 1 1 1 1 1 1 1
1 1 1 1 0 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1

��������������
��������������

0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0

��������������
��������������
��������������

0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

�������������� _��������������
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

��������������
�ÆÆÆÆÆÆÆÆÆÆÆÆ
�������������� �

��������������
0 0 0 0 0 0 0 0 0 0 0 i1
0 0 0 0 0 0 0 0 0 0 0 i2
0 0 0 0 0 1 1 0 0 0 0 i3
0 0 0 0 0 0 0 0 0 0 0 1c
0 0 0 0 0 0 0 0 0 0 0 2c
0 0 0 0 0 0 0 0 0 0 0 3c
0 0 0 0 0 0 0 0 0 0 0 4c
0 0 0 0 0 0 0 0 0 0 0 1mA
0 0 0 0 0 0 0 0 0 0 0 1mQ
0 0 0 0 0 0 0 0 0 0 0 1mD
0 0 0 0 0 0 0 0 0 0 0 1op

��������������
The congruence condition fails precisely in those elements that make both minimal

initial digraph different, pi3, 3cq and pi3, 4cq. See Fig. A.13.

Fig. A.14. Ordered Items in Conveyors

Relevant matrices in previous calculations can be found in (A.9) and (A.10) for rules

recycle and reject, and in Sec. A.1 for assemble, in particular equations (A.1) and

(A.3). For identifications across productions see Figs. A.13 and A.14.

A.4 Reachability 263

Nrecycle � ��������� 0 0 1 1 0 0 0 0 | 1:item1
0 0 1 0 1 1 0 0 | 1:item2
0 0 1 1 1 0 1 1 | 1:item3
0 0 1 0 0 0 0 0 | 1:conv
0 0 1 0 0 0 0 0 | 2:conv
0 0 1 0 0 0 0 0 | 3:conv
0 0 1 0 0 0 0 0 | 1:machD
0 0 1 0 0 0 0 0 | 1:op

���������Lrecycle � ���������0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 0

��������� (A.9)

ereject � ����� 0 0 1 0 0 | 1:item3
0 0 0 0 0 | 3:conv
0 0 0 0 0 | 4:conv
0 0 0 0 0 | 1:machD
0 0 0 0 0 | 1:machQ����� rreject � �����0 1 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

����� (A.10)

A.4 Reachability

In this section reachability is addressed together with some comments on other problems

such as confluence, termination and complexity (to be addressed in a future contribution).

Throughout the dissertation some techniques to deal with sequences have been de-

veloped. Sequences to be studied have to be supplied by the user. Reachability is a

more indirect source of sequences, as initial and final states are specified and the system

provides us with sets of candidates.

Fig. A.15. Initial and Final Digraphs for Reachability Example

We shall use similar initial and final states as those in Fig. A.8 (see Fig. A.15). Our

grammar as defined so far has a fixed behaviour, i.e. it is a fixed graph grammar. The

state equation for this case is given by (8.9) in Prop. 8.3.3.

264 A Case Study

Let 0S and dS be the initial and final states and the ordering [1:item1 1:item2

1:item3 1:item4 1:conv 2:conv 3:conv 4:conv 5:conv 6:conv 1:machA 1:machQ

1:machD 1:machP 1:op]. Nodes appear in the last column.

M i
j � dS � 0S � ņ

k�1

Ai
jkx

k �
���������������������

0 0 0 0 �1 0 0 0 0 0 0 0 0 0 0 �1
0 0 0 0 0 �1 0 0 0 0 0 0 0 0 0 �1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 �1 0 0 1 0 0

��������������������� (A.11)

For tensor Ai
jk only the basic productions assem, certify, reject, recycle and pack

are considered plus those for operator movement mov2*. Following Sec. 8.2, grammar

rules that add and delete elements of the same type are splitted in their addition (+)

and deletion (–) parts. This includes only productions certify and reject.5

The set of rules is tassem, certify�, certify�, reject�, reject�, recycle, pack,
mov2A, mov2Q, mov2D, mov2Pu, so k P t1, . . . , 11u. This ordering is kept in the equations

that follow.

The following list summarizes all actions performed by the grammar rules under

consideration on nodes and edges. A plus sign between brackets means that the element

is added and a minus sign that it is deleted.

• p1:item1, 1:convq ÞÝÑ assem p�q , recycle p�q
• p1:item2, 2:convq ÞÝÑ assem p�q , recycle p�q
• p1:item3, 3:convq ÞÝÑ assem p�q , certify� p�q , reject� p�q
• p1:item3, 4:convq ÞÝÑ certify� p�q , pack p�q
5 Note that neither certify nor reject add or delete the item1 node. They only act on edges.

These productions are splitted because the edge deleted and the edge added are of the same

type, pitem1, convq.

A.4 Reachability 265

• p1:item3, 6:convq ÞÝÑ reject� p�q , recycle p�q
• p1:item4, 5:convq ÞÝÑ pack p�q
• p1:op, 1:machAq ÞÝÑ mov2A p�q , mov2Q p�q
• p1:op, 1:machQq ÞÝÑ mov2Q p�q , mov2P p�q
• p1:op, 1:machDq ÞÝÑ mov2D p�q , mov2A p�q
• p1:op, 1:machPq ÞÝÑ mov2P p�q , mov2D p�q
• p1:item1q ÞÝÑ assem p�q , recycle p�q
• p1:item2q ÞÝÑ assem p�q , recycle p�q
• p1:item3q ÞÝÑ assem p�q , recycle p�q , pack p�q
• p1:item4q ÞÝÑ pack p�q

What is finally derived according to the methods proposed in Chap. 8 is a system

of linear equations. To those arising from the tensor equations another thirteen must be

appended: txk
p � xk

qu, p, q P t1, . . . , 11u
x2

p � x3
q

x4
p � x5

q.

