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Abstract

Nowadays, the number of real-world applications which get benefit from speech

recognition techniques continues growing dramatically. Within such applications,

Speech Information Retrieval is a very important activity in the world. Speech-

based techniques such as continuous speech recognition have been widely used to

develop such applications, commonly by means of Large Vocabulary Continuous

Speech Recognition (LVCSR) systems. However, LVCSR systems in isolation are

not well sited to deal with the search in the audio content due to this main reason:

In Speech Information Retrieval, the common set of words used to access to the

relevant information stored in huge audio repositories often includes proper names,

acronyms, foreign words, which do not usually appear in the vocabulary of the

LVCSR systems (i.e., they are Out-Of-Vocabulary (OOV) words). It causes that

new approaches must be used to access to such information. Keyword Spotting

and Spoken Term Detection (STD) are two approaches that try to solve the OOV

problem within Speech Information Retrieval systems. This thesis concerns the

development of new methods and solutions to be applied within the Keyword

Spotting and STD framework.

For Keyword Spotting, we have followed a two-level based strategy. The first level

makes use of a standard Hidden Markov Model (HMM)-based keyword spotting

process, from which several filler models have been explored: phones, phonemes,

broad classes and a single filler model. The second one presents four different types

of confidence measures with the goal of improving the rates achieved by the first

level in isolation. Two of them make use of an additional phone speech recognition,

while the two others employ an additional isolated word speech recognition. Both

the phone- and the word-based speech recognition compute the parameters used

in the Decision stage according to each confidence measure to accept or reject

each keyword proposed by the first level. Experimental results have shown that

the confidence measure which makes use of a phone-based speech recognition and

computes a modified Levenshtein distance from the sequence of phones according

to the time intervals of the keywords proposed by the first level achieves the

best system performance, with a reduction of about 43% relative in the False

Acceptance Rate (FAR), which causes a slight reduction of about 1% relative in

the Recognition Accuracy (RA) on the Spanish Albayzin database.

v



vi

For STD, we have presented a comparison between phone- and grapheme-based

acoustic units for Spanish language. Experimental results have shown that by

using only the acoustic information in the way of the HMMs which represent both

sets of units for a Spanish STD system, grapheme-based acoustic units outperform

phone-based ones. In addition to this, the combination of the output of each

system from each kind of acoustic unit to form the final output was shown to

outperform each system in isolation. Two novel applications of the MultiLayer

Perceptron (MLP)-based techniques and decision tree-based techniques have been

also presented as follows: A posterior probability computed by means of the MLP

training, along with the language model, were used to estimate the confidence

score for each occurrence proposed by the STD system. It was shown that such

approach improved in about 44% relative the performance achieved with standard

HMM-based techniques on the Spanish Albayzin database. The decision tree-

based approach was applied over an English meetings domain and consisted of

the classification of the occurrences proposed by the STD system in hit or False

Alarm (FA) by means of the decision tree and the rejection of those classified as

FA. To build the decision tree, several prosodic and lexical features have been used

as input features. It has been shown that such approach achieves a slight better

STD system performance than the absence of it of about 5% relative.



Resumen

En la actualidad, el número de aplicaciones que usan las técnicas basadas en re-

conocimiento de voz crece de forma imparable. Dentro de tales aplicaciones, la

extracción de información en voz es una actividad de reconocida importancia.

Las técnicas basadas en voz, como los reconocedores de habla continua, han sido

ampliamente usadas para desarrollar tales aplicaciones, por medio de los recono-

cedores de habla continua de gran vocabulario. Sin embargo, los sistemas de

reconocimiento de habla continua de gran vocabulario por śı mismos no son sufi-

cientes a la hora de realizar búsquedas en el contenido de audio por la siguiente

razón: en la extracción de información en voz, el conjunto de palabras que se suele

usar para acceder a la información almacenada en grandes repositorios de audio

incluye nombres propios, acrónimos, extranjerismos, que no suelen aparecer en el

vocabulario de los reconocedores de habla continua de gran vocabulario (es decir,

son palabras de fuera del vocabulario). Esto obliga a buscar y desarrollar nuevas

técnicas que permitan acceder a dicha información: el ”Reconocimiento de Pal-

abras Clave” y la ”Detección de Términos Hablados”. Estas dos técnicas intentan

solucionar el problema causado por las palabras fuera de vocabulario dentro de los

sistemas de extracción de información en voz. Esta tesis está enfocada al desar-

rollo de nuevos métodos y soluciones que son aplicados para el ”Reconocimiento

de Palabras Clave” y la ”Detección de Términos Hablados”.

Para el ”Reconocimiento de Palabras Clave”, hemos seguido una estrategia basada

en 2 niveles. El primer nivel hace uso de un estándar ”Reconocimiento de Palabras

Clave” basado en Modelos Ocultos de Markov, en el cual varios modelos de relleno

han sido explorados: alófonos, fonemas, clases amplias y un modelo genérico. El

segundo nivel presenta 4 medidas de confianza diferentes con el objetivo de mejorar

el resultado que ofrece el primer nivel. Dos de ellas hacen uso de un proceso

adicional de reconocimiento de voz basado en alófonos, mientras que las otras dos

emplean un reconocedor de palabras aisladas. Tanto el reconocedor de alófonos

como el de palabras aisladas, calculan los parámetros necesarios para que la medida

de confianza decida la aceptación o el rechazo de cada palabra clave propuesta por

el primer nivel. Los experimentos han demostrado que la medida de confianza

que hace uso de un reconocimiento de voz basado en alófonos, y calcula una

distancia de Levenshtein modificada a partir de la secuencia de alófonos reconocida

correspondiente a los intervalos temporales de las palabras clave propuestas por el

primer nivel, logra los mejores resultados, con una reducción relativa de la tasa de
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falsas aceptaciones de un 43% y una mı́nima reducción relativa del 1% en la tasa

de palabras clave detectadas de forma correcta sobre la base de datos española

ALBAYZIN.

Para la ”Detección de Términos Hablados”, hemos presentado una comparación

entre las unidades acústicas basadas en alófono y en grafema para el español. Los

experimentos han demostrado que, usando únicamente la información contenida

en los Modelos Ocultos de Markov que representan a cada unidad acústica para el

sistema de ”Detección de Términos Hablados” en español, las unidades acústicas

basadas en grafema mejoran a las basadas en alófono. Además, la combinación

de cada sistema a partir de cada conjunto de unidades acústicas para presen-

tar la salida final del sistema se ha demostrado que mejora a cada sistema por

separado. Dos nuevas aplicaciones de las técnicas basadas en perceptrones multi-

capa y árboles de decisión han sido también presentadas de la siguiente forma: la

probabilidad a posteriori calculada a partir del entrenamiento de un perceptrón

multi-capa, junto con el modelo de lenguaje, fueron usados para calcular la pun-

tuación (confianza) de cada palabra clave propuesta por el sistema de ”Detección

de Términos Hablados”. Se ha demostrado que esta técnica mejoró en un 44%

relativo el resultado obtenido con las técnicas basadas en Modelos Ocultos de

Markov sobre la base de datos española ALBAYZIN. La técnica basada en árboles

de decisión fue aplicada sobre un dominio de reuniones en inglés y consist́ıa en

la clasificación de las palabras clave propuestas por el sistema de ”Detección de

Términos Hablados” en acierto o falsa aceptación usando el árbol de decisión y el

rechazo de las clasificadas como falsa aceptación. En la construcción del árbol de

decisión, caracteŕısticas léxicas y prosódicas han sido usadas como caracteŕısticas

de entrada. Se ha demostrado que dicha técnica logra unos mı́nimos mejores re-

sultados comparado con la ausencia de la misma de alrededor de un 5% relativo.
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Chapter 1

Introduction

1.1 Introduction

Speech recognition is the process of converting an input acoustic signal to a set

of words. Applications such as voice dialing, call routing, domotic control, etc

are involved within this technology. In recent years, the ever-increasing volume

of audio data available online through the World Wide Web (WWW) means that

automatic methods for indexing and search are becoming essential. This last issue

is related to the search over audio-based content (Audio Mining). Broadcast News

(BN), Conversational Telephone Speech (CTS) and meetings are domains over

which these methods are widely applied to access to relevant information.

