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su valioso apoyo. Como aśı también las numerosas conversaciones y discusiones que

hemos mantenido.
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sufrió conmigo el kim-chi como fuente de alimento, además de la maravillas Coreanas.

A Kiwoon Choi y demas personas del KAIST en Corea por su amabilidad durante mi

estancia alĺı.
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cansé de escribir.





Contents

1 Introducción 1

1.1 Contenidos de la tesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 General Overview 7

2.1 Supersymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Supersymmetric models . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 The MSSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Dark Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 The dark matter problem . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Dark matter candidates . . . . . . . . . . . . . . . . . . . . . . 17

2.2.3 Dark matter detection . . . . . . . . . . . . . . . . . . . . . . . 20

3 NMSSM Phenomenology and Dark Matter 29

3.1 The NMSSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.2 Higgs scalar potential . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.3 Minimization of the tree level scalar potential . . . . . . . . . . 32

3.1.4 Higgs boson mass matrices . . . . . . . . . . . . . . . . . . . . . 34

3.1.5 Neutralino mass matrix . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.6 NMSSM parameter space . . . . . . . . . . . . . . . . . . . . . 36

3.2 Neutralino-nucleon cross section . . . . . . . . . . . . . . . . . . . . . . 38

i



ii CONTENTS

3.3 Analysing the parameter space looking for observable cross section neutralino-

nucleon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.1 µAκ < 0 and µAλ > 0 (κ > 0) . . . . . . . . . . . . . . . . . . . 42

3.3.2 µAκ < 0 and µAλ < 0 (κ > 0) . . . . . . . . . . . . . . . . . . . 53

3.3.3 µAκ > 0 and µAλ > 0 (κ > 0) . . . . . . . . . . . . . . . . . . . 58

3.3.4 µAκ > 0 and µAλ > 0 (κ < 0) . . . . . . . . . . . . . . . . . . . 62

3.3.5 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4 Including flavour physics, the muon anomalous magnetic moment and

the neutralino relic density computation . . . . . . . . . . . . . . . . . 65

3.4.1 Constraints on the parameter space . . . . . . . . . . . . . . . . 66

3.4.2 Dark matter in the NMSSM . . . . . . . . . . . . . . . . . . . . 68

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4 Beyond the MSSM and the NMSSM 93

4.1 Why beyond the MSSM and the NMSSM? . . . . . . . . . . . . . . . . 93

4.2 The µνSSM proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2.1 Constraining the µνSSM with R-parity conservation . . . . . . 101

4.3 outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5 Conclusiones Finales 107

A Relevant NMSSM interaction vertices 111

A.1 Higgs-quark-quark Yukawa coupling . . . . . . . . . . . . . . . . . . . . 111

A.2 Neutralino-neutralino-Higgs interaction . . . . . . . . . . . . . . . . . . 111

A.3 Neutralino-squark-quark interaction . . . . . . . . . . . . . . . . . . . . 112

Bibliography 113







Chapter 1

Introducción

La supersimetŕıa (SUSY) juega un papel muy importante en la f́ısica teórica. Me-

diante una transformación SUSY campos bosónicos rotan a fermiónicos y viceversa.

Se dice que están en un mismo supermultiplete los campos que rotan entre śı a través

de esta transformación. Es de notar que los campos de un mismo supermultiplete

pueden describirse por un único ente matemático: el supercampo. De esta forma dos

conceptos aparentemente distintos, bosones y fermiones, se ven unificados en un único

concepto. Una consecuencia de SUSY es que el número de grados de libertad bosónicos

y fermiónicos de la teoŕıa es necesariamente igual.

Desde un punto de vista matemático el álgebra de supersimetŕıa es la ráız cuadrada

del álgebra de Poincaré. Su extensión local, conocida como teoŕıa de Supergravedad

(SUGRA), incluye el campo gravitatorio de la misma forma que la extensión local de

una simetŕıa ante un grupo de Lie global incluye los campos gauge. Por lo tanto,

en los supermultipletes de SUGRA entre los campos bosónicos está incluida la métrica

espacio-temporal. Debemos mencionar que a diferencia de las teoŕıas SUSY, las teoŕıas

de SUGRA no son renormalizables.

Como es bien sabido tal simetŕıa no se observa en la naturaleza y por tanto, si

existe, debe estar rota. Una idea de cómo llevar a cabo una ruptura espontánea de

SUSY consiste en postular un sector oculto de part́ıculas. El sector oculto no tiene

acoplos gauge con el sector visible y por tanto la ruptura de SUSY se transmite a través

de efectos gravitatorios. El resultado a baja escala es una teoŕıa SUSY global más los

llamados términos ”soft”, que rompen SUSY explicitamente sin introducir peligrosas

divergencias cuadráticas. Es con este tipo de teoŕıas con las que trabajaremos en esta

tesis, ya que nos interesa la descripción de la f́ısica por debajo de la enerǵıa de Planck.
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2 CHAPTER 1. INTRODUCCIÓN

Por encima de esta escala tienen lugar los efectos de gravedad cuántica y la propia

noción de espacio-tiempo se ve alterada. Probablemente, en la teoŕıa completa de todas

las interacciones la noción de espacio-tiempo no sea un concepto fundamental sino una

propiedad emergente y los conceptos fundamentales sean mucho más abstractos que la

noción de espacio-tiempo y dimensión. En todo caso, esta hipotética teoŕıa completa

no ha sido formulada aún.

Hoy en d́ıa la teoŕıa de supercuerdas es la candidata más prometedora para unificar

todas la interacciones de la naturaleza. En general el ĺımite de bajas enerǵıas queda

descrito por una teoŕıa de SUGRA. Por tanto, una teoŕıa SUSY puede ser un ĺımite de la

teoŕıa de cuerdas. En relación a esto debemos recordar que la descripción perturbativa

de cuerdas sobre un espacio-tiempo plano exige que éste tenga 10 dimensiones. El

número de dimensiones puede ser modificado por la presencia de un campo de Liouville

o una fuente de curvatura. Por otro lado, la variedad puede ser una variedad compuesta

por una parte no compacta 4-dimensional, para estar de acuerdo con el número de

dimensiones que observamos, y por una parte compacta. La parte compacta puede

ser una variedad compacta seis dimensional, o la variedad de un grupo compacto que

no necesariamente tenga una interpretación geométrica (por ejemplo un modelo de

Gepner). En muchas de las construcciones a baja escala la parte compacta desacopla

a la escala de Planck dejando una teoŕıa de SUGRA en cuatro dimensiones.

Por debajo de la escala de Planck la ambiciosa pregunta aún sin respuesta, ¿cuál es

la teoŕıa completa de todas las interacciones?, da lugar a la pregunta ¿cual es la teoŕıa

cuántica de campos que rige la f́ısica por debajo de dicha escala? En este sentido las

teorias SUSY son candidatas muy interesantes y poseen la caracteŕıstica de poder ser

verificadas (refutadas) con experimentos realizables a corto plazo, ya que en sus ver-

siones más puras o naturales (excluimos por ejemplo split-SUSY) la escala de ruptura

de supersimetŕıa es del orden del TeV. Recordemos que esta es la escala necesaria para

romper la simetria electrodébil (EW) de forma adecuada.

En cuanto a la teoŕıa de cuerdas, su formulación actual es claramente incompleta,

ya que dada la extraordinaria cantidad de posibilidades que brinda a baja escala carece

de predictibilidad. Una formulación más completa exigiŕıa por ejemplo un aún descono-

cido mecanismo de selección de vaćıos que discrimine entre los muchos que posee.

Resumiendo, a escalas de enerǵıa donde los efectos cuánticos de la gravedad son

despreciables, las teoŕıas SUSY son excelentes candidatas a describir la f́ısica. Además

están desprovistas del problema de naturalidad que poseen las versiones no SUSY.

El modelo estándar (SM) posee el conocido problema de las jerarqúıas; la dependen-
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cia cuadrática con la escala de nueva f́ısica (”cutoff”) del cuadrado del parámetro de

masa del Higgs, hace que dicha escala sea la natural para la masa del Higgs. Por

ejemplo, en una teoŕıa conteniendo gravedad, la masa del Higgs debido a las correc-

ciones cuadráticas se haŕıa del orden de la masa de Planck aun cuando inicialmente

fuese pequeña, estropeándose de esta forma la ruptura EW. Afortunadamente, en las

teoŕıas SUSY la existencia de nuevos diagramas asociados a las compañeras SUSY

de las part́ıculas del SM, dan como resultado la cancelación de tal dependencia. En

este sentido SUSY es la candidata natural para extender el SM. Es bien cierto que

este mecanismo no resuelve todos los problemas y que todav́ıa sobrevive el llamado

segundo problema de las jerarqúıas, es decir ¿por qué las parámetros soft de ruptura

de SUSY son del orden del TeV y no mayores? Esto se traduce en la necesidad de

tener un mecanismo de ruptura de SUSY tal que los términos soft resultantes sean

del orden del TeV. Mucho trabajo ha sido dedicado a esta tarea y en la literatura se

pueden encontrar distintos modelos, como por ejemplo la condensación de gauginos.

Además de las cualidades ya descritas, las teoŕıas SUSY nos pueden proveer de can-

didatos para resolver un gran enigma de la f́ısica contemporánea: la materia oscura.

Éste es uno de los temas que motivan este trabajo y una de las cuestiones aún sin

respuesta más fascinantes de la f́ısica. Observaciones en galaxias y cúmulos de galaxias

han revelado desde hace casi un siglo, por simples argumentos gravitatorios, que debe

haber más materia que la visible. Las teoŕıas SUSY, cuando se impone una simetŕıa

discreta conocida como R-parity, proveen de forma natural una part́ıcula como can-

didata para constituir tal materia oscura. Distinguiendo en un supermultiplete dado

entre part́ıculas supersimétricas y aquellas que podemos llamar del SM, la existencia

de esta simetŕıa implica que el número de part́ıculas supersimétricas en un vértice debe

ser par. Esto da como reultado que la part́ıcula supersimétrica más ligera (LSP) no

puede decaer y podŕıa servir por tanto como materia oscura. En este sentido, uno de

los problemas abiertos más importantes en este campo tiene una posible respuesta en

las teoŕıas SUSY.

Resulta entonces crucial analizar en detalle la viabilidad de la LSP para consti-

tuir la materia oscura del universo. Para la mı́nima extensión del SM conocida como

Minimal Supersymmetric Standard Model (MSSM) este análisis se ha llevado a cabo

extensamente en la literatura. Sin embargo, para su extensión más directa obtenida

agregando un supercampo singlete, y conocida como el Next-to-Minimal Supersymmet-

ric Standard model (NMSSM), hay muy pocos trabajos realizados y son claramente

incompletos. Es importante mencionar que esta extensión soluciona el problema de



4 CHAPTER 1. INTRODUCCIÓN

naturalidad del MSSM conocido como “µ-problem” haciendo al NMSSM muy atrac-

tivo. Este problema de naturalidad se debe a la existencia en el superpotencial del

MSSM de un término de masa µH1H2 necesario para producir una ruptura EW cor-

recta. Los únicos valores naturales para µ son cero o la masa de Planck, el primero

introduce un bosón de Goldstone experimentalmente excluido y el segundo reintroduce

el problema de las jerarqúıas.

En este trabajo de tesis vamos a explorar las posibilidades de la part́ıcula SUSY

llamada neutralino, la cual es frecuentemente la LSP, como candidato a materia oscura

en el NMSSM. Calcularemos la densidad reliquia de neutralinos y la compararemos con

los valores obtenidos mediante observaciones astrof́ısicas, aśı como por el obtenido por

WMAP. Analizaremos también la posible detección directa de los neutralinos mediante

la interacción de estos con los núcleos del material en un detector. Tendremos en cuenta

en el análisis el rango ya explorado por los experimentos actuales y el esperado en los

experimentos que próximamente se llevarán a cabo. Impondremos todas las cotas

experimentales que vienen de f́ısica de aceleradores de part́ıculas incluyendo procesos

de f́ısica de sabores como b → sγ y el cálculo del momento magnético anómalo del

muón. Con respecto a este último, si bien hay todav́ıa cierta controversia con respecto

a los resultados teóricos, podŕıa ser una señal de f́ısica más allá del SM.

Mencionábamos anteriormente el problema µ de las teoŕıas SUSY, pues bien en este

trabajo de tesis queremos analizar también una solución alternativa a las ya existentes,

que a su vez nos lleva a proponer un nuevo modelo SUSY. Dicho modelo no sólo está a

salvo del problema µ, sino que además contiene de manera natural la f́ısica de neutrinos

tan relevante actualmente. Recordemos que el hecho de que los neutrinos sean masivos

es la primera confirmación clara de f́ısica más allá del SM en el régimen donde es válida

una descripción mediante una teoŕıa cuántica de campos.

La idea consiste en utilizar el supercampo del neutrino right-handed para solu-

cionar el problema µ acoplándolo con los Higgses. Cuando el sneutrino adquiere un

valor esperado en el vaćıo (VEV), el término µ se genera dinámicamente. Además, si

imponemos que el superpotencial solo contenga parámetros adimensionales, la única

escala del potencial escalar es la escala EW producida por los parámetros soft. La

cualidad de poseer solo parámetros adimensionales en el superpotencial se puede mo-

tivar por ejemplo desde el punto de vista de la teoŕıa de cuerdas, donde a baja enerǵıa

los términos de masa están prohibidos. Podŕıamos decir que esta propuesta pretende

intentar responder a la pregunta crucial: ¿cuál es la teoŕıa de campos que descibe la

f́ısica por debajo de la escala de Planck? Es una propuesta que está por un lado inspi-
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rada por los resultados experimentales y por otro intenta satisfacer todos las exigencias

teóricas que la convierten en un modelo natural, simple, y factible de ser el ĺımite de

una hipotética teoŕıa completa. El modelo ha sido publicado con el nombre µ from ν

Supersymmetric Standard Model (µνSSM).

En el µνSSM R-parity no se conserva y por tanto el neutralino deja de ser un buen

candidato para materia oscura. Habŕıa que usar otros candidatos interesantes tales

como el gravitino o el axión. Sin embargo, también presentaremos un ĺımite en el que

haciendo algunos parámetros iguales a cero introducimos conservación de R-parity y

de nuevo el neutralino vuelve a ser candidato a materia oscura.

1.1 Contenidos de la tesis

Este trabajo de tesis esta dividido en cinco caṕıtulos.

En el siguiente introducimos los conceptos relevantes para este trabajo. Primero

damos una breve introducción a SUSY, y después resumimos la situación actual con

respecto a la naturaleza de la materia oscura del universo y su posible detección.

El tercero está dedicada a la presentación de algunos de los resultados originales

de esta tesis [1, 2], después de introducir el NMSSM en las dos primeros secciones.

En concreto, en la tercera sección se presenta primero el análisis fenomenológico que

hemos llevado a cabo del modelo, estudiando el espacio de parámetros e imponiendo las

cotas que vienen de f́ısica de aceleradores. Aśı mismo hemos identificado zonas donde

la sección eficaz de detección de materia oscura neutralino-protón está en el rango ase-

quible a los detectores. En la sección cuatro incluimos el cálculo de la densidad reliquia

comparándola con los resultados experimentales de WMAP y aquellos que se obtienen

de observaciones astrof́ısicas. Calculamos también el momento magnético anómalo del

muón y cotas de f́ısica de sabores como el BR(b → sγ), siempre comparandolos con

los resultados experimentales. Finalmente completamos el análisis de la sección eficaz

comenzado en el caṕıtulo anterior, imponiendo sobre él todas las cotas experimentales

antes mencionados.

El cuarto caṕıtulo está dedicada a presentar nuestra propuesta de un nuevo modelo

SUSY, el µνSSM [3]. En ella se utilizan los sneutrinos right-handed para dar solución

al problema µ del SM. La inclusión de sneutrinos right-handed es natural cuando

quiere agregarse en el modelo la descripción de la f́ısica de neutrinos. Después de hacer

una breve reseña sobre la misma en la primera sección, en la siguiente describimos
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el modelo. Aśı mismo también estudiamos un caso particular en el que R-parity se

sigue conservando [4]. La última sección la dedicamos a describir futuros proyectos

relacionados con esta propuesta.

Finalmente, el quinto y último caṕıtulo esta dedicado a las conclusiones finales de

la tesis.



Chapter 2

General Overview

In this chapter we introduce the two relevant topics for our discussion: SUSY and Dark

Matter. In section 2.1 we give a brief introduction to SUSY, and in particular how

to build a SUSY model. In section 2.2 we discuss dark matter from a theoretical and

experimental point of view.

2.1 Supersymmetry

In this section we will summarize how to build SUSY models in four dimensions. For

that we will introduce the different SUSY supermultiplets and, working in components,

we will arrive to the SUSY Lagrangian. The reader can find a lot of reviews in the

literature about SUSY, see for example [5] and references therein.

2.1.1 Supersymmetric models

It is possible to build two kinds of supermultiplets: the gauge supermultiplet and the

chiral supermultiplet. The propagating degrees of freedom in a gauge supermultiplet

are a massless gauge boson field Aa
µ and a two-component Weyl fermion gaugino λa.

The index a here runs over the adjoint representation of the gauge group (a = 1 . . . 8

for SU(3)C colour gluons and gluinos; a = 1, 2, 3 for SU(2)L weak isospin; a = 1 for

U(1)Y weak hypercharge). Boson fields Da must be present in the supermultiplets to

make the SUSY algebra close.

For the chiral supermultiplet the propagating degrees of freedom are φi complex

7
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scalar and ψi Weyl spinors. The index i runs over all flavour and family degrees of

freedom. φi and ψi contain the same degrees of freedom on shell, but since the SUSY

algebra must close off shell, in the chiral supermultiplet there must be an auxiliary

field, Fi, which does not propagate.

The free Lagrangian for a gauge supermultiplet is then

Lgauge = −1

4
F a

µνF
µνa − iλ†aσµDµλ

a +
1

2
DaDa, (2.1.1)

where

F a
µν = ∂µA

a
ν − ∂νA

a
µ − gfabcAb

µA
c
ν (2.1.2)

is the usual Yang-Mills field strength, and

Dµλ
a = ∂µλ

a − gfabcAb
µλ

c (2.1.3)

is the covariant derivative of the gaugino field.

The free chiral Lagrangian is

Lchiral = −Dµφ∗iDµφi − iψ†iσµDµψi + F ∗iFi (2.1.4)

where the covariant derivatives are:

Dµφi = ∂µφi + igAa
µ(T

aφ)i (2.1.5)

Dµφ
∗i = ∂µφ

∗i − igAa
µ(φ

∗T a)i (2.1.6)

Dµψi = ∂µψi + igAa
µ(T aψ)i, (2.1.7)

and we sum over repeated indices i (not to be confused with the suppressed spinor

indices), with the convention that fields φi and ψi always carry lowered indices, while

their conjugates always carry raised indices.

The most general set of renormalizable interactions for these fields can be written

in the simple form

Lint = −1

2
W ijψiψj +W iFi + c.c., (2.1.8)

where W ij and W i are some functions of the bosonic fields with dimensions of (mass)

and (mass)2 respectively, and “c.c.” henceforth stands for complex conjugate. In other

words, W ij is analytic (or holomorphic) in the complex fields φk.

We can write

W ij = M ij + yijkφk (2.1.9)
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where M ij is a symmetric mass matrix for the fermion fields, and yijk is a Yukawa

coupling of a scalar φk and two fermions ψiψj which must be totally symmetric under

interchange of i, j, k. It is convenient to write

W ij =
δ2

δφiδφj
W (2.1.10)

where we have introduced a very useful object

W =
1

2
M ijφiφj +

1

6
yijkφiφjφk (2.1.11)

which is called the superpotential, and

W i =
δW

δφi
= M ijφj +

1

2
yijkφjφk . (2.1.12)

The auxiliary fields Fi and F ∗i can be eliminated using their classical equations of

motion. The part of Lchiral + Lint that contains the auxiliary fields is FiF
∗i +W iFi +

W ∗
i F

∗i, leading to the equations of motion

Fi = −W ∗
i ; F ∗i = −W i . (2.1.13)

Thus the auxiliary fields are expressible algebraically (without any derivatives) in terms

of the scalar fields. After making the replacement eq. (2.1.13) in Lchiral+Lint, we obtain

the Lagrangian

L = −Dµφ∗iDµφi − iψ†iσµDµψi −
1

2

(

W ijψiψj +W ∗ijψ†iψ†j
)

−W iW ∗
i . (2.1.14)

(Since Fi and F ∗i appear only quadratically in the action, the result of instead doing a

functional integral over them at the quantum level has precisely the same effect.) Now

that the non-propagating fields Fi, F
∗i have been eliminated, it is clear from eq. (2.1.14)

that the scalar potential for the theory is just given in terms of the superpotential by:

V (φ, φ∗) = W iW ∗
i = FiF

∗i = M∗
ikM

kjφ∗iφj (2.1.15)

+
1

2
M iny∗jknφiφ

∗jφ∗k +
1

2
M∗

iny
jknφ∗iφjφk +

1

4
yijny∗klnφiφjφ

∗kφ∗l .

The full Lagrangian for a renormalizable SUSY theory is

L = Lgauge + Lchiral

−
√

2g
[

(φ∗T aψ)λa + λ†a(ψ†T aφ)
]

+g(φ∗T aφ)Da. (2.1.16)
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Replacing the auxiliary fields in eq. (2.1.16) using the equation of motion for Da:

Da = −g(φ∗T aφ), (2.1.17)

one finds that the complete scalar potential is (recall L ⊃ −V ):

V (φl, φ
∗
l ) = F ∗iFi +

1

2

∑

a

DaDa = W ∗
i W

i +
1

2

∑

G

∑

a

∑

l,m

g2
G(φ∗lT aφl)(φ

∗mT aφm).

(2.1.18)

We consider several chiral multiplets level by l, m. The two types of terms in this

expression are called “F -term” and “D-term” contributions, respectively. In the second

term in eq. (2.1.18), we have now written an explicit sum
∑

G to cover the case that

the gauge group has several distinct factors with different gauge couplings gG. [For

instance, in the MSSM the three factors SU(3)C , SU(2)L and U(1)Y have different

gauge couplings g3, g and g′.] Since V (φ, φ∗) is a sum of squares, it is always greater

than or equal to zero for every field configuration. It is a very interesting and unique

feature of supersymmetric theories that the scalar potential is completely determined

by the other interactions in the theory. The F -terms are fixed by Yukawa couplings

and fermion mass terms, and the D-terms are fixed by the gauge interactions.

With the above description we can build any supersymmetric model in four dimen-

sion. Let us remark that one expect that about 1016 GeV a grand unified theory

(GUT) containing the SM should exist. In this sense the SUSY models that we will

construct are valid up to that scale, and the usual renormalization group equations

(RGEs) can be used.

2.1.2 The MSSM

We briefly describe here the minimal SUSY extension of the standard model, the

MSSM. For details see for example [5].

The superpotential for the MSSM is given by

W = ǫij
(

YuH
j
2 Q

i u+ YdH
i
1Q

j d+ YeH
i
1 L

j e
)

− ǫijµH
i
1H

j
2 , (2.1.19)

where i, j are SU(2) index, and ǫ12 = 1. The objects H1, H2, Q, L, u, d, e appearing

in eq. (2.1.19) are chiral superfields corresponding to the chiral supermultiplets in

Table 2.1 (For completeness we also show in table 2.2 the gauge supermultiplets). The

dimensionless Yukawa coupling parameters Yu, Yd, Ye are 3×3 matrices in family space.

Here we have suppressed the gauge SU(3)C colour and family indices.
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Table 2.1: Chiral supermultiplets in the Minimal Supersymmetric Standard Model. In

our convention QEM = T3 + Y .

Names spin 0 spin 1/2 SU(3)C , SU(2)L, U(1)Y

squarks, quarks QT (ũL , d̃L) (uL , dL) ( 3, 2 , 1
6
)

(×3 families) u ũ∗R u†R ( 3, 1, −2
3
)

d d̃∗R d†R ( 3, 1, 1
3
)

sleptons, leptons LT (ν̃ ẽL) (ν eL) ( 1, 2 , −1
2
)

(×3 families) e ẽ∗R e†R ( 1, 1, 1)

Higgs, Higgsinos HT
u (H+

u H0
u) (H̃+

u H̃0
u) ( 1, 2 , +1

2
)

HT
d (H0

d H−
d ) (H̃0

d H̃−
d ) ( 1, 2 , −1

2
)

Table 2.2: Gauge supermultiplets in the Minimal Supersymmetric Standard Model.

Names spin 1/2 spin 1 SU(3)C , SU(2)L, U(1)Y

gluinos, gluons g̃ g ( 8, 1 , 0)

winos, W bosons W̃± W̃ 0 W± W 0 ( 1, 3 , 0)

Bino, B boson B̃0 B0 ( 1, 1 , 0)

On the other hand, as discussed in the introduction, soft terms appear in the

Lagrangian after local SUSY is broken. The most general soft breaking terms are:

−Lsoft = m2
Q̃
|Q̃|2 +m2

Ũ
|ũ|2 +m2

D̃
|d̃|2 +m2

L̃
|L̃|2 +m2

Ẽ
|ẽ|2

+ m2
H1

|H1|2 +m2
H2

|H2|2 +

+ ǫij

(

Au YuH
j
2 Q̃

i ũ+ Ad YdH
i
1 Q̃

j d̃+ Ae YeH
i
1 L̃

j ẽ+ H.c.
)

+
(

−ǫijBµH i
1H

j
2 + H.c.

)

− 1

2
(M3 λ3 λ3 +M2 λ2 λ2 −M1 λ1 λ1 + H.c.) . (2.1.20)
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In addition to terms from Lsoft, the three-level Higgs potential receives the usual D and

F term contributions. Bringing together all the terms, one obtains:

V = (|µ|2 +m2
Hu

)(|H0
u|2 + |H+

u |2) + (|µ|2 +m2
Hd

)(|H0
d |2 + |H−

d |2)
+Bµ (H+

u H
−
d −H0

uH
0
d) + c.c.

+
1

8
(g2 + g′2)(|H0

u|2 + |H+
u |2 − |H0

d |2 − |H−
d |2)2

+
1

2
g2|H+

u H
0∗
d +H0

uH
−∗
d |2, (2.1.21)

and therefore the neutral Higgs potential relevant for the EW breaking is:

V = (|µ|2 +m2
Hu

)|H0
u|2 + (|µ|2 +m2

Hd
)|H0

d |2

−BµH0
uH

0
d + c.c.

+
1

8
(g2 + g′2)(|H0

u|2 − |H0
d |2)2.

(2.1.22)

Concerning the SUSY spectrum, the Higgsinos and electroweak gauginos mix with

each other because of the effects of electroweak symmetry breaking. The neutral Hig-

gsinos (H̃0
u and H̃0

d) and the neutral gauginos (B̃, W̃ 0) combine to form four neutral

mass eigenstates called neutralinos. The charged Higgsinos (H̃+
u and H̃−

d ) and winos

(W̃+ and W̃−) mix to form two mass eigenstates with charge ±1 called charginos.

