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Introducción

Óxidos de metales de transición

Los óxidos de metales de transici’on constituyen una familia de materiales muy intere-
sante. A menudo, cristalizan en estructuras simples, como la estructura de perovskita
ilustrada en la Fig. 0.1, o sus derivados. A pesar de su simplicidad qúımica y estructu-
ral, los óxidos de metales de transición exhiben una importante variedad de fenómenos
f́ısicos, entre ellos, algunos no son bien esntendidos hoy en d́ıa. Por ejemplo, LaTiO3 es
un aislante de Mott [Iliev 04], la exhaustivamente estudiada familia de los Cupratos con
estructura del tipo La1−xSrxCuO4, presentan antiferromagnetismo, superconductividad
de alta temperatura cŕıtica, y un estado conductor que es incompatible con la teoŕıa del
ĺıquido de Fermi. En el caso de las manganitas, el objeto de esta tesis, LaMnO3 permane-
ce ordernado hasta temperaturas del orden de 750 K y TbMnO3 exhibe fases magnéticas
inconmensuradas. (ver Caṕıtulo 3) que coexisten con ferroelectricidad. Fases más exóti-
cas se encuentran, por ejemplo, en titanatos y rutenatos [Mochizuki 04, Nakatsuji 00].

Otra interesante caracteŕıstica compartida por los óxidos de metales de transición es la
ectremada sensibilidad a ciertos parámetros f́ısicos, como el desorden. Existen numeros y
bien documentados ejemplos. En la familia de lso rutenatos, Fig. 0.4(a), la substitución
de Ca por el elemenot isovalente Sr produce una gran variedad de fases, a pesar de la
similitud qúımica de los compuestos [Nakatsuji 00]. SrTiO3, un aislante de bandas, se
torna ferroeléctrico en láminas delgadas a temperatura ambiente [Kim 07], y a bajas tem-
peraturas, aparece una transición superconductora cundo la composición es deficiente en
Óxigeno. Las propiedades de las manganitas son muy sensibles as desorden y al doping,
y exhiben respuestas sorprendentemente grandes a campos magneéticos (discutidas en
la sección 1.4). En ciertas manganitas, consideradas en principio ordenadas, el desorden
sútil que produce la posición aleatoria de dos iones muy similares, (Ba2+ y La3+) tiene
importantes consecuencias para la transición magnética (Caṕıtulo 4). Los experimentos
muestran que estas pequeñas desviaciones del ordenamiento prefecto pueden alterar el
diagrama de fases de manera sustancial. (ver Fig.0.3).

La teoŕıa de bandas es, en general incapaz de predecir la estabilidad de estas fases exóti-
cas, y las respuestas extremas a est́ımulos pequeños o moderados. La pequeña extension
espacial de los orbitales d, (especialemnte de los orbitales 3d) produce una compleja com-
binación entre interaciones que surgen del carácter localizado de los electrones, y efectos
debidos a la hibridación. Los acoplos electron-electron y electron-red son importantes y
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Figura 0.1: Estructura de perovskita no distorsionada,[Jonker 50]. En las manganitas,
el Mn occupa la posici’on B, el Ox’igeno la O y la X es ocupada por distintas
combinaciones de elementos alkalinos o tierras raras.

el estuio de los óxidos de metales de tensición constituyen una parte significativa y muy
activa del campo de los electrones fuertemente correlacionados.

Manganitas

Nos concentraremos en las manganitas: fenómenos extraordinarios y un gran cuerpo de
observaciones experimentales las convierten en especialmente atractivas a nuestro en-
tender. A principios de los 90’s Jin y colaboradores [Jin 94] informaron de un cambio de
3 órdenes de magnitud en la resistencia eléctrica de una lámina delgada de manganita
cuando un campo magnético era aplicado. Esta inusitada y espectacualar magnetoresis-
tencia, colosal como fue pronto bautizada, y, especialmente la posibilidad de aplicaiones
en dispositvos electrónicos comerciales, estimul]’o en gran medida la investigación en
manganitas.

La magnetoresistencia es una propiedad muy interesante de los materiales magnéticos
desde el punto de vista tecnológico ya que permiten el diseño, por ejemplo, de sensores
magnéticos. Desde entonces, estos materiales se han estudiado muy a fondo y también
se ha encontrado otros con magnetorresistencia similar, como las dobles perovsquitas,
los pirocloros de óxido de manganeso o el hexaboruro de europio. Estos materiales no
son sólo importantes por las posibles aplicaciones tecnológicas de la magnetorresisten-
cia colosal sino que, además, presentan una complejidad tal que suponen un reto tanto
teórico como experimental.
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(a) Diagrama de fases de los rutenatos tipo Ca2RuO4 (b) iagrama de fases de los cupratos

Figura 0.2: Diagrama de fases de dos familias de compuestos, que ilustran el rico diagra-
ma de fases y la senibilidad a distintos parámetros. (a) Diagrama de fases de
los rutenatos con estructura laminado, de fórmula qúımica Ca2−xSrxRuO4.
Distintas fases electrónicas, desde aislantes a superconductoras, distintos
ordénes magnéticos, y distintas transiciones estructurales aparecen. No-
tar que el dopante Sr es isovalente al Ca, Para más detalles consultar
[Nakatsuji 00] y [Dagotto 05]. (b) Diagrama de fases esquemático de los cu-
pratos, paradigma de los sitemas de electrones fuertemente correlacionados.
Los huecos (el eje orizontal) son introducidos en el sistema mediante dopaje
qúımico. Tomado de [Dagotto 05].
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Figura 0.3: Alteraciones en el diagrama de fases de las manganitas a dopaje mitad de-
bidas al desorden que surge de la posición aleatoria de los cationes situados
en las posición A. CO/OO, FM, y SG denotan estados con oden de carga
y orbital, ferromagnetico, and vidrio de esṕın, repectivamente. TCO, TC , y
TSG repesentan las correspondientes. Los compuestos con radio iónico mayor
(hacia la derecha en el eje horizontal ) tiene un ancho de banda mayor. El
ión divalente, Ba en todos los compuestos y los diferentes lantánidos, (Ln)
en el caso de los compuestos ordenados están situados en planos atómicos
alternados (lineas y śımbolos negros); por contra, ocupan posiciones de la
red al azar en los desordenados, (lineas y śımbolos rojos, y area sombreada
en rojo). Tomado de [Akahoshi 03].
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Antes de aparecer estos materiales, ya se hab́ıa conseguido obtener valores grandes de
magnetorresistencia en superestructuras de capas alternas de metales magnéticos y no
magnéticos. Se denominó magnetorresistencia gigante. De hecho, estos sistemas ya se
están utilizando en la industria para hacer cabezas lectoras de grabaciones magnéticas.
Valores mayores de la magnetorresistencia permitiŕıan el aumento de la densidad de
almacenamiento de datos en memorias magnéticas.

La magnetorresistencia colosal (desde ahora utilizaré las siglas en inglés CMR) se en-
contró en las manganitas dopadas que presentan una transición metal-aislante a casi
la misma temperatura que la transición magnética. Por tanto, a bajas temperaturas, el
sistema es ferromagnético y metálico y por encima de la temperatura de la transición
magnética Tc es paramagnético y aislante. Las temperaturas cŕıticas experimentales van
desde 100 K a 500 K. En el punto de la transición, la resistividad presenta un pico muy
abrupto que desaparece progresivamente cuando se aplican campos magnéticos del orden
de Teslas . Es decir, la CMR está limitada a la región próxima a Tc y, además, precisa
de campos muy altos para ser realmente grande. Esta es la llamada magnetorresistencia
intŕınseca. Más interesante desde el punto de vista práctico es la magnetorresistencia
extŕınseca de muestras policristalinas y multicapas. Aparece para campos magnéticos
pequeños, mucho menores que 1 Tesla y en un rango de temperaturas amplio por de-
bajo de Tc. La magnetorresistencia extŕınseca está asociada con la polarización de esṕın
de los materiales. De hecho, tanto las manganitas como las dobles perovsquitas, entre
otros, son medio metálicos. Esto significa que todos los portadores de corriente tienen
un mismo esṕın. Esto se da en la fase ferromagnética ya que el acoplo Hund obliga a
todos los electrones de un orbital parcialmente lleno de un ion a colocarse paralelos unos
a otros. Es decir, tanto los electrones localizados en el ion (que configuran el esṕın del
ion) como los de conducción tienen la misma orientación de esṕın. Por tanto, dos de
estos sistemas ferromagnéticos puestos en contacto, ofrecerán una resistencia al paso
de corriente muy grande si no están paralelos. Un pequeño campo magnético los orien-
taŕıa convenientemente y reduciŕıa la resistividad dando lugar a una magnetorresistencia
grande. Dominar este carácter medio metálico es crucial para conseguir tener magneto-
rresistencia extŕınseca con campos bajos a temperatura ambiente. Desafortunadamente,
la polarización de esṕın se anula a temperaturas mucho más bajas que la cŕıtica. La
solución puede estar en los materiales con Tc muy alta, como las dobles perovsquitas
(Tc > 500K).

Estos materiales no son sólo interesantes por las posibles aplicaciones tecnológicas. Las
manganitas son por śı mismas muy interesantes porque son el prototipo de sistema en el
que muchas interacciones distintas compiten de igual a igual y dan lugar a unos diagra-
mas de fases muy complejos. La fórmula de estos óxidos de manganeso con estructura
de perovsquita es A1−xBxMnO3 donde A es una tierra rara trivalente y B es un alcalino
divalente. El ox́ıgeno está en el estado de oxidación O2− y tiene su última capa p llena.
x nos da la proporción de iones A y B en el compuesto. El manganeso puede presentar
valencia +3 ó +4. Su proporción se controla directamente con x: por neutralidad de
carga, el número de iones A3+ es igual al de iones Mn3+ y el de B2+ al de Mn4+. La
última capa d del Mn está incompleta. Los cinco orbitales d están degenerados en el
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(a) Phase diagram of layered Ruthenates (b) Phase diagram of Cuprates

Figura 0.4: (a) Diagrama de fases de los rutenatos, para mas detalles ver [Nakatsuji 00]
y [Dagotto 05]. (b)Diagrama de fases esquematico de los cupratos.
[Dagotto 05].

átomo aislado pero en una red cúbica, como la de las manganitas, se separan en tres t2g

y dos eg (ver Fig. 0.5). Los t2g tienen menor enerǵıa por razones de simetŕıa. El Mn4+

tiene tres electrones en su última capa que se colocan paralelos (regla de Hund) en los
niveles t2g. Estos electrones están localizados en el ion y sus espines se suman para dar
un esṕın total |S| = 3/2. Los orbitales eg son los únicos activos para el transporte (se
hibridan con p del ox́ıgeno dando lugar a la banda de conducción) y en el caso del Mn4+

están vacios. Por otra parte, el Mn3+ tiene un electrón extra que se coloca en un orbital
eg con el esṕın paralelo al de los t2g (|S| = 2). x es, por tanto, la densidad de huecos
en la banda de conducción. Los orbitales eg del Mn3+ rompen su degeneración debido al
teorema de Jahn-Teller que dice que un estado fundamental degenerado se deforma de
manera espontánea para disminuir su simetŕıa a no ser que la degeneración sea sólo de
esṕın (más abajo veremos en qué consisten las deformaciones Jahn-Teller).

La estructura cristalina es la de perovskita (Fig. 0.1). Los Mn forman una red cúbica.
Cada Mn está rodeado de seis ox́ıgenos que forman un octahedro. Tenemos entonces una
red cúbica de octahedros. Los iones A y B están en los huecos entre octahedros. Lo más
importante a destacar por ahora es que los iones de Mn están unidos por medio de un
O.

Entonces, si x = 0, sólo hay Mn3+ en el sistema, por tanto, la banda de conducción
está llena y el sistema es aislante. Además es un antiferromagneto. La interacción antife-
rromagnética proviene de la interacción de superintercambio entre los espines localizados
en los orbitales t2g. Si, por el contrario, x = 1, sólo hay Mn4+, la banda de conduc-
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Figura 0.5: Esquema de enrǵıas de los niveles d, en un átomo aislado, a) , en un entorno
octhédrico como el de las manganitas, b), y tras una distorsión uniaxial
simétrica. c).

ción está vaćıa y también es aislante y antiferromagnético. Para x intermedio, la banda
está parcialmente llena y el sistema es metálico y ferromagnético. La correlación estre
ferromagnetismo y metalicidad la explicó Zener [Zener 51, C.Zener 51] en los años 50
por medio de su modelo de doble intercambio. En el estado de valencia mixta, es decir,
cuando hay tanto Mn3+ como Mn4+, el proceso de conducción se produce por medio del
orbital p completo del O: un electrón se transfiere de un Mn al O a la vez que un electrón
del O se transfiere al otro Mn. El nombre de doble intercambio se debe a la necesidad
de dos procesos simultáneos. Los estados

ψ1 : Mn3+O2−Mn4+

ψ2 : Mn4+O2−Mn3+

están degenerados en enerǵıa si los espines localizados en los t2g están paralelos (es decir,
ordenados ferromagnéticamente). Entonces, los electrones de los eg, que están fuertemen-
te acoplados a los t2g por la regla de Hund y que no cambian su esṕın en el proceso, se
pueden mover fácilmente por el sistema. Si los espines localizados estuvieran antipara-
lelos, los electrones eg no podŕıan pasar de uno a otro y el sistema seŕıa aislante.

Ya he comentado que los espines localizados en los Mn son grandes (3/2) por lo que es
una buena aproximación considerarlos clásicos. Esto lo hicieron Anderson y Hasewaga
[Anderson 55] para formalizar el modelo de doble intercambio partiendo de un solo par
de Mn. En la Fig. 0.6 podemos ver que si tratamos los espines como clásicos, el electrón,
cuando se transfiere de un Mn al vecino, se tiene que projectar en la dirección del nuevo
esṕın ~S2. Generalizándolo a una red cúbica de espines, tenemos el Hamiltoniano
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Figura 0.6: Modelo semi-clásico del doble intercambio según Anderson y Hasewaga
[Anderson 55]. Los espines S se consideran grandes (clásicos) y se les trata
como vectores tridimensionales.

H = t
∑

ij

cos
θij

2
d+

i dj (0.1)

donde i y j son primeros vecinos y θij es el ángulo relativo entre ~Si y ~Sj . d
+
i es el operador

de creación de un electrón en el sitio i con su esṕın paralelo al del ion. t es el parámetro
de “hopping” que está directamente relacionado con el ancho de la banda de conducción
W = 12t.

Más recientemente, Müller-Hartmann y Dagotto[Müller-Hartmann 96] señalaron la im-
portancia de considerar la fase de Berry, es decir, la fase que adquiere un electrón cuando
se mueve en circuitos cerrados. Partiendo del Hamiltoniano tipo Kondo

H = −t
∑

〈i,j〉σ
C+

i,σCj,σ − JH

∑

i

~σi
~Si (0.2)

donde JH es el acoplo Hund, C+
i,σ es el operador creación de un electrón en el sitio i con

esṕın σ =↑, ↓. Haciendo el ĺımite JH >> t, es decir, proyectando el esṕın del electrón de
conducción en cada sitio sobre el correspondiente esṕın localizado,

H = −t
∑

〈ij〉

(
cos

θi

2
cos

θj

2
+ sin

θi

2
sin

θj

2
ei(φi−φj)

)
d+

i dj (0.3)
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donde θi y φi son las coordenadas polares de los espines clásicos. 1

El modelo de doble intercambio puede explicar la correlación entre ferromagnetismo y
metalicidad que ya se hab́ıa descubierto en los años 50 pero la magnetorresistencia co-
losal queda fuera de su alcance: la transición metal-aislante precisa de la existencia de
interacción con la red (fonones) (Millis et al [Millis 98]). Aśı mismo, el estado de valencia
mixta es sólo ferromagnético para 0,2 < x < 0,5 y para valores diferentes de x se han
encontrado distintas fases aislantes. Estas nuevas fases aparecen porque hay otras inter-
acciones, aparte de la de doble intercambio, que pueden dominar el sistema en algunos
casos. Para empezar, la fuerza del doble intercambio se ve mermada por el desorden del
sistema. Los iones A y B suelen ser de distintos tamaños y esto hace que los octahedros
se inclinen con respecto a la red cúbica. Entonces, las ligaduras Mn-O-Mn dejan de estar
en ĺınea recta y forman ángulos distintos de 180o. Consecuentemente, el solapamiento de
los orbitales disminuye y la banda de conducción se estrecha. Esto es muy importante
porque en el modelo de doble intercambio, la Tc depende de la anchura de la banda. Por
ejemplo, la Tc del La0,7Sr0,3MnO3 es 350K y la del La0,7Ca0,3Mn3O es ∼ 250K. Otra
fuente de desorden es la diferencia de tamaño entre los iones Mn3+ y Mn4+ que da lugar
al modo respiratorio de distorsión de los octahedros. Los iones de Mn3+ también sufren
deformaciones Jahn-Teller (Fig. 0.7) que llevan asociado el desdoblamiento de los niveles
eg. Todas estas deformaciones de la red compiten energéticamente con el doble intercam-
bio. También está la interacción de superintercambio entre los espines localizados que es
de carácter antiferromagnético.

El caso del La0,5Ca0,5MnO3 puede ayudarnos a ilustrar la competencia de la que hablo.
En principio, x = 0,5 corresponde al estado de valencia mixta ideal ya que hay tantos
Mn3+ como Mn4+. Sin embargo, el sistema no es ni metálico ni ferromagnético. Por el
contrario, presenta orden de carga, de esṕın y de orbital. Este es el estado fundamental.
Cuando se aplica un campo magnético grande, el sistema pasa a una fase ferromagnética
y metálica, dando lugar a CMR.

Además, los sistemas no son homogéneos [van den Brink 99a]. Con esto quiero decir
que fases ferromagnéticas y de orden de carga, por ejemplo, pueden coexistir al mismo
tiempo. Esto es una prueba más de la competencia estricta entre los grados de libertad
de esṕın, de carga y de la red. Las fases aislantes aparecen con más fuerza en los sistemas
de banda de conducción estrecha. Además, la CMR es mayor cuanto más estrecha es la
banda (o más pequeña es la Tc). Esto es consistente con algo que ya he comentado: el
modelo de doble intercambio no puede explicar la CMR.

En este trabajo, estudiamos las propiedades del Hamiltoniano de doble intercambio con
el objetivo de discernir aquellas propiedades de las manganitas que este simple modelo
puede explicar. Además, es indiscutible, que esta interacción subyace al comportamiento
general de las manganitas.

1En el proceso de proyección del esṕın del electrón de conducción sobre el esṕın localizado se pasa
continuamente del operador C

+

i,σ a d
+

i que está en la base local de cada ion.
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Figura 0.7: a) and b), Esquema de los orbitales d reales. 3z2 − r2 (a) y x2 − y2 (b). d)
octahedros regulares. c) and e): Los octahedros tras una disotrsion Qz > 0
(c) y Qx > 0. Los orbitales eg orbitals (a) y b)) son afectados de manera
distinta por estas distorsiones
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Figura 0.8: Diagrama de fases de la familia LaCaMnO3 [P.Schiffer 95]. FM: ferro-
magnético metal, FI ferromagnético aislante, CO orden de carga, AF an-
tiferromagnetico aislante, CAF canted antiferromagnetico aislante.
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Conclusiones

Hemos estudiado las manganitas fijandonos principalmente en el modelo de doble in-
tercambio, y en la competición entre las interacciones que favorecen la localización y el
antiferromagnetismo, como el superintercambio y la interacción electrón-red frente a las
que favorecen las fases ferromagnéticas y metálicas.

Hemos estudiado la relevancia de el acoplo electrón-red en las propiedades de trasn-
porte de las manganitas a dopaje óptimo, en el que se encontró la magnetorresistencia
colosal. Aśı mismo, hemos provado que es necesario introducir desorden o algún otro
ingrediente en el modelo para reproducir el pico en la magnetoresistencia que aparce en
los experimentos

Esto está demostrado en el Caṕıtulo 2. Alĺı calculamos la conductividad numéricamen-
te con el formalismo de Kubo. Utilizamos simulaciones de Monte-Carlo para generar
configuraciones de esṕın y de las posiciones de los ox́ıgenos con las que calcular la con-
ductancia a distintas temperaturas. Está, entonces, garantizado que las fluctuaciones de
esṕın y de los modos Jhan Teller están incluidos apropiadamente y que el desorden no
diagonal no es suficiente para hacer que los portadores de corriente se localicen.

El desorden es estudiado en el Caṕıtulo 4 en relación a la transición ferromagnética-
paramagnética en las manganitas metálicas. En él se demuestra que el desorden debido
a los cationes dopantes tiene un papel importante en la reducción de la temperatura de
Curie. El orden de la transición también camb́ıa, para un grado desorden suficientemente
grande, de primer orden a transicón cont́ınua.

El campo de las manganitas está repleto de resultados sorprendentes. Uno de estos es
el tratado en el Caṕıtulo 3, las fases inconmensuradas observadas experimentalmente
en las manganitas. Mediante cálculos anaĺıticos y simulaciones numéricas, se muestras
que estas fases surgen de la competición entre la interacción ferromagnética de largo
alcance debida al Doble Intercambio y la interacción antiferromagnética de corto alcance
debida al superintercambio. Adem’as, se estudia la variación de la periodicidad con la
temperatura que reproduce cualtitativamente la de los experimentos. Se muestra que
la fase inconmensurada se puede entender como paredes de dominio con correlaciones
ferromagnéticas que separan regiones esencialmente conmensuradas con la red. Además
establecemos un diagrama de fases del modelo para manganitas sin dopar, clarificando
la naturelza del gap en las fases conmensuradas.

Finalmente, se han explorado las tremendas posibilidades que ofrecen los muy nota-
bles avances en técnicas de crecimiento de óxidos. En particular, en el Caṕıtulo 5 se ha
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Conclusiones

propuesto y estudiado una heterostructura compuesta de manganitas ferromagnéticas
y antiferromagnéticas, a dopajes cercanos al óptimo, como dispositivo útil para la es-
pintrónica. Los cálculos indican que es posible, manipulando la magnetización de una de
las capas, cambiar el estado electrónico de la capa vecina de metal a aislante. Además, se
muestra que las presencia de las capas ferromagnéticas metálicas potencian la interacón
de Doble Intercambio en la capa central, favoreciendo la aparición del estado metálico
en determinadas condiciones. Aśı mismo se ha recuperado el resultado esperimental de
que la magnetoresitencia de las multicapas de maganitas con ancho de banda pequeño
se ve favorecido por la presencia de otras cuyo estado fundamental es ferromagnético y
metálico.
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Chapter 1

Introduction

1.1. Transition Metal Oxides

Transition-metal oxides constitute a very interesting family of materials, with challenging
properties. Many oxides crystallize in simple lattice arrangements, such as the perovskite
structure (Fig. 1.1). Despite the chemical and structural simplicity, transition-metal ox-
ides display very different physical phenomena, among them, not all are well understood.
For instance LaTiO3 is a Mott insulator [Iliev 04], the intensively studied family of lay-
ered Cuprates, like La1−xSrxCuO4, present antiferromagnetism, High Critical Tempera-
ture superconductivity, and a conducting state non-compatible with fermi-liquid theory
1.2(b). In the case of manganites, the subject of this thesis, LaMnO3 remains orbital
ordered up to 750 K and TbMnO3 shows magnetic incommensurate phases (see chapter
3) that coexists with ferroelectricity. More exotic phases are found, for example, in
Titanates and Ruthenates [Mochizuki 04, Nakatsuji 00].

