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Introduccion

La equivalencia entre teorias gauge y teorias de gravedad es una de las propuestas mas
fascinantes en el campo de la fisica tedrica y matematica. En la formulacién original, la
teoria de cuerdas de tipo IIB en la geometria AdSs; x S® con N unidades de flujo de 5-
forma de RR es equivalente a AN/ = 4 SU(N) Super-Yang-Mills en cuatro dimensiones. En
principio, la equivalencia es valida en el limite de gran N, N — oo. Cuando la curvatura es
pequena y se puede utilizar la aproximacion de supergravedad, la teoria gauge esta a acoplo
fuerte. La extensién a geometrias y teorias de campos mds generales y menos simétricas
ha generado gran cantidad de ejemplos, algunos mas interesantes desde el punto de vista

fisico, pero donde la validez de la correspondencia esta menos clara.

Podemos distinguir tres temas principales en los trabajos sobre la correspondencia,
aunque como cualquier clasificacién, es arbitraria y en muchos casos los temas estan
intrinsecamente relacionados y no pueden separarse dentro de algunos trabajos. En el
primer tipo de trabajos se busca la elaboracién de un diccionario entre ambas partes de la
correspondencia. En esta linea podemos incluir tests no triviales que incluyen el calculo de
cantidades dinamicas. Normalmente la teoria de Yang-Mills es bien conocida sélo cuando el
acoplo gauge es pequeno, mientras que para la teoria gravitatoria dual ocurre lo contrario.
Esta caracteristica es lo que hace la correspondencia tan dificil de probar (o refutar), y
a la vez tan util. Aunque todos los tests hechos hasta ahora muestran que la dualidad
es robusta, carecemos aun de un procedimiento sistematico para equiparar cantidades a
ambos lados de la correspondencia cuando no hay algo como supersimetria para proteger

los célculos.

El segundo tipo de trabajos trata acerca de los problemas habituales de gravedad como
una teoria cudntica, especialmente cuando se estudian agujeros negros. Si cierta geometria
de una teoria gravitatoria es equivalente a una teoria gauge, entonces la unitariedad de la

teorfa gravitatoria deberfa estar asegurada (a no ser que tratemos con un caso patolodgico).



Aunque nuestro entendimiento acerca de los agujeros negros en espacios AdS parece haber
avanzado, la situacion para agujeros negros de Schwarzchild o para escenarios cosmolégicos
como el espacio de Sitter no esta clarificada ain, y los progresos en este sentido parecen

ser dificiles.

El tercer tema es acerca del régimen de acoplo fuerte de las teorias gauge. De acuerdo
con la correspondencia, podemos utilizar supergravedad para hacer cdlculos analiticos que
si no estarian fuera de nuestra capacidad técnica, especialmente si las teorias no son super-
simétricas. Esta linea de trabajo ha sido explorada exhaustivamente, con muchos éxitos.
Sin embargo, atin no podemos realizar célculos con teorias asintéticamente libres (como
QCD), ya que son duales a geometrias muy curvadas, donde la aproximacién de super-

gravedad no es valida y perdemos control sobre nuestros resultados.

La variedad de aspectos de la correspondencia se refleja de alguna forma en las dos
primeras partes de este trabajo. En la primera parte investigamos la extensién del dic-
cionario de AdS/CFT para incluir multitrazas, lo cual implica ir mas alld del limite de gran
N. El andlisis se hace utilizando las propiedades de campo medio de la teoria gauge, y de-
spues es utilizado para estimar el efecto sobre el diagrama de fases de la teoria gravitatoria.
En la segunda parte de la tesis estudiamos la anomalia holografica de la simetria U(1)a
axial de una teoria gauge no supersimétrica con quarks. Para ello construimos la geometria
dual e investigamos como la anomalia estd implementada en ella. En la clasificacion que
hemos presentado antes, la primera parte estd entre el primer y el segundo tipo de trabajos,
mientras que la segunda parte esta mas relacionada con el tercer tipo de trabajos, aunque

algunos aspectos estan relacionados con el primer tipo.

La tercera parte de la tesis no estd relacionada directamente con la correspondencia,
pero es un subproducto de ella. AdS/CFT proporciona una nueva visién sobre teorias
gauges (y de gravedad), y como tal puede ayudarnos a descubrir nuevas relaciones entre
ellas que previamente no hubiéramos sospechado. Este es el caso de equivalencia planar.
Hay algunas teorias gauge que pueden obtenerse proyectando una teoria supersimeétrica
madre de una forma definida. Gracias a la correspondencia, se descubrio que la teoria
madre y la proyectada (o hija) son equivalentes en el limite de gran N. En la tercera parte

investigaremos esta relacion introduciendo las teorias en volumen finito.



Conclusiones

Parte I: Deformaciones de multitraza

En esta parte mostramos que el tratamiento que se hace en AdS/CFT de las multitrazas
como condiciones de contorno no lineales es equivalente a la aproximacion de Hartree.
Hemos aplicado los métodos de campo medio para estudiar las deformaciones de multi-
traza de las teorias gauge para grandes valores de N. Las deformaciones son equivalentes
a deformaciones de una sola traza con un acoplo que depende del campo medio y que tiene
que ser evaluado de forma auto-consistente, utilizando la aproximacién de Hartree. Las
propiedades globales de la ecuacion auto-consistente de campo medio, en concreto la mono-
tonicidad, estan relacionadas con la estabilidad local del campo medio. Estas propiedades,
y un desarrollo formal de una expansién sistemética 1/N pueden ser discutidos utilizando
campos auxiliares. Como las deformaciones de multitraza corresponden a teorias de cuer-
das no locales, hemos encontrado nuevas clases de inestabilidades taquidnicas para estos

modelos, inducidas por las deformaciones de multitraza.

Como aplicacion concreta, hemos estudiado el efecto de las multitrazas sobre el dia-
grama de fases termodindmico de D4 branas ’calientes’ en volumen finito. Hemos encon-
trado que las transiciones de fase a gran /N se ven enormemente afectadas cuando el acoplo
es de O(1) en unidades adimensionales. Las deformaciones analiticas afectan a la regién
donde podemos describir el sistema mediante una teoria gravitatoria. Para deformaciones

no analiticas, se veria afectada la regién descrita utilizando la teoria gauge.

Trabajos futuros pueden orientarse a entender mejor la inestabilidad taquidnica del
campo medio desde el punto de vista del dual gravitatorio, y la relacion con ruptura de
supersimetria, que en nuestra geometria esta rota incluso en el caso sin deformaciones.

También serfa interesante calcular las correcciones a ordenes mayores de la expansién 1/N.



Parte II: La anomalia holografica

Muchas de las propiedades no perturbativas de las teorias gauge a acoplo fuerte pueden ser
reproducidas utilizando duales gravitatorios. En este trabajo hemos seleccionado un dual
holografico de una teoria gauge confinante, el limite cercano al horizonte de N, D4 branas
compactificadas en un circulo con condiciones de contorno que rompen supersimetria. La
circulaciéon del flujo dos-forma de RR en el circulo que estd en la frontera da el angulo
de vacio 6 de la teoria gauge. El modelo presenta una susceptibilidad topolégica diferente
de cero y una estructura con multiples ramas, de acuerdo con la fisica quiral de gran N.
Anadimos sabor al modelo introduciendo Ny D6 branas de prueba, que no afectan a la
geometria mientras Ny < N, por lo que es equivalente a trabajar en una aproximacién

"quenched’.

La forma de la D6 dentro de la geometria tiene un modo cero en el limite quiral de
quarks sin masas. Esto significa que la D6 puede moverse a lo largo de cierta direccion de la
geometria sin coste de energia. El modo cero puede identificarse con el boson de Goldstone
de gran N asociado a la simetria U(1) axial, conocido como 7. Podemos deducir la relacién
de la anomalia cuando tenemos en cuenta el flujo de RR del que son fuente las D6 branas,
0 — 0+ 2\/Vf77’ /fz. Damos argumentos para mostrar que el mecanismo de Witten-
Veneziano debe ser realizado en supergravedad como una relacion directa entre amplitudes
de cuerdas abiertas y de cuerdas cerradas. Mostramos que existen acoplos no derivativos
para el n' y calculamos el primer término del potencial generado para el ', encontrando

un acuerdo perfecto con la formula de Witten-Veneziano.

La masa del i’ debe ser generada por un diagrama cilindrico con una insercién del 7’
en cada frontera, emulando el mecanismo de aniquilacién de quarks de Isgur-de Rujula-
Georgi-Glashow. Sin embargo, los acoplos no derivativos del " a las glueballs le darian una
masa taquionica, por lo que debe haber un término positivo de contacto proveniente de la
compleciéon del diagrama de intercambio de glueballs en teoria de cuerdas. El intercambio
de glueballs es la imagen natural cuando consideramos un cilindro que es largo respecto a
su circunferencia. En la esquina opuesta del espacio de moduli, la interpretacion natural
desde el punto de vista de cuerdas abiertas es un bucle de mesones con inserciones del 7/,

lo cual proporciona la complecién UV del intercambio de glueballs.

Seria interesante extender el analisis més alld de la aproximacién de branas de prueba,

en una geometria donde la reaccién de las branas haya sido tenido en cuenta. Como la



dependencia puramente gludénica en el angulo # viene de la energia de flujos de RR, el
mecanismo debe ser similar a una modificacién de Green-Schwarz de los campos. Seria
interesante encontrar un polinomio de anomalia en diez dimensiones que permitiera la
sustitucién 0 — 6 + 2\/Ff77’ /fx en la dos forma de RR, después de reducirse sobre el

volumen de las D6 branas.

No hemos discutido caracteristicas no Abelianas del sabor. En el modelo D4/D6, hay
NJ% — 1 pseudoescalares ligeros extra que vienen de rotaciones independientes de las D6
branas. La asociacién natural seria con los piones de la teoria dual. Sin embargo, los
quarks se acoplan con escalares en la representacion adjunta que rompen explicitamente
el grupo de sabor al grupo diagonal junto con el U(1)4 axial. Por tanto, esperamos que
haya correciones que levanten la masa de los ’piones’. Resultados similares aparecen en
modelos D3/D7, por ejemplo. A pesar de esto, la masa de los escalares es mucho mayor
que la masa a gran N de los 'piones’, por lo que se puede dar una descripcién aproximada
de los mismos en términos de un Lagrangiano quiral a bajas energias. En modelos D4/DS8,
no hay acoplos con escalares porque las simetrias globales de sabor se identifican con
simetrias gauge residuales de las D8 branas en la frontera, en vez de proceder de propiedades
geométricas de la forma de la brana en la geometria. Otra forma de abordar el problema del
sabor en modelos confinantes utilizando otro tipo de geometrias, como Klebanov-Strassler

o Maldacena-Nunez, parecen encontrar problemas para incluir quarks sin masa.

Parte III: Equivalencia planar en el toro

El andlisis de teorias de campos orbifold y orientifold en volumen finito R x T? presenta
algunos caveats para equivalencia planar. Con condiciones periddicas, las holonomias a lo
largo de las direcciones compactas del toro juegan el papel de grados de libertad a baja
energia. Para algunos valores no triviales de las holonomias , hay violaciones de equivalencia
planar. Esto puede verse en que el potencial efectivo a un bucle no se hace cero a primer
orden (O(N?)). Este resultado por s{ mismo no descarta equivalencia planar en el régimen
de acoplo fuerte, que corresponde a una situacién fisica bastante diferente. Por ejemplo, a
acoplo fuerte esperamos la formacién de un condensado fermiénico y la ruptura de simetria
quiral. Sin embargo, el resultado sugiere que cuando configuraciones con valores medios
apreciables para los campos empiezan a ser importantes, como uno esperaria a acoplo

fuerte, por lo que no es obvio que la equivalencia se satisfaga. Violaciones de equivalencia



planar ocurren de hecho en regiones pequenas del espacio de moduli, que se hacen de
medida cero en el limite N — 0o, pero aun asi hay que ser cuidadoso antes de asegurar

que la equivalencia planar se mantiene a nivel no perturbativo.

Cuando estudiamos teorias orbifold con condiciones de contorno rotadas, encontramos
dificultades para identificar cantidades equivalentes en la teoria madre y en la hija. Los
resultados, especialmente los calculos semicldsicos, sugieren que la teoria orbifold contiene
un subsector supersimétrico asociado al grupo gauge diagonal de la teoria hija, en vez de
al grupo gauge de la teoria madre. Seria interesante comprobar si para el caso orientifold
sucede algo anadlogo, pues podria ser la explicacion de la equivalencia planar que se observa

a nivel perturbativo.



Universidad Auténoma de Madrid

Facultad de Ciencias

Departamento de Fisica Tedrica

Large N methods applied to

holography and planar equivalence

Memoria de Tesis Doctoral realizada por
D. Carlos Hoyos Badajoz,

presentada ante el Departamento de Fisica Tedrica
de la Universidad Auténoma de Madrid

para la obtencién del Titulo de Doctor en Ciencias.

Tesis Doctoral dirigida por

Dr. D. José Luis Fernandez Barbén,

Cientifico Titular del C.S.I.C.

Tutor de la Tesis en el Departamento

Dr. D. Enrique Alvarez Vazquez,

Catedratico de la Universidad Autéonoma de Madrid

Madrid, Abril 2006.






Contents

1 Introduction

I Multitrace deformations

2 Motivation

2.1 Master field and AdS/CFT correspondence . . . . . .. ... ... .....

2.2  Multitrace deformations . .

3 Mean field expansion

3.1 Multitrace boundary conditions . . . . . .. .. ...

3.2 Systematics of the mean field approximation . . . . . ... ... ... ...

3.3 Stability of the Master Field

3.3.1 Stability and the Master Equation . . . . . . . ... ... ... ...

4 Explicit Examples

4.1 Multitraces and Topology-Changing Phase Transitions . . . ... .. ...

4.1.1 Review of the Single-Trace Case . . . . . . . .. .. .. ... ....

4.1.2 The Multitrace Case

5 Conclusions

11

11

12

16

18

21

23

23

25

29



IT The holographic axial anomaly

6 Motivation
6.1 Holographic QCD-like models . . . . . . . . . ... .. ... .. ...,
6.2 Large N chiral dynamics . . . . . . . . . ... oo
6.2.1 Chiral anomaly . . . . . .. .. .. ...

6.2.2 Witten-Veneziano formula . . . . . . . . .. .. ... ... ...

7 Holographic QCD model
7.1 A confining supergravity dual . . . . ... ... ...
7.2 A model withflavor . . . . . .. . ... .. .. ... L

7.3 Introducing the # angle . . . . . . . .. ... oL

8 1/N physics of the holographic
8.1 The anomaly relation in the UV regime . . . . . . . . . ... .. ... ...
8.2 String contributions to the potential . . . . . . . ... ... 0L

8.3 A quantitative check to order 1/v/N . . . .. ... ... ...

9 Conclusions

IIT Planar equivalence in finite volume

10 Motivation
10.1 Orbifold and orientifold field theories . . . . . . . . . . . . . . . ... ...
10.1.1 Orbifold theories . . . . . . . . . . . . .

10.1.2 Orientifold theories . . . . . . . . . . . . . . . ...

11 Gauge theories in the box

11.1 Physical setup . . . . . . . . . . .

31

32
33
36
38
40

43
43
45

51

53
53
%)
58

61

63

64
65
66
67

68



11.2 Moduli space and boundary conditions . . . . . . . .. ... ... ... ..

11.3 One-loop potential ove

11.3.1 Generalizations

12 Planar equivalence in th

rmodulispace . . . . .. ... oo

e box I

12.1 Planar equivalence and the “planar index” . . . .. . ... .. ... ....

12.2 Effective potentials and planar equivalence . . . . . . . .. ... ... ...

12.2.1 Orientifold effective potential . . . . . .. ... ... ... .....

12.2.2 Orbifold effective potential . . . . . . . .. ... ... ... .....

13 Planar equivalence in th

e box I1

13.1 Twisted boundary conditions and orbifold field theories. . . . . ... ...

13.2 Vacuum structure. . . . . . . . . .

13.2.1 Ground states i

n the daughter theory. . . . . . . ... ... ... ..

13.2.2 The mapping of vacua. . . . . . . . . ... ... .. ... ......

13.2.3 Electric fluxes and vacuum angles. . . . . . . ... ... ... ...

13.2.4 Fermionic zero

modes. . . . ...

13.2.5 Potential over moduli space. . . . . . . .. ... .. ... .. ....

13.3 Tunneling effects. . . . . . . . ... Lo

13.3.1 Tunneling in parent theory. . . . . . . . ... ... ... .. ....

13.3.2 Tunneling in daughter theory. . . . . . .. ... ... ... .. ...

13.3.3 Semiclassical dependence on the vacuum angles. . . . . . . . . . ..

13.4 D-brane interpretation

14 Conclusions

78
78
80
82

85

88
89
92
92
94
95
96
98
100
101
103
107

110

114



Appendix 115
A Examples of multitrace deformations 116
A.1 Binomium Perturbation . . . ... .. ... ... ... ... ... ... 118
A.2 More Exotic Perturbations . . . . . . . . ... .. ... ... ... ... 119

B One-loop potential in the torus 121
B.1 Non-analytic behavior . . . . . .. .. ... ... o o 123

C Landscape features of the potential 124
C.1 Effective potentials for flat connections . . . . . . . . ... .. ... .. .. 125
C.1.1 Effective potentials . . . . . . . . ... ... ... ... ....... 126

C.2 The Cartan-Weyl landscape . . . . . . ... ... ... ... ... ... .. 128
C.2.1 Examples . . . . . .. . . 131

C.2.2 The general rules . . . . .. . ... ..o oo 131

D Mass of bifundamental fields in toron background 134

Bibliography 136



Chapter 1
Introduction

The equivalence between gauge and gravitational theories is one of the most fascinating
proposals in the field of mathematical and theoretical physics. In the original formulation,
type IIB string theory in AdSsx S® background with N units of RR 5-form flux is equivalent
to N = 4 SU(N) Super-Yang-Mills in four-dimensional space. In principle, the equivalence
is valid in the large-N limit, N — co. When the curvature is small and the supergravity
approximation is reliable, the gauge theory is at strong coupling. The extension to more
general and less symmetric gravity backgrounds and field theories has generated a large
number of examples, sometimes more interesting from a physical point of view, but usually

the validity of the correspondence is less clear for them.

We can distinguish three main topics in the works on the correspondence, although
as any classification is arbitrary and many times the topics are related and cannot be
separated within some works. The first topic is the elaboration of a dictionary between
both sides of the correspondence. In this line we can include the computation of dynamical
quantities that may provide a non-trivial test. Notice that usually Yang-Mills is well-known
only at weak coupling, while the opposite is true for supergravity. This characteristic is
what makes the correspondence so difficult to prove (or disprove), and so useful. Although
the correspondence has been proved to be robust under any kind of test, we lack a sys-
tematic matching procedure whenever there is nothing as supersymmetry that protects the

computation.

The second topic treats the usual concerns about gravity as a quantum theory, specially
when black holes are involved. If a gravitational background is equivalent to a gauge theory,

then unitarity must be ensured (unless we are dealing with a pathological case). Although
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the understanding of black holes in AdS space seems to have advanced, the situation
for Schwarzschild black holes or for cosmological issues like de Sitter space is still highly

unclear, and progress appears to be difficult.

The third topic is about the strong coupling regime of gauge theories. According to
the correspondence, supergravity can be used to make analytic computations, otherwise
technically intractable, specially if the theory is non-supersymmetric. This line of work
has been extensively explored, with many successes. However, asymptotically free theories
(such as QCD) are still out of reach, because they involve highly curved backgrounds,

where analytical control over supergravity computations is lost.

The variety of aspects of the correspondence is somehow reflected in the first and
second parts of this work. In the first part we investigate the extension of the AdS/CFT
dictionary to include multitraces, which implies to go beyond the large N limit. The
analysis is made using the properties of the master field of the gauge theory, and the effect
on the gravitational phase diagram is investigated. In the second part we study the U(1)4
axial anomaly in a gravitational background dual to a non-supersymmetric gauge theory
with flavor. In the classification above, the first part will be somewhere in between the first
and second classes, while the second part will be more related to the third class, although

some aspects are also related to the first class.

The third part of this work is not directly related to the correspondence, but it is a
by-product of it. AdS/CFT provides a new vision over gauge (and gravity) theories, and as
such it can help to find new unsuspected relations among them. That is the case of planar
equivalence. There are some theories that can be obtained by projecting a supersymmetric
parent theory in a definite way. It was realized thanks to the correspondence that the
projected (or daughter) theory and its parent are equivalent in the large-N limit. We will
investigate this subject defining the gauge theories in finite volume, but our analysis will

have other applications, as we will see.



Part 1

Multitrace deformations






Chapter 2

Motivation

2.1 Master field and AdS/CFT correspondence

It is hard to review [1-15] the AdS/CFT correspondence [16-18] making justice to it.
Instead, we will try a partial and slightly different point of view. In the original formulation
we have a conformal SU(N) gauge theory in four dimensions. At strong coupling, and in
the large-N limit [19,20], we expect that the theory is described by free singlet-states.
However, all the degrees of freedom of the theory should contribute to vacuum amplitudes,
so they are proportional to N2?. Then, any correlation function will be dominated by
vacuum contributions. Notice that the large-N vacuum is not the usual one on top of
which the perturbative expansion on the 't Hooft coupling is made. Instead, all possible
corrections on the coupling have been inclued in a resummation at each order in N. In
the path integral formalism, the large-N vacuum configuration is known as the 'master
field’ [21].

The master field can be treated as a classical configuration [22-24]. Uncertainties,
in the sense of deviations from the mean expectation values of operators, are minimized
on master field configurations, and vanish in the strict N — oo limit. According to the
correspondence, the master field that arises in the large-N limit of a gauge theory has a
geometrical description. The global symmetries of the gauge theory map to isometries of
the dual space and there is a correspondence between gauge operators and dual fields of
the same representation. The complete statement relates the gauge theory to a quantum
gravitational theory, a string theory. The strong-coupling classical configuration can receive

stringy and quantum corrections. Stringy or ' corrections come with powers of the AdS
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curvature. In the field theory, they are suppressed by powers of the inverse of the 't Hooft
coupling. Quantum corrections, proportional to the string coupling, correspond in the
gauge theory to 1/N corrections. The duality has two directions, weakly coupled gauge
theory will describe strings in highly curved backgrounds.

2.2 Multitrace deformations

Let us make a few more comments about the map between the dual theories. AdS space has
a conformal time-like boundary at infinite proper distance. However, light rays can travel
to and from the boundary in finite proper time as seen by an inertial observer, so boundary
conditions must be specified. On the other hand, the direction orthogonal to the boundary
corresponds to a renormalization group scale of the gauge theory, with the boundary at an
ultraviolet fixed point. Different boundary conditions change the background fields in AdS.
In the field theory Lagrangian, they introduce new terms involving the dual operators, with

bare couplings given by the boundary values.

In all this picture, we are able to map all the fields of AdS to single-trace gauge-invariant
operators. For instance, the scalar dilaton field maps to the operator O = N~ltr F2.
Multitrace operators would correspond to multi-particle (or multi-string) states. When
N is very large but finite, the number of independent single-trace operators is also finite.
This suggests a “stringy exclusion principle” according to which the number of strings
we can introduce is limited to be of order ~ N [25]. On the other hand, when we try
to deform the Lagrangian with a multitrace, a puzzle arises because there is no obvious
parameter in string theory that can correspond to it. It has been proposed that there can
be non-local interactions on the worldsheet, with a coupling associated to the multitrace
coupling [26]. For the classical regime, a multitrace deformation is translated to non-linear
boundary conditions, so it can be reduced to the case of a single-trace deformation. This
makes multitrace deformations quite interesting, because they are easily manageable when
the effect of the single-trace is known and at the same time introduce novel features that

will be reflected in non-linearities in the background dependence on the couplings.

We can resume the effect of multitraces in two points: breaking of conformal invariance
and non-local modifications of the geometry. The first point has been examined under
the light of renormalization group flows for double-trace deformations. The double-trace

induces a flow of the central charge, that in some cases drives the theory to a different
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fixed point, related to the ultraviolet theory by a Legendre transformation [27-30]. In the
bulk theory, the background interpolates between AdS spaces of different radius. This is
not exclusive of multitrace deformations, we expect a similar behavior whenever the dual
gauge theory does not develop a mass gap, but has two different fixed points in the infrared
and the ultraviolet. Similar results have been found for holographic duals of non-critical
string backgrounds [31]. Double-trace operators have been also used to study the conformal
symmetry of orbifolded generalizations of the AdS correspondence [32], a subject that we

will also encounter in the sections on planar equivalence.

Non-local deformations are perhaps more interesting. Multitrace terms induce bound-
ary conditions such that the dual background contains a bound state. If the deformation
renders the gauge theory unstable, this is also reflected in the bulk, even though the dual
fields are not tachyonic. For instance, scalar fields satisfying the Breitenlohner-Freedman
bound develop a tachyonic mode on Minkowski slices of AdS [33]. From these considera-
tions, it has been proposed that the boundary theory provides a lower bound on the energy
of states in AdS [34-36]. Some of the instabilities have been identified with time-dependent
backgrounds [37], and in some cases the evolution leads to a big crunch singularity within
AdS [38,39], so a deeper study of gauge theories with unstable multitrace deformations

may result in a better understanding of cosmological singularities in string theory.

In the following sections, we will introduce multitrace deformations and show how
master field techniques can be used to reduce to the single-trace case. We will also examine
the changes on the gravity background that our deformations produce, specially when new

instabilities appear.



Chapter 3

Mean field expansion

3.1 Multitrace boundary conditions

The first treatments of multitrace boundary conditions are in [40,41] and are based on a

simple observation. Consider for simplicity a scalar field of mass m in AdS,,; space

2 dz? + Z?:l dz?

ds = (3.1)
The asymptotic behavior of the field close to the boundary at z = 0 is
o(z,2) = a(r)z"2 + B(x)z° (3.2)

where A is the conformal dimension of the dual single-trace operator O and it is related to
the mass through A(A +d) = m?. In the correspondence, 3(z) is interpreted as a vacuum
expectation value of the operator, while «(x) acts as a source. Therefore, a term in the

Lagrangian of the form

N2 (0) = N2 / '3 f ()0 (3.3)

corresponds to the boundary condition

a=f. (3.4)

On the other hand, the partition function deformed with the term W coincides with the
expectation value of exp(—N?W (0)) in the undeformed theory. Therefore, we can write
the boundary coupling as W ({O)) = W (), and the boundary condition as

_aw
o

«

(3.5)

11
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The last formula allows to generalize to an arbitrary non-linear deformation W(Q). From
the gauge theory point of view, it is justified by the properties of the master field. At
leading order in large N, a n-point correlation function of a single-trace operator is given

by its expectation value
(o") =(0)", (3.6)
so a non-linear function can be Taylor-expanded and the value of the multitrace operator

substituted by powers of the single-trace operator.