We will denote the neutralino and chargino mass eigenstates by χ̃0
i (i = 1, 2, 3, 4)

and χ̃±
i (i = 1, 2). By convention, these are labelled in ascending order, so that

mχ̃0
1
< mχ̃0

2
< mχ̃0

3
< mχ̃0

4
and mχ̃±1

< mχ̃±2
. The lightest neutralino, χ̃0

1, is

usually assumed to be the LSP, unless R-parity is not conserved, because it is the

only MSSM particle which can make a good cold dark matter candidate. Here we will

describe first the mass spectrum and mixing of the neutralinos and charginos in the

MSSM.

In the gauge-eigenstate basis ψ0 = (B̃, W̃ 0, H̃0
d , H̃

0
u), the neutralino mass terms in

the Lagrangian are

L ⊃ −1

2
(ψ0)TMÑψ

0 + c.c. (2.1.23)
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where

Mχ̃0 =













M1 0 − cos β sin θW mZ sin β sin θW mZ

0 M2 cosβ cos θW mZ − sin β cos θW mZ

− cosβ sin θW mZ cos β cos θW mZ 0 −µ
sin β sin θW mZ − sin β cos θW mZ −µ 0













.

(2.1.24)

The resulting masses for the charginos are

mχ̃±1,2
=

1

2
[M2 + µ2 + 2M2

W ∓
√

(M2 + µ2 + 2M2
W )2 − 4|µM2 −M2

W sin 2β|2 ]

(2.1.25)

On the other hand, concerning the squarks and sleptons, the mass eigenstates are

obtained by diagonalization of 6 × 6 mass matrix for up squarks, down squarks and

charged sleptons. However most of the mixing terms are very small and it is a good

approximation to consider only 2×2 mass matrix mixing left and right handed parts of

a giving generation. The mixing will be really important only for the third generation,

and then the relevant matrices are:

m2
t̃ =

(

(m2
Q̃

+m2
t̃
+ 1

6
(4M2

W −M2
Z) cos 2β mt(At − µ cotβ)

mt(At − µ cotβ) m2
Q̃

+m2
t̃
− 2

3
(M2

W −M2
Z) cos 2β)

)

m2
b̃

=

(

(m2
Q̃

+m2
t̃
+ 1

6
(4M2

W −M2
Z) cos 2β mt(At − µ cotβ)

mt(At − µ cotβ) m2
Q̃

+m2
t̃
− 2

3
(M2

W −M2
Z) cos 2β)

)

m2
τ̃ =

(

(m2
L̃

+m2
τ − 1

2
(2M2

W −M2
Z) cos 2β mτ (Aτ − µ tanβ)

mτ (Aτ − µ tanβ) m2
τ̃R

+m2
τ̃ + (M2

W −M2
Z) cos 2β).

)
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2.2 Dark Matter

The presence of dark matter [6] in galaxies is the most plausible explanation for their

anomalous rotation curves. In this sense, the dark matter provides a potentially impor-

tant relation between particle physics and cosmology, since only elementary particles

are reliable candidates for the dark matter in the Universe. In particular we will see

that baryonic objects, such as e.g. gas, brown dwarfs, etc., can be components of the

dark matter, but more candidates are needed. The reason being that they cannot be

present in the right amount to explain the observed matter density of the Universe,

Ωh2 ∼ 0.1.

Fortunately, particle physics, and mainly extensions of the SM offer candidates for

dark matter. Indeed, detecting non-baryonic dark matter in the Universe might be a

signal for new physics beyond the SM. We will see that very interesting and plausible

candidates for dark matter are Weakly Interacting Massive Particles (WIMPs), since

long-lived or stable WIMPs can be left over from the Big Bang in sufficient number

to account for a significant fraction of relic matter density. As suggested in 1985 by

Goodman and Witten [8], and also by Wasserman [9], this raises the hope of detecting

relic WIMPs directly.

It is important to observe that SUSY, whose original motivation has nothing to

do with the dark matter problem, might solve it. In SUSY models, the so-called R-

parity is often imposed in order to avoid fast proton decay or lepton number violation.

This yields important phenomenological implications. SUSY particles are produced

or destroyed only in pairs and therefore the lightest supersymmetric particle (LSP)

is absolutely stable, implying that it might constitute a possible candidate for dark

matter.

In SUSY models the fermionic partner of the B0 mixes with the fermionic partner

of the W 0, the two neutral Higgs bosons, and the singlets in the theory. Therefore one

has particles called neutralinos, χ̃0
i , with i = 1, ..., 4 in the MSSM and i = 1, ..., 5 in the

NMSSM. The lightest neutralino in the model, χ̃0
1, will be the dark matter candidate

[10].

The fact that the LSP turns out to be an electrically neutral particle (also with no

strong interactions) is welcome since otherwise it would bind to nuclei and would be

excluded as a candidate for dark matter from unsuccessful searches for exotic heavy

isotopes.
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In the next subsection, we will concentrate on the dark matter problem, and its

solutions. For a recent review, see [7].

2.2.1 The dark matter problem

If the mass distribution of a galaxy can be approximated as spherical or ellipsoidal,

Newton’s law implies that v2(r)/r = GM(r)/r2, where v(r) is the average orbital

velocity of an object orbiting arround the galaxy, G is the Newton’s constant and

M(r) is the total mass inside the orbit. Therefore

v(r) =

√

G M(r)

r
(2.2.26)

can be used as an estimate. Thus if the mass of the galaxy is concentrated in its visible

part, one would expect v(r) =
√

GMvis(r)/r ∝ 1/
√
r for distances far beyond the

visible radius.

Instead, astronomers, by means of the Doppler effect, observe that the velocity rises

towards a constant value vc ≈ 100 to 200 km s−1. An example of this can be seen in

Fig. 2.1 (from Ref. [11]), where the rotation curve of M33, one of the about 45 galaxies

which form our small cluster, the Local Group, is shown. For comparison, the expected

velocity from luminous disk is also shown. This phenomenon has already been observed

for about a thousand spiral galaxies [12, 13, 14], and in particular also for our galaxy,

the Milky Way. Although this observation is more problematic in galaxies other than

spirals, such as ellipticals, dwarf irregulars, dwarf spheroidals, lenticulars, etc., they

also produce similar results [14, 15, 16].

The most common explanation for these flat rotation curves is to assume that

disk galaxies are immersed in extended dark matter halos. Thus for large distances

M(r)/r is generically constant because the mass interior to r increases linearly with r,

Mtot(r) = G−1v2
cr. In fact, a self-gravitating ball of ideal gas at an uniform temperature

of kT = 1
2
mDMv

2
c , where mDM is the mass of one dark matter particle, would have this

mass profile [17].

Therefore the above analysis of rotation curves implies that 90% of the mass in

galaxies is dark.

Whereas current observations of luminous matter in galaxies determine Ωlum
<∼ 0.01,

analyses of rotation curves imply in fact Ω ≈ 0.1. Let us recall that Ω = ρ/ρc is the

present-day mass density averaged over the Universe, ρ, in units of the critical density,
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Figure 2.1: Observed rotation curve of the nearby dwarf spiral galaxy M33, superim-

posed on its optical image.

ρc = 10−5h2 GeV cm−3, with h ∼ 0.7. In fact, the previous value, Ω ≈ 0.1, is really

a lower bound, since almost all rotation curves remain flat out to the largest values of

r where one can still find objects orbiting galaxies. We do not really know how much

further the dark matter halos of these galaxies extend (see e.g. Fig. 2.1). Thus we can

conclude that galactic rotation curves imply Ω >∼ 0.1.

The more reliable method of studying the gravitational lensing confirms the previous

conclusions. Here a cluster acts as a lens which distorts the light emitted by quasars

and field galaxies in its background, due to the gravitational bending of light. All these

analyses favour a value Ω ≈ 0.2 − 0.3. Thus the following astrophysical bounds are

commonly used in the literature:

0.1 <∼ ΩDMh
2 <∼ 0.3 . (2.2.27)

In particular, the (cold) dark matter range

0.095 <∼ ΩDMh
2 <∼ 0.112 , (2.2.28)

can be deduced from the recent data obtained by the WMAP satellite [18].

To conclude this subsection, we refer that a small number of authors suggests that

dark matter is not really necessary to explain the galaxies rotation curves [16]. Basically

their approach consists of modifying Newton’s law at galactic scales. However, these

attempts are not only rather ad hoc in general (the authors impose specific values for

the free parameters of the theory in order to reproduce some of the rotation curves

that have been observed) but also insufficient to account for the necessity of dark
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matter in scales larger than galactic ones [19] (values of the parameters necessary to

reproduce galactic rotation curves cannot reproduce the observations at larger scales).

Recently, the authors of Ref. [20], using the Sloan Digital Sky Survey, have shown the

first observational evidence that the halo density decline as 1/r3, as predicted by cold

dark matter cosmological models. Alternative theories of gravity are in contradiction

with this result. Needles to say, the recent observations concerning the bullet cluster

go also in this direction.

2.2.2 Dark matter candidates

The scenario of Big-Bang nucleosynthesis, which explains the origin of the elements

after the Big Bang, taking into account measured abundances of helium, deuterium and

lithium, sets a limit to the number of baryons that can exist in the Universe, namely

Ωbaryonh
2 <∼ 0.05. This density is clearly small to account for the whole dark matter in

the Universe (see bounds in eq. (2.2.27)).

The conclusion is that baryonic objects are likely components of the dark matter but

more candidates are needed. This result is also confirmed by observations of MACHOs

in our galactic halo through their gravitational lensing effect on the light emitted by

stars. Their contribution to the dark matter density is small. Thus non-baryonic

matter is required in the Universe.

Particle physics provides non-baryonic candidates for dark matter. In principle,

the standard ones are ‘axions’, ‘neutrinos’ and ‘neutralinos’ with masses of the order

of 10−5 eV, 30 eV and 100 GeV, respectively. In fact although neutrinos are the only

candidates which are known to exist, there is now significant evidence against them as

the bulk of the dark matter. On the one hand, their experimental masses seem to be

too small, below 1 eV, as to be cosmologically significant since Ων ≈ mν/30 eV [21]. On

the other hand, neutrinos belong to the so-called ‘hot’ dark matter because they were

moving with relativistic velocities at the time the galaxies started to form. But hot dark

matter cannot reproduce correctly the observed structure in the Universe. A Universe

dominated by neutrinos would form large structures first, and the small structures later

by fragmentation of the larger objects. Such a Universe would produced a ‘top-down’

cosmology, in which the galaxies form last and quite recently. This time scale seems

incompatible with our present ideas of galaxy evolution. This lead to fade away the

initial enthusiasm for a neutrino-dominated Universe. Hence, many cosmologists now

favour an alternative model, one in which the particles dominating the Universe are
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‘cold’ (non-relativistic) rather than hot. This is the case of the axions and neutralinos.

Both are well motivated by extensions of the SM, because they are crucial to solve

important theoretical problems of this model.

Axions are spin 0 particles with zero charge associated with the spontaneous break-

ing of the global U(1) Peccei-Quinn symmetry, which was introduced to dynamically

solve the strong CP problem [22]. Typically the axion has a very large lifetime, larger

than the age of the Universe by many orders of magnitude. As a consequence, the

axion is a candidate for dark matter [23]. Axions would have been produced copiously

in the Big Bang, they were never in thermal equilibrium and are always nonrelativistic

(i.e. they are cold dark matter). In addition the mass of the axion has to be about

10−5 eV if the axion is to be a significant component of the dark matter.

Concerning the WIMPs, they were in thermal equilibrium with the SM particles in

the early Universe, and decoupled when they became non-relativistic, via the following

process. When the temperature T of the Universe was larger than the mass of the

WIMP, the number density of WIMPs and photons was roughly the same, n ∝ T 3,

and the WIMP was annihilating with its own antiparticle into lighter particles and vice

versa. However, after the temperature dropped below the mass of the WIMP, m, its

number density dropped exponentially, n ∝ e−m/T , because only a small fraction of the

light particles mentioned above had sufficient kinetic energy to create WIMPs. As a

consequence, the WIMP annihilation rate Γ = 〈σannv〉n dropped below the expansion

rate of the Universe, Γ <∼ H . At this point WIMPs came away, they could not annihi-

late, and their density has remain stable (freeze-out typically occurs at TF ≈ m/20).

This can be obtained using the Boltzmann equation, which describes the time evolution

of the number density n(t) of WIMPs

dn

dt
+ 3Hn = −〈σannv〉

[

(n)2 − (neq)2
]

, (2.2.29)

where H is the Hubble expansion rate, σann is the total cross section for annihilation of

a pair of WIMPs into standard model particles, v is the relative velocity between the

two WIMPs, 〈...〉 denotes thermal averaging, and neq is the number density of WIMPs

in thermal equilibrium.

One can discuss qualitatively the solution using the freeze-out condition Γ =

〈σannv〉Fn = H .Then, the current WIMP Ωh2 = (ρ/ρc)h
2, turns out to be

Ωh2 ≃ 3 × 10−27 cm3 s−1

〈σann v〉
, (2.2.30)
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Figure 2.2: Feynman diagrams contributing to early-Universe neutralino (χ̃0
1) annihi-

lation into fermions through neutral Higgses (H ≡ H, h,A) and squarks and sleptons

(f̃).

where the numerator is obtained using the value of the temperature of the cosmic back-

ground radiation, the Newton’s constant, etc. As expected from the above discussion,

the relic WIMP appeling density decreases with increasing annihilation cross section

Now we can easily understand why WIMPs are so good candidates for dark matter.

If a new particle with weak interactions exists in Nature, its cross section will be

σ ≃ α2/m2
weak

, where α ≃ O(10−2) is the weak coupling and mweak ≃ O(100 GeV) is a

mass of the order of the W gauge boson mass. Thus one obtains σ ≈ 10−9 GeV−2 ≈ 1

pb (recall that in natural units 1 GeV−2 = 0.389× 10−27 cm2 = 0.389× 109 pb). Since

at the freeze-out temperature the velocity is a significant fraction of the speed of light

(v2 ≈ c2/20), one obtains < σann v >≈ 10−26 cm3 s−1. Remarkably, this number is

close to the value that we need in eq. (2.2.30) in order to obtain the observed density

of the Universe. This is a possible hint that new physics at the weak scale provides us

with a reliable solution to the dark matter problem, and also a qualitative improvement

with respect to the axion dark matter case, where a small mass for the axion about 10−5

eV has to be postulated.

SUSY is a theory that introduces new physics precisely at the weak scale, and

that, as discussed above, predicts a new particle, the neutralino, which could be stable.

These are the reasons to consider the neutralino as a very serious candidate for the

sought-after dark matter. Concerning the annihilation cross section contributing to

the density of the Universe in eq. (2.2.30), there are numerous final states into which

the neutralino can annihilate [24]. The most important of these are the two body

final states which occur at the tree level. These are fermion-antifermion pairs f f̄

(where f are the standard model quarks and leptons), as those shown in Fig. 2.2

[25, 26, 27, 28, 29]. Others are weak gauge bosons pairs W+W−, Z0Z0[27, 29, 30],
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and those containing Higgs bosons such as W+H−, W−H+, Z0A, Z0H , Z0h, H+H−

and all six combinations of A, h,H [27, 29, 30, 31]. Different subtleties of each analysis

have been discussed in Refs. [32, 33]. The annihilation cross section is of the form

σann ≃ Nannm
2
χ̃0

1
|Aann|2 , (2.2.31)

where Aann is the amplitude which depends on the dynamics of the collision and Nann

is the number of annihilation channels. Generically Aann ∼ 1/M2, where M is the

mass of the particles mediating the interaction. Thus σann ∼ 1/m2
χ̃0

1
, and therefore in

order to satisfy the upper bound in eq. (2.2.27), moderate values of the LSP mass are

necessary. There are several exceptions to this rule, let us mention here one of them

which is particularly interesting.

In principle using the above discussed neutralino annihilation cross section is suf-

ficient, since the effects of heavier particles are suppressed by the Boltzmann factor.

However, the next to lightest supersymmetric particle (NLSP) may lie near in mass

to the LSP so that both particles freeze out of equilibrium at approximately the same

temperature. Thus the NLSP should be included in principle in the reaction network,

since coannihilation channels NLSP-LSP (and also channels NLSP-NLSP) might be

now relevant [32]. In fact, this is only when (mNLSP −mχ̃0
1
)/mχ̃0

1
<∼ 0.2, since the NLSP

number density is suppressed by e
−(mNLSP−m

χ̃0
1
)/TF

relative to the neutralino number

density, where we recall that TF ≈ mχ̃0
1
/20.

On the other hand, since neutralinos, or WIMPs in general, interact with ordinary

matter with roughly weak strength, their presence in galactic scales, and in particular in

our galaxy, raises the hope of detecting relic WIMPs directly in a detector by observing

their scattering on target nuclei through nuclear recoils. This will be the subject of the

next subsection.

2.2.3 Dark matter detection

Given the discussion in the previous subsection, one can say that WIMPs, and in

particular neutralinos, are good particle candidates for dark matter. As a matter of fact,

we saw that WIMPs and axions are particularly interesting. Since the former can be

left over from the Big Bang in sufficient number to account for the relic matter density

in a natural way, we will concentrate on them. Thus we will review in this subsection

current and projected experiments for detecting WIMPs directly by observing their

scattering on the material in a detector.
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Figure 2.3: Elastic scattering of a dark matter particle with an atomic nucleus in a

detector.

As discussed above, if neutralinos, or WIMPs in general, are the bulk of the dark

matter, they will form not only a background density in the Universe, but also will

cluster gravitationally with ordinary stars in the galactic halos. In particular they will

be present in our own galaxy, the Milky Way. This raises the hope of detecting relic

WIMPs directly, by experiments on the Earth. In particular, through scattering with

the material in a detector. In fact general studies of the possibility of dark matter

detection began around 1982. Since the detection will be on the Earth we need to

know the properties of our galaxy in order to be sure that such a detection is feasible.

As a matter of fact, rotation curves are much better known for external galaxies

than for ours, due to the position of the Earth inside the galaxy. In any case, analyses

have been carried out with the conclusion that indeed the Milky Way contains large

amounts of dark matter [35]. Besides, some observational evidence seems to point at

a roughly spherical distribution of dark matter in the galaxy. At the position of the

Sun, around 8.5 kpc away from the galactic center, the mean density of elementary

particles trapped in the gravitational potential well of the galaxy is expected to be

ρ0 ≈ 5 × 10−25 gr cm−3 ≃ 0.3 GeV cm−3. For WIMPs with masses about 100 GeV

this means a number density n0 ≈ 3 × 10−3 cm−3. In addition, their velocity will

be similar to the one of the Sun since they move in the same gravitational potential

well, v0 ≈ 220 km s−1, implying a flux of dark matter particles J0 = n0 v0 ≈ 105

cm−2 s−1 incident on the Earth. Although this number is apparently large, the fact

that WIMPs interact weakly with matter makes their detection very difficult. Most of

them will pass through matter without prevention. In any case, as suggested in 1985

[8, 9], direct experimental detection of WIMPs is in principle possible through elastic

scattering.

The detection of WIMPs through elastic scattering with nuclei in a detector is
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Figure 2.4: Feynman diagrams contributing to neutralino-nucleon cross section through

squark (q̃) exchange and CP-even light (h) and heavy (H) neutral Higgs exchange.

shown schematically in Fig. 2.3. As we can see the nucleus recoils as a whole. A very

rough estimate of the rate R in a detector is the following. A particle with a mass

of order 100 GeV and electroweak interactions will have a cross section σ ≈ 1 pb.

Thus for a material with nuclei composed of about 100 nucleons, i.e. MN ∼ 100 GeV

= 177 × 10−27 kg, one obtains R ∼ J0 σ/MN ≈ 10 events kg−1 yr−1. This means that

every day a few WIMPs, the precise number depending on the number of kilograms of

material, will hit an atomic nucleus in a detector.

Of course the above computation is just an estimate and one should take into

account in the exact computation the interactions of WIMPs with quarks and gluons,

the translation of these into interactions with nucleons, and finally the translation of

the latter into interactions with nuclei. In the case of neutralinos as WIMPs, diagrams

contributing to neutralino-quark cross section are shown in Fig. 2.4. The relevant

(scalar) χ̃0
1-nucleus cross section is of the form

σscat ≃M2
r |Ascat|2 , (2.2.32)

where Mr = MNmχ̃0
1
/(MN + mχ̃0

1
) is the reduced mass with MN the mass of the

nucleus, and Ascat is the amplitude which depends on the dynamics of the collision.

In particular, the quarks masses mq, the hadronic matrix elements f
(p)
Tq

, the proton

mass mp, and the masses of the particles mediating the interaction, such as mq̃, mH ,

mh, enter in Ascat. Significant regions of the parameter space of the MSSM produce

values of the neutralino-nucleus cross section σscat ≃ 1 pb, and therefore giving rise to

a reasonable number of events. As a matter of fact, in the experimental results that

one finds in the literature the authors prefer to give the WIMP-nucleon cross section.

This is about eight orders of magnitude smaller than the WIMP-nucleus cross section,

and therefore a typical value is ≈ 10−8 pb. In the next Sections, when talking about

scattering cross section, we will always consider this one.
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Let us finally remark that the diagrams for neutralino annihilation (see Fig. 2.2)

are related to these by crossing symmetry. Thus, provided that the main annihilation

channel is into fermions, the amplitudes of annihilation and scattering with nucle-

ons are similar, and this leads for the amplitudes with the nucleus to the relation

|Ascat|2 ≃ c2A2|Aann|2, where A is the atomic weight and c2 is a constant (we can

deduce from that c ≃ f
(p)
Ts
mp/ms = O(1) [7]). From eqs. (2.2.31) and (2.2.32) it is

obvious that σscat/σann ≃ const. However, if the neutralinos are heavy they have other

annihilation channels, such as Higgs bosons or vector boson pairs, and therefore the

crossing argument does not apply.

Experiments

More than 20 experiments for the direct detection of dark matter are running or

in preparation around the world. For example, Germanium is a very pure material

and has been used for many years for detecting dark matter in this way. In this

type of experiments, in order to detect the nuclear recoil energy, they measure the

ionization produced by collision with electrons. In fact, 76Ge ionization detectors has

been applied to WIMP searches since 1987 [34]. In 2000 the situation was the following.

The best combination of data from these experiments, together with the last data from

the Heidelberg-Moscow [36] and IGEX experiments [37] located at the Gran Sasso

(Láquila, Italy) and Canfranc (Huesca, Spain) Underground Laboratories, respectively,

were able to exclude a WIMP-nucleon cross section larger than about 10−5 pb for masses

of WIMPs ∼ 100 GeV, due to the negative search result. Although this was a very

interesting bound, it was still well above the expected value ∼ 10−8 pb.

Let us remark that it is convenient to carry the experiments out in the deep un-

derground. For a slow moving (∼ 300 km s−1) and heavy (∼ 100− 1000 GeV) particle

forming the dark matter halo, the kinetic energy is very small, around 100 keV, and

in fact the largest recoil energy transfer to a nucleus in the detector will only be a few

keV. Since cosmic rays with energies ∼ keV-MeV bombard the surface of the Earth,

the experiments must have an extremely good background discrimination. In partic-

ular, neutrons coming from collisions between cosmic-ray muons and nuclei produce

nuclear recoils similar to those expected from WIMPs at a rate ∼ 103 events kg−1

day−1. Thus detectors located in the deep underground, reduce the background by

orders of magnitude in comparison with the sea level intensity.

In fact, this is still not enough since the detector has to be protected also against

the natural radioactivity from the surroundings (e.g. the rocks) and the materials of



24 CHAPTER 2. GENERAL OVERVIEW
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Figure 2.5: Earth’s motion around the Sun.

the detector itself. This produces again neutrons but also X rays, gamma rays and beta

rays giving rise to electron recoils. The latter may be a problem for detectors based

only on ionization or scintillation light since nuclear recoils with energies of a few keV

are much less efficient in ionizing or giving light than electrons of the same energy.

Various protections aim to reduce these backgrounds. In particular, low radioactive

materials, such as e.g. high-purity copper or aged lead, are used for the shielding. In

addition, high-purity materials for the detector are also used.

Summarizing, with this type of experiments the WIMP nuclear recoil signal will

appear as an excess of recoil events above the expected background rate. However, it

would be very interesting to also look for some additional feature of the WIMP signal

that positively identifies it as galactic in origin. In this sense a different method for

discriminating a dark matter signal from background is the so-called annual modulation

signature [38]. As it is shown schematically in Fig. 2.5, as the Sun orbits the galaxy

with velocity v0 ≈ 220 km s−1, the Earth orbits the Sun with velocity ≈ 30 km s−1

and with the orbital plane inclined at an angle of 60◦ to the galactic plane. Thus e.g.

in June the Earth’s rotation velocity adds to the Sun’s velocity through the halo with

a maximum around June 2, whereas in December the two velocities are in opposite

directions. When this is taken into account the Earth velocity is given by

vE = v0

{

1.05 + 0.07 cos

[

2π(t− tm)

1year

]}

, (2.2.33)

where tm= June 2± 1.3 days. This fluctuation produces a rate variation between the

two extreme conditions. The variation is so small ≈ 7% that the experiment can

only work if large number of events are found, implying that large mass apparata are

necessary.

The DArk MAtter (DAMA) experiment [39] investigates the annual modulation of

this signature rather than discriminating signal events against background. It consists
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Figure 2.6: Model independent residual rate for events in the (2–4), (2–5) and (2–6)

keV energy intervals as a function of the time elapsed since January 1st of the first year

of data taking. The experimental points present the errors as vertical bars and the

associated time bin width as horizontal bars. The superimposed curves represent the

cosinusoidal functions behaviours expected for a WIMP signal with a period equal to

1 year and phase at 2nd June.

of about 100 kg of material in a small room at the Gran Sasso National Laboratory

located beside the Gran Sasso Tunnel on the highway connecting Teramo to Rome (see

Fig. 2.8 for a similar experiment DAMA/LIBRA). The maximum thickness of the rock

overburden is 1400 m. In the experiment they use nine 9.70 kg NaI crystal scintillators

which measure the ionization produced by the nuclear recoil through the emission of

photons. Remarkably, they found that their detectors flashed more times in June than

in December. The data collected [39] over four yearly cycles, DAMA/NaI-1,2,3,4, until

the second half of August 1999, strongly favour the presence of a yearly modulation of

the rate of the events. Moreover, in 2003, more data were reported [40] confirming this

result. In particular the DAMA/NaI-5 data were collected from August 1999 to end of

July 2000. Afterwards, the DAMA/NaI-6 data were collected from November 2000 to



26 CHAPTER 2. GENERAL OVERVIEW

Figure 2.7: Areas allowed by different experiments for the direct detection of dark

matter in the parameter space (σWIMP-nucleon, mWIMP), where σWIMP-nucleon is the WIMP-

nucleon cross section and mWIMP is the WIMP mass. The sensitivities of present amd

projected experiments are depicted with solid and dashed lines, respectively. The

large (small) area bounded by dotted lines is allowed by the DAMA experiment when

astrophysical uncertaties are (are not) taken into account.

end of July 2001, while the DAMA/NaI-7 data were collected from August 2001 to July

2002. The analysis of the data of the seven annual cycles offers an immediate evidence

of the presence of an annual modulation of the rate of the events in the lowest energy

region as shown in Fig. 2.6 (from Ref. [40]), where the time behaviours of the (2–4),

(2–5) and (2–6) keV residual rates are depicted. This signal is compatible [39, 40]

with WIMP masses up to 100 GeV and WIMP-nucleon cross sections in the interval

10−6 − 10−5 pb, as shown with the small dotted region in Fig. 2.7, where the data [41]

from DAMA/NaI-0 have also been taken into account.