Garofolo claimed that the information extraction in large audio repositories was a

solved problem by means of the well trained and tuned Large Vocabulary Contin-

uous Speech Recognition (LVCSR) systems [1]. In this way, a search within the

output of such systems for the words required in the application would be enough.

Therefore, it was the main approach used in the past [2, 3, 4, 5, 6, 7]. However,

these systems suffer from three main drawbacks:

• Vocabulary coverage: the words that do not appear in the vocabulary of the

LVCSR system cannot be recognized, which leads to important errors in the

final output of the system.

• Computational cost: They are very expensive computationally.

1
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• Amount of training data: To train robust, accurate and useful LVCSR sys-

tems, a lot of data are required.

The two last drawbacks have been solved in the last years by means of the huge

amount of data available for many domains and the fast and the big storage capac-

ity of the machines used for this task. But the first one (Vocabulary coverage) still

remains in these days. It is accepted that if all of the words to search are in the

vocabulary of the LVCSR system, this approach achieves the best results. How-

ever, the words to search in the audio content are usually proper names, named

entities, acronyms, etc which are often Out-Of-Vocabulary (OOV) words because

they do not appear in the vocabulary of the LVCSR systems. This is considered to

be the main drawback of the LVCSR-based techniques applied over the search in

audio content. No matter how large the vocabulary is, speech recognizers always

have to deal with OOV words. In his study, Logan [3] claimed that over 10%

of the user queries contain OOV words in an information retrieval system. And

OOV words also tend to cause an error in neighbouring words, which degradates

dramatically the performance of the information retrieval system. When an OOV

word appears, a recognizer may hypothesize similar word or words from the vocab-

ulary instead, causing the neighbouring words to be mis-recognized. Therefore, to

deal with the OOV words, Keyword Spotting and, more recently, Spoken Term

Detection (STD) approximations, are used with the objective of addressing and

solving the OOV problem. Figure 1.1 represents the common framework related to

speech recognition in an information retrieval system, i.e., Audio Mining system.

Keyword Spotting deals with the identification of a reduced set of keywords in ut-

terances. The most common approach is the Hidden Markov Model (HMM)-based

keyword spotting, where the keywords are represented by their phonetic transcrip-

tion whereas the non-keywords are represented by means of filler (garbage) models

(fillers), which can vary from sub-word units, such as phones, syllables, graphemes,

etc to whole words. However, it mantains the drawback that a single change in the

vocabulary of the application makes necessary run the recognition process again,

which is the most time-consuming task in the whole process. Confidence mea-

sures are also used to increase the performance of the final system. The common

framework of a keyword spotting system is depicted in Figure 1.2.

On the other hand, STD, defined by the National Institute of Standards and

Technology (NIST) in 2006 [8] makes the recognition process be independent of
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Large Vocabulary 
Continuous Speech 
Recognition System

Keyword Spotting or
Spoken Term 

Detection

List of 
keywords

Out-Of-
Vocabulary

words

In-Vocabulary
words

<kw_in>…<kw_in>

<kw_OOV>…<kw_OOV>

Figure 1.1: The framework for speech recognition in an Audio Mining system.
<kw in> denotes a keyword which appears in the vocabulary of the LVCSR sys-
tem. <kw OOV> denotes a keyword which does not appear in the vocabulary

of the LVCSR system.

First level: 
HMM-based

keyword
spotting

Second level: 
Confidence

measure

List of
keywords

Input signal
Keywords

+ fillers

Figure 1.2: The framework of a keyword spotting system.

the list of keywords to search due to it is unknown during the recognition process,

contrary to Keyword Spotting where the list of keywords is known beforehand. It

causes that approaches to STD must be addressed in two different steps as it is

shown in Figure 1.3. The first step indexes the audio by means of sub-word units

(typically phonemes) commonly in the way of a lattice or 1-Best. The second

step employs a Keywords search algorithm to build the keywords from this index.

Although NIST considers optional the use of the audio in a step different from the

first one, as the speed is considered as important as the accuracy in STD, we have

only made use of the audio in the first step. In addition, state-of-the-art STD

systems also follow such decision. It is well-known that this kind of approaches

achieve poorer results than the keyword spotting ones, due to the absence of the

word-level lexical information during the decoding process, but it allows to search

any keyword within huge audio repositories faster. Nowadays, a combination of an

LVCSR system to search for in-vocabulary (INV) words with such approaches for
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OOV words is the main technique applied to build efficient information retrieval

systems.

Sub-word
unit decoder 

List of 
keywords

Input signal Subword
units 1-Best 

or lattice Keywords
search

algorithm

Figure 1.3: The framework of an STD system.

In this thesis we face the problem of solving the OOV problem of a traditional

LVCSR system. For such purpose, we propose novel approaches to deal with Key-

word Spotting and STD tasks. The best one presented for Keyword Spotting

combines two different levels. The first level integrates the common and widely

used HMM-based keyword spotting method. The second level uses a phone-based

approach (as confidence measure) with the intention of reducing the errors pro-

duced in the first level. This approach exploits all of the benefits of two decoding

processes in parallel, the knowledge of the errors appearing during the phone-

based decoding and the knowledge of the list of keywords to search. A comparison

between this new approach and another based on the widely used likelihood com-

puted from the Viterbi algorithm during the decoding process is presented.

Our contribution to STD focuses on the comparison and combination of two

different acoustic models (phoneme-based units and grapheme-based units) for

the Spanish language. Due to the relationship between its set of phonemes and

graphemes is very close and the near Word Error Rate (WER) of the grapheme-

and phoneme-based LVCSR systems in Spanish, we hypothesize that grapheme-

based units can achieve at least similar performance to the phoneme-based units

for a vocabulary independent STD system for Spanish. The same comparison has

been done for the best architecture for Keyword Spotting. On the other hand,

the performance of the STD systems greatly relies on the confidence score com-

puted for each occurrence. Therefore, a novel approach based on a Multi-Layer

Perceptron (MLP) is presented. It is trained from the sequence of feature vectors

extracted from the input acoustic signal and computes a posterior probability for

each sub-word unit in the keyword according to the feature vectors. Such pos-

terior probability and the language model (LM) component are used to calculate
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the confidence score for each occurrence. This approach has been evaluated over

the Spanish language for both phoneme- and grapheme-based units.

We also present a novel approach for the STD task over meetings domain. It is

based on Classification And Regression Trees (CARTs), widely used for classifica-

tion tasks and already used for other tasks such as hot spot in meetings, sentence

boundary detection and finding disfluencies in conversational speech. Since the

occurrences hyphothesized in the STD system are classified as hit (if the putative

occurrence is correct) or false alarm (FA) (if the putative occurrence is incorrect),

we make use of this approach to classify the putative list of occurrences as one of

these two classes with the final purpose of rejecting those classified as FA.

1.2 Thesis goals

There are three main approaches that can be used to retrieve a set of keywords

from the audio content. The first approach is to use an LVCSR system and after

that a simple search of the keywords within the output (1-Best or lattice) of the

recognition step. This output is a string composed of the words defined in the

lexicon or vocabulary of such system. A posterior linear search within this output

(1-Best or lattice of words) of the relevant keywords presents the final output

of the system. The second approach is to use an HMM-based keyword spotting

process which outputs a string composed of the keywords plus the filler models to

absorb the non-keyword intervals in the audio content. Such keywords constitute

the final output of the system, while filler models are rejected. Finally, the third

approach can be used for the STD task explained before, where the output of the

recognition step is composed of sub-word units without making use of the audio

in subsequent steps prior to build the relevant keywords from such units.

The main goal of this thesis is to develop several approaches to deal with the

Keyword Spotting and STD tasks to solve the OOV problem of an LVCSR system.

Therefore, the approach consisting of an LVCSR system is beyond the scope of this

thesis. Read speech data and meetings domain have been used in the experimental

task. In achieving our main goal, several issues are addressed:

• Which approach does achieve the best results for such tasks?
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• Which confidence measure does improve the final performance for each ar-

chitecture?

• Which kind of sub-word units should be used in the acoustic modelling for

these tasks?

• Which type of units should be used as filler models in the keyword spotting

task?

• Which type of features should be used to represent the input acoustic signal?