Other interesting characteristic shared by transition-metal oxides, is the tremendous
sensitivity to certain physical parameters, such us doping, pressure, magnetic field, or
disorder. There are numerous well documented examples. In the family of Ruthenates
Ca2−xSrxRuO3, Fig. 1.2(a), substitution of Ca by the isovalent element Sr produces a
great variety of phases, despite the chemical similarity of the compounds [Nakatsuji 00].
SrTiO3, a band insulator, becomes ferroelectric in thin films at room temperature
[Kim 07], and a metal-superconducting transition appears at low temperatures when
the composition is oxygen deficient. Manganites properties are very sensitive to disorder
and doping and show surprisingly large responses to magnetic fields (discussed in section
1.4). For certain manganites which were, in principle, considered as having an ordered
structure, removing the subtle disorder which arises from the radom position of two very
similar ions (Ba2+ and La3+) has important consequences for the magnetic transition
(chapter 4). Experiments show that these small departures from perfect ordering can
change the phase diagram substantially (see Fig.1.3).

Band theory is, in general, unable to predict the stability of the exotic phases, and the
huge responses to small or moderate stimulus. The small spatial extent of d orbitals
(specially 3d orbitals) produces a complex interplay between interactions arising from

3



Chapter 1 Introduction

Figure 1.1: Undistorted perovskite structure as shown in Ref. [Jonker 50]. In man-
ganites, Mn occupy the B position, Oxygen the O position, and different
combinations of alkaline elements, Lead, or rare earth elements, the A po-
sition. The dotted lines mark the axes of a regular octahedra, formed by
MnO6 in manganites .

the localized character of the electrons and effects due to hybridization. Both electron-
electron and electron-lattice coupling are significant and the study of transition metal
oxides constitutes a substantial and very active part of the field of strongly correlated
electrons .

1.2. Manganites

We shall concentrate in manganites: some spectacular phenomena and a large body of
experimental work makes them specially attractive to us. In the early 90’s Jin and col-
laborators [Jin 94] reported a change of 3 orders of magnitude in the electrical resistance
of a manganite thin film when a magnetic field was applied. This extraordinary magne-
toresistance, Colossal Magnetoresistance (CMR) as it has been named, and specially, its
potential for application in commercial electronic devices, greatly stimulated research
on manganites.

CMR is a remarkable phenomena, challenging our understanding, and much work is
today devoted to it. However, it is doubtful that manganites can compete with No-
bel awarded GMR multilayers [Binasch 89, Baibich 88] as base materials for magnetic
memories read heads. From the point of view of applications, the most interesting
property of manganites seems to be their half metallicity. It makes them good spin
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1.2 Manganites

(a) Phase diagram of layered Ruthenates (b) Phase diagram of Cuprates

Figure 1.2: Phase diagram of two families of compounds illustrating the wealthy phase
diagram and the sensitiveness to different parameters. (a) Phase diagram of
a family of layered Ruthenates, with chemical formula Ca2−xSrxRuO4. Dif-
ferent electronic phases, from insulating to superconducting, different mag-
netic orderings, and structural transitions appear. Notice that Sr dopant
is isovalent to Ca. The notation is standard, for details see [Nakatsuji 00]
and [Dagotto 05]. (b) Schematic phase diagram of Cuprates, paradigm of
correlated electron system. Holes are introduced in the system by chemical
doping. Taken from [Dagotto 05].
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Chapter 1 Introduction

Figure 1.3: Changes in the phase diagram of half doped manganites introduced by dis-
order arising from the random position of the A-sitting cations. CO/OO,
FM, and SG stand for the charge/orbital ordered, ferromagnetic, and spin-
glass states, respectively. TCO, TC , and TSG represent the corresponding
transition temperatures. Compounds with bigger ionic radius (right of hor-
izontal axis) have larger bandwidth. Divalent cation, Ba in all compounds,
and different lanthanoids (Ln) are placed in alternative planes in the ordered
compounds (black line and symbols) and randomly distributed in the disor-
dered compounds (red line and symbols; the region shaded in red). Taken
from [Akahoshi 03].
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1.3 Historic introduction

injectors for spintronics (see chapter 5 ), an appealing, promising, and fast developing
field [Bibes 07].

May it be for the possible applications or because the extraordinary basic interest of these
materials, a tremendous effort, involving hundreds of scientists, has been done in the last
15 years in manganites research. As a result, we have at our disposal precise experimental
information and a large amount of data. This represents a great opportunity to improve
our understanding of strongly correlated electron systems.

Before the important discovery of CMR, some works established the basic ideas and
features of manganites. We shall go over these main characteristics, in an approximate
order of chronological discovery, trying to give credit to the pioneer works.

1.3. Historic introduction

1.3.1. The 50’s. Cornerstones

The first experimental work

The work of Jonker and Van Santen [Jonker 50, van Santen 50] constitutes the corner-
stone of the field of manganites. In general, the two scientists were interested in the
properties of the transition metal oxides growing in the perovskite structure. Indeed,
posterior research has proven that this family of compounds is tremendously interesting
[Dagotto 02, Tokura 00]. The perovskite structure is illustrated in Fig. 1.1. It cor-
responds to compounds with chemical formula ABO3. The large cations occupy the
corners of the ideally cubic unit cell, (positions labeled A in Fig. 1.1), the small cations,
Manganese in the case of our interest, are in the center (B position) of the cube. Finally,
there is one anion, usually oxygen, in the center of each of the faces (O position), forming
a regular octahedra around the B position. In particular, Jonker and Van Santen were
able to grow different manganese oxides with this structure and called the whole family
manganites.

In their work, published back in 1950 [Jonker 50], they state: Various manganites of
the general formula La3+Mn3+02−

3 –Me2+Mn4+O2−
3 have been prepared in the form of

polycrystalline products. Perovskite structures were found, i.a. for all mixed crystals
LaMnO3–CaMnO3, for LaMnO3–SrMnO3 containing up to 70% SrMnO3, and for
LaMnO3–BaMnO3 containing less than 50% BaMnO3. The general formula is com-
monly expressed today as La1−xMexMnO3 and we will use this later notation through-
out the thesis. As remarked in Ref. [Jonker 50], one important aspect of the perovskite
structure of these compounds, is its ability to accommodate both divalent and trivalent
cations in the A position. Then, when x is not 1 or 0, charge neutrality implies that the
B sitting Manganese is in a mixed valence state, there must be Mn3+ and Mn4+ in the
system. As it was soon clear, a key point is how this charge density gets distributed in
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Chapter 1 Introduction

Figure 1.4: Phase diagram of the family LaCaMnO3 as published in [P.Schiffer 95]. The
different phases will be studied in detail along the thesis. FM: ferromagnetic
metal, FI ferromagnetic insulator, CO charge order, AF antiferromagnetic
insulator, CAF canted antiferromagnetic insulator. In this family, special
features are observed when hole doping x is an integer multiple of 1/8.

the material. From the quotation, it can be inferred that the authors considered that
proper proportions of manganese ions were in the 3+ or the 4+ states. This localized
or ionic picture has been traditionally adopted, but recent experimental and theoretical
work ([Dagotto 02], and references therein) shows that it is at odds with some aspects
of manganite physics, and it is more correct to think of 4-x electrons per Mn. We will
discuss how, of the 4-x electrons, three are strongly localized, but the rest only do get
localized in particular experimental situations or compositions.

Two articles collect their early results, in the first one [Jonker 50], Jonker and Van Santen
devoted different sections to the overview of the preparation method, considerations
about the structure, and to magnetic properties, while the electrical properties where
discussed in a second paper [van Santen 50]. The points they address are crucial to
understand the behavior of manganites:

- the oxygen content of the sample depends closely on the preparation details, in partic-
ular on the composition of the atmosphere during preparation. They correctly realized
that excess or defect of oxygen affected the average valency of the Manganese ions. This
has been a subject of intense work, and, probably, a source of non exactly reproducible
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1.3 Historic introduction

results until recent years.

- It was already known, as thus they explained it, that the perovskite structure is stable
only if the goldsmith tolerance factor, Γ, is close to unity. Γ is defined in terms of the
average ionic radius of the species occupying the different positions of the structure (Fig.
1.1) Γ=(rA+rO)/(rB+rO)

√
2 . For Γ ∼1 the ideal perovskite with a cubic unit cell is

obtained. As Γ differs from one, the MnO6 octahedra begin to tilt and the Mn-O-Mn
angle is no longer 180◦. The importance of the small departures from the ideal perovskite
structure could only be understood later, as explained below.

- Most importantly, they measured the Curie temperature, and the saturation magneti-
zation as a function of the composition. They synthesized compounds where lanthanum
was substituted by either Calcium, Barium or Strontium. For the approximate range
of 25%- 35% of nominal Mn4+ composition, the saturation magnetization could be cal-
culated assuming the contribution of all the spins of the manganese 3d electrons (and
none from the orbital angular momentum). In the second paper [van Santen 50] they
reported metallic like behavior and the highest conductivities in this so called optimal
doping.

- They also discussed magnetic interactions between different Manganese ions, Mn4+ and
Mn3+. It was clear from their experiments that some kind of ferromagnetic interaction
was induced when mixed valence manganese was present in the material. They also
inferred that an antiferromagnetic interaction existed between two Mn4+ ions, and they
reported that the interaction among Mn in a 3+ valence state should be small. Although
they were right about the sign of the interactions, the work presented in this thesis, as
in most articles in modern literature, indicates that the properties of manganites cannot
be understood only in terms of pair like interactions, they are much better described if
long range interactions, especially in the metallic regime, are considered.

In summary, Jonker and Van Santen established the main features of manganites and
gave important indications for the growth and characterization. They started to unveil
the rich phase diagram, but mainly, they demonstrated the close correlation between
electronic transport and magnetism, crucially suggesting a common origin for both.

Zener and the Double Exchange Mechanism

Also in the early 50’s, Zener published several theoretical papers about the magnetism
of transition metals and their oxides, two of them are specially relevant for the physics
of manganites. Ref. [Zener 51] appeared some months after the publication of the ex-
perimental work of Jonker and Van Santen, but, apparently, before Zener was aware of
it. In order to explain the lattice structure and magnetism of some of the transition
metals, Zener deduced three principles. The first one states that the electrons in the
incomplete d shell will have their spin correlated so that the total spin will be maximum.
This is equivalent to Hund’s rule in atomic physics, and for manganites it implies that
the Manganese ion is in a high spin state. That is, S= 3/2 for Mn4+ and S= 2 for Mn3+.
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Figure 1.5: Scheme showing the energy (E) of d levels in an isolated atom a) , in an
octahedral environment such as the one found in manganites b), and after a
uniaxial distortion c). The symmetry of the environment is reduced from a)
to c) as it is the degeneracy.

The second principle is that direct coupling between localized electrons in neighboring
magnetic ions is always antiferromagnetic. Applied to the case of manganites, it ex-
plains how, in the absence of coupling mediated by conduction electrons (for insulating
manganites), the ground state is antiferromagnetic. The last one refers to the role of
those conduction electrons, they are strongly coupled to the spin of localized electrons,
and the coupling tends to align all the spins ferromagnetically.

Zener applied these principles to manganites in a second paper [C.Zener 51]. Before we
review it, a remark should be made about Zener’s first principle. Here the well known
quenching of d orbital momentum [Van Vlek 32] takes place. The situation is described
in Fig. 1.5. For an isolated (gaseous) atom the d levels are degenerate due to the isotropic
environment, the application of a magnetic field would lift the degeneracy, leading to
Zeeman splitting and to an induced magnetic moment in which the orbital magnetic
moment adds up to the spin magnetic moment [Bransden 80]. When the manganese ions
are in an octahedral environment such as the one in the perovskite structure (see Fig.
1.1) the degeneracy of the d orbitals is removed even in the absence of a magnetic field.
It can be shown [Dagotto 02] that three orbitals, named t2g according to their symmetry
(see Fig. 1.7 ) reduce their energy, while other orbitals, the eg (Fig 1.7 ), point towards
the negative charged oxygen and therefore have a higher energy. The expectation value
of the z component of the orbital angular momentum for this wavefunctions is zero,
in accordance with the observation reported by Jonker and Van Santen that only the
spin magnetic moment contributes to the saturation magnetization. There is another
physical consequence of this splitting. When the splitting is big compared with the
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1.3 Historic introduction

dispersion of the band formed by the lower t2g orbitals, a band insulator will form for
a filling of three d electrons per Manganese. This is just the case of CaMnO3, one end
member of the family of manganites discussed by Jonker and Van Santen. In fact, in
manganites the three electrons in the t2g orbitals form a localized 3/2 spin which is
often called ’core spin’ [Dagotto 02]. Although the detailed role of orbital degeneracy
in d orbital systems was discussed later by Kanamori [J.Kanamori 60], we explain here
these arguments which complement the analysis of Zener (further analysis of the work
of Kanamori is given below, in section 1.3.2).

Zener realized the fact that his ideas, presented in [Zener 51], could explain the main
aspects of manganites. That is the subject a second article, published also in 1951
[C.Zener 51]. He also considered the microscopic mechanism that made interactions in
manganites similar to transition metals, despite the fact that magnetic ions are around
40% further apart in manganites, and an oxygen ion is between each two. In Zener’s
picture, an electron located in one Manganese ion has its spin parallel to the other d
electrons in that ion (first principle). Since hopping preserves spin, when the spins of
the Mn neighboring ions are parallel hopping process of one electron takes place between
low energy configurations, and this favors ferromagnetic configurations. Therefore de-
localizing of electrons is favored by a ferromagnetic order, and this mechanism explains
the ferromagnetic coupling in manganites.

The essential ingredients of the mechanism that leads to ferromagnetic coupling are
Hund’s rule, coupling of spins of localized and mobile electrons, and spin preserving
process between incomplete shells. How the electron transfer or hopping actually takes
place is not important. Anyhow, Zener believed that the main contribution came from
a process in which one electron hopped from the Oxygen to one Manganese, and simul-
taneously another electron hoped from the other Manganese to the hole in the Oxygen.
This is why the name double exchange was applied to this mechanism, but this way
in which strong coupling between carriers and localized spin induces ferromagnetism is
more general.

Although Zener did not explore quantitatively his ideas, his physical intuition and his
ability to read the important experimental results are quite remarkable. Posterior
research has benefitted from the essential clues he provided.

Anderson and Hasewaga formalized the ideas of Zener and offered the community a
quantitative approach to the physics of double exchange. Their work appeared in
1955 [Anderson 55]. They considered the two site problem both in semiclassical and
quantum approximations. The semiclassical approach reduces to consider the transfer
of one electron between two ions of large spin. In this way the quantization of the core
spin can be ignored and a definite angle can be defined between the directions of the
core spins of the two ions. The electron can be in two states in each ion, say either
with its spin parallel or antiparallel to the core spin. As the hopping preserves spin, if
one chooses a basis of localized orbitals and a common axis for the spins, the hopping
matrix is diagonal in the spin index. However, in the limit of very large Hund’s cou-
pling, the only relevant orbitals are the ones for which the electron spin is parallel to
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Figure 1.6: Scheme of the Double exchange model as seen by Anderson and Hasegawa
[Anderson 55]. When an eg electron hops form the manganese on the left
side to the one on the right side, it retains the spin state.

the local core spin. It is convenient then to rotate the final states so that the quanti-
zation axis is defined by the core spin in each ion. As some of the possible final states
are not relevant, the effective hopping is reduced. In the general case it can be shown
[Müller-Hartmann 96] that the hopping amplitude t, becomes

t = t0 cos(
θi

2
) cos(

θj

2
) + sin(

θi

2
) sin(

θj

2
)e−i(φi−φj) (1.1)

If the spins of the two ions are parallel, θi = θj , there is no need to rotate the quantization
axis and the hopping is maximum and equal to its value in the absence of Hund’s
coupling, t0, while if they are antiparallel, it is zero. This approximation, involving
infinite Hund’s coupling and classical core spins, (i.e. Eq 1.1) will be used along this
thesis.

Wollan and Koehler

Another important step in the understanding of manganites was taken in 1955, when
Wollan and Koehler published a neutron diffraction study of the La, Ca manganite
series. They encountered an unexpectedly rich phase diagram. Some of the phases
already discussed in that paper, and confirmed by posterior works, are important both for
manganites and for the work presented in this thesis, and are discussed in the appendix.
Let us remark that although the Manganese sites (which are the magnetic active sites
in manganites) form a simple cubic lattice, the different phases observed by Wollan and
Koehler break this symmetry in several different ways.

The competition between these phases is of great importance, and is probably responsible
for the extremely large responses (Colossal) of manganites to moderate fields. Wollan
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and Koehler also found signatures of charge order, other important issue in manganites,
subject of intense debate and much work [Attfield 06].

1.3.2. The 60’s and de Gennes

The variety of phases observed by Wollan and Koehler arose new questions that the
ideas of Zener could not explain by themselves. De Gennes was the first one to con-
sider theoretically the relative thermodynamic stability of different magnetic orders
[de Gennes 60]. The work of de Gennes is cited most of the times relating to his pre-
diction that canted phases should appear when doping the antiferromagnetic phase (in
particular the A phase in Wollan-Koehler notation) with holes. But even more relevant
for this work is the method of calculation. He used a mean field like virtual crystal
approximation, in which, for each ordering, the hopping is assumed to be uniform and
depends only on the magnetization of the sublattices corresponding to the particular
ordering considered. The virtual crystal approximation is described in detail in chapter
3.

De Gennes also made an enlightening discussion about the different approximations
made in the general problem of manganites. We shall do the same and give the modern
view about the validity of those different approximations discussed in [de Gennes 60].

Degeneracy of the d orbitals

The fivefold degeneracy of the d band was neglected by de Gennes and earlier theoreti-
cal works [C.Zener 51, Anderson 55]. De Gennes pointed out that the consideration of
orbital degeneracy would only complicate matters by introducing more unknown param-
eters. Certainly consideration of several d orbitals increases the number of parameters,
makes the problem conceptually more complex and computational more difficult to ad-
dress. When modern computers allowed numerical study of the double exchange model,
a one orbital model was used [Vergés 02, Calderón 99b, Alonso 01c, Dagotto 02] to start
with. We shall not give a complete account of the theoretical work on one or two orbitals
(it can be found on [Dagotto 02]).

Let us remark, however, that the orbital degeneracy is of crucial importance to reproduce
some phases already observed by Wollan and Koehler. In particular, the A phase present
in undoped manganites such as LaMnO3 (see chapter 3, and [Kimura 03] ), or the CE
phase [van den Brink 99a, L.Brey 05, Aliaga 03] appearing for compositions near half-
doping. The fact that the orbitals involved present d symmetry and the anisotropy
of the hopping between them stabilizes these phases. Therefore, we have considered
orbital degeneracy throughout the thesis. It is also true that the one orbital model
correctly reproducers some of the main features of the ferromagnetic metallic state,
even the insulator metal transition found in LaCaMnO3 at the optimal doping and
other compounds [Vergés 02].
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Quasi classical approximation.

The quasi classical approximation assumes two approximations discussed by de Gennes.
The intratomic exchange is larger than the bandwidth, and the ionic spins are consid-
ered classical vectors. De Gennes describes them as good starting approximations in all
cases. These approximations give the double exchange factor in the hopping, Eq.1.1.
We agree with de Gennes and these approximations have been taken in all the work
reported in this thesis. From the arguments presented in the last section, it appears
that considering the t2g electrons as a localized core spin is a sensible simplification.
This would reduce the problem to the eg orbitals coupled with a quantum 3/2 spin.
However, little work has been done about the relevance of the quantum nature of the
core spins[Müller-Hartmann 96, Kubo 72] for the phenomenology of manganites, and
none to our knowledge includes the degrees of freedom within the t2g subspace. As sug-
gested by Millis [Millis 00] it would be interesting at least as a formal justification of the
approximations commonly made.

Electron-Lattice coupling.

The coupling of electrons and lattice is of great importance in manganites, and much
work has been devoted to it since the 60’s. De Gennes remarked that this coupling
would alter the effective masses and mobility of the carriers, but we know today that
the effects are much more important. Two main types of distortions encountered in
manganites are discussed next: (i) Distortions of the unit cell arising from changes in
the network of the MnO6 octahedra, and (ii) symmetric distortions of the octahedra,
Jahn-Teller distortions. More complicated distortions do occur in particular cases, such
as the ferroelectricity in some undoped manganites[Goto 04], but we will not discuss
them here nor have they been studied in the rest of the thesis.

We discuss first type the conceptually simpler distortions of type (i). Often distortions of
the unit cell can be well described as changes in the arrangement of the MnO6 octahedra.
The perovskite unit cell is ideally cubic, but this only happens if the tolerance factor
is exactly one, that is, when the ions present in the material have perfectly matching
sizes. When a bond is compressed, either by ionic size mismatch or by external pressure,
it reacts by buckling. The Mn-O-Mn angle is then less than 180 degrees, and there is
clear experimental evidence (see for instance [Fontcuberta 96]) that this strongly affects
the the bandwidth of the eg band, because it reduces the eg hopping. The reduction of
the bandwidth enhances the effects of other interactions competing with kinetic energy,
mainly antiferromagnetic interactions and a second kind of electron phonon coupling,
discussed next.

Jahn Teller distortions (type (ii)) are very important in manganites and have been the
subject of numerous works. Probably the most influential, and the one that established
the basis for the development of the subject, is the work of Kanamori [J.Kanamori 60].
Jahn Teller theorem [Jahn 37] states that a system having a degenerate ground state
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will spontaneously distort unless this degeneracy due to electronic spin. The distortion
lowers the symmetry and removes degeneracy so that, occupying only the lowest energy
state, a new ground state with lower energy is reached. Fig. 1.5 shows that 4 electrons
occupying the d levels of a Manganese ion in a octahedral environment corresponds to
a degenerate ground state. The problem becomes more interesting in manganites, since
neighboring octahedra share corners, distortions are coupled and Jahn Teller effect is
cooperative. Kanamori studied cooperative distortions arising from Jahn-Teller theorem
in different (undoped) compounds, such as LaMnO3.