The master field is a saddle point configuration of the path integral. If I'y(O,) denotes
the effective action of the theory, evaluated over some classical configuration O, then the

saddle point equation is

T,
0. =0 (3.7)

When we add a multitrace deformation, and we apply the property of factorization of the

master field, we end up with

(el [ WO ) ~ exp (-Ta(0a) - W(OM) (33)

and the saddle point equation is

ory | OW(Ou)
8001 aOcl

So the master field configuration with a multitrace deformation is reduced to the single-

=0. (3.9)

trace case with an effective coupling

_ OW(Oa)
B aOcl ’

equivalent to the generalized boundary conditions.

(3.10)

3.2 Systematics of the mean field approximation

Let us consider a gauge-theory model specified by a single-trace action Sy and a multitrace

perturbation by a general function of a single-trace operator of the form
1
O~ —tr F"+ ... 3.11
= (3.11)
where the dots stand for other terms in gauge or matter fields. The complete action is

S = SO+N2/ddx§(’)+N2/ddx f(o), (3.12)
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where we have separated explicitly the linear part of f(O). We shall assume that operator
condensates in this theory, (), are determined in terms of the microscopic couplings,
with at most a discrete degeneracy. In particular, this means that we will only consider
theories whose single-trace limit f — 0 has isolated vacua with a mass gap, separated from

any possible moduli spaces of vacua.

The coupling ¢ will be promoted to a source for the operator O, although the large N
master field will be assumed translationally invariant on R¢, and ¢ will be evaluated as a

constant in all expectation values.

In the Hartree approximation, the expectation value (O) may be calculated at N = oo

from the single-trace effective theory with action
?;50+N2/ddx20, (3.13)
with ¢ determined from the master equation:

Z:C+f’(<0>z) . (3.14)

The consideration of large N phase transitions requires comparing the values of the full

partition function
Z[¢, f]= /DA e’ (3.15)
at different large NV master fields. The path integral measure over the gauge field A may

contain various other fields as well, although we use the notation DA for simplicity.
The effective single-trace partition function
Z[(]= /DA e ” (3.16)

can be used to compute the single-trace expectation values, but it is in general different
from (3.15) at the saddle points.

In order to derive a useful expression for Z[(, f] it is convenient to introduce appropriate

auxiliary fields. First, we insert a delta-functional constraint by the identity

lz/Hdax(S[a—O], (3.17)

which defines o(x) as a classical interpolating field for the local operator O(x). We can

further exponentiate the delta-functional by means of a second auxiliary field

§[o—0] = /H dQ—? el [ x(e=0) (3.18)
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It will be convenient to distribute democratically the factor of (2m)~!' between the o and

X measures. Defining

Do=]] \CZ% (3.19)

and analogously for Dy, we can write
1= / Do Dy eI x(=0) (3.20)

which defines a formal path integral representation of the full partition function,

Z[¢, f] :/DUDX z, [cﬂ%] exp {—N2/f(a)+i/><a] . (3.21)

In this expression Z; denotes the single-trace partition function that results by setting
f=0.
The connected functionals of the full and single-trace theory are given by

1
N?

In these definitions, ( is treated as a spacetime-dependent source. At the saddle points

WICH]= x5 g 21071 Wl =5 los B[, (322)

we will assume translational invariance on R% and it will be useful to define the volume

densities
maﬂz/%mﬂjm mmzfﬂmmo, (3.23)

as a function of the microscopic couplings.

Both W, and all its functional derivatives have a 1/N? expansion with leading term of
O(1). They generate the set of connected correlators of O(z) in the single-trace theory.

For example, the one-point function is of O(1),

= Mo _ (o), (3.24)

CTosC
while the connected two-point function is of O(1/N?),

oW
N2 5((331) (SC(QTQ) )

(0)

(O(1) O(x2) )., ¢ = (3.25)

In order to derive a 1/N expansion for Z[(, f] we evaluate the path integral over
the auxiliary fields in the saddle-point approximation. We write 0 = o, + ¢’/N and
X = Xe + NX/, and we determine o, and Y, requiring the cancellation of the O(N) terms.
This leads to the equations

oW

- . ixe=N2f(0n) . 3.26
% = 5 |ero e ix f'(oe) (3.26)
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Defining an effective coupling '

(=(+ ﬁ (3.27)
we see that o, = (O )z , and the saddle-point equations (3.26) are equivalent to the master
equation (3.14). These equations imply that the saddle point of the y integral lies in the

imaginary axis for real values of the one-point function. In this case, one must deform the

contour of integration of the zero mode of y accordingly.

The leading term in the 1/N expansion of the partition function is given by

w(, f)=wo (O)+  ((O)) = (O)e 1 ({O)) +O(/NY . (3.28)
This shows that the partition function at large /V is not just the partition function of the
effective single-trace model.

The local stability of a given master field is controlled by the functional quadratic in
the perturbation fields o', x/, of O(1) in the large N expansion around the saddle point.

This term contributes
—log Z [, f] = O(N?) + 1 log Det [K]+ O(1/N?), (3.29)

where K is a nonlocal operator acting on the field-space (x/,0’) as

[ Gy =i
K= ( i ) , (3.30)

The higher-order functional derivatives of W, together with the higher derivatives of the
multitrace potential f(o), define effective vertices for the 1/N expansion of (3.21). The

connected single-trace correlators define nonlocal vertices of the ' field,

. 1 " o" WO ! /
Viv =3 s o [ o ding Sl X)X (331

n>3

where each functional derivative of Wy has a separate expansion in powers of 1/N? with
leading term of O(1).

Both the saddle-point equations (3.26) and the propagator (3.30) depend implicitly on
the full single-trace connected functional Wy, which itself has a 1/N? expansion with leading
term of O(1). In principle, we have the choice of keeping this implicit 1/N expansion in
the value of the saddle point o., x. and the effective propagator . However, we often

ignore the explicit form of Wy beyond the planar approximation and, in practice, we solve
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for o., x. just at the leading (planar) order. In this case we may include the nonplanar
dependence of (3.26) and (3.30) via a series of explicit tadpole and mass insertions. These
new vertices have the form (3.31) with n = 1,2 and W replaced by its “non-planar” part
with leading scaling of O(1/N?). This means that the tadpoles form a series with leading
term of O(1/N), whereas the mass insertions start at O(1/N?).

Finally, the vertices for the ¢’ field are local,

e KL A N CALE (3.2

m!
m>3

Using K as a propagator and (3.31), (3.32) as vertices, we can calculate the 1/N corrections
to the master field in a systematic diagram technique. For quadratic perturbations, f” = 0,
the o field is free and can be explicitly integrated out, leaving only the diagram technique
of the y field, as in the treatment of [27,28].

Regarding the NLST interpretation, if the single-trace model is associated to some string
background Xj via AdS/CFT or a deformation of it thereof, the perturbation expansion
in powers of the multitrace vertices f(™(o.) defines the nonlocal worldsheet interactions,
according to [26]. The content of the Hartree approximation is simply that one-point
functions and partition functions may be calculated at large N by working in a modified
single-trace background X, characterized by effective single-trace couplings (. However, the
physics of the NLST goes much beyond the one-point functions and the large N vacuum
energy. In particular, the stability of the NLST cannot be inferred directly from the

stability of X in the single-trace theory, but instead requires a specific analysis.

3.3 Stability of the Master Field

The global stability properties of the perturbed model depend to a large extent on the
global properties of the function f(o) for large values of o. If this function is unbounded
from below we can expect a globally unstable model. In this section we shall concentrate
on the local stability properties of a given saddle point, characterized by a solution of the

master equations (3.26).

In momentum space the operator I has the block form (3.30) for each value of the

momentum. The naive stability conditions demand positivity of the eigenvalues

=1 (1 +Golk) £ 3/ (7 = o)) — 4. (3.33)
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This amounts to the reality condition
! = Ga(k)| > 2, (3.34)
together with the positivity conditions
f+Ga(k) >0 and 1+ f/ Gy(k) > 0. (3.35)

In ordinary field theories we expect G(k) > 0 for Hermitian O(z), so that the violation of
the stability conditions can only occur for sufficiently negative values of f. When these
conditions are not met, we can still define the integrals by analytic continuation in f!' or,
equivalently, by an appropriate contour rotation of the o', ¥ integrals around the saddle
point. However, in this process physical quantities will pick up complex phases that change
their physical interpretation. One simple example of this phenomenon is the imaginary part
of the vacuum energy, which should be interpreted as the total decay width of the unstable
saddle point.

Since x is a formal auxiliary field, it is not obvious that all the conditions )\ZC > 0 have
the same physical status. For example, the contribution to the vacuum energy coming

from each momentum mode is given by
1log (M) =3 log [L+ fIGa(k)] (3.36)
and simply demanding that this contribution be real imposes the less restrictive condition

1+ f'Gy(k) >0, (3.37)

In fact, to the extent that we are interested in the exact correlation functions of the
operator O(z), we must focus on the propagation properties of the o(z) field after x(z)

has been integrated out, since we have
(O(z1) - O(zn) ) = (0(21) - - -0 (2n) ) (3.38)

as an exact statement in the complete theory. Therefore, we first integrate over x' and

obtain an effective action for ¢’ of the form

exp (—Ten[o’]) = Det /% [Gy ] exp {—%/0'(G21+fc”) o' +O(1/N)| ,  (3.39)

where we have omitted the interaction terms that are suppressed by powers of 1/N. In-
tegrating now over ¢’ in the gaussian approximation we obtain the previous result for the
total determinant (3.36),

Det™/2 [Gy ] - Dev™2 [G '+ f | =Det™ [14 /1G], (3.40)
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where we assume a convenient regularization procedure to make sense of these manipula-
tions. More generally, the 1/N expansion of the correlators (3.38) can be calculated using

Feynman rules with effective kinetic term

Ky=G, +f". (3.41)
Hence, the physical stability condition demands positivity of this (Euclidean) kinetic term
for all momenta. Assuming Go(p) > 0, this condition is equivalent to (3.37) above.

In order to give a more physical characterization of the stability conditions let us con-

sider the spectral representation of the single-trace two-point function

Golp) = / PG (3.42)

z+p?’
with p(z) > 0 the spectral density (for simplicity, we assume that O(x) is scalar and
Hermitian). Expanding G, = near p? = 0 we have

a ~ ZO(O)

~ 3.43
2(p) p2_|_Mg ) ( )

where the wave-function rescaling, Z,(0), and the mass gap, Mg, of the single-trace theory

are assumed to be positive,

(Jdzp(2)/2)" o [dzp(2)/2

Z(0) = = . 3.44
O =T M T Tap)) (349
Hence, the physical stability condition (3.37) boils down to
Z(0)
1 T——">0. 3.45
The single-trace mass gap gets renormalized and this defines an effective mass gap,
Mg — Mg = Mg + Zo(0) I 20, (3.46)

that must be positive for stability.

3.3.1 Stability and the Master Equation

We can relate (3.37) to the master equation by evaluating G(0). The integrated two-point

function at zero momentum can be formally written as

/ddx G(0) = N? /ddx /ddy (O@) O(y)), = —/ddx W!(T) . (3.47)
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Hence, the stability condition (3.37) becomes

1—f" wi({)>0. (3.48)

On the other hand, the master equation can be written as ( = H((), where

H(C)=¢— [ (wp(C)) - (3.49)

This function satisfies

H'(C)=1-f wy(<), (3.50)

which is the expression appearing in the stability condition (3.48). Therefore, H(() is
monotonically increasing (decreasing) for stable (unstable) solutions of the master equation.
We can thus determine the stability of the solutions by a simple glance at the plot of the

function H( () (c.f. Fig. 3.3.1). In particular, the solutions of H'( () = 0 mark the stability

boundary of a given branch and correspond to the onset of the nonlocal tachyons.

Figure 3.1: Sketch of a function H( () leading to various solutions of the master equation.
Stable branches are indicated in solid lines, separated by locally unstable branches in dotted

lines. At the extrema of H( () we have the onset of the tachyonic instabilities.

The function H( () also controls the monotonicity of the vacuum energy with respect
to the effective coupling . Starting from the general expression (3.28) we can write the

vacuum energy density as
w = wo + f(wy) — wy f'(wp) , (3.51)
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where all functions depend implicitly on (. Taking the derivative with respect to ¢ and

using the definition of H( () in (3.49) we find
w'(¢) =wy(¢) H'(C) - (3.52)

If the condensate of the single-trace theory, (O) ~ w}, is a monotonic function of ¢ there

is a correlation between the monotonicity of H( () and that of the total vacuum energy.



Chapter 4
Explicit Examples

A simple model is the standard “approximation” of QCD in terms of Dp-branes (with
p < 5) at finite temperature [42]. One starts by engineering a non-supersymmetric version
of Yang—Mills theory in d = p Euclidean dimensions by considering the low-energy limit of

a hot Dp-brane.

The important expansion parameter is the effective 't Hooft coupling of the YM, theory
at the energy scale set by the temperature 7" of the SYMy; theory on the hot D-brane
(c.f. [43,44]),

A~ gs N (\/E) e (4.1)

where g, is the string coupling and o/ the string’s Regge slope. For \; < 1 perturbative
Feynman diagrams give a good description, whereas for A\; > 1 we can use the AdS/CFT

dual in terms of the near-horizon metric of the black D-branes [43].

The single-trace action is given by

N2 Td—4
SOZA—d/ddxﬁd, Li= tr F2 ..., (4.2)

where the dots stand for regularization artefacts at the temperature scale T" or above
(superpartners, higher-dimensional modes or string excitations). In what follows we shall

simplify the notation by adopting units in which 7" = 1.

At Ay > 1 the supergravity approximation yields an explicit value for the vacuum
energy in terms of the free energy of the hot D-branes,

d—3

wo = —(5—d) Cyr; " (4.3)

21
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where C is a positive constant. From here one finds

/ 5% n 2(d -3
(L) =up= (-3 CATT . Ga(0) = —uf = 202

7=d
—d

7
Oy N} (4.4)

Hence, we have all the ingredients needed to consider multitrace deformations by a non-

linear function of the operator L4(x),

S:SO+N2/dda:f(£d). (4.5)

Defining
1

:)\—d,

we have an effective single-trace model determined by the inverse 't Hooft coupling ¢, which

¢ H(T) =T - ((d-3)Cal™) . (46)

acts as a curvature expansion parameter of the black Dp-brane metric. From this model
we can calculate the condensate (Ly) as a function of ¢, which in turn is determined by

the master equation ¢ = H( ().

The multitrace deformation is trivial for d = 3 in agreement with the fact that the D3-
brane free energy is independent of the dilaton in the leading supergravity approximation.
Incidentally, we notice that G2(0) = —wy < 0 for d < 3. This violation of the positivity
of the two-point function at zero momentum is presumably due to the non-Hermiticity
of the effective Lagrangian operator (4.2), which would be dominated at Ay > 1 by the
regularization artifacts. This fact renders the d < 3 models rather unphysical for the
matters discussed here. Therefore, in the following we restrict attention to d = 4 and drop
the d-dimensional subscript from all quantities. We also simplify the formulas by setting

C, = 1 with an appropriate choice of coupling parameters.

The transition between the perturbative and supergravity descriptions occurs at the
“correspondence line” of [45]. For the single-trace model it is given by ¢ ~ 1, which is

perturbed by multitraces to ¢ ~ 1 or, in terms of the original coupling

(=H1)=1-f(1). (4.7)

We see that, depending on the sign of f'(1), the multitraces increase or decrease the
supergravity domain in (-space. We discuss in the Appendix A some specific choices for

the multitrace perturbation.
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4.1 Multitraces and Topology-Changing Phase Tran-

sitions

Large-N phase transitions induced by multitrace couplings arise from the many possible
solutions of the master equation ¢ = H((;). However, in most cases considered so far the
different solutions ; are continuously connected and the corresponding string backgrounds
have the same topology when studied in the supergravity approximation. Large-/N phase
transitions with change of spacetime topology are known in the AdS/CFT framework, the
most famous example being the Hawking—Page transition [42,46], corresponding to a CET
on a finite-radius sphere. From the CFT point of view, the phase transition arises as a

finite-size effect.

The interplay between multitrace-induced and topology-changing transitions is an in-
teresting question that we address in this section. Fortunately, the example model based
on hot D-branes does show topology-changing transitions when the Yang—Mills theory is
compactified on a torus, so that we can carry on our study in a rather direct way. We start
with a short review of the topology-changing transitions corresponding to finite-size effects

of SYM models on toroidal compactifications.

4.1.1 Review of the Single-Trace Case

Let us consider the compactification of the hot D4-brane on a (4 — p)-dimensional torus
of size L. In the perturbative description, the Euclidean spacetime of the SYM model at
finite temperature has the topology R” x Sj x (SH)*”, with # = 1/T and we take the

supersymmetric spin structure on the torus of size L.

In the perturbative regime, A < 1, the thermodynamics of the SYM,; theory changes
character at TL ~ 1, from five-dimensional scaling of the entropy S ~ 7% at TL > 1 to
a p-dimensional scaling S ~ TP~ ! at TL < 1. At strong coupling A > 1, the AdS/CFT
correspondence incorporates this change of behavior by a transition between topologically
distinct backgrounds, both with the same asymptotic boundary conditions [44]. The first
background is the near-horizon geometry of the original black D4-brane wrapped on the
(4 — p)-torus. This metric is T-dual to that of black Dp-branes, localized on the torus, but
distributed uniformly over its volume, i.e. the so-called black brane “smeared” over 4 — p

transverse dimensions.
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The vacuum energy per unit volume in R? is the same for both T-dual metrics and is

given by the thermodynamic free energy of the five-dimensional theory, i.e. we can write

log Zy(T), (4.8)

Wy =

_NQ—VE,)
where V,, is the volume in the noncompact R? directions. In general, for a (d + 1)-
dimensional SYM theory at finite temperature 7' on a spatial volume V; we have (c.f.
[43,44])
2 2 d=3 ., 9=d
—IOg ZO(T) =—-N Vd Cd (geffN) 5=d [ 5=d ) (49)

where g% is the effective SYM coupling constant of mass dimension 3 — d. Considering
now the particular case of D4-branes wrapped on the T4~? torus, the effective coupling is
g% N = \/T and

wos = —L"PC AT, (4.10)

With the same quantum numbers and asymptotic behavior, one can consider the metric
of Dp-branes fully localized on the (4 — p)-torus. The corresponding vacuum energy is
related to the thermodynamic free energy of the effective SYM theory in p Euclidean
dimensions, with effective coupling g3 N = A L?~4/T,

woy = —N?C, (ALP~4/T) %> T35 | (4.11)

The smeared metric dominates for large temperatures, whereas the localized metric

takes over at low temperatures. The cross-over temperature is given by

1= _ 2 Ly (4.12)

which defines the “localization curve”

1
A~ — 4.13
IT (4.13)
The transition between the smeared and the localized geometry is reminiscent of the
Gregory-Laflamme instability [47]. They are, however, very different, since both back-
grounds are locally stable in the near-horizon regime (they both have positive specific

heat [48]). Thus, we have a first-order phase transition between locally stable backgrounds.

We plot in Fig. 4.1.1 a phase diagram of the single-trace theory as a function of ( =
1/X and the dimensionless combination LT. The localization curve (4.13) continues at
weak coupling as LT = 1. The correspondence lines separating the perturbative and the

supergravity regimes are ¢ = 1 for large LT and ¢ = (LT)?~* for smaller values of LT.
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Dp

D4

Figure 4.1: Phase diagram of the finite-temperature D4-brane at large N, as a function
of the effective dimensionless coupling ( = 1/\ and the size of the torus LT, in units
of the temperature. Full lines denote finite-size localization transitions and dashed lines

correspond to correspondence regions between supergravity and perturbative descriptions.

4.1.2 The Multitrace Case

Since the multitrace deformation modifies the vacuum energy through (3.28) the phase
transition curves change accordingly. Let us consider the simple case of a monomium
perturbation of the form (A.1) in the d = 4 case. The “smeared” phase over the (4 — p)-

torus of size L has vacuum energy density

_ — _9o\ n+1
wo= L' - Le o (C7) (4.14)
n

where we have chosen couplings so that Cy = 1 and we use units with 7" = 1 throughout this
section. (, denotes the selfconsistent coupling in the smeared phase, obeying the master

equation

C=0C—&¢ (4.15)

On the other hand, the phase of localized black Dp-branes yields similar expressions

after dimensional reduction to R”. The effective dimensionless coupling arising through

1 Lir
X/d4x—> 3 /dpx (4.16)

the standard rule
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is given by
Gt = L7 C, (4.17)

and similarly for . The master equation of the localized phase is then

_ _ 2 1n
(=G |w-3C, (CL' )] (4.18)
The resulting vacuum energy is given by
Y I 7 L]
we=—=(6-p)Cy (L'7C)7 —6 == [p=3)C, (GL'™)7| . (419)
¢
YM
. 3
' YM
. 4
1r D3 T
D4
C b
m
D3
Lm 1 L

Figure 4.2: Phase diagram for the localization transition between D4-branes and D3-branes
with a multitrace perturbation & < 0. The localization line terminates at ((p,, Ly,) and
the dotted line signals the local instability of the D4-branes, induced by the multitrace

couplings.

In general, we see that the multitrace perturbation is not qualitatively significant for
1
¢ > [€]no (4.20)
in the smeared phase. In the localized phase, the qualitative features are standard for

C> L |e|5 i (4.21)
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We shall further simplify the analysis by choosing p = 3, i.e. compactification on a single
circle of size L. In this particular case the equations (4.18) and (4.19) governing the

localized phase collapse to very simple expressions:

¢=¢, wy = —Cs . (4.22)
The transition curve between the smeared and the localized phases in the supergravity
regime follows from the equation

1= L

We B 203 ZS

n__¢ ] (4.23)

n+ 1

For ¢ < 0 we have a minimal value of {, for which the smeared solution is locally stable:

— 1

Cm = (2n[€])>FT . (4.24)
The main effect of this in the (¢, L) phase diagram is the abrupt termination of the local-
ization line (4.23) at the point ((y,, Ly,), with

_2n+1
2

S0 nlghT L (@425)

Cm @nl¢)mT , L,

Hence, part of the supergravity regime that was dominated by D4-branes is now covered
by the D3-brane phase due to the local instabilities induced by the multitrace coupling
(see Fig. 4.1.2).

For £ > 0 the D4-brane phase is locally stable, but the condition ¢ > 0 still enforces a

minimum value of ¢, given by ZSHH = . The critical length at this point is

n+1 —
L. = 2C5C. . 4.26
on+1 3Ce (4.26)

Expanding the master equation (4.15) and the localization equation (4.23) near the point

(¢ =0,L.) we find
_ L,
¢~ 2::11 C. (1 _ f) (4.27)

in the vicinity of the ( = 0 axis. The resulting phase diagram is depicted in Fig. 4.1.2.

Thus, comparing with Fig. 4.1.1, we see that the multitraces tend to modify the struc-
ture of topology-changing phases in the extreme supergravity regime (low values of the

effective coupling C ).
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D4

Figure 4.3: Phase diagram for the localization transition between D4-branes and D3-branes
with a multitrace perturbation & > 0. The localization line intersects the ( = 0 axis at

L = L., cutting off part of the D4-brane phase. In this case, there are no local instabilities.



Chapter 5
Conclusions

We have shown that AdS/CFT treatment of multitraces is equivalent to the leading Hartree
approximation. We have applied mean field methods to study multitrace deformations of
gauge theories in the large-N limit. The deformation has been seen to be equivalent to
a single-trace deformation with a coupling that depends on the master field and that has
to be evaluated self-consistently, in a Hartree approximation. The global properties of the
self-consistent master equation, concretely the properties of monotonicity of the function
H({) in (3.49), are related to the local stability of the master field. These properties of
the master field, and a systematic formal 1/N expansion can be discussed using auxiliary
fields. Since multitrace deformations correspond to non-local string theories, we have found
new classes of tachyonic instabilities of these models, induced by the multitrace couplings.
The instabilities appear even though one can compute operator condensates in the effective
single-trace background. It would be interesting to find the connection with the ”stringy

exclusion principle”.

As a concrete application, we have studied the deformation of the thermodynamic phase
diagram of hot D4 branes in finite volume under the effect of multitraces. We have found
that large-N phase transitions are strongly affected when the coupling is O(1) in dimen-
sionless units. The analytic deformations we have introduced affect to the gravitational
region of the phase diagram. If the deformation were non-analytic, it would affect to the
Yang-Mills region (App. A).

Further work can be directed towards a better understanding of the tachyonic insta-
bilities of the master field from the dual gravitational background point of view and the

relation to supersymmetry breaking (in our examples supersymmetry is already broken at

29
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the single-trace level to generate a mass gap). I would also be interesting to calculate the
1/N effects.






Part 11

The holographic axial anomaly
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Chapter 6
Motivation

Since the beginning of the AdS/CFT correspondence [16-18] a main goal has been to find
similar dictionaries for non-supersymmetric and non-conformal theories, and to go beyond
the large-N limit. The motivation is to find a holographic dual of QCD. Hopefully, the
correspondence would allow to compute many of the strong-coupling properties that arise
at low energies. This would be a great accomplishment of the correspondence, since our
present understanding on these matters is at best qualitative or it is based on numerical

lattice computations.

The first success of this approach is the insight we gain by having a geometrical formu-
lation of a plethora of non-perturbative effects as anomalies, confinement, the appearance
of a mass gap, monopoles, instantons, baryons, phases, etc (see the reviews [1,49,50] and
references therein). More quantitatively, full spectra of glueballs [51,52] and mesons [53-59]
have been computed and sometimes compared with lattice simulations, with not bad agree-
ment, once the parameters have been fixed appropriately. Recall that the spectrum is found
by solving field equations of motion on a higher-dimensional AdS space, so the coincidence
is remarkable. A different application has been to extract hydrodynamic properties of
high-temperature phases of the gauge theory from bulk correlation functions, with many
interesting results [60-68]. The great difficulties found in theoretical and numerical treat-
ments of hydrodynamical properties of plasma phases makes the holographic approach

remarkably useful.

An interesting issue is how the U(1)4-axial anomaly is realized in holographic models
with flavor. The axial anomaly in the large-N limit is a subtle matter. The reason is that

although we expect any dependence on the vacuum angle # to disappear when we introduce
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massless flavors, their contributions are subleading in the 't Hooft expansion [19]. It was
proposed that the would-be Goldstone boson of the axial symmetry (n') has a mass that
is suppressed by N according to the Witten-Veneziano formula [69,70]. This assumes a
6/N dependence on the path integral, but # must be an angle, so there should be a sum
over branches 6 + 27k, k € Z in order to be consistent [71,72]. Gauge/gravity dual models

provide a new arena to test these ideas. We will see that the picture above is confirmed.

6.1 Holographic QCD-like models

According to the AdS/CFT correspondence, a string theory in AdSyx X% ¢ (d = 2,3, 4,6)
spacetime is equivalent to a conformal gauge theory in flat spacetime. The isometries of
AdS space map to the conformal group of flat space, while the isometries of the compact
space X?~¢ map to global symmetries of the gauge theory. Once we have identified the
symmetries, the map extends to representations, where fields on the gravity side map to
operators on the gauge side. If the theories are supersymmetric, then the supercharges

match accordingly. In the map there are are three points to remark

1. The radial coordinate of AdS corresponds to the energy scale of the gauge theory.
Moving from the conformal boundary of AdS at infinity to the origin is equivalent to

follow the renormalization group flow from high to low energies.