It is worth remarking that this result has been obtained assuming the simple isother-

mal sphere halo model with dark-matter density ρ0 = 0.3 GeV cm−3 and WIMP ve-

locity v0 = 220 km s−1 (to be precise one assumes a Maxwell-Boltzmann local velocity

distribution f(v) ∝ e−v2/v2
0 producing a velocity dispersion v̄ =< v2 >1/2= (3/2)1/2v0 ≈

270 km s−1). However, when uncertainties on the halo model are taking into account,

the signal is consistent with a larger region of the parameter space. In particular, in

Refs. [39, 40] and [42] modifications in the velocity distribution function for different

galactic halo models were considered, using in addition the allowed ranges for v0 and
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ρ0 in each model. One obtains that the signal is compatible with larger values of the

parameters, i.e. WIMP masses up to 270 GeV, and WIMP-nucleon cross sections in

the interval 10−7 − 6× 10−5 pb. This result corresponds at a rate of about 1 event per

kg per day. In fact, as discussed in Ref. [42] (see also Ref. [40]), when co-rotation of

the galactic halo is also considered, the mass range extends further to 500− 900 GeV,

for cross sections in the interval few×10−6 − 2 × 10−5 pb, as can be deduced from Fig

2.7.

Although the DAMA group is confident about the data, since they claim to have

ruled out systematic effects which could fake the signature [43, 44], as e.g. temperature

changes, it is worth remarking that the above values for the cross section are generically

above the expected weak-interaction value, and therefore they are not easy to obtain in

SUSY models with neutralino dark matter. But in fact, the DAMA result is controver-

sial, mainly because the negative search result obtained by other recent experiments.

In particular, this is the case of the Cryogenic Dark Matter Search (CDMS) experiment

[45] in the US. This is located in the Soudan mine in Minnesota (approximately 700

metres below ground), with Ge/Si targets. Two detection techniques are used for this

discrimination, both the ionization and the temperature rise produced during a recoil

are measured. The latter can be observed since the recoiling nucleus is stopped within

10−7−10−6 cm (∼ 10−14 s) releasing a spherical wave of phonons traveling at ∼ 5×105

cm s−1, and subsequently converted to a thermal distribution. These two techniques

allow to discriminate electron recoils caused by interactions of background particles

from WIMP-induced nuclear recoils. The ratio of deposited energies heat/ionization

would be ∼ 2 − 3 for the former and larger than 10 for the latter. These data ex-

clude much of the region allowed by the DAMA annual modulation signal, as shown

in Fig. 2.7 with a solid line.

In addition, also the recent results from the EDELWEISS collaboration exclude

large regions of DAMA, as shown also in Fig. 2.7. The EDELWEISS experiment [?] is

located at the Frejus Underground Laboratory in the Modane Tunnel under the French-

Italians Alps, under a 1780 m rock overburden. As CDMS, this experiment also uses a

heat-and-ionization cryogenic Ge detector. Finally, the ZEPLIN experiment [94] at the

Boubly salt mine (Yorkshire, UK) also excludes a region similar to that of EDELWEISS.

In this case, the experiment consists of a series of liquid Xenon detectors operating

some 1100 m underground, where the nuclear recoil produces boyh an ionization and

a scintillation signal.

Owing to this controversy between DAMA and the other experiments, one cannot be
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Figure 2.8: Left picture: during the LIBRA detectors installation in HP Nitrogen

atmosphere. Right picture: view at end of the detectors installation. All the used

materials have been deeply selected for radiopurity (see for example the cables with

teflon envelop).

sure whether or not the first direct evidence for the existence of dark matter has already

been observed. Fortunately, the complete DAMA region will continue being tested by

similar dark matter detectors. First of all, the DAMA collaboration dismounted the

100 kg NaI set-up and installed the new LIBRA set-up. This consisting of about 250

kg of NaI made of 25 detectors, 9.70 kg each one. This will make the experiment more

sensitive to the annual modulation signal. Some pictures taken during the installation

can be seen in Fig. 2.8 (from Ref. [44]). This was completed at the end of 2002.

It is woth noticing that another (independent) experiment basically equal to DAMA

is under construction in the Canfrac laboratory, the ANAIS experiment, [95], and

therefore should be able to reproduce the DAMA resuts (if they are right).

On the other hand in the future, the CDMS collaboration will be able to test a

WIMP-nucleon cross section σ >∼ 10−8 pb as shown in Fig. 2.7. There, is also shown

the line corresponding to upcoming detectors working with 1 tonne of Ge/Xe. This

can be as low as 10−9pb [96].



Chapter 3

NMSSM Phenomenology and Dark

Matter

After an introduction to the NMSSM model, we siscuss in this chapter part of the

original results of this thesis. In particular, we perform a phenomenological analysis of

the NMSSM, and study the viability of the neutralino to constitute the dark matter of

the Universe. In section 3.5 we summarise the results obtained.

3.1 The NMSSM

In this section, we review some important features of the NMSSM. In particular, we

discuss the Higgs and neutralino sectors of the model, presenting the tree-level mass

matrices and mixings which are relevant for our analysis. We also discuss the theoretical

and experimental constraints, and how these are reflected in the parameter space.

3.1.1 Motivation

As we already said one of the most important enigmas in physics is the problem of

the dark matter in the Universe. Particle physics, and in particular extensions of the

standard model (SM) offer candidates for dark matter. Among the most interesting

ones are Weakly Interacting Massive Particles (WIMPs), since these can be left over

from the Big Bang in sufficient number to account for a significant fraction of the

observed matter density.

29
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Given in the privious Chapter of the work the situation respect to the dark matter

problem and the fact that impressive experimental efforts have been carried out for

the direct detection of WIMP’s, and assuming that the dark matter is a WIMP, it is

necessary to analyse the theoretical predictions for the WIMP-nucleon cross section.

Obviously, the answer to this question depends on the particular WIMP considered.

The leading candidate in this class of particles is the lightest neutralino, χ̃0
1, which

appears in supersymmetric (SUSY) extensions of the SM [10]. The cross section for

the elastic scattering of χ̃0
1 on nucleons has been examined exhaustively in the context

of the Minimal Supersymmetric Standard Model (MSSM) [7]. In particular, there are

regions of the parameter space of the MSSM where the neutralino-nucleon cross section

is compatible with the sensitivity of present (and future) dark matter detectors.

However, it is well known that the MSSM faces a naturalness problem – the so-

called µ problem [46] – arising from the presence of a mass term for the Higgs fields

in the superpotential, µH1H2. The only natural values for the µ parameter are either

zero or the Planck scale. The first is experimentally excluded since it leads to an

unacceptable axion once the electroweak (EW) symmetry is broken, while the latter

reintroduces the hierarchy problem. There exist explanations for an O(MW ) value for

the µ term, although all in extended frameworks [46, 47].

The Next-to-Minimal Supersymmetric Standard Model (NMSSM) [48, 49, 50, 51,

52, 53, 54, 55, 56, 57, 58] provides an elegant solution to the µ problem of the MSSM

via the introduction of a singlet superfield S. In the simplest form of the superpo-

tential, which is scale invariant and contains the SH1H2 coupling, an effective µ term

is generated when the scalar component of S acquires a vacuum expectation value

(VEV) of order the SUSY breaking scale. This effective coupling is naturally of order

the EW scale if the SUSY breaking scale is not too large compared with MW . In fact,

the NMSSM is the simplest supersymmetric extension of the standard model in which

the EW scale exclusively originates from the SUSY breaking scale. Another appealing

feature of the NMSSM is related to the “little fine tuning problem” of the MSSM,

or equivalently, the non-observation of a neutral CP-even Higgs boson at LEP II. As

shown in [49], in the context of the NMSSM the latter problem becomes less severe.

Although the symmetries of the NMSSM may give rise to the possibility of a cosmo-

logical domain wall problem [50], this can be avoided by the introduction of suitable

non-normalisable operators [51] that do not generate dangerously large singlet tadpole

diagrams [59]. These additional operators can be chosen small enough as not to alter

the low energy phenomenology.
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In addition to the MSSM fields, the NMSSM contains an extra CP-even and CP-odd

neutral Higgs bosons, as well as one additional neutralino. These new fields mix with

the corresponding MSSM ones, giving rise to a richer and more complex phenomenology

[48, 52, 53, 54, 55]. A very light neutralino may be present [52]. The upper bound

on the mass of the lightest Higgs state is larger than in the MSSM [53]. Moreover, a

very light Higgs boson is not experimentally excluded [54, 55]. All these properties may

modify the results concerning the neutralino-nucleon cross section with respect to those

of the MSSM. In Section 2 we examine the relevant effective Lagrangian describing the

elastic χ̃0
1-nucleon scattering and its associated cross section.

In fact, in comparison with the MSSM, there are only a few works in the literature

studying the direct detection of the lightest neutralino in the NMSSM [56, 57], as well

as its relic density [58]. Thus, given the recent experimental results concerning the de-

tection of dark matter, and in view of the appealing theoretical and phenomenological

properties of the NMSSM, it is important to carry out an up-to-date analysis of the

neutralino-nucleon cross section in this framework. In Sections three and four we do

this analysis and summary the results in five. The popose of this Section is to decibed

the ingridients necesary for this analysis. We introduce the model in subsection 2,

discussing in particular its Higgs potential and we make the minimization in subsec-

tion 3. In sections four and five we introduce the relevants mass matrix. subsection 6

is devoted to discus the relevant parameters.

3.1.2 Higgs scalar potential

In addition to the MSSM Yukawa couplings for quarks and leptons, the NMSSM super-

potential contains two additional terms involving the Higgs doublet superfields, H1 and

H2, and the new superfield S, a singlet under the SM gauge group SU(3)c ×SU(2)L ×
U(1)Y ,

W = ǫij
(

YuH
j
2 Q

i u+ YdH
i
1Q

j d+ YeH
i
1 L

j e
)

− ǫijλS H
i
1H

j
2 +

1

3
κS3 , (3.1.1)

where we take HT
1 = (H0

1 , H
−
1 ), HT

2 = (H+
2 , H

0
2 ), i, j are SU(2) indices, and ǫ12 = 1.

In this model, the usual MSSM bilinear µ term is absent from the superpotential, and

only dimensionless trilinear couplings are present in W . However, when the scalar

component of S acquires a VEV, an effective interaction µH1H2 is generated, with

µ ≡ λ〈S〉.

As mentioned in the Introduction, the superpotential in Eq. (3.1.1) is scale invariant,
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and the EW scale will only appear through the soft SUSY breaking terms in Lsoft, which

in our conventions is given by

−Lsoft = m2
Q̃
Q̃∗ Q̃+m2

Ũ
ũ∗ ũ+m2

D̃
d̃∗ d̃+m2

L̃
L̃∗ L̃+m2

Ẽ
ẽ∗ ẽ

+ m2
H1
H∗

1 H1 +m2
H2
H∗

2H2 +m2
S S

∗S

+ ǫij

(

Au YuH
j
2 Q̃

i ũ+ Ad YdH
i
1 Q̃

j d̃+ Ae YeH
i
1 L̃

j ẽ+ H.c.
)

+

(

−ǫijλAλSH
i
1H

j
2 +

1

3
κAκ S

3 + H.c.

)

− 1

2
(M3 λ3 λ3 +M2 λ2 λ2 +M1 λ1 λ1 + H.c.) . (3.1.2)

In our subsequent analysis we assume that the soft breaking parameters are free at the

EW scale. In addition to terms from Lsoft, the tree-level scalar Higgs potential receives

the usual D and F term contributions:

VD =
g2
1 + g2

2

8

(

|H1|2 − |H2|2
)2

+
g2
2

2
|H†

1H2|2 ,

VF = |λ|2
(

|H1|2|S|2 + |H2|2|S|2 + |ǫijH i
1H

j
2 |2
)

+ |κ|2|S|4

−
(

ǫijλκ
∗H i

1H
j
2S

∗2 + H.c.
)

. (3.1.3)

3.1.3 Minimization of the tree level scalar potential

Once the EW symmetry is spontaneously broken, the neutral Higgs scalars develop the

following VEV’s:

〈H0
1〉 = v1 , 〈H0

2 〉 = v2 , 〈S〉 = s . (3.1.4)

One has to ensure the absence of non-vanishing VEV’s for the charged Higgs fields,

which would induce the appearance of charge breaking minima. By means of an

SU(2)L × U(1)Y transformation, one can take, without loss of generality, 〈H+
2 〉 = 0

while 〈H0
2〉 = v2 ∈ R

+. The condition to have v−1 = 〈H−
1 〉 = 0 as a global minimum is

quite involved; still, imposing that v−1 = 0 is a local minimum is equivalent to requiring

that the physical charged Higgses have positive mass squared.

Bringing together all the terms in Eqs. (4.2.12) and (3.1.3), we then obtain for the

tree-level neutral Higgs potential:

〈V Higgs
neutral〉 =

g2
1 + g2

2

8

(

|v1|2 − |v2|2
)2

+ |λ|2
(

|s|2|v1|2 + |s|2|v2|2 + |v1|2|v2|2
)

+ |κ|2|s|4

+ m2
H1
|v1|2 +m2

H2
|v2|2 +m2

S|s|2
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+

(

−λκ∗v1v2s
∗2 − λAλsv1v2 +

1

3
κAκs

3 + H.c.

)

.

In the following, we assume that λ, κ, as well as the soft SUSY breaking terms are real.

This implies the absence of explicit CP violation in the scalar sector. Although v1 and

s can be complex parameters, the global Z3 symmetry exhibited by the superpotential

implies that CP-violating extrema of V Higgs
neutral are maxima rather than minima [60]. In

principle, λ, κ, and the trilinear soft-breaking terms, Aλ and Aκ, in Eq. (4.2.13) can

have both signs.

Ensuring that the tree-level potential has a minimum with respect to the phases

of the VEV’s directly excludes some combinations of signs for the parameters. After

conducting this analysis, and given that the potential is invariant under the symmetries

λ, κ, s→ −λ, −κ, −s and λ, v1 → −λ, −v1, we adopt, without loss of generality, the

sign convention where both λ and v1 are positive. We then have only positive values

for λ and tan β, while κ and µ (= λs), as well as Aλ and Aκ, can have both signs.

In what follows, we summarise the conditions for κ, Aλ, Aκ and µ (= λs) obtained

from the minimization of the potential with respect to the phases of the VEV’s. In

particular, for κ > 0, one can analytically show that minima of V Higgs
neutral may be ob-

tained for the following three combinations of signs, provided that in each case the

corresponding conditions are fulfilled,

(i) sign(s) = sign(Aλ) = −sign(Aκ),

which always leads to a minimum with respect to the phases.

(ii) sign(s) = −sign(Aλ) = −sign(Aκ),

with |Aκ| > 3λv1v2|Aλ|/(−|sAλ|+ κ|s2|), where the denominator has to be posi-

tive.

(iii) sign(s) = sign(Aλ) = sign(Aκ),

with |Aκ| < 3λv1v2|Aλ|/(|sAλ| + κ|s2|).

Similarly, for κ < 0, minima can only be obtained for the combination

(iv) sign(s) = sign(Aλ) = sign(Aκ),

with |Aκ| > 3λv1v2|Aλ|/(|sAλ|−κ|s2|), where the denominator has to be positive.
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Numerically, one finds that these tree-level conditions generally hold even after the

inclusion of higher order corrections.

One can derive three minimization conditions for the Higgs VEV’s and use them

to re-express the soft breaking Higgs masses in terms of λ, κ, Aλ, Aκ, v1, v2 and s:

m2
H1

= −λ2
(

s2 + v2 sin2 β
)

− 1
2
M2

Z cos 2β + λs tanβ (κs+ Aλ) ,

m2
H2

= −λ2 (s2 + v2 cos2 β) + 1
2
M2

Z cos 2β + λs cotβ (κs + Aλ) ,

m2
S = −λ2v2 − 2κ2s2 + λκv2 sin 2β + λAλv2

2s
sin 2β − κAκs , (3.1.5)

where v2 = v2
1 + v2

2 = 2M2
W/g

2
2 and tanβ = v2/v1.

3.1.4 Higgs boson mass matrices

Subsequent to EW symmetry breaking, and after rotating away the CP-odd would-be

Goldstone boson, we are left with five neutral Higgs states and 2 charged Higgs states.

Assuming

H0
1 ≡ v1 +

H1R + iH1I√
2

, H0
2 ≡ v2 +

H2R + iH2I√
2

, S ≡ s +
SR + iSI√

2
, (3.1.6)

among the neutral Higgses we find three CP-even states -H1R, H2R, SR and two CP-odd

components, A0, SI , with A0 related to the original fields asH1(2)I = sin β(cosβ)A0. Us-

ing the minimization conditions above, the tree-level mass matrix for the neutral Higgs

bosons can be easily obtained. Since we have made the assumption that there is no

CP-violation on the Higgs sector, CP-even and CP-odd states do not mix, and the cor-

responding mass matrices can be written in the respective basis, H0 = (H1R, H2R, SR)

and P 0 = (A0, SI). For the CP-even states, we have

M2
S,11 = M2

Z cos2 β + λs tanβ(Aλ + κs)

M2
S,22 = M2

Z sin2 β + λs cotβ(Aλ + κs)

M2
S,33 = 4κ2s2 + κAκs+ λ

s
Aλv1v2

M2
S,12 =

(

λ2v2 − M2
Z

2

)

sin 2β − λs (Aλ + κs)

M2
S,13 = 2λ2v1s− λv2 (Aλ + 2κs)

M2
S,23 = 2λ2v2s− λv1 (Aλ + 2κs) . (3.1.7)

The CP-even Higgs interaction and physical eigenstates are related by the transforma-

tion

h0
a = SabH

0
b , (3.1.8)
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where S is the unitary matrix that diagonalises the above symmetric mass matrix,

a, b = 1, 2, 3, and the physical eigenstates are ordered as1 mh0
1

. mh0
2

. mh0
3
. In

the pseudoscalar sector, after rewriting the CP-odd mass terms in the P 0 basis, the

corresponding (symmetric) mass matrix reads

M2
P,11 = 2λs

sin 2β
(κs+ Aλ)

M2
P,22 = λ

(

2κ+ Aλ

2s

)

v2 sin 2β − 3κAκs

M2
P,12 = λv (Aλ − 2κs) , (3.1.9)

and the relation between physical and interaction eigenstates is given by

a0
i = PijP

0
j . (3.1.10)

Regarding the charged Higgs mass, at the tree level it is given by

m2
H± = M2

W − λ2v2 + λ(Aλ + κs)
2s

sin 2β
. (3.1.11)

3.1.5 Neutralino mass matrix

When compared to the MSSM case, the structure of chargino and squark mass terms

is essentially unaffected, provided that one uses µ = λs. However, in the neutralino

sector, the situation is more involved, since the fermionic component of S mixes with the

neutral Higgsinos, giving rise to a fifth neutralino state. In the weak interaction basis

defined by Ψ0T ≡
(

B̃0 = −iλ′, W̃ 0
3 = −iλ3, H̃

0
1 , H̃

0
2 , S̃
)

, the neutralino mass terms in

the Lagrangian are

Lχ̃0

mass = −1

2
(Ψ0)TMχ̃0Ψ0 + H.c. , (3.1.12)

with Mχ̃0 a 5 × 5 matrix,

Mχ̃0 =





























M1 0 −MZ sin θW cosβ MZ sin θW sin β 0

0 M2 MZ cos θW cosβ −MZ cos θW sin β 0

−MZ sin θW cosβ MZ cos θW cosβ 0 −λs −λv2

MZ sin θW sinβ −MZ cos θW sin β −λs 0 −λv1

0 0 −λv2 −λv1 2κs





























.

(3.1.13)

1Throughout the work we always adopt the convention mi . mj for i < j.
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The above matrix can be diagonalised by means of a unitary matrix N ,

N∗Mχ̃0N−1 = diag(mχ̃0
1
, mχ̃0

2
, mχ̃0

3
, mχ̃0

4
, mχ̃0

5
) , (3.1.14)

where mχ̃0
1

is the lightest neutralino mass. Under the above assumptions, the lightest

neutralino can be expressed as the combination

χ̃0
1 = N11B̃

0 +N12W̃
0
3 +N13H̃

0
1 +N14H̃

0
2 +N15S̃ . (3.1.15)

In the following, neutralinos with N2
13 +N2

14 > 0.9, or N2
15 > 0.9, will be referred to as

Higgsino- or singlino-like, respectively.

3.1.6 NMSSM parameter space

At the weak scale, the free parameters in the Higgs sector are (at tree level): λ, κ,

m2
H1

, m2
H2

, m2
S, Aλ and Aκ. Using the three minimization conditions of the Higgs

potential (including the dominant one- and two-loop corrections), one can eliminate

the soft Higgs masses in favour of MZ , tan β and µ. We thus consider as independent

parameters the following set of variables

λ, κ, tanβ, µ, Aλ, Aκ . (3.1.16)

In our study, the soft scalar masses as well as the soft gaugino soft masses Mi are

free parameters at the EW scale. We scanned over the parameter space using the

program nmhdecay [54] and in what follows we overview the most relevant aspects of

the analysis.

For each point in the parameter space, one requires the absence of Landau singular-

ities for λ, κ, Yt and Yb below the GUT scale. For mpole
t = 175 GeV, this translates into

λ <∼ 0.75, κ <∼ 0.65, and 1.7 <∼ tan β <∼ 54. In addition one verifies that the physical

minimum is a true one, in other words, that it is deeper than the local unphysical

minima with 〈H0
1,2〉 = 0 and/or 〈S〉 = 0.

One then computes the scalar, pseudo-scalar and charged Higgs masses and mix-

ings, taking into account 1- and 2-loop radiative corrections. The dominant 1-loop

corrections to the Higgs masses originate from top, stop, bottom and sbottom loops,

and the corresponding corrections to m2
h0
1

are of O(Y 4
t,b). Pure electroweak contribu-

tions of O(g2) are also taken into account. Regarding 2-loop corrections to the effective

potential, the dominant ones are associated with top-stop loops, and only the leading
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(double) logarithms are included. The chargino and neutralino masses and mixings

are computed and the couplings of the scalar and pseudoscalar Higgs to charginos and

neutralinos are calculated.

Finally, all available experimental constraints from LEP are checked:

1) In the neutralino sector, we check that the lightest neutralino does not contribute

excessively to the invisible width of the Z boson (Γ(Z → χ̃0
1χ̃

0
1) < 1.76 MeV [61]) if

mχ̃0
1
< MZ/2, and that σ(e+e− → χ̃0

1χ̃
0
i ) < 10−2 pb if mχ̃0

1
+ mχ̃0

i
< 209 GeV (i > 1)

and σ(e+e− → χ̃0
i χ̃

0
j) < 10−1 pb if mχ̃0

i
+mχ̃0

j
< 209 GeV (i, j > 1) [62].

2) In the chargino sector, we verify that the lightest chargino is not too light (mχ̃+
1
>

103.5 GeV [63]). This leads to a lower bound on |µ| >∼ 100 GeV.

3) In the charged Higgs sector, we impose mH+ > 78.6 GeV [64].

4) In the neutral Higgs sector, we check the constraints on the production rates (reduced

couplings) × branching ratios versus the masses, for all the CP-even states h0 and CP-

odd states a0, in all the channels studied at LEP [65]: e+e− → h0Z, independent of the

h0 decay mode (IHDM); e+e− → h0Z, dependent on the h0 decay mode (DHDM), with

the Higgs decaying via h0 → bb̄, h0 → τ+τ−, h0 → 2 jets h0 → γγ and h0 → invisible;

associated production modes (APM), e+e− → h0a0, with h0a0 → 4b’s, h0a0 → 4τ ’s

and h0a0 → a0a0a0 → 6b’s (see [54] for a detailed discussion).
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3.2 Neutralino-nucleon cross section

The most general supersymmetric low-energy effective four-fermion Lagrangian that

describes the elastic scattering of the lightest neutralino with the nucleon is given

by [66, 67],

Leff = ¯̃χ
0
1 γ

µγ5 χ̃
0
1 q̄i γµ (α1i + α2iγ5) qi + α3i

¯̃χ
0
1 χ̃

0
1 q̄i qi +

+α4i
¯̃χ

0
1 γ5 χ̃

0
1 q̄i γ5 qi + α5i

¯̃χ
0
1 χ̃

0
1 q̄i γ5 qi + α6i

¯̃χ
0
1 γ5 χ̃

0
1 q̄i qi , (3.2.17)

where i = 1, 2 denotes up- and down-type quarks, and the Lagrangian is summed over

the three quark generations. In the absence of CP-violating phases, the terms propor-

tional to α5 and α6 vanish. Moreover, those associated with α1 and α4 (as well as α5

and α6, should these be present) are velocity-dependent, and can be safely neglected for

our present purposes. The cross section associated with the spin-dependent coefficient

(α2) is only non-zero if the target nucleus has a non-vanishing spin and, contrary to

case of the scalar (spin-independent) term, adds incoherently. For the case of heavy

targets, as those used in the experiments mentioned in the Introduction, the scalar

cross section associated with α3 is in general substantially larger, and henceforth we

shall focus our discussion on the latter..
.

.

.
~�01q ~q ~�01q

. .

. .
~�01

q h0i~�01
q

(a) (b)

Figure 3.1: Feynman diagrams contributing to the neutralino-nucleon scalar cross sec-

tion: (a) squark exchange and (b) scalar Higgs exchange.

We begin by decomposing α3i into two terms, one arising from squark s-channel ex-

change and the other from the t-channel, neutral Higgs mediated interaction (Fig. 3.1
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(a) and (b), respectively). One obtains2

αq̃
3i = −

∑2

X=1

1

4(m2
Xi −m2

χ̃0
1

)
Re
[(

CXi
R

) (

CXi
L

)∗]

, αh
3i =

∑3

a=1

1

m2
h0

a

Ci
Y Re [Ca

HL] ,

(3.2.18)

where X = 1, 2 denotes the squark mass eigenstates and a = 1, 2, 3 refers to the

scalar Higgs mass eigenstates. The relevant NMSSM couplings for the neutralino-

squark-quark (CXi
L,R), neutralino-neutralino-Higgs (Ca

HL,R) and Higgs-quark-quark (Ci
Y )

interactions are given in Appendix A.

The term αq̃
3i is formally identical to the MSSM case, differing only in the new

neutralino mixings stemming from the presence of a fifth component. In particular,

in regions of the NMSSM parameter space where the singlino component dominates

the lightest neutralino state, there will be a significant reduction in the Bino- and

Wino-squark-quark couplings, and hence in αq̃
3i.

Regarding the Higgs mediated interaction term (αh
3i), the situation is slightly more

involved since both vertices and the exchanged Higgs scalar significantly reflect the

new features of the NMSSM. First, let us recall that in regions of the parameter space

where the lightest Higgs boson has a sizable singlet component, the Higgs-quark-quark

coupling might be substantially reduced. Regarding the Higgs-χ̃0
1-χ̃

0
1 interaction, in

addition to a new component in the lightest χ̃0 state, the most important alteration

emerges from the presence of new terms, proportional to λ and κ (cf. Appendix A).