In this thesis, we make the following contributions to the Keyword Spotting and

STD tasks:

• The development of new approaches and confidence measures on the keyword

spotting task.

• The comparison of two types of sub-word units (phones and graphemes) for

Spanish language for both tasks and the combination of them for Spanish

STD.

• The comparison of different techniques to calculate the final confidence score

for the keywords in the STD task.

• The development of a new confidence measure to deal with the STD task

based on CARTs.

1.3 Outline

The remainder of this thesis is organized into seven chapters. Following is a brief

description of each:

• Chapter 2: Experimental background

This chapter provides the basic background needed throughout the thesis. It

briefly describes the HTK tool used for the recognition system, the acoustic

models and the feature extraction as well as the lexical models and LMs used

throughout the tesis. It also provides an overview of the corpora used in the

thesis.
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• Chapter 3: Prior research and State-of-the-art

This chapter describes the main approaches used to deal with the Keyword

Spotting and STD tasks to solve the OOV problem so far. Previously, it also

presents the approaches used to model the OOV words in LVCSR systems

and analyzes which of them can be applied on Keyword Spotting and STD.

• Chapter 4: Contributions to Keyword Spotting

This chapter describes the architectures developed for the keyword spotting

task along with the confidence measures proposed for this task. We also

describe the filler models used in this task. The second half of the chapter

presents the experiments over the geographical domain in the Spanish Al-

bayzin database for these architectures. We compare the results achieved by

the architectures using the Recognition Accuracy (RA) and the False Accep-

tance Rate (FAR) along with the standard Figure-Of-Merit (FOM) metric.

We also make an analysis of the performance of the different architectures

presented according to the length (number of phones) of the keywords.

• Chapter 5: Contributions to Spoken Term Detection

This chapter describes the approaches developed for the STD task. It

presents the experiments over the same geographical domain as the key-

word spotting task and over data recorded for the meetings domain. We

evaluate the results using the FOM metric and the Actual Term Weighted

Value (ATWV) metric, and present the Detection Error Tradeoff (DET)

curve according to the ATWV metric as well.

• Chapter 6: Phone- versus Grapheme-based systems for Keyword Spotting

and Spoken Term Detection in Spanish

This chapter describes the different behaviour of the phone and grapheme

acoustic models when are applied over Keyword Spotting and STD in Span-

ish. One architecture for Keyword Spotting and two architectures for STD

have been used to evaluate both types of acoustic models. It compares

the results presented over the geographical domain in the Spanish Al-

bayzin database for both types of acoustic models using two different fea-

ture extraction processes. The FOM metric, the Occurrence-weighted value

(OCC) metric and the DET curve according to the ATWV metric have been

used to evaluate them. We also present the powerful combination of phone

and grapheme acoustic models in the STD task. For such combination, we
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present the results in terms of FOM and ATWV metrics and plot the DET

curve got from the ATWV metric.

• Chapter 7: Summary, contributions and future work

This chapter presents a summary of the innovations presented in the the-

sis. It also reports the main contributions presented in this thesis work. It

concludes with a discussion on possible future work.



Chapter 2

Experimental background

2.1 Introduction

This chapter provides the general background directly relevant to the content of

this thesis. In the first part, we review the main components of the HTK tool used

throughout this thesis for the speech recognition work along with the data used

for each. The second part includes a description of the corpora used in this thesis:

the read speech Spanish Albayzin database and data recorded in English meet-

ings (Meetings speech data) from several institutes: the International Computer

Science Institute (ICSI) at Berkeley, the Interactive Systems Laboratories (ISL)

at Carnegie Mellon University (CMU), the National Institute for Standards and

Technology (NIST), the Linguistic Data Consortium (LDC), Virginia Polytechnic

and State University (VT) and partners of the Augmented Multiparty Interaction

(AMI) project.

2.2 The HTK recognition system

HTK [9] is a toolkit which is mainly designed for building HMM-based speech pro-

cessing tools, in particular Automatic Speech Recognition (ASR) systems. It offers

a set of tools to carry out the basic functions related to the speech recognition:

The feature extraction, from which the input acoustic signal is transformed into

a sequence of vectors (Mel-Frequency Cepstral Coefficient (MFCC), Perceptual

Linear Predictive (PLP), Linear Predictive Coding Coefficient (LPCC), etc), used

9
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during the training of the acoustic models and the recognition (decoding) process.

The training of the acoustic models which consists of the building of the HMMs by

means of the Baum-Welch algorithm, from the vectors extracted previously. And

finally the recognition process from which, by means of the Viterbi algorithm, the

input signal is transformed into a string composed of the required recognized units

(phonemes, words, etc). In addition to this, this tool also provides components

from which LMs to be used during the recognition process can be built. The set

of units to be recognized is defined in the lexicon of the ASR system and typically

consists of phones, graphemes, syllables or words. Figure 2.1 represents the com-

mon framework of an ASR system. In the next sections a brief overview of these

components is presented, along with the data used for each. Readers are referred

to [9] to get a full knowledge of these standard components. This tool has been

used throughout the thesis for the speech recognition work.

Feature 
extraction Recognition

Language 
Model

This is a string

Recognition 
output

Acoustic 
Models
HMM

Input signal

Lexicon

Figure 2.1: The basic steps in the framework of a standard ASR system.

Theoretically, the speech recognition problem is defined as follows: From a se-

quence of feature vectors used as observations which represent the acoustic sig-

nal O = {o1, o2, ..., on}, the goal is to find the best sequence of units W =

{w1, w2, ..., wm} presented in the input acoustic signal. It can be expressed as

follows:
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W = argmaxwP (w|O) (2.1)

This equation is easily transformed by means of Bayes’ rule in this one:

W = argmaxw
P (O|w)P (w)

P (O)
(2.2)

And assuming that the denominator in Equation 2.2 is constant, the solution to the

speech recognition problem is equivalent to solve the following final formulation:

W = argmaxwP (O|w)P (w) (2.3)

where P (w) is computed from the LM and P (O|w) is computed from the HMMs

which represent the sequence of units defined in the lexicon.

2.2.1 Feature extraction

The aim of this step is to get a set of parameters from each frame of the input

acoustic signal which represents the most relevant information of the signal. Two

types of features have been used throughout the experiments of the thesis. The

first one is the standard feature extraction based on the MFCCs which are widely

used to represent the audio signal. The second one is the combination of these

MFCCs with the more recently defined Tandem Features, built from the training

of an MLP from the PLP coefficients or MFCCs of the audio signal, which outputs

a posterior probability for each unit defined in the acoustic models according to

each frame of the audio signal.

2.2.1.1 Tandem Features

Recently, new acoustic features have been proposed to replace or augment the

standard MFCC, PLP or LPCC, which are commonly known as standard features.

They are based on the training of an MLP whose input is the standard MFCC,

PLP or LPCC features and whose output is the posterior probability of each class

(unit in the acoustic models) given the features. In 2000, Hermansky et al. [10]
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proposed the use of the MLP outputs as observations (in an identical way as the

standard features) for a Gaussian Mixture Models (GMM)-HMM system. Zhu et

al. [11] proposed to merge the MLP outputs with the standard features to get the

observations used as input for the GMM-HMM system. And this work and other

related works have also proved that the combination of both types of features

(standard features and the outputs of the MLP) achieves better performance in

ASR systems [12, 13, 14, 15, 16, 17, 18, 19] compared with using the standard

features in isolation.

The training process followed to extract such tandem features and the combination

with the standard MFCCs consists of the following steps:

1. The standard PLP coefficients are extracted from the input acoustic signal, in

an identical fashion as the MFCCs are.

2. The MLP is trained (weights are computed) using the Quicknet software [20]

from the PLP coefficients computed previously. This MLP contains 3 layers: the

input layer, a single hidden layer and an output layer. The input layer is a window

of 2W + 1 frames of acoustic features. W = 4 in our case, so a 9-frame input

window is used. Each of these frames contains 39 PLP coefficients, so 351 units

are used for the input layer. The number of units in the hidden layer, along with

the number of epocs and the learning factor in the MLP training, are computed

during the training of different MLPs varying these numbers to maximize the cross-

validation accuracy. The output layer contains as many units as the number of

acoustic models. The MLP was trained using a softmax output activation, which

can be used to estimate the class posterior probabilities for a classification task.