2. Boundary values of the fields in AdS determine the background and correspond to

insertion of dual operators in the bare Lagrangian of the gauge theory.

3. The parameters on both sides are related. Roughly speaking, the string coupling
and the curvature radius of AdS map to 1/N and the ’t Hooft coupling \; = g%, .
For d # 4 the gauge coupling is dimensionful, so string tension factors have to be
included. The effective coupling runs with the scale and this is reflected on the radial

dependence of the curvature and the dilaton.

In principle, the correspondence could be generalized to any (super)gravity background
and dual field theory, as long as there is a coordinate that could be identified with the
energy scale of the theory. And we should be able to construct a map between fields
and operators, of course. If we define the correspondence through a near-horizon limit
of a brane, we should take care that the closed and open string sectors decouple. For D-

branes, they must have codimension greater than two. The duality has also been considered
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for theories that are neither gravity (higher spin theories) nor field theories (little string

theories).

On the way towards QCD, usually a ten-dimensional background of critical strings is
the starting point. The geometry will include an AdS factor, whose radial coordinate plays
the role of the energy scale of the theory. Any radial dependence will have the meaning of
an RG flow of the quantities involved, with the boundary at spatial infinity corresponding
to the UV of the gauge theory. Therefore, if we deform the AdS geometry far away from the
boundary, the dual theory will low from a conformal UV fixed point to a non-conformal
low-energy effective theory. The deformation will correspond to the insertion of a relevant

operator in the gauge theory Lagrangian.

For QCD considerations, the interesting deformations of the geometry are such that
they effectively induce a “wall” at some value of the radial coordinate, so excitations
coming from the boundary will stop there. In the gauge theory, the interpretation is that
there is a mass gap, below which there are no propagating degrees of freedom. The “wall”
also implies that the theory is confining, so we can identify the radial position of the “wall”

with the strong coupling scale Ay ;.

In ten-dimensional backgrounds, there is a compact part of the geometry, so there are
Kaluza-Klein modes with a mass characterized by the size of the compact space. These
modes are charged under the global internal symmetries of the field theory, so they do
not correspond to any pure Yang-Mills state. They are related to supersymmetric degrees
of freedom, so we can break supersymmetry with an appropriate election of the compact

space. The scale of SUSY breaking Ay will be given by the size of the compact space.

In order to have a good theory of QCD, we would like to have a hierarchy between
the high-energy scale and the strong-coupling scale Ay,; < Ayy. The hierarchy will be
induced by a small value of the 't Hooft parameter at the high energy scale A(Ayy) < 1,
so that the dual low-energy effective theory is asymptotically free (Fig. 6.1)

AYM ~ AUVe*C/A < AUV . (61)
In this case, the observables at scales < Ay, will be determined by this scale. For instance,
the quark condensate <@1,/}> ~ A3, the vacuum energy ~ AL, etc.

However, in the dual theory a small 't Hooft coupling is equivalent to large curvatures.
In principle, this will induce large stringy corrections over quantities computed using the

supergravity approximation. Since we still lack a comprehensive formulation of sigma
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(o o) co

A4y g’N <<1
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uv AYM
gQN >>1

AYM gN-~1

Figure 6.1: On the left, the RG flow corresponding to the confining dual of a highly curved
geometry ¢g°N < 1. On the right, the RG flow corresponding to small curvatures g?N > 1.
Supersymmetric modes start to decouple below the high-energy scale Ayy, while the mass gap

associated to confinement is given by Ay .

models in the background we are considering, we will lose analytical control over the
results. If we keep the geometry with small curvatures, then we do not know any model
where the strong coupling scale decouples from the high energy scale (Fig. 6.1). Therefore,
our model of QCD will be contaminated with spurious modes. Observables will depend on
the high-energy scale Ayy, and will also have a parametric dependence with the 't Hooft

coupling.

At this point there are two ways to proceed, the first one is to live with it and hope
that the properties of the theories we can study will not change too much compared with
the theories we are interested in study. A second possibility is to get ride of unwanted
modes from the beginning. In this line, non-critical strings are good candidates since they
are defined on lower dimensional spaces. However, in the end they share the problem of
stringy corrections, since they live on highly curved spaces [73-81]. In any case, until we
are able to deal with string theory in highly curved backgrounds, we will lack a completely
realistic model of QCD. However, we can go on and study the non-perturbative properties
of our model. Since they are related to QCD-like realistic models by a continuous change

of parameters, it is not unplausible that some properties remain qualitatively unchanged.
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The next step is to add flavors to the gauge theory. The easiest procedure is to embed
N; probe branes in the geometry [82,83], where N; is the number of flavors. We can
neglect the backreaction as long as the number of colors is much larger than the number
of flavors N > Ny, so it corresponds to a quenched approximation. In some sense, we
are taking the 't Hooft limit of the gauge theory, compared to the limit of Veneziano [84]
where the number of flavors is comparable to the number of colors. On the gravity side,
the non-quenched setup will correspond to a geometry with extra fluxes turned on and
the backreaction properly taken into account. We will concentrate on constructions with

probe branes in a geometry with conformal boundary, where we should remark:

1. Mesons in the dual theory correspond to open string excitations of the probe brane.

2. The embedding of the brane must fill the directions associated to the field theory, so

the quarks in the dual theory are not restricted to lower-dimensional domains.

3. The embedding must be regular and identifiable with an RG flow. So it must go
from the conformal boundary to finite (or zero) radius and have no defects as conical

singularities.

4. The asymptotic conditions of the embedding are related to the bare quark mass,
while the bending of the brane near the origin is related to the formation of a quark

condensate.

5. There is a U(1) symmetry that can be identified with the U(1)4 symmetry. It can
be a global symmetry of the embedding or a gauge symmetry on the flavor branes.
The formation of a quark condensate is reflected in the spontaneous breaking of this
symmetry by the embedding. When this happens, there is a massless open string
mode that can be identified with the large-N massless Goldstone boson of axial

symmetry.

6.2 Large N chiral dynamics

In this section we will review the main features of the physics we try to describe with
supergravity. An introduction to chiral effective Lagrangians in the context of the Standard
Model can be found in [85].
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A gauge theory with N; massless fermions has a global U(Ny);, x U(Ny)g symmetry.

Qr— LQr , Qr — RQr (6.2)

At strong coupling, the theory is expected to confine and form a quark condensate, so the
symmetry is spontaneously broken to a diagonal U(Ny) ! At low energies the dynamics
can be described in terms of an effective Lagrangian for the N? Goldstone bosons (pions)

of the broken symmetry, with all the other fields integrated out.

The Goldstone bosons can be grouped in a Ny x N; matrix U belonging to U(Ny)
U = e/ fwemm/fx (6.3)

where f. has dimension of mass and 7 are the generators of SU(Ny). Essentially U is
the vev of the quark condensate <@Q> which we promote to a field. Under a global
transformation

U — LUR' (6.4)

The effective Lagrangian contains all possible terms compatible with the symmetry. The
coefficients depend on the details of the microscopic theory. Since UTU = 1, all terms
contain derivatives, and we can organize them by the number of derivatives, so an expansion
in powers of the energy can be developed. The first term (two derivatives) is
2
Ly = T (0,U0"UT) (6.5)

Notice that in order to have a canonically normalized n’ field

fy =Ntz (6.6)

to leading order in 1/N, there can be an OZI suppressed contribution from a term ~ (tr (U79,U))?

that modifies this relation.

If the symmetry is only approximate because the quarks are not exactly massless, we
should introduce a symmetry-breaking term. The simplest possibility is
2

Ly =5 Tr (MU + MU (6.7)

where M is the quark mass matrix.

!And this symmetry cannot be spontaneously broken [86], this result is known as the Vafa-Witten

theorem.
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6.2.1 Chiral anomaly

We have presented the 7' as a Goldstone boson of the broken U(1), symmetry, but as a
matter of fact, the n’ particle is massive due to the chiral anomaly, that breaks explicitly
the U(1) 4 symmetry at the quantum level. This is the present understanding of the U(1)-
problem [87,88].

The chiral current

T = Q" 15Q (6.8)
is conserved classically because in the QCD Lagrangian with massless fermions U(1) 4 is a
global symmetry. If the fermions had a mass, the symmetry is lost. Quantum mechanically

the chiral current is not conserved, its divergence being equal to the anomaly.

It can be computed perturbatively, through triangle diagrams (ABJ anomaly) or as the

non-invariance of the path integral measure under chiral rotations.

Nfg2 a 176 py
0,1t = <L Fp (6.9)

where FoHW = %e“””pF(fp.

The matrix element of the chiral current operator to annihilate a n' state is

(015 () [ (p)) = ifn’p;teipﬂD (6.10)
Therefore, the ' mass is
N;g? ~
2 = 2= 4 <0F“F““”0 ’> 6.11
mr]’ p ]_677'2f77/ | uv ( )|77 ( : )
The anomaly is related to the #-term of the Lagrangian
2
gt 4 F
FF 12
2% [ dari@ (6.12)

but
- 1
FF =tr(F,F")=0,K" =0, (26””""tr (A,0,A; — ggA,,ApA(,)> (6.13)

is a total derivative so we can define a gauge variant conserved chiral current J;, =

2 ~ ~
Jsp — ]\QT‘ZKM with the corresponding conserved chiral charge Q5 = [ d*z.J5.

Qs generates chiral transformations that change the value of the vacuum angle. The
QCD vacuum is labelled by the # parameter, that we can interpret as a 'Bloch momentum’

between gauge vacua |n) of different topological charge n.

10) = e |n) (6.14)
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The large gauge transformation that increase the topological charge simply changes the
phase of the #-vacuum
Upln) =|n+1)= U |0) =e|0) (6.15)

The conserved chiral charge is not gauge-invariant, and under this transformation
U1QsUf = Qs — 2N, (6.16)
If we perform a chiral rotation over the theta vacuum
Uye™ 95 |0) = Uy e 0 UTU, |9) = e 10-2N19)g=i905 |g) (6.17)

the change in the theta angle is
0 —0—2Nsop (6.18)

So when there are massless fermions, the theta dependence of the theory disappears.

We can implement the chiral anomaly in the Lagrangian by making the substitution
[71,72]
6 — 0 — ilogdet U (6.19)

The multivalued character of the logarithm has been the subject of some controversy
(see [89], for instance). But it fits quite well with large N considerations because, as
we will see (eq. 6.24) the partition function of the theory should present a multibranched
structure on theta dependence. At each branch, the energy has a minimum at a value of
that is displaced an integer multiple of 27 respect to the other branches. The branch that
has less energy is dominating. If we could change 6, there will be a value # = (2k + 1)7
where the dominating branch changes, so the potential will be non-analytic at that point.

This is reflected in the chiral Lagrangian through the logarithm.

V®)

Figure 6.2: Multibranched structure of the energy depending on 6.
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6.2.2 Witten-Veneziano formula

Historically, the motivation to introduce the logarithm was compatibility with the large
N expansion. 't Hooft proposed that the anomaly was generated by instantons [89-91],
which in the chiral Lagrangian will induce a term ~ det U.

At N = oo there is no anomaly (it scales as ~ g*> = \;/N) but if it were produced by

N while the large N expansion seems to indicate that

instantons, the scaling will be ~ e~
the true scaling is 1/N. From the point of view of the quark model [92], the splitting of
the ' is explained by a quark-antiquark annihilation diagram, which is not present for the
pions. In the large N limit, it is a 1/N OZI-suppressed diagram, because there are two
fermion loops. Also, the potential det U contains arbitrary powers of the 7’ not suppressed

by factors of N, which is in contradiction with the large N expansion.

There was also the question of how physics depends on 6 for large values of N. If
the instantons were the only contribution that can produce a theta dependence, then
the dependence would be exponentially suppressed, as e™". However, two dimensional
models [93] suggested that the suppression was only ~ 1/N. If we assume dependence on 6
at order 1/N, then massless quarks should eliminate it. This problem can be solved [69,70]

assuming a 1/N scaling of the anomaly.

From the partition function of the theory

, 1 A0 -
7 = /dAu exp <2/d4xtr(—§F2 + 167r2NFF)> (6.20)
differentiation with respect to 6 is equivalent to insertion of FF at zero momentum

@E
de?

(A 21imU(k) (6.21)
~ N2\ 16x2 '

0=0

where

U(k) = / d'ze (PE()FF(0)) (6.22)

We know this quantity as the topological susceptibility

=4 < At )2lim / dizeike <FF(x)FF(0)> (6.23)

N2 1672 k—0

Notice that dE/df|y=¢ = 0, because when 6 = 0 the theory is CP-conserving, so the vacuum
expectation value of a CP-odd operator like FF' must vanish. It is also important to point

that CETQE is order one in the large N expansion, because of the scaling of glueballs
=0
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operators. However, the vacuum energy is O(N?), so the dependence of the energy with 6
should be such that
E(0) = N*f(6/N) (6.24)

where f(x) is some function of order one in N. Any analytical function can be at most
periodic under 8 — 0 + 27 N. In order to restore periodicity under 8 — 0 + 27, we need a

multibranched structure of the partition function.

There is no 6 dependence in ordinary perturbation theory. Diagram by diagram U (k)
vanishes at k¥ = 0. However, if we sum all the planar diagrams to get the first order in the
large NV expansion and then consider the £ — 0 limit it is possible that the limit is nonzero.

Although individual diagrams vanish, each order vanish more slowly than the one before
U(k) = ak® + bA\k* log k* 4+ cA7k* log® k* + . .. (6.25)

It is plausible that the whole sum does not vanish at k£ = 0.

When we introduce fermions, there are suppressed corrections

1

U(k) = Uo(k) + U () +

~ Us(k) + . .. (6.26)

Us (k) controls the 6 dependence of the gauge theory without quarks. When we introduce
quarks there are 1/N contributions that should eliminate the § dependence when the quarks
are massless. To see more clearly how this can happen is better to write this formula in
a different way. Up(k) is the two-point correlation function of the FF operator. In the
large N expansion the intermediate states are one-hadron states, which can be glueballs

or mesons. Therefore, we may write

~ 2
‘ <0|FF|nth glueball> ‘
12— M2

. 2
‘<0|FF|nth meson>‘

2 _ 2
k? —m?2

U(k) =

glueballs

+ ) (6.27)

mesons
The sum in glueballs is of order N? while the sum in mesons is of order N. When k& — 0 the
only way to make both terms of the same order is to have a meson with a mass that scales
as 1/N, and that is precisely the 1. If we look carefully at the formula, we will realize
that both terms are of the same sign, so a cancellation seems impossible in principle. The
reason is that when we have written Uy(k) as a sum over glueball states, we have forgotten
a contact term that should make Uy(0) positive so the cancellation is possible. Nobody has
computed the contact term , and in fact the problem is ambiguous [94] since no physical

principle is known that should fix the contact terms so that y; > 0. However, in the
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lattice regularization with Ginsparg-Wilson fermions [95-97] a proof can be given of the
positivity of the topological susceptibility, up to corrections that are expected to vanish in

the continuum limit.

A possible physical explanation for the positivity of Uy(0) [92] comes from the interpre-
tation of the confining vacuum as a condensate of color magnetic monopoles. Introducing
a small theta angle gives to the monopoles a small fraction of electric charge [98], which
makes the energy of the condensate to increase. Then, the CP conserving vacuum (6 = 0)
is a minimum of the energy, which implies that the topological susceptibility (~ Uy(0)) is

positive.

So

. 2
Us(0 —‘<0|FF|77,> >0 6.28
0(0) = =3 > (6.28)

Using the formulas of the anomaly and the matrix element of the Goldstones (eq. 6.11),
the equation (6.21) and the fact that f,, = \/N;fz (eq. 6.6) to leading order, we find the

Witten-Veneziano formula )\ noquarks

m2, = 4—]\;’” (d—jf) (6.29)
f2 \do? J,_,

fx is of order v/N, because the current-current correlator, which is of order N has a

term f2/k*. d?E/d#? is of order one because of the normalization used, so the formula is

consistent with the claim m?], ~ 1/N. When N = oo, the anomaly vanishes and the 7’ is

a Goldstone boson, with mf], = 0. The generalization of this formula is that the potential

of the n' is given by the 6 dependence of the energy with no quarks
2/N'

Moreover, it can be further generalized to change every quantity in the pure gauge theory
that depends on € by 6 + 2—”}?" [70]. We can read the n'-glueball couplings directly from
the f-dependence of the glueball fields.
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Holographic QCD model

7.1 A confining supergravity dual

A non-supersymmetric, non-conformal model is given in [42]. We introduce a finite tem-
perature in order to break both kind of symmetries. There are two possible phases, a hot
gas of gravitons at low temperature and a black hole at higher temperatures. Those phases
were shown to be respectively related to a confining and a screening phase in the gauge

theory.

A supergravity model dual of a confining theory is an Euclidean continuation of a black
hole, that can be constructed taking the near-horizon limit of a set of hot D4 branes.
In the Euclidean formulation, we wrap the D4 branes around a S' of radius 8 = 1/T
and impose anti-periodic boundary conditions on fermions, thus breaking supersymmetry.
We can continue to Minkowski space taking the compactified coordinate as time, and the
resulting metric is the AdS black hole [42]. If we continue to Minkowski space but with the
compactified coordinate as a spatial coordinate, then we will recover a solitonic solution.

The near-extremal, near-horizon solution of the Euclidean hot D4-branes is

ds? = (%)3/2 (F(u)?dr® + g(dxiy) + (%)3/2 (?(—ﬁ + qufzi) (7.1)

The radius is

R? =71g,NI2, (7.2)
the dilaton is )
u 3/4

e? = g, (E) (7.3)

43
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There are N units of four-form flux on the S*. The deviation from extremality is given by

the function
flu)=1-—= (7.4)

where ug is the radius at the event horizon or where the space ends, depending if 7 is
continued to time or space coordinate. The period of 7 can be related to R and wug.
Changing variables

u = ug(1 + cp?) (7.5)

and going close to the "horizon’ p < 1, the metric can be written as

ds® ~ dp® + p*do® + ... (7.6)
if
1 . 3 U 3/2 9 7.7
=1(7) W (1)
and ;
o= §u(1]/2R_3/27' (7.8)

This shows that the geometry is regular and behaves as flat two-dimensional space when
we are close to u = uy. In order to avoid conical singularities, the period of o must be 27,

which means that the period of 7 is

1 2 4 _
T Mﬂ- = §R3/2u0 1/2 (79)

M 1is the Kaluza-Klein mass of the excitations around the 7 direction.

We can express the string coupling constant in terms of the Yang-Mills coupling con-

stant. From the Dirac-Born-Infeld action of the D4 branes
g5 = (271)%gsls (7.10)

The four dimensional coupling constant can be read from this expression integrating on

the 7 coordinate

M
912/M = gg% = (2m)gsls M (7.11)
From this formula and equations (7.9) and (7.2) we can extract the following relations
1 gy 2 5 2 s GyuNE
9= 9r a0 " T g 2M (7-12)

and express all quantities in terms of gauge parameters only.
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graviton
gas

Black Hole

Figure 7.1: Phase diagram in the correspondence. At low temperatures and small 't Hooft
coupling, the theory is five-dimensional Yang-Mills. At large couplings it can be described as a
hot gas of gravitons in AdS. When we increase the temperature, there is a phase transition. The
small coupling theory is effectively four-dimensional Yang-Mills, while the large coupling can be
described as a black hole in AdS.

7.2 A model with flavor

The physical interpretation of a brane in the dual gauge theory depends crucially on the
properties of its embedding. We are interested in embeddings that can be interpreted as
RG flows for the fermions and that do not present singularities, like conical points. The
first condition implies that at fixed AdS radial coordinate, there is a unique connected
section of the brane. The second condition is a regularity condition that can be imposed

on the solution of the embedding equations.

The dynamics of the brane are described by the Dirac-Born-Infeld action (DBI). From
the DBI action we can extract the classical equations of motion of the D-brane in the
background. The solutions that satisfy the boundary conditions and minimize the energy

are the embeddings we are looking for.

Before taking the near-horizon limit, let us consider a plane centered on the corre-
spondence branes and where the flavor branes extend along one direction. The separation
between the flavor and correspondence branes gives the minimal amount of energy that is

necessary to create an open string extended between both. Thus, this distance is associated
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to the bare quark mass. If we substitute the correspondence branes by its SUGRA solu-
tion, the flavor branes will deviate from their flat asymptotic form near the throat, falling
inside it. When we take the near-horizon limit, the asymptotically flat part is dropped
and substituted by conditions at the boundary. The separation between correspondence
and flavor branes becomes a boundary condition. There is another boundary condition,
that is how fast the brane approaches its flat limit, but it turns out that when we impose

regularity conditions, it is determined by the brane separation.

Different flavor embeddings have been computed in AdS [82]and deformations [53, 54,
56]. Typically, the probe brane expand the four dimensional space where the gauge theory
is supposed to live. The other dimensions are wrapping some homologically-trivial cycle of
the internal manifold (a loop on it can slide off), that is fibered along the radial coordinate

of the AdS-like space. The shape is that of a ’cigar’ or a ’trumpet’ (fig. 7.2).

D7 branes
L )

D3 branes %

AdS;

Figure 7.2: Flavor D7 branes embedded in a D3 background. The D7 wrap a S3 around the
S5 and expand the AdSs space. the embedding ends at finite AdS radial coordinate because the

wrapped cycle collapses.

It may happen that the cycle that is wrapping the probe brane collapses before reaching
the origin of the AdS-like coordinate. It can be shown that as we decrease the separation
boundary condition, the branes fall deeper into the AdS-like space. What happens when
the separation boundary condition is zero depends on the concrete background we are

working in, it may reach the origin of the space or stop at a finite distance from it.

To understand what is happening, is better to go to another set of coordinates where
the origin of the AdS-like space is at the origin of a three-dimensional space and the

embedding of the brane can be drawn as a curve along the vertical direction. Pure AdS
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will be just like that, but deformations like a black hole [42], a AdS soliton or even a naked
singularity [99] will have a “ball”centered at the origin. The brane tends asymptotically
to a straight vertical line. The separation boundary condition is the separation of the
asymptotic vertical line from the vertical line passing through the origin. The horizontal

plane can be identified with a plane transverse to both correspondence and flavor branes.

When we rotate the flavor branes around the correspondence branes, the fields suffer a

ten-dimensional geometrical rotation
Y — €%, bp— e PYr , X — e X (7.13)
where X is the complex field associated to the position of the brane in the transverse plane.

From the four dimensional point of view, this is a chiral rotation U(1)4. So we can
identify rotations around the origin of the transverse plane as chiral rotations in the field

theory. Then, we can make the following identifications:

The embedding breaks spontaneously the U(1) symmetry, except if it is a straight
embedding through the origin. If the separation boundary condition is non-zero, then we
must associate this breaking with the explicit breaking of the chiral symmetry by non-zero
fermionic masses. If the separation is zero, it may happen that the deformation of the
geometry at the origin of AdS repels the brane so there is no flat solution. The brane will
be curved outwards and the U(1) symmetry will be spontaneously broken again. This is
what happens for the AdS soliton and the naked singularity backgrounds. For the pure
AdS and black hole backgrounds, the flat solution exist, in the first case because there is
no obstruction and in the second, the brane is attracted to the black hole and can reach
the event horizon and fall into it (Fig. 7.2).

So the U(1)-breaking solutions of zero separation are associated to a non-zero asymp-
totic slope. By the field-operator correspondence, it can be shown that we can identify it
with a non-zero fermion condensate. So in the field theory we must interpret these solutions

as spontaneous breaking of the chiral U(1),4 symmetry.

Rotations of the embeddings around the origin are rotations in the phases of the fermion
masses. Rotation of the embeddings around their symmetry axes are rotations in the phase
of the condensate, therefore, the rotations of the brane around itself can be identified with

the 1’ meson.

Notice that if quarks are massive, when we rotate the solution around itself, the energy

of the embedding increases because of the repulsive action of the geometry, so the 7'
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(©)

Figure 7.3: (a) Embedding of the flavor branes in the black hole background. The branes can fall
into the horizon. (b) Flavor branes in the bubble of nothing or the Constable-Myers background.
The branes are repelled by the geometry. (c) Embedding in a supersymmetric background.
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has a mass. We might rotate the whole embedding around the origin, passing through
configurations of the same energy. This is equivalent to perform a rotation on the fermion
masses and the condensate at the same time, in such a way that the effective Lagrangian
(eq. 6.7) remains unchanged. But a rotation on the fermion masses is not really physical,

they are given parameters of the theory.

When the quark masses are zero there is a true massless mode [54,56,58] of the broken
U(1) symmetry because we are rotating the brane around its symmetry axis, changing the
boundary conditions. Therefore, we are in the N = oo limit of the theory, where the 7’ is

a Goldstone boson.

We will work with the explicit example of [56]. We introduce D6 branes in the back-
ground of the hot D4 branes. The D6 branes are parallel to the four Minkowskian coordi-

nates of the hot D4 branes and expand three directions perpendicular to the D4s.

D4 01 2 3 4 x X X X X

(7.14)
D6 01 2 3 x 5 6 7 x X

The embedding is easier to work out in isotropic coordinates. If z* are the coordinates

transverse to the D4 branes, and |z| = p, then

u 2/3
_ | 3/2 0
v= (p +—4p3/2> (7.15)
where the metric is
2 AN 2 2 2 2
ds? = (ﬁ) (mnda™dz™ + f(u)dr?) + K (p)(dp® + p*dQ2) (7.16)

with 32 1)
R 1 oU  R3?yY/?
k= (B) Lo _wrur

f(u) Op p

u
The D6 are wrapping a S? of the S%, which can be seen as the polar part of the “567”

(7.17)

coordinates. The two sets of branes are separated on the “78” plane, we can denote r as

their separation and ¢ as the angle. Then, we can rewrite the metric as

3/2
ds® = (%) (Mmndz™dz™ + f(u)dr?) + K(p)(d\* + N2dQ5 + dr” + r?d¢®)  (7.18)

where p? = A2 4+ r? and ) is the radial coordinate in the “567” space.