Nevertheless, and as already mentioned, light Higgs bosons can be experimentally

allowed in the context of the NMSSM. Should this occur, and if these states are not

pure singlets (thus displaying a non-vanishing coupling to matter) the exchange of

light Higgs scalars in the t-channel might provide a considerable enhancement to the

neutralino-nucleon cross section.

It is worth mentioning that an enhancement of αh
3i with respect to αq̃

3i is not an

effect unique to the NMSSM. In fact, it has been already noticed that in the MSSM,

and once the mSUGRA inspired universality for the soft scalar and gaugino masses

is abandoned, the cross section associated with the channels involving scalar Higgs

exchange can be substantially enhanced. Similar to what will occur in the present

model, the MSSM t-channel contributions become larger once the Higgsino components

of χ̃0
1 are augmented and/or the Higgs masses are reduced (via non-universal soft masses

2When compared to the analogous expression of Ref. [57], we find some discrepancies in αh
3i, namely

a missing singlet-Higgsino-Higgsino term (proportional to λ), and the presence of an additional overall

weak coupling constant, g.



40 CHAPTER 3. NMSSM PHENOMENOLOGY AND DARK MATTER

at the GUT scale) [68].

The scalar interaction term contributes to the χ̃0
1-Nucleon cross section as

σ3N =
4m2

r

π
f 2

N , (3.2.19)

where mr is the Nucleon-χ̃0
1 reduced mass, mr = mNmχ̃0

1
/(mN +mχ̃0

1
), and

fN

mN
=
∑

q=u,d,s
f

(N)
Tq

α3q

mq
+

2

27
f

(N)
TG

∑

q=c,b,t

α3q

mq
. (3.2.20)

In the above, mq is the quark mass, and the parameters f
(N)
Tq are defined as 〈N |mq q̄q|N〉

= mNf
(N)
Tq . f

(N)
TG can be derived from f

(N)
Tq as f

(N)
TG = 1 −

∑

q=u,d,sf
(N)
Tq . Following [69],

we take the following values for the hadronic matrix elements:

f
(p)
Tu = 0.020 ± 0.004 , f

(p)
Td = 0.026 ± 0.005 , f

(p)
Ts = 0.118 ± 0.062 ,

f
(n)
Tu = 0.014 ± 0.003 , f

(n)
Td = 0.036 ± 0.008 , f

(n)
Ts = 0.118 ± 0.062 . (3.2.21)

In the numerical analysis of the next subsection we will use the central values of the

above matrix elements. Notice that f
(n)
Ts = f

(p)
Ts and both are much larger than fTq for

u and d quarks, and therefore fp and fn are basically equal. Thus we will focus on the

neutralino-proton cross section,

σ3p ≡ σχ̃0
1−p =

4m2
r

π
f 2

p , (3.2.22)

with mr = mpmχ̃0
1
/(mp +mχ̃0

1
) ∼ mp.

3.3 Analysing the parameter space looking for ob-

servable cross section neutralino-nucleon

In this Chapter we present some of the original results of this work [1]. We analyse the

parameter space looking for cross sections in the range of detectors.

In this and the next chapter the viability of the detection of the lightest NMSSM

neutralino as a dark matter candidate Will be studied . In particular, we will compute

the theoretical predictions for the direct detection of neutralinos through their elastic

scattering with nucleons inside a detector. In our computation we will take into account

all the relevant constraints on the parameter space from accelerator data described in

the previous chapter.
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In this chapter we make a first approch analysing the behaviour of the parameter

space taking into account that we wount neutralino-nucleon cross section in the range

of the detectors. For this first approch we use all the acelerators constraint taking

into account in the program nmhadey. We complete this analyses in the next chapter

incluing more accelerators constraint (that really not vary the results) and more like

the calculous of the anomalous magnetic moment of the muon and b → sγ that can

be very restrictives. Also in the next chapter we compute the relic neutralino density

taking into account the constraints arising from reproducing the WMAP data [18],

0.095 <∼ ΩDMh
2 <∼ 0.112, on our relevant parameter space for the cross section. For this

we will use the general analysis of the relic neutralino density, including coannihilations,

that has been carried out for the NMSSM in [70].

As discussed in the Introduction, many experiments for the direct detection of dark

matter are running or in preparation. Thus, in our analysis, we will be particularly

interested in the various NMSSM scenarios which might potentially lead to values of

σχ̃0
1−p in the sensitivity range of those detectors.

Although the free parameters in our model have already been presented in subsec-

tion 3.1.6, it is worth recalling that the Higgs and neutralino sectors of the theory are

specified by

λ , κ , µ(= λs) , tan β , Aλ , Aκ , M1 , M2 . (3.3.23)

As aforementioned, we take these parameters to be free at the EW scale. Based on an

argument of simplicity3, the low-energy squark masses and trilinear couplings, which

appear in the computation of the neutralino-nucleon cross section, are taken to be

degenerate4. Unless otherwise stated, the common SUSY scale will be MSUSY = 1 TeV.

Having free squark and slepton soft parameters at the EW scale allows us to ensure

that in our analysis the lightest SUSY particle is indeed the χ0
1. Also led by arguments

of naturalness, we shall take a lower bound for λ, λmin ∼ µ/smax. Thus, taking the

conservative range s . 10 TeV, this translates into λmin ∼ µ(GeV) × 10−4.

We begin our analysis by taking values for the soft gaugino masses that mimic at low

scale the results from a hypothetical unified value at the GUT scale. Consequently, we

3Since in our analysis of the neutralino-nucleon cross section the detection channels mediated by

Higgs scalars will be enhanced with respect to those mediated by squarks, the sensitivity of the results

to variations of the squark parameters will be very small.
4Regarding the stop mass matrix we will work in the maximal-mixing regime, where the off-diagonal

term takes the form mt Xt = mt

√
6 MSUSY. Departures from this case would not affect significantly

the theoretical predictions for the neutralino-nucleon cross section.
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will chooseM2 = 1 TeV andM1 = 500 GeV. For the gluino mass, the valueM3 = 3 TeV

will be taken. Later on we will address variations of these values. In the following we

take |µ| ≥ 110 GeV, since in most cases this allows to safely avoid the LEP bound

on the lightest chargino mass. Throughout this subsection, we shall consider several

choices for the values of Aλ, Aκ, µ and tanβ, and for each case, we will study the

associated phenomenology.

In order to simultaneously analyse the dark matter predictions and understand the

effect of the experimental constraints on the parameter space of the NMSSM, it is very

illustrative to begin our study in the plane generated by the Higgs couplings in the

superpotential, λ and κ. In subsection 3.1.3 we commented on the conditions to be

applied to each of the sign combinations of the parameters, which arise from ensuring

that the tree-level potential has a minimum with respect to the phases of the VEV’s.

In the following it will be clarifying to discuss each case separately. Let us first consider

the cases associated with positive values of κ.

3.3.1 µAκ < 0 and µAλ > 0 (κ > 0)

As a first choice, we will consider the two cases where µAκ < 0 and µAλ > 0, namely

those with µ, Aλ, −Aκ > 0 and µ, Aλ, −Aκ < 0.

In both cases, part of the parameter space can be excluded due to the occurrence

of tachyons in the CP-even Higgs sector. Namely, it is easy to see from the expression

of the CP-even Higgs matrix (3.1.7) that the off-diagonal terms |M2
S,13| or |M2

S,23| can

become significantly bigger than M2
S,33, thus leading to the appearance of a negative

eigenvalue. This will typically happen for moderate to large values of λ and small κ, for

which mh0
1

is small. Large values of |Aκ| and tanβ lead to an increase of the tachyonic

region, as we will later see. On the other hand, the eigenvalues of the CP-odd Higgs

mass matrix are never negative. The CP-odd Higgs masses also decrease for large λ

and small κ, but their minimum value is bounded by the appearance of tachyons in

the CP-even sector.

The (λ, κ) parameter space is shown in Fig. 3.2 for an example with tanβ = 3,

Aλ = 200 GeV, Aκ = −50 GeV and µ = 110 GeV. The points which are excluded

due to the occurrence of a Landau pole are indicated, as well as those not fulfilling the

experimental constraints. According to the discussion above, the tachyons appearing in

the lower right corner are due to the CP-even Higgs sector. It is worth remarking that in

these cases, due to the smallness of the lightest CP-even Higgs mass, the experimental
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Figure 3.2: (λ, κ) parameter space for tan β = 3, Aλ = 200 GeV, Aκ = −50 GeV and

µ = 110 GeV. In both cases, the ruled area represents points which are excluded due to

the occurrence of a Landau pole. The grided area is excluded because of the appearance

of tachyons. The grey area is associated to those points that do not satisfy the LEP

constraints or where (at least) the LEP bound on direct neutralino production is vio-

lated. Dotted lines in the experimentally accepted region represent contours of scalar

neutralino-proton cross section σχ̃0
1−p. In (a), from top to bottom, solid lines indicate

different values of lightest Higgs scalar mass, mh0
1

= 114, 75, 25 GeV, and dashed lines

separate the regions where the lightest scalar Higgs has a singlet composition given

by S 2
13 = 0.1, 0.9. In (b), from top to bottom, solid lines are associated with different

values of the lightest neutralino mass, mχ0
1

= 100, 75, 50 GeV, while dot-dashed lines

reflect the singlino composition of the lightest neutralino, N2
15 = 0.1, 0.9 .
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constraints (see subsection 3.1.6) from e+e− → h0Z, both IHDM and DHDM (h0 → bb̄,

h0 → τ+τ−, and h0 → 2 jets), become very important and typically exclude the regions

in the vicinity of those excluded by tachyons.

Dashed lines in Fig. 3.2a indicate the singlet composition of the lightest scalar Higgs.

Singlet-like Higgses can be found for small values of κ, whereas doublet-like Higgses

appear for large κ. This can be qualitatively understood from the expression of the

corresponding mass matrix (4.2.7). In particular, the diagonal term M2
S,33 becomes

very small when κ decreases. Interestingly, when the singlet composition is significant,

the reduced coupling can be smaller and thus Higgses with mh0
1
<∼ 114 GeV can escape

detection and be in agreement with experimental data. This opens a new window in

the allowed parameter space, characteristic of the NMSSM, which can have relevant

consequences for dark matter detection as we will discuss below.

In Fig. 3.2b the same case is represented, but emphasizing the information on the

neutralino properties. The singlino composition of the lightest neutralino is shown

with dot-dashed lines, while solid lines correspond to different values of its mass. As

one would expect from the structure of the neutralino mass matrix (4.2.7), for small

κ, the lightest neutralino is essentially a singlino, with a small mass which can be

approximated as mχ̃0
1
∼ 2µκ/λ. In the present case, singlino-like neutralinos appear

for κ <∼ 0.04 and λ <∼ 0.2, whereas heavier, Higgsino-like, neutralinos (due to our choice

of input values with µ < M1) populate the rest of the parameter space. Regions with

small masses of the neutralino may be excluded due to the bound on direct neutralino

production, which becomes quite severe for light Higgsino-like neutralinos.

In both figures, the different values of the neutralino-nucleon cross subsection are

represented with dotted lines. As already commented in subsection 3.2, the cross section

increases in those regions with a light CP-even Higgs, as long as it is not a pure singlet.

This behaviour is clearly illustrated in these figures, which feature very large values

for σχ̃0
1−p in the vicinity of the areas where the lightest Higgs becomes tachyonic. On

the other hand far from these regions the cross section stabilizes at 10−8 pb > σχ̃0
1−p >

10−9 pb.

In order to illustrate this point in more detail, we have represented in Fig. 3.3 the

resulting σχ̃0
1−p versus the lightest Higgs mass and the neutralino mass. Black dots

fulfil all the experimental constraints, whereas grey dots are those experimentally ex-

cluded (we do not plot those regions ruled out due to theoretical arguments, such

as the occurrence of a Landau pole). The sensitivities of present and projected dark

matter experiments are also depicted as a function of mχ̃0
1

for comparison. The small
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Figure 3.3: Scatter plot of the scalar neutralino-nucleon cross section, σχ̃0
1−p, as a

function of (a) the neutralino mass, mχ̃0
1
, and (b) the lightest scalar Higgs mass, mh0

1
,

for Aλ = 200 GeV, µ = 110 GeV, Aκ = −50 GeV, and tan β = 3. Black dots correspond

to points fulfilling all the experimental constraints, whereas grey dots represent those

excluded. In (a) the sensitivities of present and projected experiments are also depicted

with solid and dashed lines, respectively. The large (small) area bounded by dotted

lines is allowed by the DAMA experiment when astrophysical uncertainties are (are

not) taken into account.

area bounded by dotted lines is allowed by the DAMA experiment in the simple case

of an isothermal spherical halo model. The larger area also bounded by dotted lines

represents the DAMA region when uncertainties to this simple model are taken into

account. The (upper) areas bounded by solid lines are excluded by EDELWEISS and

CDMS Soudan. Finally, the dashed lines represent the sensitivities of the projected

GEDEON, CDMS Soudan, and GENIUS experiments.

Very large values for the cross section could in principle be obtained. However,

these are associated to very light Higgses and are therefore subject to the strong con-

straints on e+e− → h0Z discussed above. Once every constraint is taken into account,

points with σχ̃0
1−p

<∼ 10−7 pb appear, which correspond to light scalar Higgses with

mh0
1
>∼ 75 GeV, surviving the experimental constraints due to their important singlet

character, S 2
13
>∼ 0.85. This is a clear consequence of the NMSSM that we will exploit
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Figure 3.4: (λ, κ) parameter space with the corresponding constraints and neutralino-

nucleon cross section as a function of the lightest neutralino mass for the case Aλ =

200 GeV Aκ = −200 GeV, µ = 110 GeV and tan β = 3. In the (λ, κ) plane the mass

and composition of the lightest scalar Higgs, the composition of the lightest neutralino

(only the line with N2
15 = 0.1), and the predictions for σχ̃0

1−p are represented with the

same line conventions as in Fig. 3.2, and the new ruled area (vertical lines) is excluded

due to the occurrence of unphysical minima. The colour convention for the plot σχ̃0
1−p

versus mχ̃0
1

is as in Fig. 3.3.

in subsequent examples, since it allows for a significant increase in the cross section.

The neutralinos in these regions have mχ̃0
1
>∼ 70 GeV and have exhibit a have a mixed

singlino-Higgsino composition (N2
15
<∼ 0.3 and N2

13 +N2
14
>∼ 0.7 in the region with larger

cross section).

Notice that σχ̃0
1−p displays an important suppression around mχ̃0

1
≈ 90 GeV. This is

due to the cancellation of the contribution of the cross section coming from neutralino-

neutralino-Higgs interaction due to the occurrence of terms with different signs. This

type of accidental cancellations is analogous to those appearing in MSSM analyses for

µ < 0 [69].

These results are also sensitive to variations in the rest of the input parameters (Aκ,

tan β, µ, and Aλ). For instance, increasing |Aκ| (i.e., making it more negative) leads

to a further decrease in M2
S,33 in the CP-even Higgs mass matrix, and therefore lighter
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Higgses can be obtained with a larger singlet composition. Although this translates into

an enlargement of the regions where one has a tachyonic scalar Higgs, one may never-

theless find a larger σχ̃0
1−p in the allowed areas. Choosing tanβ = 3, Aλ = 200 GeV and

µ = 110 GeV, but with Aκ = −200 GeV, one can obtain σχ̃0
1−p

>∼ 10−4 pb (points which

in fact are already excluded by direct dark matter searches). The corresponding (λ, κ)

parameter space, as well as σχ̃0
1−p versus the neutralino mass, are represented in Fig 3.4.

Remarkably, very light Higgses are allowed in this case (mh0
1
>∼ 20 GeV) due to their

significant singlet character (0.9 <∼ S 2
13
<∼ 0.95). Once again, the lightest neutralino ex-

hibits a large singlino-Higgsino composition (N2
15
<∼ 0.3 and N2

13+N2
14
>∼ 0.7). For these

reasons, one hardly finds experimentally excluded regions: only narrow stripes, mostly

due to direct production of χ̃0 and h0 → bb̄. Also, for small values of λ and κ, a very

thin region excluded by the existence of false minima (see subsection 3.1.6) appears.

Conversely, decreasing |Aκ| helps reducing tachyonic regions. In the particular case

where Aκ = 0, no tachyons emerge from the CP-even sector5. The implications of this

variation in the value of σχ̃0
1−p are minimal.

Changing tan β has an important impact in the analysis, mainly due to the effect

on the Higgs sector. The tachyonic regions become larger as tan β increases (extending

towards higher values of λ and κ). As a consequence, the neutralino is never a pure

singlino and its mass increases due to the larger mixing with Higgsinos. For this reason

the exclusion due to direct neutralino production becomes larger. In the end, not only

the allowed region is reduced, but also the predictions for σχ̃0
1−p are smaller. Also, for

very small values of tan β very light Higgsino-like neutralinos can be found in large

regions of the parameter space. The experimental constraints are, nevertheless, more

important and only small areas survive. Fig. 3.5 illustrates these properties.

5Only the region with λ = 0 would present a CP-odd Higgs with negative mass-squared. Obviously,

we will not consider such a choice, since it would not solve the µ problem (it implies µ = 0).



Figure 3.5: The same as in Fig. 3.4 but for the cases Aλ = 200, GeV Aκ = −50 GeV,

µ = 110 GeV, and tan β = 2, 5, 10, from top to bottom. In the case with tanβ = 2,

only the lines with mh0
1

= 75, 25 GeV are represented, since mh0
1
<∼ 110 GeV.
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Figure 3.6: The same as in Fig. 3.3a but for the cases Aλ = 200, GeV Aκ = −200 GeV,

µ = 110 GeV, and tan β = 2, 4, 5, from left to right and top to bottom.

Similar examples, but for Aκ = −200 GeV can be found in Fig. 3.6, where the

predictions for σχ̃0
1−p are depicted as a function of the neutralino mass for tanβ =

2, 4, 5. As already mentioned, small values of tanβ favour lighter neutralinos with

larger detection cross section.

Heavier neutralinos with a larger singlino composition can be obtained if the value

of µ is increased. For this reason, the regions where direct neutralino production is not
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Figure 3.7: The same as in Fig. 3.3a but for the cases Aλ = 200 GeV, tanβ = 3,

µ = 200 GeV, and Aκ = −50, −200 GeV, from left to right.

in agreement with experimental bounds become much narrower. The mass of scalar

Higgses also grows in this case, as well as their doublet character. Constraints on

the Higgs sector are still strong enough to forbid those points where the neutralino is

mostly singlino, and in the end χ̃0
1 preserves its mixed singlino-Higgsino character. In

the remaining allowed area the predictions for σχ̃0
1−p can vary, being typically smaller

than in cases with low µ. This is shown in Fig. 3.7 for two examples with µ = 200 GeV,

Aλ = 200 GeV, tanβ = 3, and Aκ = −50, −200 GeV. In particular, in the case with

Aκ = −200 GeV, the detection cross section is much smaller than in the analogous

example with µ = 110 GeV presented in Fig. 3.4.

Finally, variations in the value of Aλ also influence the theoretical predictions on

σχ̃0
1−p. There is a range of Aλ for which the eigenvalues of the CP-even Higgs mass

matrix are positive. However, for smaller or larger Aλ, off-diagonal terms may become

large enough to ease the appearance of tachyons in the large λ regime. For instance, in

Fig. 3.8 we have represented the (λ, κ) plane and the corresponding predictions for σχ̃0
1−p

in two cases with Aκ = −50 GeV, µ = 110 GeV, tanβ = 3, and Aλ = 50, 450 GeV.

We find that, in agreement with the discussion above, the tachyonic regions are larger

than those for Aλ = 200 GeV in both cases. Also, the areas excluded by experimental

constraints associated to IHDM and DHDM are more extensive, and in the case of

Aλ = 450 Gev they forbid most of the parameter space. The neutralino is mostly
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Figure 3.8: The same as in Fig. 3.4 but for the cases Aκ = −50 GeV, µ = 110 GeV,

tan β = 3, and Aλ = 50, 450 GeV, from top to bottom.

Higgsino in the remaining allowed points, with N2
15
<∼ 0.1(0.2) and N2

13+N2
14
>∼ 0.9(0.8)

for Aλ = 50(450) GeV, and there is a slight decrease in the predictions for σχ̃0
1−p.

The range of values of Aλ for which the allowed area is more extensive is very

dependent on the rest of the inputs. In particular, since large tan β and |Aκ| increase

the diagonal term, M2
P,22, in the CP-odd Higgs mass matrix, larger values of Aλ can

be taken before M2
P,12 gets too big. For example, in the case with Aκ = −200 GeV one
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Figure 3.9: The same as in Fig. 3.3a but for the cases Aκ = −200 GeV, µ = 110

GeV, tanβ = 4 and Aλ = 300 GeV, on the left, and Aκ = −200 GeV, µ = 110 GeV,

tan β = 5 and Aλ = 450 GeV on the right.

can still obtain large accepted regions for Aλ = 300 − 450 GeV and tan β = 4 − 5, as

evidenced in Fig. 3.9, where points entering the sensitivities of the present dark matter

detectors are obtained with mχ̃0
1
<∼ 75 GeV.

To complete the analysis of the cases with µAλ > 0 and µAκ < 0, we must ad-

dress the possibility of having µ, Aλ, −Aκ < 0. Note from (4.2.13) that the tree-level

potential, V Higgs
neutral, and therefore the Higgs mass matrices, are invariant under the ex-

change of the signs of µ, Aλ and Aκ, provided that the signs of µAλ and µAκ do

not change. This implies that the above analysis regarding the Higgs sector is iden-

tical in this case. Differences arise, however, in the neutralino sector since the signs

of M1,2 were not altered. Therefore, the neutralino mass spectrum differs, as well as

the lightest neutralino composition. Also the experimental constraints exhibit a slight

variation. This case presents the same qualitative behaviour as the one formerly dis-

cussed in what the minimization of the Higgs potential is concerned. Nevertheless,

differences arise regarding the theoretical predictions for σχ̃0
1−p due to the experimen-

tal constraints and the different position of the accidental suppressions in the Higgs-

exchange diagrams. These differences can be sizable for large tanβ. For instance, we

have represented in Fig. 3.10 two examples with Aλ = −200 GeV, µ = −110 GeV,

tan β = 3, and Aκ = 50, 200 GeV, where the suppression in σχ̃0
1−p is found to occur
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Figure 3.10: The same as in Fig. 3.3a but for the cases Aλ = −200 GeV, µ = −110

GeV, tanβ = 3, and Aκ = 50, 200 GeV, from left to right.

for mχ̃0
1
≈ 110 GeV.

To sum up, we have found that large values of σχ̃0
1−p, even within the reach of

dark matter detectors, can be obtained in the scenarios analysed in this subsection.

The NMSSM nature is evidenced in these examples by the compositions of the lightest

neutralino (which is a singlino-Higgsino mixed state) and the scalar Higgs (which can

be mostly singlet and as light as mh0
1
>∼ 20 GeV).

3.3.2 µAκ < 0 and µAλ < 0 (κ > 0)

This choice comprises the cases µ, −Aλ, −Aκ > 0 and µ, −Aλ, −Aκ < 0.

We first address the possibility µ, −Aλ, −Aκ > 0. When compared with the cases

discussed in the previous subection, the occurrence of tachyons in the Higgs sector gives

rise to stronger constraints in this case, both in the CP-even and CP-odd Higgses.

For CP-even Higgses tachyons are now more likely to occur, due to the negative

contributions in M2
S,33, induced by the terms proportional to µAκ and Aλ/µ. Similarly,

M2
S,11 receives a sizeable negative contribution from the term proportional to µAλ

which is particularly dangerous for large values of tanβ. In the CP-odd sector, an

analogous study of the mass matrix shows that tachyons are more restrictive for large
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values of λ and small values of κ. Actually, from the naive requirement M2
P,11 ≥ 0 the

following constraint is obtained κ ≥ −λAλ/µ. In fact, this ensures the positiveness of

the denominator in condition (ii) derived from the minimization of the Higgs potential

in subection 3.1.3, and gives a qualitative idea on the dependence of the tachyonic

region on the parameters Aλ and µ. When compared with the cases treated in the

former subection, larger regions of the parameter space are now excluded. We found

that tachyons in the CP-odd sector typically give rise to stronger constraints than those

from CP-even sector, although the corresponding excluded regions practically coincide.

The experimental constraints from the neutralino sector are not very stringent in

these examples, owing to the fact that the regions where the neutralino would have a

small mass are typically excluded by the occurrence of tachyons.

As an example, the (λ, κ) plane is represented in Fig. 3.11 for tanβ = 3, Aλ =

−200 GeV, Aκ = −50 GeV and µ = 110 GeV. In this case, and in contrast with

what was displayed in Fig. 3.2, there exists a very large region where one cannot find

minima of V Higgs
neutral. In particular, λ >∼ 0.25 is now excluded for this reason. In the rest of

the parameter space, experimental constraints become very important in those regions

with small values of the CP-even and CP-odd masses. Although the most important

exclusion is due to DHDM constraints (h0 → bb̄ and h0 → τ+τ−), some regions not

fulfilling the bounds on APM (h0a0 → 4b’s) also appear. It is worth emphasizing that

in the remaining allowed regions the lightest Higgs is doublet-like (S 2
13
<∼ 0.003) and

its mass is never too small, mh0
1
>∼ 85 GeV.

Regarding the composition of the lightest neutralino, it turns out to be Higgsino-like

in all the allowed parameter space (N2
13 +N2

14
>∼ 0.98). As we already mentioned, those

regions with small λ and κ that would lead to a singlino-like neutralino are excluded by

absence of physical minima in the potential. For this reason the mass of the neutralino

is dictated by the value of the µ term and we found mχ̃0
1
≈ µ throughout the allowed

parameter space.

This is shown in Fig. 3.11, which represents the corresponding values of the neutralino-

nucleon cross section as a function of the neutralino mass. The cross section ranges

from 6 × 10−9 pb . σχ̃0
1−p . 7 × 10−8 pb in this case. Once more, although higher

values could be obtained, these are typically excluded due to the constraints on the

CP-even Higgses.

Let us now address the relevance of variations in Aκ in the allowed regions of the

parameter space and thus on the predictions for σχ̃0
1−p. It can be seen that the increase
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Figure 3.11: The same as in Fig. 3.4 but for tanβ = 3, Aλ = −200 GeV, Aκ = −50 Gev

and µ = 110 GeV. Only the lines with mh0
1

= 114, 75 GeV are represented, and none

of the lines showing the lightest scalar Higgs and neutralino composition is depicted,

since S 2
13 < 0.1 and N2

15 < 0.1 in all the plane.

in |Aκ| (i.e., making it more negative) translates into an almost negligible enlargement

in the allowed area, while the experimental constraints on CP-even Higgses become

more restrictive. On the other hand, a decrease in the value of |Aκ| leads to a lighter

CP-odd Higgs and the tachyonic region increases, as can be easily understood from the

mass matrix (3.1.9). For instance, in the particular case of Aκ = 0, and unless |Aλ| is

also very small, the entire parameter space can be excluded.

Regarding changes inAλ and µ, these clearly affect the regions excluded by tachyons.