Figure 2.2 shows the structure of the MLP along with the 3 layers.

3. The posterior probability for each 9-frame input window for each of the units in

the output layer is computed. Each posterior is considered to be a new coefficient

in the future new feature vector composed of the MFCCs and the tandem features.

4. A global decorrelation by using a Karhunen-Loeve (KL) transform is applied

over the posterior probabilities computed in the step 3. Therefore, there will be

less coefficients in the tandem features vector after this step. This transform is

applied according to the property of that such posterior probabilities contain one

large value (corresponding to the current acoustic unit) whereas all of the other

values are much smaller.
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5. Merge the MFCCs and the posterior probabilities (i.e, coefficients) resulting

from the step 4 (i.e., after the KL transform).

The step 2 is just required to be applied over the training data used to build

the HMMs from the MFCC+Tandem features combination. The rest of data sets

made use of such MLP and all of the steps except 2 are computed. For them, the

posterior probabilites were computed from the set of weights calculated during the

MLP training stage.

In addition to this, it is necessary to train the number of posterior probabilities

(i.e., coefficients), that remains after the KL transform in the step 4, along with

the matrix used in it. It has been done from the training data as well. Next, such

matrix has been applied in the KL transform for the rest of data sets.

The steps followed to get the MFCC+Tandem features have been taken from other

approaches proposed in the literature [10, 11].
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Figure 2.2: The MLP network for the Tandem Features extraction.

2.2.2 Acoustic modelling

HMMs have been used as acoustic models throughout the thesis. Both context-

independent and context-dependent sub-word units have been built using the

Baum-Welch algorithm based on the maximum likelihood criterion provided within
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the HTK tool [9]. At the beginning, all context-independent models were made to

be equally and subsequent iterations of such algorithm estimated the final values

for each acoustic model. When moving from context-independent to context-

dependent models, HTK’s standard decision tree method was used.

The acoustic models make use of two different types of sub-word units for the

Keyword Spotting and STD tasks for Spanish and one for English. The first

one consists of the set of allophones (phones) [21] in Spanish language. The sec-

ond one is the set of graphemes [22] in Spanish language. The next two sec-

tions describe these two types of sub-word units in more detail. For the En-

glish experiments we have used the standard set of phonemes defined for English

(ftp://ftp.cs.cmu.edu/project/speech/dict/phoneset.0.6 ).

2.2.2.1 Phoneme-based units for Spanish

The well-defined set of 47 allophones (phones) proposed by Quilis [21] was chosen

for the phoneme-based systems throughout the thesis. This set differs from the

standard set of phonemes for Spanish, composed commonly by 24 phonemes, due

to it presents a slight better phoneme recognition accuracy (77.2% against 76.6%)

for the 24-phoneme based speech recognition and it represents the different sounds

in Spanish more accurately. Moreover, it allows us to make a different model for

couple of words which only differ in the stressed vowel, e.g. ”cuadro” (picture)

and ”cuadró” (the past tense of the verb to balance). In this case, more different

words can be recognized, and therefore more complex systems can be built in using

such set. In addition to this, previous works in Spanish speech recognition have

shown its good performance on isolated and continuous speech recognition tasks

[23, 24]. A full inventory of this set of allophones can be found in Appendix A,

with an example of a word containing each.

2.2.2.2 Grapheme-based units for Spanish

Although there is a simple relationship between spelling and sound in Spanish,

care must be taken in defining the inventory of graphemes [22]. We will use the

term “grapheme” to mean a single unit, which is a sequence of one or more letters,

to be used for acoustic modelling. This may not be precisely match the alphabet
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used for writing because we can expect better performance if we account for a

small number of language-specific special cases.

The letter ”h” only affects the phonetic realisation when it appears in the combina-

tion ”ch”, as in ”chaqueta” (”jacket”) or ”Pancho” (a proper name). ”ch” is always

pronounced [tS]. Therefore ”ch” is considered to be a grapheme (digrapheme in

this case) and the letter ”h” can be removed everywhere else. The only exceptions

are in loanwords, such as ”Sáhara” (borrowed from Arabic) or ”hall” (borrowed

from English) where the ”h” is pronounced somewhere along a [h] - [X] continuum,

depending on the speaker. In this thesis, we have ignored the pronunciation of

”h” in loanwords, because the Spanish corpus used for experimentation contains

no loanwords.

The combination ”ll” is pronounced [dZ] or [y], depending on context, and so is

also considered a grapheme (digrapheme in this case) because its pronunciation is

not related to that of its constituent letters. ”ñ” is also considered a grapheme for

the same reason (it is not an ”n” plus a ”˜”). It is always pronounced [ñ].

There are therefore a total of 28 grapheme units in our systems: a, b, c, ch, d, e,

f, g, i, j, k, l, ll, m, n, ñ, o, p, q, r, s, t, u, v, w, x, y and z.

There are, of course, other letter combinations that could be considered as single

graphemes, such as ”rr”, but a balance must be struck between capturing these

special cases of letter-to-sound relationships, and keeping the grapheme inventory

size small for statistical modelling reasons.

2.2.2.3 Phoneme-based units for English

The standard set of phonemes in English taken from the CMU dictionary was used

for the English STD system presented in this thesis. It is composed of 39 English

phonemes, which are specified in Appendix B along with an example of a word

containing each.

2.2.3 Lexical Modelling

For both Keyword Spotting and STD, the final objective is to detect a set of

keywords presented in the input acoustic signal. For Keyword Spotting, where the
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list of keywords is known prior to the recognition process, the lexical modelling

consists of those keywords plus filler models to deal with the non-keyword segments

of the audio signal. To compare phone- and grapheme-based units as acoustic

models, in the former case, the keywords are modeled by a sequence of phones,

extracted for each keyword using a grapheme-to-sound module. In the latter case,

the keywords are modeled by their ortographic form, according to the grapheme-

based units explained in the Section 2.2.2.2. For STD, where the recognition is

forced to be performed by sub-word units in all this thesis work, the lexical models

were composed of phones and graphemes respectively for each kind of acoustic

model for Spanish and they were composed of phonemes for English.

2.2.4 Language Modelling

It is very common in continuous speech recognition systems that the language

modelling is defined by means of N-grams, commonly in the way of word bi-grams

or tri-grams. However, for systems where the vocabulary of the application is very

likely to change, such LMs should be recalculated each time a new keyword is

added. For such reason, language modelling in Keyword Spotting and especially

in STD (in which the recognition process followed in this thesis work is made by

sub-word units) should differ from such word-based N-grams. In our work, we have

defined an LM in the keyword spotting systems consisting of a uni-gram where

the probability assigned to a keyword model and filler model is different and a

bi-gram trained from sub-word units for Spanish and English STD systems. Table

2.1 lists the data used to build the LM for the English STD system.

2.2.5 Recognition

The aim of the recognition, also known as decoding process, is to find the best

path through the labelled segmented network, with the lexicon (pronunciation

models) and the LM serving as constraints. The Viterbi algorithm is used to

perform the decoding process and to hypothesize the final (1-Best or lattice) output

corresponding to the audio signal. The aim of this algorithm is to find the most

likely sequence of units (words or sub-word units) corresponding to the acoustic

feature vectors got in the feature extraction process. A whole description of this

algorithm can be found in [25].
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Corpus millions of words
Switchboard/CHE 3.5

Fisher 10.5
Web (Switchboard) 163

Web (Fisher) 484
Web (Fisher topics) 156

BBC-THISL 33
HUB4-LM96 152

SDSR99-Newswire 39
ICSI/ISL/NIST/AMI 1.5

Web (ICSI) 128
Web (AMI) 100
Web (CHIL) 70

Total 1355.5

Table 2.1: Text resources to train the LM for the phoneme-based system on
the English meetings domain.

2.3 The speech corpora

Two different sets of data were used in the experiments of the thesis. The Spanish

Albayzin database and data recorded in an English meetings domain. The next

two sections describe each set of data in more detail.

2.3.1 ALBAYZIN database

The Spanish Albayzin database [26] is a read speech database of about 10.2 hours

which contains two separate sub-corpora: a phonetically rich component and a

geographic corpus. Each of these is divided into training and test sets. Therefore,

there exist four distinct, non-overlapping portions of the data as described by

Table 2.2.