The embedding is chosen to be at a fixed 7 and fixed in ¢. The D6 are wrapping the
S? and expand along A, so the embedding is determined by a function r(\), that must be

a solution of the equations of motion given by the DBI action.
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The induced metric on the D6 worldvolume is

u

3/2
ds?, = <E) Trndz™dz™ + K (p) (1 + 72)d\? + A\2d02) (7.19)

The analytic expression of r(A) is not known, but it can be computed numerically and in

the limit A — oo

r(A) ~ ro + ; (7.20)
The quark bare mass is given by the asymptotic separation
UoT o
= 7.21
M 2ml? ( )

the condensate can be deduced from the dependence of the energy with the quark mass

in the gauge theory, that we relate through the correspondence with the energy of the D6

branes
T = () o S22~ () (722
Using the relations (7.12)
5 (B0) = —ghu NI (7.23)

Regularity of the solution at A = 0 implies that ¢ = ¢(ry). When the quark mass is large
(1 < roo)y € ~ 1/2r0. So (10} ~ 1/my. There is a short heuristic argument for this in
QCD. The trace of the energy-momentum tensor is

a,(11N, — 2N;)

i Tr F? (7.24)

Ty = mq@d) —

In the limit m, — oo, the theory behaves as pure Yang Mills, for which

TH — _

Tr F? 2
! S T (7.25)

Taking vevs and equating both expressions

(P = ;;:;f (T ) (7.26)

so if (Tr F?) # 0, we can conclude that (1)) ~ 1/m,.

The spectrum of fluctuations of the D6 embeddings in the ¢ and r coordinates has been
calculated. It shows a massless mode for ¢ fluctuations, that we identify with the n’. The

other modes exhibit a mass gap, proportional to M.

As happened with the glueball spectra [51,52], meson physics is not really decoupled

from Kaluza-Klein modes [53,54,56], and there is no regime where we are left with pure
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QCD alone. However, at energies much lower than M, all the dynamics are frozen but
those of the massless mode. As we have argued, it is a Goldstone boson in the probe
approximation, so the shape of the action is determined by the symmetry breaking and

the high energy physics are encoded in the coefficients.

7.3 Introducing the 0 angle

The couplings of the gauge theory are usually associated to non-normalizable modes of the
AdS fields. The 0 angle is identified with RR or sometimes the NSNS forms when there is

a coupling in the correspondence branes like
~ / Gps N (Tr FAF) (7.27)
Mpt1

where G_3 is the form field to be identified with the 6 angle and F' is the gauge field
strength of the brane. In order to have a low-energy four dimensional theory, the extra

dimensions should be compactified on some (p — 3)-dimensional manifold (K,_3), so

0~ / Gpos (7.28)
Kp_3

Let us consider again the hot D4 branes. The low energy worldvolume effective action of

the D4 branes has a term

1 TrFAF
- / Oy N8 (7.29)
ls J pa 8
We can modify the type IIA vacuum so that Gy = dC; = 0 but
0= 4 (7.30)
Sl

is possibly non-zero. The right hand side is gauge invariant modulo 27Z, so we can interpret
6 as an angle. At low energies in four dimensions, (eq. 7.29) reduces to a theta term in
the gauge theory action, with 6 as the vacuum angle. In the holographic description, the
parameters of the theory are determined far from the branes, that is at large u. The
analogous statement is that the integral of C; does not vanish when u — oo even if G5
does. But (u, 7) parametrize a disk, so we can apply Stokes theorem

/G2 = lim C (7.31)

D U0 Jg1

the left hand side is a real number but # is an angle, hence

zl/ Gy =0+ 27k = 6, (7.32)
s J D
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We introduce as ansatz a GGy with only one non-vanishing component
Gur = 0,0 (7.33)

From the ITA SUGRA action in the metric given by (7.1), the equations of motion are

O (u*9,C;) =0 (7.34)
with the solutions
_ ug o U0
Evaluating (7.32) gives
C. = g Mb (7.36)
oo — Vg o .

The energy of the gauge theory depends on §. We can see this holographically by intro-

ducing this solution in the supergravity action.

1
E= s [ @097 (0.0, (7.31)
0

where k2 = (2m)718/2. Performing the integrals over 7, u and the four-sphere, and using

the relations (7.12), the energy density is
1

£ = §><t9,3 (7.38)
And the topological susceptibility is
L
Xt = D235 (7.39)

The holographic derivation of the theta dependence was first performed by Witten [100],
while the topological susceptibility in this background (but with different coordinates) was
computed in [101] (the 't Hooft coupling was 1/27 times the one used here).

The theta dependence is in agreement with the multibranched structure of the large N

analysis, each branch labelled by an integer k.



Chapter 8
1/N physics of the holographic 7’

Probe branes and a background RR form flux realize holographically flavor and theta
dependence in the AdS/CFT correspondence. In a gauge theory, the theta angle and
quarks are related through the U(1)4 anomaly. We will now show, following [102] that the

same relations can be extracted from the supergravity dual.

8.1 The anomaly relation in the UV regime

The U(1)4 symmetry is described as rotations in the ¢ angle (see eq. 7.18). Since this
symmetry is anomalous, the rotation of the D6-brane fields by an angle o« must be equivalent

to a shift in the effective theta angle
/ Cl — Cl + NfOZ (81)
st St

so that the dependence on the microscopic #-angle and the phase on the “89” plane comes

in the combination 6 + Ny¢.

In the supergravity description this behavior is encoded in the topological properties
of the RR fluxed generated by the D6. The D6 is a magnetic source of RR two-form flux,
the total flux on a S? surrounding the D6 branes (in the “489” space) being

/ Gy = 27N, (8.2)
52

The UV limit of the gauge theory corresponds to the boundary of the supergravity con-

struction. As we approach it, the D6 are placed at the origin of the (r, ¢) plane. Since 7 is

93
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periodically identified, a two sphere surrounding the D6 can be continuously deformed to

a cylinder as in the figure 8.1.

D6-branes

89—plane

Figure 8.1: Asymptotically, the D6 brane lie at the origin of the (8,9)-plane and are localized in

the 7-direction.

The topology is that of a two-torus, parametrized by (7, ¢). Since G is a closed form,

the total flux remains the same
/ Gy = 21Ny (8.3)
T2

Since rotations in ¢ are isometries of the background, and the D6 lies asymptotically at
the origin of the “89”-plane, it follows that the flux through any strip lying between two
angles ¢; and ¢, must be proportional to the area of the strip

Gy = Ny(¢2 — ¢1) (8.4)

Strip
Since locally Gy = dCs, we can apply Stokes’ theorem
G2 - / 01 - 01 (85)
Strip Sqlﬁ1 Sqlﬁ2
where Sqlﬁi is parametrized by 7 at ¢ = ¢;. Combining these results we deduce that the

Wilson line of (' at a given angle ¢, as induced by the D6-branes is

Ci1 = Nyso (8.6)
Sl
o
where we have set to zero a possible additive constant by choosing the origin of the polar

coordinate ¢ appropriately. If, in addition there is a background value for this Wilson line
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(an asymptotically flat connection defining the §-angle) then the total value of the Wilson
line is
Ci =0+ Ny (8.7)
54
Under a rotation of A¢ = « in the background, the 'Dirac sheet’ singularity that is used to

define C (extending as a string in (r,¢) at ¢ = 0) rotates by minus the same angle and shifts
the theta angle according to (8.7). So physics is independent of the microscopic §-angle
when the D6 are asymptotically located at the origin of the “89”-plane, i.e., in the chiral
limit. Supersymmetry breaking at a scale M implies that a shift of the #-angle by a change
of the RR two-form GG, costs energy. Therefore, a potential for the D6-brane coordinate
¢ must somehow be generated, so the complete potential energy is only a function of the

U(1) a-invariant combination 6 + Ny¢.

8.2 String contributions to the potential

The #-dependence computed by Witten in the pure glue sector plus the anomaly argument,

constrain the leading potential of the n' field in the k-th branch of the potential to be

V(g)®) = %Xt(e 2k + N g)? (8.9)

We would like to know how this potential is generated for the ¢ field. The stringy diagrams

can be compared with the OZI-suppressed diagrams of the quark annihilation.

— "
+ . " w
" nw n- n
nw ) n
LSO |

Figure 8.2: Basic stringy diagrams of order Ny/N,. The left one correspond to quark-antiquark

annihilation, while the right one describes the meson propagator with a quark loop.

Remember that those diagrams distinguish the flavor singlet meson from non-singlet
fields, so it suggests that they give the most important contribution at the quantitative

level, although other diagrams can contribute to the self-energy as well.

In order to give a mass to the n’, those contributions must shift the zero-momentum

pole of the i’ propagator. Unfortunately, no direct calculation of the full string diagrams
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is possible in the background in question, since we are restricted by the supergravity
approximation. We can separate then the exchange of supergravity modes from a stringy
‘contact term’ coming from the exchange of the infinite tower of closed string modes and
possible contributions at the boundary of the worldsheet moduli space, where the cylinder
becomes infinitesimally short. The contribution of a finite number of low-lying glueball
modes with mass M, shifts the ' mass-pole by

2 _ gn(0)2
n Mg

(8.9)

om

n
where g,,(0) stands for the zero-momentum limit of the glueball-’ mixing, which must non
vanish for this contribution to be non-trivial. The shift in (eq. 8.9) has the wrong’ sign,

so the string contact term must be positive and all-important at the quantitative level.

Any closed-string field @ that is sourced by the D6-branes and have a non-trivial wave
function with respect to the ¢ angle is subject to mixing with the " meson. Expanding ®

in Fourier modes

O(¢) =) Goe ™™ (8.10)

where the normalizable modes G,, when pulled back to the R* factor in the D6 brane
worldvolume represent glueballs of U(1) 4 charge n. These kind of modes give non-derivative
couplings, but are in fact Kaluza-Klein artifacts, since there are no U(1) 4-charged glueball
fields in QCD. Furthermore, the kind of couplings they provide do not break the U(1)4

symmetry. In chiral notation, we will have terms of the form
NY | GTrU" (8.11)
R4

After integrating out the glueball fields, the tree level potential they will generate will be
of the form TrU™ - TrU~™ because the glueball propagator couples G,, and G ,, (n being
the KK-momentum). The global phase drops from these expressions, so such coupling
does not generate a potential for the »’, which is just as well, since such contributions
seem completely independent of the #-dependence, in agreement with Witten-Veneziano

formula.

The kind of glueballs whose couplings with the n' meson can contribute to the potential
should show the characteristic multivaluedness of the #-dependence at large N. We expect
the coupling to be a function of —¢logdetU ~ N;¢, linear in the angular coordinate,
so angular periodicity will require the sum over different branches. The relation with

f-dependence suggest that we should study the RR sector of the closed-string theory.
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The D6 branes couple electrically to the eight-form flux Gg = dC'%, through a Wess-
Zumino term

SWZ = Nf,u6 C7 (812)
D6

In terms of C7 this coupling is both local and can be defined off-shell. For on-shell configu-
rations this coupling can be reexpressed in terms of the one-form potential C, but off-shell

there is no local expression for C';. The reason is that, on-shell, the vacuum equations are
dGg =0 ,d"Gg =dGy, =0 (8.13)

hence, both G5 and Gg can be expressed in terms of a local potential. However, if the
seven-form glueballs are off-shell, the Bianchi identity of the two-form field is no longer
satisfied, so no local one-form potential can be defined. If we were working with one-form
glueballs we would not be able to define off-shell local couplings with the Wess-Zumino

term.

In order to induce a linear coupling in ¢, we will need to show that fluctuations of the
form C7 = (¢ + ¢o) W5 exist and can couple to the D6-branes. Our ansatz is inspired in

the Hodge dual of the background two-form giving the §-dependence (eq. 8.26)
Wy = —G(z)h(u) N7 (rd) — Adr) A dws A dVy + ﬁ(u))\Qrd)\ Adr AdQs A inydVs (8.14)

where G(z) is a pseudo-scalar field, N(z) is a vector field, h(u) and h(u) are radial profiles
to be determined and

1
iN@dVa = ﬁNu(:c)ew,jolag" A dz® A dz? (8.15)

Note that C7 can be multivalued because is not gauge invariant, but Gy is, so dW; = 0 for

(Gg not to be multivalued. This implies
oN'"= -G (8.16)

as well as an equation relating h(U) with h(U)

dU
h=5h+p—~"n . 8.17
i (8.17)

The pseudo-scalar glueball field is not constrained, but if we impose the on-shell condition

d*Gg = 0, then 1
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for some constant M?. With (8.16) it implies the on-shell condition for the glueball field
9,0'G = M*G , (8.19)

M? is determined from an eigenvalue equation involving the radial profiles.

H' = M*Hp <%> : : (8.20)
where ) u o4
) =~ (%) K@ hw).
_3/4
H(U) = (%) K (o) 25 (U) P R(U) . (8.21)

We can write the non-derivative couplings ¢ — G,, that arise from the Wess-Zumino term
by pulling back C7 onto the D6-brane worldvolume and integrating over the S? and radial
directions. We are interested only in the 7', so the pullback of ¢ will depend only on the
R* coordinates and the D6 embedding will be in the ground state. Setting ¢y = 0

Sz e, [ a6 =\ Mo, [ Hwcw (8.22)

fr _ o [ 2 .
= o vol(?) /0 AN ()P X2 (r — AF) (8.23)

This shows that there are non-vanishing couplings of the " meson to the glueballs, so the

where

cylinder diagram in figure 8.2 can generate a potential for the n' with the right properties.

8.3 A quantitative check to order 1/ VN

In the previous sections, we have computed the energy dependence with 6 (eq. 7.38) in the
closed string sector. The anomaly argument tell us that we must substitute 6 by 6 + N;¢
when the D6-brane probes are introduced. This leads to the 1’ potential

2 Ja

which realizes the Witten-Veneziano formula for the 1" mass with x; given by (7.39). If

V(n') = lxt (9 2V n’) (8.24)

we expand around 1’ = 0 instead of the true minimum of the potential, there is a tadpole
term

T = x40k N (8.25)
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On the other hand, we may read the linear term directly from the Wess-Zumino action
for the particular seven-form that is induced by the #-angle background (eq. 7.35). In the

metric (7.18) the two-form is

C Ou
Gy = ——(AdA dr) A d 8.26
2=, 8p( +rdr) Adr (8.26)

The G5 couples magnetically to the D6 branes, so in order to calculate the coupling we
need to compute first the Hodge dual form

2

A
Gs ="G = Cp—;(rd)\ —Xdr) Add A dQy AdV; (8.27)

where we have used the equation (7.17) and the determinant of the metric \/|g| = (u/p)>\?r f (u)*/2.
The form potential that couples to the D6s is

)\2
Cr = p—¢(r — M) AA A A A dV, = duwy (8.28)

After integrating over the two sphere, the energy density given by the tadpole is
)\3M4 o] )\27“ )
T =Nrpg | Cr= Nf2235 69(;5/ d)\— (r—=Ar) = Nf3xt9¢/ dA—(r—Ar) (8.29)
D6 0 p
where we have used formula (7.39). Remarkably the integral gives the precise value to

recover the tadpole

A\2r A2 1 [ d /) 1
dA\——(r — X d)\ A — =) == 8.30
/0 - ) = / (o= Ap) = 3/0 dA(p?,) L (sa0)

where we have used that p(0) = r(0) # 0 and 7(00) = 7+ < 00 in the D6 brane embedding.

The fact that the integral over the worldvolume reduces to a boundary contribution
suggests that we can derive the tadpole from a more geometrical computation. We have
argued that locally C7 = ¢wy, the tadpole comes just from the integration of w; over X7,
the equilibrium worldvolume of the D6-branes at ¢ = 0. Define ¥g as the hypersurface

that results from rotating the D6s around ¢. Since w; does not depend on ¢, we can write

1 1
W7 = — d¢/\w:—/G 8.31
/27 7 27'(— Y 7 27T Y 8 ( )

In addition, X is topologically equivalent to S* x R?* at fixed u. Since Gg is closed, we can

apply Stokes’ theorem so

/ or = = G (8.32)

o7 21 Jgaxma
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The latter integral can be evaluated by computing Gg directly in the original coordinates

(eq. 7.1)
Gs ="Gy = CdQy A dVy (8.33)

so the tadpole is

= v
T 21 (2m)807 2w

again in perfect numerical agreement with (eq. 8.25).

(S*) = Nyxegby (8.34)

This is not the only holographic derivation of Witten-Veneziano formula, a different one
in an orbifold model is [103]. The effect of flavor is included in the supergravity background,
so the number of flavors is comparable to the number of colors and the correspondence is
taken in large N limit of a Veneziano’s rather than 't Hooft’s expansion. A derivation with

D8 branes is presented in [59]



Chapter 9
Conclusions

Many non-perturbative features of gauge theories at strong coupling can be reproduced
by gravitational backgrounds. Here, we have selected a holographic dual of a confining
theory, the near horizon limit of N. D4s compactified in a circle with supersymmetry
breaking conditions. The circulation of the 2-form RR flux on the circle at the boundary is
the vacuum angle of the theory, #. The model presents a non-zero topological susceptibility
and a multibranched structure, according with the physics of large-N chiral dynamics. We
add flavor to the model in the form of probe Ny D6 branes, equivalent to a quenched
approximation. The embedding of the branes show a zero mode in the chiral limit of
zero quark masses, that can be identified with the large-N Goldstone boson of U(1) axial
symmetry, the n’. We can deduce the anomaly relation when the RR flux sourced by the
D6 branes is taken into account 8 — 6+ 2\/an,/fﬂ—. We argue that the Witten-Veneziano
mechanism should be realized in supergravity as a direct relation between closed and open-
closed string amplitudes. We show evidence of non-derivative couplings for the 7', and we
are able to compute the first term of the potential generated for the o’ and find quantitative
perfect agreement with Witten-Veneziano formula. The 1’ mass should be generated by
a cylinder diagram with one insertion of the 1’ on each boundary, emulating the Isgur-de
Rujula-Georgi-Glashow mechanism [104, 105]. However, the non-derivative couplings of
the n' to glueballs would make the 7’ tachyonic, so there should be an important contact
term from the stringy completion of the glueball-exchange diagram that gives a positive
shift to the mass. This picture is natural when we consider the worldsheet as a cylinder
that is long compared to its circumference. In the opposite corner of the moduli space, the

diagram is more naturally interpreted from the open string perspective as a meson loop
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with twisted 1’ insertions, providing an UV completion of glueball exchange.

It would be interesting to extend the analysis beyond the probe approximation, in a
pure gravitational background. Since the pure-glue dependence on the #-angle comes from
the energy of RR fluxes, the stringy mechanism would be similar to a Green-Schwarz mod-
ification of RR field strengths. It would be interesting to find a ten-dimensional anomaly
polynomial that allow for the substitution # — 6 + 2\/ﬁf77’/f7r on (5, field strength, after

a reduction on the volume of D6 branes.

We have not discussed non-Abelian flavor issues. In the D4/D6 model, the spectrum
shows Nf — 1 extra light pseudoscalars from independent rotations of the D6 branes. We
would naturally associate them with the pions of the dual theory. However, there are
couplings of the fermions with adjoint scalars that explicitly break the U(N;) x U(Ny)
flavor group to U(Ny)y x U(1) 4. Therefore, we expect corrections that lift the mass of the
“pions” [99,102]. Similar results appear in D3/D7 models, for instance [54]. However, since
the mass of the adjoint field is much larger than the large-N mass of light pseudoscalars,
their behavior can have an approximate description in terms of a chiral Lagrangian [58]. In
D4/D8 models the couplings with scalars are avoided because the global flavor symmetries
are identified with residual gauge symmetries of D8 branes at the boundary, instead of
being geometrical modes of the embedding [59]. Other approaches involving geometries
like Klevanob-Strassler or Maldacena-Nunez seem to have problems to include massless
flavors [53,57].
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Planar equivalence in finite volume
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Chapter 10
Motivation

In the original formulation of the AdS/CFT conjecture [16-18], we relate a supergravity
theory in AdSs x S® to a four dimensional A’ = 4 supersymmetric Yang-Mills theory.
An interesting consequence of the duality is that it allows to find new conformal field
theories with less supersymmetries. The R-symmetries of the gauge theory are related
to the compact space S°, while the conformal symmetries are related to the AdSs part.
Therefore, if we consider spacetimes of the form AdSs x X°, with a compact space X° that
is less symmetric than the S°, the holographic duals will correspond to less supersymmetric

conformal theories.

A simple way to proceed is to orbifold the five-sphere by a discrete subgroup of the
isometries [106,107]. In the field theory side, this is equivalent to project the field content
of the theory by a subgroup of the R-symmetry group. Depending on the projection, we
can have more or less supersymmetries left. In fact, we could define this procedure for any
parent supersymmetric theory, so we can even project to a non-supersymmetric daughter
theory. We will call them “orbifold field theories”.

For the theories obtained orbifolding the five-sphere, it was shown that the perturbative
p-function vanishes to all orders in the planar approximation [108], thus confirming that
they are conformal at this level. Actually, the analysis showed that the planar diagrams
of parent and daughter theories give the same result, up to a rescaling of the coupling
constant. This was pointed out and proven within a pure field-theoretical context in
[109]. The perturbative result suggested that the equivalence could be extended to non-
perturbative properties, and results for supersymmetric theories showed agreement with
this picture [110-114].
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An interesting case is when the parent theory is supersymmetric but the daughter is not.
If the equivalence held non-perturbatively, then we could apply the methods developed for
supersymmetric theories to study the non-perturbative properties of the daughter, that can
be closer to realistic physics. In principle, the equivalence between parent and daughter
would hold only in the common sector of operators and states that can be related through
the orbifold projection. Such ideas have been extensively explored [115-119]. From a
different point of view, it was proposed to use orbifold theories in the lattice to describe

supersymmetric theories [120].

However, the non-perturbative statement presents some problems [121-123], that could
be traced to tachyonic instabilities of the original geometries [124,125]. Tachyons can be
explicitly found in finite volume setups of the field theories [126,127]. The question of

non-perturbative planar equivalence of orbifold field theories has not been settled yet.

A different type of theories are “orientifold field theories” [128,129]. They are inspired
on orientifold constructions of string theory [130-132], and in the extension of the AdS/CFT
conjecture to non-critical string theories [133-135]. Orientifolds appear naturally there to
avoid tachyons [136,137].

It was shown that the planar diagrams of orientifold field theories give the same values
as for a A/ = 1 supersymmetric theory, and there is a formal proof of non-perturbative
planar equivalence [128,129]. Many of their non-perturbative properties have been studied
[128,138-142], including an estimate of the quark condensate [138,139]. In principle, the
absence of tachyons in the string dual models would give more confidence in this type of
theories. However, we will see that their finite volume behavior is not better than the one

of orbifold theories [127]. But before, we will review the theories we want to study.

10.1 Orbifold and orientifold field theories

Although there are many types of planar-equivalent theories, we will deal with a constrained
class related to N/ = 1 theories. The number of fermionic and bosonic degrees of freedom
in the large /N limit is the same for planar-equivalent theories. This fact accounts for many
of their properties, such as the vanishing of the vacuum energy to leading order. Other
example with the same property is QCD with equal number of colors and flavors (a Dirac
fermion counts twice). The main difference between the last and planar-equivalent theories

is that the gauge representation of fermions is not ’adjoint-like’, a two-index representation
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that can be obtained from a projection of the adjoint of a larger or the same gauge group.
Indeed, going through the demonstrations of planar equivalence [117,118,128,129] we can
check that they heavily rely on the properties of the representations. So we could say that
the condition of equality of bosonic and fermionic degrees of freedom is necessary and the

question would be whether the second condition is sufficient.

10.1.1 Orbifold theories

In the orbifold case, the parent theory is N' =1 U(kN) supersymmetric Yang-Mills in four
dimensions. The field content consists on gauge fields A, and Weyl fermions in the adjoint
representation \,, the last charged under a global U(1)x group. The orbifold projection
is made quotienting the fields by a discrete subgroup Z; C U(1)g. The orbifold action is
a U(1)g transformation plus a global gauge transformation ~,, r = 0,...,k — 1 acting on

the fields,
A, = vAN!
14 Y u% (101)
Ao — ,yr62mr/k)\a,yr—1 ,
the representation of the orbifold group must be regular Tr (v,) = 0 Vr # 0.
The projected theory is (U(N))* Yang-Mills Al =1,...,k with Weyl fermions in
bifundamental representations A4+ ~ (N;, N;4;) under two adjacent gauge groups. We

can represent the action of the orbifold projection as

Al 0 L2
A? 0 .
A, — g , Ao — | (10.2)
LAk
A ! 0

In the daughter theory, the orbifold action Z; is seen as permutations of the different gauge
factors. Then, the equivalence could work only at the “orbifold point”, where all couplings

of the different gauge groups are the same.

Planar diagrams of both theories have the same value, when the couplings of parent and
daughter are related by a rescaling kgg = g2. The non-perturbative statement depends on
both theories having the same vacuum expectation values of 'untwisted’ (invariant under
the orbifold action) operators, related by the orbifold projection. This assumes that the

true vacua are 'untwisted’ and can be mapped between parent and daughter. However,
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when k > 2, the gaugino condensate of the parent theory breaks spontaneously the orbifold

symmetry [119], so the equivalence could work only for the Zs orbifold.

10.1.2 Orientifold theories

Orientifold theories are in some sense simpler than orbifold, since they do not have 'twisted’
sectors. The parent theory is N' = 1 SU (V) supersymmetric Yang-Mills in four dimensions,
and the daughter has the same gauge group but with Dirac fermions in two-index symmetric
or antisymmetric representations U9 or W, For large N considerations it does not really

matter (in principle) which one we choose.

As for orbifold theories, we should map the right operators and states between parent
and daughter. Clearly, the pure gauge part will be the same, while for fermions the situation
is not completely obvious. Actually, the original arguments for non-perturbative planar
equivalence [128] were proposed comparing the parent theory with a Dirac fermion in the
adjoint representation and the daughter theory with two Dirac fermions, in the symmetric
and the anti-symmetric representations, respectively. Although this was improved later
[129], the map has been established in a somehow heuristic way. Since parent and daughter
are similar, their properties are also very similar: formation of a fermion condensate,
currents, etc, so a simple identification is possible. For instance, we can split the Dirac
fermion W of the daughter theory in two Weyl fermions &, n so the bilinear A\ of the parent
theory will be mapped to &n.



Chapter 11

Gauge theories in the box

11.1 Physical setup

Asymptotically free Yang-Mills theories in (small) finite volume have a (large) mass gap
given by the compactification scale L. There are no propagating degrees of freedom below
the mass gap, so the coupling constant is frozen at a small value. Since the theory is at weak
coupling, it can be studied using analytic methods, as perturbation theory or semiclassical
computations, see [143-145] for reviews. Another consequence is that below the mass gap
there are only a few degrees of freedom, all the others can be integrated out in a Wilsonian

approach.

Our analysis is made in principle in spaces of arbitrary dimensionality D, although for
the subject of planar equivalence we will consider only four-dimensional theories. This
chapter is dedicated to review the low-energy physics of gauge theories on tori, specially
the moduli space and the effective potential that can be generated over it, but we will also

introduce twisted boundary conditions that can lift the moduli space.

11.2 Moduli space and boundary conditions

We usually understand the (classical) moduli space as a continuous space of classical con-
figurations of minimal energy that are physically inequivalent. For field theories with scalar
degrees of freedom, the moduli space is characterized by flat directions of the potential at

the minima. When quantum corrections are considered, the moduli space can change and
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eventually disappear.