Cooperative Jahn Teller effect is best described with the aid of formalism shared from
other phenomena. On one side, normal modes of vibration of a octahedra constitute an
appropriate basis in which an arbitrary distortion can be expressed. Symmetry relations
can be readily identified in this basis. On the other side, eg orbitals constitute a two level
system, any Hamiltonian within this subspace can be expressed in terms of the Pauli
matrices allowing for the application of spin language to this pseudospin subspace.

eg orbitals 1.7 are symmetric with respect to inversion of the coordinates or to a mirror
relection with respect the planes containing any two axis. Therefore any distortion of
the octahedra coupling linearly with them will have the same symmetry. The only two
normal modes with this characteristic are the Q2 and Q3 modes described in Fig. 1.7.
More details can be found in [Dagotto 02]. Kanamori defined the pseudospin states so
that | ↑> represents one electron in |3z2 − r2 > and | ↓> represents one electron in
|x2 − y2 >. As usual, the combination of the power of the coordinates refers to the
angular dependence of the orbitals. Opposing the linear coupling there is a quadratic
elastic energy cost for the distortions. Kanamori expressed the Hamiltonian as:

He−latt =
∑

−g/
√
C (σz Q3 + σxQ2) + C/2

(
Q2

2 +Q2
3

)
. (1.2)

Where g is the coupling constant and C and elastic constant. The same Hamiltonian is
used along this thesis, although the distortions, with a convenient normalization of the
distortions and the couplings. If some parameter t (normally the hopping) is used as
energy unit, Eq. 1.2 becomes:

He−latt

t
=
∑

−λ (σz Q3 + σxQ2) +
(
Q2

2 +Q2
3

)
. (1.3)

Although Jahn Teller effects were already known, Kanamori was the first one to consider
the cooperativeness of the distortions. In particular, he studied the most significant cases
for undoped materials, pseudo-ferromagnetic and pseudo-antiferromagnetic ordered dis-
tortions. For doped manganites, the situation is complex, and can be addressed by
applying a Hamiltonian like 1.3 to finite size cluster with periodic boundary conditions
2, and oxygen positions as independent variables.

The breathing mode,Q0 is also considered in this thesis. It does not lift the degeneracy
of the Eg orbitals, but it obviously couples to the charge in each ion (ρ), and it can be
important for undoped manganites. Coupling to breathing mode can also be understood
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Figure 1.7: a) and b), scheme of the real d orbitals, 3z2 − r2 (a) and x2 − y2 (b). d)
regular octahedron. c) and e): The octahedron after a Qz > 0 distortion (c)
and a Qx > 0 distortion. The eg orbitals (a) and b)) are differently affected
by the different distortions of the regular octahedra.

within Jahn Teller theorem, where the degenerate configurations are obtained by placing
a hole in one site or the other. Along this thesis we shall use the following approximation
(with the notation of Eq.1.3:

H =
∑

λ(ρQ0) + βQ2
0. (1.4)

β measures the relative strength of the breathing and Jahn Teller distortions.

Coulomb Interactions

Coulomb interactions are known to be important in materials with narrow bands. Hund’s
rule in fact is a consequence of the importance of Coulomb repulsion, it accounts for
the strong Coulomb repulsion of electrons in the same orbital. De Gennes justified
the ignorance of other Coulombic terms because he was interested in the few carriers
limit. Within the metallic state, it can be expected that Coulomb interactions will only
renormalize the parameters of the quasi particles, but even this simple renormalization
might affect the relative stability of different phases.
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1.4 CMR and disorder

Interorbital interactions are significant. The inclusion of interorbital repulsion at a mean
field level, stabilizes the experimentally observed A phase against the Ferromagnetic
phase in undoped manganites.

Long range Coulomb interactions are important for phase separation. It is known that
standard models in which it is not included lead to phase separation between phases
with different density [van den Brink 99b]. A more detailed discussion about the role of
Coulomb interactions in phase separation tendencies can be found in Ref. [Dagotto 02]

Both on site and long range Coulomb interaction have been taken into account in chapter
5. There, it is discussed how Coulomb opposes charge segregation.

Interactions with the counter-ions

De Gennes stated that ignoring the interactions between the A sitting cations and elec-
trons is a drastic simplification. This issue is closely related to the subject of lattice
distortions, since the size of the cations determines the tolerance factor. Important
experimental work on this subject has been done by Rodriguez Martinez and Attfield.
They showed that the charge of the counter-ions is not important, contrary to the opin-
ion of the Gennes and interestingly suggesting some kind of screening. They were also
able to clarify the important role of the variance of the size of the B cations quantifying
it. In chapter 4 the subject of the influence of disorder arising from the B ions size and
distribution is addresses and more details are given there.

1.4. CMR and disorder

Magnetoresistance is the change in resistance of a material when it is in a magnetic field
H. We will use the definition:

MR(%) = 100 × ρ(H) − ρ(0)

ρ(0)
(1.5)

Where ρ stands for resistivity. For manganites ρ is always smaller for applied magnetic
fields, so that MR is negative and less that 100%. An alternative definition, often called
inflationary magnetoresistance, normalizes the difference dividing by the resistivity un-
der magnetic field. In this way the value is, in principle, unbound and it can reach
104,105 [Jin 94]. This high values lead to the coining of the term colossal magnetoresis-
tance, CMR (less spectacular but significant values of magnetoresistance in manganites
had been measured in [Volger 54, Kusters 89, von Helmolt 93]. It also rose hopes, in the
early 90’s, of possible technological applications, that have not been realized so far. In
this section we discuss the relation between CMR and disorder.

The importance of disorder in manganites has been emphasized by many different
researchers [Dagotto 02, J.M.D.Coey 99, Akahoshi 03, Damay 97, Li 97, Motome 03,
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Millis 03] . As the close balance of different (often coupled) degrees of freedom is believed
to be responsible for the rich physics and phenomenology of manganites, disorder might
play a crucial role. How exactly disorder affects this competition and CMR is an open
question, both because the materials appear to be extremely sensitive to disorder and
because the sources of disorder in the materials are difficult to identify and quantify.

Perhaps the most extended view is that exposed by Dagotto [Dagotto 02]. In the vicin-
ity of a first order transition, disorder favors the coexistence of the two phases, thus
producing phase separation (or phase coexistence, a names preferred by others). There
is a strong experimental evidence for textured phases in manganites, mainly obtained by
surfaces probes [Israel 07].

Colossal Magneto Resistance, as other huge responses to external perturbations in man-
ganites, is a direct result of this coexistence in Dagotto’s view. The application of a
magnetic field favors the metallic ferromagnetic phase over the insulator antiferromag-
netic one. CMR is then caused by the percolation of the metallic ferromagnetic droplets.
Resistor network calculations [Mayr 01] give some insights on the mechanism behind this
view. However, there is no direct evidence (experimental or theoretical) confirming this
view.

In fact, a most recent work on thin films of manganites [Moshnyaga 06] apparently shows
that phase separation is not the only mechanism behind C.M.R. The authors observed it
both in a sample showing phase separation in other where phase separation was absent.
If this results are confirmed similar conclusion might apply to other colossal effects in
manganites.

An alternative view is suggested by Millis [Millis 03]. He refers to an experimental work
where disorder is induced in a controlled manner by substituting Manganese ions by
Aluminum [Sawaki 00b]. In that paper, after small threshold in disorder is reached, the
properties of the materials change in an abrupt manner. Millis’ interpretation is that the
ubiquitous discussion about the influence of disorder in Manganese perovskites, come
from their extreme sensitiveness to external perturbation. So that colossal effects are
not caused by phase separation, but both of them are two of these huge responses to
perturbations. Israel, Calderon and Mathur point in a similar direction [Israel 07]: The
role of phase separation in CMR is circumstantial, and not casual

Although C.M.R. is probably the most spectacular physical phenomenom in manganites,
and it is responsible for the great interest they raised. It is surely not the only interesting
aspect of manganite physics. They display many other effects some of them also related
to, or sensitive to, disorder. Among them there are two beautiful examples we would
like to remark.

Going back to the picture of two close competing phases, a feature which is well stablish,
disorder might affect them differently. If it disturbs more the phase with lower free
energy, for instance the more symmetric one, the energy of this symmetric phase in the
presence of disorder might now be higher than the less symmetric one thus producing a
phase transition. The disorder induced phase transition was studied by [Motome 03].
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1.5 Sketch of Contents

Other remarkable phenomenom related to disorder, and which might be responsible from
some of the exotic properties of manganites, is the Griffiths phase. It was studied by
Griffiths, many years ago [Griffiths 69] in the context of the Ising model. He considered
the role of the weaker interactions produced by disorder in a physical system. These
effect might be relevant for magnetic interactions in manganites. For a strong enough
disorder and at some finite temperature (lower than T ∗, the critical temperature of
the clean system). Some parts of the system might be effectively decoupled from the
rest. In this scenario, the magnetization of the isolated clusters would point in random
directions, and there would be no net magnetization in the system. Therefore a first
aspect of the Griffiths phase is the lowering of the critical temperature Tc by disorder. A
second characteristic is the non-analytical behavior of the susceptibility above Tc. At a
temperature larger that the critical temperature of the disordered system Tc and smaller
that the clean system critical temperature T ∗, there are independent clusters internally
joined by the strong bounds. The magnetizations of the different clusters would order
under an arbitrarily small field. Although Griffiths results were derived for the Ising
model, some experiments show that they might be relevant for the far more complex
situation of manganites [Salamon 02].

1.5. Sketch of Contents

In this thesis, we have studied different and complementary aspects of manganites
physics. Competition of different interaction is responsible for most of the spectacu-
lar and interesting effects found in manganites. One of the contending interactions is
double exchange, it explains the coupling between magnetism and transport and the big
portion of the phase diagram that ferromagnetic metallic phases occupy. In describing
the kinetic energy, the Manganese ions are considered as the electronic and magnetic
active sites, and their d levels the relevant orbitals. Although some hybridization with
oxygen probably takes place, the success of this model suggest that, in a tight biding
approach, it can be described by a proper renormalization of the hopping parameter. A
tight binding approach is well suited due to the limited spatial extent of the 3d orbitals .
Orbital degeneracy and the precise symmetry of the eg orbitals is important. Localizing
tendencies oppose kinetic energy. These are favored by the electron phonon coupling
and superexchange interactions, which also promotes antiferromagnetic correlations.

Chapter 2 exposes the results about the magnetic and electronic phase diagrams of
the model, and several dopings are studied. Emphasis is done in the role of different
localizing effects: Coupling of the octahedra distortions with the electronic degree of
freedom, and superexchange interactions between the localized electrons. Montecarlo
algorithm allows us to study the behavior at finite temperatures. A detailed study of
the conductivity for the different range of parameters is performed.

Undoped manganites are the subject of chapter 3. The competition between short range
antiferromagnetic superexchange interaction and the long range ferromagnetic double
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exchange interaction gives rise to an interesting phase diagram. We recover the essential
features of the experimental results, interestingly, incommensurate magnetic phases and
temperature induced commensurate-incommensurate phase transitions.

The A site in the perovskite structure is often occupied by two or more chemical species.
Most of the times an average virtual ion with average charge and size is included in the
models. Experiments suggest that, although this is a good approximation regarding the
charge is not in respect to size. The effect that size disorder in the cations surrounding
manganese ions has on the magnetic properties of manganites is the subject of chapter
4. We show how the Curie temperature and the order of the transition are strongly
affected by disorder.

The results of this thesis, and many others, show that certain maturity in the under-
standing of bulk manganites and some other transition metal oxides, has been achieved.
This, but mainly the extraordinary precise control of the growth of thin films and het-
erostructures has encouraged the rapid development of the field of heterostructures of
transition metal oxides. Several groups in the world are able today to growth multilay-
ers where the different materials are a few unit cells thick. In chapter 5 we study these
heterostructures. Since some manganites are half metals and have been used in spin-
tronics, we study the magnetic and transport properties of an all-manganite spin valve.
It consists of a thin antiferromagnetic and insulating manganite sandwiched between
two ferromagnetic and metallic manganite electrodes.

20



Chapter 2

Phase Transitions Due to the
Formation of Polarons

2.1. Introduction

Metal-insulator transitions (MIT) have been observed in different materials [Imada 98] as
a function of several control parameters. Some aspects make the case of the temperature
induced trasition in manganites particularly interesting. The insulating phase survives
for a wide range of band fillings, while tipically Mott-Hubbard and Pierls insulators
are quite sensitive to this parameter. Futhermore, the high temperature phase is the
insulating phase. Electrons are localized in these conditions, and distort the lattice. A
naive guess would predict that this is the less symmetric (and the low temperature)
phase. Anomalous thermal expantion [Teresa 97] around the MIT remmark the role of
the lattice. The magnetic degree of freedom is also important, around the trasition, the
metallic phase is ferromagnetic, and the insulating behavior is found in the paramagnetic
phase. A prominent peak in the resitivity as a function of temperature is also found near
the Curie temperature, TC . The detailed study of this phase transition, considering the
magnetic and lattice degrees of freedom is the subject of this chapter.

Manganites display a great variety of physical properties as function of some relevant
variables: temperature, lattice distortions, magnetic field, and band filling. In the gen-
eral formula of manganites, Re1−xDxMnO3, n=1-x is the number of electrons in the
twofold eg band. Attempts to understand the physical behaviour of manganites have
traditionally taken as a reference the undoped compounds ReMnO3. For this reson, x,
which is the number of holes with respect to the half-filled eg band, and thus is normally
used to characterize band filling. Either if we think in terms of electrons or holes, doping
is a crucial parameter determining Manganites properties.

Optimal doping, x≈0.35 is particularly interesting. As the temperature is raised, the
materials undergo a ferromagnetic-paramagnetic transition. The Curie temperature,
TC(x), is maximum for aproximately this doping, although normally lower that room
temperature. In La0.7Ca0.3MnO3, TC is around 230 K.
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Chapter 2 Phase Transitions Due to the Formation of Polarons

Figure 2.1: Resistivity as a function of temperature for different compunds: a)
La0.7Sr0.3MnO3, taken from [A.Urushibara 95] b) La0.7Ca0.3MnO3, from
[P.Schiffer 95] and c) Pr0.7Ca0.3MnO3, from [Tomioka 96]. For manganites
with the same ration of divalent to trivalent cations, the ionic sizes detrmine
the bandwidth and the magnetic and electronic properties.

22



2.1 Introduction

The magnetic transition is accompanied by a metal to insulator transition (Fig. 2.1
a)). That is, below TC , resistivity is relatively low and increases with temperature, and
above it is relatively high and decreases with temperature. The range of x where we
find the metal-insulator transition depends on the nature of the cations. It is narrower
in La1−xSrxMnO3 (which for x=0.3 is metallic at both sides of the transition, seee Fig.
2.1 b)).A few compounds do not display a metallic phase, not even at optimal doping
where the resisitivity is typically lower (Fig. 2.1 c)).

As pointed out by Millis [Millis 98] there is a close relation between the metal-insulator
transition and the famous CMR, the spectacular change in resistivity with an applied
magnetic field. Since ferromagnetic-paramagnetic transitions are very sensitive to an
applied field is natural to expect that the conductivity depends strongly on the mag-
netic field, specially around TC , where susceptibility is larger. The work presented here
supports the standard view [Dagotto 02, Millis 96] that the behavior of the conductivity
is determined by the relation of kinetic energy, (sometimes measured as band width)
and electron phonon coupling. In metallic materials kinetic energy dominates, in insu-
lating materials the most important energy scale is the electron phonon coupling, and
in materials with a metal-insulator transition, the two interactions have comparable
strength conferring a crucial role to other parameters like temperature. However, we
shall also show that temperature alone is not enough to produce a sharp metal-insulator
transition.

The interactions needed to reproduce a metal insulator transition is a subject of con-
troversy. It is well-known that spin disorder alone is not strong enough to explain the
temperature induced insulating phases at arbitrary carrier densities [Calderón 99b]. In
a recent work [Vergés 02], it was proved that the coupling of electrons to the lattice
distortion was enough to localize particles on individual Mn positions giving rise to an
insulating phase. Just because the double exchange mechanism needs hopping of the
electrons through the lattice, localization also implies the depression of ferromagnetism.
This mechanism nicely works below a ten percent of band filling but fails for higher
carrier densities because direct hopping between polarons quickly broadens the band of
localized electrons that become easily extended and give rise again to a (paramagnetic)
metallic behavior.

The model is here extended to include the Mn d-orbital degeneracy which also implies
the coupling to more detailed lattice distortions (just the breathing mode was consid-
ered in the previous study of spherical electron orbitals[Vergés 02]). Our aim was that
a broader band structure will allow a higher number of localized carriers. Moreover,
being the lattice distortion possibilities much richer, it was expected that the localiza-
tion mechanism would work better than before. As an additional ingredient favoring
the insulating phase a direct superexchange term has also been considered. All the cal-
culations have been carried out in three dimensions. The metal insulator transition is
a consequence of the close competition between localization effects (here found to arise
from electron phonon interaction) and the kinetic energy tending to delocalize the car-
riers. Since this last effect depends strongly on dimensionality, we choose to study the
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Chapter 2 Phase Transitions Due to the Formation of Polarons

realistic three dimensional case.

We have succeeded in extending these ideas to the two orbitals model that is more
realistic and describes better the phenomenology of manganites. Our results indicate
that with these ingredients a temperature driven metal-insulator transition is found in
the few carriers limit. This transition does show some features found in the experiments
such as the accompanying magnetic transition and the increase of lattice distortions
at the critical temperature [Teresa 97]. However, this transition does not survive the
inclusion of superexchange interaction (needed to explain the antiferromagnetic phases
of undoped manganites [Salafranca 06a]) and is not found at the doping range relevant
for the experiments. Actually, neither the two-band extension nor direct superexchange
allow to extend the range of dopings for which temperature induced localization, and
consequently insulating behavior, is expected. Although the relevant phases are present
for different ranges of parameters, a clear metal-insulator transition is not found. Our
results add arguments to the extended idea that other effects such as electron-electron
interaction or disorder [S.Kumar 03, Sen 06a] should be included to fully understand the
colossal magnetoresistance effect of manganites.

2.2. Theoretical background

2.2.1. Two-band model

The standard double-exchange two-orbital model for manganites has been thoroughly
used in our study. Since the model has been widely described in previous investigations[J.Kanamori
Dagotto 02], just a brief summary will be given here. The two d-orbitals of the model
come from the eg states that are active at the Mn ions in Mn-oxides. This simplified
band structure model has been extensively discussed before[Dagotto 02, Dagotto 05].
For just half electron per site of a square or cubic lattice, that is, for an electronic den-
sity of n=0.5 a CE state of manganites is experimentally known to be stable. Here, we
will work at dopings away from commensurate values, that is, away from particular spin
and orbital textures producing the insulator behavior. More specifically, we will try to
find an upper limit for the formation of a polaronic incommensurate phase.

In more detail, the Hamiltonian for the two-orbital model is

Ĥ =
∑

γ,γ′,i,α

tαγγ′DE(Si,Si+α)ĉ†i,γ ĉi+α,γ′

+
1

2

∑

i

(βQ2
1i +Q2

2i +Q2
3i)

+ λ
∑

i

(Q1iρ̂i +Q2iτ̂xi +Q3iτ̂zi)
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+ JAF

∑

i,α

Si · Si+α, (2.1)

being ĉ†i,γ the creation operators of electrons in 3d Mn states |a〉 = 3dx2−y2(γ = 1) and
|b〉 = 3d3z2−r2(γ = 2) of site i,

DE(Si,Sj) =

cos(
θi

2
) cos(

θj

2
) + sin(

θi

2
) sin(

θj

2
)e−i(φi−φj)

where angles (θi, φi) describe the classical spin Si of t2g electrons of site i. The parameters
tαγγ′ are the hopping amplitudes between the orbitals γ and γ′ in the direction α. Since d-
d hopping is mediated by the oxygen p-orbitals lying midway, symmetry considerations
dictate the following relations: txaa = −

√
3txab = −

√
3txba = 3txbb = 1, tyaa =

√
3tyab =√

3tyba = 3tybb = 1, tzaa = tzab = tzba = 0, and tzbb = 4/3.

The second term of the Hamiltonian measures the phononic stiffness of the relevant
octahedra deformations. Normal modes of vibration Q1i, Q2i and Q3i of the oxygen
atoms around any manganese ion can be expressed in terms of the oxygen coordinates
ui,α as:

Q1i =
1√
3
[(ui,z − ui−z,z) + (ui,x − ui−x,x)

+ (ui,y − ui−y,y)],

Q2i =
1√
2
(ui,x − ui−x,x),

Q3i =
2√
6
(ui,z − ui−z,z) −

1√
6
(ui,x − ui−x,x)

− 1√
6
(ui,y − ui−y,y).

We will take β = 2 in order to reduce local volume variations as discussed in previous
literature[Aliaga 03].

The third term of the Hamiltonian gives the precise form of the coupling between man-
ganese d-electrons and Jahn-Teller distortions of the MnO6 octahedra. It is also dictated
by symmetry considerations: τ̂xi= ĉ†iaĉib+ĉ

†
ibĉia, τ̂zi= ĉ†iaĉia-ĉ

†
ibĉib, and ρ̂i= ĉ†iaĉia+ĉ

†
ibĉib.

The constant λ measures the strength of the electron-phonon coupling[Dagotto 02]. Fi-
nally, a superexchange term with coupling JAF is also included.

The model Hamiltonian (2.1) used in this paper has been previously studied for some
particular dopings in manganites, although most of the times the analysis has been
restricted to two-dimensional systems assuming that the extension to three-dimensional
cases would not change the main trends observed in 2D. On the contrary, we have
preferred a consistent 3D analysis is spite of the great computational effort in order to
accurately describe the kinetic energy of the carriers and preserve the cubic symmetry
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Chapter 2 Phase Transitions Due to the Formation of Polarons

2.2.2. Monte Carlo simulation

The behavior of a material described by Hamiltonian (2.1) as a function of temperature
has been studied by means of a standard Monte Carlo simulation. Both core spins {Si}
and phonon degrees of freedom {Qαi} are treated as static, that is, no quantum dynamics
for these variables is allowed. Then, for each core spin and phonon configuration, the
quantum energy of the electrons is obtained diagonalizing a finite cluster described by
model (2.1) and occupying electronic levels according to the doping of the material.
Fermi distribution is assumed since the Fermi temperature TF is much greater than any
other energy scale in the system. Configurations are accepted or rejected according to
the value of exp(∆E/(kBT )) being ∆E the energy change of the total energy (electronic
plus deformation plus magnetic). Classical degrees of freedom are successively modified
in a way that allows acceptance of about half the moves. Experience shows that this is
the most efficient way of getting approximate thermodynamic averages using the Monte
Carlo algorithm. Typically, 500 steps are needed to allow the system equilibration.
About 5000 additional steps are necessary to get the averages and fluctuations of the
physical magnitudes. The whole procedure should be repeated for each value of λ, JAF,
and T before having some idea about the phase diagram of the material. All of the
simulations described in this paper have been carried for a N × N × N cluster with
periodic boundary conditions. The rapid increase of the diagonalization time (which
grows as N9) has limited our numerical efforts to N = 4, that is, 128 electronic states in
the simulated sample. At this point, it is interesting to mention an alternative numerical
approach based in the study of the density of states that is not so direct as diagonalization
to get the electronic energy but allows parallel calculation and, therefore, smaller wall
times for the whole calculation[Furukawa 01, Alvarez 05, Sen 06b].

The analysis of the manganite phases that will be presented in this work relies on the
values of several thermal averages that have been obtained by Monte Carlo simulation.
They are: the overall magnetization M of the core spins, the mean gap of the electronic
spectrum, ∆, the Fermi energy EF of the system (remember that we work at a fixed
number of carriers which implies that the Fermi energy at one point of the Monte Carlo
simulation defined as the average of the last occupied state and the first unoccupied level
is a fluctuating physical magnitude), the variance of the phonon normal modes σQ2, the
spin structure factor and the conductivity along different directions Gα.