The geographic corpus was used throughout the experimental work in the Keyword

Spotting and STD tasks for Spanish. It contains sentences and questions related

to the Spanish geography such as: ”dime donde nace el ŕıo más corto que pasa por

Barcelona”, ”¿a qué altura se encuentra el pico más alto del sistema penibético?”

and ”todas las ciudades con población superior a un millón de habitantes”.
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Phonetic corpus
(orthographically transcribed and
phonetically labelled)

Geographic corpus
(orthographically transcribed)

Train set Name: phonetic training set
Contains: 4800 phonetically bal-
anced sentences from 164 speakers:
3.3 hours.

Name: geographic training
set
Contains: 4400 sentences
from 88 speakers: 3.3 hours.

Test set Name: phonetic test set
Contains: 2000 phonetically bal-
anced sentences from 40 speakers:
1.6 hours.

Name: geographic test set
Contains: 2400 sentences
from 48 speakers: 2 hours.

Table 2.2: Specification of the sub-corpora for the Albayzin database.

2.3.2 Meetings speech data

2.3.2.1 Meetings 2005 data

This set of data (meetings-05) includes speech collected and transcribed by ICSI

at Berkeley, ISL at CMU, NIST and AMI partners. It includes 73 hours of speech

from 30 meetings at ICSI [27], 13 hours of speech from 15 meetings at NIST, 10

hours from 18 meetings at ISL [28] and 16 hours from 35 meetings by AMI partners

[29]. Totally, these data contain 104 hours of speech excluding the silence regions.

2.3.2.2 2004 Spring NIST Rich Transcription (RT-04S) Development

data

The RT-04S Development data (RT-04Sdev) is the development set of data (con-

taining meeting speech and reference transcripts) used in the RT-04S evaluation

provided by NIST.

This set of data contains speech collected and/or transcribed by ICSI at Berkeley,

ISL at CMU, NIST and LDC. It consists of 8 meetings which contain 1.4 hours

of speech in total. Each meeting was recorded using lapel microphones, head-

mounted microphones (IHMs) and at least one distant microphone, although in

this thesis we have only used the speech recorded from the IHMs. Table 2.3

summarizes the portion of data recorded in each institute.
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In using this set of data, we have partitioned the original files into short segments,

each of which represents one utterance and have excluded all of the segments that

just contain silence to complete the 1758 utterances.

More information about this database can be found in [30].

2.3.2.3 2004 Spring NIST Rich Transcription (RT-04S) Evaluation data

The RT-04S Evaluation data (RT-04Seval) contains the test material (both meet-

ing speech and reference transcripts) used in the RT-04S evaluation provided by

NIST.

This set of data contains speech collected and/or transcribed by ICSI at Berkeley,

ISL at CMU, NIST and LDC. It consists of 8 meetings which contain 1.7 hours

of speech in total. Each meeting was recorded using an IHM per person and at

least one distant microphone, although in this thesis we have only used the speech

recorded from the IHMs. Table 2.3 summarizes the portion of data recorded in

each institute.

As for the RT-04Sdev data, we have partitioned the original files into short seg-

ments, each of which represents one utterance and have excluded all of the seg-

ments that just contain silence to complete the 2501 utterances.

More information about this database can be found in [30].

2.3.2.4 2005 Spring NIST Rich Transcription (RT-05S) Evaluation data

The RT-05S Evaluation data (RT-05Seval) contains the test material (both meet-

ing speech and reference transcripts) used in the RT-05S evaluation provided by

NIST.

This set of data contains speech collected and/or transcribed by ICSI at Berkeley,

ISL at CMU, AMI partners and VT. It consists of 10 meetings which contain

2.1 hours. One IHM per person and several distant microphones were used in

recording the meetings. As in the RT-04S Evaluation, we have only selected the

data from the IHMs. Table 2.3 summarizes the portion of data recorded in each

institute.
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As before, the original audio files were divided into short segments, to complete

the 3130 utterances used as evaluation data. Again, the silence segments were

excluded.

More information of this database can be found in [31].

utt/hrs
meetings-05 RT-04Sdev RT-04Seval RT-05Seval

ICSI 101136/66.7 509/0.35 604/0.42 596/0.44
NIST 11767/12.8 377/0.35 560/0.40 638/0.41
ISL 10476/8.9 366/0.32 694/0.45 749/0.46
LDC – 506/0.38 643/0.40 –
AMI 13443/15.5 – – 570/0.39
VT – – – 577/0.35
TOTAL 136822/103.9 1758/1.4 2501/1.7 3130/2.1

Table 2.3: Division by recording institute for the meetings data. utt refers to
the number of utterances recorded in each institute and hrs refers to the number

of hours of speech recorded in each institute.

2.3.3 Summary

In this section we have reported a short background related to this thesis. In doing,

we have reported a brief overview of the HTK tool used throughout the thesis for

the speech recognition work. We have also presented the data used within each

component of the tool for Keyword Spotting and STD. Finally, we have presented

an overview of the corpora used for the experiments in this thesis.



Chapter 3

Prior research and

State-of-the-art

3.1 Introduction

In this chapter we present an overview of the Keyword Spotting and STD tech-

niques used for years in both tasks. First, we describe the techniques used to

model the OOV words in continuous speech recognition. We later describe some

related work developed for Keyword Spotting and STD (without making use of

the audio in any step except the indexing one) to solve the OOV problem.

3.2 Approaches to model OOV words in contin-

uous speech recognition

According to Bazzi [32], there are four common categories in which the approaches

used to model the OOV words in LVCSR systems can be classified. Table 3.1

presents the approaches that can be used for Keyword Spotting (different from

the LVCSR-based approach) and STD (without making use of the audio in any

step except the indexing one) to solve the OOV problem.

21
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3.2.1 Vocabulary Optimization

The first attempt is to reduce the OOV rate of the LVCSR systems as much as

possible. It can be done in two different ways: On the one hand, it is possible

to augment the vocabulary size for large vocabulary-independent recognizers. On

the other hand, it is also possible to select those words belonging to a specific

domain and to incorporate them to the final vocabulary of the application. In

both cases, the OOV problem is not totally solved due to there will still be some

words belonging to the domain that are not going to be selected, mainly proper

names and foreign words. Another drawback is that increasing the vocabulary

makes the recognition process slower and more expensive computationally. And

sometimes it could also degrade the final performance due to more words are

involved during the recognition process. In addition to this, the LM needs to be

retrained as well.

No definitive improvement can be done to solve the OOV problem in the LVCSR

systems so Keyword Spotting and STD approaches are used for it.

3.2.2 Confidence Scoring

The second strategy tries to predict if a recognized word is actually a substitution

of an OOV word in the output of the LVCSR system. These types of approaches

only try to recover from some errors occuring in the recognition process caused by

the absence in the vocabulary of the actual word presented in the speech signal.

Due to there is no possibility of retrieving such OOV words because they do not

appear in the vocabulary of the LVCSR system, approaches in this category cannot

be used for Keyword Spotting and STD tasks.

3.2.3 Multi-stage Subword Recognition

The third strategy is the multi-stage recognition approach. This strategy splits the

whole process into two or more steps. In the first step, a sub-word unit decoding is

performed to retrieve the most likely sequence of sub-word units (phones, syllables,

etc), commonly in the way of a lattice, and to store them as an index. The

second step uses that index to build the words according to the vocabulary of the
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application. It is well-known that this strategy performs worse than the LVCSR-

based approach if we only focus on the INV words, due to the word-level lexical

knowledge is not used during the decoding process. However, as Keyword Spotting

deals with the OOV words, this strategy is well-sited to face it. In addition to

this, since this strategy does not make any a priori knowledge of those OOV words

during the recognition process, it is the only able to STD.

3.2.4 Filler Models

Filler models have been the most common approach to handle OOV words. And

in fact, these models have been widely used in keyword spotting tasks for years,

presenting better performance than the multi-stage subword recognition approach.

Typically, a filler model acts as a generic word or a garbage model. Here, it is

important to decide how this filler model is integrated into the LM component,

how many filler models are used and which data are used to train them. The main

difference between the filler model in OOV modelling and in Keyword Spotting

is that in Keyword Spotting, its main purpose is to absorb the non-keyword part

of speech, while in OOV modelling is used to detect the OOV words, which are

possibly the most important in the utterance. The main drawback of the filler

models is that they are highly unconstrained and they may absorb some parts of

the speech corresponding to relevant keywords.