Large values of µ and small |Aλ| allow an increase in the accepted regions, in agreement

with the condition on κ derived above, κ ≥ −λAλ/µ. Also, note that, since the masses

of the Higgses increase, the associated experimental constraints become less restrictive

and the allowed area is larger. Nevertheless, the region where the neutralino would

have an important singlino composition is still typically excluded, and therefore in the

allowed region χ̃0
1 is still Higgsino-like, with mχ̃0

1
≈ µ. Despite the increase of mχ̃0

1
, the

predictions for the cross section are essentially unaltered. An example with tan β = 3,

Aλ = −200 GeV, Aκ = −50 GeV and µ = 200 GeV is represented in Fig. 3.12, display-

ing both the (λ, κ) plane and the neutralino-nucleon cross section versus the neutralino

mass. We find σχ̃0
1−p

<∼ 5 × 10−8 pb, similar to what was found in Fig. 3.11, but now
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Figure 3.12: The same as in Fig. 3.4 but for tanβ = 3, Aλ = −200 GeV, Aκ = −50 Gev

and µ = 200 GeV. Only the line with mh0
1

= 114 GeV is represented, and none of the

lines showing the lightest scalar Higgs and neutralino composition is depicted, since

S 2
13 < 0.1 and N2

15 < 0.1 in all the plane.

with mχ̃0
1
≈ 190 GeV. The singlino component of χ̃0

1 is negligible (N2
15
<∼ 0.006) and

the scalar Higgs is doublet-like (S 2
13
<∼ 0.001).

Finally, regarding variations in the value of tanβ, these have little effect on the

shape of the tachyonic region, whereas experimental constraints are more sensitive to

them. As in the former scenario, for low values of tanβ light scalar Higgses are obtained.

Since these are predominantly doublet-like, experimental constraints (especially those

associated with DHDM, namely, h0 → bb̄ and h0 → τ+τ−) become very important

and forbid, for instance, the whole parameter space in the case tan β = 2. On the

other hand, larger values of tanβ are welcome in order to increase the value of mh0
1
,

obtaining also a moderate enhancement of the cross section. In order to illustrate

this discussion, we represent in Fig. 3.13 two cases with tan β = 2, 5, for Aλ = −200

GeV, Aκ = −50 GeV and µ = 110 GeV. We find that the cross section can reach

σχ̃0
1−p ≈ 10−7 pb in the case where tanβ = 5. None of these examples displays any

qualitative change regarding the neutralino and Higgs compositions.

To complete the analysis of the cases with µAλ < 0 we still have to consider the

case µ, −Aλ, −Aκ < 0. As we explained in the former subsection, the analysis of the
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Figure 3.13: The same as in Fig. 3.4 but for the cases Aλ = −200 GeV, Aκ = −50 GeV,

µ = 110 GeV, and tanβ = 2, 5, from top to bottom. In the left frames, only the line

with mh0
1

= 114 GeV is represented, and none of the lines showing the lightest scalar

Higgs and neutralino composition is depicted, since S 2
13 < 0.1 and N2

15 < 0.1 in all the

plane.
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Higgs sector will be analogous to that of the case we have just studied. Despite the

differences in the neutralino sector, its mass, composition and detection cross section

will also be qualitatively equal to those previously discussed.

Summarizing, all the cases we have analysed in this subsection present as common

features the appearance of Higgsino-like neutralinos with a detection cross section which

can be as large as σχ̃0
1−p

<∼ 10−7 pb, and doublet-like Higgses.

3.3.3 µAκ > 0 and µAλ > 0 (κ > 0)

We consider now those cases where µAκ > 0, and µAλ > 0, conditions which are

fulfilled in the cases µ, Aλ, Aκ > 0 and µ, Aλ, Aκ < 0.

We will begin with all µ, Aλ, and Aκ positive. As in the previous cases, a simple

analysis of the tree-level Higgs mass matrices gives a qualitative understanding on the

nature and extension of the tachyonic regions in the parameter space.

In this particular case tachyons in the CP-odd sector arise through the negative

contribution −3κµ
λ
Aκ in M2

P,22. Since this is mainly compensated by the positive term
λ2v2

µ
Aλ sin 2β, the tachyonic region occurs for small values of λ. The excluded region

is obviously more important for small values of Aλ and large µ, Aκ, and tanβ. The

occurrence of tachyons in the CP-even Higgses is analogous to the case µAλ > 0,

µAκ < 0 discussed in subsection 3.3.1, due to the increase of the off-diagonal terms in

the mass matrix. As in that case, tachyons appear for large values of λ and small κ

and become more stringent as tanβ grows.

Experimental constraints play also a very relevant role in this case. Close to the

tachyonic regions the experimental bounds on the Higgs sector are very severe. In

particular IHDM, DHDM (h0 → bb̄, h0 → 2 jets) are responsible for the most impor-

tant exclusions, although APM (mainly h0a0 → 4 b’s) may also be violated. Finally,

excluding those regions where the direct neutralino production is in disagreement with

the experimental bounds leads to important constraints in the region with light χ̃0
1.

An example with Aλ = 200 GeV, µ = 110 GeV, Aκ = 50 GeV and tan β = 3 is

represented in Fig. 3.14, depicting the constraints on the (λ, κ) plane and the corre-

sponding predictions for σχ̃0
1−p versus the neutralino mass. In the small experimentally

allowed region the lightest neutralino is a mixed singlino-Higgsino state, with N2
15
<∼ 0.4

and N2
13 +N2

14
>∼ 0.6, and the lightest scalar Higgs can have an important singlet com-

ponent (S 2
13
<∼ 0.8). The experimental constraints impose mχ̃0

1
>∼ 70 GeV and mh0

1
>∼ 85
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Figure 3.14: The same as in Fig. 3.4 but for Aλ = 200 GeV, µ = 110 GeV, Aκ = 50

GeV, and tanβ = 3. Only the line with S 2
13 = 0.1 is represented, and none of the lines

showing the neutralino composition is depicted since 0.5 > N2
15 > 0.1 in all the plane.

GeV, which set a limit on the theoretical predictions for the neutralino-nucleon cross

section at σχ̃0
1−p <∼ 4 × 10−8 pb.

Variations of Aκ have an important impact on the allowed parameter space. As

already commented, the region excluded due to tachyons in the CP-odd Higgs sector

increases for larger values of Aκ. For instance, in the example with Aλ = 200 GeV, µ =

110 GeV, and tanβ = 3, the allowed region completely disappears for Aκ >∼ 110 GeV.

On the other hand, decreasing the value of Aκ the parameter space is enlarged. Recall

that the minimal value Aκ = 0 has already been analysed in subsection 3.3.1 in the

context of a scenario with µ, Aλ,−Aκ > 0.

Decreasing the value of Aλ also leads to an increase of regions with a tachyonic

pseudoscalar. If µ = 110 GeV, Aκ = 50 and tan β = 3, the whole parameter space is

excluded for Aλ <∼ 50 GeV. On the other hand, a moderate increase ofAλ helps avoiding

tachyons, especially in the CP-even sector. An example with Aλ = 300 GeV can be

found in Fig. 3.15, where the (λ, κ) plane and the theoretical predictions for σχ̃0
1−p are

represented. Since in this case the experimental constraints from Higgs decays are less

severe, we find that the regions with very light Higgs and χ̃0
1 are now experimentally

viable. In particular, neutralinos with an important singlino composition, N2
15
<∼ 0.45,
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Figure 3.15: The same as in Fig. 3.4 but forAλ = 300 GeV, µ = 110 GeV, Aκ = 50 GeV,

and tanβ = 3. Only the lines with mh0
1

= 114, 75 GeV are represented. Regarding the

neutralino composition, only the line with N2
15 = 0.1 is shown in the upper corner of

the allowed region, since in the rest of the parameter space 0.5 > N2
15 > 0.1.

can be obtained with mχ̃0
1
>∼ 45 GeV, whereas the lightest Higgses (mh0

1
≈ 65−90 GeV)

are all singlet-like. This in turn favours larger values of the cross section (σχ̃0
1−p

<∼ 2×
10−6 pb), and compatibility with present experiments is almost obtained. Should we

further increase the value of Aλ, the experimental constraints associated with the scalar

Higgs would become again more important.

In order to prevent the occurrence of tachyons in the CP-odd Higgses, the value of µ

has to be small. For instance, taking µ = 200 GeV in the example with Aλ = 200 GeV,

Aκ = 50 GeV and tanβ = 3, all the (λ, κ) plane would be excluded.

Regarding the value of tanβ, as already mentioned, the larger it is, the more exten-

sive the regions excluded by m2
h0
1
< 0 become. In Fig. 3.16 we represent two examples

with Aλ = 200 GeV, Aκ = 50 GeV, µ = 110 GeV and tanβ = 2, 5. We find that

low values of tan β still allow physical minima of the potential. Moreover, both the

singlino component of χ̃0
1 and the singlet component of the scalar Higgs can be slightly

enhanced. For example, for tan β = 2 light neutralinos (χ̃0
1
>∼ 60 GeV) can be obtained

with N2
15
<∼ 0.55, while Higgses in the mass range mh0

1
≈ 75− 100 GeV are singlet-like.

However, the predictions for the detection cross section suffer a moderate decrease and
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Figure 3.16: The same as in Fig. 3.4 but for the cases Aλ = 200 GeV, µ = 110 GeV,

Aκ = 50 GeV, and tanβ = 2, 5, from top to bottom. In the case with tanβ = 2

only the lines with mh0
1

= 114, 75 GeV, and those with S 2
13 = 0.1 and N2

15 = 0.1 are

represented. Similarly, in the case with tanβ = 5 only the line with mh0
1

= 25 GeV is

drawn, and none of the lines showing the compositions of the lightest scalar Higgs and

neutralino is depicted, since 0.7 > S 2
13 > 0.1 and 0.4 > N2

15 > 0.1 in all the plane.

σχ̃0
1−p <∼ 5×10−8 pb is obtained. On the other hand, for tanβ >∼ 5 the whole parameter

space is in general excluded.
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We should now address the complementary choice of the sign of the parameters,

namely µ, Aλ, Aκ < 0, for which we already know that the analysis of the Higgs sector

still holds. Once more, differences arise in the theoretical predictions for σχ̃0
1−p

To sum up, the choices for the signs of the parameters which have been considered

in this subsection also permit obtaining large values for the theoretical prediction of

the neutralino-nucleon cross section, despite the fact that the parameter space is very

constrained both experimentally and by the occurrence of tachyons. In particular,

values of σχ̃0
1−p close to the sensitivities of the present detectors can be found in some

regions of the parameter space. The lightest neutralino displays a mixed singlino-

Higgsino character, and the scalar Higgs is singlet-like and light in those regions with

larger σχ̃0
1−p.

3.3.4 µAκ > 0 and µAλ > 0 (κ < 0)

We will now focus our attention on those cases with a negative value for κ, namely

µ, Aλ, Aκ > 0 and µ, Aλ, Aκ < 0.

Let us therefore concentrate on the first of the two possibilities, µ, Aλ, Aκ > 0.

The parameter space is in this case plagued with tachyons in both the CP-even and

CP-odd Higgs sectors. On the one hand, regarding the CP-odd Higgses, large values

of |κ| and µ and small values of λ and Aλ may lead to negative values in the diagonal

terms of the mass matrix, especially in M2
P,11. Nevertheless, large values of λ can also

induce very large off-diagonal terms M2
P,12 if Aλ is large and a negative eigenvalue can

be obtained in that case. Similar arguments lead to analogous conclusions concerning

tachyons in the scalar sector, being the region with small λ the one facing the most

severe restrictions.

Note that experimental constraints will play a very important role in the vicinity

of these regions. Although the largest exclusions typically arise from the bounds on

IHDM and DHDM (mainly in h0 → bb̄, h0 → 2 jets), APM can also exclude some

regions with a small ma0 . All these become particularly restrictive in the low tanβ

regime. In fact, in most of the cases with tanβ <∼ 3 all of the parameter space is

excluded. Experimental constraints in the neutralino sector can also be very stringent,

especially for small values of µ, where χ̃0
1 is light and Higgsino-like.

In the remaining allowed regions of the parameter space, the lightest CP-even Higgs

is mostly dominated by the doublet component. Concerning the lightest neutralino, it
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turns out to be Higgsino-like. Owing to this, the predictions for σχ̃0
1−p are very similar

to those obtained in subsection 3.3.2.

The above discussion can be illustrated with Fig. 3.17, where the (λ, κ) plane and

the predictions for σχ̃0
1−p are presented for a case with Aλ = 450 GeV, µ = 200 GeV,

Aκ = 50 GeV, and tanβ = 5. Light singlino-like neutralinos can only be obtained

in the very small area with |κ| <∼ 0.06, where the scalar Higgs may be as light as

mh0
1
>∼ 50 GeV with a large singlet component. In this particular region the predicted

values for the detection cross section are not large, σχ̃0
1−p

<∼ 10−9 pb. In the rest of the

parameter space χ̃0
1 is Higgsino-like, which implies mχ̃0

1
≈ µ, and the lightest scalar

Higgs is a doublet with mh0
1
>∼ 112 GeV. Slightly higher values for the cross section are

obtained, which are bounded by the experimental constraints on the scalar Higgs at

σχ̃0
1−p

<∼ 6 × 10−8 pb. This prediction can be slightly increased with larger values of

tan β. For instance, with tan β = 10 one finds σχ̃0
1−p

<∼ 2× 10−7 pb. None of the above

remarks concerning the masses and compositions of the lightest neutralino and scalar

Higgs would change in this case.

Variations in the rest of the parameters are very constrained due to the extensive

tachyonic regions and the strong experimental bounds, especially those associated to

the bounds on IHDM and DHDM. This is, for instance, what happens when the value

of Aλ decreases. The very narrow region for small |κ| where singlino-like neutralinos

can be obtained is usually ruled out and the only surviving areas are those featuring

heavy Higgsino-like neutralinos and doublet-like scalar Higgses. For this reason, the

predictions for the detection cross section are always similar to those presented in the

example of Fig. 3.17

Finally, concerning the case µ, Aλ, Aκ < 0, nothing changes in the analysis of

the Higgs sector. Once again, the differences in the neutralino sector and the slight

changes in the experimental constraints can induce variations in the predicted σχ̃0
1−p.

Nevertheless, a similar global upper bound of σχ̃0
1−p <∼ 10−7 pb is obtained.

The examples analysed in this subsection feature a lightest neutralino which is

Higgsino-like in most of the parameter space, together with a doublet-like lightest scalar

Higgs. The neutralino-nucleon cross section is bounded by experimental constraints

on the Higgs sector at σχ̃0
1−p

<∼ 2 × 10−7 pb. Singlino-like neutralinos can only be

obtained in extremely small regions of the parameter space and predict smaller cross

sections, σχ̃0
1−p

<∼ 2 × 10−9 pb.
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Figure 3.17: The same as in Fig. 3.4 but for positive κ, with Aλ = 450 GeV, µ = 200

GeV, Aκ = 50 GeV and tan β = 5

3.3.5 Overview

In the previous subsections we have presented a separate analysis of the distinct regions

of the Aλ, Aκ, and tanβ parameter space. This kind of approach was useful in order

to comprehend the implications of individual variations of these parameters.

In this chapter we learn about the parameter space of the NMSSM in relation

to the neutralino-nucleon cross section. In the next chapter we complete this analyses

imposing more constraint. We include the calculus of the anomalous magnetic moment

of the muon, the b → sγ branching ratio and the computation of the neutralino relic

abundance that is relevant for dark matter. This constraints as we show in the next

pages are very restricteved.
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3.4 Including flavour physics, the muon anomalous

magnetic moment and the neutralino relic den-

sity computation

In this chapter, we continuos study the viability of lightest NMSSM neutralino as

a good dark matter candidate. Motivated by the results obtained in the previous

chapter, we focus on regions of the low-energy NMSSM parameter space where large

direct detection cross sections are likely to be obtained. Building upon the previous

analysis, we apply the new constraints (improved comparison with LEP and Tevatron

data), K- and B-meson decays, aSUSY
µ , and compatibility with the WIMP relic density.

Finally, we discuss the prospects of the experimentally viable regions regarding direct

detection of dark matter.

Let us just recall that the free parameters of the model, associated with the Higgs

and neutralino sectors of the theory, are 6

λ , κ , µ(= λs) , tanβ , Aλ , Aκ , M1 , M2 , M3 . (3.4.24)

We assume that the gaugino mass parameters mimic, at low-energy, the values of a

hypothetical GUT unification (M3

6
= M1 = M2

2
).

It should be emphasised that in nmhdecay 2.0 some of the input parameters are

specified at a different scale than in the former version nmhdecay 1.1 [54], which was

used in the previous analysis done in chapter 3. Although the difference between the

values of λ (or κ) at the EW and the SUSY scales (≈ 1 TeV) is very small, there is

a substantial change in the value of the trilinear coupling Aλ. These variations are

induced by the top trilinear coupling Atop, and are approximately given by ASUSY
λ ≈

AEW
λ + .06AEW

top . Therefore, one needs to take this shift into account when comparing

the present results with those of the privious chapter and published in [1].

Motivated by the results of [1] regarding the prospects for direct detection of dark

matter, we will be interested in a regime of low tan β, as well as in values of |µ| in the

range 110 GeV . µ . 200 GeV (the lower limit ensuring that in most cases one can

safely avoid the LEP bound on the lightest chargino mass). Likewise, the following

intervals for the trilinear couplings will be taken: −800 GeV . Aλ . 800 GeV,

6Although the soft gluino mass, M3, is not directly related to the computation of the

Higgs/neutralino masses and mixings, it plays a relevant role in contributing to the radiative cor-

rections to the Higgs boson masses.
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and −300 GeV . Aκ . 300 GeV (the optimal ranges will typically correspond to

|Aλ| ∼ 400 GeV and |Aκ| . 200 GeV, working in a small tanβ regime).

Slepton and squark masses, as well as the corresponding trilinear parameters, do not

significantly affect the neutralino detection properties, other than through the radiative

corrections to the Higgs masses. However, low-energy observables are very sensitive

to their specific values. In the following subsection we will see, for instance, how the

experimental constraint on aSUSY
µ favours light sleptons.

As already done in chapter 3, we divide the scan of the low-energy NMSSM param-

eter space following the results of the minimisation with respect to the VEV phases,

separately discussing each of the cases (i)-(iv) (see subsection 3.3.5).

3.4.1 Constraints on the parameter space

A comprehensive analysis of the low-energy NMSSM phenomenology can be obtained

using the nmhdecay 2.0 code [72]. After minimising the scalar potential, thus dis-

missing the presence of tachyons and/or false minima, the Higgs boson masses are

computed, including 1- and 2-loop radiative corrections. Squark and slepton masses

are also calculated, as well as the corresponding mixing angles for the third genera-

tion. Chargino and neutralino masses and mixings are evaluated and all the relevant

couplings are derived.

Even though the general analysis is performed at low-energy, a further theoretical

constraint can be derived, namely the absence of a Landau pole for λ, κ, Yt and Yb

below the GUT scale. Including logarithmic one-loop corrections to λ and κ, the latter

constraint translates into λ <∼ 0.75, |κ| <∼ 0.65, with 1.7 <∼ tanβ <∼ 54.

On the experimental side, nmhdecay 2.0 includes accelerator (LEP and Teva-

tron) constraints, B-meson decays, and dark matter relic density through a link to

micrOMEGAS [73]. In particular, direct bounds on the masses of the charged parti-

cles (H±, χ̃±, q̃, l̃) and on the gluino mass are taken into account [74, 75]. Excessive

contributions to the invisible decay width of the Z boson [76, 77], as those potentially

arising from Z → χ̃0
i χ̃

0
j and Z → h0a0, are also excluded from the parameter space.

Finally, in the neutral Higgs sector, one checks the constraints on the production rates

for all the CP-even states h0 and CP-odd states a0, in all the channels studied at

LEP [65]: e+e− → h0Z, independent of the h0 decay mode (IHDM); e+e− → h0Z,

dependent on the h0 decay mode (DHDM), with the Higgs decaying via h0 → bb̄,
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h0 → τ+τ−, h0 → 2 jets h0 → γγ and h0 → invisible; associated production modes

(APM), e+e− → h0a0, with h0a0 → 4b’s, h0a0 → 4τ ’s and h0a0 → a0a0a0 → 6b’s.

In addition to the latter, one also takes into account the possible two body decays of

all CP-even, CP-odd and charged Higgs bosons into squarks and sleptons, as well as

radiatively induced decays of neutral Higgs bosons into two photons and two gluons.

Regarding B-meson decays, and although the nmhdecay 2.0 code already contains

a rough estimate of the b → sγ decay branching ratio (evaluated at the leading order

in QCD), we include in our code a more precise computation of the b → sγ decay in

the NMSSM [78], taking into account next-to-leading order (NLO) contributions [79,

80], following the results of [81]. However, we only include leading order (LO) SUSY

contributions to the Wilson coefficients at the MW scale7. The calculation within the

context of the MSSM at LO and NLO can be found in [82] and [83], respectively. The

most recent experimental world average for the branching ratio (BR) reported by the

Heavy Flavour Averaging Group is [84, 76]

BRexp(b→ sγ) = (3.55 ± 0.27) × 10−4 . (3.4.25)

On the other hand, the current SM prediction for the branching ratio is [85]

BRSM(b→ sγ) = (3.73 ± 0.30) × 10−4 , (3.4.26)

where the charm-loop contribution has been included [80]. We have estimated the

theoretical error that results from varying the scales in the b → sγ calculation within

the NMSSM, following the method described in [81]. We add to this the experimental

error in quadrature. This procedure is performed at every point of the parameter space,

typically leading to an error of about 10% of the total BR(b→ sγ) value. Consistency

at 2σ with the experimental central value of Eq. (3.4.25) is then demanded.

We have also included in our code other constraints coming from the contribution

of a light pseudoscalar a0 in NMSSM to the rare B- and K-meson decays [78]. When

the pseudoscalar is very light it could be produced in meson decays and significantly

affect the rates for K − K̄ and B − B̄ mixing and other SM decays. In particular, our

code takes into account the constraints from the pseudo-scalar indirect contributions

7No charm-loop contributions were included in the analysis of Ref. [81], giving a SM central value

of BRSM(b → sγ) = 3.293× 10−4. This result is obtained by extrapolating the value of the branching

ratio evaluated at δ = 0.9 and µb = mb, where δ parameterises the photon energy cut Eγ > (1−δ)mb/2

and µb is the renormalisation scale. The corresponding new physics contribution has been implemented

in our code by using the parameterisation of [81] evaluated at µb = mb and δ = 0.9.
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to K − K̄ and B − B̄ mixing, B → µ+µ−, B → Xsµ
+µ−, B− → K−νν̄, B → K0

SX
0,

and by the direct production, at large tanβ, via b → sa0, B → Ka0, and B → πa0

decays.

Finally, in our analysis we will also include the constraints coming from the SUSY

contributions to the muon anomalous magnetic moment, aµ = (gµ − 2) [86]. Taking

into account the most recent theoretical predictions for this quantity within the SM

[87, 88, 89] and the measured experimental value [90], the observed excess in aexp
µ

constrains a possible supersymmetric contribution to be aSUSY
µ = (27.6 ± 8) × 10−10,

where theoretical and experimental errors have been combined in quadrature.

The evaluation of aSUSY
µ in the NMSSM has been included in our analysis, and

consistency at the 2σ level imposed. Thus those regions of the parameter space not

fulfilling 11.6 × 10−10 . aSUSY
µ . 43.6 × 10−10 will be considered disfavoured.

3.4.2 Dark matter in the NMSSM

The new features of the NMSSM have an impact on the properties of the lightest

neutralino as a dark matter candidate, affecting both its direct detection and relic

abundance.

The computation of the spin-independent part of the neutralino-nucleon cross sec-

tion was discussed in detail in the previous chapter . It was pointed out there that

the existence of a fifth neutralino state, together with the presence of new terms in

the Higgs-neutralino-neutralino interaction (which are proportional to λ and κ), trig-

ger new contributions to the spin-independent part of the neutralino-nucleon cross

section, σχ̃0
1−p. On the one hand, although the term associated with the s-channel

squark exchange is formally identical to the MSSM case, it can be significantly reduced

if the lightest neutralino has a major singlino composition. On the other hand, and

more importantly, the dominant contribution to σχ̃0
1−p, associated to the exchange of

CP-even Higgs bosons on the t-channel can be largely enhanced when these are very

light. In the NMSSM, the lightest CP-even Higgs can escape detection if its singlet

composition is large. For instance, this makes possible the presence of scenarios with

mh0
1
<∼ 70 GeV, thus considerably enhancing the neutralino-nucleon interaction. Con-

sequently, large detection cross sections can be obtained, even within the reach of the

present generation of dark matter detectors.

However, in order to be a good dark matter candidate, the lightest NMSSM neu-
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tralino must also comply with the increasingly stringent bounds on its relic density.

Astrophysical constraints, stemming from the analysis of galactic rotation curves [91],

clusters of galaxies and large scale flows [92], suggest the following range for the WIMP

relic abundance

0.1 . Ωh2 . 0.3 , (3.4.27)

which can be further reduced to

0.095 . Ωh2 . 0.112 , (3.4.28)

taking into account the recent three years data from the WMAP satellite [18].

Compared to what occurs in the MSSM, one would expect several alterations re-

garding the dominant processes. As discussed in [93], and as mentioned above regarding

the direct detection cross section, the differences can be present at distinct levels. First,

and given the presence of a fifth neutralino (singlino), the composition of the annihi-

lating WIMPs can be significantly different from that of the MSSM in wide regions of

the parameter space. Having the possibility of a singlino-like lightest supersymmet-

ric particle (LSP), associated with the presence of new couplings in the interaction

Lagrangian, in turn favours the coupling of the WIMPs to a singlet-like Higgs, whose

mass can be substantially lighter that in the MSSM, given the more relaxed experimen-

tal constraints. Regarding the channels through which neutralino annihilation occurs,

in the NMSSM we have new open channels, essentially due to the existence of light

Higgs states. In summary, the presence of additional Higgs states (scalar and pseu-

doscalar) favours annihilation via s-channel resonances. On the other hand, having

light h0
1 and a0

1 states that are experimentally viable means that new channels with

annihilation into Z h0
1, h

0
1 h

0
1, h

0
1 a

0
1 and a0

1 a
0
1 (either via s-channel Z, h0

i , a
0
i exchange or

t-channel neutralino exchange) can provide important contributions the annihilation

and co-annihilation cross-sections [70].

Noticing that important annihilation channels (s-channel) are related to the t-

channel processes responsible for the most relevant contributions to σχ̃0
1−p, one should

expect a strong interplay between a viable relic density, and promising prospects for

the direct detection of the NMSSM dark matter candidate. In fact, there should be

regions of the parameter space which provide new and interesting scenarios8.

8As concluded in [93], it might even be possible to reconcile a very light neutralino with the

experimental observations from DAMA, CDMS II, and WMAP.
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NMSSM parameter space: updated constraints

We first discuss the new constraints on the parameter space arising from the improved

analysis on the Higgs sector, the muon anomalous magnetic moment, and K- and

B-meson decays.