First set of equations guarantee that a rule is applied a concrete number of times.

Second and third equations do not allow inconsistencies for rules certify and reject,

that have been splitted in their addition and deletion parts. They have to be applied the

same amount of times.

Only those columns of M for which some “activity” is defined in the productions are

of interest, i.e. all except the first four. Zero elements are not included, but substituted

by bold zeros: ��1

0

� �M5 � 11̧

k�1

A5kx
k
5 � ��x1

5 � x6
5

0

����� 0�1

0

���� �M6 � 11̧

k�1

A6kx
k
6 � ���� 0�x1

6 � x6
6

0

����

266 A Case Study �
0
� �M7 � 11̧

k�1

A7kx
k
7 � ������ 0

0

x1
7 � x3

7 � x5
7

0

�������
0
� �M8 � 11̧

k�1

A8kx
k
8 � ������ 0

0

x2
8 � x7

8

0

��������������� 0

0

0

1

0

��������� �M9 � 11̧

k�1

A9kx
k
9 � ��������� 0

0

0

x7
9

0

����������
0
� �M10 � 11̧

k�1

A10,kx
k
10 � ������ 0

0

x4
10 � x6

10

0

�������
0�1

� �M11 � 11̧

k�1

A11,kx
k
11 � ���� 0

x8
11 � x9

11

0

�����
0
� �M12 � 11̧

k�1

A12,kx
k
12 � ���� 0

x9
12 � x11

12

0

����

A.4 Reachability 267�
0
� �M13 � 11̧

k�1

A13,kx
k
13 � ���� 0

x10
13 � x8

13

0

�����
0

1

� �M14 � 11̧

k�1

A14,kx
k
14 � �

0

x11
14 � x10

14

�����������1�1

0

1

0

��������� �M16 � 11̧

k�1

A16,kx
k
16 � ��������� x6

16 � x1
16

x6
16 � x1

16

x1
16 � x6

16 � x7
16

x7
16

0

���������
M16 corresponds to nodes. Recall that x must satisfy the additional conditions xk

p �
xk

q , k P t1, . . . , 11u. The system has the solution:px, 1, 1, x� 1, x� 1, x� 1, 1, y � 1, y, y � 1, yq � 0. (A.12)

being s0 – see equation (A.4) – one of the sequences for x � 1, y � 1. Note that solutions

are uncoupled in two parts: The one that rules operator movement pyq and that of items

processing pxq.
This is a good example to study termination and confluence. Any evolution of the

system having as initial state the one depicted on the left of Fig. A.15 will eventually

get to the state on the right of the same figure (termination).6 The grammar is confluent

(there is a single solution) although there is no upper bound to the number of steps it

will take to get to its final state (complexity). Depending on the probability distribution

there will be more chances to end up sooner or later. Independently of the distribution,

larger sequences have smaller probabilities, being their probability zero in the limit (if

the probability assigned to rejecting item1 is different from 1).

6 In fact, it is not terminating because the productions that move the operator can still be

applied. What we would need is another production that drives the system to a halting state.

268 A Case Study

A.5 Graph Constraints and Application Conditions

Application conditions and graph constraints will make our case study much more real-

istic. We will see two examples on how application conditions can be used to limit the

applicability of rules or to avoid undesired behaviours.

Fig. A.16. Graph Constraint on Conveyor Load

The first is based on the remark that conveyors as presented so far have infinite

capacity to load items. Probably either due to a limit of space or of load, conveyors can

not transport more than, say, two items. This is a constraint on the whole system, which

can be modelled as a graph constraint as introduced in Chap. 7. Figure A.16 shows a

diagram d0 that sets this limit, with associated formula:

f0 � EA1 . . . A6

�
6ª

i�1

Ai

� � �A1 . . . A6

�
6©

i�1

Ai

�
. (A.13)

Recall that if the quantifier is not repeated it means that it applies to every term,

e.g. EA1A2 � EA1EA2.

A.5 Graph Constraints and Application Conditions 269

Graphs A5 and A6 are necessary because rule recycle may mix elements of type

item1 and item2 in the same conveyor. This graph constraint will be named GC0 �pf0, d0q. By using variable nodes – see Sec. 7.5 – the diagram and the formula would be

simpler, similar to the example on page 167, in particular the right side of Fig. 7.4. In

the end, the diagram and the formula would be instantiated to a graph constraint similar

to what appears on Fig. A.16 and equation (A.13).

Fig. A.17. Graph Constraint as Precondition and Postcondition

This graph constraint is depicted as precondition and postcondition on Fig. A.17.

The equations are those adapted from (A.13):�
f2 � E �

A20

�
A21

� �
A20 _ �

A21

�
(A.14)Ñ

f2 � E Ñ
A20

Ñ
A21

� Ñ
A20 _ Ñ

A21

�
. (A.15)

Only the diagram in which elements of type item3 appear has been kept because we

know that in conveyor labelled 1 there should not be items of any other type (they would

270 A Case Study

never be processed). Actually, with the definitions of rules given up to now, conveyors

connecting different machines are of the same kind. Hence, all six diagrams should appear

on reject’s left hand side and their transformation, according to theorem 7.4.6, on its

right hand side.