Therefore, this strategy can be used in Keyword Spotting, but not in STD, due

to the list of keywords must be known when the recognition process is run. It

must be noted that, as commented in Chapter 1, all of the approaches used for

the STD task in this thesis work do not make use of the audio in any step except

the recognition, i.e., indexing one, so the list of keywords cannot deal with the

audio files directly. In this strategy, both the lexicon and the LM component are

composed by the list of keywords plus the filler models.
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Keyword Spotting Spoken Term Detection (*)
Vocabulary Optimization NO NO
Confidence Scoring NO NO
Multi-stage Subword Recognition YES YES
Filler Models YES NO

Table 3.1: Approaches for OOV modelling capable of Keyword Spotting and
STD (*) (without making use of the audio in any step except the indexing one)

3.3 Approaches to access the OOV words in con-

tinuous speech recognition: Keyword Spot-

ting and Spoken Term Detection

For years, Keyword Spotting and more recently STD, defined by NIST, have been

widely used to access to the OOV words (i.e., to solve the OOV problem) of the

LVCSR systems with the final objective of getting relevant information within the

audio content. The following two sections describe the techniques and approaches

developed for them.

3.3.1 Keyword Spotting

3.3.1.1 HMM-based approaches for Keyword Spotting

There are two basic methods adopted for Keyword Spotting for years, apart from

the well-known search within the output (1-Best or lattice) of an LVCSR system,

but impractical for the applications which deal with OOV words.

The most widely method used has been the HMM-based keyword spotting intro-

duced by Rose and Paul [33] where filler models are used to absorb the non-keyword

intervals of the speech and the keywords are built from their sequence of phones

[34, 35, 36, 37, 38, 39, 40]. It outputs the sequence of keywords and filler models

resulting from the HMM-based decoding process. The next sections describe the

variety of filler models and confidence measures used in these works along with

the results in more detail.
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The other method proposes the use of a Finite State Grammar (FSG) [41] instead

of the filler models. This method suffers from the substantial limitation of its

inability of covering all of the possible words appearing in the speech data, i.e.,

the same limitation that the LVCSR systems. Such methods make use of some

specific words (I, need, want, please, find, etc) instead of the filler models to deal

with the non-keyword intervals. Guo et al. [41] showed that in case the test set

contains data that the FSG can recognize (i.e., is composed by these specific words

plus the keywords), this method gets a better performance than the filler model,

due to a whole-word level information is used. However, when the test set is

composed by data that are not defined in the FSG, such method presents a worse

system performance. It means that this method is only valid when the domain over

which the keyword spotting system is developed is very restricted and the words

appearing in the speech data are very well defined, e.g. auto-attendant systems,

and generally speaking, in systems where the user is only allowed to speak a well-

defined set of words related to a very specific domain (flight booking, account bank

management, etc). For their experiments, they selected 602 utterances which only

contained a single name, 298 sentences that can be recognized by the FSG and

880 sentences that were not defined in the FSG.

An approach which combines both methods has been also investigated by Yining

et al. [42], achieving a better result than the one based on filler models. Such

approach generates a Mixed Grammar Model (MGM) where both filler models

and those specific words (seven words in their work) are merged within the LM

component prior to the decoding process. Experiments for such approach selected

498 utterances which only contained a single keyword and 272 utterances with only

one keyword in each along with other non-relevant words. Table 3.2 summarizes

the comparison of each method and the combination of both.

Filler models FSG MGM
Performance Fair Excellent Good
Robustness Good Poor Good
Adapting a prior knowledge No Yes Yes
Covering all the possibilities Yes No Yes

Table 3.2: Methods applied to HMM-based Keyword Spotting. This table has
been taken from Yining et al.[42]
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3.3.1.2 Keyword Spotting without filler models

Modifications to the widely used Viterbi algorithm during the decoding process

to avoid the use of filler or garbage models for Keyword Spotting have been also

proposed. Silaghi and Bourlard [43] presented an iterating Viterbi decoding al-

gorithm, in which instead of trying all of the possible start and end points for a

putative keyword according to the input signal, their iterative algorithm finds for

each time stamp t, the optimal path from the beginning to t and updates the con-

fidence value from which compute if it has fallen below a threshold and decide that

there is a keyword in such path. Such confidence value is calculated from the lo-

cal posterior probability (output values assigned to each frame for each phoneme)

from the training of an MLP used in a hybrid HMM/Artificial Neural Network

(ANN) system [44]. They only considered the case of detecting one keyword per

utterance, with non-keyword segments at the left and right of the putative key-

word. They chose 100 keywords from the BREF database [45] and showed that

the system performance is comparable to other alternative approaches.

3.3.1.3 Hybrid Keyword Spotting

Yu and Seide [46] presented a hybrid word/phoneme-based approach consisting of

a prior combination and a posterior combination. The phoneme-based approach is

a lattice-based word spotting where a phonetic word-fragment lattice is generated.

It contains word fragments which may vary from syllables to whole words, along

with phonemes. A posterior step to build the keywords from such fragments in the

lattice is required. The word-based approach generates a word lattice over which

find the set of relevant keywords. A trigram for the word-based approach and a

bigram for the phoneme-based approach were used as LMs. They showed that the

phoneme-based approach achieved only a little worse accuracy than the word-based

approach for INV words and it still maintained similar performance for OOV words

(which cannot be found by the word-based approach). The hybrid word/phoneme

approach is composed of two different combinations. The posterior combination

takes the keywords hypothesized by the word- and phoneme-based approaches

separately and merged them into a single output. The new confidence score for

each keyword merged is a linear combination of the two posterior probabilities,

with a weight applied over each. The prior combination integrated both phonemic

and graphemic versions of a word in a single decoding process (thus the dictionary
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contains both phonemic and graphemic representations of each word). In this case,

both LMs and vocabularies are combined prior the decoding process. The easiest

way to do such combination is based on utterance-level which is similar to posterior

combination. Within it, transitions between words and phonemes are not allowed,

so such combination is done by merging the word and phoneme lattices and by

connecting the start and end times. The main drawback of such method is that

it still needs two different recognition processes, each of these generating each set

of lattices. For this reason, a word-level prior combination was presented, which

combined a hybrid LM by doing a simple linear interpolation between the word-

and the phoneme-level LMs. Experiments were performed over the LDC Voicemail

Corpus [47]. To test the system over two different domains, they presented two

versions for the word and hybrid approaches, one in domain and another out of

domain. The first one uses the same corpus (although a non-overlapping set of

data) for both training the LMs and testing the system, while the second used a

different corpus (Switchboard) to build the word-based LM and to test the system

(Voicemail). The list of keywords consisted of 2049 entries, with 620 OOV entries

for the in domain scenario and 530 OOV entries for the out of domain one. They

concluded that the phoneme-based approach achieved better performance than the

word-based approach for OOV words in the in domain scenario and out of domain

scenario for both OOV and INV words. They also showed that the posterior

combination achieved better performance in all the cases (for both INV and OOV

words and for the two scenarios) compared with each approach (phoneme-based

or word-based) in isolation. And similar performance was achieved when using

the word-level prior combination and the posterior combination, with a single

recognition pass in the former and a double recognition pass in the latter.

3.3.1.4 General approaches for Keyword Spotting

Szoke et al. [39] presented several approaches for keyword spotting systems

(KWS). Such approaches relate the well-known state-of-the-art for such task. In

this way, they presented a LVCSR-based lattice keyword spotting system, where

they search the keywords within the output (word lattice) of the LVCSR system.