2.2.3. Conductance calculation

Conductance has been calculated in previous works after attaching metallic leads to
opposite faces of the simulated cube. Faces can be selected in three ways. This procedure
has some inconvenients that have been improved in our work. Firstly, one has to carefully
choice the metal in order to have good overlap between the sample levels and the metal
bands. This becomes harder as the sample model becomes more involved as in the
present case (more than one band, lattice deformations shifting the manganite levels,
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2.3 Electron-Phonon Double Exchange results

etc.). Secondly, one calculates conductance through a small connected sample whereas
experiment measures an intrinsic property of the material. Both deficiencies can be
avoided if the cube is periodically repeated in any of the x, y or z directions. In this
way the use of the standard Kubo formula for transport gives the precise number of
bands at the studied energy and 0 if the energy lies at a gap. Notice that interactions
among atoms in opposite cell faces (periodic boundary conditions are used within the
Monte Carlo procedure) give rise to the inter-cell connections. The Green function of the
quasi one-dimensional system has been obtained by a decimation technique [Guinea 00]
whereas Kubo calculation follows a standard way [Vergés 99a]. In this way, we sensibly
improve the calculation of an intrinsic value of the conductivity minimizing finite size
effects.

2.3. Electron-Phonon Double Exchange results

2.3.1. Few carriers limit

As shown in a previous work [Vergés 02] for a one orbital model, electron-phonon cou-
pling can produce a metal to insulator transition (MIT), at least in the few carriers limit.
Present work confirms that this mechanism also works when both the degeneracy of the
eg orbitals and their spatial symmetry are taken into account.

The results obtained are summarized in Fig. 2.2. Three regimes have been found that
appear for different values of the relevant model parameters (a similar behavior was
shown in Ref.([Vergés 02]). For small λ (≤ 2.0) the system is metallic for the whole
range of T , displaying therefore a Ferromagnetic-metal (FM) to Paramagnetic-metal
transition. A change in the magnitude of the slope of the G − T curve around the
critical temperature TC is observed (although the sign remains negative), as it is in the
experiments for the so called wide band materials [Dagotto 02]. It is remarkable that the
crystal is undistorted at T = 0 and, nevertheless, that some thermal active distortions
take place afterwards. On the contrary, for high enough values of λ (≥ 2.7), we find
a Ferromagnetic Insulator (FI) to Paramagnetic Insulator (PI) transition. The slope
of G versus T is always positive while the values of G are much lower than the Mott
limit. There is also an important reduction of the conductivity at the lowest studied
temperature that we will ignore since quantum effects of phonons invalidate in any case
the classical approximation near zero temperature. A strongly distorted crystal appears
in this high coupling regime even at low temperatures. The more interesting region
appears for e-ph coupling values between above commented limit values. Here the FM-
PI transition is recovered. The steep change both in M and G suggest a first order
transition. The elastic energy (Fig. 2.2c) shows clearly how the lattice distortion is
responsible for the localization of the carriers, so that this results support the idea of an
insulator state in manganites formed by polarons (polaron being an electron self-trapped
in lattice distortion). The elastic energy also presents a jump from the low-λ to high-λ
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Figure 2.2: Results of Monte Carlo simulations in a 4× 4× 4 cluster for the two orbital
double exchange model (2.1). Magnetization M (a), conductance G (b), and
elastic energy Eelastic (c) as a function of temperature are shown. Results are
given for several values of the e-ph coupling strength λ in order to show the
change of the physical magnitudes when a phase change takes place.
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2.3 Electron-Phonon Double Exchange results

like behavior. As in [Vergés 02], there is a finite range of λ, for which the change in the
electronic properties is accompanied by a magnetic transition.

2.3.2. Higher dopings

The behavior of the system is different for a higher number of carriers. For n = 0.3
we obtain a smooth change from metallic to insulator behavior as a function of the
e-ph coupling strength λ, but both phases are stable with temperature (see Fig. 2.3).
Simulations done at the experimentally optimal doping which is around n = 0.7 electrons
per site show a quite similar behavior (see Fig. 2.4). For large values of λ (those that
produce a MIT in the few carriers and low T limit), the system is insulator and the charge
is localized. For lower values of λ (between 1.8 and 2.0) which produce an undistorted
metal when filling is n = 0.08, we now observe a bad metal with a distorted lattice. So,
when the conduction band is filled beyond the bottom, an insulator is obtained for high
values of λ while for smaller values of e-ph coupling the slope of the conductivity versus
temperature, dG/dT , decreases but remains positive everywhere. Finally, for small
enough values of the coupling strength λ (≈ 2.0) the system is metallic (dG/dT < 0) in
the whole temperature range.

From these results, two main conclusions can be extracted: (i) Electron-phonon coupling
is important to understand the Metal-Insulator transition in manganites, as it is now
widely accepted. For a Double Exchange model it explains the MIT for few carriers
in the system, where the self-trapped electrons (polarons) are well separated. Both
ferromagnetic-insulator and paramagnetic-insulator phases can be understood in terms
of this polaron formation. (ii) When the electron density of the system increases, polaron
formation still occurs, but the temperature effects are not as dramatic as observed in
the experiments.

The model has to be improved if experiments in this doping regime should be explained.
Obviously electron-electron interaction will be increasingly important as the number of
polarons that is present in the system rises. It has been argued[Dagotto 02] that a high
value of β in Eq. (2.1), which prevents double occupancy sites, can mimic Coulomb
interaction. Although this argument seems quite plausible for localized electrons, it is
not so clear for overlapping polarons.

If the interaction between neighboring polarons is preventing the appearance of a MIT
at moderate λ, one would naively guess that MIT would be observable up to a doping
of n ≈ 1/7 ≈ 0.14. This value corresponds to non-overlapping polarons assuming that a
polaron occupies a lattice site and its nearest neighbors.

We have shown that the electron-phonon coupling cannot account for a MIT transition at
dopings relevant to the experimental results. Although a polaronic band seems to appear
it is wide enough to overlap with the conduction band. Some other mechanism that can
account for a reduction of the band width must be taken into account. In this spirit
we have investigated the effect of antiferromagnetic superexchange interaction between
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Figure 2.3: Same as Fig 2.2 for a higher electron doping n = 0.3 (lower hole density x).
Again results are given for several values of the e-ph coupling strength λ.
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Figure 2.4: Results of Monte Carlo simulations for a larger electron density n = 0.7.
Magnetization M (a), conductance G (b), and elastic energy Eelastic (c) as a
function of temperature for several values of the e-ph coupling strength λ.

31



Chapter 2 Phase Transitions Due to the Formation of Polarons

0.00 0.05 0.10
J

AF

1.2

1.6

2.0

2.4

λ

AF -  I

SG

FM - I

FM - M

Figure 2.5: Electron-phonon coupling constant λ versus superexchange coupling J phase
diagram. Phases are labeled according to their magnetic ordering and trans-
port properties FMM ferromagnetic metal, FMI ferromagnetic insulator,
SG possible Spin-glass phase which appears in the simulations as a state with
both types of ferromagnetic and antiferromagnetic correlations and showing
some tendency to become trapped in some regions of the phase space and
AFI antiferromagnetic insulator. See text for an explanation of the high
temperature behavior.

Mn ions. The importance of this interaction is widely accepted [Alonso 01c, Alonso 01a,
Alonso 01b, Arovas 98], and the competition between the ferromagnetic double exchange
and the antiferromagnetic superexchange lies at the heart of the rich magnetic phase
diagram of manganites.

2.4. Effect of Superexchange

It is clear now that superexchange interaction plays an important role in the physics
of manganites. Since the t2g electrons are the ones that mediate the interaction, it is
usually described by a Heisenberg-like term in Hamiltonian (2.1). This term increases
the complexity and richness of the phase diagram (Fig. 2.5). Since the electron-phonon
coupling has proved to be the main interaction to explain the MIT for a small number of
carriers, in this section we study Hamiltonian for filling n = 0.7 (x = 0.3) where colossal
magnetoresistance phenomena have been observed experimentally [Dagotto 02]. In the
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2.4 Effect of Superexchange

diagram zone that we have explored, around the λ induced MIT, we have found some
different behaviors.

For small values of JAF rising λ implies a change in the system from a well known
[Calderón 99b] ferromagnetic metal to a ferromagnetic insulator at λc ≈ 1.75. Since the
competing states have the same magnetic order, the λc, characterizing the transition
between these states is JAF independent. Nevertheless, for stronger antiferromagnetic
coupling, JAF ≥ 0.07t, the state competing with the ferromagnetic metal at low T is
antiferromagnetic. Actually, both ferromagnetic and antiferromagnetic correlations are
found. This magnetic order could eventually change if larger cells could be simulated,
but it already appears for the relatively small 4×4×4 cells. Doubtless, the appearance of
a magnetic state with no net magnetization indicates, once again, the close competition
between double exchange ferromagnetic and superexchange ferromagnetic interactions.
It is an indication that colossal effects should be expected just close to these parameter
values. The existence of such a phase even in the clean limit is quite remarkable, but the
effect of disorder and other interactions should be studied. At higher values of either λ
or JAF the ground state is G-antiferromagnetically ordered, and therefore, shows a clear
insulating behavior.

Let us finish discussing the effect of temperature on the different phases.

2.4.1. Ferromagnetic Phases

For the ferromagnetic metallic phase, the situation is quite similar to the one discussed
in the last section. We find a transition to a paramagnetic metallic phase. The change
in the slope of G versus T is more pronounced that it was for no antiferromagnetic
coupling. Actually, the behavior is closer to the experimental results. Configurations
with antiferromagnetic correlations now have a higher Boltzmann factor, and also the
thermal average of G has decreased, especially for T > TC . However, we do not find a
metal-insulator transition.

The ferromagnetic insulator phase also presents a transition to a paramagnetic phase, the
electron phonon coupling reduces the expectation value of the hopping and consequently,
the Curie temperature. Both cases are illustrated in Fig. 2.6.

2.4.2. Antiferromagnetic phases

In the region of high values of λ and JAF a G antiferromagnetic phase is found. Hopping
is forbidden by the double exchange factor. Therefore, electrons are localized at random
sites preventing the appearance of electrical currents at low temperatures. Consequently,
this phase simply describes an insulator. This phase has not been observed experimen-
tally at this doping, probably because the values of the parameters needed to stabilized
it are beyond plausible values.
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Figure 2.6: Magnetization and conductance versus temperature results at moderate su-
perexchange interaction JAF = 0.6. Two values of the electron-phonon cou-
pling constant λ are shown.
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2.5 Summary

For smaller values of λ, another phase with no net magnetization is found. We have
labeled it SG in figure 2.5. We are aware that the simulations carried out and the system
size used are insufficient to conclude the existence of Spin Glass phase in the model.
However the experimental observations and some features observed in the simulations
suggest that this might be the case. In particular, simulations in this regime show very
slow exploration rates of the phase space, and not even the limited cluster sizes with
periodic boundary conditions (which tend to overestimate correlations) are enough to
stabilize either a ferromagnetic or antiferromagnetic state. Anyhow, the appearance of
this phase in our calculations, shows that the close competition between ferromagnetic
and antiferromagnetic tendencies is present in the model. This strong competition has
been argued to be responsible to colossal of effects in manganites[Dagotto 02].

2.5. Summary

We have studied a realistic double exchange model in three dimensions including su-
perexchange interactions. By means of Monte Carlo simulations, we have sketched the
phase diagram. An improved implementation of the Kubo formula that minimizes finite-
size effects has allowed a detailed study of the intrinsic conductance G of the different
phases and its variation with temperature. Overall behavior strongly depends on doping.
For small carriers density (n = 0.08), the previously reported FM-PI transition is recov-
ered: changes in G cover several orders of magnitude. The transport regime is strongly
affected by the electron-phonon coupling λ. For small λ, the system always shows a
metallic behavior whereas for large λ an insulating behavior is always found. Only for
intermediate values, a transition appears in accordance with experimental evidence. For
intermediate (n = 0.3) and high (n = 0.7) carriers density, the same phases are found,
but the range in which temperature induces a FM-PI is reduced to become unobserv-
able. Nevertheless, results closely reproduce the experimental behavior of the so called
wide band materials (such us La0.7Ca0.3MnO3). These materials present a paramagnetic-
ferromagnetic transition accompanied by a pronounced change in the slope of the G−T
curve. The inclusion of a direct superexchange interaction improves these resemblance
but fails to recover the FM-PI transition. On the other hand, superexchange induces the
appearance of antiferromagnetic phases and phases with a strong competition between
ferromagnetic and antiferromagnetic correlations.
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Chapter 3

Phase Diagram and Incommensurate
Phases in Undoped Manganites

3.1. Undoped Manganites.

3.1.1. Weak versus strong coupling in Manganites

The renaissance of Manganites research in the late 80’s and early 90’s was due to the dis-
covery of Colossal Magnetoresistance (CMR, see introductory chapter), and thus most
of the attention has been devoted to optimally or near optimally doped Manganites.
The corresponding chemical formula is Re1−xDxMnO3 where Re stands for a rare earth
element, D is a divalent element, and x ≈ 1/3. Many properties of manganites de-
pend on the competition between the kinetic energy, tending to delocalize the carriers,
and localization effects such as the Jahn-Teller (JT) coupling and the antiferromag-
netic (AFM) coupling between Mn core spins. The properties of manganites at these
intermediate dopings, in which metallic and ferromagnetic tendencies dominate, can be
described within a band structure picture, where the itinerant eg carriers have a strong
ferromagnetic interaction with the core t2g Mn spins, and are coupled to the Jahn-Teller
distortions of the oxygen octahedra surrounding the Mn ions[Dagotto 02, L.Brey 05].

A natural questions to ask is what are the physical properties, and how can they be un-
derstood, at the two end members of the series, ReMnO3 and AMnO3. The traditional
answer to this question is that AMnO3 compounds, such as CaMnO3, are antiferromag-
netic insulators, G type in the Wollan-Koehler notation ([E.O.Wollan 55] and Appendix
B). This can be explained, within the picture sketched in the introduction, as band
insulating behavior, since the eg band is empty. As explained there, it is Hund’s rule
what induces the polarization of the t2g triplet. The antiferromagnetism comes from
the inter site superexchange interactions between electrons in the t2g symmetry orbitals.
The other end of the series is much more interesting and is the subject of this chapter.

The eg band in these undoped compounds is half filled. LaMnO3, for example, is anti-
ferromagnetic, A type, and presents a cooperative Jahn-Teller [Rodŕıguez-Carvajal 98]
distortion. As a matter offact, LaMnO3 was one of the compounds analyzed by Kanamori
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in his pioneer work [J.Kanamori 60] where he established the model for degenerate eg

electrons coupled to lattice distortions used in this thesis and in most works about Man-
ganites. The classical interpretation for this material’s properties has been given in
terms of the strong coupling limit. LaMnO3 and isoelectronicmanganites are, in this
scheme, Mott insulators, and therefore antiferromagnetic.

The degeneracy of the eg orbitals is lifted by the cooperative Jahn-Teller distortion.
The orbital order is then responsible for the peculiar A ((π, 0, 0) wave vector) AF order,
instead of the classical G (π, π, π) of a ’s orbital’ Mott insulator (notice that TN the
temperature of the antiferromagnetic phase transition, is lower that the temperature
at which the orbital order sets in < TOO). Calculations in terms of superexchange
arguments [Millis 97], again in an strong coupling scheme, seem to support this view.
However, as it was pointed out by Kanamori [J.Kanamori 60], severaltypes of orbital
ordering and Jahn Teller distortions are degenerated, even in the presence of anharmonic
terms in the electron phonon coupling. Kinetic energy arguments, taking into account
the symmetry of the involved orbitals, were invoked in ref.[Popovic 00] to account for
the further lifting of this degeneracy, paying attention to the importance of the band
structure,

As it has often been the case in manganites, new physical behavior was unexpectedly
unveiled; new experimental results on other undoped manganites were published chal-
lenging this classical understanding. In 2001 a work by several Spanish groups reported
a new magnetic order in a similar compound, HoMnO3 [Muñoz 01]. This was the E
magnetic order described below (see also the appendix). This new magnetic phase in
manganites, is not easy to account for in the strong coupling limit. A model which in-
cluded the formation of a band by the eg electrons, by means of a double exchange tight
binding term in the Hamiltonian, does predict this phase [Hotta 03, T.Hotta 03].

New incommensurate phases were found afterwards in different experiments and pre-
sented in several works. A fairly complete picture and a comprehensive overview of the
literature was drawn in Refs. [Kimura 03, Zhou 06]. The present chapter is an attempt
to reach a coherent understanding, and a derivation from a microscopic model of the
results presented in the cited references.

An important issue that has not been address in our work is the appearance of ferro-
electricity in a few of this compounds. This is a mostinteresting problem on its own and
as such has called the attention of many researchers. However, our results indicate that
ferroelectricity is not crucial to determine the electronic and magnetic phase diagram in
undoped manganites.

3.1.2. Incommensurate phases

In ref.[Kimura 03] (see Fig 3.1) the authors examine the magnetic and orbital order in
a series of ReMnO3 as a function of the ionic radius (rRe) of the rare earth ion Re. For
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3.1 Undoped Manganites.

Figure 3.1: Experimental phase diagram of undoped manganites. Magnetic order, ex-
tracted from neutron or X ray diffraction patterns, and orbital order, in-
ferred from resistivity measurements, are shown. Ionic radius of the rare
earth cations, as the presented Mn-O-Mn angle, decreases from left to right.
Taken from reference [Kimura 03]
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big ionic radius (Mn-O-Mn angle φ close to 180o), undoped manganites have a antifer-
romagnetic spin order of type A coexisting with a (π, π, 0) orbital ordering, whereas for
smaller values of rRe (smaller φ), the magnetic order is of type E. In the A phase, a Mn
spin is ferromagnetically coupled with the Mn spins located in the same plane (x− y),
and antiferromagnetically with the Mn spins belonging to different planes. In the E
phase, the x − y layers are antiferromagnetically coupled, but the magnetic structure
within the planes is that of ferromagnetic zigzag chains antiferromagnetically aligned.
The horizontal (x) and vertical (y) steps of the zigzag chains contain two Mn ions. For
values of rRe close to the critical value where the magnetic order changes from A-type
to E-type (φ ≈ 148o in Fig 3.1), manganites develop different magnetic incommensurate
phases whith increasing temperature. In this reference, assuming perfect orbital order,
the problem was mapped into the anisotropic next-nearest-neighbor Ising or ANNNI
model [P.Bak 80]. Although it provides a phenomenological explanation to the observed
experimental results, this approach does not clarify the microscopic origin of the different
phases.

These incommensurate phases, as the E phase, are difficult to understand in the picture
of strongly correlated Mott localized d-electrons. This is surprising, since as the Mn-
O-Mn angle gets smaller, away from the 180deg of the ideal perovskite structure, the
overlap between the Mn d orbitals mediated by the oxygens gets smaller. It should be
expected then that undoped manganites with smaller cations, such as HoMnO3 should
behave more like Mott insulators than the ones with bigger cations, LaMnO3 or PrMnO3.
In Fig 3.1, more Mott insulator like behavior is expected as one goes to the right along
the x axis.

It has been suggested recently[Hotta 03, T.Hotta 03, D.V.Efremov ], that the complete
nesting between the two eg bands that occurs in the A structure produces a spin-
orbital ordering and opens a gap in the energy spectrum of undoped RMnO3. Quoting
ref.[D.V.Efremov ], we do not claim that the real RMnO3 systems can be fully de-
scribed by a weak coupling approach as correlation effects can be important, although
a treatment based in band structure calculation may be very useful to understand some
properties of these materials. In particular, in ref.[Hotta 03], using a two orbital double
exchange model, it was obtained that the experimental observed E-phase exits in a wide
region of parameter space, and it is adjacent to the A-type phase. Coulomb intraor-
bital interactions might be significant. However, some works [Brey 04, Dagotto 02] were
moderate interorbital coulomb interaction has been taken into account, indicate that it
renormalizes the different critical parameters, but the topology of the phase diagram is
not altered.

Our work clarifies the microscopic origin of the incommensurate phases appearing near
the A-type to E-type magnetic transition. Our aim is to explain these phases using a
realistic microscopic model. The Hamiltonian we study describes electrons moving in two
eg bands, that are ferromagnetically strongly coupled to the Mn core spins as well to the
Jahn-Teller phonons. In addition, we also consider a direct superexchange interaction
between the core Mn spins. Starting from this Hamiltonian we derive a functional that
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3.2 Microscopic Hamiltonian and zero temperature phase diagram.

describes a temperature induced commensurate-incommensurate transition similar to
that observed experimentally.

The main result presented in this chapter is that near the A to E phase transition, the
competition between the nearest neighbor antiferromagnetic superexchange interaction
and the double exchange induced long range ferromagnetic interaction, results in the
appearance of incommensurate phases. These phases consist of a periodic array of
domain walls.

The rest of the chapter is organized as follows. In Sec.II we describe the microscopic
model and we present the zero temperature phase diagram. In Sec.III we outline the
method for obtaining the critical temperatures and we present the phase diagram com-
posed of the different uniform phases. In Sec.IV we develop the functional for describing
spatially modulated phases. Also in Sec.IV we study how the phase diagram of man-
ganites at x=0 is altered when soliton incommensurate phases are taken into account.
We finish in Section V with a brief summary.

3.2. Microscopic Hamiltonian and zero temperature

phase diagram.

We are interested in the transition between A and E phases. In these phases the x− y
planes are coupled antiferromagnetically. In the approximation of infinte Hunds cou-
pling, double exchange precludes the motion in the z direction, therefore we can analyze
the properties of these phases and the transition between them by studying a Hamilto-
nian which describes electrons moving in the x − y plane. Although the Hamiltonian
does not explicitly include Coulomb interactions, some effects are implicitly taken into
account. The crystal field splits the Mn d levels into an occupied t2g triplet and a doublet
of eg symmetry, half filled for undoped manganites. Coulomb interactions, responsible
for Hund’s rules, align the spin of the t2g electrons among them and with the spin of the
eg electrons. This is described by the Double Exchange term in the Hamiltonian, 1.1 in
which the usual double exchange factor, f , modulates the hopping of the eg electrons
depending on the relative orientation of the neighboring t2g spins. The degeneracy of
the eg orbitals is also included in the model (see Introduction chapter). Finally, the
electron-phonon interaction is modelled through a Kanamori-like term [J.Kanamori 60],
with coupling constant λ. The hopping amplitude is taken as the energy unit.

We therefore study a double exchange model coupled to Jahn-Teller (JT) phonons, the
direct antiferromagnetic coupling between the Mn core spins JAF is also included:

H = HDE +He−ph + JAF

∑

<i,j>

SiSj (3.1)

In the perovskite structures the oxygens are shared by neighboring MnO6 octahedra and
theQ’s distortions are not independent, cooperative effects being very important[Vergés 02].
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Figure 3.2: Zero temperature phase diagram for x=0 for the two-dimensional DE two
orbital model with cooperative Jahn Teller phonons. The symbols OO and
OD stand for orbital ordered and disordered respectively. A, E and G name
the different magnetic orders defined in the text.