The precondition and the postcondition can be transformed into equivalent sequences

according to theorems 7.3.5 and 7.4.2. This is a negative application condition, see

theorem 7.2.4 and lemma 7.3.4. Hence, they are split into two subconditions, each

one demanding the nonexistence of one element.
�
A120 will ask for the nonexistence of

edge p2 : item3, 1 : convq and
�
A220 for p3 : item3, 1 : convq. Similarly we have

�
A121 forp2 : item3, 2 : convq and

�
A221 for p3 : item3, 2 : convq.7 At least one element in each case

must not be present, so there are four combinations:

reject ÞÝÑ "
reject; id �

A1
21

; id �
A1

20

, reject; id �
A1

21

; id �
A2

20

,

reject; id �
A2

21

; id �
A1

20

, reject; id �
A2

21

; id �
A2

20

*
(A.16)

The corresponding formula – the left arrow on top is omitted – can be written:DA120A220A1210A221 ��A120 _A220	�A121 _A221	� (A.17)

Here postconditions and preconditions turn out to be the same because rejectK id �
A1

2x

and rejectK id �
A2

2x

. For each sequence it is posible to compose all productions and derive

a unique rule. If so, as there are just elements that have to be found in the complement

of the host graph, they are appended to the nihilation matrix of the composition.

For graph constraints, if something is to be forbidden, it is more common to think

in “what should not be”, i.e. to think it as a postcondition (graph constraint GC0 is of

this type). On the contrary, if something is to be demanded then it is normally easier to

describe it as a precondition.

7 To be precise, there would be other two conditions asking for the nonexistence ofp1 : item3, 1 : convq, however this part of the application condition is inconsistent for the

first conveyor (this edge is demanded because it has to be erased) and redundant for the

second conveyor (it would be fulfilled always because this edge is going to be added, so it can

not exist in the left hand side). This stems from the theory developed in Chap. 7.

A.5 Graph Constraints and Application Conditions 271

Let’s continue with another property of our system not addressed up to now. Note

that conveyors clearly have a direction: Each one is the output of one or more machines

and input of one or more machines. In our example this is simplified so conveyors just

join two different machines. What might be of interest is that items in conveyors are

naturally ordered. Machines should pick the first ordered element.

To make our assembly line realize this feature, when the machine processes a new

item – 2:item3 in Fig. A.18 – and there is already an item in the output conveyor –

1:item3 in Fig. A.18 –, an edge from 2:item3 to 1:item3 will be added. A chain is

thus defined: The first element will have an incoming edge form another item, but it will

not be the source of any edge that ends in other item. The last item will not have any

incoming edge but one outgoing edge to another item. It has been exemplified for rule

reject in Fig. A.18.8

Fig. A.18. Ordered Items in Conveyors

Again we have to change the alloweable connections among types. The diagram in

Fig. A.10 needs to be further extended with a self-loop for items (there can be edges now)

joining two of them. However, concrete items can not have self-loops, so a new graph

constraint should take care of this.

This ordering convention poses two problems when the rule is applied:

1. If the input conveyor has two or more items, the first – the one with incoming edges

– should be used.

2. If the output conveyor has one or more items, the new item must be linked to the

last one.

8 We are not going to propose the modification of every single rule to handle ordering in

conveyors. On the contrary, we are going to propose a method based on graph constraints

and application conditions that automatically takes care of ordering.

272 A Case Study

The first if statement (pick the elder item) can be modelled by an application con-

dition. We have a precondition
�
A� pf1, d1q with:

f1 � �A1DA2

�
A1 ^A2

�
. (A.18)

Fig. A.19. Expanded Rule reject

The diagram is represented in Fig. A.19. Numbered elements are related by the cor-

responding morphisms. In formula f1 the term �A1 . . .
�
A1 . . .

�
prevents the application

of the rule if there is some marked item in the output conveyor (the blue square, read

below). If the rule was applied then there would be two “last” items and it should become

impossible to distinguish which one was added first. The term . . . DA2

�
. . . A2

�
forces the

rule to pick the first item in the chain, just in case there was a chain. Item 1:item3 will

be chosen either if it is the first in the chain or it is alone. This is equivalent to demand

one item that has no outgoing edges to any other item.

The second if statement can not be modelled with an application condition. The

reason is that we need to add one edge in case a “last” item exists in the output conveyor

(if the output conveyor is empty, then the rule should simply add the item). Applica-

tion conditions are limited to checking whether (almost any arbitrary combination of)

elements are present or not, but they can not directly modify the actions of the rules.

Anyway, the solution is not difficult:

1. The newly added element needs to be marked so the last item in the conveyor can

be identified: The blue square of A1 in Fig. A.19 marks the last item added.

A.5 Graph Constraints and Application Conditions 273

2. A precondition has to be imposed such that if there are marked items in the output

conveyor, the rule can not be applied (this way at most one unlinked item will exist

in each output conveyor). Again, see A1 in Fig. A.19 and the corresponding term in

(A.18).