Among the new features implemented in nmhdecay 2.0, one finds additional ra-

diative corrections to the Higgs boson masses, including corrections of order g2 Y 2
t,b to

the CP-even Higgs boson mass (induced by stop/sbottom D-term couplings). Regard-

ing the logarithmic one-loop corrections of the order g2, these are now dependent on

the different masses of squarks/sleptons of distinct generations. Moreover, the correc-

tions to fourth order in λ and κ are also taken into account. The computation of the

sparticle spectrum is also complete in the new version, and all squark and gluino data

is confronted with the constraints from both Tevatron and LEP. With respect to the

results obtained in the previous analysis (chapter 3) , the latter improvements only

translate into slight changes in the exclusion regions.

Concerning the evaluation of the supersymmetric contributions to the muon anoma-

lous magnetic moment, the relevant processes comprise neutralino-sneutrino as well as

chargino-smuon loops. The only change with respect to the MSSM is due to the

fifth neutralino state and the corresponding modified neutralino-lepton-slepton cou-

pling. Since we are interested in cases with very low tanβ, the contributions from

neutralino and chargino loops are of similar magnitude, and very small. For example,

with tanβ = 3 and slepton mass parameters above mE,L ∼ 1 TeV one typically obtains

aSUSY
µ ∼ 10−11, which is disfavoured. In order to obtain compatibility with the experi-

mental result an increase in the value of tanβ is welcome, but this would then lead to

regions of the parameter space where, from the dark matter point of view, the NMSSM

resembles the MSSM. The other possibility is decreasing the slepton (and gaugino)

masses. Furthermore, large values of the slepton trilinear couplings are needed in or-

der to increase the LR mixing in the smuon mass matrix. The choice µAE < 0 is

optimal, since it makes the neutralino contribution positive and large. For example,

with tan β ∼ 5, AE = −2500 GeV and mE,L <∼ 200 GeV, one obtains aSUSY
µ

>∼ 10−9

for M1 <∼ 215 GeV. The relevance of these changes is illustrated in Fig. 3.18, where the

numerical results for aSUSY
µ are plotted versus the bino mass, M1, for different combi-

nations of slepton mass and trilinear couplings. For each case we have also varied Aλ

and Aκ over a wide range and scanned the whole (λ, κ) plane, which as evidenced in

the figure has virtually no effect on the resulting aSUSY
µ . We have also included the
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Figure 3.18: Supersymmetric contribution to the anomalous magnetic moment of the

muon as a function of the bino mass, M1, for tanβ = 5, µ = 150 GeV, trilinear

couplings in the range −800 . Aλ . 800 GeV, −300 . Aκ . 300 GeV. From bottom

to top, the different bands correspond to the following values of the slepton mass and

lepton trilinear terms, mL,E = 1 TeV with AE = 1 TeV, mL,E = 150 GeV with AE = 1

TeV, and mL,E = 150 GeV with AE = −2.5 TeV. A full scan on the (λ, κ) plane has

been performed for each case, including LEP and Tevatron experimental constraints.

The horizontal solid line indicates the lower bound of the allowed 2σ interval.

various LEP and Tevatron constraints. For the rest of our analysis, we will assume

mE,L = 150 GeV and AE = −2500 GeV. Also, and unless otherwise stated, we will set

the bino mass to M1 = 160 GeV, which, according to Fig. 3.18, leads to a sufficiently

large aSUSY
µ . The detection properties of the neutralino are in general quite insensitive

to changes in the slepton sector. Notice however that if one does not wish to impose the

bound on the muon anomalous magnetic moment, heavy sleptons (equal to squarks)

can be taken which would not affect the dark matter predictions.

Regarding the bounds arising from K- and B-meson physics, the most important

role is played by the b → s γ decay, which can in principle exclude important regions

of the parameter space. Concerning the other K- and B-meson processes discussed in

subsection 3.4.1, we have verified that throughout the investigated NMSSM parameter

space they are always in good agreement with experiment, so that we will make no

further reference to the latter in the following discussion of the numerical results.



72 CHAPTER 3. NMSSM PHENOMENOLOGY AND DARK MATTER

In the present analysis we will not take into account any source of flavour violation

other than the Cabibbo-Kobayashi-Maskawa (CKM) matrix. Moreover, we will be

systematically considering large values for the gluino mass (above 1 TeV). Under the

latter assumptions, the most important contributions to BR(b → s γ) arise in general

from charged Higgs and chargino mediated diagrams [82].

On the one hand, when the dominant contributions are those stemming from

charged Higgs exchange, the results for BR(b → s γ) closely follow the behaviour

of the charged Higgs mass, which in the NMSSM is given by

m2
H± =

2µ2

sin(2β)

κ

λ
− v2 λ2 +

2µAλ

sin(2β)
+ M2

W . (3.4.29)

From the above, we expect that smaller values of BR(b → s γ) should be obtained for

large m2
H± , and therefore when κ/λ is sizable (for positive values of κ) or for small

κ/λ (if κ < 0). In general, smaller values of the BR(b → s γ) will be also associated

to larger values of the product µAλ. Furthermore, the leading term of the Wilson

coefficient associated to the charged Higgs varies as tan−2 β [82]. As a consequence,

one expects a decrease of this contribution as tanβ increases. On the other hand, in a

regime of µ . M2, the lightest chargino is Higgsino-dominated, so that its mass is also

quite small (mχ̃±1
∼ µ). Thus, the chargino contributions (which are opposite in sign to

those of the charged Higgs) are also expected to play a relevant role, although, in the

cases analysed in this work (tan β <∼ 10), they are not dominant. Gluino contributions

are also very small, given the little flavour violation in the down squark sector, and the

sizable values of M3. Likewise, neutralino exchange contributions are almost negligible.

We thus find that, in general, the NMSSM contribution to BR(b→ s γ) at low tanβ is

large and mostly arising from charged Higgs loops. This leads to stringent constraints

on the parameter space.

Let us study the effect of the experimental bound on BR(b → s γ), together with

the updated accelerator constraints on the NMSSM parameter space. After this first

survey we will no longer separately address the K- and B-meson constraints (and

aµ) from those arising from LEP/Tevatron data. Henceforth, experimentally allowed

regions will be those that not only comply with the latter data, but that also exhibit

BR(b → s γ) within 2σ from its central experimental value. As mentioned before,

in order to satisfy the constraint on the muon anomalous magnetic moment, we take

M1 = 160 GeV in the following subsubsection, for which, in the case with tanβ = 5,

aSUSY
µ ≈ 1.4 × 10−9 (see Fig. 3.18).

µAκ < 0 and µAλ > 0 (κ > 0)



3.4. INCLUDING FLAVOUR PHYSICS, THE MUON ANOMALOUS MAGNETIC MOMENT AND

As discussed in chapter 3 , this is one of the most interesting areas of the parameter

space, since although sizable regions are excluded due to the occurrence of tachyons in

the CP-even Higgs sector (namely for larger values of |Aκ|), the possibility of having

experimentally viable light scalar Higgs leads to potentially large values for σχ̃0
1−p.

As an example, we represent on the left-hand side of Fig. 3.19 the (λ, κ) parameter

space for an example with tan β = 3, Aλ = 200 GeV, Aκ = −200 GeV and µ =

130 GeV. The tachyonic region in the CP-even Higgs sector is depicted, as well as the

region excluded due to the presence of false minima of the potential. An important part

of the theoretically allowed region is also ruled out due to conflict with LEP and/or

Tevatron data. This owes to the fact that the doublet component of the lightest scalar

Higgs is very large and gives rise to excessive Higgs production rates, in particular,

e+e− → h0Z, IDHM and DHDM (h0 → bb̄ and to a lesser extent, h0 → 2 jets). Once

all these bounds are applied, a small area on the right of that experimentally excluded

survives, remarkably exhibiting very light Higgses and neutralinos (associated with

a singlet/singlino component above 90%) and therefore clearly characteristic of the

NMSSM. We recall that these are the regions where one expects to find large theoretical

predictions for σχ̃0
1−p.

On the right-hand side of Fig. 3.19 we superimpose the results for the BR(b→ s γ)

on the (λ, κ) plane. As discussed in the previous subsection, the resulting branching

ratio is typically large, BR(b→ s γ) >∼ 3.5×10−4, and increases to as much as ∼ 5×10−4

in regions with small κ/λ, where the charged Higgs mass is smaller. Notice therefore

that the regions of the (λ, κ) plane associated with larger values of BR(b → s γ)

typically correspond to those where the largest predictions for σχ̃0
1−p are found. In

this example, only a small triangular region with λ <∼ 0.05, for κ < 0.7, is within a 1σ

deviation from the experimental bound of Eq. (3.4.25) and λ <∼ 0.35 is needed in order

to be within 2σ of that result. In the plot we also indicate with dot-dashed lines the

different values of the charged Higgs mass, thus illustrating the correlation between its

decrease and the increase in BR(b→ s γ).

The effect of the various experimental constraints on the parameter space is very

sensitive to variations in the input parameters. We will now investigate how changes in

tan β and Aλ affect the resulting BR(b→ s γ). On the one hand, as already mentioned,

increasing the value of tanβ leads to a reduction of the charged Higgs contribution.

Since in our case this is the leading contribution to BR(b → s γ), an enhancement

in tanβ enlarges the regions of the parameter space which are consistent with the

experimental constraint. This is illustrated on the left-hand side of Fig. 3.20 with the
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Figure 3.19: Effect of the experimental constraints on the (λ, κ) plane for an example

with tan β = 3, Aλ = 200 GeV, Aκ = −200 GeV and µ = 130 GeV. In both cases,

the gridded area is excluded due to the appearance of tachyons, while the vertically

ruled area corresponds to the occurrence of unphysical minima. The oblique ruled area

is associated with points that do not satisfy the LEP and/or Tevatron constraints or

where (at least) the LEP bound on direct neutralino production is violated. The region

above the thick black line is disfavoured due to the occurrence of a Landau pole below

the GUT scale. On the left plot, from top to bottom, solid lines indicate different values

of the lightest Higgs mass, mh0
1

= 114, 75, 25 GeV. Dashed lines separate the regions

where the lightest scalar Higgs has a singlet composition given by S 2
13 = 0.1, 0.9 (from

top to bottom). Finally in the area below the dotted line, the lightest neutralino has

a singlino composition greater than N2
15 = 0.1. On the right, grey areas represent the

theoretical predictions for BR(b → s γ). From left to right, 1σ (dark), 2σ (medium)

and excluded (light) regions are shown. Dot-dashed lines stand for the different values

of the charged Higgs mass, mH± = 1000, 500, 450 GeV (from left to right).

same example of Fig. 3.19, but now taking tanβ = 5. The resulting charged Higgses

are heavier (mH± > 500 GeV) and as a consequence the entire (λ, κ) plane fufils the

experimental constraint on BR(b → s γ). Notice that LEP and Tevatron constraints

are also modified. On the other hand, an increase in the trilinear term Aλ also leads

to heavier charged Higgses as seen in Eq. (3.4.29). Therefore, this can induce a further

decrease in BR(b → s γ). An example of this is shown on the right-hand side of
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Figure 3.20: (λ, κ) parameter space for tan β = 5, Aκ = −200 GeV, and µ = 130 GeV.

On the left we take Aλ = 200 GeV, while on the right we consider Aλ = 400 GeV. Line

and colour code follow the conventions of Fig. 3.19. In this case, the single dot-dashed

line corresponds to mH± = 1000 GeV.

Fig. 3.20, where in addition to tanβ = 5, Aλ = 400 GeV has been used. Again, the

whole (λ, κ) plane is allowed due to the increase in mH± .

Let us finally comment on the possibility of changing the signs of µ, Aλ, and Aκ,

while keeping µAλ > 0 and µAκ < 0. Although the Higgs potential is invariant

under this change, the same does not occur for the chargino and neutralino sectors,

so that both these spectra, as well as the experimental constraints are likely to be

modified. As an illustrative example, we present in Fig. 3.21 the same case as in the

left-hand side of Fig. 3.20 but with the opposite signs for µ, Aλ, and Aκ. There are some

important alterations to the areas excluded by unphysical minima and experimental

constraints, both of which are now more extensive. Finally, notice that the BR(b→ s γ)

now excludes a larger area of the (λ, κ) plane, thereby disfavouring those areas which

potentially lead to larger neutralino detection cross sections.

In the light of this analysis, the optimal areas of the parameter space correspond

to those with µ, Aλ > 0, and Aκ < 0, and where tanβ and Aλ are relatively large.

In order to keep within the context where NMSSM-like dark matter scenarios can be

obtained, we will use tanβ ≤ 5.
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Figure 3.21: (λ, κ) parameter space for tanβ = 5, Aλ = −200 GeV, Aκ = 200 GeV

and µ = −130 GeV. Line and colour code following the conventions of Fig. 3.19.

Figure 3.22: (λ, κ) parameter space for tan β = 5, Aλ = −200 GeV, Aκ = −200 GeV

and µ = 130 GeV. Line and colour code following the conventions of Fig. 3.19.

µAκ < 0 and µAλ < 0 (κ > 0)

Compared to the previous case, the presence of tachyons gives rise to far stronger

constraints. Occurring now in both CP-even and CP-odd Higgs sectors, the non-
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physical (tachyonic) solutions exclude very large areas of the parameter space. Re-

garding the LEP experimental exclusions, these arise from excessive contributions to

h0 → bb̄ and h0 → 2 jets, and cover an area wider than what had been previously iden-

tified in chapter 3 (a consequence of the improved computation of the Higgs spectrum).

In addition, due to the lightness of the charged Higgs bosons, an important region is

also excluded due to very large BR(b → s γ), so that the only surviving regions are

those associated with λ . 0.2. As an example, Fig. 3.22 displays a case with tanβ = 5,

Aλ = −200 GeV, Aκ = −200 GeV and µ = 130 GeV. Let us remark that since the

lower-right corner of the (λ, κ) plane is not accessible, one cannot find light neutral

Higgs states, so that interesting prospects regarding the direct detection of dark matter

should not be expected.

Although varying the several parameters results in modifications of the excluded

areas (LEP/Tevatron, b → s γ and unphysical minima), in all cases these are sizable.

Only very reduced regions, corresponding to small values of λ survive all the constraints.

In these areas the singlet component of the lightest Higgs is negligible and the lightest

neutralino is Higgsino-like, therefore resembling MSSM scenarios. The complementary

region, with Aλ, Aκ > 0 and µ < 0, leads to even more extensive tachyonic regions,

and we will not further discuss it.

µAκ > 0 and µAλ > 0 (κ > 0)

This combination of signs leads to a parameter space which is plagued with tachyons

[1], arising from both Higgs sectors. Contrary to what was noticed for the previous

cases, here the unphysical minima occur for small values of λ. The remaining areas in

the (λ, κ) plane are also very affected by experimental constraints. As a consequence,

only very reduced areas of the parameter space survive.

For example, considering the choice Aλ = 200 GeV, Aκ = 50 GeV and µ = 160 GeV,

with tanβ = 3, we observe that once the areas corresponding to the occurrence of

tachyons are excluded, the small surviving region is still plagued by false minima as

well as by the violation of several experimental constraints. In particular, lower values

of κ are ruled out due to conflict with LEP (h0 → bb̄ and h0 → 2 jets) and excessive

contributions to the BR(b→ s γ). This is illustrated on the left-hand side of Fig. 3.23.

Although reducing the values of Aκ and tan β enlarges the areas where physical

minima can be found, the addition of the experimental constraint on BR(b → sγ) to

the LEP and Tevatron bounds typically rules out the whole (λ, κ) plane. Increasing

tan β in order to reduce the contribution to BR(b → sγ) is also highly disfavoured
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Figure 3.23: On the left (λ, κ) parameter space for tan β = 3, Aλ = 200 GeV, Aκ =

50 GeV and µ = 160 GeV. On the right tanβ = 5, Aλ = 400 GeV, Aκ = 200 GeV, and

µ = 130 GeV for κ < 0. Line and colour code following the conventions of Fig. 3.19.

since the tachyonic region becomes more important. As a consequence, no interesting

implications for neutralino dark matter detection are expected in this case.

µAκ > 0 and µAλ > 0 (κ < 0)

The only viable combination of signs associated with negative values of κ is also

plagued by the appearance of tachyons, both in the CP-even and CP-odd Higgs sectors,

towards the regions with small λ [1] In addition, experimental constraints also exclude

large portions of the parameter space in the vicinity of the tachyonic regions. As

an example, let us mention that for the case Aλ = 100 GeV, Aκ = 50 GeV and

µ = 130 GeV, with tanβ = 3, all the parameter space associated with physical minima

is ruled out, since either DHDM constraints (h0 → bb̄ and h0 → 2 jets) are violated or

consistency with the BR(b→ s γ) bound is not achieved. Increasing Aλ, Aκ, and tanβ

leads to a significant improvement. For example, with Aλ = 400 GeV, Aκ = 200 GeV,

µ = 130 GeV with tanβ = 5 some allowed areas are found, as shown on the right-hand

side of Fig. 3.23. Nevertheless, LEP/Tevatron experimental constraints together with

the bound on BR(b→ s γ) rule out those parts of the parameter space where the Higgs

is light and more singlet-like, and in which σχ̃0
1−p can be sizable. The remaining allowed

regions correspond to a rather small area, in which the lightest Higgs is essentially
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doublet-like, while the lightest neutralino exhibits a strong Higgsino dominance.

Neutralino relic density

The next step in our analysis is to take into account the available experimental data

on the WIMP relic density. In order to be a viable dark matter candidate, the

lightest NMSSM neutralino must have an abundance within the ranges presented in

Eqs. (3.4.27,3.4.28). Similar to what occurs in the MSSM, this additional constraint

further reduces the regions of the low-energy parameter space. Moreover, and as hinted

before, one expects that Ωχ̃0
1
h2 will in general lie below the experimental ranges.

A thorough analysis of the relic density of dark matter in the NMSSM has been

carried out in [70]. It was found that compatibility with the WMAP constraint is

possible in the regions where the lightest Higgs is dominated by the doublet components

and the lightest neutralino is a bino-Higgsino mixture. Apart from possible Higgs

resonances, compatible values of Ωχ̃0
1
h2 are found for two distinct regions: µ ≫ M2

and µ & M1 (similar to the MSSM for small to intermediate values of tanβ). Also

note that, for regions with µ . M1, Higgsino-singlino neutralinos with masses below

MW can give a relic density within the WMAP range (or larger) essentially because the

annihilation into Z and W gauge bosons is kinematically forbidden. It is also worth

noticing that a pure bino LSP also offers interesting scenarios, with a remarkable

role being played by s-channel Higgs resonances (else Ωχ̃0
1
h2 tends to be above the

experimental bound). Additional LSP annihilation via scalar or pseudoscalar Higgses

can also play a relevant role.

In order to understand the results for Ωχ̃0
1
h2 one needs to take into account the

variations in the mass and composition of the lightest neutralino in the (λ, κ) plane, as

well as in the Higgs sector. In general, the neutralino relic density will be too small in

those regions of the parameter space where it is Higgsino-like and increases when the

neutralino becomes more singlino-like. In addition, one should consider the possible

existence of resonant annihilation (when twice the neutralino mass equals the mass of

one of the mediating particles in an s-channel) and the kinematic thresholds for the

various channels (e.g., annihilations into ZZ, WW , Zh0
i , h

0
ih

0
j , a

0
i a

0
j , and a0

ih
0
j ).

Since the goal of our present study is to discuss the potential of NMSSM-like sce-

narios regarding the theoretical predictions for σχ̃0
1−p, in this subsubsection we focus on

those examples of the parameter space having large neutralino detection cross section.

We investigate to which extent the inclusion of the bound of the relic density further
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constrains the parameter space. As pointed out in [1], these scenarios typically occur

in association to singlet-like h0
1, with singlino-Higgsino neutralinos. Let us study one

example in detail.

We begin by taking M1 = 160 GeV, Aλ = 400 GeV, Aκ = −200 GeV, and

µ = 130 GeV, with tanβ = 5, which according to Figs. 3.18 and 3.20 is consistent

with the bounds on aSUSY
µ and BR(b → s γ), respectively. The results for the neu-

tralino relic density are depicted in the (λ, κ) plane on the left-hand side of Fig. 3.24.

On the experimentally allowed area, grey dots stand for points which, in addition to ex-

perimental constraints, fulfil 0.1 ≤ Ωχ̃0
1
h2 ≤ 0.3, whereas black dots represent points in

agreement with the WMAP constraint. Notice that in this case, no points are excluded

by LEP or Tevatron bounds.

For large values of κ and small λ (i.e., on the upper left corner of the plots), the

lightest neutralino is relatively heavy and has a mixed bino-Higgsino composition, since

we have chosen µ ∼ M1. Due to the large Higgsino component, the neutralino relic

density is very small, and cannot account for the observed amount of dark matter.

As we move in the (λ, κ) plane towards smaller values of κ and larger values of λ,

the neutralino becomes lighter and has a larger singlino component (in this example

N2
15
<∼ 0.35), and as a consequence, Ωχ̃0

1
h2 increases. As the neutralino mass decreases,

some annihilation channels become kinematically forbidden, such as annihilation into a

pair of Z or W bosons when mχ̃0
1
< MZ or mχ̃0

1
< MW , respectively. We have indicated

these two thresholds in the figure with red solid lines. Below these the resulting relic

density can be large enough to fulfil the WMAP constraint. Variations in the Higgs

sector also affect the calculation of the neutralino abundance. On the one hand, the

mass and composition of the lightest Higgs also vary throughout the (λ, κ) plane.

Lighter Higgses with a larger singlet composition are obtained for small values of κ. In

our case, mχ̃0
1
< mh0

1
for large κ and small λ, but eventually, the Higgs becomes lighter

and new annihilation channels (the most important being χ̃0
1χ̃

0
1 → h0

1h
0
1 and Zh0

1)

are available for the neutralino, thus decreasing its relic density. The points where

mχ̃0
1

= mh0
1

are indicated with a dotted red line in the plot. On the other hand, one

also needs to take into account the existence of rapid neutralino annihilation with the

second-lightest CP-even Higgs, when 2mχ̃0
1

= mh0
2
, which is responsible for a further

decrease in Ωχ̃0
1
h2. This is indicated in the plot with a red dashed line.

As we can see, in the present example the correct relic density is only obtained

when either the singlino composition of the neutralino is large enough or when the

annihilation channels into Z, W , or h0
1 are kinematically forbidden. Interestingly,
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Figure 3.24: (λ, κ) parameter space with information about the neutralino relic density.

On the left, an example with M1 = 160 GeV, tan β = 5, Aλ = 400 GeV, Aκ =

−200 GeV, and µ = 130 GeV. The gridded area is excluded due to the appearance of

tachyons, while the vertically ruled area corresponds to the occurrence of unphysical

minima. The region above the thick black line is disfavoured because of the occurrence

of a Landau pole below the GUT scale. The oblique ruled area is associated to those

points that do not satisfy LEP/Tevatron and/or BR(b → s γ) constraints, whereas

the bound on aSUSY
µ is fulfilled in the whole plane. The dark shaded (cyan) area

corresponds to points which are experimentally viable, and whose relic density complies

with the astrophysical bound of Eq. (3.4.27). Points in black are those in agreement

with experimental constraints and WMAP bounds (c.f. Eq. (3.4.28)). The dashed red

lines indicate the resonances of the lightest neutralino annihilation channels through

the second lightest CP-even Higgs, 2mχ̃0
1

= mh0
2
. In the region below the red dotted

line the lightest neutralino mass is larger than the mass of the lightest Higgs. Along

the red solid lines the neutralino mass is equal to the Z and W mass (from left to

right, respectively). On the right, the same example is shown, but with Aκ = 0 and

µ = 150 GeV.
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some allowed areas are very close to the tachyonic border. The neutralino-nucleon

cross section can be very large in these regions, due to the presence of very light

singlet-like Higgses (in this example S2
13 ≈ 0.99).

The same example, but now with Aκ = 0 and µ = 150 GeV is shown on the

right-hand side of Fig. 3.24. Once more, in order to reproduce the correct Ωχ̃0
1
h2

the neutralino has to be either sufficiently light so that some annihilations channels

are closed or have a large singlino component. In this particular case the singlino

component of χ̃0
1 can be even larger, with N2

15 ∼ 0.9 in the allowed area with very low

κ. Notice, however, that the region in the vicinity of the tachyonic area is excluded by

experimental bounds.

In order to study the importance of the neutralino composition, we will now consider

variations in the gaugino masses. To begin with, we increase the bino mass and take

M1 = 330 GeV, thereby decreasing the bino component of the lightest neutralino.

Such an increase of the gaugino masses implies a reduced contribution to the muon

anomalous magnetic moment. We obtain aSUSY
µ ≈ 7.2 × 10−10 (see Fig. 3.18), more

than 2σ away from the central value and therefore disfavoured. The resulting (λ, κ)

plane is represented on the left-hand side of Fig. 3.25. Since the Higgsino component

has increased with respect to the previous examples, the resulting relic density for the

neutralino in the region with large κ and small λ is even smaller. Once more, in order

to have the correct Ωχ̃0
1
h2 we need to go to regions of the parameter space where some

annihilation channels are not kinematically allowed and/or the neutralino is singlino-

like. Notice also that the neutralino is in general heavier in this example and therefore

the lines with mχ̃0
1

= MZ and mχ̃0
1

= MW are shifted to lower values of κ. Also, the

region with mχ̃0
1
< mh0

1
is modified and now corresponds to the area on the right of

the dotted red line. Finally, we must take into account the possible resonances along

which Ωχ̃0
1
h2 decreases. In this example, rapid annihilation of neutralinos occurs via

CP-even Higgs exchange when 2mχ̃0
1

= mh0
1
, which takes place along the two upper

red dashed lines. There is also a resonance with the Z boson when 2mχ̃0
1

= MZ which

occurs along the lower red dashed line. It is worth noticing that, once more, a part

of the region allowed by experimental and astrophysical constraints lies close to the

tachyonic area, and could have a large σχ̃0
1−p.

Finally on the right-hand side of Fig. 3.25 we show another example where the bino

mass has been further increased to M1 = 500 GeV. The contribution to the muon

anomalous magnetic moment is also too low. As shown in Fig. 3.18, aSUSY
µ ≈ 4×10−10,

more than 2σ away from the experimental value. Due to the further increase of the
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Figure 3.25: On the left, the same as in Fig. 3.24 but with M1 = 330 GeV, tanβ = 5,

Aλ = 570 GeV, Aκ = −60 GeV, with µ = 160 GeV. The area to the right of the red

dotted line has mχ̃0
1
< mh0

1
. Along the red dot-dashed line, 2mχ̃0

1
= MZ , leading to

rapid neutralino annihilation. On the right, the same with M1 = 500 GeV, tanβ = 5,

Aλ = 400 GeV, Aκ = −150 GeV, with µ = 130 GeV. In this example the red dot-

dashed line indicates resonances on the neutralino annihilation mediated by the lightest

pseudoscalar when 2mχ̃0
1

= ma0
1
. In both examples the resulting aSUSY

µ is outside the

experimental 2σ region.

Higgsino component and mass of the lightest neutralino, its relic density is even smaller

and compatibility with WMAP is only obtained when the neutralino is lighter than

the lightest Higgs and, at least, the W boson. Notice that in this example there is also

a resonant annihilation through the lightest CP-odd Higgs when 2mχ̃0
1
≈ ma0

1
, which

further decreases Ωχ̃0
1
h2. This constrains the allowed region to small values of λ, in

which the neutralino is mostly singlino, N2
15
<∼ 0.8.