Pure Yang-Mills theories in Minkowski space do not have a moduli space. The reason
is that minimal energy configurations should be flat connections, for which the magnetic
field strength vanishes F,,,,, = 0. However, all the possibilities are gauge-equivalent to the
trivial configuration A,, = 0 . In a general space of non-trivial topology the situation may
be different. The situation is better described using as variables Wilson loops (holonomies)

that are group elements along closed curves C

W(C) = Pexp (27{14) (11.1)
c
The space of flat connections is formed by Wilson loops of non-trivial homology.

Let us consider the space R? x T". Homologically non-trivial Wilson loops wrap the
compact directions of the torus, so we have n of them. We will call them Wilson lines for
brevity. Flat connections correspond to commuting Wilson lines, and the moduli space
is parametrized by their eigenvalues. For an unitary theory (as SU(N)), these form a
torus T, where r (= N — 1) is the rank of the group. There is a further discrete Weyl
symmetry that permutes the eigenvalues of the Wilson lines and turns the moduli space
into an orbifold

M = (TL)" /W (11.2)

Up to now, we have considered that the fields obey periodic boundary conditions, but
other situations are interesting as well. The fields need to be periodic only up to gauge
transformations, but the transformed field must be the same independently of the order
in which we make translations along the torus. For gauge fields this imply that the gauge
transformations must commute up to a center element. When this element is non-trivial,
we are imposing twisted boundary conditions. For n = 3,d = 1, the integers mod N that
define the twist are grouped in a three-vector called magnetic flux m. However, they are not
allowed for general representations, the mathematical reason is that we are constructing a
SU(N)/Zy bundle 2, so only representations invariant under the center can be consistently
introduced. The character that defines the transformation under the center is the N-ality
Nr, an integer number defined mod N. The adjoint and all the other center-invariant

representations have zero N-ality.

Twisted boundary conditions can be used to lift the moduli space, leaving only a set of

!Except for a discrete set reached by large gauge transformations and labelled by winding number.
2For SU(N) Yang-Mills theory, the center is Zy.
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discrete vacua labelled by Zy elements. If there are fields of non-zero N-ality, then the twist
cannot be maximal, and the moduli space is not completely lifted. Even when the maximal
twist Zy is possible, we can impose a non-maximal twist Z; C Zy if ged(N, k) =1 # 1.
The moduli space is then reduced to that of a SU(I) theory. So, if gcd(N,ng) = 1, there
can be no twist. Twisted boundary conditions were introduced by ’t Hooft [146] and
successfully applied by Witten to study supersymmetric theories [147,148]. The topics we
review briefly here can be found more thoroughly studied in these references. An extensive

classical analysis of twisted boundary conditions in T* can also be found in [145].

Another consequence of having fields of zero N-ality is that we are allowed to make
twisted gauge transformations, that are periodic up to an element of the center. These
transformations are topologically non-trivial and lie in different homotopy classes that
cannot be continuously connected with the identity. Gauss’ law only implies invariance
under homotopically trivial local gauge transformations, so we can find new physical sectors
of the theory using the twisted transformations. This is analogous to the topologically
non-trivial vacua associated to instantons, but in this case the vacua are related to the
wrapping of the group SU(N)/Zy around one-cycles instead of the wrapping of SU(N)

around three-cycles.

As we will see, twisted transformations induce shifts along the moduli space, in partic-
ular, they move fixed points of the Weyl action among themselves. For d = 1, n = 3 we
can associate the integers k that define the twisted transformation and the magnetic flux
m to an Euclidean twisted configuration in d = 0, n = 4, determined by the twist tensor
Ny

Ng; = €Mk

11.3
noi = ki ( )

The twist tensor (11.3) defines the gauge bundle on T?*. In general, the Euclidean gauge
bundles will have a curvature. In this case, the action does not vanish, but it has a minimum
value given by the Pontryagin number or topological charge. Usually, contributions from
ordinary instantons are considered. They come from bundles associated to the wrapping
of the gauge group over a S3. Then, this contribution is an integer known as the winding
number. For gauge bundles associated to the torus, the contribution to topological charge
can be fractional, because we are using a representation that is not faithful for SU(N)/Zy.

In the sector of zero winding number, the topological charge is given by

1 ~ i 1-
Q= 602 [1‘4 tr F,, (v)F,, (z)d's = — o e = —Nk -m (11.4)
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where Auv = (1/2)€ups A,y Notice that when 7 # 0, other vacua different to A = 0 can

be reached only by twisted transformations with k-m=0.

11.3 One-loop potential over moduli space

Quantum corrections can change the classical moduli space. In the weak coupling regime,
the first corrections are one-loop contributions to the vacuum energy, in the form of an
effective potential depending on the holonomies. The first versions of the potential date
from the early eighties, when it was used to show that gauge theories in R3 x Sé are
deconfined at high temperatures § < 1 [149-151]. A similar version was considered for
gauge theories with a compactified spatial direction R? x S! [152], as a failed tentative to
break dynamically the gauge symmetry. That was achieved soon afterwards in R¢ x S?
spaces [153], and the potential was later extended to R? x Sp x Sj spaces [154]. On a
different line, the R x T3 version was computed to study non-perturbative properties of
four-dimensional Yang-Mills theories at weak coupling [155]. This version was generalized
to include arbitray representations and fermions. Although the field has evolved [156], these
are still the main three applications of the potential [126,127,157,158], roughly speaking.

The potential can be computed using a perturbative expansion in the path integral
formalism, where moduli configurations enter as background fields. To parametrize the
moduli space we will use constant connections in the Cartan subalgebra of the group along

the compact directions,
Ap=A*H* | [H* H’ =0, a=1,...N—1 (11.5)

They will enter as background fields in the path integral. Before going to the calculation
itself, let us change a bit our parametrization. The Cartan matrices are diagonal matrices
whose eigenvalues are the components of N — 1-dimensional vectors in the weight space.

These vectors are the weights of the defining representation v, that form a non-orthogonal

basis
. ) 1 ... 1
e = =6 — — ,7=1,...,N—1 11.6
14 v 2 2N ? Z)] ) ? ( )
Assuming that the torus has the same length in all directions I, = L, m = 1,...,n, we

will define C* through

A=diag(v'-C,....vN-C) , Y v'=0 (11.7)

=1



CHAPTER 11. GAUGE THEORIES IN THE BOX 72

These coordinates for the moduli space are equivalent to parametrize the torus with phases
W(SL) = exp(iv - C,,) (11.8)

where S! C T". We can use the properties of weight systems to translate the properties

of periodicity and Weyl symmetries to the C space. They read as

Periodicity C' ~ C + 4raZ" } (11.9)

Weyl C-a~-C-a

where a are the roots, the weights of the adjoint representation. We will see that all
quantities depending on c obey these symmetries. It might seem a strange parametrization,

but it will allow us to make straightforward generalizations to different matter contents.

We can continue now with the path integral computation. We will use the covariant

gauge-fixing of the background field,

1

that makes computations simpler. Notice that it reduces to the Lorentz gauge along the

non-compact directions.

The d = 1 case deserves an special comment. We will follow the same procedure, but
the one-loop contribution to the vacuum energy is actually a Wilsonian effective potential
for the zero modes. We can describe the low energy physics of the theory using a kind of
Born-Oppenheimer approximation where the degrees of freedom of higher energy have been
integrated out and we are left only with the moduli space. This approach has been used

as a non-perturbative method to find the lowest energy states of QCD and their masses.

We are ready to compute the partition function at different points of the moduli space
Z(é) The path integral is a Gaussian in the one-loop approximation, so formally we are
left with a determinant over the spectrum of states together with a Faddeev-Popov factor.

When zero modes are not included in the determinants we will add a prime.

—(n+d)/2
) (11.11)

2(C) = detpy, (~D*(C)) det’ (~D*(C)
The vacuum energy density is ‘/eff(c_;) =ilog Z(é), that is proportional to the number of

physical polarizations

Ve (C) = —i(d +n — 2)Tr log [—a“au - <5+ i [%6* *} ) 2] (11.12)
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The trace is made over all possible momentum modes in the non-compact directions p,,,
u=20,...,d—1 and all Kaluza-Klein modes in the compact directions E/L, where k are

integers. The details of the calculation are in App. B. The final result is

Var(C) = (d+n—2) Y V(a-é) (11.13)

ag€roots
the sum over roots can be traced to the commutator term in the covariant derivative, that
introduce factors of the form (v —v7) .C, where the difference of two weights of the defining

representation is precisely a root.

The function V is universal for a given space-time, it does not depend on the Lorentz
representation of the modes that give rise to the vacuum energy or on the gauge group
representation. The bosonic and vector nature of the fields is in the factor +(d +n — 2),

the sum over roots appears because the gauge fields are in the adjoint representation.

There are several properties of the function V' that will be useful to study the properties
of the induced potential over the moduli space. Let us write here its final expression, up

to a constant term that has been substracted

L

V(Z) = %%Zsm (}f) (11.14)
i£0

3

2 2

It is positive definite, vanishes at the origin, is periodic under ¥ — & + 27Z" and is
symmetric under reflections ¥ — —7#. The minima sit at £ = Omod27Z" while the
maxima are at & = (7, m,...,7)mod2rZ". The behavior at the minima depends on the

dimensionality of the non-compact space (App. B),

. i? + (1%)4/? d odd
V@) ~q ., iy : (11.15)
T+ (%)% log7* d even

Usually, the quadratic analytic term is dominant, but for d = 2 the logarithmic contribution
is comparable, and for d = 1 the non-analytic contribution is the leading one, giving rise

to conical singularities. We will explain the origin of the non-analyticity later on.

We can now investigate the geometric properties of the potential over the moduli space.
The potential is a sum of terms of the form V(a - C). It is easy to check that every term
obeys the symmetries (11.9), as we predicted. Each term has its minima at the hyperplanes
defined by

a-Cy =0mod27Z (11.16)
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V(O):

Figure 11.1: d = 1 SU(2) bosonic potential along a Cartan direction.
Conical minima are located at C' = 0 mod 27, smooth maxima at C =

7 mod 2.

which are parallel hyperplanes of codimension one, perpendicular to the roots. We can go
from one plane to the next by translations along the roots C,, — C,, 4+ 2ma/v/a2. These
planes are fixed under the action of Weyl transformations, so we will name them as Weyl
(hyper)planes. The local minima of the potential lie at single points where N — 1 Weyl

planes intersect. For the adjoint representation, the minima are at
C=ard g} , il €2 (11.17)
i

where all the terms of the potential vanish. Notice that the local minima coincide with the
fixed points of Weyl transformations, that is, the orbifold fixed points of the moduli space
M. In order to learn a bit more about these points, let us go out of the moduli space so
we can approach a point C belonging to the moduli space from a non-Abelian direction. In
general, it will have a mass given by the classical potential ([Cy, + Ay, C +Ay])? ~ C2A2
but this mass vanishes at C' = 0, leaving a quartic potential. This is the reason of the
non-analycities of the potential at the minima (11.15), we are integrating out degrees of
freedom that are effectively massless. Notice also that the local minima are points where
the global gauge symmetries are unbroken, while at a generic point of the moduli space,

they are broken to the maximal Abelian subgroup (Coulomb branch).

In the previous section we introduced twisted gauge transformations and commented

that they induce shifts along the moduli space. This can be seen using the Abelian form

271 Wy Ty,
N L

Ur (i) = exp < ) 1, wn€Z (11.18)



CHAPTER 11. GAUGE THEORIES IN THE BOX 75

4o

4o @

Figure 11.2: The structure of the SU(3) potential for the adjoint rep-
resentation (on the left) and the defining vector representation (on the
right). The Weyl hyperplanes are indicated by dashed lines. We see that
the effective Weyl chamber for the vector representation is bigger than
the adjoint one by a factor \/3. The singular points (global minima or
maxima) lie on the intersection of Weyl hyperplanes. For the vector rep-
resentation, we also mark by white circles the smooth critical points of

the potential.

The gauge connection transforms as

2T
Ap = Ay — —wp, 11.1
— VLY (11.19)
which is equivalent to a shift of the form
Cpp — C + 41wy, (11.20)

for any v*. Notice that as we advanced before, twisted transformations move fixed points
(11.17) among themselves. We have found that the local minima of the one-loop potential
associated to gauge fields are related by a global (Zy)™ symmetry. This can be traced to
the invariance of adjoint fields under center transformations. For general representations of
non-zero N-ality, this global symmetry will not exist, so we expect that minima associated

to the orbifold points will be lifted by different amounts.
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11.3.1 Generalizations

The potential can be easily generalized to fields in different representations R under the
Lorentz and the gauge group. If it is possible, we can even add a mass for the fields and
find the exact result. The complete details are in App. B. Here is the final expression, that

we start to explain below

Va(C) = (=1)""Ng > Vigg (- €) (11.21)

As with the gauge fields, the number of physical polarizations N will give a factor
in front of the scalar part of the potential, that will include information about the group
representation R, the space-time and the mass Mz. Remember that the sign of the potential

changes as (—1)"® depending on the fermionic number of the fields F.

The group dependence is derived writing the group representation as a tensor with
indices transforming in the fundamental or anti-fundamental representation. The commu-

tator part of the covariant derivative (the adjoint action) is

!
(Ad(A))hd = ZA D — > Al (11.22)
b=1
Writing the Cartan matrices in terms of the defining weights ¢, we end up with combina-
tions that are the weights g of the group representation. As a comment, the N-ality is

given by ng =k —[.

As for the mass, it will affect the values of the spectrum, changing the function V'
(11.14) to

Vi (&) = LQd < ) ZKWL (MLf) o (dl;> (11.23)
10 (P)

where K, (x) is a modified Bessel function of the second kind. We recover the massless
potential when ML — 0 from the limit K,(z — 0) ~ s['(v)(2/2)”. On the other hand,
the asymptotics K,(z > 1) ~ e"R/w/Ta; implies that the sum over modes is effectively
cutoff at VI < (ML)~'. In particular, for large masses ML > 1, the whole potential
is suppressed by a factor exp(—ML). However, the mass does not modify the symmetry
properties of the potential nor its qualitative shape, that is given by the leading modes in

the sum.



CHAPTER 11. GAUGE THEORIES IN THE BOX 77

The main differences with the potential of gauge fields are the sign (if its generated
by fermions), the scale factor, given roughly by ~ Ngdim(R)exp(—ML) and the weight
dependence. Now the Weyl planes are defined by the weights of R, and not by the roots,
so the minima will be in general at different points. The Weyl chamber is also different, its
size determined by the highest weight of the representation p’ to be ~ 2 /|| (Fig. 11.3).
So the potential has more structure at smaller regions of the moduli space for large repre-
sentations. If the N-ality is non-zero ngr # 0, then the potential will have different values

at the minima of the gauge potential, breaking the global Z, symmetries. Indeed

.2
g - AT Z vt = 7;\7[71% Zﬁz + 27 (integer) (11.24)
since every weight is a sum of defining weights with positive or negative integer coefficients
g ~ kv —Ilv and the sum of the coefficients is conserved within a representation and equal
to the N-ality ng =k — (.



Chapter 12
Planar equivalence in the box I

In this section we will study orbifold and orientifold theories in small volume R x T3,
L < 1, gym(L)?N < 1. We will impose periodic boundary conditions, so low-energy
physics are dominated by the moduli space of flat connections and the potential that
quantum corrections generate over it. Both are discussed in Chapter 11. We will start
identifying the leading O(N?) behavior of the effective potential as the relevant quantity
to test planar equivalence. Then, we will explain the caveats about planar equivalence in
finite volume for both orbifold and orientifold theories, and finally we will show that planar

equivalence does not hold in finite volume.

12.1 Planar equivalence and the “planar index”

The naturally protected quantity for minimally supersymmetric systems in finite volume
is the supersymmetric index, I = Tr(—1)", [147,148]. In the case at hand, we shall be

interested in the related graded partition function
I(B) =Tr P (-1)F ePH (12.1)

where P is a projector introducing possible refinements of the index with respect to extra
global symmetries of the problem. In principle, a judicious choice of P might be necessary
to establish the planar equivalence, but we shall suppress it for the time being. Unlike
the analogous object in the parent A/ = 1 theory, I(3) is not independent of 3/L or the
dimensionless couplings in the Lagrangian. The interesting question is whether we can

establish an approximate BPS character of I(f).
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The strongest possible statement of planar equivalence would have I(f) behaving as a
supersymmetric index of a rank N supersymmetric gauge theory, at least in some dynamical

limit. This would mean a large-N scaling of order
I(B) =O(N) . (12.2)

On the other hand, perturbative planar equivalence poses much weaker constraints on the

graded partition function, i.e. it only requires
log I1(8) = O(N) , (12.3)

since the leading O(N?) term is a sum of planar diagrams and should vanish as in the
supersymmetric parent. Notice that condition (12.3) is exponentially weaker than (12.2).
The physical interpretation of the minimal planar equivalence condition (12.3) depends to
a large extent on the dynamical regime that we consider. For example, the implications
for the structure of the spectrum depend on the value of the ratio 3/L. Let us write (12.1)
in terms of the spectrum of energy eigenvalues,

1(8) =) (Qs(E) = Qp(E)) e, (12.4)

E
with Qp r the boson and fermion density of states. The thermal partition function is given
by

Z(B) =Y ((E)+Qp(E)) . (12.5)

E
In the large-volume limit, §/L < 1, these quantities are dominated by the high-energy

asymptotics of the spectrum. In particular, for asymptotically free theories, we expect
that the free energy can be approximated by that of a plasma phase. Thus, on dimensional
grounds,

log Z (8) = —N? f(A) (L/B)* + O(N), (12.6)
up to a vacuum-energy contribution linear in f, with f(A) a function of the 't Hooft
coupling A = ¢g?N, conveniently renormalized at the scale 1/3. From this expression we

infer that the asymptotic high-energy behavior of the density of states is given by
log Qp.p(E) = VN spr(\) (EL)** + O(N). (12.7)

Notice that the leading term is of O(N?) for E = O(N?). Then, the prediction of planar

equivalence boils down to sp = sy, namely the leading O(N?) high-energy asymptotics of

the density of states is effectively supersymmetric. !

!This property is very similar to the so-called “misaligned supersymmetry”, studied in [159], that

characterizes non-supersymmetric string theories without classical tachyonic instabilities.
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Conversely, in the opposite limit L/ < 1 the graded partition function /() is domi-
nated by low-lying states. In the classical approximation, the Hamiltonian of gauge theories
on T? has states of vanishing potential energy, corresponding to flat connections on the
gauge sector and zero eigenvalues of the Dirac operator on the fermion sector. This implies
that there is a neat separation of scales, of order 1/L, between zero modes and the rest of
the degrees of freedom in the limit of small volume. The graded partition function may be

written as
I(B) =Tr slow (_l)F e_ﬂHeH , (128)

with Heg a Wilsonian effective Hamiltonian for the zero modes or “slow variables”. For
asymptotically free theories, this Hamiltonian may be estimated in a weak-coupling expan-
sion in the small running coupling g°N, defined at the scale 1/L (c.f. [155,156,160-163]).

A characteristic behavior of the supersymmetric index is that the effective Hamilto-
nian acting on the space of zero modes with energies much smaller than 1/L is free, i.e.
the Wilsonian effective potential induced by integrating out the non-zero modes vanishes
exactly as the result of boson/fermion cancellation. In the non-supersymmetry case, a
similar behavior of (12.8) would require that the effective potential be at most of order
Vet = O(1/N), i.e. it would have to vanish in the large N limit. On the other hand, planar
equivalence would require the weaker condition that this effective potential vanishes to
leading O(N?) order or, equivalently Vog = O(N).

Therefore, the existence of a sort of “planar index” seems to be a stronger property
than “minimal” planar equivalence, in the sense discussed previously. Understanding this
fact in detail is important, given the close relationship between the supersymmetric index
in finite volume and the gaugino condensates in the standard A/ =1 SYM lore [164,165].

Now we turn to examine the zero-mode effective potentials for the particular examples

of theories in which a form of planar equivalence is expected to hold.

12.2 Effective potentials and planar equivalence

At the level of the effective potentials considered in this work, the property of planar equiv-
alence manifests itself in the cancellation of bosonic and fermionic contributions to leading

order in the large-N expansion. Namely, one should find Veg(C') = O(N) instead of the

more generic O(N?) scaling. Alternatively, one relates the given model to its supersym-
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metric parent. In many cases, this comparison is rather subtle. For example, in orbifold
models the detailed global structure of the toron valleys changes from parent to daughter,
since the Weyl groups are clearly different. Hence, the domains of definition of %g(é ) dif-
fer between parent and daughter theories and a precise comparison would involve a further

refinement of the projector that appears in (12.1).

For models with the same configuration space, such as the orientifold field theory, the
main property that ensures planar equivalence is the equality, to leading O(N?) order, of

the fermion effective actions between parent and daughter, i.e.
Tr pq log (ip) — Trg log (ip) = O(N) . (12.9)

In principle, this property may be established in a strong sense, for any sufficiently smooth
gauge connection A, provided it belongs to the configuration space of both theories. Within
the weak-field expansion, the perturbative version of planar equivalence ensures (12.9) to
any finite order in the one-loop Feynman diagram expansion in the background field. To
see this, consider the one-loop diagram with n external legs, proportional to Trg (A/ @)n
It contains a group-theory factor proportional to Trg 7'* ...T%. Reducing this trace to a

combination of symmetrized traces, we end up with terms of the form
STrg T ... T% = I,(R)d* " + lower order products, (12.10)

where I,(R) denotes the Dynkin index of the representation R, and the symmetric poly-

nomial d® % is the symmetrized trace in the fundamental representation.

Then, the Dynkin index for the symmetric and antisymmetric representations, Sy, is
given by I,(Sy) = 2(N £ 2") (c.f. [166,167]), to be compared with I,(Ad) = 2N for
the adjoint representation. The leading Dynkin index is indeed the same in the large-N
limit, so that a given diagram with an arbitrary (but fized) number of legs yields the same
contribution in the large-/V limit in the parent and daughter theories. So far this is just
another way of looking at the statement of perturbative planar equivalence. However,
I,,(S1) has a subleading (non-planar) term that blows-up exponentially with the number
of legs of the diagram. Hence, planar equivalence stated diagram by diagram no longer
guarantees that the full non-perturbative effective action will satisfy the planar-equivalence
property (12.9). In principle, there could be a non-commutativity between the large-N
limit and the non-linearities beyond the weak-field expansion, and this question could
be a dynamical one, i.e. depending on the particular gauge connection considered as

background.
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These considerations show that the behavior of the exact one-loop potential (11.13)
under planar equivalence is a rather non-trivial issue. The purely perturbative version of
the planar equivalence is strictly related to the Taylor expansion of the potential around
the origin of moduli space C = 0, and the behavior at finite distance away from the origin,
|(jY | ~ 1, remains an open question. In the following subsections we consider in more detail

the effective potential in the two main examples of planar equivalence.

12.2.1 Orientifold effective potential

The orientifold model defined by a SU(N) gauge theory with a Dirac fermion in the
antisymmetric representation has an effective potential for the flat connections that we
may conveniently write as a superposition of the basic SU(2) potentials (11.14), following
the general structure of (11.13).

It is convenient to parametrize the weights and roots of the relevant representations
as v + 17 with i < j run over the weights of the antisymmetric two-index representation,
whereas v — 7 run over the roots of SU(N) asi,j =1,..., N, except for the fact that in
this way we count one extra vanishing root, which gives no contribution since V(0) = 0 in

our additive convention for the vacuum energy. 2 The final form of the potential is

Vil )= 3V (07 =) - C) 2 3V (40 -C) (21

1<

with an extra term
2y v (2:/-6) (12.12)

to be added for the symmetric two-index representation. The first two terms are nominally
of O(N?) from the multiplicity of the index sums, whereas the last term is at most of O(N),
and thus may be ignored when discussing the property of (minimal) planar equivalence in
this model.

The first nontrivial property of the orientifold potential is the instability of the origin
of moduli space, C =0. To see this, we can explore the potential along the direction of a
fundamental weight, say C = v'é with very small ¢, so that the SU(2) potential can be

approximated by V(g) o~ v|§?| with v a positive constant.

2The C_"—independent part of Vog vanishes to O(N?) in all the models of planar equivalence.
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Evaluating the potential in this direction one obtains
Vo (V') = —N|¢] (12.13)

up to subleading corrections at large N. Hence, we conclude that the zero-holonomy point

at the origin of moduli space becomes severely unstable at large N.

The scale over which the bosonic and fermionic contributions vary is roughly the same,
since the size of the Weyl chamber for the two-index representations is

2T

B ezl

ls, =21+ O(1/N), i#j, (12.14)

whereas the size of the standard Weyl chamber is {oq = 27/|v" — 17| = 2. On the other
hand, the alignment of the bosonic and fermionic potentials is not perfect. We can see this
by checking the height of the local conical minima 3, that are inherited from the absolute
zeros of the bosonic potential. Conical minima of the bosonic potential are determined by
the equations

(' — 17) - C© =0 mod 27Z? (12.15)

for all 7, 7, which have as the general solution the integer lattice generated by the vectors

47vt. We can now evaluate the fermionic contribution
V(€)= 23V ((zﬂ' + ). GO ) (12.16)
i<j

at a generic zero of the bosonic contribution, given by C© = 4r S vt with 7 € Z3.

Using the properties of the basic weights we have

V' + 1) -4%%:7?;@ vE = 2m (it + i) — N k i (12.17)

and, by the periodicity properties of the SU(2) potential, we can write
V(@) ~ NV (237 (12.18)
N4

Hence, as we move around the lattice of conical minima from points with ), 7, = O(1) to
points with ), 7y = O(N), the potential scans on a band of energies ranging from O(N)
up to O(N?), with a typical spacing of O(N). As an example of a set of local minima with

3The conical singularities are smoothed out when considering the effects of the light non-abelian degrees

of freedom.



CHAPTER 12. PLANAR EQUIVALENCE IN THE BOX I 84

O(N?) negative energy, we can consider points in the lattice satisfying Y, 7l = (N/4,0,0)
at large values of NV such that N/4 is an integer. On these points, the fermionic contribution

is maximal and given by

Vi =—-N?V(r)+O(N) . (12.19)

In an analogous fashion, the conical maxima of the fermionic potential should be lifted
up by the smooth portions of the bosonic potential giving us an intricate landscape (see
App. C) of very narrow valleys and peaks on the O (V) scale of relative heights, with some
walls rising up to O(N?) energies. The conclusion is that nonlinear effects at finite distance
away from the origin of moduli space tend to spoil the property of planar equivalence, at

least when looking at the potentials with high enough resolution.

In fact, it turns out that planar equivalence is still maintained on the average, since the
integral of (12.11) over the toron valley is only of O(N). To see this, we can expand the
flat connections in the basis of the simple roots a! = v* — vl i=1...,N —1, i.e. we

write

=
[

1
C=>¢ad (12.20)

N
Il
_

and the orientifold potential takes the form

Vo (C) =Y [V (56 = &1 = &+ &) =V (5@ = G+ = G-1)| + O(N) -
]
(12.21)
In this expression, we have neglected terms of O(N) coming from restrictions on the range
of the indices. When averaging over the toron valley, the coordinates ¢; become dummy

integration variables, and an appropriate change of variables shows that the bosonic and

fermionic terms cancel out upon integration.