3. The grammar is enlarged with a new rule that checks if there are unlinked items

(linking them, remMark2) and another that unmarks them if they are alone in the

conveyor, remMark1. See Fig. A.20

Fig. A.20. Rules to Remove Last Item Marks

Both productions remMark1 and remMark2 have application conditions, AC1 �pf1, d1 � tB1uq and AC2 � pf2, d2 � tB2uq respectively. The corresponding formulas are:

f1 � EB1 rB1s
f2 � �B2

�
B2

� � EB2 rB2s
Production remMark1 can be applied only if there is just a single item in the con-

veyor. remMark2 applies when there is more than one item. B2 selects the last item: It is

equivalent to “the item with no incoming eges”.

There is no problem in transforming both preconditions of Fig. A.19 into postcon-

ditions. Note that there are no dangling elements in A2 because 1:item3 is not erased

(which would mean erasing and adding the same element, something forbidden in Matrix

Graph Grammars, see comments right after Prop. 4.1.4).

Notice that we have included ordering in conveyors with graph constraints and appli-

cation conditions (there exists the possibility to transform one into the other), without

really modifying existent grammar rules. Ordering is a property of the system and not of

274 A Case Study

the productions, which should just take care of the actions to be performed. We think that

Matrix Graph Grammars clearly separate both topics: It is feasible to specify grammar

rules first and properties of the system afterwards. With the theory developed in Chap.

7 a framework – such as AToM3 – can relate one to the other more or less automatically.

Other examples of restrictions and limitations that can be imposed on the case study

are:

• Limitations on the number of operators, e.g. a maximum of four operators.

• An operator can be in charge of at most one machine.

• There should not be two operators working in the same machine, which is a restriction

on rules of type mov2*.

More general constraints such as the number of operators can not exceed the number

of machines are also possible, although variable nodes would be needed in this case.

The examples so far are simple and can be expressed with other approaches to the

topic. For other natural application conditions that can only be addressed with Matrix

Graph Grammar approaches (to the best of our knowledge), please refer to the example

on p. 180 or to [64]. The example studied in this appendix is a extended version of the

one that appears there.

A.6 Derivations

In this section a slight modification of the initial state depited in Fig. A.6 together

with a permutation of sequence s0 will be used again, but enlarged with ordering of

productions (sequences) and restrictions of Sec. A.5. Internal and external ε-productions

will be addressed in passing.

Let’s consider as initial state the one depicted in Fig. A.21. Due to restrictions,

sequence s0 � pack ; certify ; assem is not applicable (three items would appear in the

input conveyor of pack). However, productions are all sequentially independent because

they are applied to different items (due to the amount of elements available in the initial

state in Fig. A.21), so sequence s15 � certify ; pack ; assem can be considered instead.

Sequence s15 can not be applied because the operator has to move to the appropriate

machine and ordering of items needs to be considered. Let’s suppose that the four basic

A.6 Derivations 275

Fig. A.21. Grammar Initial State for s15
rules have a higher probability – or that they are in a higher layer, as e.g. in AGG9 –

so as soon as one of them is applicable it is in fact applied. According to the way an

operator may move in our assembly line, applying s15 would need at least the following

rules:

s25 � certify ; mov2Q ; mov2A ; recycle ; mov2D ; pack ; mov2P ; mov2Q ; assem. (A.19)

Production reject could have been applied somewhere in the sequence. Again, as

items are ordered and some dangling edges appear during the process, this is not enough

and some other productions need to be appended:

s5 � premMark2 ; certify ; certifyεq ; mov2Q ; mov2A ; recycle ; mov2D ;premMark2 ; pack ; packεq ; mov2P ; mov2Q ; premMark2 ; assem ; assemεq
Fig. A.22. Production to Remove Dangling Edges (Ordering of Items in Conveyors)

Parentheses are used to isolate subsequences that could probably be composed to

obtain more “natural” atomic actions. See Fig. A.20 for the definition of remMark2 and

9 AToM3 has priorities.

276 A Case Study

Fig. A.22 for assemε, packε and certifyε. In this case, both assemε and packε are

external while certifyε is internal. Productions between brackets are related through

marking operator. It is mandatory that they act on the same nodes and edges.

A user of a tool such as AToM3 or AGG does not necessarily need to know about

ε-productions, even less about marking. Probably in this case it should be better to

compose productions that include remMark1 or remMark2 and call them as the original

rule, e.g. remMark2 ; assem ÞÝÑ assem. The final state for s5 can be found in Fig. A.23

Fig. A.23. Grammar Final State for s5

A development framework should have facilities to ease visualization of grammar

rules, as diagrams can be quite cumbersome with only a few constraints. For example,

it should be possible to keep graph constraints apart from productions, calculating on

demand how a concrete constraint modifies a selected production, its left and right hand

sides and nihilation matrix.

B

ICM 2006 Presentation

A poster presentation of Matrix Graph Grammars was performed at the Interna-

tional Congress of Mathematicians that took place at Madrid (Spain) on August, 2006.

http://www.icm2006.org. We were awarded with the second prize in Section 15, Math-

ematical Aspects of Computer Science. Refer to [60].

http://www.icm2006.org

References

[1] Agrawal, A. 2004. A Formal Graph Transformation Based Language for Model-to-

Model Transformations. Ph.D. Dissertation. Nashville, Tennessee.

[2] Baldan, P., Corradini, A., Ehrig, H., Löwe, M., Montanari, U. and Rossi, F., 1999.

Concurrent Semantics of Algebraic Graph Transformations. In [24], pp.: 107-187.