In order to consider these collective effects, we consider the position of the oxygen atoms
as the independent variables of the JT distortions.

For given values of the parameters λ and JAF , and a texture of core spins {Si}, we
solve self-consistently the mean field version of Hamiltonian (3.1) and obtain the energy,
the local charges {ρi}, the orbital pseudospin order {τxi, τzi} and the oxygen octahedra
distortions Qα,i. These quantities are better described by their Fourier transforms, that

are represented by the same symbol with a hat: ρ̂(G), Q̂1(G), ...

Fig.1 presents the phase diagram obtained by solving self-consistently Eq.3.1 for the
parent compound RMnO3. For the range of parameters studied, we do not find any
solution showing charge modulation. In all the phases there is an electron located on
each Mn ion, therefore in our model any gap in the energy spectrum is due to the spatial
modulation of any other physical quantity.

For small values of JAF the ground state is ferromagnetic, A-order. In the absence of
Jahn-Teller coupling this phase is metallic, however, for λ 6=0, and due to the perfect
nesting between the eg bands, the A phase develops a gap at the Fermi energy. The Jahn-
Teller coupling produces and orbital order characterized by a finite Fourier component
of the x-component of the pseudospin τ̂x(π, π) = τ̂x(−π,−π) 6= 0, see Fig. 3.3 a).
The orbital order (OO) is produced by an ordered distribution of the oxygen octahedra
distortions Q̂2(π, π) = Q̂2(−π,−π) 6= 0, that depends on the value of λ. The amplitude
of the distortions are modulated in order to minimize the elastic energy of the cooperative
Jahn-Teller distortions, and the signs arise from cooperative effects. In this phase the
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3.3 Finite Temperature Magnetic Phase Diagram.

(π, π) orbital modulation opens a gap at the Fermi energy and the x=0 manganite is an
insulator, being the energy gap proportional to the value of the Jahn-Teller coupling.

For large value of JAF and λ the system presents a G-type antiferromagnetic ground
state and an orbital order characterized by a Fourier component of the pseudospin
τ̂x(π, π) = τ̂x(−π,−π) 6= 0. Each Mn ion is coupled antiferromagnetically with its next
neighbors and the double exchange mechanism precludes the motion of the carriers,
being this phase an insulator. The minimal value of JAF for the occurrence of this phase
depends on λ, but in general is very large, so that this phase is rather unlike to occur
in manganites.

For intermediates values of JAF the system develops a magnetic order of E-type; the
E phase consists of ferromagnetic zigzag chains coupled antiferromagnetically among
them. The horizontal and vertical steps of the chain contain two Mn ions. For large
enough values of the Jahn-Teller coupling the E magnetic order coexists with an orbital
order similar to the one occurring in the A and G phases; this order opens a gap at the
Fermi energy. In the E-OO phase the magnetic order is characterized by a periodicity
(2a, 2a), being a the lattice parameter of the square lattice. For small values of λ the
E phase does not present orbital order, although it has a gap at the Fermi energy. In
the orbital disorder (OD) E-phase, the dispersion energy for the eg electrons along the
FM zigzag chain is given by[Hotta 03], εk = (2/3)(± cos k ±

√
cos2k + 3), indicating

the existence of a large band gap at occupancies corresponding to x=0. The physical
origin of this gap is the dependence of the tunneling probability on the spatial direction,
txµ,ν = −tyµ,ν for µ 6= ν. It produces a periodicity in the hopping amplitude along the
zigzag chain, leading to a periodic potential for the eg electrons. It is important to note
that, contrary to what happends in the x=1/2 case[Brey 04, L.Brey 05], this modulation
in the hopping amplitude does not produce an orbital order. The E-OD phase is stable
due to the spatial modulation of the coherence between next neighbors Mn ions along the
zigzag chain, < C+

i,µCi+1,ν >= − < C+
i+1,µCi+2,ν > for µ 6= ν. The phases E-OO and

E-OD have different symmetry and therefore the transition between them that occurs
at finite values of λ is a discontinuous transition.

3.3. Finite Temperature Magnetic Phase Diagram.

The simplest way of obtaining information on the phase diagram corresponding to a
given microscopic Hamiltonian is by means of the mean field approximation. This ap-
proximation is insufficient for describing second order transitions, but it is successful in
describing the phases away from the transition and in predicting the topology of the
phase diagram. Therefore we compute the magnetic critical temperature of the different
phases in this approach.

43



Chapter 3 Phase Diagram and Incommensurate Phases in Undoped Manganites

a) Phase A-OO b) Phase E-OO

c) Phase E-OD d) Phase G-OO

Figure 3.3: Orbital and spin order of x=0 manganites in the x-y plane. Elongated or-
bitals along the x (y) directions represent d3x2−r2 (d3y2−r2) orbitals. Cir-
cles represent the Mn ions in an orbital disordered phase. a) Orbital order
presents in the ferromagnetic A-OO phase. b) Same than a but for the E-
OO phase. c) Spin order in the E-OD phase. The solid and the dashed
lines joining the Mn ions indicate the modulation of the electronic coherence
along the zigzag chains. d) Same than a but for the G-OO phase. In all the
phases there is not modulation of the electric charge and there is exacltly
one electron located at each Mn ion. The vectors in the different schemes,
represent the spatial periodicity in the different phases, (a, a) in the A-OO
and G-OO phases and (2a, 2a) in the E-OO and E-OD phases. In all the
figures open and close symbols represent up and down spins.

44



3.3 Finite Temperature Magnetic Phase Diagram.

0.0 0.5 1.0 1.5 2.0 2.5
λ

-3

-2

-1

0

E
le

ct
ro

ni
c 

E
ne

rg
y

E phase
A phase
1-site e-ph Energy

0.0 0.5 1.0 1.5 2.0
λ

0

2

4

6

∆

Figure 3.4: Energy and electronic Gap dependence on the electron-phonon coupling λ
for the A (a)) and E (b)) phases. Notice how the A phase is distorted for
an arbitrarily small value of λ due to perfect nesting of the Fermi surface for
this filling of the band. Notice also the two, different origins of the E phase
gap (see text)

3.3.1. Ferromagnetic (A) phase

In this phase all the Mn spins point, on average, in a particular direction, and there is a
finite relative magnetization <m>. Using a virtual crystal approximation, we consider
a unique value for the spin reduction factor fi,j that corresponds to its expectation
value[D.Arovas 99, L.Brey 05],

fij ≃<
√

1+cos θij

2
>≃
√

1+<cos θij>

2
=

√
1+<m>2

2
. (3.2)

A reduction of <m> produces a decrease in fi,j and therefore in the kinetic energy.
In this way the importance of the Jahn-Teller coupling increases as the temperature
decreases. The internal energy per Mn ion of this phase can be written as

EA = εA(λ,<m>) + 2JAF <m>2 . (3.3)

where the electronic energy per Mn ion, εA(λ,<m>), depends in a complicated way on
λ and <m> and has to be obtained numerically by solving Eq.(3.1).

In order to describe thermal effects it is necessary to compute the free energy. As the
entropy of the carriers is very small[Brey 04] only the entropy of the classical Mn spins
is included. We use a mean field approximation that neglects spatial correlations and
assume for each individual spin a statistical distribution corresponding to an effective
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magnetic field[de Gennes 60, Brey 04]. In this molecular field approximation, the en-
tropy of the Mn spins takes the form:

S(<m>) =
log 2

2
− 3

2
<m>2 − 9

20
<m>4 +.... . (3.4)

Using this expression for the Mn spins entropy the total free energy of the system for
small values of <m> takes the form

F (<m>) = EA −TS(<m>)

The Curie temperature of the A phase is given by:

TC = −2

3

∂εA(λ,<m>)

∂ <m>2

∣∣∣∣
<m>=0

− 4

3
JAF . (3.5)

The derivative for finite λ has to be calculated numerically. Higher derivatives of the
internal energy with respect to the magnetization indicate that the transition is sec-
ond order. Notice from Eq.3.5 that for a given value of the Jahn-Teller coupling the
Curie temperature decreases linearly with the superexchange antiferromagnetic coupling
JAF .

3.3.2. Antiferromagnetic E phase.

The magnetization of the E phase is described by the relative amount of saturation in
each zigzag chain <ms>. In the virtual crystal approximation fluctuations are neglected
and the hopping is modulated by the spin reduction factor that is different along the
zigzag FM chain (fFM) than between the AFM coupled chains, (fAF ) [de Gennes 60,
L.Brey 05],

fFM(<mS>) =

√
1+ <mS>2

2

fAF (<mS>) =

√
1− <mS>2

2
. (3.6)

The internal energy of this phase depends on λ, and <mS>, and can be written as,

EE = εE(λ,<mS>) . (3.7)

As each Mn spin core is surrounded by two Mn spins FM coupled and other two AFM
coupled, the superexchange energy is zero.

In order to compute the Neel temperature of the E phases, we introduce an effective
field for each spin sublattice. Taking into account that both, the magnetization and
the effective magnetic field, have different sign in each sublattice, we end up with the
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Figure 3.5: Intersite coherence within the x− y plane as a function of the average mag-
netization of the two sublattices in the E phase. m0=0 corresponds to the
paramagnetic phase, intersite coherence in this limit depends only on the
orbitals involved and not in the sublattice. In this limit, it is maximum
for the coherence between x2 − y2 orbitals, minimum between 3z2 − r2 and
intermediate for coherence between both different orbitals. For m0> 0 incre-
ses for rbitals within the same chain (ferromagnetic aligned neighbourging
sites) and decreases for orbitals in different chains (antiferromagnetic aligned
neighbourging sites). The inset shows how the intersite coherence grows as
m2

0 (lines are parabolic fits) as explained in the text.
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same expression for the entropy than in the A phase, but just changing <m> by
<mS>[L.Brey 05]. With this the free energy takes the form,

F (<mS>, λ) = EE − TS(<mS>)

≃ F (0, λ)+ <mS>
2

(
3

2
T + a

)

+ <mS>
4

(
9

20
T + b

)
+

+ <mS>
6

(
99

350
T + c

)
+ ... , (3.8)

where
EE

≈ cte+ a <mS>
2 +b <mS>

4 +c <mS>
6 +.... . (3.9)

Due to the symmetry of the E phase the coefficient a is zero, and the Neel temperature
depends on the coefficients b and c. Numerically, the coefficient b is negative and the
transition from the E to the paramagnetic (PM) phase is a first order phase transition.

It is interesting to analyze the origin of the negative sign of the quartic term. In the
OD-case the Jahn-Teller coupling is not large enough to produce orbital order. In this
situation the electronic energy is just kinetic energy. Therefore near <mS>=0 we would
expect that the electronic energy could be obtained perturbatively from the paramag-
netic energy as, EE

λ=0 ≈
1√
2

(
fFM(<mS>) + fAF (<mS>)

)
ε0

E . Here ε0
E ≡ εE(0, 0) is the

paramagnetic energy per Mn ion. Expanding the spin reduction factors near <mS>
we find EE

λ=0 ≈
(
1 − 1

8
<mS>

4 − 5
128

<mS>
8 −...

)
ε0

E. As the electronic energy of the
paramagnetic phase is negative, the last expression suggests that the Neel temperature
should be zero. However, numerically, we find a finite Neel temperature even for λ=0.
This discrepancy occurs because, as commented above, in the E-OD phase the mini-
mization of the kinetic energy produces a modulation of the electron coherence along
the zigzag chain, < C+

i,µCi+1,ν >= − < C+
i+1,µCi+2,ν > for µ 6= ν. We describe this

modulation by an order parameter ξ that represents the (π
2
, π

2
) Fourier component of the

electron coherence. This order parameter is coupled with the staggered magnetization
and the functional describing the electronic energy has the general form:

EE
λ=0 ≈

1√
2

(
fFM(<mS>) + fAF (<mS>)

)
ε0

E

+ αξ2 + βξ <mS>
2 +... . (3.10)

This expression includes the elastic energy associated with the electron coherence and
the minimal coupling between the staggered magnetization and the electron coherence.
Minimizing this energy with respect the coherence parameter ξ, we find ξ = − β

2α
<

mS >
2. Introducing this value in the expression of the electronic energy, Eq.(3.10), the

electronic energy can be expresed in terms of <mS> and the coupling constants:

EE
λ=0 ≈

(
1 − 1

8
<mS>

4

)
ε0

E − β2

4α
<mS>

4 +... . (3.11)
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Figure 3.6: Phase diagrams T -JAF for the two dimensional DE two orbital model with
cooperative Jahn-Teller phonons and x=1. In a) we plot the λ = 0 case and
in b) the λ = 1.2t case. Continuous lines represent first order transitions
whereas dashed lines indicate second order transitions. The abbreviations
naming the different phases are explained in the text.

Showing thatr for strong enough coupling between <mS > and the orbital coherence,
the quartic term is negative and a finite Neel temperature is expected. Therefore, the
coupling between electron coherence and the staggered magnetization is responsible for
the occurrence of a finite Neel temperature.

In the OO-case there exists a finite orbital order parameter τ̂x(π, π), that is coupled
to the staggered distortion and it is the responsible for the existence of finite Neel
temperature.

3.3.3. Temperature-JAF magnetic phase diagram

In Fig.3, we plot the T-JAF magnetic phase diagrams for λ=0 (a) and λ=1.2t (b). These
phase diagrams have been obtained by minimizing and comparing the free energies of
the A, E and paramagnetic phases. While for λ=0, all the phases are disordered in the
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orbital sector, for large enough values of λ, E and A phases present orbital order. In
the latercase, λ=1.2t, we find that the critical temperature associated with the orbital
order is much larger than the magnetic critical temperatures and, therefore, in Fig.3b
the paramagnetic phase presents orbital order. In any case, it is important to note that,
from the magnetic point of view, both phase diagrams are topologically equivalent. At
large temperatures the systems are always paramagnetic, for small JAF and small tem-
perature the systems present ferromagnetic order, whereas for small temperature and
moderates values of JAF an antiferromagnetic order of type E appears. For very large
values of the AFM coupling, not shown in Fig.3, antiferromagnetic order of type G would
appear. The Curie temperature corresponding to the paramagnetic-A phase transition
decreases linearly with JAF , Eq.6, until it reaches the, JAF independent, Neel temper-
ature corresponding to the paramagnetic-E transition. As discussed in the previous
subsection the A-paramagnetic transition is second order while, because of the coupling
between different order parameters, the E-paramagnetic transition is first order.

The phase diagrams present a Lifshitz point where the uniform ferromagnetic A phase,
the modulated ordered E phase and the paramagnetic disordered phase meet. Near the
Lifshitz point there is a range of values of JAF where, by increasing the temperature, the
system undergoes an E-A transition followed by an A-PM transition. The topology of
this phase diagram is similar to that of a Ising model with competing interactions. In that
model, near the Lifshitz point, solitons, spatially modulated phases and commensurate
incommensurate transitions appear when the temperatures varies[P.Bak 80]. In the next
section we explore the possible existence of solitons and incommensurate phases in the
model described by the Hamiltonian Eq.3.1 at x=1 and near the Lifshitz point that
appears in the T -JAF phase diagram, Fig.3.6.

3.4. Soliton theory and spatially modulated phases.

3.4.1. Landau functional

The magnetic order of the phases described in the previous sections only differs in the
direction perpendicular to the chains, see Fig.3.3. In the mean field approximation the
E phase is described by a spin density wave of the form <S>=

√
2m0 cos(q0z + π/4),

with q0 = π/2. Here z is the position of the atoms along the direction perpendicular to
the chains. We are taking the distance between first neighbors diagonal lines of atoms,√

2a/2, as the unit of length. In general the expression

<S>=
√

2m0 cos
(
q0z +

π

4
+ θ(z)

)
(3.12)

describes different spatially modulated magnetic phases. With θ(z)=0 it describes the E
phase, whereas with θ(z)=−q0z, it represents the average magnetization in the position
independent ferromagnetic A phase. The case m0=0 corresponds to the paramagnetic
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3.4 Soliton theory and spatially modulated phases.

Figure 3.7: Spin order of x=1 manganites in the x-y plane. (a) Corresponds to the E
phase whereas (c) represents the A phase. The direction perpendicular to
the zigzag chains is shown in (a). The averaged magnetization along the z
direction for the E and A phases are plotted in (c) and (d) respectively.
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case. In general θ(z) describes phases where the average magnetization changes along
the direction perpendicular to the chains.

While both E and A phases are commensurate with the underlying lattice, the existence
of solitons and incommensurate phases in the system will be considered in this study.
Solitons are static domain walls between commensurate domains. In this section, we
present a formalism which makes contact with phenomenological theories and provides
the basis for the calculation of the nature of the phase diagram at finite temperature.

We want to build a Landau theory functional where the order parameter is the modula-
tion of the average spin along the diagonal direction. Following references [W.L.McMillan 76,
W.L.McMillan 77], in Eq.3.12 we consider the amplitude of the magnetization, m0, as
constant in the space.

In order to set up a Landau theory we need to calculate the different contributions to the
free energy. For a magnetization given by Eq.3.12, and near the order-disorder magnetic
transition, the entropic contribution to the free energy can be estimated as described in
Sec.III,

− TS ≃ kBT

∫ [
− log 2 +

3

2
m2

0 +
27

40
m4

0 +
99

140
m6

0

− (
9

40
m4

0 +
297

700
m6

0) cos 4θ(z)

]
dz . (3.13)

The superexchange antiferromagnetic interaction takes the form

EAF ≃ 2JAF m
2
0

∫
sin (∇θ(z)) dz . (3.14)

being ∇θ(z) the derivate of θ(z) with respect z. In the previous expression we have
treated the position z as a continuous variable and we have discarded second and higher
spatial derivatives of θ.

Concerning the electronic contribution to the internal energy, Ee, we assume that it
is local an can be written as Ee=

∫
dz E(z), being E(z) the electronic energy density.

We expect that it can be expanded in powers of the order parameter < S > and its
derivatives,

E(z) = E0 + ãl(z) <S(z)>l +b̃l(z) (∇<S(z)>)l

+ c̃l,m(z) <S(z)>l (∇<S(z)>)m ... (3.15)

Here the sum over repeated indices is assumed, and because the symmetry of the system
only even powers of <S> and ∇<S(z)> contribute. The coefficients ãl, b̃l and c̃l,m are
periodic in z with the periodicity of the crystal lattice and for a magnetization of the
form Eq.3.12, the density of electronic energy can be written as,

E(z) = E0 + a2m
2
0 + a4m

4
0 + a6m

6
0

+ (b4m
4
0 + b6m

6
0) cos 4θ(z)

+ (c2m
2
0 + c4m

4
0 + c6m

6
0) (∇θ(z) + q0)

2. (3.16)
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Here we have neglected higher terms in the derivatives of the phase θ and, as there are
first order phase transitions in some part of the phase diagram, we keep terms up to the
sixth power in m0. The second term in Eq.3.16 is the umklapp term that favors the
modulated commensurate solutions, θ(z)=0, π

2
, π, 3π

2
, corresponding to the E phase.

The last term is an elastic energy which favors the occurrence of the ferromagnetic A-
phase, θ(z)=−q0z. The competition between the elastic and the umklapp contributions
will produce the existence of solitons and incommensurate phases.

From the expression of the electronic energy of the E-phase as function of the order
parameter m0, we notice a2=−c2 q2

0. Analyzing the dependence of the electronic energy
on a constant phase (θ(r) = θ0), we find b4=a4 +c4 q

4
0 and b6=a6 +c6 q

6
0. In this way only

two subsets of parameters (for instance b’s and c’s) are independent. Finally, for each
value of λ, we perform microscopic calculations of the electronic energy of the A and E
phases and obtain the numerical values of the coefficients b’s and c’s respectively.

Adding the entropy, Eq.3.13, the antiferromagnetic energy, Eq.3.14 and the electronic
internal energy, Eq.3.16, we obtain the following expression for the free energy of the
system,

F = F0(T,m0)

+ C

∫[
1

2
(∇θ(z) + q0)

2 + w (1 + cos 4θ(z))

]
dz (3.17)

with,

F0(T,m0) =

(
− log 2 +

3

2
m2

0 +
9

10
m4

0 +
198

175
m6

0

)
T

− 2JAFm
2
0 + ε0

e − c2m
2
0q

2
0 , (3.18)

C =

(
2c2 + 4

JAF

q2
0

)
m2

0 + 2c4m
4
0 + 2c6m

6
0 , (3.19)

and

w =

(
b4 − 9

40

)
m4

0 +
(
b6 − 297

700
T
)
m6

0

C
. (3.20)

In the limit w → 0, the elastic contribution is the more important term and the phase
θ(z) tends to be θ(z) = −q0 z. On the contrary, for large values of w, the umklapp term
is dominant and θ wants to get a constant value, θ=0, π

2
, π, 3π

2
. A transition between the

commensurate phase, θ = 0 and the uniform ferromagnetic phase takes place because
of the competition between these two terms; by tuning the values of JAF and T we are
going to see that a soliton incommensurate phase appears between these two limits.

For a given temperature and a particular value of JAF , the constant amplitude m0 and
the phase function θ(z) that characterize the solution are obtained by minimizing the
functional Eq.3.17. The function that makes F extremal is given by the corresponding
Euler equation, which reads:

1

2

d2θ

dz2
+ 4w

∂

∂θ
(1 + cos 4θ) (3.21)
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Figure 3.8: a) Anti-soliton solution to Eq. 3.22 for spatial variation of θ corresponding
to Eq. 3.23. It can be understood as a domain wall between two essentially
commensurate regions. The actual thermal average of the spins is shown
in b). The most general solution is an array of solitons with very similar
shape. The separation among them gives the periodicity of the system, and
is calculated as explained in the text

It turns out to be the Sine-Gordon equation:

1

2

d2θ

dz2
+ 4w sin 4θ = 0 (3.22)

The phase has to satisfy this equation for each value of m0. The equation has been
extensively studied in soliton theory, in fact one solution is the anti-soliton :

θ(z) = tan−1 exp (4
√
wz) . (3.23)

This solution is a domain wall which separates two almost commensurate z regions.

A general solution of Eq.3.17 is a soliton lattice formed by a regular array of domain
walls, each of length L.

At each soliton the phase θ tumbles π
2
. The deviation of the average wave vector q̄ from

q0 is inversely proportional to the distance between the domain walls,

q̄ =
π

2L
. (3.24)

The value of q̄ is proportional to the soliton density, it can be calculated by minimizing
the free energy following the procedure outlined in references [P.Bak 80, W.L.McMillan 76,
W.L.McMillan 77, G.DeGennes 68] and detailed below for our particular case.
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3.4 Soliton theory and spatially modulated phases.