We can use similar arguments to show that the average of the squared potential (V4y)?
is at most of O(N?). This shows that the average cancellation of O(N?) terms in (12.21)
does not come from large “plateaus” of O(N?) energy occupying different O(1) fractions of
moduli-space’s volume. If that would have been the case, all these smooth regions would
contribute to (Veg)? as positive plateaus of O(N?) energy, producing an average squared
potential of O(N*).

The vanishing of the leading O(N*) terms in the averaged squared potential suggests
that the valleys and peaks of the orientifold potential are localized over small volumes of

the moduli space in the large N limit. Still, the wave functions will show strong localization
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properties and our analysis sheds no new light on the important question of chiral symmetry
breaking in these models (non-trivial expectation values of fermion bilinears in the infinite

volume limit).

12.2.2 Orbifold effective potential

For the basic orbifold model with SU(N) x SU(N) group and a bi-fundamental Dirac
fermion we have a potential defined over the direct product of toron valleys parametrized

by 61 and C’Z flat connections. It has the form

Voro (C1, Cs) = ZV ( V=17 -61)+ZV ((1/Z —7) -52)—2ZV (yi-é1 —Vj-ég) .
i,j i,J
(12.22)

The properties of this potential are similar to those of the orientifold model studied in the

2n @ V
C, A
s (O 4
A
-2 ¥ ®
21 C 0 2n

Figure 12.1: Section of the potential for the SU(2) x SU(2) orbifold
field theory. The diagonal line is the region where bosonic and fermionic
potentials cancel one another. Global minima of negative energy lie at
the points marked by triangles pointing downwards. Global maxima of

positive energy are also indicated by triangles pointing upwards.

previous subsection. Conical minima are again distributed in an intricate landscape with
energy spacings of O(N) but reaching energies of O(N?). Conical zeros of the bosonic

potentials are given by flat connections of the form
) = ar Y o). (12.23)
!

At these points, the fermionic contribution has the value

(@, C) = =NV (%ﬂ (> - Zm)) (12.24)
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and, as before, we have negative minima with energies ranging from O(N) to O(N?) as
> ity — Y iy ranges from O(1) to O(N).

The global picture is very similar to the case of the orientifold model, including the
rough statistical properties of the potential. The same analysis used before also shows
that the orbifold potential averages to O(N) energy while the squared potential averages
to O(N?3).

The similarity between the orbifold and the orientifold potential is even quantitative
along the “antidiagonal” of the moduli space, i.e. the hypersurface defined by 6+ =0,
where (. = %(61 + ) are the eigenvalues of the orbifold Z, action over the moduli coor-
dinates. Along this hypersurface of Zs-odd connections the orbifold potential is identical

to the orientifold one, up to O(N) corrections,
Vo (0, C_) = 2V, (C_) + O(N) . (12.25)

Notice that this argument also implies that the origin of moduli space is unstable along
the antidiagonal, in view of the similar behavior of the orientifold potential studied in
the previous section. However, there are many other unstable directions, such as 51 =0,

Cy = v'¢, for instance.

The orbifold potential also features negative-energy minima with O(N?) energy that
are not inherited from down-shifting of the bosonic conical zeros. In order to exhibit these
special minima, let us focus on one of the “outer rims” of the moduli space, Cy, = 0,
C, = é, and points of the form

N-1
. = (27r > arl,0, 0) (12.26)

=1

where ¢, = +1, with O(N/2) terms of each sign. The fermionic potential at these points is

Ve(Co) = —2N> V(' -Co) ~ —2N Y V(em) ~ —2N*V(7) (12.27)
whereas the bosonic contribution is at most of O(N). To see this, notice that
N-1
27 Z qvh - (V' —17) =7(e; — €) (12.28)
1=1

ifi,j=1,...,N —1. All these terms are of the form V(£27) or V(0) and thus vanish.

The remaining N — 1 terms have argument

N-1
27 Z qvl- (VN —vN) =me (12.29)
I=1
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and contribute ) . V(£n) ~ N V(7) to the bosonic potential. We conclude that these

minima come from the superposition of N? inverted maxima of the SU(2) potential.

A peculiar feature of the orbifold potential is its exact cancellation along the diagonal
Cy = C,. This is the closest we come to the complete cancellation of the potential over
the moduli space, the hallmark of the supersymmetric models. In this case, however, local
minima of the potential lie outside the diagonal on the “twisted sector” of the moduli
space. Although in finite volume one cannot strictly talk about spontaneous breaking of
the orbifold Zy symmetry, minimum energy wave functions are localized near regions with
non-zero values of the “twisted fields” C; — Cy. In this respect, the status of this result is

similar to that in [126], this time in the regime of full spatial compactification.



Chapter 13
Planar equivalence in the box I1I

The analysis above is not favorable to planar equivalence. However, we should remark
that it depends crucially on the properties of finite volume, the moduli space and the
effective potential, so one may be concerned about the infinite volume limit of the theory
having completely different properties'. If we impose twisted boundary conditions we can
get rid of the moduli space so our results will not depend so much on the finite volume
setup. Moreover, in the case of orbifold theories, it is much easier to restrict the analysis
to orbifold-preserving vacua and check whether planar equivalence holds for these. This is
done comparing topological sectors. Another advantage is that we know how to compute
semiclassical amplitudes between these sectors. So it is worth to extend the analysis of
orbifold theories to the twisted torus. Orientifold theories will not be considered for two
reasons: First, the invariant center is only Zs, that is not enough to significantly lift the
moduli space. Second, contrary to the orbifold case there is not a well-defined map between

the configurations of parent and daughter.

We will start constructing a map between twisted configurations of parent and daughter
orbifold theories and use it to compare the vacuum sector of both theories. The map implies
that if we lift the non-Abelian moduli space of the daughter theory, the Abelian moduli
space will remain unlifted and the moduli space of the parent theory will be only partially
lifted. The effective potential over the Abelian moduli space will break planar equivalence
similarly to the case of periodic boundary conditions. In the parent theory, there will be
fermionic zero modes that increase the number of vacua respect to the daughter theory.

We will also find that semiclassical tunneling amplitudes between orbifold-preserving vacua

Indeed, we expect a confinement transition [158].

88
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give different values to orbifold-invariant operators in the parent and daughter theory, so

planar equivalence also fails in this construction.

13.1 Twisted boundary conditions and orbifold field

theories.

The parent theory is a U(kN) supersymmetric gauge theory. In order to study the relation
between parent and daughter theories in this setup, we follow the construction that ’t
Hooft used to find self-dual solutions of fractional topological charge [168], called torons,

and generalize it to our case. The analysis is made in the Euclidean T*.

We should point that the gauge group of the daughter theory is a subgroup of the gauge
group of the parent theory of the same rank. This is quite useful if we try to establish a
map between both theories. For instance, every representation of the parent theory has a
unique decomposition in representations of the daughter theory. Notice that if we ignore
Abelian groups in the daughter theory, the rank would be different. We will see that
Abelian groups play a relevant role in the mapping. We will ignore only the diagonal U(1)
group of the daughter theory, that maps to the Abelian part of the parent group. All fields

are uncharged under these groups, so they decouple trivially.

We split rows and columns in k£ diagonal boxes of N x N size. Then, we work in the
subgroup (SU(N))* x U(1)k=! € SU(kN), which is the orbifold projection on the gauge
sector. If we had considered only a (SU(N))* theory, without the Abelian part, then the
possible bundles in the daughter theory would have been characterized by a Zy diagonal
subgroup of (Zy)*. This is so because of the fermions in the bifundamental representations.
If twist tensors of different SU(N) groups were different, boundary conditions for fermions
will not be consistent. However, Abelian fields can be used to absorb extra phases and

enlarge the number of possible bundles. This will be evident in our construction.

Let w;, i =1,...,k be the U(1) generators
w; = 2rdiag (—N1y, -+ ,N(k—1)1y,---,—N1y) (13.1)

where N (k—1)1y is located at the ith position and 1y denotes the N x N identity matrix.

Note that only k£ — 1 generators are independent, since Zle w; = 0.



CHAPTER 13. PLANAR EQUIVALENCE IN THE BOX II 90

Define the following twist matrices

2mi  dw;
ViWi = WiViexp (k—N + kNZ) (13.2)

All other pairs commute. Notice that although V; and W; are matrices defined in principle
to make a SU(kN) twist, in fact the terms in the exponent are such that the non-trivial

twist is made only over the ith N x N box. A possible representation is

V;Z — diag(lNa"'apjg)a"'a]-N)

. Z- (13.3)
M/i = dla‘g <1N77Q5\f)771N>

where Q%) and PIE;) are the SU(N) matrices of maximal twist PyQy = @QyPne?™/N

associated to the ¢th gauge group.

Let us try the ansatz

Koo k
Qp,x) = (H Piai‘Q?“> exp (iZmeg,,/l,,) (13.4)
i=1 i=1

i
pv
is an antisymmetric real tensor which will be associated to the Abelian fluxes that are

where summation over v is understood. The numbers a),, b, are arbitrary integers. «

necessary to cancel out phases in the case of non-diagonal twist.

Imposing the twist consistency conditions for the ansatz (13.4), we find that

_ k i
S Zi:1n;w
auby—al,bu

(13.5)

and the k conditions

k k k
Z n{w — knfw = 2kN? (kaf“, - Z Oz{“,> , Z Osz =0 (13.6)
which can be used to obtain the Osz tensors from the nf“, tensors. The second equation in
(13.6) comes from the fact that there are only k£ — 1 independent U(1) groups. Any other

linear condition will be valid.

This establishes a map between Euclidean bundles in parent and daughter theories,
identifying nfw as the twist tensors of the daughter theory. This implies that many in-
equivalent twists in the daughter theory map to the same twist in the parent. A second

consequence relies on the fact that afw are constant Abelian field strengths. This implies
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that configurations like 't Hooft’s torons in the parent theory can be mapped to Abelian
electric and magnetic fluxes in the daughter, showing that Abelian groups play a relevant
role in the mapping. Generically, physically inequivalent configurations in the daughter
theory, like Abelian fluxes and torons, map to the same configuration (up to gauge trans-
formations) in the parent theory. The map can be one-to-many, and it is given by the
possible decompositions of the parent twist tensor n,, (defined mod kN) in k£ daughter’s

twist tensors n/,, (each defined mod N).

A remark is in order. Although in principle we can turn on arbitrary fluxes of Abelian
fields in the daughter theory, we must take into account the presence of charged fermions
under these. Since bifundamentals correspond to off-diagonal boxes in a SU(kN) matrix,
the value of Abelian fluxes is determined modulo N by consistency conditions of the twist.
This implies that fractional contributions of Abelian fluxes to the topological charge are
determined completely by (13.6). On the other hand, integer contributions to the topologi-
cal charge in the parent theory can map to non-Abelian instantonic configurations, Abelian
fluxes of order N or a mixture of both. Since the energy of this kind of configurations is a
factor N larger than fractional contributions, they are irrelevant in the large N limit and

we will not worry about them anymore.

We can be more precise with the map of Abelian configurations. The U(1) groups
under consideration follow from the decomposition of SU(kN) gauge connections in boxes

A, = diag (A}, -+, AY) so that U(1) connections are given by
Y i+1
B, =trA, —trA, (13.7)

where i = 1,...,k—1. Then, following [169], we can relate topological invariants of Abelian
groups of the daughter theory to the twist tensor of the parent theory. Let F[;V be the field
strength of the ith Abelian group. We have the following topological invariants

i 1 i
G = 5 / dry, A dw,tr F,, (13.8)
given by the integral of the first Chern class over non-contractible surfaces of the torus and
i 1 AN
Q' = 6.2 [1‘4 tr (F,,F,,)dx (13.9)

which is the Pontryagin number and it is related to first and second Chern classes. We can
relate @° to the topological charge of the parent theory, while cf“, (mod N) will be a twist
tensor nf,, for the SU(N) C SU(kN) subgroup of gauge connection A/ — A*! — Bl Tt
contributes to a fractional topological charge through (11.4).
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13.2 Vacuum structure.

We have been able to construct a map between configurations of both theories, showing
that they are physically inequivalent, although this is not a surprise. As a matter of fact,
we are interested only in large N equivalence. According to [117,118], planar equivalence
will hold non-perturbatively in the sector of unbroken Z, orbifold symmetry. The necessary
and sufficient condition is that operators related by orbifold projection, and invariant under
orbifold transformations, have the same vacuum expectation values. Therefore, it is enough
to check the vacuum sector. In infinite volume it is argued that large N equivalence does
not hold for k£ > 2 because of spontaneous breaking of orbifold symmetry by the formation
of a gaugino condensate in the parent theory [119]. For k& = 2 the condensate does not
break orbifold symmetry and the question remains open. In finite volume in principle
there is no spontaneous breaking, so any failure of large N orbifold equivalence must show
itself in a different way. In the following analysis we will restrict to the sector of vanishing

vacuum angles for simplicity.

13.2.1 Ground states in the daughter theory.

We will start by comparing the bosonic sector of ground states of parent and daughter
theories in a three-torus. The first question we can ask ourselves is what are the relevant
configurations we must consider. We assume that the orbifold projection has been made
at a scale of energy much larger than the typical scale of the torus p >> 1/L. At this
point, all the coupling constants of the orbifold theory are equal. The running of coupling
constants of non-Abelian groups is given at leading order by the renormalization group of
the parent theory, by perturbative planar equivalence. However, the running for Abelian
groups is different since they are not asymptotically free. As a matter of fact, the coupling
constants of Abelian groups will be smaller than the coupling constants of non-Abelian
groups in our torus, and the difference will increase with the volume. We can now consider
what are the contributions to energy of Abelian configurations, that depend on electric

E; = ay;) and magnetic (B; = €, ) fluxes as
jE

H= . <€2(2L)E2 + 2621(L) B2> (13.10)

In the quantized theory B? acts as a potential, while E? plays the role of kinetic energy.

We see that the magnetic contribution is proportional to the inverse of the coupling, so
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the ground states of the theory will be in the sectors of zero Abelian magnetic flux. From

(13.5), this forces us to introduce equal magnetic flux on all non-Abelian gauge factors,
My = kifhg (13.11)

where 1734 is the magnetic flux in the parent (daughter) theory. This kind of boundary
conditions preserve the orbifold symmetry of interchanging of SU(N) groups.

The twist of the daughter theory is determined by a Zy diagonal subgroup. The
elements of this group are actually equal to the elements of a Zy subgroup of the center

of the parent theory

7, = @P diag (1,e>™/N, ... e2mHND/IN) (13.12)
k

We are now interested in imposing twisted boundary conditions in the daughter theory
such that the moduli space of non-Abelian gauge groups is maximally lifted. We can
introduce a unit of magnetic flux in the same direction for each of the gauge groups, so
we are performing a maximal twist of the theory and thus lifting all the non-Abelian
moduli space. However, the kind of boundary conditions we are imposing does not, prevent
the existence of constant connections for Abelian groups. Bifundamental fermions are
charged under these U(1) groups, so it is not possible to gauge away constant connections.
Moreover, they become periodic variables. Therefore, the Abelian moduli space of the

daughter theory is a (k — 1)-torus (for each spatial direction).

In the Ay = 0 gauge we have freedom to make gauge transformations depending on
spatial coordinates. Abelian gauge transformations must be such that they compensate
the phases that can appear on fermionic fields if we make twisted gauge transformations
that are not equal for all non-Abelian gauge groups. Only transformations with k-im=0
mod N lead to a different vacuum, so there are N* possible non-Abelian vacua. The total
moduli space consists on N* disconnected T3 =1 tori. The Abelian part of the vacuum is

a wavefunction over the torus.

In our setup, orbifold symmetry is preserved in the vacua that are reached by twisted
gauge transformations of the same topological class for all non-Abelian gauge groups. For
these, Abelian gauge transformations are trivial. In Sec. 13.2.5 we will see that these vacua

are dynamically selected by the physics on Abelian moduli space.
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13.2.2 The mapping of vacua.

We would like to study planar equivalence in a physical setup that is equivalent for the
parent theory. From (13.11) this corresponds to the introduction of k units of magnetic flux
in the same direction as in the daughter theory. In this case we can reach N disconnected
sectors making twisted gauge transformations. We would like to see how these vacua can
be mapped to the orbifold-preserving vacua of the daughter theory. In order to do that, we
should be able to construct the operators associated to twisted gauge transformations in
the daughter theory from the corresponding ones in the parent theory. A second condition

is that we should be able to identify the moduli spaces of both theories.

Let us examine the first condition. Suppose that we introduce k units of magnetic flux

in the x3 direction in the parent theory:

Au(xl +L,$2,1'3) = ‘7]914”(1'1,1'2,1'3)‘7]6_1
A”(l'l,l'g +L,l‘3) = WkAu(ZUI,a?Q,Q?g)Wk_l (1313)
Au(ajlax%x?)—i_[/) — Au(ajlax%xi’))

where twist matrices must satisfy VW, = W, Vi,e2™*/kN  We can go from one vacuum state
to other by making a twisted gauge transformation U, that satisfies the above conditions

(13.13), except in the x3 direction, where
Ulxy, 9, 23 + L) = >N (21, 29, 23). (13.14)

A good election for the twist matrices is Vi, = 1, ® Py, Wi = 1, @ Qn. Moreover, we
can use the SU(k) group that is not broken by the boundary conditions to rewrite U as
a box-diagonal matrix, that can be mapped to the twisted gauge transformations of the
daughter theory, if we arrange them in a single matrix. In general, the transformations in
the daughter theory will include Abelian phases, so the map of vacua will be from one in
the parent to many in the daughter.

We now turn to the second condition. The twisting is not enough to lift completely

(k=1) remains. As a matter of fact,

the moduli space of the parent theory, but a torus T?
it is an orbifold, since we should mod out by the Weyl group of SU(k). In the daughter
theory, the Abelian moduli space is the same, except that there are no Weyl symmetries
acting on this space. However, in the daughter theory there are discrete global symmetries
associated to the permutations of factor groups that can be mapped to Weyl symmetries
of the parent theory. They do not modify the moduli space, but we can make a projection

to the invariant sector of the Hilbert space to study planar equivalence.
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There will be a wavefunction over the moduli space associated to the vacuum. In the
parent theory, supersymmetry implies that the wavefunction is constant. In the daughter
theory there is no supersymmetry, so a potential can be generated that will concentrate
the wavefunction at the minima. Another consequence of supersymmetry is that there are
fermionic zero modes over the moduli space, which give rise to more zero-energy states.

We will investigate both questions in the next sections.

13.2.3 Electric fluxes and vacuum angles.

The vacuum states we have studied in the parent theory are generated from the trivial
vacuum |0,), associated to the configuration of magnetic flux m = (0,0, %) and classical
gauge connection A, = 0, by operators that implement the minimal twisted gauge trans-
formations on the parent Hilbert space Up, characterized by k= (0,0,—1) as the electric

component of the twist tensor (11.3).
1y = U 10,) (13.15)

We can build Fourier transformed states of (13.15) that only pick up a phase when we make
a twisted gauge transformation. We must take into account that the operators associated
to twisted transformations depend on the vacuum angle 6, so we restrict to a sector of the

Hilbert space with definite vacuum angle. Then,

SN i3

U, =€l (13.16)
The states we are considering are labelled by the electric flux €= (0,0, e)

_ 27il

;| N o\
= (=+325) 01 o, (13.17)
=0

and transform as

A~ g 6

0, Je) = eiv (*1325) |0y (13.18)
Notice that e must be a multiple of %, in order to be consistent with (13.16).

The theory must be invariant under 27 rotations of the vacuum angle 6, — 6, 4 2.
The states (13.17) are not invariant under this transformation, but it generates a spectral
flow that moves a state to another one e — e + k. In our particular case we can define a

e = ke, electric flux such that the spectral flow acts as e, — €, + 1

o)) = e F () 7 o) (13.19)
VN 5
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In the daughter theory, the vacua are obtained from the trivial vacuum |04), associated
to magnetic fluxes m* = (0,0, 1) and zero classical gauge connections AL = 0, by the set of
operators that implement minimal twisted gauge transformations on the daughter Hilbert
space U;, characterized by k' = (0,0, —1)

k

Iy, ) = H Ul |0g) (13.20)
i=1

We will concentrate on states that are reached by diagonal twisted transformations, so

that they are characterized by a single integer [; = [, i = 1,..., k. Again, we can build the

Fourier transformed states, taking into account that we are in a sector of the Hilbert space

with definite vacuum angles 6;, so
UN = e (13.21)

The states are labelled by electric fluxes ¢;

| b = = 3 ) [Tt (13.22)
€L, " Ck)p = = € o i 1Yd .
\/N =0 i=1

If we had considered transformations other than diagonal, this would be shown in the
exponent, where different combinations of electric fluxes and vacuum angles will appear.

If we make a diagonal twisted transformation, these states change as

k

~ 2mi i
HUi le1, - ,ex)p = 62N (Eieﬂr 27 ) le1, -+ ,ex)p (13.23)
i=1

If the twisted transformations are non-diagonal, there are extra phases appearing on the
boundary conditions of the fields that must be compensated by Abelian transformations, so
the state will change to a different vacuum in the Abelian sector. We can define subsectors
of the Hilbert space that are invariant under diagonal transformations and that are shifted
to other sectors by non-diagonal transformations. The labels for such sectors will be given

by the Abelian part, so there will be N*~! of them.

13.2.4 Fermionic zero modes.

Fermionic zero modes are spatially constant modes that satisfy the Dirac equation with

zero eigenvalues. In the parent theory the gaugino has k£ — 1 zero modes

)\Oa = )\Zxk ® 1N (1324)
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where a = 1,...,k — 1 runs over the Cartan subalgebra of the unlifted SU(k) subgroup.

If we go to a Hamiltonian formulation, as in [147], they do not contribute to the energy.

* Qu

We can define creation and annihilation operators for these modes: a;

and af where
a = 1,2 refers to spin and @ = 1,...,k — 1 is the gauge index. Physical states must be
gauge invariant. For zero modes gauge invariance appears in the form of Weyl invariance, a
discrete symmetry that stands after fixing completely the gauge. The set of Weyl-invariant
operators that we can construct with creation operators is limited to contract the gauge
indices with d,,. Thus, the only allowed operators that create fermions over the gauge
vacuum are powers of

U=eppa®al’ (13.25)

a

This operator creates fermionic modes over the bosonic vacuum [0g). Fermi exclusion
principle limits the number of times we can apply U over the vacuum, so the set of possible

vacua 1s

0g), U0B), ..., U1|0p). (13.26)

Some remarks are in order. First, the total number of vacua in the parent theory is
kN, in agreement with the Witten index. Second, U acquires a phase under general
chiral transformations, so the chiral symmetry breaking vacua of infinite volume might be

constructed from appropriate linear combinations of the states (13.26).

What is the situation in the daughter theory? The only possible candidates to give
fermionic zero modes in spite of twisted boundary conditions are the trace part of bifunda-
mental fields. However, those fields are charged under Abelian groups, so it is not possible
to find zero modes over the whole moduli space. We are then confronted to the same kind
of concern as in [119], the number of vacuum states is different in each theory, even in the

sector of vacua that preserve orbifold symmetry.

Even in the case k£ = 2, the mismatch between the number of vacua, which is due to
the different fermion content, seems to spoil large N equivalence. In [119], it is argued
that we should consider a mapping two-to-one between vacua of the parent and daughter
theories. Such mapping is more difficult to justify in this case, because expectation values
of operators involving fermions will give different results in vacua with different number of

fermionic zero modes. For instance, if we consider the operator

O, = tr (AT*AY) ~ (a;‘“ + Z a;‘a(n)eqﬂTm> (ag‘ + Z ag‘(n)e%zm> (13.27)
n=1 n=1
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we are counting the number of fermions in the state, so there is a diagonal non-vanishing
contribution

(05| U OU" 0) ~ 2061100, 0, (13.28)

However, the orbifold projection of this operator
Oy = tr (A{;“Agg dot A};;‘Agl) (13.29)

will have a vanishing diagonal contribution, since there are no fermionic zero modes over

the vacuum state.

13.2.5 Potential over moduli space.

We now turn to the question of whether a potential appears over the Abelian moduli
space of the daughter theory due to quantum effects. For simplicity, we will work with
U(1) fields A, = a,\/1/N1y. Gauge fields are uncharged, so they cannot give rise to a

potential. Fermionic fields do couple through

k N2
Lra =D Ni(@+ e — TN, (13.30)
i=1 a=1
where e’ is the Abelian coupling. In principle ¢’ = e*! = ¢, since all Abelian gauge groups
enter symmetrically and we have applied the renormalization group from a point where all
couplings were equal. At that point e? = ¢;/N?, where g; = g%,,N is the non-Abelian 't
Hooft coupling.

Let us comment several aspects of the Abelian moduli space. We can scale the fields so
that the coupling constants come in front of the action. Then, when we make an Abelian
gauge transformation that shifts the gauge field by a constant, the fermionic field charged

under that Abelian group picks up a phase depending on the position. For instance, if

ab —ay = ay —att d ez = N — €PN (13.31)
then, when we move a period along the x3 direction, the phase of the field changes by
e'3!3  We conclude that the periods of the S' components of the Abelian moduli space are
27 /l3. Would be twisted gauge transformations correspond to 27w /Nl3 translations along
the S', although fixed boundary conditions for charged fields imply that they are no longer
a symmetry of the theory.
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Since there are no fermionic zero modes with support over the whole moduli space, we
can integrate out the fermionic fields in the path integral. The regions of zero measure
where fermionic zero modes have support will be localized at conical singularities of the

effective potential obtained this way.

We proceed now to give the fermionic potential. At the one-loop level, it comes from

the determinant that results in the path integral when we integrate out fermionic fields.

Vag(a') = —log (H det (ﬁ+ i — W’“) N2> (13.32)

This potential can be computed using the methods of [155]. The result, after rescaling by
the length of the spatial torus a’ — a'/l, is

k
Ver(a') = =N>> "V (a' — ") (13.33)
=1

where the function V' is given by (11.14).

Notice that the potential depends only on the differences a' — a’*!, so no potential is
generated for the diagonal U(1), only for the U(1)*~! groups coming from the non-Abelian
part of the parent group after the orbifold projection. This potential has its minima at
non-zero values of the differences, in the twisted sector. Since it is of order N?, it cannot

be ignored in the large N limit.

Examining more closely the potential, we can see that there is only one minimum at
aj, — a;' = m. Usually, wavefunctions over the moduli space are characterized by the
electric flux, that we can interpret as momentum along the moduli space. However, kinetic
energy on the moduli space is proportional to €* (13.10), that is very small and becomes
smaller as we increase the volume. On the other hand, the effective potential is very
large and does not depend on the coupling. Therefore, the wavefunction is very localized,
even for translations given by twisted transformations, and it is more convenient to use a
position representation over the moduli space. The first consequence of all this is that if we
make an Abelian twisted transformation, we are moving the system to a configuration with
more energy, see Fig. 13.2.5. Therefore, most of the vacua of the theory are lifted. Only
when we make diagonal non-Abelian twisted gauge transformations, the system remains

in a ground state. This leaves N vacua.