[3] Bauderon, M., Hèléne, J. 2001. Pullback as a Generic Graph Rewriting Mechanism.

Applied Categorical Structures, 9(1):65-82.

[4] Bauderon, M. 1995. Parallel Rewriting Through the Pullback Approach. Electronic

Notes, 2. SEGRAGRA’95.

[5] Bauderon, M. 1997. A Uniform Approach to Graph Rewriting: the Pullback Ap-

proach. In Manfred Nagl, editor, Graph Theoretic Concepts in Computer Science,

WG ’96, Vol. 1017 of LNCS, pp. 101-115. Springer.

[6] Brown, R., Morris, I., Shrimpton J., Wensley, C.D. 2006. Graphs of Graphs and

Morphisms. Preprint available at: http://www.informatics.bangor.ac.uk/publi

c/math/research/ftp/cathom/06 04.pdf

[7] Büchi, J. 1960. Weak Second-Order Logic and Finite Automata. In Z Math. Logik

Grundlagen Math. 5, 62-92.

[8] Cormen, T., Leiserson, C., Rivest, R. 1990. Introduction to Algorithms. McGraw-

Hill.

[9] Corradini, A., Heindel, T., Hermann, F., Knig, B. 2006. Sesqui-pushout Rewriting. In

Proc. of ICGT ’06 (International Conference on Graph Transformation), pp. 30-45.

Springer. LNCS 4178.

280 References

[10] Corradini, A., Montanari, U., Rossi, F. 1996. Graph Processes. Fundamenta Infor-

maticae. Vol. 26. p. 241-265.

[11] Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M. 1999. Al-

gebraic Approaches to Graph Transformation - Part I: Basic Concepts and Double

Pushout Approach. In [23], pp.: 163-246

[12] Courcelle, B. 1997. The expression of graph properties and graph transformations in

monadic second-order logic. In [23], pp.: 313-400.

[13] Drewes, F., Habel, A., Kreowski, H.-J., Taubenberger, S. 1995. Generating self-affine

fractals by collage grammars. Theoretical Computer Science 145:159-187, 1995.

[14] Ehrig, H., Ehrig, K., Habel, A., Pennemann, K.-H. 2006. Theory of Constraints

and Application Conditions: From Graphs to High-Level Structures. Fundamenta

Informaticae (74) pp.: 135-166, 2006

[15] Ehrig, H., Ehrig, K., de Lara, J., Taentzer, T., Varró, D., Varró-Gyapay, S. 2005.

Termination Criteria for Model Transformation. Proceedings of Fundamental Ap-

proaches to Software Engineering FASE05 (ETAPS’05). Lecture Notes in Computer

Science 3442 pp.: 49-63. Springer.

[16] Ehrig, H., Habel, A., Kreowski, H.-J., Parisi-Presicce, F. 1991. From Graph Gram-

mars to High Level Replacement Systems. In H. Ehrig, H. J. Kreowski and G. Rozen-

berg, editors, Graph Grammars and Their Application to Computer Science, vol. 532

of LNCS, pp. 269-291. Springer.

[17] Ehrig, H., Habel, A., Kreowski, H.-J., Parisi-Presicce, F. 1991. Parallelism and Con-

currency in High-Level Replacement Systems. Mathematical Structures in Computer

Science, 1(3):361-404.

[18] Ehrig, H., Habel, A., Padberg, J, Prange, U. 2004. Adhesive High-Level Replacement

Categories and Systems. In H. Ehrig, G. Engels, F. Parisi-Presicce and G. Rozenberg,

editors, Proceedings of ICGT 2004, Vol. 3256 of LNCS, pp. 144-160. Springer.

[19] Ehrig, H. 1979. Introduction to the Algebraic Theory of Graph Grammars. In V.

Claus, H. Ehrig, and G. Rozenberg (eds.), 1st Graph Grammar Workshop, pp. 1-69.

Springer LNCS 73.

[20] Ehrig, H., Nagl, M., Rozenberg, G., Rosenfeld, A., editors, 1987 Graph-Grammars

and Their Application to Computer Science, 3rd International Workshop, Vol. 291

of LNCS. Springer.

References 281

[21] Ehrig, H., Pfender, M., and Schneider, H. J. 1973. Graph grammars: An Algebraic

Approach. In Proc. IEEE Conf. on Automata and Switching Theory, SWAT ’73, pp.

167-180.

[22] Ehrig, H., Ehrig, K., Prange, U., Taentzer, G. 2006. Fundamentals of Algebraic

Graph Transformation. Springer.

[23] Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. 1999. Handbook of Graph

Grammars and Computing by Graph Transformation. Vol 1. Foundations. World

Scientific.

[24] Ehrig, H., Kreowski, H.-J., Montanari, U., Rozenberg, G. 1999. Handbook of Graph

Grammars and Computing by Graph Transformation. Vol.3., Concurrency, Paral-

lelism and Distribution. World Scientific.

[25] Eilenberg, S. MacLane, S. 1945. General Theory of Natural Equivalence, Trans.

Amer. Soc. 231.

[26] Elgot, C. 1961. Decision Problems of Finite Automata Design and Related Arith-

metics. Trans. A.M.S. 98, 21-52.

[27] Feder, J. 1971. Plex Languages. Information Sciences, 3:225-241.

[28] Fokkinga, M. M. 1992. A Gentle Introduction to Category Theory — the Calcula-

tional Approach. University of Utrecht. In Lecture Notes of the 1992 Summerschool

on Constructive Algorithmics. pp.: 1-72.