The temperature at which solitons appear in the system can be calculated by the condi-
tion that the condensation energy of the first soliton is negative . It can be shown that
this corresponds to

wc =
(π

4

)2

q2
0 (3.25)

The total length L of a soliton corresponds to a change of π
2

in θ, therefore:

L =

∫ 0

π
2

dθ
dz

dθ
(3.26)

One can easily integrate once the Sine-Gordon Eq. 3.22, the periodicity of the system is
then related to the integration constant. Substituting the general solution in Eq. 3.26
it is found that the distance between solitons can be expressed as:

L =
k̃

2
√
w

∫ π
2

0

dθ̃√
1 + k̃2 sin2 θ

=
k̃

2
√
w
K(k̃) (3.27)

where k̃2 = 4wk2 = 2w/C C being the integration constant. θ̃ = π
2
− θ, and K(k) is the

elliptic integral of the first kind. Without explicity knowing the expression for θ(x) we
can minimize Eq. 3.18 with respect to the constant k, and therefore find L as a function
of m0, and T.

The minimization condition can be expressed as a function of the elliptic integral of the
second class E(k):

E(k̃)

k̃
=
π|q0|
4
√
w

(3.28)

The free energy for the soliton phase is on the form:

F = F0 +
q2
0

2
− 2w

k2
(3.29)

We can recover the commensurate phases in the proper limits. As k goes to one we
recover the E phase with free energy F = F0 + δ2

2
− 2w and as both k and w go to zero

we approximate to the ferromagnetic phase (with vanishing m) and F ≈ F0

In the soliton lattice phase the magnetic periodicity along the z-direction is characterized
by the wave vector

q =
π

2
− π

2L
. (3.30)

In the E-phase there are not solitons in the system, L=∞ and q̄=0, and the wave vector
of the magnetic modulation is q=π

2
. In the continuous approximation the ferromagnetic

A-phase corresponds to a extremely dense lattice soliton, L=1. In this limit, θ is too
quickly varying, the continuous approximation is not valid and we take the criterium
that for L ≤ 1.1, the soliton lattice is the ferromagnetic A-phase.
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Figure 3.9: Phase diagram T − JAF as obtained by minimizing the free energy Eq.3.17.
The parameters of entering in the free energy are obtained by minimizing the
microscopic Hamiltonian Eq.3.1 for λ=0 and x=1. Continuous lines represent
first order transitions whereas dashed lines indicate second order transitions.
The shadow region indicates the region where the incommensurate phase
exits.

3.4.2. Results

In order to find inhomogeneous phases in manganites at x=1, we have minimized the free
energy Eq.3.17 with the coefficients a’s, b’s and c’s obtained from the microscopic model
described in Section II. The solutions are characterized by the value of the magnetization
m0 and the density of solitons q̄. We present results for the case λ=0, but similar results
are obtained for finite Jahn-Teller coupling.

If we consider only the uniform solutions, E and A phases, the minimization of the
free energy results in the phase diagrams already presented in Sec. III, Fig.3.6. When
inhomogeneous solutions are considered, we obtain the phase diagram shown in Fig.3.9.
Several comments on this phase diagram are in order, (i) There are not solitons for
values of JAF larger than the antiferromagnetic coupling corresponding to the Lifshitz
point. The paramagnetic-E phase transition is first order, with a large jump in the
value of mS, and therefore in the value of w. In this situation, large values of w, the
umklapp term is much stronger than the elastic term and the system prefers to be com-
mensurate with the lattice. Note than in the paradigmatic Ising model with competing
interactions[P.Bak 80] all the transitions are second order and incommensurate phases
appear at both sides of the Lifshitz point. (ii) For small values of JAF the elastic term
is very strong and the solution corresponds to a dense soliton phase. For small values of
JAF the distance between solitons is smaller than the cutoff and we consider that this
commensurate phase is actually, in the discrete real crystal, the ferromagnetic A-phase.
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Figure 3.10: Temperature dependence of the magnetic wave vector, q, and of the order
parameter amplitude, m0 (inset), for two values of JAF . The wave vector
q=π

2
corresponds to the E-phase and q=0 to the A-phase. The results are

obtained by minimizing the free energy (Eq. 3.17).

(iii) For intermediate values of JAF , the competition between the elastic and the umklapp
term results in the appearance of incommensurate solitonic phases.

In Fig.3.9, the shadow region indicates the incommensurate phase. The frontier of this
phase with the ferromagnetic A-phase is diffuse because, as we have already discussed,
to distinguish between a dense soliton phase and the ferromagnetic A-phase we take
a criterion based on the distance between solitons. Within our approximation, we do
not find solitons at T=0. Experiments show lock-in transition for Tb and and Dy com-
pounds at low temperatures, with values of q between π

2
and zero [Kimura 03]. Neither

the expansion of the entropy (equation 3.4) nor the ignorance of higher order umklapp
terms are accurate in this limit, so we can not expect our model to explain this behavior.
A recent work [Sergienko ] might clarify this issue. Typical temperature dependence of
the magnetic wave vector and magnetization amplitude near the incommensurate phase
is illustrated in Fig.3.10. For low temperature the system is in the commensurate E-
phase, corresponding to a wave vector q=π

2
. At low temperatures the spins are highly

polarized and that makes the magnetic modulation too rigid to allow solitons. As tem-
perature increases, the amplitude of the spin-modulation, m0 decreases and, at a JAF

dependent temperature, a jump to the solitonic phase takes place. For values of JAF

closer to the Lifshitz point, the incommensurate phase appears at temperatures near the
A-paramagnetic critical temperature. In that case the amplitude of the magnetization
m0 is small and hence the magnetic wave vector of the incommensurate phase is also
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very small. Therefore, in this part of the phase diagram the incommensurate phase is
similar to the A-phase.

For values of JAF near the zero temperature A to E phase transition, there is a small
portion of the phase diagram where, by decreasing the temperature, the system evolves
first from a paramagnetic, q = 0, phase to a incommensurate phase characterized by a
finite q, and then to a ferromagnetic A phase without magnetic modulation, q = 0.

The magnetic phase diagram shown in Fig.3.9 contains the essence of the magnetic
properties experimentally observed in undoped manganites[Kimura 03]. Systems with
large hopping amplitude, (JAF/t small) as LaMnO3 have a ground state with a mag-
netic order of type A and a relatively large Neel temperature. The relative value of
the AFM coupling increases when the ionic radius of the rare earth in the manganite
increases. Therefore we understand the experimental decrease of the Neel temperature
in the series of RMnO3 (R=La, Pr, Nd, Sm) as the diminution of the A-paramagnetic
critical temperature when JAF increases, see Fig.3.6 and Fig.3.9. Experimentally it is
observed that for large enough ionic radius, HoMnO3, the ground state of the undoped
manganite has a magnetic order of type E, and present incommensurate phases when
temperature increases. We claim that this situation corresponds in the phase diagram
Fig.3.9 to values JAF/t in the range 0.18-0.20. Experimentally it is also observed that in
some compounds as TbMnO3 and GdMnO3, when the temperature increases, the sys-
tem undergoes two phase transitions, first a a ferromagnetic-incommensurate transition
and, at higher temperatures, a incommensurate -paramagnetic transition. In the phase
diagram presented in Fig.3.9 similar behavior occurs for values of JAF near 0.18t.

3.5. Summary

By starting from a microscopic Hamiltonian we have derived an expression for the free
energy of undoped manganites. We have considered first the commensurate A and
E phases. For them, we have confirmed the previously reported phase diagram and
established the nature of the gap in these phases, and found the physical origin of the
finite TN the E phase.

We have quantified the competition between the short range superexchange antiferro-
magnetic interaction, and the long range double exchange ferromagnetic interaction,
using a realistic model. We find that the competition between these interactions, induc-
ing correlation with opposite sign and their different nature, results in the existence of
magnetic incommensurate phases as the recently experimentally observed in undoped
manganites. The incommensurate phases can be described as arrays of domain walls
separating commensurate phases by a distance that depends on temperature. We have
established a phase diagram and calculated the temperature dependence of the peri-
odicity of the system as a function of the relative strength of the interactions. The
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3.5 Summary

results presented in Fig.3.9 explain qualitatively the experimental results published in
Ref.[Kimura 03]
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Chapter 4

Disorder effects in the Magnetic
Properties of Manganites

4.1. Introduction

Manganites are very sensitive to disorder - disorder understood as inhomogeneities in
the materials, or more rigorously, as departures from crystallinity - . The long held
discussion to elucidate which aspects of manganites physics were intrinsic and which ones
were spurious is a most visible reflection of this property. It is common to find articles
in which several paragraphs are devoted to demonstrate the correct stoichiometry of the
samples and the crystal structure. We already discussed in the introduction chapter
the interrelation between the (possibly disorder induced) phase separation and colossal
magnetoresistance (CMR), and the relevance of the Griffiths phase, which is intrinsically
related to disorder, to the physical properties of manganites.

Other important examples of the effects of disorder that have attracted much attention
are the influence of Oxygen vacancies [Hossain 99, Ritter 97], which were surely present
in most of the early samples, and of the grain boundaries of polycrystals in the transport
properties of manganites [Rivas 00, de Andrés 99] In other works, disorder has been
introduced on purpose, to test its effects, for instance substituting Manganese cations
with Gallium or Aluminum [Sawaki 00a, Blasco 03, MARTIN 96] All these issues can
be understood as manifestations of the sensitiveness of Manganese oxide perovskites to
perturbations in general, and to different kinds of disorder in particular [Millis 03].

But there exist more subtle sources of disorder. Even in monocrystalline samples, some
degree of disorder is always present. Suppose we had a perfect perovskite where all
the sites corresponding to MnO6 octahedra were occupied by the correct species. To
introduce charge carriers we would need to dope the perovskite’s A site with cations of
different valence. This doping would be a source of disorder. When doping, the position
of the different cations is, in principle, random, they make up a solid solution. Only
very recently this more subtle kind of disorder could be controlled in experiments. We
devote this chapter to study the very notable effects that even this lighter disorder has
on the properties of manganites.
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When studying the effects of disorder in materials, two aspects are crucial. One is to have
a good control of the amount of disorder in the samples. Disorder is anyhow a vague
concept and it is sometimes difficult to determine what kind of disorder is relevant
and what is not. Attfield and coworkers [Williams 03, Rodriguez-Martinez 96] found
that in FM perovskites of the form AMnO3, the variation of Curie temperature (TC)
with disorder is related to the distribution of the A cations radius, rA, and there is no
significant dependence on the A site charge variance. How well the A sitting cations fit
in the perovskite structure is characterized by the tolerance factor (See the introduction
chap. determined by the mean size of the cations. This was soon identified as crucial
for the properties of manganites. What the work of Attfield and collaborators shows is
that not only the tolerance factor is important, but also the differences in sizes between
the different cations, a source of structural disorder, plays a very important role. They
identify the cations size variance as an adequate measure of the size differences.

The other crucial aspect is to obtain clean enough samples. By clean enough we under-
stand samples where the effect of whatever kind of disorder present does not obscure the
intrinsic behavior of the material. The obtention of highly ordered samples, have been
allowed by the advances in the synthesis, allowing careful and enlighten experiments.
Recently, some groups [Akahoshi 03, Millange 98] have been able to synthesize cation
ordered perovskites. The chemical formula of these samples is Ln0.5Ba0.5MnO3. Ln is
a rare earth, and LnO and BaO planes alternate along the c axis. These half-doped
manganites may give a good benchmark to test theories of the influence of disorder on
the electronic and magnetic properties of manganites.

Interestingly enough, as the different A site doping cations are placed in planes, they
break the isotropy of the material, and the unit cell is doubled only in one direction.
Although the environment seen by the Manganese ions might not be exactly cubic,
however, we assume that this is a minor effect.

In manganites the ferromagnetic order is driven by the motion of the carriers. Therefore,
their properties depend on the competition between kinetic energy, tending to delocalize
the carriers, and localization effects, such as antiferromagnetic coupling between the Mn
core spins and Jahn-Teller coupling. Disorder also reduces the carriers mobility, and,
thus, it strongly affects the stability of the ferromagnetic (FM) phases.

Experimental work in FM La0.5Ba0.5MnO3
1 shows[T.J.Sato 04] that disorder strongly

reduces the transition temperature and changes the character of the transition, from
continuous to weakly first order.

In the light of the experiments by Rodriguez-Martinez and Attfield, [Rodriguez-Martinez 96],
we expect that the observed[T.J.Sato 04] difference in TC between the ordered and dis-
ordered La0.5Ba0.5MnO3 perovskites is related to the different distributions of rA’s.
Note that standard ionic radii values are rA = 1.21 for La3+ and rA = 1.47 for
Ba2+[Rodriguez-Martinez 96]. In the ordered La0.5Ba0.5MnO3 perovskite, Fig. 4.1(a),

1In practice, the authors of Ref. [T.J.Sato 04] chossed to work with La0.46Ba0.54. At this doping the
compound does not show any sign of charge or antiferromagnetic order.
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Figure 4.1: Schematic representation of an ordered (a) and disordered (b)
La0.5Ba0.5MnO3 perovskite. In the ordered case planes containing La and
Ba cations alternate along the z-direction. In the disorder case the cations
are randomly distributed.

alternating planes of LaO and BaO separate MnO2 sheets in such a way that each Mn ion
has four La3+ neighbors in one direction and four Ba2+ neighbors in the opposite direc-
tion, being all the Mn ions equivalent. In the disordered perovskites, Fig.4.1(b), La and
Ba cations are randomly distributed and Mn’s are surrounded by different combinations
of divalent and trivalent cations. Similar experiments by Tokura’s group [Akahoshi 03]
extended the analysis to other rare earth manganites. Their results confirm this view,
as the the Rare Earth cations size is decreased, the depression in TC of the different
compounds, with respect to their ordered analogous increases. The picture is, then,
that environments of Mn consisting in cations with different sizes affect the physical
properties of these materials. In the example above, the bigger the difference in size
between the cations (Lanthanoids elements with respect to Barium) the most drastic
the change in the environment that different Manganese ions of each material feel. In
the ordered materials with the same composition, as they are half doped, all manganese
are equivalent to each other and no disorder due to A-site doping is present.

In the present chapter we combine Ginzburg-Landau formalism with realistic two or-
bital DE microscopic calculations, to study the effect that the disorder in the position
of the trivalent and divalent cations has on the magnetic properties of FM manganites.
We model the difference in Mn environments as a source of disorder in the electroni-
cally active Mn levels. The experimentally observations about the marked reduction
of the Curie temperature and the change in the order of the transition are recov-
ered. Our analytical results provide a framework for understanding the dependence
of TC on disorder, both, in experiments and in Monte Carlo simulations of simplified
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models[Motome 03, S.Kumar 03, C.Sen 04, S.Kumar 06, Trukhanov 02]. Different dis-
order distributions are studied in order to confirm the variance of disorder strength as
the relevant parameter to characterize the change in the magnetic properties.

4.2. Model.

As explained in the introduction chapter, in a manganite of formula R1−xAxMnO3, there
are 4− x electrons per Mn ion. The crystal field splits the Mn d levels into an occupied
strongly localized t2g triplet an a doublet of eg symmetry. Furthermore, the Hund’s
coupling in Mn ions is very large and aligns the spins of the d orbitals. The low lying
t2g triplet is thus polarized and it is commonly consider as a core spin. Effectively, there
are 1 − x electrons per Mn ions hoping between the empty eg Mn states.

The large Hund’s coupling forces each electron spin to align locally with the core spin
texture. The spin of the carriers is conserved in the hoping between Mn ions, being
the tunneling amplitude maximum (minimum kinetic energy) when the spins of the
Mn ions are parallel and the system is ferromagnetic. This is basically the so called
double exchange (DE) mechanism proposed fifty years ago [C.Zener 51, Anderson 55,
de Gennes 60] to explain FM order in manganites. When temperature increases the
kinetic energy minimized by the FM order competes with the orientational entropy of
the Mn core spins and, at TC , the system becomes paramagnetic (PM)[Calderón 98]. In
the PM phase the reduction of the kinetic energy could favor that localization effects
become more effective and a metal insulator transition could occur near the FM-PM
transition[Vergés 02]. In the case of La0.54Ba0.46MnO3, localization effects are rather
weak and the material is metallic at both sizes of the FM-PM transition. Therefore, in
our model we do not consider coupling with the lattice, however as the DE mechanism
depends strongly in the kinetic energy gain, we treat the motion of the carriers in a
realistic way by including the two eg orbitals.

We shall therefore derive an expression for the energy of the DE model in the presence
of the disorder arising form cation size mismatch, and an approximate expression for the
entropy near the FM-PM transition. With these two pieces, we build up our Ginzburg-
Landau functional.

Hamiltonian. With the above considerations, the two orbital DE Hamiltonian takes the
following form,

H =
∑

<i,j>,a,b

fi,j t
u
a,b c

+
i,acj,b +

∑

i,a

ǫi n̂i,a , (4.1)

here c+i,a creates an electron in the Mn ion located at site i in the eg orbital a (a=1,2
1=|x2 − y2 > and 2=|3z2 − r2 >). In the limit of infinite Hund’s coupling, the spin of
the carrier should be parallel to the Mn core spin Si, and the tunneling amplitude is
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modulated by the spin reduction factor:

fi,j = cos
ϑi

2
cos

ϑj

2
+ ei(φi−φj) sin

ϑi

2
sin

ϑj

2
(4.2)

where {ϑi, φi} are the polar angles of the Mn core spins. The hopping amplitude de-

pends both on the direction u between sites i and j and the orbitals involved; t
x(y)
1,1 =

±
√

3t
x(y)
1,2 = ±

√
3t

x(y)
2,1 = 3t

x(y)
2,2 = t. In the z direction the only nonzero term is tz2,2 = 4/3t

[Dagotto 02]. Hereafter t is taken as the energy unit.

The last term describes the diagonal disorder. n̂i,a = c+i,aci,a is the occupation operator
of orbital a at site i and ǫi is the energy shift produced by the chemical pressure on the
Mn ion at site i. This shift affects equally both eg orbitals. As discussed above, the
chemical pressure at site i depends on the ionic radii of the cations surrounding the Mn
ion. We assume that the total shift at site i is the sum of the shifts produced by the
eight next neighbors cations. Cations with big ionic radius induce a positive energy shift
∆, whereas cations with small ionic radius induce a negative energy shift −∆. With
this, election a Mn ion surrounded by equal number of small and large cations has zero
energy shift. The diagonal shift takes values in the range −8∆ < ǫi < 8∆. In this
description of the cationic disorder the strength of the disorder is defined by the value
of ∆.

Entropy and free energy. In order to describe thermal effects we have to compute the
free energy. In manganites the Fermi energy of the carriers is much greater than the
typical Curie temperature and we only consider the entropy of the classical Mn core
spins.

We need to compute the entropy of an isolated spin, J in a magnetic field, h. We know
the energy corresponding to each state, so statistical mechanics equations can be directly
applied [N.W.Ashcroft 76]:

exp (−βF ) =
∑

exp(−βγhJz) (4.3)

γ is the gyromagnetic ratio, relating angular momentum and magnetic dipole moment,
the rest of the notation is well known. Equation 4.3 is just a geometric series which can
be easily summed [N.W.Ashcroft 76]:

We go on by applying the thermodynamic definition of magnetization, m = −(1/β)∂F
∂h

,
and expanding it for small h and m, thus obtaining:

m =
1

3
J(J + 1)βh+

1

45
((2J + 1)4 − 1)(βh)3 +O(βh)5 (4.4)

This series can be inverted to give h as a function of m. We can then substitute in the
result of the sum of equation 4.3, and apply the definition of Free energy:

− TS(m) = F (m, h(m)) +mh(m) (4.5)
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In particular, for J = 3/2 the entropy per Mn takes the form,

S(m) =
log 2

2
− 3

2
m2 − 9

20
m4 + ... (4.6)

where m is the thermal average of the relative magnetization of the Mn core spins.

At finite temperatures the magnetization is not saturated and the spin reduction factor,
Eq. (4.2) is smaller than unity. Treating spin fluctuations in the virtual crystal approxi-
mation, the spin reduction factor is substituted by its expectation value, which for small
magnetization has the form[de Gennes 60],

fi,j ≃ fm =
2

3
+

2

5
m2 − 6

175
m4 + ... (4.7)

With this the thermal average of the internal energy per Mn ion can be written as,

E =fm

N

(∑
tua,b <c

+
i,acj,b>+ 1

fm

∑
ǫi <n̂i,a>

)
(4.8)

being N the number of Mn ions in the system. In Eq. (4.8), it is evident that the relative
importance of the disorder term increases when the magnetization, and thus the spin
reduction factor, decreases. For small values of ∆, the internal energy can be expanded
in powers of the disorder strength. As the mean value of ǫi is zero, the first finite term
is proportional to the variance, σ2(ǫi), of the diagonal disorder distribution,

E = fm

(
E0 + a

σ2(ǫi)

f 2
m

)
, (4.9)

where E0 < 0 is the kinetic energy per Mn ion in the disorder free FM phase, and

σ2(ǫi) =
1

N

∑

i

ǫi
2 . (4.10)

In Eq. (4.9), the coefficient a is negative as electrons prefer to place on sites with negative
values of ǫi.

Combining Eq. (4.6-4.10), the dependence of the free energy, F = E − TS, on the
magnetization, can be written as

F = F0 +
3

2
Tm2 +

2

5

(
E0−

9

4
a σ2(ǫi)

)
m2

+
9

20
Tm4− 6

175

(
E0−18 a σ2(ǫi)

)
m4 + ... (4.11)

and the Curie temperature takes the form

TC = − 4

15

(
E0−

9

4
a σ2(ǫi)

)
, (4.12)
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where is clear that TC decreases when the disorder strength increases. The order of the
transition can be inferred from the sign of the quartic term in Eq. (4.11). If the quartic
term is positive the transition is second order, while a negative quartic term implies the
existence of a first order phase transition. Using the previous expression for TC , a first
order transition takes place if,

σ2(ǫi) >
1

18

E0

a

(
1 + 7

2

1 + 7
16

)
. (4.13)

Equations (4.12) and (4.13) are the main results of this chapter, they show that the Curie
temperature decreases when the strength of the disorder increases, and that for strong
enough disorder the FM-PM transition changes from second to first order. Comparing
Eq. (4.12) and Eq.(4.13) it results that for changes in the Curie temperature between
30 and 40 per cent, the FM-PM transition transforms from second to first order.

4.3. Numerical results.

In order to check the approximations we have done, and the validity of the results ob-
tained, we diagonalize numerically the FM two orbital DE Hamiltonian, in the presence
of diagonal disorder, Eq. (4.1). We consider the case of disorder in the ionic radii of the
cations surrounding the Mn ions. As discussed above, this disorder produces a distribu-
tion of diagonal energy shifts in the range −8∆ < ǫi < 8∆. For a random distribution of
the two type of cations, the variance of the diagonal disorder distribution is σ2(ǫi) = 8∆2.
We have diagonalized the Hamiltonian for different disorder realizations and different
values of the disorder strength ∆. In this way we are also taking into account spatial
correlations of disorder strength among sites.

We work with a cluster containing 12×12×12 atoms and with periodic boundary con-
ditions. By studying smaller clusters we have checked that our results are free of finite
size effects.