On the other hand, the wavefunctions over the moduli space of parent and daughter

theories are very different. The first one can be seen as a zero-momentum state, while the
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V(a i ai+1)

27

Figure 13.1: The wavefunction of the ground state is localized at the
minimum of the potential in the Abelian moduli space. A translation
produced by a twisted transformation will lift the state to a configuration

with more energy.

last is more a position state. This suggests that in the infinite volume limit the daughter
theory will fall into an Abelian twisted configuration, breaking orbifold symmetry in that
sector. Another difference is that the ground state has a negative energy of order O(N?).
These results are of the same kind as the ones found in [126,127], although in the other

cases the moduli space was non-Abelian for the daughter theory.

We have found many differences between the vacua of parent and daughter theories in
finite volume with maximal twist. We were looking to lift the non-Abelian moduli space
that in previous works pointed towards non-perturbative failure of planar equivalence. We
have seen that properly taking into account the Abelian groups in the daughter theory,
the situation does not really improve. Thanks to Abelian groups we are able to map
the moduli space of parent and daughter theories, but the generation of a potential by
fermionic fields in the daughter theory makes the physical behavior of both theories quite
different, although it lifts many of the unexpected non-Abelian vacua. The moduli space of
the parent theory is also a problem, because it implies that there are fermionic zero modes

that generate vacua that cannot be mapped to the daughter theory.

13.3 Tunneling effects.

We have shown that parent and daughter theories have physically inequivalent vacua in

this context due to the potential generated over the moduli space in the daughter theory
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and to the mismatch of vacua. However, some quantities do not depend on the moduli
space, so the wavefunction will just give a normalization factor that can be chosen to be
the same. The orbifold conjecture may still be useful to make some computations in the

common vacua, up to kinematical factors.

One of the main applications of twisted boundary conditions is the computation of
fermion condensates [164, 165] generated by tunneling between different vacua. These
fermion condensates do not depend on the moduli space and tunneling can be studied
using self-dual solutions of Euclidean equations of motion. In the case where the tunneling
is between vacua related by a twisted gauge transformation, the relevant configurations
are of fractional topological charge, which we have associated to the twist tensor (11.4).
Notice that to map parent and daughter theories we are using (13.5) and (13.6). If we want
to make the mapping between purely non-Abelian configurations, we should take «,, =0,
otherwise we will be introducing self-dual Abelian fluxes in the daughter theory. In this
case, all the twist tensors in the daughter theory must be equal because of fermions in the
bifundamental representations. This implies that parent and daughter twist tensors are

proportional
nf = kn? (13.34)

uy v
Under these conditions, the fractional contribution to topological charge (11.4) by tunneling

is the same in both theories

Q=——nP iP =k <_ind nd ) (13.35)

13.3.1 Tunneling in parent theory.

In the SU(kN) parent theory with nf, = Omod#k twist, the solution of minimal charge
has @ = 1/N, k times the minimal possible topological charge of the theory. It contributes
to matrix elements of the form (0] OU |0) for some operator @. The operator U acts over
the trivial gauge vacuum |0) by making a twisted gauge transformation (13.14). We can
compute this quantity using a Euclidean path integral

A 1 N —

(0] OU |0) = — lim — (0| O #TU|0) — DADNDNOge °F (13.36)
T—00 T QZI/N

Although we do not know the explicit Euclidean solution that contributes in the saddle

point approximation, we know what should be the vacuum expectation value of some

operators. Because of supersymmetry, only zero modes contribute. There are 4k real zero
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modes of both bosonic and fermionic fields. The existence of fermionic zero modes implies
that the tunneling contributes only to operators involving a product of 2k fermionic fields.

In particular, there is no contribution to the vacuum energy. Therefore,

1
£=—lim ~ <0| e T 10) =0 (13.37)
T—oo T
and .
(trpn(AN)F) = —Tlggo— (0] tr oy (AN Fe™ 7T |0) = o ((tr py AN (13.38)

which is a tunneling contribution to a 2k-fermionic correlation function. By (tryyA\) we
refer to the value of the gaugino condensate in the parent theory. This does not mean
that a gaugino condensate is generated by these configurations, we are just referring to
the numerical value of (13.38). This is based on the use of torons to estimate the gaugino
condensate [164,165] and on the coincidence of the instanton measure with the measure of a
superposition of torons [170]. The factorial factor comes from considering the configuration

of charge @ = 1/N as a superposition of k equal configurations of charge Q@ = 1/kN.

Another peculiar fact about this configuration is that it is transformed into itself under
a Nahm transformation [171-173]. A Nahm transformation identifies moduli spaces of
different self-dual configurations of different gauge theories in different spaces. From a

stringy perspective it is a remnant of T-duality [174-178].

We will use techniques developed in [179-183] for Nahm transformations with twisted

boundary conditions. Given the rank r, the topological charge Q, and the twist

0
n= ( o ) (13.39)

where = = diag (¢1, ¢2), the Nahm transformed quantities are given by

(11

p1 = N/ged(qi,N) p2 = N/ged (g2, N)
siqq = —ged (g, N)mod N $2ga = —ged (ga, N)mod N (13.40)
Q' = r/pipe = Opips

and the twist
EI = diag ((p1 — Sl)pQQ, (pz - 82)p1 Q) . (13.41)

—

Our tunneling configuration can be determined by m = (0, —k,0), £ = (0,1,0) for
instance. Then, we can write the twist tensor as = = diag (1, k). Using (13.40) and (13.41),
it is straightforward to see that ' =r =kN, @ = Q =1/N and =’ = = = diag (1, k).
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13.3.2 Tunneling in daughter theory.

Self-dual solutions contributing to tunneling in the daughter theory do not coincide with
the projection from the parent theory, as given by (13.34). Tunneling between two adjacent
vacua is given by a configuration where each gauge factor contributes by Q4 = 1/N to the
topological charge. Then, the total topological charge is @ = k/N, while the topological
charge in the parent theory is Q, = 1/N, in disagreement with (13.35).

The configurations we are using for tunneling are not related by the map we have
proposed, but notice that we are comparing semiclassical contributions of the same order,
since the classical Euclidean action in parent S¥ = 87?/¢g2N and daughter S% = 872k /g7 N
theories have the same value according to the orbifold projection kgg = ¢g3. When we
examine the moduli space of parent and daughter tunneling configurations, we find further
evidence that we are comparing the correct quantities. The bosonic moduli space is 4k-
dimensional for both theories, and the moduli space of the daughter theory also transforms
into itself under a Nahm transformation. This can be seen using (13.40) for each of the

gauge factors: @, = Qy=1/N,r,=ry;=N, =, ==, = diag(1,1).

Even using this 'improved’ mapping, disagreement emerges from fermionic fields. In
the daughter theory there is no supersymmetry in general, because fermions are in a rep-
resentation different to bosons. However, bifundamental representations of the daughter
theory can be embedded in the adjoint representation of the parent theory, and this will

be useful.

In order to make an explicit computation, we need a formula for the self-dual gauge
configuration of fractional topological charge. We do not have an analytic expression in
general, but 't Hooft found a set of solutions [168], called torons, that are self-dual when
the sizes of the torus [, satisfy some relations. We will assume that we are in the good case
and that, although in other cases the relevant configurations will be different, the physics

will be the same.

Torons are the solutions of minimal topological charge in a situation with maximal twist.
For a SU(N) gauge theory, this means that Qoon = 1/N. Therefore, they can be used in
the daughter theory, where we will have a toron for each of the non-Abelian groups. We
can compare torons to the most known self-dual solutions, instantons. Instanton solutions
can be characterized by their size, orientation in the algebra and center position. The size

of torons is fixed by the size of the spatial torus, and they have a fixed orientation along a
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U(1) subgroup. However, they still have a center that can be put at any point of the torus.
Therefore, the moduli space of torons is a four-dimensional torus. An explicit expression
for torons in the daughter theory in the presence of magnetic flux in the x5 direction is
, o , ,
Al = ng#z,,"fw(x —Myw,i=1,...k (13.42)

where 77,, a = 1,2,3 are 't Hooft’s self-dual eta symbols [184], w is a generator of a
U(1) € SU(N) and 2" are the center positions. Notice that we have chosen to work with

anti-hermitian and canonically normalized gauge fields.

Now that we are armed with an analytic expression, we can calculate what happens

with fermions in the background of k£ torons. The Euclidean Dirac operator is

0 —iauDu
v,D, = 13.43
S (iEMD” 0 ) ( )

where 0, = (15,i0), o, = O’L and o; are the Pauli matrices. In a self-dual background FJL,

the square of the Dirac operator is positive definite for negative chirality fields
(iz,D,)(io,D,) = —D*1, (13.44)
while for positive chirality fields, it has a potentially negative contribution
(i0,D,)(i7,D,) = —D*15 — %gau,,F;; (13.45)
where 0, = 07,0,). This means that there are no fermionic zero modes of negative chirality,
although there can be zero modes of positive chirality. In the supersymmetric case, where

fermions are in the adjoint representation, there are two zero modes in the background of

a single toron.

The covariant derivative acting over bifundamental fields is
DyXiiv1 = Ouiiv1 + QAZ)\z',z'H — g)\i,i+1AZ+l (13.46)
Then, introducing (13.42) and (13.46) in (13.45), we find the operator (App. D)

1 .
<—D212 — —gau,,FJr) — 2gAAL (Dy)agile + M*(Az)w® @ 1, (13.47)
adj

ng
2 j
where “adj” denotes that the operator is equal to the case where it acts over the adjoint
representation of SU(N). Extra contributions are given by the separation between torons
of different groups '
. i1 . . 1T 3 .
Az, =z =2, , AA, = 2glull,77WAZ£w (13.48)
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The coefficient of the positive ‘mass’ contribution is

2 ((Az8)? + (AZE)?  (Azi)% + (Azh)?
N e L=t

(13.49)

The physics of fermions is clear now. When two torons of adjacent groups coincide at
the same space-time point, there are zero modes for bifundamental fermions transforming
under these groups. Zero modes are identical to the case of adjoint representation (super-
symmetric case). When we separate the torons, the zero modes acquire a mass proportional

to the distance of separation.

Therefore, we can split the moduli space of torons My in sectors where a different
number of torons are coincident. We can use quiver diagrams to represent different sectors.
Each node is a toron position. Links joining different nodes represent massive fermions,
while links coming back to the same node represent fermions effectively in the adjoint

representation, so they give rise to supersymmetric contributions. The expansion will look

like
K k-2
e ' ‘
k=3 G (13.50)

A sector with n adjoint links can contribute only to vacuum expectation values of quantities
involving at least n factors of the form A; ;11 ;+1. The contribution is determined by the
expectation value of the gaugino condensate of a NV = 1 SU(N) supersymmetric gauge

theory, (A\)

susy” As an example, consider the pure supersymmetric contribution

= ((AA>Susy)k (13.51)

k
[Tz tr N A ip1 A i

that receives non-supersymmetric corrections from other sectors of the moduli space, for



CHAPTER 13. PLANAR EQUIVALENCE IN THE BOX II 106

instance
k-2

( =0 -

TT5, tr N Ayt Ni (13.52)

k— ~
—k (()\)\)Susy) [ dAL(1)d Ao (%) (2 22) 50 (b i @21>'

we denote by A; the bosonic zero modes, depending on the toron position 2. The factors
M? come from fermionic would-be zero modes, and make the contribution to vanish in the
regions of moduli space where the separated toron coincide with the others. We have taken
care of bosonic and fermionic (would be) zero modes, so they have been subtracted from the
computation of the correlation function involving the fermion propagators <tr @;;tr HQII>I.
The classical action is the action of the toron solution

872

Sa= 5
l 92N

(13.53)

Coming back to (13.37), we see that there is a non-zero contribution of tunneling to
energy. When two torons are coincident, there are fermionic zero modes, so contributions
to £ come from the sector of the moduli space of torons where all are separated. This

contribution is completely non-supersymmetric

2 it 7ksle 1det (pii+1(AiaAi+1))
fuivn = [ ] HdA I e e D2 a2 55

We have taken care of bosonic and fermionic (would be) zero modes, so they have been sub-
tracted from the determinants det’. With the notation we are employing, the contribution

to £ will come from a “ring” diagram Fig. 13.3.2.

When we make the orbifold projection of (13.38), we find

AN A Ag)? = (AN k(o R 13.55
trkN( ) _>trN( 1 k) < >susy + < >susy NS+"‘ ( : )

Where the first non-supersymmetric factor F]E,lg is the same as in (13.52), and the dots

indicate that there are more contributions from other sectors of moduli space, all involving
different non-supersymmetric factors. Notice that the orbifold mapping kgz = g4, implies
that the renormalization invariant scales of parent and daughter theories are the same at
the planar level.

—87? —87?
(tren AN) ~ Aj = 41 exp (g%N) = pi* exp < N ) = Ag ~ (M) (13.56)
p d
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Figure 13.2: The ring sector produces no supersymmetric factors.

As a consequence, the first term in (13.55) coincides with (13.38), up to the factorial factor,
that in the daughter theory does not appear because torons belonging to different groups

are distinguishable.

So we must conclude that there are no simple relations between (13.37) and (13.54) or
between (13.38) and (13.55) although both sets of quantities are invariant under orbifold

symmetry.

13.3.3 Semiclassical dependence on the vacuum angles.

The results of the previous sections can be used to analyze the dependence on the vacuum
angles when we deform the theories adding a mass m for the fermions. This is necessary
in order to have such a dependence, otherwise massless fermions will erase it through the
chiral anomaly. Notice that we can make the fermions of the daughter theory massive only

for the Zs orbifold, so we will restrict to this case.

In the parent theory, when we introduce a mass for the fermions, the states previously
associated to fermionic zero modes (13.26) are lifted by an energy that is roughly the
mass times the number of fermionic modes. The energy density is obtained dividing by
the volume of the box V = [3. So we have k = 2 levels, each with N states labelled by
the electric flux. As we will see in a moment, tunneling between states of the same level
produces a lifting in the energy density of order m*. If we are in the small volume (small
mass) limit ml < 1, then the lifting produced by fermionic modes is larger than tunneling
contributions, so the states in the highest level decouple. However, as we increase the

volume there will be level-crossings between states of different levels.
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In the daughter theory, a mass for the fermions modifies the effective potential over
the Abelian moduli space (11.14). If ml < 1, then only high frequency contributions are
suppressed, but increasing the volume will exponentially suppress the whole potential, so

non-diagonal vacua could become relevant.

We are interested in estimating the dependence of the vacuum energy on the vacuum

angles and electric fluxes

£(e,0) = lim —%m (e.0] ¢~ 1T |e, 0) . (13.57)

T—o00
In a semiclassical expansion, the relevant contributions come from fractional instantons that
encode tunneling processes between different vacua. We will first study the leading term
given by a single (anti)toron of minimal topological charge, and afterwards we will estimate

the contribution of infinite many (anti)torons using a dilute gas approximation [185].

In the parent theory, the lowest order contribution is

A 872\ detr (1p+ m)
0,le TU, 10,) = T/dA 2L 2 )m? exp (— > F
Opl¢ 17T, 10,) (!, ) AN) 2 Coi7

= Tm"'K,(m)e * (13.58)

where A(z!, 2?) are the zero modes of the SU(2N) gauge field, depending on eight parame-
ters of the @ = 1/N toron configuration. The fermionic mass is m, so the factor m* comes
from the would be fermionic zero modes that appear when we turn m to zero. Therefore,
they have been subtracted from the determinants det’,. The bosonic determinant det's
includes only physical polarizations of non-zero modes of vector bosons, so any ghost con-
tribution has been taken into account in it. In the last equality, we have used the orbifold
map g2 = g3/2. K,(m) is a m-dependent constant that will be obtained after making the

integral over the moduli space of the (anti)toron.

For a general transition amplitude between different twisted vacua, there can be contri-
butions of an arbitrary number of torons and anti-torons, as long as the total topological
charge has the correct value. Since we are in a dilute gas approximation, we neglect possible

interactions,
3 - 1 n+n
(0, (TN e T (T,)" |0,) Zzﬁ (Tm* Ky(m)e=25)" " 6, a0 . (13.59)
n=0mn

We are ready now to compute the vacuum energy in the state (13.19), it is straightforward
to see that

_ 27 7
Eylep, 0,) = —2m*K,(m)e 2% cos {W <ep + ﬁ)] (13.60)
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A similar analysis can be done for the daughter theory. The lowest order contribution

is, in the diagonal case,

det’s (—D%, + m?)
det!y (—D2)"/* det!, (—D2)"/*

<0d| €_HT0102 |0d> = T/dAl(Zl)dAQ(Z2)(m+M(AZ))4 —25

= Tm*Ky(m)e 25 (13.61)

We have argued above that it is plausible that the bosonic measures of parent dA(z', 2?)
and daughter dA;(z')dAs(2?) are the same. However, there are extra contributions to the
m? factor, given by the mass M(Az) (13.49) that bifundamental modes acquire when the
two torons are separated. We can also see that the one-loop determinants in (13.58) and
(13.61) are different. All this imply that K,(m) and K,4(m) are not simply related, as we

would have expected from the orbifold projection.

Then, a general transition between diagonal vacua is given by

Oal T OO 0 = 3 3 (Tt Kalm)e ™)™ bt
n=0mn
(13.62)
So the vacuum energy of the state (13.22) will be
2 0, + 0
EP(e1,e9,01,05) = —2m* K y4(m)e 25 cos [NW <61 + ey + 12—; 2)] (13.63)

We can study the spectral flows induced by a change in the vacuum angles [144,186]
in both theories and compare the results. In Fig. 13.3.3, we illustrate the discussion with
a simple example. In the parent theory, the energy of a state of definite electric flux is
invariant only under shifts 6, — 0, +27N. However, the whole spectrum is invariant under
a 2 rotation of 6,, so there is a non-trivial spectral flow that may become non-analytic
and produce oblique confinement in the infinite volume limit. Notice also that there are
two well-separated levels in the small volume (ml < 1) limit, where the lifted states have
fermionic constant Abelian modes. In the opposite limit, states of the same electric flux
number become nearly degenerate. This could be a hint for a two-to-one mapping between
parent and daughter states of equivalent electric flux, in a finite volume version of the
statement made in [119]. Notice that the parent and daughter “vacuum angles” should
be mapped as 204 = 0, at the orbifold point 0, = 6, = 04, as the orbifold correspondence
dictates. Indeed, we find that the spectrum of the daughter theory is invariant under

64 — 04+ m. However, this does not look as the right transformation for a vacuum angle
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Figure 13.3: We show a picture of the spectral flow of £,/K, (dark lines) and &;/K, (light lines) for
different states of electric flux in the case N = 3. The horizontal axis corresponds to 8, for the parent
theory and to 84 for the daughter theory. We assume ml < 1, so the parent theory presents two separated
levels. Notice that the periodicity of the spectral flow of the daughter is half the periodicity of the parent.

and, in view of (13.63), the daughter vacuum angle seems rather to be #; + 65, that has
the value 26, at the orbifold point.

On the other hand, the lifted vacua of the parent theory are unsuitable for a corre-
spondence with daughter states because some matrix elements involving fermions will be
different, as we have argued before. Regarding the remaining vacua, there is a quantitative
disagreement between parent (13.60) and daughter energies (13.63), given by the differ-
ence in the values of the tunneling coefficients K,(m) and K4(m), so it seems that planar

equivalence does not work at this level.

13.4 D-brane interpretation.

We can give a geometrical interpretation of our results based on a construction with D-
branes in the torus, as in [187,188]. In the parent theory we will have a set of kN D4-
branes on T*, the “01234” directions including time. The low energy theory is a U(kN)

supersymmetric gauge theory. We are interested in study possible vacuum configurations,
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that are characterized by different bundles of D-branes over the torus. We will ignore the
scalars associated to the transverse dimensions to the torus, anyway, they will be spectators

in the analysis below.

The twist of the configuration associated to tunneling in the parent theory, Sec. 13.3.1,
is realized diluting D2-brane charge in the worldvolume of D4s. The reason is the coupling
of D2 charge with the U(1) first Chern class of D4 gauge group

Cs Atr P (13.64)
D4

the twist induced in the U(1) must be compensated by the non-Abelian part, in order to
have a well-defined U(kN) bundle. So we can introduce k units of magnetic flux in the 3
direction and one unit of electric flux in the same direction by introducing k£ D2 branes in
“34” direction and a D2 brane in “12” directions. Since the intersection number is non-zero

we can interpret also this configuration as having D2 branes at some angle inside the torus.

0(1]2|3]|4
KND4 | x| x| x| x| X
k D2 X | o| | X | X
1 D2 X | X | X| o] e

After making a T-duality along “12” directions

011|123 |4
KND2 | x| @ | @ | X | X
k D4 X | X | X | X |X
1 DO X| o | o| o | @

this configuration is equivalent to an instanton for a U (k) theory with kN units of magnetic

flux. However, if the T-duality transformation is made along “34” directions

0(1]2 3|4
KND2 | X | X | X | o | @
k DO X|o|o|o| e
1 D4 X | X | X | X | X

we will have £ ‘instantons’ in a U(1) theory with kN units of electric flux.
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In the daughter theory, we have a set of N D4 branes wrapped around a T? but sitting
at an orbifold point in transverse space. The twist associated to the tunneling configuration
in the daughter theory, Sec. 13.3.2, is realized diluting a D2-brane both in “34” and “12”
directions. The orbifold action is responsible of the multiples copies of the gauge group.
So physically we are introducing what in an unorbifolded theory will be N D4 branes and

not kN branes, although the field content is constructed projecting the last.

0(1]2 |34
(KND4 | x | X | x | x| X
K)1D2 | x| e | ®|Xx|X
kK)ID2 | x| X | x| o |e

We can make a T-duality transformation along “12” directions

011|123 |4
(KND2 | x| o | ®| X |X
(k)1 D4 | x| x| x| x|X
k)IDO | x| o | @ | o | @

so we have an ‘instanton’ in the presence of (k)N units of magnetic flux in a U(1)* theory.

If the T-duality transformation is made along “34” directions

0111234
(KND2 | x | X | x| o | e
k)IDO | x| o | @ | o | @
(k)1 D4 | x| x| x| x]|X

now the flux is electric instead of magnetic. In this two cases, we can interpret the ‘un-
twisted’ fractional instanton as a DO brane in the presence of a D2 brane. This is the sector
where all torons are at the same point. The sectors where torons are at different points
correspond to the splitting of the DO in fractional D0Os that can move independently along
the torus directions. The gauge group is the same for k£ fractional DOs as for a regular
DO, however the strings joining different fractional D0s acquire a mass proportional to the
separation. This is reflected in the mass we have computed for fermionic modes (13.49).
So in fact, the quiver diagrams we have used to label different sectors of the moduli space

correspond to the gauge theory living in the DOs at different points of the moduli space.
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From this point of view we also have a geometric picture of why the configuration of the
daughter theory should be mapped to a configuration of the parent theory with & units of
both electric and magnetic flux. The matching is between the number of fractional branes

in the orbifolded theory and the number of branes of the same dimensions in the ‘parent’.

If we make another T-duality transformation along “1234” directions,

0111234
(KINDO | X | e | @ | o | @
kK)ID2 | x| X | x| o |e
(k)1D2 | x| e | ®|Xx|X

the D4s become DO0s that can move along the torus. The separation in fractional DOs is
encoded in the Abelian part of the daughter theory. The diagonal U(1) correspond to the
center of mass position, while the U(1)¥~! group that form the Abelian moduli space are
the relative separations of DOs in this T-dual interpretation. From (13.33) we know that

DO0s tend to separate, a signal of the orbifold tachyon.



Chapter 14
Conclusions

The analysis of orbifold and orientifold theories in finite volume R x T2 presents some
caveats for planar equivalence. With periodic boundary conditions, the holonomies around
the compact directions of the torus play the role of low-energy degrees of freedom. For
some non-trivial values of the holonomies, there are violations of planar equivalence. This
is shown in the non-vanishing at leading order O(N?) of the one-loop effective potential.
This result by itself does not rule out planar equivalence in the strong coupling regime,
which is a quite different physical situation For instance, at strong coupling we expect
the formation of a fermion condensate and chiral symmetry breaking. However, the result
suggests that when configurations with large gauge field values become important, as one
would consider for the strong coupling regime, the equivalence is not obviously fulfilled.
Notice that violations of planar equivalence occur only at narrow regions of the moduli
space, that become of zero measure as N — oo, but still we should be careful before

having it for granted.

When we study orbifolds in torus with twisted boundary conditions, we find difficul-
ties in matching parent and daughter. The results, specially semiclassical computations,
suggests that the orbifold theory contains a SU(NN) supersymmetric subsector, rather than
being equivalent to the parent theory. It would be interesting to check whether orientifold
theories contain a SO(N) supersymmetric sector, since maybe that sectors are in the root

of perturbative planar equivalence.
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Appendix A

Examples of multitrace deformations

0 02/ 06 08 1 12 14 16 18 2
-1

Figure A.1: The function H(() for the monomium perturbation with n = 1 and £ = 0.1
(full line), £ = —0.1 (dashed line).

Choosing a multitrace deformation by a single positive power

Zn+1
fe)=¢ (A1)
we have
H(Z)Zf—z—in (A.2)
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and a vacuum energy density

04, 06,08 /1 12 14 16 18 2

g

-1

-2

Figure A.2: Binomium perturbation n = 2,1 =1, & = —0.1, n = 1,0.6,0.01 (the larger n
corresponding to the full line).

For small ¢ the behavior is qualitatively equivalent to the single-trace theory near the
correspondence line ( = 1. However, there are gross differences deep in the supergravity

regime ( < 1.

For ¢ > 0 we have well defined supergravity backgrounds with small curvature ({ — 0)
and small and negative bare 't Hooft coupling ({ — —o00). Restricting ourselves to positive
bare ’t Hooft couplings we have a minimum value of ¢ given by (, = §ﬁ+1. At this point

the bare 't Hooft coupling diverges, i.e. ( = H((,) = 0.

On the other hand, for £ < 0 the H-function has a minimum at ,, = (2n|§|)T1+1 at
which the bare 't Hooft coupling becomes maximal. This is a critical point of the master
equation with the onset of a local instability for lower (. For ¢ > (,, there are two possible

solutions of the master equation, but only the more curved one (larger () is locally stable.

For either sign of £ the dynamics differs significantly from the single-trace model when
the inverse 't Hooft coupling reaches values of order { ~ |§|ﬁ Hence, for || ~ 1 the
single-trace behavior is pushed beyond the correspondence line. In particular, for £ < —1

the supergravity regime loses all stable solutions.
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0" 0204 056 08 1 12 14 16 18 2

C

-1

Figure A.3: Binomium perturbation n = 2,1 = 1, £ = 0.1, n = —1,-0.6,—0.01. (the
larger 1) corresponding to the full line)

-

Figure A.4: Logarithmic perturbation with ¢ = 1, £ = 0.1 (dashed lines) and £ = —0.1
(full lines). The branches at { > 1 are unphysical.