[29] Gulmann, J., Jensen, J., Jørgensen, M., Klarlund, N., Rauhe, T., and Sandholm, A.

1995. Mona: Monadic second-order logic in practice. In U.H. Engberg, K.G. Larsen,

and A. Skou, editors, TACAS, pp. 58-73. Springer Verlag, LNCS.

[30] Kreuzer, T. L. 2003. Term Rewriting Systems. Cambridge University Press.

[31] Heckel, R., Küster, J. M., Taentzer, G. 2002. Confluence of Typed Attributed Graph

Transformation Systems. In ICGT’2002. LNCS 2505, pp.: 161-176. Springer.

[32] Heckel, R., Wagner, A. 1995. Ensuring Consistency of Conditional Graph Grammars

– A Constructive Approach –. Electronic Notes in Theoretical Computer Science 2.

[33] Heinbockel, J.H. 1996. Introduction to Tensor Calculus and Continuum Me-

chanics. Old Dominion University. Free version (80% of Material) Avail. at

http://www.math.odu.edu/~jhh/counter2.html.

[34] Hoffman, B. 2005. Graph Transformation with Variables. In Graph Transformation,

Vol. 3393/2005 of LNCS, pp. 101-115. Springer.

http://www.math.odu.edu/~jhh/counter2.html

282 References

[35] Lämmel, R., Mernik, M., eds., 2001. Domain-Specific Languages. Special Issue of

the Journal of Computing and Information Technology (CIT).

[36] Kahl, W., 2002. A Relation-Algebraic Approach to Graph Structure Transformation.

PhD Thesis.

[37] Kauffman, L.H. Knots. Avail. at http://www.math.uic.edu/�kauffman/Tots/K
nots.htm

[38] Kawahara, Y. 1973. Relations in Categories with Pullbacks. Mem. Fac. Sci. Kyushu

Univ. Ser. A, 27(1): 149-173.

[39] Kawahara, Y. 1973. Matrix Calculus in I-categories and an Axiomatic Character-

ization of Relations in a Regular Category. Mem. Fac. Sci. Kyushu Univ. Ser. A,

27(2): 249-273.

[40] Kawahara, Y. 1973. Notes on the Universality of Relational Functors. Mem. Fac.

Sci. Kyushu Univ. Ser. A, 27(2): 275-289.

[41] Kennaway, R., 1987. On Graph Rewritings. Theoretical Computer Science, 52:37-58.

[42] Kennaway, R. 1991. Graph Rewriting in Some Categories of Partial Morphisms. In

Ehrig et al. [20], pp. 490-504.

[43] Lack, S., Sobociński, P. 2004. Adhesive Categories. In I. Walukievicz, editor, Pro-

ceedings of FOSSACS 2004, Vol. 2987 of LNCS, pp. 273-288. Springer.

[44] de Lara, J., Hans Vangheluwe, H. 2002. AToM3: A Tool for Multi-Formalism Mod-

elling and Meta-Modelling. LNCS 2306, pp.:174-188. Fundamental Approaches to

Software Engineering - FASE’02, in European Joint Conferences on Theory And

Practice of Software - ETAPS’02 . Grenoble. France.

[45] de Lara, J., Vangheluwe, H., 2004. Defining Visual Notations and Their Manipu-

lation Through Meta-Modelling and Graph Transformation. Journal of Visual Lan-

guages and Computing. Special Issue on “Domain-Specific Modeling with Visual

Languages”, Vol 15(3-4), pp.: 309-330. Elsevier Science

[46] de Lara, J., Bardohl, R., Ehrig, H., Ehrig, K., Prange, U., Taentzer, G. 2007. At-

tributed Graph Transformation with Node Type Inheritance. Theoretical Computer

Science (Elsevier), 376(3): 139-163.

[47] Mendelson, E. 1997. Introduction to Mathematical Logic, Fourth Edition. Chapman

& Hall.

References 283

[48] Löwe, M., 1990. Algebraic Approach to Graph Transformation Based on Single

Pushout Derivations. Technical Report 90/05, TU Berlin.

[49] Mac Lane, S. 1998. Categories for the Working Mathematician. Springer. ISBN 0-

387-98403-8.

[50] Minas, M. 2002. Concepts and Realization of a Diagram Editor Generator Based on

Hypergraph Transformation. Science of Computer Programming, Vol. 44(2), pp: 157

- 180.

[51] Mizoguchi, Y., Kawahara, Y. 1995. Relational Graph Rewritings. Theoretical Com-

puter Science, Vol 141, pp. 311-328.

[52] Manzano, M. 1996. Extensions of First-Order Logics (Cambridge Tracts in Theoret-

ical Computer Science). Cambridge University Press.

[53] Murata, T. 1989. Petri nets: Properties, Analysis and Applications. Proceedings of

the IEEE, Vol 77(4), pp. 541-580.

[54] Nagl, M. 1976. Formal Languages of Labelled Graphs. Computing 16, 113-137.

[55] Nagl, M. 1979. Graph-Grammatiken. Vieweg, Braunschweig.

[56] Newman, J. 1956. the World of Mathematics. Simon & Schuster, New York.

[57] Papadimitriou, C. 1993. Computational Complexity. Addison Wesley.

[58] Pavlidis, T. 1972. Linear and Context-Free Graph Grammars. Journal of the ACM,

19(1):11-23.