They also presented an acoustic KWS where keyword models are composed by

phoneme models and the OOV words are absorbed by filler models represented by

a loop of the same models. And finally they presented a third approach based on a
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prior phoneme-lattice based decoding and a posterior step which searchs for the ex-

act sequence of phonemes and is able to handle substitutions and insertions in such

lattice to hypothesize if a keyword was spotted or was not. For the experiments,

they used the ICSI meetings database, selecting 17 keywords appearing more than

95 times each in the test set. All these words were INV, so it is expected that the

LVCSR-based KWS system achieves the best performance. Context-dependent

acoustic models and a trigram LM were used to generate the word lattices in the

LVCSR system. A recognition system based on temporal patterns (TRAPs) and

neural networks (NNs) [48] was used for both the acoustic and phoneme lattice-

based approaches, due to its better performance over phoneme decoding than the

traditional systems based on HMM/GMM. They even showed better performance

with the TRAP-based acoustic KWS using monophones as acoustic models than

using triphones with the HMM/GMM-based one. No LM was used for both acous-

tic KWS and phoneme-lattice based KWS. They conclude in their study that the

LVCSR-based lattice KWS achieved the best rate (it must be noted that all of

the keywords are INV), followed by the acoustic KWS from the TRAP-NNs sys-

tem and finally the phoneme lattice KWS. However, due to no LM was used in

the acoustic KWS and the rate (64.46 as FOM), is very near to the one achieved

by the LVCSR-based KWS (66.95 as FOM), such result is very promising. The

phoneme-lattice based approach, which achieved the worst rate (58.9 as FOM)

should be use instead for a fast search over huge speech data, where the accuracy

is as important as the speed.

3.3.1.5 Filler and Language Models for HMM-based Keyword Spot-

ting

For years, the most common approach for Keyword Spotting is the HMM-based

keyword spotting. It augments the keyword models with filler (garbage) models

or fillers to deal with the non-keyword intervals of the speech.

Rose and Paul [33] proposed the use of the following types of filler models: (1) word

models, where 80 non-keywords represented the filler models, (2) sub-word models

where both context-independent and context-dependent phoneme models were

used and (3) unsupervised clustering to form 128 single-state filler models as the

cluster centroids of the Kmeans algorithm using a Mahalanobis distance. All these

filler models, except the ones derived from the unsupervised clustering were trained
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from the non-keyword training data. Keyword models were formed from context-

dependent phonemes trained on the whole training data. Both keyword and filler

models, except the 128 filler models derived from the unsupervised clustering,

were trained from clean speech. Those 128 fillers were trained from conversational

speech. They used a parallel network of keywords and fillers as LM where the

interword transition weight assigned to each keyword and to each filler model was

chosen to achieve a desired tradeoff between misses and false alarms. As test

set, they used conversational speech, selecting 20 keywords, with 353 keyword

occurrences in this set. They showed that the use of context-dependent phoneme

models as filler models achieved the best performance, followed by the context-

independent phoneme models and the word models. Much worse performance

achieved the 128 filler models from the unsupervised clustering. In all of these

cases, the score for each putative keyword is computed by the likelihood given by

the Viterbi-based decoder divided by the length of the keyword time interval. In

their work, they showed that, for the context-independent phoneme filler models,

the system performance is improved when the final confidence score is computed by

substracting that keyword score minus the score computed by applying the same

Viterbi-based decoder over the regions of speech corresponding to the keyword

against a background network composed of the same filler models.

Manos and Zue [34] proposed several filler models such as context-independent

phones and the clustering of the context-independent phones into broad phonetic

classes (nasals, closures, stops, etc). They tried 18, 12 and 1 models in this latter

configuration, which were built from the clustering of the context-independent

phones. All of these filler models were trained from the non-keyword speech.

Two different sets of keyword models were used. The first one is the context-

independent phones, trained from the whole training data. The second is the

word-dependent phones, trained only from the keyword instances. The ortographic

transcriptions of the training data were used to perform forced alignments which

produced transcriptions composed of phones for the non-keyword words and whole

words for the keywords. For the broad phonetic class filler model, the phones are

replaced by the corresponding cluster label, keeping the keywords as before. Such

transcriptions were also used to build the bigram used in the LM component

of the decoding process. Experiments used the Air Travel Information Service

(ATIS) [49] and the task was to detect 61 keywords including city names, airlines,

etc. They showed that the context-independent phones as filler models achieve

an acceptable compromise in terms of system performance and time computation.
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It improved the three configurations of the broad phonetic classes. It was only

improved by an LVCSR system. They also showed that, as expected, the use of

word-dependent phones for the keyword models improved the rate achieved by the

context-independent phones due to only the keywords presented in the speech are

used to build the acoustic models.

El Méliani and O’Shaughnessy [50] presented a comparison between acoustic and

strict lexical filler models. In the latter, the distinction between keywords and

non-keywords was made only at lexical level. Therefore, both keywords and non-

keywords were represented by the same set of context-dependent models trained

from the whole training corpus. They proposed two different types of lexical filler

models: The first one was composed of a different lexical filler model for each

phoneme, which leads to the best performance although the LM needs more mem-

ory and more storage capacity. The second one was composed by the set of sylla-

bles. On the other hand, for the acoustic-phonetic filler models, they trained two

different sets of context-dependent phonemes, one for the keywords and another

for the fillers. In this case, the lexicon is completed by the phonetic forms of the

filler models (phonemes and syllables depending on the filler model), apart from

the keywords. As LM they used a bigram from the keywords and filler (acoustic

and lexical) models. It was trained for both filler models from the OOV words

of the speech corpus. In their experiments, they chose the Wall Street Journal

database and showed that the strict lexical fillers gave a slight worse detection

than the corresponding acoustic-phonetic ones. However, it is not necessary to

retrain the context-dependent phonemes when the list of keywords changes, which

makes the system dramatically dependent of the list of keywords, and impractical

in most of the cases. Nevertheless, the LM still needs to be retrained.

Cuayahuitl and Serridge [35] also proposed phonemes as filler models, but inves-

tigated the use of syllables and common words as fillers as well. They used the

Spanish language for their experiments and chose a set of 24 phonemes for the

phoneme-based filler model, a set of 49 common syllables for Spanish to build the

syllable-based filler model and a combination of this filler model with a set of 30

common words to build the word-based filler model. The keyword models were

built from the set of phonemes in Spanish. For each wordspotter, a bigram LM

was used. This bigram was trained from data containing transcriptions composed

of whole-words for the keywords and phonemes, syllables and/or one of the 30

common words depending on the filler model used in each wordspotter for the
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non-keyword intervals. For such non-keyword intervals, they used a set of 92009

words in Spanish. They restricted their system to appear a single keyword or no

keyword in each utterance. Experiments used the auto attendant system (CON-

MAT) developed in the Universidad de las Américas in México, selecting 2288

words from it. They showed that the phoneme-based filler model achieved the

best result, although a posterior second step in their work proposed a confidence

measure that allows the syllable-based filler model to improve slightly the final

rate of the two-stage system paying a considerable price in computational cost.

Xin and Wang [37] reported their keyword spotting system over Mandarin language

and used the syllable as basic unit, due to the Chinese is a monosyllable language

and to achieve a reasonable compromise between robustness and flexibility. Each

keyword model was built from the concatenation of two or three syllables. As

filler model they used the combination of an anti-syllable model for each syllable,

trained from the data of all syllables but that of syllable, with a general acoustic

model trained from the non-keyword speech.

OU et al. [38] also presented a keyword spotting system for Mandarin and made

a clustering of the 21 initial consonants of such language in a single filler model

and the 153 tonal finals into six different filler models. A whole-word model for

OOV words trained from the non-keyword speech was incorporated within the

filler models to complete the 8 filler models used in the system. The keyword

models were a concatenation of the original set of phones. All of the models, both

keyword models and filler models were context independent. The experiments

were performed with utterances that contain a single keyword or a single OOV

word, so a simple unigram with the same probability for each keyword and filler

model was used as LM.

Kim et al. [36] also proposed the use of phonemes as filler models. But they

presented a new approach focusing on the LM component when the decoding

process is run in the keyword spotting system. They proposed a uni-gram as LM

(pseudo N-gram), instead of high-order LMs. In so, they varied the probability of

retrieving a keyword or a filler model of such uni-gram. In fact, it was found to

be substantial in those keyword spotting systems where the keyword models are

built from the same acoustic units than the fillers and no more complex LMs such

as bigrams, trigrams, etc are used. It must be noted that, contrary to Paul and

Rose [33], the same weight (probability) is assigned to all the keywords, and the
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same weight (probability) is assigned to all the filler models. They used the 445-

database of the Electronics and Telecommunications Research Institute (ETRI)

and the YNU-database in Yeungnam University, selecting 45 keywords from them.