A.1 Binomium Perturbation

For a perturbation of the form

flz)=¢

Zn-i—l Zl—i—l

n+1+nl+1’

n>1, (A.4)
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0.5

N
0" 02 04 06 08 1~ 12 14 16 18 2

g

-

Figure A.5: Simple pole perturbation, f(z) = £/z, with & = 1 (full line) and £ = —1 (dashed

line).

one has

H(f)z?—_i%—_%. (A.5)
¢ ¢

There is no qualitative difference with the monomium if £ and 7 have both the same
sign. If the sign is different and & < 0, the shape is the same as in the monomium but
the minimum is displaced to lower values of (, and can eventually cross the ¢ = 0 axis,
removing the restrictions on the value of the 't Hooft parameter (c.f. Fig. A.2). The
amount of the displacement is related to the ratio |n/£|, growing with it up to a maximum
value. If £ > 0 a maximum and a minimum of H(() appear if the ratio |n/¢| is large
enough. Thus, a new unstable branch develops and there is a phase transition between the

low-C branch and the high-¢ branch as ¢ increases (c.f. Fig. A.3).

A.2 More Exotic Perturbations

In the supergravity approximation one may also study non-polynomial “perturbations”

at a formal level. For example, we can consider an analytic logarithmic perturbation
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f(z) =& log(ez — 1), with 0 < € < 1, leading to

HO)=T-g . (A6)

The function f(() develops an imaginary part for ¢ > /2, so that we are led to the

restriction ( < \/¢ < 1. If ¢ > 1 this boundary goes beyond the supergravity regime. The
¢ < 0 branch is locally stable, whereas the & > 0 branch is only stable up to a maximum

value of . This determines in turn a maximum value of ¢ (or a minimum 't Hooft coupling).

An even more formal perturbation is given by the non-analytic function f(z) = £/z
with
- = 2
H(C)=¢+&¢. (A.7)

In this case, the perturbation by 1/tr F? does not make much sense in perturbation theory.
However, the results are quite smooth in the supergravity approximation, corresponding
to the limit of very large 't Hooft coupling. Indeed, from (A.7) we see that these models
produce an analytic function H((), so that they approach the single-trace theory for
( < 1. If £ <0 there is a maximum of the master equation, which means that the 't Hooft

parameter should be higher than 4 |£].

In general, we see that novel qualitative features triggered by multitrace couplings stay
well within the supergravity approximation only as long as |£] < 1, with £ a generic

multitrace coupling. Since the master equation takes the form
e ——2
(=H()=C-f(T7), (A8)

we find that deformations that have f’(z) analytic around the origin produce important
qualitative changes in the deep supergravity regime ¢ — 0. Conversely, singular deforma-
tions in perturbation theory, corresponding to singular f’(z) at the origin, approach the

single-trace theory in the extreme supergravity regime.



Appendix B

One-loop potential in the torus

In this appendix we give the explicit derivation of the one-loop effective potential over the
moduli space of gauge theories in R? x T" spacetime. We expand the path integral around
a moduli configuration Fjy;ny = 0 parametrized by a constant connection in the Cartan

subalgebra along the compact directions.
C=C'H*, [H H' =0,a,b=1,---,r, (B.1)

where r is the rank of the gauge group. Assume that we have matter in the gauge repre-
sentation R and in a Lorentz representation with Nz physical polarizations, and Ff is the
fermion number of the representation. We also consider that the matter can have a mass
Mpg. Then,

, ) ~(~1)FRNR /2
exp(—Veg(C)) = [ ] det <—aﬂaﬂ1 - (51 + zAd(@)) + M§1> . (B.2)
R
Here Ad denotes the adjoint action (11.22). From this expression we get
~ 1 Fgr m 3 1 ) 2
Ve (C) = 52:(—1) NiTr log | =9,0"1 — ( 91+ —Ad(C) | + M1 | (B.3)
R

where the trace is over states given by the weights pr of the representation and the mo-
mentum along R? (p) and T" (277i/L). We can use a Schwinger parameter T to rewrite

the logarithm as an integral,

Var©) =~ 1S PR S / T / TAT iy g (i d) G )
¢ 2 R4 (27r)d I o T
R KR neZLn (B 4)
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The last term means that we subtract the same expression evaluated at C = 0, which is

equivalent to eliminate (7—independent terms.

1/2

If we integrate over the time component of the momentum, we get a factor ~ 772, so

after integrating over the Schwinger parameter we end with

Ver (C) = 22}{: FRNRZ/ (@m)iT gzjn\/ + M2 + (27rn+,uR C)Q—[GZO].
(B.5)

which has the form of a sum over the frequencies of infinite harmonic oscillators. The

frequency along the compact directions is shifted by the holonomy. Therefore, the potential

is of Coleman-Weinberg type.

If we integrate over the whole d-momentum, we get a factor

d? 1
/ Do’ =~ (B.6)
Rd (2m)d (47r7)d/2
The next step is to make a Poisson ressummation over the n-momentum,

L 2n .o AT

L (2ni+pr- C) — 4P —iug-Cl
Z ez 7(4#7’)"/2 Z e 1 (B.7)

nezr lezZn

that, after the change of variables ¢t = 121> /41 leaves

2Mm2 12

=~ —1 n 37 —
Ver(€) =~ E YENEY D — T i L e G =0].
2 2 L4 0
bR [cZn <12>
(B.8)

Notice that with the subtraction, the ['= 0 contribution vanish, as well as the value of the
potential at ' = 0. The phases can be arranged in a factor —2sin®(uug-C1/2). After making

the integration over the Schwinger parameter, we find the final form of the potential

)= S (M) 7 s (aB) )
R 1R 0 (f) :

when Mp = 0, it reduces to the massless expression

d+n sin? (L R-C_"l
v;ﬁ(é):Z(—nFRNRZZf 2 2 <2M j (B.10)

R MR 2 L 10 (l_é) 2
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B.1 Non-analytic behavior

As expected from its definition, the subtracted potential (B.10) gets no contribution from
those modes in the Cartan subalgebra that are also constant throughout the torus, corre-
sponding to the 7 = 0, = 0 terms in the sums. Since these modes are precisely given by
the background flat connections, $, we can view (B.10) as a Wilsonian potential in which
all non-zero modes plus non-abelian constant modes on the torus are integrated out. In
fact, the constant non-abelian modes at 7 = 0 have an effective mass of order |- ¢ |/L, and
the Wilsonian separation of scales breaks down at points in M where the Higgs mechanism
turns off, i.e. the orbifold points. The extra massless degrees of freedom induce infrared
singularities in (B.10) In order to estimate these, we examine the 7 = 0 terms, with an
ultraviolet cutoff in place,
o0

AV(E) g = _(471)‘1/2/52 %tdﬁ e 1€ (B.11)
In this expression, it is plain that |5|/L plays the role of an infrared cutoff in the proper
time integral, which is itself regularized in the ultraviolet by the length-squared €2. We
can choose € = L to consider the contribution of non-abelian constant modes with energies
ranging from the compactification scale 1/L down to the infrared cutoff |¢|/L. Then we

may write the previous expression in the form

—

AV(E)r = —m (52)d/2 r (52,—d/2) : (B.12)

in terms of the incomplete Gamma function. For odd values of d we find a non-analytic
behaviour of branch-point type, Vo(€) ~ (€2)%2, with a logarithmic correction Vo(€) ~
(£2)42 log (€2) for even values of d. In particular, we have a conical singularity for d = 1.
At any rate, as long as d > 2 the non-analytic terms are quantitatively subleading to the

analytic terms of order 52, induced by the high-energy modes.



Appendix C
Landscape features of the potential

The landscape in string theory [189-191] could be defined as the set of possible isolated
locally stable backgrounds [192-194]. A line of investigation opened by Douglas tries to
group the landscape vacua in statistical ensembles in order to deduce properties of the
theory [195-198]. Going further, it has been proposed that they are part of a connected
space of configurations described by a low-energy effective action [189,199]. Then, the
theory could dynamically explore the different possibilities through some mechanism, as
the formation of vacuum bubbles [200-202]. In this case, if we have enough vacua, it is
not implausible that our own universe will appear, with the same ’crazy’ values for the
cosmological constant ~ 10729Afp; and so on. Remember that the typical energies are
of the order of the Plank mass Mp;, so to end in an universe like ours will require a
huge amount of vacua exploring a quasi-continuous band of energies. There are two main
problems with this picture, a technical and a philosophical one. First, the existence of the
landscape in the strong sense or a satisfactory mechanism to realize all the vacua are yet
unresolved matters [203]. Second, even if these problems are solved we are not sure of how
to falsify the theory, since we expect that different universes are causally disconnected. Let
us just avoid these deep questions and come back to the problem of finding and counting

vacua.

Usually the landscape refers to the geometric, closed string part, but it may involve the
open string sector as well [204]. In this framework, the effective potential of Chapter. 11 can
be used to find vacua of brane compactifications. Supersymmetry should be broken much
above the compactification scale, and since the spectrum is non-realistic, the construction

should be in a hidden sector for a phenomenologically viable model. We will not discuss
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these matters, but we will just show that landscape-like features appear in the form of a
highly populated band of energies. The most remarkable fact, compared to other landscape
constructions [205,206], is that this is achieved with only a few parameters and a simple
field content.

C.1 Effective potentials for flat connections

We begin by reviewing some standard facts about adjoint Higgs fields generated upon
toroidal compactification. Let us consider a Yang-Mills model in a (d + n)-dimensional
spacetime of the form R? x T", a product of a standard flat d-dimensional Minkowski
spacetime and an internal torus of size L, which we take orthogonal for simplicity. The

classical action
1

a 292 RdxTn
reduces, for distance scales much larger than L, to the effective system

Sh tr | Fup)? (C.1)

_ 2ng | (Bl 4 1Dy P = |20, @] 4.) (C.2)
where we have split the (d + n)-dimensional indices (A, B,...) into R¢ spacetime in-
dices (i, v,...) and internal T" indices (a,b,...). Each field ®, is an adjoint Higgs that
originates in the Fourier modes of the gauge field components along the n-torus and the
commutator term is their classical potential, coming from the “magnetic” energy density,
F, F? of field-strengths along the torus directions. The dots stand for higher order terms
suppressed by powers of FL in a low-energy expansion with £ < 1/L, and the classical
mapping between high and low energy couplings is the standard Kaluza—Klein relation
gi = L"g*. Only the zero modes of the gauge field on T™ survive as massless adjoint
Higgses in the effective theory below the gap 1/L. These are the flat connections on T",
defined by the vanishing of the magnetic energy F,, = 0. A gauge-covariant description of
these degrees of freedom is given by topologically nontrivial Wilson lines wrapped around

the noncontractible cycles of T™.

In general, the space of flat connections on T" has connected components. These can
be the result of specific group-theory properties (e.g. the nontrivial commuting triples for
n = 3 and particular gauge groups [207]), or be associated to topological structure of the
gauge bundles, such as non-Abelian electric and magnetic fluxes through the torus [146].

Each connected component of the moduli space admits a parametrization in terms of
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constant commuting gauge connections in some appropriate subgroup of the gauge group.
Since most of our results apply to each connected component separately, in the following
we focus on the particular case of the single connected component containing the identity
Wilson lines, corresponding to bundles admitting periodic boundary conditions on the
torus (Chapter. 11). A set of coordinates of M is provided by the constant commuting

connections ;
Lo=¢=) ¢:H, (C.3)
i=1
with H; a complete set of generators of the Cartan subalgebra and r the rank of the group.

In the effective gauge theory on R¢, the moduli space M is to be regarded as the target
space for the Higgs fields. For d > 2, it is also the space of their possible “expectation
values” in a Coulomb phase, i.e. the gauge group left unbroken by the Higgs mechanism
at a generic point on M is the maximal Abelian subgroup. On submanifolds of higher
codimension we have enhanced gauge symmetry, which remains completely unbroken at
the origin of moduli space, together with the points on M that are obtained from qg =0
by the action of twisted gauge transformations [146]. For example, for SU(N) the center
is Zxn. In general, if N is the cardinal of the center, we find N™ vacua that are locally

identical to the unbroken vacuum labelled by qg = 0.

C.1.1 Effective potentials

The low-energy effective action for fields, gz;, parametrizing the Cartan torus (i.e. for those
with vanishing classical potential [®%, ®° | = 0) includes an effective potential induced by
integrating out all the high-energy degrees of freedom. Working in perturbation theory in
the Yang—Mills coupling, we have a natural expansion parameter at the compactification
scale 1/L. For a rank N gauge group, it is given by the dimensionless 't Hooft coupling A =
g* (L) N L**? where ¢g2(L) is the effective d-dimensional Yang—Mills coupling, renormalized
at the scale 1/L. This parameter, defined at the matching scale 1/L runs with energy
according to

Nt(B) = X (EL)*r= (C.4)

with logarithmic running for deg = 4. The effective dimension is given by deg = d for
EFL < 1, whereas deg = d + n for EL > 1. Of course, perturbation theory necessarily
breaks down at sufficiently high energies for d +n > 4. The strong-coupling threshold is
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defined by Aeg(Ayy) =1, or

)\_d+7lz—4
L ’

and defines the scale beyond which some ultraviolet (UV) completion must be provided.

(C.5)

AUV =

Effects of such UV physics decouple below the compactification scale L as inverse powers

of Ayv L, or equivalently, as positive fractional powers of \.

Keeping in mind these limitations of the perturbative approach, the one-loop effective
potential can be defined by the gaussian functional integral over those gauge fields on
R? x T™ that are orthogonal to the flat connections. Since the flat connections qg are
not integrated over, they function as a background field and we may use the standard
machinery of the background field gauge. We obtain for the one-loop effective potential
(11.13)

Ver(@) = (d+n—2) 3 V(a-d) (C.6)

a€roots

An interesting property of the one-loop effective potential is its ultraviolet finiteness,
after a d_)'—independent constant is appropriately subtracted. This is actually true to all or-
ders in perturbation theory. The reason is that any counterterm of the (d+ n)-dimensional
gauge theory must be gauge-invariant and, as such, a polynomial in covariant derivatives
and curvature field strengths. All those counterterms vanish on the space of flat connec-
tions, and therefore V.g cannot get UV divergences at any order in perturbation theory
(see [208,209] for a recent analysis of counterterms in compactified gauge theories). The
error made by extending the momentum integrals and sums beyond the UV threshold Ayy
vanishes as Ayy L goes to infinity. Therefore, all corrections to Vo from the physics of the

UV completion are controlled by the small parameter A < 1.

The function V(Z ) also determines the effective potential induced by integrating out
matter fields in an arbitrary representation of the gauge group. For scalar fields or fermions

in an irreducible representation R, we find (11.21)
Ve (6) = D=0 N > Vary (-6 ) - (€.7)
R HER

Where N is the number of physical polarizations, Fy is the fermion number and pp are
the weights of the representation. The potential function V}, is the massive generalization
of V' (11.23).

An interesting particular case concerns models with softly broken supersymmetry, i.e.

broken by the mass splittings Mg. In this case, the total potential gets no contribution
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from the far UV regime, and the boson-fermion cancellation is complete when the non-
supersymmetric mass splittings are removed. In any case, notice that the mass terms do
not have a large effect on the qualitative form of the potential function (11.21), which is
dominated by small values of |Z| even for the M = 0 case. Therefore, the main effect of
soft-breaking masses is a global quenching of the associated effective potentials, without
major modifications of the qualitative features such as the symmetry properties (i.e. the

location of the vacua with unbroken gauge symmetry).

A point of detail concerns the proper Wilsonian interpretation of the effective potentials
induced by arbitrary matter representations. In the adjoint representation, all flat connec-
tions are zero modes of the adjoint covariant derivative operator. These zero modes were
eliminated from the partition sums by the vacuum-energy subtraction. For generic matter
representations, zero modes are located on submanifolds of zero measure in the moduli
space M. Therefore, we integrate out all matter degrees of freedom and let singularities
of Veg appear on M, much in the same fashion as the enhanced-symmetry singularities

appear for the case of the adjoint representation.

Some further generalizations concern different spin structures for fermions on T™ (which
amount to additive shifts of ¢ in all formulae, see for example [154]), and twisted boundary
conditions for the gauge bundles on T™. In this last case, the moduli space of flat connec-
tions is partially lifted (see [145] for a review). On the remaining moduli space the analysis

is equivalent to what is described here.

C.2 The Cartan—Weyl landscape

The potential (11.21) has “landscape-like” features for generic representations. The overall
features are dictated by the crystallographic nature of the compact moduli space M, in
particular the slightly different action of the Weyl group, W, depending on the representa-
tion under consideration. Associated to a given weight 4 in a general representation, there

are codimension n hyperplanes on M, defined by
(- ¢ = 0mod 2rZ" , (C.8)

that are fixed by W. Such Weyl hyperplanes host local minima of bosonic potentials
(along transverse directions) and local maxima of fermionic potentials. Therefore, local

minima (maxima) are found at intersections of Weyl hyperplanes, i.e. at the edges of the
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so-called Weyl chamber. The effective potential contributed by a representation R has
structure down to the overall scale determined by the size of the Weyl chamber, inversely
proportional to the norm of the highest weight. Hence, very large representations induce
potentials with short-distance scale on M. The overall picture is that of an intricate pattern

of rifts and valleys along the Weyl hyperplanes associated to different representations.

Fermionic contributions to the total effective potential look like “inverted” bosonic
potentials. Hence, the singular locus of fermionic contributions is associated with local
maxima rather than minima. Conversely, local minima of fermionic potentials are related
to local maxima of bosonic potentials, and they could be smooth, just like the local maxima
of the function (11.13). Such smooth local minima of the full potential will typically break

the gauge symmetry in a complicated pattern.

An interesting question is the fate of vacua with “unbroken” gauge symmetry, corre-
sponding to the zeros of the pure Yang—Mills effective potential. If the matter potential
happens to be sufficiently smooth at those minima, its main effect is simply to lift the
unbroken vacuum to a non-vanishing vacuum energy. The surprising fact is that these

lifted vacua typically scan in a broad band of energies.

We now focus on SU(N) gauge theories, which give rise to a very large group of central
conjugations, i.e. (Zy)" with cardinal N™. In this case, we have a large number of unbroken
symmetry vacua on M and we can enquiry how are they lifted by the matter potentials.
The zeros of the potential are at (11.17)

Q;O = 471'2’/:51 v R ﬁz eZ". (Cg)

In the pure Yang—Mills theory, all these vacua with unbroken gauge symmetry are strict
copies of the zero-Higgs vacuum gz; = 0. In fact, their occurrence is related to the action
of the (Zy)™ group of central conjugations, associated to large gauge transformations.
Perturbatively, these vacua remain disconnected, since the tunneling amplitude across the

potential barrier in Vg is nonperturbative in the gauge coupling.

In the presence of additional matter degrees of freedom, these vacua get lifted according

to the value of

SN Y Vi (1060 ) - (C.10)

HER
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Thus, for a given representation, we must evaluate

Var (4wzﬁiu-vi> (C.11)

for all weights p. In general, any weight can be found in the weight lattice generated by
the v*. Therefore, the argument of the scalar function VM(E ) will be determined by integer

linear combinations of the scalar products

o 2w

Ayt -y =216 — N (C.12)
The term proportional to the Kronecker delta has no effect by the periodicity properties
of (11.13), and we are left with a sum of terms of the form Vy;(2rK/N), where K is a
Z"—~valued vector defined modulo N. If K is of O(1) in the large N limit, then the full
potential at this particular local vacuum is a sum of terms of O(1/N?), since the potential
can be considered quadratic near the origin (for d > 2). On the other hand, if K = O(N),
we have a sum of terms of O(1). The final scaling of the potential depends in each case on

the multiplicity from the sum over weights.

Our considerations refer only to the energy shift of the N™ “unbroken” vacua in a
(Zn)™ representation. In principle, the matter potential can alter the local properties of
the vacua beyond a simple shift of vacuum energy. If the slope of Vjy is large enough
at (Z;[], the local minimum can disappear. This is more likely to happen the larger is the
representation contributing to Vg, because the overall scale of the potential is proportional
to the dimension of the representation. For this reason, stability of the unbroken vacua
will require in general that the mass of matter representations be sufficiently large, so that
the matter contributions are appropriately quenched by the exp(—M L) suppression factor.

For ML > 1 and near the origin, we may approximate

Vis (5) ~AE?, (C.13)
with n
ML) 2
A ~ % exp(—ML) . (C.14)

For d = 2 there is a correction by a logarithmic factor, log|g |, whereas for d = 1 the

leading approximation is linear in |§ |. In the following we consider the case d > 2.

In general, the “unbroken” vacua are shifted by the matter contribution, so that the

gauge symmetry at those vacua is actually broken. We can still refer to these vacua as
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“unbroken” in order to make explicit their origin in the Zy-vacua of the pure Yang—Mills
theory. In fact, if the matter is even slightly heavier than the compactification scale,
ML > 1, we can have A < 1 and the symmetry breaking effects (such as gauge boson
masses) are suppressed by a factor of O(A).

C.2.1 Examples

To illustrate these points, we consider some examples. First, matter fields (fermionic or
bosonic) in the fundamental representation of SU(N). In this case, the weights are given

directly by the v*, so that the potential is proportional to

2T . 2T .

ZVM (W k nk) = NVy (W nk> . (C.15)
For small values of the argument, we approximate the potential as in (C.13). Then, as
>, Tk, varies from O(1) to O(N), the lifted local minima scan a band ranging from O(1/N)
to O(N), times the mass quenching factor A, with spacings of order A/N at the bottom,

and only of order A at the top of the band.

A second example is given by matter fields in the antisymmetric representation of
SU(N). In this case, weights are of the form v* + 1/, with ¢ < j. The matter potential

evaluated at the lattice of unbroken symmetry points is proportional to

; Var (% %:m) = %N(N —1) Viy (% zk:ﬁk> . (C.16)
The same reasoning as before shows that the lattice of N™ points of unbroken SU(N)
symmetry is lifted to a band with typical (bottom) spacing of O(1) A and ranging up to
O(N?)A energies. If we consider the symmetric representation instead, we have to add the
weights of the form p = 2%, introducing a finer structure of the type already described for

the fundamental representation.

C.2.2 The general rules

In general, the condition for the unbroken vacua to be lifted into a broad band of energies
is that the global (Zy)" symmetry be broken by the matter representations. At the same
time, the local stability properties of the pure Yang—Mills potential at those vacua should
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not be significantly upset, as is the case for matter potentials generated by relatively large

masses on the compactification scale.

The misalignment responsible for the lifting of the vacua finds its origin in the slight
non orthogonality of the basic weights v*. If the expression of a given weight ;1 in terms
of the ' shows the same number of positive and negative signs modulo N, then the terms
proportional to 27 /N cancel out in the argument of the scalar potential Vj/(Z). The
coefficient of this term only depends on the representation, and not on the particular
weight within it, because all those differ by a integer linear combination of roots, and the

scalar product of roots with the v’ leaves no O(1/N) residue.

If ' are the weights of the defining fundamental representation (the N), then —v* are
weights of the conjugate representation (the N). Any irreducible representation can be
found in the decomposition of the tensor product of the N and the N representations.
Hence, the (mod N) number of * minus the number of —27 in the expression for u is the
N-ality of the representation, i.e. the character under the Zy center of the group. At the
end, the distribution of cosmological constants at the unbroken minima $0 =Ar Y i vt s

given by (up to an additive cosmological constant that is not determined by the potential)

A(7ts) = Varr (0 ) = 3_ N (=1)" dim (R) Vi, 27K /) | (C.17)

with the integer vector l?,
-’?R =R Zﬁk ) (C.18)
k
and ng the N-ality of the representation R.

Provided ML is sufficiently large, each representation R lifts the N” unbroken vacua

into a band of width

AA =dim(R) A (C.19)
and level spacings in the range of
_a MR\
SA = dim(R) (N) A (C.20)

at the bottom of the band. The previous results for the fundamental representation are

obtained by setting dim (R) = N and np = 1, whereas those for the symmetric and

antisymmetric representations use dim (R) = s N(N + 1), ng = 2. In general, it is found

that a discretuum of vacuum energies is favored by group-theory effects in the case of

matter in the fundamental representation. For higher-dimension matter representations, a
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quasi-continuous band is still possible, but then it is entirely determined by the large mass

hierarchy ML > 1.

The N-ality is defined modulo N, and any representation with vanishing ng fails to lift
the local unbroken vacua. This does not mean that these vacua remain unaltered, since
local properties, such as masses of particles, depend on the relative contribution of matter
and gauge terms (for example, fermion contributions tend to turn the minimum into a local

maximum).



Appendix D

Mass of bifundamental fields in toron

background

In this appendix we compute the square of the Euclidean Dirac operator acting over neg-
ative chirality bifundamental fields of orbifold field theories, in a background where there

is a toron for each of the gauge groups.

The toron configurations are

i _im g i
Au(x) = QQZuanWw(a: - 2", (D.1)

where 2 is the position of the toron and i = 1,. ..,k label the group factors of the orbifold
daughter and w is a generator of a U(1) subgroup of the gauge group. [, is the length along
the u direction of the torus. In our notation, fields will be anti-hermitian and canonically
normalized. The election of the self-dual 't Hooft symbol n? is equivalent to the election of
a discrete set of tori where the lengths are such that the toron is a solution of the equations

of motion. Other elections will correspond to rotated tori.

It will be useful to write the next-neighbor configurations in terms of the difference
i i+l i
A=A —AA (D.2)

where
B T
po 2gl,1,

then, the covariant derivative of a bifundamental field is

i

! nf’wwAz =

T 3 i+l i D.3

DyXiiv1 = (Dzﬂ)\i,iﬂ)adj — QAAZ)\i,iH (D.4)
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where ’adj’ means that the covariant derivative acts on the fermionic field as if it were in
the adjoint representation. It is straightforward to see that (dropping the orbifold indices
for clarity)

O Dy Dy A = ngj - g((Du)adeAu))‘ - 29AAM((Du)adj)‘) + 92(AAM)2 (D.5)
and
[DIM Dy])\ = g(F:;)adj)\ - 2g(D[uAAV})a.dj)\ (D6)

Since D,AA, = 0, the square of the Dirac operator is

. _ 1
(i0,D,) (i, D,) = <—D212 — —gaMVFJ“) +29AA,(D,)agila — ¢*(AAL)* 1, (D.7)
adj

2 wv
j
where we have used the Euclidean Pauli matrices 0, = (15,45), o, = O’L and 0, = 07,0,

The last term is an effective mass

im\ 2 nd_n
M2 — _QQ(AAM)Q — _92 (_) uo ﬂAZgAZpWQ ‘ (D8)
29) lls1,1,
Using that
My = €sij 5 Mo = —Mo; = 03i , 1 =1,2,3, (D.9)
the mass is

(D.10)

42 <(Azg)2—i— (Az)®  (Az)®+ (AZ2)2> W2

M=
Il il
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