[59] Pérez Velasco, P. P., de Lara, J. 2006. Towards a New Algebraic Approach to Graph

Transformation: Long Version. Technical Report of the School of Computer Science,

Universidad Autónoma de Madrid. Available at http://www.ii.uam.es/�jlara/
investigacion/techrep 03 06.pdf.

[60] Pérez Velasco, P. P., de Lara, J. 2006. Matrix Approach to Graph Transformation.

Mathematical Aspects of Computer Science. Proc. ICM’06, Vol. Abstracts, p. 128.

European Mathematical Society.

[61] Pérez Velasco, P. P., de Lara, J. 2006. Matrix Approach to Graph Transformation:

Matching and Sequences. Proc. ICGT’06, LNCS 4218, pp.:122-137. Springer.

[62] Pérez Velasco, P. P., de Lara, J. 2006. Petri Nets and Matrix Graph Grammars:

Reachability. Proc. PN-GT’06, Electronic Communications of EASST(2).

284 References

[63] Pérez Velasco, P. P., de Lara, J. 2007. Using Graph Grammars for the Analysis of Be-

havioural Specifications: Sequential and Parallel Independence. Proc. PROLE’2007.

Also as ENTCS (Elsevier).

[64] Pérez Velasco, P. P., de Lara, J. 2007. Analysing Rules with Application Conditions

Using Matrix Graph Grammars. Proc. GT-VC’2007.

[65] Penrose, R. 2006. The Road to Reality: a Complete Guide to the Laws of the Universe.

Knof, 0679454438.

[66] Pfaltz, J.L., Rosenfeld, A. 1969. Web Grammars. Proc. Int. Jont Conf. Art. Intelli-

gence, Washington, 1969, pp. 609-619.

[67] Raoult, J. C., 1984. On Graph Rewritings. Theoretical Computer Science, 32:1-24.

[68] Reisig, W., 1985. Petri Nets, an Introduction. Springer-Verlag, Berlin.

[69] Schneider, H. J. 1970. Chomsky-System für Partielle Ordnungen, Arbeitsber. d. Inst.

f. Math. Masch. u. Datenver. 3, Erlangen.

[70] Schürr, A. 1994. Specification of Graph Translators with Triple Graph Grammars.

Proc. 20th International Workshop on Graph-Theoretic Concepts in Computer Sci-

ence. LNCS 903, pp.: 151 - 163. Springer.

[71] Smullyan, R. 1995. First-Order Logic. Dover Publications.

[72] Sokolnikoff, I.S. 1951. Tensor Analysis, Theory and Applications. John Wiley and

Sons.

[73] Taentzer, G. 2004. AGG: A Graph Transformation Environment for Modeling and

Validation of Software. AGTIVE 2003, LNCS 3062, pp.: 446-453. Springer.

[74] Terese. 2003. Term Rewriting Systems. Cambridge University Press.

[75] Thomas, W. 1990. Automata on Infinite Objects. In J. van Leeuwen, editor, Handbook

of Theoretical Computer Science, Vol. B, pp. 133-198. MIT Press/Elsevier.

[76] Vollmer, H. 1999. Introduction to Circuit Complexity: A Uniform Approach. Text in

Theoretical Computer Science. EATCS Series.

[77] Habel, A. Pennemann, K.H. 2005. Nested Constraints and Application Conditions

for High-Level Structures. Formal Methods in Software and Systems Modeling. Vol.

3393. pp. 293-308. EATCS Series.

[78] Kreowski, H.J., Montanari, H., Orejas, F., Rozenberg, G., Taentzer, G. 2005. Formal

Methods in Software and Systems Modeling, Essays Dedicated to Hartmut Ehrig,

References 285

on the Occasion of His 60th Birthday. Formal Methods in Software and Systems

Modeling. Lecture Notes in Computer Science. Vol. 3393. Springer.

[79] Rensink, A. 2004. Representing First-Order Logic Using Graphs. Proc. ICGT’2004.

LNCS 3256. pp. 319-335. Springer.