To summarise, in these scenarios, neutralinos typically have a very small relic den-

sity (insufficient to account for the dark matter in the Universe) as a consequence of

their large Higgsino composition. Only when one moves towards regions of the pa-

rameter space where the singlino composition is enhanced or the neutralino mass is

decreased (such that some annihilation channels become forbidden) can the WMAP

result be reproduced.
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We have not yet addressed the other areas of the parameter space (ii)-(iv). These

other choices of signs for the different parameters are associated to less favourable sce-

narios. First, in cases (ii) and (iv) the experimental constraints rule out the regions

where χ̃0
1 has a large singlino component. Therefore, the lightest neutralino is in gen-

eral Higgsino-like throughout all the allowed (λ, κ) plane and, consequently, its relic

abundance is much below the favoured values, i.e., Ωχ̃0
1
h2 ≪ 0.1. In case (iii), where

large areas are excluded because of the occurrence of tachyons, it is extremely com-

plicated to find regions that simultaneously fulfil the experimental and astrophysical

constraints. For this reason, in the following subsection we will limit our analysis to

case (i).

As a next step of our analysis, we will bring together all the constraints so far

explored, and after having ensured that we are indeed in the presence of a viable

NMSSM scenario (namely with the correct relic density), we will investigate to which

extent the lightest neutralino can be detectable in dark matter experiments.

Neutralino direct detection prospects

After having discussed the new and the improved constraints on the low-energy pa-

rameter space, we will now address whether or not NMSSM neutralinos with a relic

density in agreement with current limits are likely to be detected by the present or the

next generation of dark matter detectors.

Although in our survey of the low-energy NMSSM parameter space we have scanned

over all combinations of signs (i)-(iv), as we already mentioned, cases (ii)-(iv) present

far less interesting situations regarding the neutralino relic density. Even though one

can find in the latter three cases some challenging situations regarding direct detection

prospects [1] the new imposed constraints imply that finding experimentally viable

areas, with a sizable σχ̃0
1−p, becomes nearly impossible. Thus, for the present study

we will focus on case (i). We will go through the same examples as in the previous

subsubsection.

Let us start with the regime where M1 ≈ µ, and as an example ensuring compat-

ibility with WMAP, choose Aλ = 400 GeV, Aκ = −200 GeV, µ = 130 GeV, with

tan β = 5 (corresponding to what was already depicted on the right panel of Fig. 3.20

and the left of Fig. 3.24). As shown in the previous subsubsection, there exist regions

in the parameter space where the neutralino fulfils all experimental constraints and

has the correct relic density. The latter are characterised by neutralinos with a signif-



3.4. INCLUDING FLAVOUR PHYSICS, THE MUON ANOMALOUS MAGNETIC MOMENT AND

Figure 3.26: Scatter plot of the scalar neutralino-nucleon cross section as a function of

the lightest neutralino mass. On the left, an example with M1 = 160 GeV, tanβ = 5,

Aλ = 400 GeV, Aκ = −200 GeV, and µ = 130 GeV. All the points represented are

in agreement with LEP/Tevatron, aSUSY
µ , and BR(b → s γ) bounds. Dark gray dots

represent points which, in addition, fulfil 0.1 ≤ Ωχ̃0
1
h2 ≤ 0.3, whereas black dots

are those in agreement with the WMAP constraint. The sensitivities of present and

projected experiments are also depicted, with solid and dashed lines, respectively. On

the right we show the same example but with µ = 150 GeV and Aκ = 0.

icant singlino fraction and/or a small mass. In this case, one of the allowed regions

is close to the tachyonic area and exhibits very light singlet-like Higgses, potentially

leading to large detection cross sections. This is indeed the case, as evidenced on

the left-hand side of Fig. 3.26, where the theoretical predictions for σχ̃0
1−p are plotted

versus the lightest neutralino mass. The resulting σχ̃0
1−p spans several orders of mag-

nitude, but, remarkably, areas with σχ̃0
1−p

>∼ 10−7 pb are found. These correspond to

the above mentioned regions of the parameter space with very light singlet-like Hig-

gses (25 GeV <∼ mh0
1
<∼ 50 GeV with S2

13
>∼ 0.99). The neutralino is a mixed singlino-

Higgsino state with N2
15 ≈ 0.35 and a mass around 75 GeV.

The sensitivities of present and projected dark matter experiments are also depicted

for comparison. The small area bounded by dotted lines is allowed by the DAMA

experiment in the simple case of an isothermal spherical halo model [39]. The larger

area also bounded by dotted lines represents the DAMA region when uncertainties to
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this simple model are taken into account [42]. For the other experiments in the figure

only the spherical halo has been considered in their analyses. In particular, the (upper)

areas bounded by solid lines are excluded by EDELWEISS [?] 9 and CDMS Soudan

[?]. Finally, the dashed lines represent the sensitivities of the projected CDMS Soudan

and XENON 1T [96] experiments.

On the right-hand side of Fig. 3.26 we show the resulting σχ̃0
1−p when the µ param-

eter and Aκ are varied to µ = 150 GeV, Aκ = 0, for which the effect of the different

constraints on the (λ, κ) plane were represented on the right-hand side of Fig. 3.24.

Since the areas of the parameter space with very light Higgses are ruled out by ex-

perimental constraints the detection cross section is not as large as in the previous

examples. In the regions consistent with both experimental and astrophysical con-

straints the lightest Higgs mass is in the range 80 GeV <∼ mh0
1
<∼ 120 GeV, thus leading

to σχ̃0
1−p

<∼ 5 × 10−8 pb, within the sensitivity of projected dark matter experiments,

such as CDMS Soudan.

Let us now investigate the effect of changing the neutralino composition by modi-

fying the bino mass. As commented in chapter 3, the largest values of the neutralino

detection cross section were obtained for a mixed singlino-Higgsino composition, when

µ <∼M1 < M2. In order to enhance the Higgsino composition we will consider examples

where M1 is increased with respect to the µ-parameter. Such neutralinos annihilate

more efficiently, thus leading to a reduced Ωχ̃0
1
h2, so that the astrophysical constraint

becomes more stringent. Nevertheless, as seen in the previous subsubsection, it is still

possible to find areas of the parameter space with the correct relic density while simul-

taneously fulfilling all experimental constraints. These regions corresponded to light

singlet-like Higgses, which can potentially lead to sizable detection cross sections.

First, M1 = 330 GeV will be taken, for an example with µ = 160 GeV, Aλ =

570 GeV, Aκ = −60 GeV, and tan β = 5. The parameter space for this case was

represented in Fig. 3.25, were we showed the effect of resonant annihilation channels

on the allowed regions. The theoretical predictions for neutralino direct detection

are shown in Fig. 3.27. In this plot, the various resonances appear as funnels in the

predicted σχ̃0
1−p for the regions with the correct Ωχ̃0

1
h2 at the corresponding values of

the neutralino mass (mχ̃0
1
≈ MZ/2 and mχ̃0

1
≈ mh0

1
/2). Below the resonance with the

Z boson, light neutralinos are obtained mχ̃0
1
<∼MZ/2 with a large singlino composition

which have the correct relic abundance. The lightest Higgs is also singlet-like and very

9Since the exclusion area due to ZEPLIN I [94] is similar to EDELWEISS we have not depicted it

here, nor in any subsequent plot.
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Figure 3.27: The same as in Fig. 3.26 but for an example with M1 = 330 GeV, tan β =

5, Aλ = 570 GeV, Aκ = −60 GeV, with µ = 160 GeV (left) and M1 = 500 GeV,

tan β = 5 Aλ = 400 GeV, Aκ = −150 GeV, with µ = 130 GeV (right). In both

examples, the resulting aSUSY
µ is outside the experimental 2σ region.

light, leading to a very large detection cross section, σχ̃0
1−p >∼ 10−6 pb. This corresponds

to the allowed area of the (λ, κ) plane which lies in the vicinity of the tachyonic region

in Fig. 3.25.

Remember however that these two examples with a larger bino mass were dis-

favoured by the resulting muon anomalous magnetic moment, as it was illustrated in

Fig. 3.18.

One more example, this time for M1 = 500 GeV, µ = 130 GeV, Aλ = 400 GeV,

Aκ = −150 GeV, and tanβ = 5 is represented in Fig. 3.27 and shows how large

detection cross sections can also be achieved for heavier neutralinos. In this case (whose

parameter space was illustrated and discussed in Fig. 3.25) neutralino detection cross

sections as large as σχ̃0
1−p ≈ 10−5 pb are possible while fulfilling experimental and

astrophysical constraints. Once more, the occurrence of light singlet-like Higgses is

crucial for enhancing σχ̃0
1−p and the sizable singlino component of the lightest neutralino

(N2
15 ≈ 0.9) reduces the annihilation cross section and ensures the correct relic density.

Finally, we show in Fig. 3.28 a scatter plot of the theoretical predictions for the

neutralino-nucleon cross section as a function of the neutralino mass and the lightest
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Figure 3.28: Scatter plot of the neutralino-nucleon cross section as a function of the

neutralino mass (left) and as a function of the lightest CP-even Higgs mass (right) for an

example with tan β = 5, and the remaining parameters in the ranges 0.01 ≤ λ, κ ≤ 0.7,

110 GeV . M2 . 430 GeV, −300 GeV . Aκ . 300 GeV, −800 GeV . Aλ .

800 GeV, and 110 GeV < µ < 300 GeV. All the points represented are in agreement

with LEP/Tevatron, aSUSY
µ , and BR(b → s γ) constraints, and have a relic density in

agreement with the astrophysical bound (grey dots) or the WMAP constraint (black

dots).

Higgs mass when λ, κ, M1, the µ parameter and the trilinear terms, Aλ and Aκ are

varied while keeping tan β = 5. In order to satisfy the aSUSY
µ constraint, a small slepton

mass, mL,E = 150 GeV, has been used. Only the points which are in agreement with

LEP/Tevatron, BR(b → s γ), and aSUSY
µ limits and which, in addition, are consistent

with the astrophysical bound or the WMAP constraint on the relic density are plotted.

We clearly see how large detection cross sections are correlated to the presence of very

light Higgses (mh0
1
<∼ 50 GeV). Neutralinos fulfilling all constraints and within the reach

of dark matter experiments are possible with 50 GeV <∼ mχ̃0
1
<∼ 130 GeV. The upper

bound on the neutralino mass is due to the lightest stau becoming the LSP. If the

slepton mass is increased, heavier neutralinos can be found but the resulting aSUSY
µ is

soon outside the experimentally allowed range.
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3.5 Summary

Nowadays there is overwhelming evidence that most of the mass in the universe (roughly

90% ) is some (unknown) non-luminous dark matter. At galactic and cosmological

scales it only manifests through its gravitational interactions with ordinary matter.

However, at microscopical scales it might manifest through weak interactions, and this

raises the hope that it may be detected in low-energy particle physics experiments.

Plausible candidates for dark matter are Weakly Interacting Massive Particles, the

so-called WIMPs. They are very interesting because they can be present in the right

amount to explain the observed matter density of the Universe 0.1 <∼ Ωh2 <∼ 0.3. The

leading candidate for WIMP is the so-called neutralino, a particle predicted by the

supersymmetric extension of the standard model. These neutralinos are stable and

therefore may be left over from the Big Bang. Thus they will cluster gravitationally

with ordinary stars in the galactic halos, and in particular they will be present in our

own galaxy, the Milky Way. As a consequence there will be a flux of these dark matter

particles on the Earth.

Many underground experiments have been carried out around the world in order

to detect this flux. One of them, the DAMA collaboration, even claims to have de-

tected it. They obtain that the preferred range of the WIMP-nucleon cross section is ≈
10−6 − 10−5 pb for a WIMP mass between 30 and 270 GeV. Unfortunately, this result

is controversial because of the negative search result obtained by other experiments

like CDMS AND EDELWEISS in the same range of parameters. Thus we will have to

wait for the next generation of experiments, which are already starting operations or

in project, to obtain more information about whether or not neutralinos, or generically

WIMPs, are the evasive dark matter filling the whole Universe. The most sensitive

detector, GENIUS, will be able to test a WIMP-nucleon cross section as low as ≈ 10−9

pb. Indeed such a sensitivity covers a large range of the parameter space of SUSY

models with neutralinos as dark matter.

Concerning this point, we have performed a systematic analysis of the low-energy

parameter space of the Next-to-Minimal Supersymmetric Standard Model (NMSSM),

studying the implications for the direct detection of neutralino dark matter. We have

thus computed the theoretical predictions for the scalar neutralino-proton cross section,

σχ̃0
1−p, and compared it with the sensitivities of present and projected dark matter

experiments. In the computation we have taken into account relevant constraints on
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the parameter space from accelerator data.

We perform the analyses in two part. In a first part in subsection three we look in the

parameter space for regions that fullfill all the called accelerator constraint gives large

cross section that are compatible with detectors. In a second part we have extended

the systematic analysis studying the implications of experimental and astrophysical

constraints on the direct detection of neutralino dark matter. We have computed

the theoretical predictions for the scalar neutralino-proton cross section, σχ̃0
1−p, and

compared it with the sensitivities of present and projected dark matter experiments.

In the computation we have taken into account all available experimental bounds from

LEP and Tevatron, including constraints coming from B and K physics, as well as

the supersymmetric contribution to the muon anomalous magnetic moment, aSUSY
µ .

Finally, the relic abundance of neutralinos has also been computed and consistency

with astrophysical constraints imposed.

We have found very stringent constraints on the parameter space coming from

low-energy observables. On the one hand, aSUSY
µ is generally very small unless very

light slepton (mL,E <∼ 200 GeV) and gaugino masses (M1 <∼ 210 GeV) are considered,

and slepton trilinear couplings modified in order to increase the LR mixing in the

smuon mass matrix. It is important to note that even if the theoretical computation

of this magnitud in the SM is still a controversial point, this magnitud is perhaps

a new evidence of physics beyond the standard model. We found that the NMSSM

computation can be between 2σ region which is not possible in the SM (assuming that

the theoretical calculations are well stimated). On the other hand, the contribution to

BR(b→ sγ) is sizable, mostly due to the smallness of the charged Higgs mass, so that

regions with tanβ <∼ 3 are disfavoured.

Regarding the neutralino relic density, regions of the parameter space can be found

where Ωχ̃0
1
h2 is in agreement with the WMAP constraint. This is possible when either

the neutralino mass is small enough for some annihilation channels to be kinematically

forbidden or when the singlino component of the lightest neutralino is large enough to

suppress neutralino annihilation.

Remarkably, some of the regions fulfilling all the experimental and astrophysical

constraints display very light Higgses, mh0
1
∼ 50 GeV, which are singlet-like, S2

13
>∼ 0.9,

thus allowing a sizable increase of the neutralino-nucleon cross section. Neutralinos

with a detection cross-section within the reach of dark matter experiments are therefore

possible, and have a mass in the range 50 GeV <∼ mχ̃0
1
<∼ 130 GeV. These neutralinos

have a mixed singlino-Higgsino composition and are therefore characteristic of the
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NMSSM.
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Chapter 4

Beyond the MSSM and the

NMSSM

4.1 Why beyond the MSSM and the NMSSM?

In the last few years we have learned a great deal about neutrinos. Two very small mass

splittings have been measured and an unexpected pattern of mixing angles has been

uncovered [97]. Theorists have struggled with different ideas trying to explain such

structure but progress is difficult. Nevertheless, many models have been proposed that

can accommodate the observed neutrino spectrum with different degrees of plausibility.

Still, there is room for novel models, and it is of some interest to examine new proposals,

especially if they have some virtue like simplicity, and some measurable implications in

the not so distant future. We refer to the extensive bibliography in neutrinos physics,

for example see [98] and reference thereim.

In the context of models with low-energy SUSY, like the MSSM, the best motivated

model for neutrino masses is the SUSY version of the see-saw (which is actually the

natural version of the see-saw). Besides explaining in a simple and elegant way the

smallness of neutrino masses the model scores some success in being able to explain the

baryon asymmetry through leptogenesis. The only drawback (not for the model but

rather for us being able to test it) is that the scale of masses involved in the mechanism

is too high (≥ 1011 GeV) to probe directly in any conceivable way.

Many alternatives to the ”standard” see-saw have been studied. We proposed in [3]

a novel SUSY model for neutrino masses in a very economical extension of the MSSM,

93
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the µνSSM . The new model introduces three gauge-singlet neutrino superfields (like

the usual see-saw) but forbids all mass terms in the superpotential, both for the Hig-

gses (therefore there is no µ term) and for the singlet neutrinos (no Majorana mass for

them). In addition it allows cubic couplings among the singlet neutrinos and a Yukawa

coupling to the Higgs doublets. The model then uses non-zero VEVs for the sneutri-

nos to generate both an effective µ term (solving the µ-problem like in the NMSSM)

and a Majorana mass for the singlet neutrinos (at the TeV scale rather than at 1011

GeV). Another salient feature of the model is that it breaks R-parity explicitly and

spontaneously. Needless to say, the phenomenology of the model is quite different from

the MSSM or the NMSSM and offers the exciting possibility of testing at colliders the

physics associated to neutrino masses. We introduce our proposal, the µνSSM in the

next section.

We would like to mention here that there is and extensive literature with different

proposals for models with R-parity violation. For example, see Ref. [98, 99] and ref-

erences therein. Nevertheless, the novel point of our proposal is the fact that in our

model the neutrino right-handed supermultiplets solve the µ-problem in a very natural

way without the introduction of any extra field.
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4.2 The µνSSM proposal

As we have already mention in the previous Section, neutrino experiments have con-

firmed during the last years that neutrinos are massive [97]. As a consequence, it is

natural in the context of the MSSM [5] to supplement the ordinary neutrino superfields,

ν̂i, i = 1, 2, 3, contained in the SU(2)L-doublet, L̂i, with gauge-singlet neutrino super-

fields, ν̂c
i . Once experiments induce us to introduce these new superfields, and given

the fact that sneutrinos are allowed to get vacuum expectation values (VEVs), we may

wonder why not to use terms of the type ν̂cĤ1Ĥ2 to produce an effective µ term. This

would allow us to solve the naturalness problem of the MSSM, the so-called µ problem

[46], without having to introduce an extra singlet superfield as in case of the NMSSM

[48]. It is true that in the model with Bilinear R-parity Violation (BRpV) [100], the

bilinear terms Ĥ2L̂i induce neutrino masses through the mixing with the neutralinos

(actually only one mass at tree level and the other two at one loop) without using the

superfields ν̂c
i , however the µ problem is augmented with the three new bilinear terms.

Thus the aim of this section is to analyse the “µ from ν” Supersymmetric Standard

Model (µνSSM) arising from this proposal: natural particle content without µ problem

[3]. In addition to the MSSM Yukawa couplings for quarks and charged leptons, the

µνSSM superpotential contains Yukawa couplings for neutrinos, and two additional

type of terms involving the Higgs doublet superfields, Ĥ1 and Ĥ2, and the three neutrino

superfields, ν̂c
i ,

W = ǫab

(

Y ij
u Ĥb

2 Q̂
a
i û

c
j + Y ij

d Ĥa
1 Q̂

b
i d̂

c
j + Y ij

e Ĥa
1 L̂

b
i ê

c
j + Y ij

ν Ĥb
2 L̂

a
i ν̂

c
j

)

−ǫabλ
i ν̂c

i Ĥ
a
1 Ĥ

b
2 + 1

3
κijkν̂c

i ν̂
c
j ν̂

c
k , (4.2.1)

where we take ĤT
1 = (Ĥ0

1 , Ĥ
−
1 ), ĤT

2 = (Ĥ+
2 , Ĥ

0
2), Q̂

T
i = (ûi, d̂i), L̂

T
i = (ν̂i, êi), a, b are

SU(2) indices, and ǫ12 = 1. In this model, the usual MSSM bilinear µ term is absent

from the superpotential, and only dimensionless trilinear couplings are present in W .

For this to happen we can invoke a Z3 symmetry as is usually done in the NMSSM. On

the other hand, let us recall that this is actually what happens in the low energy limit

of string constructions: only trilinear couplings are present in the superpotential. Since

string theory seems to be relevant for the unification of interactions, including gravity,

this argument in favour of the absence of a bare µ term in the superpotential is robust.

When the scalar components of the superfields ν̂c
i , denoted by ν̃c

i , acquire VEVs of

order the electroweak scale, an effective interaction µĤ1Ĥ2 is generated through the

fifth term in (4.2.1), with µ ≡ λi〈ν̃c
i 〉. The last type of terms in (4.2.1) is allowed by all



96 CHAPTER 4. BEYOND THE MSSM AND THE NMSSM

symmetries, and avoids the presence of an unacceptable axion associated to a global

U(1) symmetry. In addition, it generates effective Majorana masses for neutrinos at

the electroweak scale. These two type of terms replace the two NMSSM terms ŜĤ1Ĥ2,

ŜŜŜ, with Ŝ an extra singlet superfield.

It is worth noticing that these terms break explicitly lepton number, and therefore,

after spontaneous symmetry breaking, a massless Goldstone boson (Majoron) does not

appear. On the other hand, R-parity (+1 for particles and -1 for superpartners) is

also explicitly broken and this means that the phenomenology of the µνSSM is going

to be very different from the one of the MSSM. Needless to mention, the lightest R-

odd particle is not stable. Obviosly, the neutralino is no longer a candidate for dark

matter. Nevertheless, other candidates can be found in the literature, such as the

gravitino [101], the well-known axion, and many other (exotic) particles [7]. It is also

interesting to realise that the Yukawa couplings producing Dirac masses for neutrinos,

the fourth term in (4.2.1), generate through the VEVs of ν̃c
i , three effective bilinear

terms Ĥ2L̂i. As mentioned above these characterize the BRpV.

Let us finally remark that the superpotential (4.2.1) has a Z3 symmetry, just like

the NMSSM, under which all chiral superfields transform as Φ → e2iπ/3Φ. Therefore,

one expects to have also a cosmological domain wall problem [102, 103] in this model.

Nevertheless, the usual solutions to this problem [104] will also work in this case: non-

renormalizable operators [102] in the superpotential can break explicitly the dangerous

Z3 symmetry, lifting the degeneracy of the three original vacua, and this can be done

without introducing hierarchy problems and this can be done without introducing

hierarchy problems. In addition, these operators can be chosen small enough as not to

alter the low-energy phenomenology. An alternative solution to this Z3 problem could

be to introduce an additional U(1)′ gauge group under which νc carries some non-zero

charge (this forbids the cubic coupling of νc in W , but the Goldstone that appears

after νc takes a VEV is now eaten by the Z ′ boson to get its mass). We have tried

this option paying particular attention to the cancellation of anomalies with the new

U(1)′. Such cancellation requires the introduction of new fermions charged under the

SM group which would complicate the model and therefore we have not pursued this

route.

Working in the framework of gravity mediated supersymmetry breaking, we will

discuss now in more detail the phenomenology of the µνSSM. Let us write first the soft

terms appearing in the Lagrangian Lsoft, which in our conventions is given by

−Lsoft = (m2
Q̃
)ij Q̃a

i

∗
Q̃a

j + (m2
ũc)ij ũc

i

∗
ũc

j + (m2
d̃c)

ij d̃c
i

∗
d̃c

j + (m2
L̃
)ij L̃a

i

∗
L̃a

j + (m2
ẽc)ij ẽc

i

∗
ẽc

j
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+ m2
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Ha
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∗Ha

1 +m2
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∗Ha
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i ũ

c
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c
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+
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(Aκκ)

ijkν̃c
i ν̃

c
j ν̃

c
k + H.c.

]

− 1

2

(

M3 λ̃3 λ̃3 +M2 λ̃2 λ̃2 +M1 λ̃1 λ̃1 + H.c.
)

. (4.2.2)

In addition to terms from Lsoft, the tree-level scalar potential receives the usual D and

F term contributions. Once the electroweak symmetry is spontaneously broken, the

neutral scalars develop in general the following VEVs:

〈H0
1〉 = v1 , 〈H0

2 〉 = v2 , 〈ν̃i〉 = νi , 〈ν̃c
i 〉 = νc

i . (4.2.3)

In what follows it will be enough for our purposes to neglect mixing between generations

in (4.2.1) and (4.2.12), and to assume that only one generation of sneutrinos gets

VEVs, ν, νc. The extension of the analysis to all generations is straightforward, and

the conclusions are similar. We then obtain for the tree-level neutral scalar potential:

〈Vneutral〉 =
g2
1 + g2

2

8

(

|ν|2 + |v1|2 − |v2|2
)2

+ |λ|2
(

|νc|2|v1|2 + |νc|2|v2|2 + |v1|2|v2|2
)

+ |κ|2|νc|4

+ |Yν |2
(

|νc|2|v2|2 + |νc|2|ν|2 + |ν|2|v2|2
)

+ m2
H1
|v1|2 +m2

H2
|v2|2 +m2

ν̃c |νc|2 +m2
ν̃ |ν|2
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(

−λκ∗v1v2ν
c∗2 − λY ∗

ν |νc|2v1ν
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ν |v2|2v1ν
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ν v
∗
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∗νc2

− λAλν
cv1v2 + YνAνν

cνv2 +
1

3
κAκν

c3 + H.c.

)

. (4.2.4)

In the following, we assume for simplicity that all parameters in the potential are real.

One can derive the four minimization conditions with respect to the VEVs v1, v2, ν
c,

ν, with the result

1

4
(g2

1 + g2
2)(ν

2 + v2
1 − v2
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(
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2
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(
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+Y 2
ν ν

c
(
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+ Yνν (−2λνcv1 + 2κv2ν
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= 0 . (4.2.5)

As discussed in the context of R-parity breaking models with extra singlets [105], the

VEV of the left-handed sneutrino, ν, is in general small. Here we can use the same

argument. Notice that in the last equation in (4.2.15) ν → 0 as Yν → 0, and since the

coupling Yν determines the Dirac mass for the neutrinos, mD ≡ Yνv2, ν has to be very

small. Using this rough argument we can also get an estimate of the value, ν <∼ mD.

This also implies that we can approximate the other three equations as follows:

1

2
M2

Z cos 2β + λ2
(

νc2 + v2 sin2 β
)

+m2
H1

− λνc tan β (κνc + Aλ) = 0 ,

−1

2
M2

Z cos 2β + λ2
(

νc2 + v2 cos2 β
)

+m2
H2

− λνc cot β (κνc + Aλ) = 0 ,

λ2v2 + 2κ2νc2 +m2
ν̃c − λκv2 sin 2β − λAλv

2

2νc
sin 2β + κAκν

c = 0 , (4.2.6)

where tanβ ≡ v2/v1, 2M2
W/g

2
2 = v2

1 + v2
2 + ν2 ≈ v2

1 + v2
2 ≡ v2, and we have neglected

terms proportional to Yν . It is worth noticing that these equations are the same as

the ones defining the minimization conditions for the NMSSM, with the substitution

νc ↔ s. Thus one can carry out the analysis of the model similarly to the NMSSM

case, where many solutions in the parameter space λ, κ, µ(≡ λs), tanβ,Aλ, Aκ, can be

found [1].