In Fig.4.2a we plot, for the full polarized FM phase, the internal energy per Mn ion as
function of the disorder strength ∆. As expected[G.D.Mahan 00], for small values of the
disorder the internal energy decreases quadratically with ∆. Taking into account the de-
pendence of the internal energy on the spin reduction factor, in mean field approximation
the Curie temperature gets the form

TC = −2

3

∂ E

∂ m2
. (4.14)

In Fig.4.2b, we plot TC , obtained numerically from the internal energy, as function of
∆. In the disorder free case, TC ∼ 0.4t that compared with the Curie temperature of
the ordered La0.5Ba0.5MnO3, TC=350K, [T.J.Sato 04], implies a value of the hopping
amplitude of t ∼ 0.076eV . For changes up to 30 per cent, we find that the decrease of
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Figure 4.2: Polynomial fit to a) internal energy (Eq. 4.8) and b) Curie temperature as
obtained from numerical simulations. Bars in a) indicate the typical inde-
termination in the numerical calculations. In b) the dashed line corresponds
to the quadratic approximation to TC (Eq. (4.12)). The vertical dashed
lines separates regions with first and second order FM-PM transition. c)
Shows the quartic coefficient in the expansion of the free energy (Eq. (4.11))
evaluated at the Curie Temperature.
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Figure 4.3: Curie temperature versus variance of diagonal disorder for different models
of disorder. The different kinds of disorder are explained in the text

TC with ∆ can be fitted very accurately with a quadratic dependence. Experimentally
differences in TC between the ordered and disordered samples in La0.5Ba0.5MnO3 range
between 14 per cent [T.J.Sato 04] and 33 per cent [dabrowski 02], therefore we expect
that for manganites with atomic radii size disorder, the expressions obtained analytically
for TC , Eq. (4.12), and the order of the transition, Eq. (4.13) should be valid.

In fig.4.2b, we also indicate the disorder strength for which the magnetic transition
changes from second to first order. As discussed above, the transition becomes first
order for changes in TC larger than 30-40 per cent. In the case of La0.5Ba0.5MnO3,
disorder produces changes in TC of 15-30 per cent and therefore our results could ex-
plain quantitatively the experimentally observed change in the order of the magnetic
transition[T.J.Sato 04]. As the critical disorder is close to that found in La0.5Ba0.5MnO3,
we expect that in FM manganites with smaller differences in the atomic radii, for exam-
ple La0.5Sr0.5MnO3 (rA = 1.21 for La3+ and rA = 1.31 for Sr2+[Rodriguez-Martinez 96])
the effect of disorder in TC should be smaller and the magnetic transition should be
second order independently of the order in the position of the cations.

Finally we want to check that, as proposed by Rodŕıguez-Mart́ınez and Attfield[Rodriguez-Martinez 96],
the relevant figure for quantifying the disorder is the variance of the disorder distribution.
We have repeated the numerical calculation of TC for different distribution of diagonal
disorder. Apart from the cation disorder distribution , we have also analyzed a uniform
distribution of the diagonal energy shift between two values, a binary distribution and
a gaussian distribution of the diagonal disorder.

The results are plotted in Fig.4.3. For all models studied, we find that for moderate
disorder strength, the Curie temperature decreases linearly with the variance of the
disorder. There are deviations from this dependence in the limit of strong disorder. In

69



Chapter 4 Disorder effects in the Magnetic Properties of Manganites

Figure 4.4: Participation number for the different eigen functions of the system as a
function of the eigen energies. The position of the Fermi energy (blue arrows)
and the approximate position of the mobility edge (black arrows) are shown.

this limit the carriers start to localize in the sites with smaller energy and perturbation
theory becomes not valid. This regime is not the relevant one in FM manganites, and
the results shown in Fig. 4.3 agree with the experimental results obtained by Rodŕıguez-
Mart́ınez and Attfield[Rodriguez-Martinez 96].

*******************************************************************************

In fact, the calculation of the participation number [not ] shows that much higher disor-
der strengths are needed in order to produce an insulator (at half doping) that the ones
producing a change in the order of the magnetic transition. Although our calculations
are not well refined (a more detailed finite size scaling its needed to find the exact po-
sition of the mobility edge), they are sufficient to make a brief quantitative analysis. In
fig 4.4 it is shown that a disorder strength of ∆ & 2 is needed to turn the system into
insulator. For the PM phase this would mean σ2 ≈ 75teff . This results are for a two
orbitals DE model with cation disorder. From the numerical data of Li et al. [Li 97] we
find that a similar value for a one orbital model with uniform distribution of disorder.
We conclude that the influence of disorder in the magnetic properties of FM manganites
is not necessarily related to the proximity to the insulating phase, To reproduce this
insulating it is needed to consider electron-phonon coupling [Vergés 02, Calderón 99b],
that does not play a key role on the materials which present metallic behavior at both
sides of the FM-PM transition.

*******************************************************************************

The numerical results support our analytic findings. For moderate disorder strength

70



4.4 Summary

the variation of the Curie temperature and the order of the transition depend on the
variance of the distribution of the diagonal energy shifts in the electronic Hamiltonian.

4.4. Summary

In summary, we have studied a realistic model of manganites by means of exact mi-
croscopic calculations and Landau Theory formalism. The different sizes of cations
surrounding a manganese ion are included in the model as an energy shift in that man-
ganese site. This model reproduces the experimental results. It explains the observed
strong reduction of TC in disordered samples with respect to ordered ones[T.J.Sato 04].
Moreover, it demonstrates, in agreement with experiments[T.J.Sato 04], that disorder
makes the FM-PM transition more abrupt and, for a big enough disorder strength,
this transition becomes first order. Finally our formalism identifies in a natural way
the variance of the distribution of the diagonal energy shifts as the relevant parame-
ter to characterize changes in the magnetic properties, independently of the model of
disorder[Rodriguez-Martinez 96, Fontcuberta 98, Collado 05].
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Chapter 5

Heterostructures of Manganites

5.1. Motivation

In previous chapters, we have focused on intrinsic properties of manganites. Even disor-
der introduced by the random positions of some cations, studied in chapter 4, might be
classified as an intrinsic effect. However, not only intrinsic properties of bulk materials
are interesting; mutual influence of different compounds and physical behavior at the
reduced length scales typical in electronic devices, or interfacial effects are important
subjects in applied and basic condensed matter physics. In this chapter we study an
example of manganite heterostructure paying close attention to all these issues.

Our aim is encouraged by recent advances in some related systems. New electronic
phases appear at the interfaces of strongly correlated systems heterostructures (elec-
tronic reconstruction). A high mobility two-dimensional electron gas forms at the inter-
face between a correlated Mott insulator and a band insulator [Okamoto 04, Huijben 06,
Kancharla 06]. At the interfaces between ferromagnetic (FM) metallic manganites and
insulators, charge, orbital and spin ordered phases [Lin 06, Brey 07] appear. Manganese
perovskites are specially important because of their potential application in spintron-
ics [Zutic 04]: in the ferromagnetic phase they are half-metals [Pickett 96, Park 98b] and,
therefore, very efficient spin injectors and detectors [Bowen 03, Yamada 04, Bibes 07].

The rest of the chapter is divided as follows. In section 5.2 we discuss recent experiments
on manganite heterostructures relevant for our calculations. In Section 5.3 an effective
model is discussed; it is also shown that it correctly reproduces the essential features
of manganites’ phase diagram. The application of this model to heterostructures is the
subject of sections 5.4 and 5.5. Section 5.4 is devoted to explore the phase diagram of
La2/3Sr1/3MnO3 (LSMO) and Pr2/3Ca1/3MnO3 (PCMO) multilayers of equal thickness.
Magnetic and Transport properties of a spin valve are studied in section 5.5. It is also
composed of LSMO, which makes up the FM metallic leads, and a thin insulating barrier
of PCMO, which turns metallic under certain conditions.
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5.2. Experiments In Manganite Heterostructures

Because manganites present a strong coupling between the electric and magnetic proper-
ties, these materials are ideal candidates for spintronics applications. The most popular
existing spintronic devices are spin valves. A spin valve is a three layered device, with a
first FM lead that is used as a spin polarizer, a non-ferromagnetic spacer, and a second
FM lead used as spin analyzer. These devices are based in the fact that the electrical
resistance of a material connected to spin polarized source and drain, strongly depends
on their relative orientation. The efficiency of a spin valve is given by tunneling mag-
netoresistance (TMR) [Jullière 75], defined as the difference in resistance R between
parallel (P) and antiparallel (AP) relative orientations of the magnetization in the FM
metallic electrodes [TMR= (RAP − RP)/RAP].

Figure 5.1: Resistivity as a function of temperature for an all-manganite multilayer,
according to [Li 02]. The multilayer is composed of alternate layers of
100Å thick LCMO and 20Å thick PCMO. The inset shows MR in a field
of 7 kOe as a function of temperature for the same multilayer.

Manganite surfaces are known to behave differently from the bulk, the typical example
being the striking suppression of the spin polarization of a free surface at temperatures
much lower than the bulk FM TC [Park 98a, Calderón 99a]. This could have a very neg-
ative effect on the efficiency of spin valves because TMR depends very strongly on the
properties of the electrode/barrier interface [LeClair 00]. Indeed, early reports of TMR
in manganite heterostructures showed a very strong decrease with increasing tempera-
ture [Lu 96]. The reduction of the spin polarization at the interface occurs because the
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lack of carriers at the interface attenuates the double exchange FM coupling between the
Mn ions [Brey 07]. Also strain at the interfaces might lead to a depression of the mag-
netic properties of the manganite FM layer [Infante 07]. The optimization of structural
matching and the use of nonpolar interfaces make possible to achieve spin polarization
close to that of the bulk up to higher temperatures [Yamada 04, Garcia 04, Ishii 06], with
the concomitant enhancement of TMR. Alternatively, the use of an insulating manganite
as a spacer in the spin valve would provide a very good match to the lattice structure
of the electrodes and a smoother variation of the carriers density.

Figure 5.2: Magnetization profile for a multilayer composed of 11.9 nm thick LSMO
layers and 2.7 nm thick PCMO layers. The data is obtained by means of
Polarized Neutron Reflectometry [Niebieskikwiat 07].

In manganite heterostructures the interfaces play a key role in determining the elec-
tric and magnetic properties. In Ref. [Li 02] the authors try to obtain high values
of MR by growing multilayers of LCMO and PCMO. For very thin layers of PCMO
(≤20Å ) separated by thicker layers of LCMO, transport properties present an interest-
ing behavior as a function of temperature (Fig. 5.1). As temperature is lowered, two
transitions are found. First, a paramagnetic-ferromagnetic transition takes place, it is
accompanied by a change in the slope sign of the resistivity as a function of tempera-
ture. This behavior is also observed in pure LCMO, suggesting that LCMO layers order
FM at this temperature. In a second transition, magnetization increases and resistivity
suddenly drops (∼50% decay in 1K). The authors attribute this drop to the onset of fer-
romagnetism in all the system. Similar results were obtained in Refs. [Venimadhav 01,
Lian 99]. Notice that FM order can be induced in bulk PCMO, but a magnetic field
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of 2 Tesla is needed [Dagotto 02]. In LSMO/LCMO based heterostructures, TC and
the range where large MR exists increase with respect to LCMO [Alldredge 04, Jain 06,
Mukhopadhyay 06]. Finally, Niebieskikwiat and coworkers [Niebieskikwiat 07] studied,
by means of Polarized Neutron Reflectometry, the magnetization profile along the growth
direction in a LSMO/PCMO multilayer. They found that a FM moment is induced in
the PCMO layers, Fig. 5.2.

5.3. Effective Model for Manganites

We have seen along this thesis that changing the hole doping and/or the size of the
ions of the manganites, different electronic and magnetic phases arise (See Figs. 2.1 and
2.5 in chapter 2). In general, Double exchange favors FM correlations, while superex-
change tends to produce antiferromagnetic (AF) order. Double exchange efficiency is
directly related to the energy gained in the electron transfer among Mn ions (see In-
troduction), and this obviously depends on bandwidth and number of carriers. But the
relative strength of this interactions is very sensitive to many parameters, (which often
have subtle influences among themselves) that measure the effects of different degrees of
freedom. Electron phonon coupling localizes carriers and makes the hoping of electrons
less favorable, disorder produces local distortions which reduce the overlap of the rele-
vant orbitals, again reducing hopping. Departures from the perfect perovskite structure
produce a similar effect in the hole material. These factor also influence superexchange
interactions.

Besides the issue of the relative strength of the interactions, there is the problem on how
the compromise between the two opposite tendencies (FM and AF) leads to a ground
state. eg orbitals that build up the conduction band are anisotropic, with anisotropic
overlaps, and their energy is sensitive to the geometry of the environment. This allows
symmetry to be broken in many different ways. Here also bandwidth and filling play a
crucial role, determining which orbitals are occupied.

Despite the complexity and the numerous parameters playing a role, one might think
that once a material is synthesized, the number of carriers, and the ratio between band-
width and the effective strength of antiferromagnetic interactions determine the magnetic
properties of the material. In this spirit, the authors of Ref. [et al. 02] drew an schematic
phase diagram (reproduced in Fig. 5.3 b)). A similar approach was used in recent the-
oretical works. A Double Exchange model with effective antiferromagnetic interactions
reproduces the phase diagram of undoped manganites (Chapter 3 and [Salafranca 06b])
, including commensurate-incommensurate phase transitions. In [Brey 07], Brey studied
an insulator/manganite heterostructure with analogous model.

76



5.3 Effective Model for Manganites

Figure 5.3: a) Phase diagram for homogeneous materials described by Hamiltonian 5.1.
F is the ferromagnetic phase, A , E, C and CE antiferromagnetic phases are
described in Appendix B. The G-antiferromagnetic phase ((π, π, π) wave
vector) is not included. Equivalent phase diagram by Kajimoto and cowork-
ers [et al. 02], it is representative of much experimental work and present
understanding of manganites physics.

The Hamiltonian used in this chapter has the following terms.

H = −
∑

i,j,γ,γ′

fi,jt
u
γ,γ′C

†
i,γCj,γ′ +

∑

i,j

J ij
AFSiSj

+ U ′
∑

i

∑

γ 6=γ′

niγniγ′ +HCoul (5.1)

where C†
i,γ creates an electron on the Mn i-site, in the eg orbital (see Chapter 1) .

〈ni〉 =
∑

γ〈C
†
i,γCi,γ〉 is the occupation number on the Mn i-site. The hopping am-

plitude depends on the Mn core spins orientation given by the angles θ and ψ via
fi,j = cos(θi/2) cos(θj/2) + exp[i(ψi − ψj)] sin(θi/2) sin(θj/2) (double-exchange mecha-

nism), and on the orbitals involved t
x(y)
1,1 = ±

√
3 t

x(y)
1,2 = ±

√
3 t

x(y)
2,1 = 3 t

x(y)
2,2 = 3/4 tz2,2 = t

where the super indices x,y, and z refer to the direction in the lattice. All the parame-
ters are given in units of t which is estimated to be ∼ 0.2 − 0.5 eV. JAF is an effective
antiferromagnetic coupling between first neighbor Mn core spins.

U ′ is a repulsive interaction between electrons on a site lying on different orbitals, and
HCoul is the long range Coulomb interaction between all the charges in the system,
treated in the mean-field approximation. It can be ignored for bulk (homogeneous)
phases but it is crucial for heterostructures.

HCoul =
e2

ǫ

∑

i6=j

(
1

2

〈ni〉〈nj〉
|Ri −Rj |

+
1

2

ZiZj

|RA
i − RA

j |
− Zi〈nj〉

|RA
i − Rj |

)
(5.2)
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Chapter 5 Heterostructures of Manganites

with Ri the position of the Mn ions, eZi the charge of the A-cation located at RA
i , and ǫ

the dielectric constant of the material. The strength of the Coulomb interaction is given
by the dimensionless parameter α = e2/aǫt [Lin 06].

The electron-lattice interaction has not been explicitely included in the Hamiltonian (5.1).
However, the effect of this coupling on the ground state energies can be described using an
effective JAF [van den Brink 99b]. In particular, the ground state of Hamiltonian (5.1)
for a bulk system with JAF & 0.2t is the CE-type AF ordering associated to the lattice
distortions that produce the charge and orbital ordering illustrated in Fig. 5.7. The val-
ues for JAF that effectively include the electron-lattice coupling are therefore larger than
the ones inferred from the magnetic ordering only (JS

AF from superexchange between the
t2g electrons is ∼ 1 − 10 meV) [Dagotto 02].

By choosing constant JAF , we can calculate the energy of the different bulk phases. In
fact, this model reproduces the phase diagram of [et al. 02] surprisingly well (see Fig. 5.3
b)). From the comparison of the two phase diagrams, it is possible to get an estimation
of the appropriate values of the effective antiferromagnetic coupling for the different
compounds.

We shall use this model to study magnetic and transport properties of heterostructures in
this chapter. In order to simulate the different materials composing the heterostructures,
different values of JAF are used for the corresponding regions of the system. In order to
make a realistic description of the interface, we consider an average JAF for Mn ions at the
interface. The Hamiltonian is solved self-consistently for the different heterostructures
described below.

5.4. LSMO//PCMO Multilayers

Experiments discussed in section 5.2 demonstrate that the magnetic ordering of a mate-
rial is strongly influenced by the boundary conditions: whether it is found in bulk, thin
film, or in a multilayer under the influence of a neighboring material. Here we explore
the phase diagram of multilayers composed of two manganites with similar composition
and very different magnetic and electronic properties.

In particular, we study a multilayer system composed of layers of LSMO and PCMO
of six unit cells thickness. The emphasis is made on relative stability of the FM and
CE magnetic orders, that are found in these compounds in their bulk form. The main
results of this section are: i) Charge transfer between compounds greatly influences the
magnetic phase diagram. In order to obtain a realistic and physically coherent charge
profile, Coulomb interaction must be taken into account. ii) Due to the particular density
of states of the CE phase, Fig.5.4, the FM phase is more stable. For a significant range of
parameters characterizing the two materials, FM correlations are induced in the PCMO
layers close to the interfaces.
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5.4 LSMO//PCMO Multilayers

Figure 5.4: Density of states (DOS) for the FM and CE orderings considered. The lower
energy gap in the CE phase corresponds to an x=0.5 filling, as shown in Fig.
5.3, experimentally, it is observed that the CE phase is most stable at this
band filling.

These main results are summarized in Fig. 5.5. For simplicity only some particular
configurations are included: the obvious magnetic configuration as inferred from bulk
phase diagram, in which LSMO is in the FM state and PCMO presents CE order (labeled
I in Fig. 5.5); and slight variations on this, configuration II where FM order extends to
the Mn ions in PCMO next to the interface, and configuration III where all the Mn ions
in PCMO and those in LSMO next to the interface are CE ordered. Other configurations
in which all the system is in the FM or CE state are stable for some range of parameters
but are not included in Fig. 5.5 for the sake of simplicity.

This way we investigate mutual influence of the two magnetic orderings, whether FM
correlations are induced in PCMO, it is energetically more favorable to have CE ordering
in the region of LSMO or none of these effects take place. Each material is described
by an effective value of JAF as explained in previous sections. JAF for PCMO is labeled
JPC , and the corresponding values are in the vertical axis, while JLS are the JAF values
for LSMO and are plotted on the horizontal axis in Fig. 5.5. Notice that the bulk phase
diagram, Fig. 5.3, and the fact that bulk PCMO is CE ordered imply that JPC is larger
that the critical value separating CE and FM phase, JPC & 0.18, equivalently JLS <
0.18 . A slightly wider range of values have been included in Fig. 5.5 so that the correct
limiting behaviours are included.

The phase diagram for a model with no long range Coulomb interaction is drawn in Fig
5.5 b). As one could naively expect, the larger region in of the phase diagram recovers
the bulk ordering FM for LSMO and CE for PCMO (region I). FM correlations appear
in PCMO (region II) only for very low values of JPC, that are not appropiate to describe
this material. A similar situation appears when looking for the range of parameters
where CE ordering is induced in LSMO (region III), the values of JPC are larger than
expected for a FM metallic material. The magnetic ordering in the absence of long
range Coulomb interaction is solid and corresponds to a configuration in which each
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Figure 5.5: Phase Diagram of a manganite multilayer composed by LSMO and PCMO
layers 6 unit cell thick. The horizontal and vertical axis correspond to the
strength of the effective antiferomagnetic coupling in the layers. α measures
the strength of the Coulomb interaction. a) Without considering Coulomb
interaction, and b) for a realistic value of Coulomb interactions. An scheme
of the different configurations considered in the phase diagram is shown, the
shadowed area corresponds to CE order, while un-shadowed area corresponds
to FM order. Configurtaion I therfore corressponds to LSMO and PCMO
in their bulk magnetic ordering (6 u.c. FM and 6 u.c. CE), configuration
II correponds to FM ordering in Mn ions of PCMO next to the interface (8
u.c. FM and 4 u.c. CE), and configuration III correponds to CE ordering in
Mn ions of LSMO next to the interface (4 u.c. FM and 8 u.c. CE). Precise
definitions of the parameters and the magnetic orderings are given in the
text.

material is ordered with the same magnetic ordering it presents in bulk. However, a
closer look at the charge density profile (top panel of Fig. 5.6, only the most relvant
configurations, I and II, are included) reveals that the situation is similar to the phase
separation discussed in Ref. [van den Brink 99b]. Due to the existance of a Gap at
x=0.5 for the CE phase, (Fig. 5.4) there exists a phase separated state in the double
exchange model for a wide range of dopings. This phase separtion includes a CE phase
with electron density n=0.5 and a FM phase with a higher electron density. We see that
the situation is quite similar in the multilayer. Top panel of Fig. 5.6 shows that charge in
the CE region is actually 0.5 electrons per Mn except in the layers next to the interface.
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5.5 All Manganite Spin Valve

In fact, the heterostructured nature of the system is providing an ideal framework for
phase separation to take place, since we have regions (PCMO layers) more favorable for
the CE phase and regions more favorable for the FM pahse.

It has been argued [Dagotto 02] that phase separation scenario does not survive the
consideration of long range Coulomb interaction. For our particular problem, Coulomb
significantly alters the magnetic phase diagram, Fig. 5.5, left panel. The relative stablil-
ity of Configuration II (FM correlations within PCMO) is greatly enhanced. Again, a
physical interpretation can be made in terms of charge transfer. Charge profile in config-
uration I (Fig. 5.6, botton) shows that, although Coulomb repulsion greatly moderates
charge transfer, electronic density in the FM phase is greater that in the CE phase. A
charge dipole is created at the interface, some excess of (negative) charge exists in the
FM region close to the interface, this excess decays to the bulk value with a decay lenth
of around three unit cells. Equivalently the CE phase is electron deficient near the in-
terfaces. Let us recall the different density of states of the two phases. The existence of
a gap in the CE phases, implies that much energy is gained if electrons are transfered to
the FM phase, while the energy of the FM phase depends little on the electronic density.
When JPc is small enough (although still adecuate for PCMO) a better energy balance
can be reached by switching from configuration I to configuration II. The spins of Mn
in PCMO nest to the interface order ferromagnetically. The dipole then moves with the
magnetic interface, and this way the proportions of Mn ions in the CE phase and low
chrage increases (low charge means less than the bulk value of 2/3 and closer to the ideal
value of 1/2). This effect is more important in thin layers because electron poor regions,
of characteristic lenth of 3 or 4 lattice parameters, overlap, as it can be observed in Fig.
5.6 b). The aditional effect of the energy gain due to further delocalization of carriers
in the bigger FM region of configuration II (as compared to confioguration I) is much
smaller as it is unobservable in the absence of Coulomb interactions.