Index

abelian group 37

adjacency matrix 27

adjoint operator 36

allegory 64

distributive 65

amalgamation 46

analysis of a derivation 46

applicability 7

application condition 47

coherent 173

compatible 173

consistent 173

in MGG 168

weak 168

arity 16

Banach space 36

binary relation 60

Boolean matrix product 29

boundedness 227

categorical product 21

category 19

Graph 20

GraphP 20

PTNets 25

Poset 24

Rel 62

Set 19

SetP 63

Top 24

adhesive HLR 23

Dedekind 65

weak adhesive HLR 25

class 19

closed formula 16

closure 175

cocone 22

coherence 80, 215

colimit 22

compatibility 215

graph 30

production 72

sequence 104

completion 76

complexity 267

composition 106

288 Index

concatenation 79

cone 22

conflict-free condition 49

confluence 9

congruence condition 138

negative 138

positive 138

context graph 43

contraction 33

contravariance 33

coproduct 22

covariance 33

cycle 38

dangling

condition 30, 43

edge 3, 30

daughter graph 53

decomposition 176

definition scheme 61

derivation 8

exact 129

diagram 162, 166

direct derivation 8

DPO 43

MGG 113

SPO 49

direct transformation 48

distance 36

domain 63

domain of discourse 17

double pullback (DPB) 51

double pushout (DPO) 42

DSL, Domain-Specific Languages 245

dual space 35

ε-production

adjoint operator 119

edge

addition 69

deletion 69

external 128

internal 128

type 76

fixed grammar 120

floating grammar 120

FOL

connective 15

constant 15

first order logic 15

function 15

quantifier 15

symbol 15

variable 15

function

partial 62

total 62

functional representation

closure 186, 192

decomposition 185, 192

match 183, 192

negative application condition 192

negative application condition 187

production 117

functor 20

G-congruence 134

gluing condition 44

graph constraint 166

fulfillment 170

Index 289

graph pattern 199

ground formula 16, 166

group 37

Hilbert space 34

hyperedge 56

hypergraph 57

isomorphism 57

identification condition 43

identity conjugate 183

incidence matrix 27, 216

incidence tensor 220

matrices 216

independence 8

initial digraph

actual 128

set 123

initial object 19

inner product 33, 34

interface 42

interpretation function 17

invariants

place 227

transition 227

kernel (graph) 200

Kronecker delta 33

Kronecker product 32

Levi-Civita symbol 33

LHS, Left Hand Side 69

limit 22

line graph 27

liveness 227

marking 210

minimal 214

operator 121

match

DPO 43

extended 116

MGG 112

SPO 49

metric 36

metric tensor 33

MGG, Matrix Graph Grammar 7

minimal initial digraph 91

monadic second order logic, MSOL 18

morphism

partial 63

mother graph 53

multidigraph constraints 203

multigraph 20

multinode 200

NCE 54

negative

application condition 47

graph constraint 47

initial digraph 101

initial set 125

nihilation matrix 98

NLC 53

node

addition 69

deletion 69

type 74

vector 28

norm 35

of Boolean vector 30

290 Index

operator 34

delta 85

nabla 85

order 31

outer product 32

ε-production 118

external 128

internal 128

parallel

independence 44

production 45

Parikh vector 211

parity 38

permutation 38

Petri net 210

conservative 227

definition 210

pure 214

place 210

positive

application condition 47

atomic 47

graph constraint 47

atomic 47

postcondition 47

MGG 168

weak 168

precondition 47

MGG 168

weak 168

production

ε 118

DPO 42

dynamic formulation 99

SPO 49

static formulation 68

propositional logic 15

pullback 22

pullout 65

pushout 22

complement 23

initial 23

R-structure 60

rank 31

reachability 8, 210, 215

relation 62

equivalence 76

universal 64

zero 64

RHS, Right Hand Side 71

Riesz representation theorem 35

rule scheme 199

scalar product 34

second order logic, SOL 17

sequence 79

sequential confluence 10

sequential independence 8, 45

generalization 148, 153

weak 50

signature 38

simple

digraph 27

node 200

single

pullback (SPB) 51

pushout (SPO) 49

source 20

state equation 211, 225

Index 291

string 57

length 57

subgroup 38

substitution function 199

synthesis of a derivation 46

target 20

tensor 31

product 32

for graphs 29

terminal object 19

termination 267

token 210

transduction 60

transformation (HLR systems) 48

transition 210

enabled 210

firing 210

transposition 38

even 38

odd 38

true concurrency 156

type 76

universal property 20

valence 31

Van Kampen square 24

weak parallell independence 45

well-definedness 166

Ξ-production 205

	Introduction
	Historical Overview
	Motivation
	Dissertation Outline

	Background and Theory
	Logics
	Category Theory
	Graph Theory
	Tensor Algebra
	Functional Analysis
	Group Theory
	Summary and Conclusions

	Graph Grammars Approaches
	Double PushOut (DPO)
	Basics
	Sequentialization and Parallelism
	Application Conditions
	Adhesive HLR Categories

	Other Categorical Approaches
	Node Replacement
	Hyperedge Replacement
	MSOL Approach
	Relation-Algebraic Approach
	Summary and Conclusions

	Matrix Graph Grammars Fundamentals
	Characterization and Basic Concepts
	Completion
	Sequences and Coherence
	Minimal and Negative Initial Digraphs
	Minimal Initial Digraph
	Negative Initial Digraph

	Composition and Compatibility
	Summary and Conclusions

	Matching
	Match and Extended Match
	Marking
	Initial Digraph Set and Negative Digraph Set
	Internal and External -productions
	Summary and Conclusions

	Sequentialization and Parallelism
	G-Congruence
	Sequentialization -- Grammar Rules
	Sequential Independence -- Derivations
	Explicit Parallelism
	Summary and Conclusions

	Restrictions on Rules
	Graph Constraints and Application Conditions
	Extending Derivations
	Functional Representation
	Moving Conditions
	From Simple Digraphs to Multidigraphs
	Summary and Conclusions

	Reachability
	Crash Course in Petri Nets
	MGG Techniques for Petri Nets
	Fixed Matrix Graph Grammars
	Floating Matrix Graph Grammars
	External -production
	Internal -production

	Summary and Conclusions

	Conclusions and Further Research
	Summary and Short Term Research
	Main Contributions
	Long Term Research Program

	Conclusiones. Investigación Futura
	Resumen. Investigación a Corto Plazo
	Principales Contribuciones
	Investigación a Largo Plazo

	Case Study
	Presentation of the Scenario
	Sequences
	Initial Digraph Sets and G-Congruence
	Reachability
	Graph Constraints and Application Conditions
	Derivations

	ICM 2006 Presentation
	References
	Index