Once we know that solutions are available in this model, we have to discuss in
some detail the important issue of mass matrices. Concerning this point, the break-
ing of R-parity makes the µνSSM very different from the MSSM and the NMSSM.
In particular, neutral gauginos and Higgsinos are now mixed with the neutrinos. Not
only the fermionic component of ν̃c mixes with the neutral Higgsinos (similarly to
the fermionic component of S in the NMSSM), but also the fermionic component
of ν̃ enters in the game, giving rise to a sixth state. Of course, now we have to
be sure that one eigenvalue of this matrix is very small, reproducing the experimen-
tal results about neutrino masses. In the weak interaction basis defined by Ψ0T ≡
(

B̃0 = −iλ̃′, W̃ 0
3 = −iλ̃3, H̃

0
1 , H̃

0
2 , ν

c, ν
)

, the neutral fermion mass terms in the La-

grangian are Lmass
neutral = −1

2
(Ψ0)TMnΨ

0 + H.c., with Mn a 66 (1010 if we include
all generations of neutrinos) matrix,

Mn =







M m

mT 0






, (4.2.7)
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where

M =





























M1 0 −MZ sin θW cosβ MZ sin θW sin β 0

0 M2 MZ cos θW cosβ −MZ cos θW sin β 0

−MZ sin θW cosβ MZ cos θW cosβ 0 −λνc −λv2

MZ sin θW sinβ −MZ cos θW sin β −λνc 0 −λv1 + Yνν

0 0 −λv2 −λv1 + Yνν 2κνc





























,

(4.2.8)

is very similar to the neutralino mass matrix of the NMSSM (substituting νc ↔ s and

neglecting the contributions Yνν), and

mT =

(

−g1ν√
2

g2ν√
2

0 Yνν
c Yνv2

)

. (4.2.9)

Matrix (4.2.7) is a matrix of the see-saw type that will give rise to a very light eigenvalue

if the entries of the matrix M are much larger than the entries of the matrix m. This

is generically the case since the entries of M are of order the electroweak scale, but

for the entries of m, ν is small and Yνv2 is the Dirac mass for the neutrinos mD as

discussed above (Yνν
c has the same order of magnitude of mD). We have checked

numerically that correct neutrino masses can easily be obtained. For example, using

typical electroweak-scale values in (4.2.8), and a Dirac mass of order 10−4 GeV in

(4.2.9), one obtains that the lightest eigenvalue of (4.2.7) is of order 10−2 eV. Including

the three generations in the analysis we can obtain different neutrino mass hierarchies

playing with the hierarchies in the Dirac masses.

The possibility of using a see-saw at the electroweak scale has not been considered

in much detail in the literature [For a recent work see ref. [106], where an extension of

the NMSSM is considered with Majorana masses for neutrinos generated dynamically

through the VEV of the singlet S. R-parity may be broken in this extension, although

spontaneously], although this avoids the introduction of ad-hoc high energy scales. Of

course, with a see-saw at the scale of a Grand Unified Theory (GUT) one can have

Yukawa couplings of order one for neutrinos. However, since we know that the Yukawa

coupling of the electron has to be of order 10−6, why the one of the neutrino should

be six orders of magnitude larger? As mentioned above, with the electroweak-scale

see-saw a Yukawa coupling of order of the one of the electron is sufficient to reproduce

the neutrino mass. Notice also that a purely Dirac mass for the neutrino would imply a

Yukawa coupling of order 10−13, i.e. seven orders of magnitude smaller than the one we

need with a electroweak-scale see-saw. It is worth mentioning here that in some string
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constructions, where supersymmetric standard-like models can be obtained without

the necessity of a GUT, and Yukawa couplings can be explicitly computed, those for

neutrinos cannot be as small as 10−13, and therefore the presence of a see-saw at the

electroweak scale is helpful [107]. In any case, let us remark that in our model the

see-saw is dynamical and unavoidable, since the matrix of eq. (4.2.7) producing such

a see-saw is always present.

It has been noted in the literature that the sneutrino-antisneutrino mixing effect

generates a loop correction to the neutrino mass, which depends on the mass-splitting

of the sneutrino mass eigenstates [108]. In the case of assuming a large Majorana mass

this correction is negligible if all parameters are of order the supersymmetric scale.

We have checked that the same result is obtained in our model with a see-saw at the

electroweak scale, unless a fine tune of the parameters is forced producing a too large

sneutrino mass difference.

On the other hand, the charginos mix with the charged leptons and therefore in

a basis where Ψ+T ≡
(

−iλ̃+, H̃+
2 , e

+
R

)

and Ψ−T ≡
(

−iλ̃−, H̃−
1 , e

−
L

)

, one obtains the

matrix














M2 g2v2 0

g2v1 λνc −Yeν

g2ν −Yννc Yev1















. (4.2.10)

Here we can distinguish the 22 submatrix which is similar to the chargino mass matrix

of the NMSSM (substituting νc ↔ s). Clearly, given the vanishing value of the 13

element of the matrix (4.2.10), and the extremely small absolute value of the 23 element,

there will always be a light eigenvalue corresponding to the electron mass Yev1. The

extension of the analysis to three generations is again straightforward.

Of course, other mass matrices are also modified. This is the case for example of

the Higgs boson mass matrices. The presence of the VEVs ν, νc, leads to mixing of

the neutral Higgses with the sneutrinos. Concerning the Higgs phenomenology, since

basically the νc plays the role of the singlet S, this will be similar to the one of the

NMSSM [1]. For example, two CP-odd Higgses are present, and we have checked that

one of them can in principle be light. Likewise the charged Higgses will be mixed

with the charged sleptons. On the other hand, when compared to the MSSM case,

the structure of squark mass terms is essentially unaffected, provided that one uses

µ = λνc, and neglects the contribution of the fourth term in (4.2.1).

In the next section we will analyse a particular limit of our model where R-parity
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is still conserved, and therefore the usual candidates for dark matter are still present

4.2.1 Constraining the µνSSM with R-parity conservation

In this Section we go one step further and, willing to keep R-parity unbroken, we

forbid some of the superpotential couplings of the µνSSM [4]. Let us call the three

singlet neutrino superfields Ŝ and Ŝα with α = 1, 2. We assume that Ŝ has even

parity: R(Ŝ) = +1, while R(Ŝα) = −1. For quark, lepton and Higgs superfields one

has R(Q̂i) = R(ûc
j) = R(L̂i) = R(êc

j) = −1 and R(Ĥ1,2) = +1. With this R-parity

assignments and still forbidding mass terms, the R-preserving superpotential reads

W = Y ij
u Q̂i · Ĥ2 û

c
j + Y ij

d Ĥ1 · Q̂i d̂
c
j + Y ij

e Ĥ1 · L̂i ê
c
j + Y iα

ν L̂i · Ĥ2 Ŝα

+ λ Ŝ Ĥ1 · Ĥ2 +
1

2
καβŜ ŜαŜβ +

1

3
κŜ3 , (4.2.11)

where · stands for the SU(2) invariant product. The main differences with respect

to the µνSSM are: only Ŝα have neutrino Yukawa couplings while only Ŝ is allowed

to couple to Ĥ1 · Ĥ2. In addition, not all cubic couplings between the Ŝ and Ŝα are

allowed.

With this superpotential one finds that the scalar components of Ŝα do not take

VEVs while the scalar component of Ŝ does take a non-zero VEV. As a result of this

VEV an effective µ parameter is generated at the same time as Majorana neutrino

masses for the fermionic components of the two Ŝα. In this way R-parity is not broken,

either explicitly or spontaneously, and the model, therefore still has a candidate for

dark matter in the LSP. This could be e.g. the neutralino, as is the usual situation in

SUSY models where R-parity is unbroken.

Without R-parity conservation (or another symmetry that can discriminate between

neutrinos and singlinos) the singlino and the neutrino supermultiplets are essentially

the same. In models with R-parity one is odd and the other is even under this symmetry.

In this sense, this model, the constraint µνSSM , can be identified with an R-parity

conserved extension of the NMSSM with two right-handed neutrinos.

In order to discuss in more detail the phenomenology of this model let us write first

the soft SUSY-breaking terms appearing in the Lagrangian Lsoft and relevant for the

breaking of the electroweak symmetry. In our conventions this is given by

−Lsoft = m2
H1

|H1|2 +m2
H2
|H2|2 +m2

S1
|S1|2 +m2

S2
|S2|2 +m2

S |S|2

+

[

(Aλλ)SH1 ·H2 +
1

2
(Aκκ)

αβSSαSβ +
1

3
(Aκκ)S

3 + H.c.

]

. (4.2.12)
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In addition to terms from Lsoft, the tree-level scalar potential receives the usual D and

F term contributions. We then obtain for the tree-level neutral scalar potential:

V0 = m2
H1

|H0
1 |2 +m2

H2
|H0

2 |2 +m2
S1
|S1|2 +m2

S2
|S2|2 +m2

S |S|2

+

[

(Aλλ)SH0
1H

0
2 +

1

2
(Aκκ)

αβSSαSβ +
1

3
(Aκκ)S

3 + H.c.

]

−
∣

∣

∣

∣

λH0
1H

0
2 +

1

2
καβSαSβ + κS2

∣

∣

∣

∣

2

+ |λ|2|S|2
(

|H0
1 |2 + |H0

2 |2
)

+ καβκαγ∗|S|2SβS
∗
γ +

g2
1 + g2

2

2

(

|H0
1 |2 −H0

2 |2
)2
. (4.2.13)

As usual, we expect m2
H2

< 0 by radiative effects, and this triggers a cascade of other

VEVs. In general one gets the following non-zero VEVs:

〈H0
1 〉 =

v1√
2
, 〈H0

2〉 =
v2√
2
, 〈S〉 =

vs√
2
. (4.2.14)

Inspection of the potential (4.2.13) immediately shows that the Sα do not develop

VEVs, provided m2
Sα

> 0. That is, even in the presence of the VEVs of (4.2.14) no

tadpole is generated for the Sα. In the following, we assume for simplicity that all

parameters in the potential are real. One can derive the minimization conditions for

the VEVs v1, v2, vs, with the result

m2
H1
v1 +

1

8
(g2

1 + g2
2)(v

2
1 − v2

2)v1 +
1

2
λ2v1

(

v2
2 + v2

s

)

+ λv2vs

(

1

4
κvs +

1√
2
Aλ

)

= 0 ,

m2
H2
v2 +

1

8
(g2

1 + g2
2)(v

2
2 − v2

1)v2 +
1

2
λ2v2

(

v2
1 + v2

s

)

+ λv1vs

(

1

4
κvs +

1√
2
Aλ

)

= 0 ,

m2
Svs +

1

2
λ2vs

(

v2
1 + v2

2

)

+ λv1v2

(

1

2
κvs +

1√
2
Aλ

)

+
1

2
κv2

s

(

1

2
κvs +

1√
2
Aκ

)

= 0 ,(4.2.15)

where we have neglected the neutrino Yukawa couplings, which have to be very small

to reproduce the neutrino masses. Notice that as happened in the previous Section,

these minimization equations are the same as the ones of the NMSSM, and therefore

the same comment applies: one can carry out the analysis of the model similarly to

the NMSSM case, where many solutions in the parameter space can be found [1].

Unlike what happenned in the µνSSM , neutrinos and neutralinos do not mix in

this model. The neutralino mass matrix resembles that of the NMSSM while now the

full neutrino mass matrix is 55. In the basis {νi, S̃α}, this matrix takes the form

Mν =







0 mD

mT
D M






, (4.2.16)
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where the (32) Dirac matrix reads

(mD)iα =
1√
2
Y iα

ν v2 , (4.2.17)

while the (22) Majorana mass matrix is

Mαβ =
1√
2
καβvs . (4.2.18)

Assuming that the typical mass scales in Mαβ are of order 1 TeV and therefore much

larger than the typical mass scales in mD (which we assume to be of the same order as

the masses of the charged leptons), we have a see-saw mechanism working at the TeV

scale and producing very small neutrino masses. One salient feature of the present

setup with only two Majorana neutrinos is that, of the three light active neutrinos,

only two are massive while one remains massless.

More explicitly, the effective mass matrix for the three light neutrinos is

MνL = mDM
−1mT

D , (4.2.19)

or, in components:

(MνL)ij =
1√
2

v2
2

vs

Y iα
ν (κ−1)αβY

βj
ν . (4.2.20)

Going to a basis of the Sα that makes καβ diagonal [καβ = κ(α)δαβ] we get

(MνL)ij =
1√
2

v2
2

vs
Y iα

ν

1

κ(α)

Y αj
ν , (4.2.21)

that is,

MνL =
1√
2

v2
2

vs

∑

α=1,2

1

κ(α)















Y 1α

Y 2α

Y 3α















(Y 1α, Y 2α, Y 3α) . (4.2.22)

This formula makes it explicit that MνL is rank 2. The two non-zero eigenvalues are

mν =
1

2
√

2

v2
2

vsκ(1)κ(2)

{

‖Y i2
ν ‖2κ(1) + ‖Y i1

ν ‖2κ(2)

√

(‖Y i2
ν ‖2κ(1) − ‖Y i1

ν ‖2κ(2))2 + 4(Y i1
ν Y i2

ν )2κ(1)κ(2)

}

. (4.2.23)

There are basically two options to accomodate the observed neutrino mass splittings

with only two non-zero eigenvalues. In both one necessarily has a hierarchical neutrino
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Figure 4.1: Neutrino masses squared, showing the two types of spectra with normal or inverted

hierarchy.

spectrum, either with normal hierarchy, when

m2
ν− = ∆m2

sol ,

m2
ν+ ≃ ∆m2

atm , (4.2.24)

in which case, the small solar neutrino splitting is below the larger atmospheric one;

or with inverted hierarchy, when

m2
ν− ≃ ∆m2

atm ,

m2
ν+ −m2

ν− = ∆m2
sol , (4.2.25)

and the solar splitting is on top of the atmospheric one, see figure 4.1. It is simple to

arrange things so that the neutrino mixing angles also come out right (i.e. θ2 ∼ 0;

θ1, θ3 ∼ π/4). From eq. (4.2.22) it is clear for instance that choosing appropriate values

of κ(1) and κ(2) so as to reproduce the neutrino masses, the angles come out right simply
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choosing the Yukawa couplings to satisfy

Y 11
ν : Y 21

ν : Y 31
ν ∼ 1 : 1/

√
2 : −1/

√
2 ,

Y 12
ν : Y 22

ν : Y 32
ν ∼ 0 : 1 : 1 . (4.2.26)

4.3 outlook

The µνSSM is a new proposal for a SUSY SM. We use the couplings of the right-handed

neutrino superfields to the two Higgs doublets in order to generate spontaneously the µ

term of the MSSM. In this way we connect this term and its origin to neutrino physics.

Obviously, since R-parity are lepton number are not conserved, the phenomenology

of the µνSSM is very rich and different from other models, and therefore many more

issues can be addressed in the future. This is the case of an analysis of the parame-

ter space including possible experimental constraints [109], implications for accelerator

physics, analysis of the (modified) renormalization group equations, study of the neu-

trino masses in detail, generation of baryon asymmetry, etc. Needless to say, the LHC

will test the model in a few years.

On the other hand, unlike the case of the MSSM and NMSSM, the neutralino

cannot be a candidate for dark matter. Nevertheless, other candidates can be found

in the literature such as the gravitino or the axion. Another possibility arises from

constraining the µνSSM. As discussed above, if one forbids some of the superpotential

couplings R-parity is conserved again, and a different phenomenology is obtained. For

example, the neutralino is again a good candidate for dark matter, the µ-term is

generated as in the NMSSM, and only two neutrinos are massive.
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Chapter 5

Conclusiones Finales

En este último caṕıtulo damos las conclusiones generales del trabajo de tesis.

En esta tesis hemos realizado en primer lugar un análisis fenomenológico del NMSSM,

estudiando en detalle su espacio de parámetros. Aśı mismo, hemos discutido la viabil-

idad de que el neutralino del NMSSM constituya la materia oscura del universo [1, 2].

En el análisis hemos tenido en cuenta todas las restricciones relevantes que vienen dadas

por la f́ısica de aceleradores, incluyendo el análisis del momento magnético anómalo

del muón aµ y la f́ısica de mesones (siendo el cálculo más relevante el BR(b → sγ)).

también se calculó la densidad reliquia del neutralino comparandola con las últimas

observaciones de WMAP, y se analizó la detección directa del neutralino teniendo en

cuenta el rango experimentalmente alcanzable.

En segundo lugar se propuso un nuevo modelo SUSY publicado con el nombre de

µνSSM [3]. Con este modelo resolvemos el problema µ del MSSM sin la necesidad de

introducir un nuevo supercampo como se hace en el NMSSM. Esencialmente la idea es

usar los supercampos neutrinos right-handed, que incorporamos a la teoŕıa al haberse

demostrado que los neutrinos son masivos, para generar dinámicamente el término µ

Con respecto al análisis del neutralino del NMSSM como candidato a constituir la

materia oscura del universo, en primer término hemos identificado en el modelo las re-

giones del espacio de parámetros que dan como resultado una sección eficaz neutralino-

nucleon dentro del rango asequible a los detectores existentes. Se concluyó que secciones

eficaces muy altas σχ̃0
1−p & 10−7 pb eran posibles gracias al intercambio de Higgses muy

ligeros mh0
1

. 70 GeV. Esto es posible debido a que el Higgs más ligero en estos casos

tiene una alta composición de singlete. Recordemos finalmente que la obtención de

estos resultados se ve favorecida para valores de tanβ . 10.
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En un segundo paso hemos incorporado en el análisis el cálculo del momento

magnético anómalo del muón, aµ, f́ısica de mesones y el cálculo de la densidad reliquia

de neutralinos.

En cuanto al aµ, el cálculo teórico en el SM y los resultados experimentales actuales

discrepan en 3.4 sigmas. Aunque todav́ıa es prematuro afirmar que esta es una señal

de nueva f́ısica, no es descartable que aśı sea. El avance tanto en el campo teórico

como en el experimental abrirá la posibilidad de corroborar esta posible señal de f́ısica

más alla del modelo estándar. También será posible corroborar (o refutar) las distintas

extensiones SUSY. En el caso del NMSSM hemos sido los primeros en hacer el cálculo

de de aµ y hemos verificado que existe una zona del espacio de parámetros dentro

del intervalo de 2σ de compatibilidad entre el resultado teórico y el experimental.

Hemos encontrado que para tanβ . 10 el valor de aµ, no está en general dentro de la

región de 2 σ por ser demasiado pequeño, a menos que la masa de los sleptones sea

(mL,E . 200 GeV) y la de los gauginos (M1 . 210 GeV). Por tanto hemos encontrado

una cota experimental para mL,E y M1, para tanβ pequeño.

Con respecto a f́ısica de mesones K y B, el proceso dominante es b → sγ. Hemos

obtenido que para tanβ . 3 el BR(b → sγ) discrepa en más de 2σ del valor experi-

mental. Por lo tanto los valores de tanβ . 3 se encuentran desfavorecidos.

Finalmente, para que el neutralino sea realmente un candidato a constituir la

materia oscura del universo debemos constatar que la densidad reliquia calculada

en el modelo se encuentra dentro del rango observacionalmente aceptado. Gracias

a las últimas observaciones de WMAP, este valor esta medido con gran precisión;

0.095 < Ωh2 < 0.112. Hemos confirmado que es posible obtener resultados dentro de

este intervalo cuando la masa del neutralino es lo suficientemente pequeña como para

que algunos canales de aniquilación estén cinemáticamente prohibidos o cuando la com-

posición de singlino del neutralino es lo suficientemente grande como para suprimir su

aniquilación.

Queremos resaltar que muchas de las regiones que satisfacen todas las cotas exper-

imentales poseen Higgses muy ligeros, mh0 ∼ 50 GeV, y están dominados en su com-

posición por el singlete S2
13 & 0.9, permitiendo secciones eficaces muy altas. Neutrali-

nos, que son principalmente una mezcla Higgsino-singlino y por tanto caracteŕısticos

de este modelo, dan lugar a secciones eficaces dentro del rango asequible experimen-

talmente y con masas comprendidas en el rango 50 GeV <∼ mχ̃0
1
<∼ 130 GeV.
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En el cuarto caṕıtulo de la tesis nos hemos fijado en el hecho experimental de que

los neutrinos tienen masa. Este hecho sugiere la existencia del neutrino right-handed.

Recordemos que el neutrino es el único fermión que en el SM no posee parte right-

handed, motivado porque en un principio se créıa que el neutrino no era masivo. Una

vez aceptada la inclusión de ésta nos preguntamos ¿ cuál es el modelo SUSY mı́nimo,

libre del problema µ, y con tres familias de neutrinos right-handed?. Este planteamiento

nos llevó a proponer el nuevo modelo µνSSM .

La principal caracteŕıstica del modelo es la existencia en el superpotencial de

términos νc H1H2. Éstos generan el parámetro µ en forma espontánea mediante el

VEV del sneutrino νc. Al mismo tiempo, términos del tipo (νc)3 proh́ıben la presencia

de un bosón de Goldstone y generan masas efectivas de Mayorana a la escala EW. La

presencia de estos términos implica que R-parity está rota expĺıcitamente. Para masas

de Dirac de los neutrinos del orden de 10−4 GeV podemos reproducir, usando el see-

saw que se genera a la escala EW en este modelo, una masa del neutrino más pesado

del orden de 0.01 eV. Dicho de otra manera, con un Yukawa del neutrino del orden

del Yukawa del electron, es posible reproducir en nuestro modelo la f́ısica de neutri-

nos observada experimentalmente (para generar las masas de los neutrinos más ligeras

sólo tenemos que jugar con las jerarqúıas en los restantes Yukawas). Si bien se suelen

asumir masas de Majorana mucho más altas basadas en la idea GUT, para que sea

suficiente para reproducir la masa del neutrino más pesado un Yukawa de orden uno,

podemos preguntarnos ¿ por qué este Yukawa va a ser seis órdenes de magnitud mayor

al análogo asociado al electrón?. El Yukawa del neutrino en el µνSSM es al menos

tan natural como el del electrón. No hace falta decir que al estar todo formulado a la

escala EW en este modelo, no hace falta introducir ninguna escala ad hoc.

El µνSSM tiene una motivación teórica muy importante y origina una rica fenome-

noloǵıa. El LHC brindará en un futuro muy próximo la posibilidad de contrastar las

predicciones del modelo con la realidad.

Es bien cierto que por no conservarse R-parity el neutralino no puede ser en el

µνSSM el candidato a materia oscura. Sin embargo, es bien sabido que otros can-

didatos son posibles, tales como el gravitino o el axión. Otra alternativa es suprimir

algunos parámetros del µνSSM para obtener un modelo que conserva R-Parity [4].

En este caso el resultado que obtenemos es básicamente el NMSSM extendido con

dos neutrinos right-handed, y donde la masa de Majorana de los mismos se genera

dinámicamente a través del VEV del singlete. La diferencia fundamental con nuestra

propuesta original, es que en esta versión restringida el neutrino y el singlino son dos
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campos distinguibles por el número cuántico asociado a R-parity. Como consecuencia

poseen distintos acoplos que hacen que solo el supercampo que contiene al singlino

genere un término µ.



Appendix A

Relevant NMSSM interaction

vertices

A.1 Higgs-quark-quark Yukawa coupling

Parameterising the interaction of neutral CP-even Higgs fields with quarks as

Lqqh = −q̄i
[

Ci
Y LPL + Ci

Y RPR

]

qi h
0
a , (A.1.1)

where h0
a denotes the physical (mass) Higgs eigenstates and i = 1, 2 up- and down-type

quarks, one has

Ci
Y L = Ci

Y R = Ci
Y ; C1

Y = − gmu

2MW sin β
Sa2 , C2

Y = − gmd

2MW cos β
Sa1 , (A.1.2)

where we have omitted the quark generations and S is the unitary matrix that diago-

nalises the scalar Higgs mass matrix, defined in Eq. (3.1.8).

A.2 Neutralino-neutralino-Higgs interaction

The interaction of scalar Higgs and neutralinos can be parametrised as

Lhχ̃0χ̃0 =
1

4
h0

a
¯̃χ

0
α

[

Caαβ
HL PL + Caαβ

HR PR

]

χ̃0
β , (A.2.3)

where a = 1 − 3 refers to the Higgs mass eigenstate, α, β = 1 − 5 denote the physical

neutralino states, and the couplings are defined as

Caαβ
HL =

{

−g (N∗
α2 − tan θWN

∗
α1)
(

Sa1N
∗
β3 − Sa2N

∗
β4

)

+
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+
√

2λ
[

Sa3N
∗
α3N

∗
β4 +N∗

β5 (Sa2N
∗
α3 + Sa1N

∗
α4)
]

+ (α→ β)
}

−2
√

2κSa3N
∗
α5N

∗
β5 , (A.2.4)

Caαβ
HR =

(

Caαβ
HL

)∗

. (A.2.5)

In the text, and since we have exclusively analysed interactions involving the lightest

neutralino states (i.e. α = β = 1), we have simplified the above as Ca11
HL = Ca

HL and

Ca11
HR = Ca

HR.

A.3 Neutralino-squark-quark interaction

In terms of the mass eigenstates, the Lagrangian reads

Lqq̃χ̃0 = q̄i
[

CαXi
L PL + CαXi

R PR

]

χ̃0
αq̃

X
i , (A.3.6)

where i = 1, 2 denotes an up- or down-type quark and squark, X = 1, 2 the squark mass

eigenstates, and α = 1, . . . , 5 the neutralino states. Since we have neglected flavour

violation in the squark sector, only LR mixing occurs, and squark physical and chiral

eigenstates are related as






q̃1

q̃2






=







ηq̃
11 ηq̃

12

ηq̃
21 ηq̃

22













q̃L

q̃R






. (A.3.7)

One can also make the usual redefinition ηq̃
11 = ηq̃

22 = cos θq̃ and ηq̃
12 = −ηq̃

21 = sin θq̃

Therefore, for the up sector, and again omitting quark and squark generation indices,

the coefficients CαXi
L,R are given by:

Cα11
L = −

√
2g
[

Yu

2
tan θWN

∗
α1 sin θũ + mu

2MW sinβ
N∗

α4 cos θũ

]

, (A.3.8)

Cα11
R = −

√
2g
{[

N∗
α2T

u
3 +

YQ

2
tan θWN

∗
α1

]

cos θũ + mu

2MW sinβ
N∗

α4 sin θũ

}

, (A.3.9)

Cα21
L = −

√
2g
[

Yu

2
tan θWN

∗
α1 cos θũ − mu

2MW sinβ
N∗

α4 sin θũ

]

, (A.3.10)

Cα21
R = −

√
2g
{[

−N∗
α2T

u
3 +

YQ

2
tan θWN

∗
α1

]

sin θũ + mu

2MW sinβ
N∗

α4 cos θũ

}

.(A.3.11)

In the above, YQ(u) denotes the hypercharge of the SU(2)L quark doublet (up-singlet)

and T u
3 the isospin of the uL field. The analogous for the down sector is trivially

obtained by the appropriate replacements ( Yu → Yd, T
u
3 → T d

3 , mu → md, θũ → θd̃,

sin β → cos β and Nα4 → Nα3). In this work, and since only q − q̃ − χ̃0
1 interactions

have been considered, we have always used C1Xi
L,R = CXi

L,R, i.e., setting α = 1 in the

above.
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