5.5. All Manganite Spin Valve

In this section we study a spin valve where the barrier is an AF insulating manganite
and analyze the charge distribution, magnetic ordering, and the interplay of the dif-
ferent orders in the different layers. In particular, calculations are performed in the
trilayer La2/3Sr1/3MnO3/Pr2/3Ca1/3MnO3/La2/3Sr1/3MnO3 illustrated in Fig. 5.7 (mul-
tilayers with the same composition were experimentally studied in [Niebieskikwiat 07]).
Our main results are: i) a FM moment is induced in the PCMO layer in accordance with
[Niebieskikwiat 07], ii) the ground state configuration in the PCMO layer depends on
the relative orientation of the magnetization in the LSMO layers and, as a consequence,
the system shows a large TMR (see Fig. 5.5), iii) in the P configuration, the application
of an external magnetic field affects the PCMO layer magnetic ordering giving rise to
negative MR (see Fig. 5.5). In general, we find that the itinerant carriers in the leads try
to minimize their kinetic energy penetrating into the insulating spacer. This enhances

81



Chapter 5 Heterostructures of Manganites

0.5

0.6

0.7

0.8

ρ

6 u.c. FM
8 u.c. FM

0.6

0.7

ρ

 α=2

α=0

LSMOPCMO

Figure 5.6: Charge distribution for the multilayer consisting in 6 u.c. thick LSMO layers
and 6 u.c. thick PCMO layers. Average charge in the different Mn sheets is
shown only for the two most stable phases of Fig. 5.5. In the absence (α=0,
top panel), and with a realistic strentgth of Coulomb ionteraction (α=2,
botton panel). The average electronic charge is shown with a dashed line,
it coincides with the background charge arising from divalent and trivalent
cations. Notice the different scale in the top and botton panels.

the FM double exchange mechanism in the first layers of the manganite barrier and
produces an effectively thinner insulating barrier.

We address these issues by finding the minimal energy spin, charge and orbital configura-
tion in a very thin PCMO spacer [two (PCMO-2) to three (PCMO-3) lattice parameters,
a, wide] between two wider and perfectly ferromagnetic LSMO layers. The tight-binding
Hamiltonian is described in section 5.3

In Fig. 5.8 we show the total energy versus JPCMO for a pure FM, CE and an inter-
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5.5 All Manganite Spin Valve

Figure 5.7: Schematic view of the heterostructure under consideration. LSMO stands for
La2/3Sr1/3MnO3 and PCMO for Pr2/3Ca1/3MnO3. At this doping (x = 1/3),
bulk LSMO is FM and metallic, and bulk PCMO is CE-type AF, with FM
zig-zag chains in the xy-plane antiferromagnetically coupled to neighboring
chains, orbital/charge-ordered and insulating.

mediate canted configuration of the PCMO-2 layer for P and AP configurations of the
electrodes. All the other magnetic orderings considered were higher in energy in this
range of parameters. For 0.17 t < JPCMO < 0.3 t, the magnetic ground state configu-
ration in the spacer is always canted with the canting angle depending on the value of
JPCMO and on the relative orientation of the magnetization in the LSMO layers. In the
P configuration [Fig. 5.8(a)], PCMO tends to order more FM and collinearly with the
electrodes, while for the AP case [Fig. 5.8(b)], the PCMO configuration corresponds to
smaller magnetization and the spins lie perpendicular to the electrodes magnetization.
The results for PCMO-3 (not shown) are qualitatively similar.

For PCMO-2 and JPCMO relatively small (. 0.24 t), the magnetic order at the barrier
is canted, and the charge/orbital order is mostly suppressed due to charge transfer
between the layers. FM correlations and, due to double exchange, conductance are
larger in the P configuration than in the AP configuration. Therefore, this geometry
could be used as a magnetic sensor. The conductance has been calculated numerically
via Kubo formula [Mayr 01, Calderón 99b] for a trilayer with semi-infinite FM LSMO
leads. The results for a PCMO-2 spacer are plotted in Fig. 5.5 (a) where a finite TMR
for JPCMO . 0.24 t is shown. The superstructure in the curve is due to numerical
inaccuracies except for the peak at JPCMO ∼ 0.17 t, which is quite robust (the TMR
increases monotonically in the range 0.1 t < JPCMO . 0.17 t). This peak appears because,
below ∼ 0.17 t, the P ground state configuration is almost FM [Fig. 5.8 (a)] while the
AP configuration is already canted [Fig. 5.8 (b)] and, as a consequence, RAP increases
faster with JPCMO than RP.

For PCMO-3 there is a range of parameters, 0.22 t ≤ JPCMO ≤ 0.24 t, for which the TMR
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Figure 5.8: Energy versus JPCMO for a parallel (a) and antiparallel (b) configuration of
the LSMO layers, with PCMO thickness of two lattice parameters, PCMO-2.
The dashed lines are the energy for the pure FM and pure CE configurations
in the intermediate PCMO layer. The actual ground state (solid line) corre-
sponds to canted intermediate configurations (illustrated in the insets). The
big arrows represent the magnetization orientation in the FM layers and the
small ones represent the order considered in the PCMO-2 layer. In the CE
and canted phases each arrow in the PCMO layer represents a FM zig-zag
chain (see Fig. 5.7).
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Figure 5.9: Charge distribution for a trilayer illustrated in Fig. 5.7 with a PCMO layer
two unit cells thick for different strengths of the Coulomb interaction. No-
tice that charge prefers the ferromagnetic layer due to the lower chemical
potential of this phase and how a surface dipole is formed when Coulomb
interaction is taken into account. In this latter case, bulk charge density of
2/3 is recovered in LSMO after a decay length of about 3 unit cells

is close to its maximum possible value of 100%. In this range, the P configuration is
metallic as it has a relatively large FM component in the three Mn planes that constitute
the barrier, while the AP configuration is insulating and corresponds to perfect CE in
the middle atomic plane and canted FM in the outer planes. For smaller values of JPCMO

(≤ 0.2 t), for both the P and AP configurations, the middle plane is a perfect CE while
the outer planes are essentially FM and parallel to the nearest electrode; this leads to
RP = RAP and, hence, TMR= 0. The negative TMR at JPCMO ∼ 0.22 t is produced by
the different dependence of the canting angle on JPCMO for P and AP configurations.
The different behavior of the TMR in PCMO-2 and PCMO-3 is due to the limited charge
transfer in the middle Mn plane of the wider barrier. For large JPCMO (> 0.24 t), see
Figs. 5.5 (a) and (b) the AF ordering in the barrier is preserved and the system does
not show TMR at all: both RP and RAP are strictly 0. A systematic analysis for wider
barriers is out of our computational capabilities. The calculations indicate that the
penetration of the wave functions of the FM leads into the insulating barrier is always
limited to the first two or three layers, and therefore these results suggest that significant
values of TMR are either absent or appear in a narrow range of parameters for barriers

85



Chapter 5 Heterostructures of Manganites

10

20

30

40
T

M
R

 (
%

)

0.16 0.20 0.24 0.28
J

PCMO

-20

0

20

40

60

80

100

T
M

R
(%

)
a)

b)

Figure 5.10: Tunneling magnetoresistance versus JPCMO calculated for PCMO layer
thicknesses of two (a) and three (b) lattice parameters. For large values of
JPCMO, the TMR is very small because the PCMO spacer is AF and insulat-
ing for both P and AP configurations. For JPCMO < 0.24 t (a) and (b) show
different qualitative behaviors (see text for discussion). The maximum sen-
sitivity to magnetization is reached in PCMO-3 for 0.22 t < JPCMO < 0.24 t
where the system is metallic in the P configuration while insulating in the
AP configuration.
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thicker than three atomic layers.

We have also calculated the MR in the P configuration that results of applying an
external magnetic field parallel to the magnetization in the electrodes. The results are
shown for PCMO-2 and PCMO-3 in Fig. 5.5. We define MR= (R(H) − R(0))/R(0) ×
100% so its maximum possible absolute value is MR= 100%. The dots represent the
numerical values and the steps are an artifice of the calculation that considers a discrete
set of values of the canting angle. The lines are a fit to the data. When a magnetic
field H is applied, the system is effectively moving towards smaller values of JPCMO

(see Fig. 5.8) and therefore towards less resistive configurations, hence the negative MR.
This MR is produced by the alignment of the barrier spins with the applied field and is
smaller than the CMR measured in bulk PCMO [Anane 99] which is probably related
to inhomogeneities and phase separation. The real advantage of this heterostructure
as a device is that its resistivity can be orders of magnitude smaller than the bulk
PCMO’s (mainly because there is no gap at the Fermi energy for the thin spacers
in the P configuration). As a guideline, the resistivity of bulk LSMO at low T is ∼
10−4 Ω.cm [A.Urushibara 95], much smaller than that of bulk PCMO & 105 Ω.cm (∼
10−3 Ω.cm at 7 T) [Yoshizawa 96]. These results agree with the experimental work
presented in ref [Li 02]. For LCMO(100Å)/PCMO(15Å) multilayers, they find that
metalicity is induced in PCMO at low temperatures. The behavior of resistivity versus
temperature also agrees with the results in Fig.5.8. As T is raised, spin disorder reduces
the effective hopping, and the relative strength of the superexchange interaction, JPCMO,
increases. This explains the experimental observation that ferromagnetic correlations in
PCMO are lost with increasing temperature [Li 02, Venimadhav 01].

It is well known that strain (produced by lattice mismatch between the substrate and
the thin films) can affect the orbital ordering [Y.Tokura 00]. In heterostructures with
an STO substrate [Niebieskikwiat 07] the in-plane lattice parameter is 3.90Å for all
layers while the out-of-plane lattice parameters are 3.85Å (LSMO) and 3.76Å (PCMO),
slightly smaller (less than a 2% in any case) than the bulk values. Our calculations are
done in a cubic lattice but the variations in unit cell dimensions in actual heterostruc-
tures [Niebieskikwiat 07] are not expected to produce a dramatical change in the orbital
ordering [Y.Tokura 00]. In any case it would emphasize the tendency to CE ordering in
the PCMO barrier that can be included in our model simply by increasing the value of
JPCMO. Strain can also produce phase separation [Infante 07] and colossal magnetore-
sistance [K.H.Ahn 04]. The inclusion of phase separation in our model would lead to
an increase of both TMR (Fig. 5.5) and MR (Fig. 5.5) with respect to the calculated
values.

In conclusion, we study an all manganite trilayer. It is composed of two ferromag-
netic metallic manganite electrodes (La2/3Sr1/3MnO3) and a thin AF manganite barrier
(Pr2/3Ca1/3MnO3). Both materials have, a priori, suitable properties for an efficient spin
valve device. LSMO is half metallic and it has relatively low resistivity. PCMO growths
in the same crystal structure as LSMO, and with a very similar lattice parameter. We
find that the spin valve presents high values of TMR. The ground state configuration in
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Figure 5.11: Magnetoresistance in the parallel configuration upon application of a small
magnetic field in the x-direction for three different values of JPCMO (a)
PCMO-2 and (b) PCMO-3. t = 0.25 eV is used for the estimation of the
magnetic field H . The lines are fits to the dots.
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the PCMO layer depends on the relative orientation of the magnetization in the FM elec-
trodes. For a relevant range of parameters the electronic state of the PCMO slab in the
parallel configuration is metallic whereas it is insulating in the antiparallel arrangement.
Therefore it might be possible to reversibly switch the system between a metallic and
insulating state. We also find that, due to the coupling of the electrical and magnetic
properties, the resistance of the heterostructure depends on an applied field, presenting
large negative magnetoresistance. These effects are manifestations of the enhancement
of double exchange effects in the AF slab due to the presence of the neighbors FM slabs.
This mechanism explains some experimental observations in manganite multilayers: the
onset of a metallic state [Li 02, Venimadhav 01], reduction of resistivity and increase of
magnetoresistance [Lian 99, Alldredge 04, Jain 06, Mukhopadhyay 06].

In Fig. 5.8 we show the total energy versus JPCMO for a pure FM, CE and an inter-
mediate canted configuration of the PCMO-2 layer for P and AP configurations of the
electrodes. All the other magnetic orderings considered were higher in energy in this
range of parameters. For 0.17 t < JPCMO < 0.3 t, the magnetic ground state configu-
ration in the spacer is always canted with the canting angle depending on the value of
JPCMO and on the relative orientation of the magnetization in the LSMO layers. In the
P configuration [Fig. 5.8(a)], PCMO tends to order more FM and collinearly with the
electrodes, while for the AP case [Fig. 5.8(b)], the PCMO configuration corresponds to
smaller magnetization and the spins lie perpendicular to the electrodes magnetization.
The results for PCMO-3 (not shown) are qualitatively similar.
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Appendix A

Conductance

The standard approach to calculate the conductance of microscopic systems is the Kubo
formula:

G = −e2hπ lim
ω→0

∑

α,β

| < α|v̂x|β > |2 × fα − fβ

ǫα − ǫβ
δ (ǫβ − ǫα − ~ω) (A.1)

Kubo formula gives the coefficient of the linear system’s response to an electric field.
It can be obtained by first order perturbation theory. Details about the derivation can
be found in [Datta 97]. As pointed out by Vergés [Vergés 99b], for finite size systems,
numerical troubles arise with the use Eq.A.1 since the conductivity is obtained as a
sum of delta functions. Avoiding them with different averaging procedures distorts the
calculation of the static conductance. An alternative approach is a calculation based on
the Green function of the system (Ĝ) [Fisher 68]. The equivalent to Eq. A.1 then reads
[Datta 97, Vergés 99b]:

G = 2

(
e2

h

)
Tr
[
(i~v̂x)Ĝ(E)(i~v̂x)Ĝ(E)

]
, (A.2)

where the velocity operator is defined in terms of the current:

i~Î = −ei~v̂x. (A.3)

A very similar problem was already addressed in Ref. [Vergés 99b]. In particular, the
implementation there was restricted to a one orbital per site system in two dimensions
within tight binding approximation. Here, we describe a straight-forward generalization
for the case of any orbitals per site and three dimensions, and apply a more sophisticated
and efficient method for the self-consistent calculation of the Green functions. For this
last purpose we use a decimation technique like the one reported in [Guinea 83] in the
context of surface physics.

The main computational problem is to calculate the Green function of the system at the
Fermi energy. Normally, the system of interest can be described by a finite Hamiltonian.
One might assume perfectly metallic leads and use an appropriate analytical expression
for a one band metal [Vergés 99b]. However, when the nature of the leads, or the
matching between leads and system, plays a role, it might be more convenient to obtain
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Figure A.1: Scheme illustrating the physical situation and notation. The conductance,
G, of a finite system attached to semi infinity leads is calculated. The leads
are assumed to be periodic in the direction of the current; they can be built
up with some primitive cell labeled with positive numbers for the right lead
and negative for the left lead.

the Green function numerically. This Appendix explains an efficient method to calculate
the conductance of a physical system based on the Kubo formula and a rapid converging
method to calculate the Green function. The rest of the calculation

We will go over this problem in a quite general way. A system, described by a finite
Hamiltonian matrix, is attached to two leads (labeled left and right lead). The layers
will be considered semi-infinite in a sense that will be clear below. It is worth to remark
some particular cases, relevant for this thesis. In chapter 2, the interest is focused
in the intrinsic conductivity of manganites, in particular, Kubo formula is utilized to
calculate the conductance for a double exchange model with certain spin and octahedra
distortions configurations. The algorithm explained here is applied with the peculiarity
that the leads are built up with identical copies of the system (in Fig.A.1, −1 ≡ 0 ≡ 1).
In chapter 5, we are interested in the conductance of a thin layer grown between two
wider metallic layers, that act as electrodes. In principle the system there would be
effectively infinite as the calculation includes the particular nature of the electrodes. We
then redefine system as the insulating layer and some unit cells of the metallic layers
, while other big enough portion of the metallic layers is repeated to build up what is
called leads in Fig. A.1.

A typical situation is illustrated in Fig. A.1. x is taken as the direction of the current.
The leads are in principle infinite in that direction. Therefore, they cannot be described
by with a tight-binding approach. Assuming homogeneous and periodic leads, they can
be constructed by repeating a primitive cell (each of the -1, -2... boxes in Fig. A.1 make
up the left lead and 1, 2... make up the right lead). This situation is described by
a Hamiltonian of the complete system (system + leads) which will have the following
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structure :

Ĥ =





. . . . . . 0

. . . H−1−1 H−1 0 0

0 H0−1 H0 0 H0 1 0

0 H1 0 H1 1 . . .

0 . . . . . .





(A.4)

The notation is almost self explaining: H00 is the Hamiltonian describing the material
which conductance we want to calculate, H11=H22... is the Hamiltonian corresponding
to each of the primitive cells of the right lead, and, equivalently, H−1−1=H−2−2... refer
to the left lead. H01 and H−10 describes the coupling of the material and the leads.
Implicit assumptions (direct coupling between the leads is negligible, H01=H12...) can
be fulfilled by a suitable redefinition of material and leads. For instance, in chapter ??,
H00 describes the antiferromagnetic layer and part of the ferromagnetic leads. This way,
a Hamiltonian with a tridiagonal structure can be obtained. In terms of the Hamiltonian,
the green function is defined as:

(ω − Ĥ)Ĝ = 1 (A.5)

Projecting over a general part of the complete system, < n| and the material |0 >, leads
the following equations:

(ω −H0 0) Ĝ0 0 −H0−1Ĝ0−1 −H0 1Ĝ0 1 = 1

−Hm m+1Ĝm+10 + (ω −Hm m)Ĝm 0 −Hm m−1Ĝm−1 0 = 0. (A.6)

A notation change is appropriate here in order to better understand the self-consistent
procedure:

ω −H00 7−→ W̃

ω −Hnn 7−→ W

−Hm′m = −Hm−′m 7−→ τ+1

Ĝm0 7−→ Gm. (A.7)

So that Eqs. A.6 become:

W̃G0 + τ1G−1 + τ−1G1 = 1

τ−1Gm+1 +WGm + τ1Gm−1 = 0 (A.8)
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Appendix A Conductance

It is convenient to express the Green functions connecting the material and an odd piece
of the leads (Gm with m odd in the new notation) in terms of the Green implying the
even pieces of the leads, that is, from:

τ−1G2 +WG1 + τ1G0 = 0

τ−1G4 +WG3 + τ1G2 = 0

τ−1G6 +WG5 + τ1G4 = 0, (A.9)

and the equivalent Eqs. for the left lead (obtained by changing the signs of all subindices),
we get:

G1 = −W−1 (τ−1G2 + τ1G0)

G3 = −W−1 (τ−1G4 + τ1G2)

G5 = −W−1 (τ−1G6 + τ1G4) (A.10)

So far, we have used only particular cases of Eq. A.6, with m odd, plugging A.10 into the
remaining (even m) cases of A.6, and after some straight forward algebra, it is found:

(
W̃ − τ1W

−1τ−1 − τ−1W
−1τ1

)
G0+ (−τ1Wτ1)G−2 +(−τ−1W

−1τ−1)G2 = 0
(
W − τ1W

−1τ−1 − τ−1W
−1τ1

)
G2+ (−τ1Wτ1)G0 +(−τ−1W

−1τ−1)G4 = 0(A.11)

The last Eqs. are equivalent to Eqs. A.6 for a modified system with modified couplings,
where boxes /pm1, /pm3 have been renormalized out. This allows us to define the
following recursion relations.

W̃ (p) = W̃ (p/2) − τp/2

(
W (p/2)

)−1
τ−p/2

τ−p = −τ−p/2

(
W (p/2)

)−1
τ−p/2

τp = −τp/2

(
W (p/2)

)−1
τp/2 (A.12)

No rigurous demonstration of the convergence of the method will be given here, how-
ever, note that τp effectively couples boxes p and 0 which get further apart as p grows.
Therefore, it can be expected that τp converges to 0. For a sufficiently small τp, W̃
contains the relevant information of the Green function of the complete system (system
+ leads).
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Appendix B

Magnetic Phases Observed in
Manganites

In this Appendix we will very briefly describe the most relevant magnetic orderings
experimentally observed in manganites. Due to the coupling of different degrees of free-
dom, often magnetic transitions appear accompanied by structural transitions. These
couplings might be important to stabilize different phases. However, since other fac-
tors (such as the tolerance factor defined in Chapter ??) are important in determining
the structure of manganites, and structural and magnetic orderings are not univocally
coupled, we will assume a cubic lattice, and pay little attention to the structural distor-
tions. Anyhow, manganite’s structure can be described by small distortions of a cubic
structure (??) We will follow here the notation of Wollan and Koehler, established in
[E.O.Wollan 55] a pioneer neutron diffraction study described in Chapter ??, and to-
day commonly accepted in manganite’s literature. Let us remark, however, that not all
the phases described in [E.O.Wollan 55] have been posteriorly confirmed. Wollan and
Koehler also proposed some charge orderings compatible with the symmetry observed.
This is a complex subject out of the scope of this little guide, so no reference to charge
ordering will be given here either.

In the following, each magnetic phase is described by small scheme and the magnetic
wave vector in units a pseudo-cubic lattice parameter. Almost all phases studied in this
thesis have been included in the appendix. It is only intended as a short guide, so when
a short description of the magnetic orderings was appropriate in the discussion, it has
been given in the corresponding chapter. Some very particular phases are also described
in some chapters and they will be only reference here, they are two complex to be sum-
marized in a small scheme. In chapter 3 besides the A and E phases described here,
incommensurate phases consisting in domain walls between E-ordered parts of the mate-
rial appear. In Chapter ?? multilayers of different materials give rise to exotic orderings.
Some can be understood as small parts of the material being CE or Ferromagnetically
ordered. Some other are more complex and the periodicity of CE phase is encountered
only in two directions, but not in the third (named z in this appendix, and x in chapter
??)
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Appendix B Magnetic Phases Observed in Manganites

B.1. Ferromagnetic.

This is the usual ferromagnetic phase. Although it is probably well known by the reader,
we describe it for completeness. It has been observed in metallic and insulating samples.
Although it was called B phase in Ref. [E.O.Wollan 55] we have used the far more
common name Ferromagnetic (abbreviated FM) along the thesis.

Figure B.1: Ferromagnetic phase.

Wave vector (0,0,0) (homogeneous)

B.2. A phase

Figure B.2: A phase.

Wave vector (0, 0, π)
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B.3 E phase

B.3. E phase

Figure B.3: E phase.

Wave vector (
√

2
2 π,

√
2

2 π, π)

B.4. C phase

Figure B.4: C phase.

Wave vector (0,π,π)

B.5. CE phase

Wave vector (π/2,π/2,π)
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Appendix B Magnetic Phases Observed in Manganites

Figure B.5: CE phase.

B.6. G phase

Figure B.6: G phase.

Wave vector (π,π,π)
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