They showed that when the uni-gram probability of keyword and filler models is

set to 0.8 and 0.2 respectively, the system performs the best.

3.3.2 Confidence Measures for Keyword Spotting

Confidence measures have been demonstrated to be a powerful method to increase

the performance of the ASR systems, i.e., to reduce the WER [51, 52]. Therefore,

they also play a very important role in Keyword Spotting, with the main objective

of increasing the final system performance.

3.3.2.1 Confidence measures for HMM-based Keyword Spotting

Cuayahuitl and Serridge [35] proposed a confidence measure based on the confi-

dence score provided by the Speech-Works recognizer when the decoding process is

run. They divided the confidence score range into three different parts: the rejec-

tion region containing the scores from 0 to LT (Low Threshold), the confirmation

region containing the scores from LT to HT (High Threshold) and the acceptance

region with scores higher than HT. They gave a different weight αi for all of the

possible results of a recognition event (correct acceptance INV, correct confir-

mation INV, false acceptance INV, false rejection INV, false confirmation INV,

correct rejection OOV, false acceptance OOV and false confirmation OOV) and

tried to minimize the Discriminative Error Rate (DER) in the following equation

for all of the possible combinations of HT and LT with HT > LT:

DER =

∑
i αiβi

N
(3.1)

where βi is the number of occurrences of each type of recognition event and N is

the number of total occurrences. The lowest DER according to their baseline was

reduced from 0.132 to 0.101 after applying the confidence measure.

Xing and Wang [37] in their syllable-based-HMM keyword spotting system ex-

plained in Section 3.3.1.5 proposed a utterance-based confidence measure combin-

ing the confidence score (log likelihood score) of all of the syllables in the keyword
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and their corresponding anti-syllables calculated during the syllable-based decod-

ing process. If such confidence score is above a preset threshold, the keyword is

accepted; otherwise, the keyword is rejected. First, they computed the score for

each syllable as the substraction of its log likelihood score minus the log likelihood

score for its anti-syllable model, divided by the duration of the speech segment.

They found that a normalization of such score by substracting the mean and di-

viding by the variance assuming a Gaussian distribution for each syllable in the

keyword decreased the FAR, from 12% to 7%, with no decrease in the hits rate

(87.5% of detection rate) compared with the absence of such confidence measure.

They used a set of 20 city names over a CTS database, with 205 utterances re-

sponding to these 20 city names.

OU et al. [38], in their Mandarin place name recognition keyword spotting sys-

tem, presented a NN-based confidence measure to confirm or reject the keywords

hypothesized by the HMM-based keyword spotting in the first level, consisting of

filler models and an anti-keyword model. The training and test of the NN were

made from a five-dimension vector estimated for each keyword, and contained the

following information: the highest and the second highest likelihood scores pro-

duced by the keyword models, the average likelihood score of the top N likelihood

scores produced by keyword models and the posterior probability produced by the

filler models and the anti-keyword model. The NN accepts a putative hit (true

hit) if the difference between its two output nodes (corresponding to hit and FA)

remains above a certain threshold. For the experiments, 464 utterances contained

one of the 144 names used as keywords, while 879 utterances were OOV words.

They selected as baseline the confidence score built from the highest likelihood

score produced by the keyword models averaged over the rest top N likelihood

scores produced by the keyword models. Therefore, in the baseline, a keyword

hypothesized is accepted if the confidence score remains above a certain threshold.

In the NN approach, the keywords classified as true hit remain in the final output.

Comparing several NNs (feed-forward propagation, Elman backpropagation and

cascade-forward backpropagation), they showed that the NN-based approach can

reduce the average error rate in 54.4%.



34 Chapter 3. Prior research and State-of-the-art

3.3.2.2 Confidence measures for LVCSR-based Keyword Spotting

Hazen and Bazzi [40] presented a word confidence scoring prior to define a threshold-

based confidence measure from which keywords with a score below it are automat-

ically rejected. To produce such confidence, they used ten different features (the

average normalized likelihood score over all of the observations in a word, the min-

imun normalized likelihood score for a word, the fraction of the N-best hypothesis

in which a keyword hypothesized appears, etc) with which they built a single con-

fidence feature vector. To calculate a final score from such vector, they used a

simple linear discrimination projection vector. This vector was trained using a

minimum classification error (MCE) training strategy. A latter computation from

this vector and the vector containing the features reduces the multi-dimensional

confidence vector composed of the features to a single confidence value. They

applied this confidence measure as a post-processing of an LVCSR system, whose

lexicon is composed by keywords and non-keywords with the final objective of

rejecting the OOV words (i.e., words that do not appear in such lexicon). To de-

tect OOV words of the speech signal, comparing this confidence measure with the

filler model-based approach to absorb the non-keyword segments, the latter works

better due to the filler model is built specifically for this task, while the former is

designed to detect any type of recognition error. However, to detect recognition

errors, when they only focused on those relevant keywords (937 proper names from

the geographical Jupiter domain), these two methods perform almost the same.

An approach that combines both methods (filler model to detect OOV words in

the recognition process and the post-processing confidence measure) outperformed

each method in isolation in the final set of those 937 keywords.

Ben Ayed et al. [53] proposed the use of SVMs as confidence measure for a post-

processing of the keywords extracted from the output of an LVCSR system. The

features computed for each of those keywords contained parameters such as the

total number of frames, the number of frames of the first and the last phone,

the minimum and maximum phone posterior probability, the number of phones,

the average per-frame phone posterior probability, etc according to the phones

and frames of each keyword hypothesized. They used these parameters as input

features for the SVM, using the package in http://www.kernel-machines.org/. The

final objective was to reject those keywords classified as incorrect by the SVM.

They used linear and Radial Basis Function (RBF) kernels in the SVM training

and experimented with 10 keywords extracted from the French BREF80 database.
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This approach showed promising results rejecting the incorrect keywords proposed

by the LVCSR system. More advances made in such address by Ben Ayed et al.

[54] showed that the use of the linear and RBF kernels in the SVM training, when

using as input feature vector the arithmetic mean, the harmonic mean and the

geometric mean for each word computed from the posterior probability of each

phone in the keyword, outperformed the rate achieved by the best mean-based

confidence measure (harmonic mean) in classifying the keywords output by the

LVCSR system as correct and incorrect. For these experiments, they selected 20

keywords from the French SPEECHDAT database.

3.3.2.3 Confidence measures for Keyword Spotting without filler mod-

els

Ferrer and Estienne [55] presented a confidence measure to form a two-level key-

word spotting system, which improved the final system performance. The first

level is based on a modification of the Viterbi algorithm which proposed putative

keywords at several time positions of the input signal without using filler models

[56]. It takes the sequence of features according to the utterance, the set of HMMs

which represent the keywords and generates a set of score signals C1 for each key-

word. This signal can be seen as the distance from the optimal sequence of states

over each keyword model between a time interval, to the best sequence of states

in the same time interval. The best state for each time is the one with the highest

emission probability given the feature vector at that time. The decision stage

generates a new detection each time the score signal C1 for each keyword remains

under a preset threshold. It must be noted that a different threshold for each key-

word was used in their system. The final list of keywords with the beginning and

end points and the score signals are taken by the second level. With such data, a

vector V k of length L is generated by the Viterbi algorithm when is run against

the keyword model. This vector contains the emission probabilities for the optimal

state sequence obtained by maximum likelihood according to the keyword model.

A posterior phoneme-based recognition process, using the Viterbi algorithm, over

the segments which represent the keyword, stored a similar vector V p composed of

the emission probabilities according to the optimal state sequence corresponding

to the sequence of phonemes output by the phoneme-based decoding. In this way,

when the keyword hypothesized is very likely to occur, both vectors V k and V p will

be very similar. In case the sequence of phonemes produced by the phoneme-based
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recognition process matches exactly the correct transcription of the keyword, both

vectors will be the same. The confidence score generated from these two vectors

was based in the mean square rate as indicated in the following equation:

C2 =

∑L
i=0(V ki − V pi)

2

L
(3.2)

The final confidence score, from which they decided if the keyword was spoken in

the utterance or was not, was computed by means of a linear combination of both

scores C1 and C2, with a different weight for each. If such final confidence score

is below a preset threshold, the keyword is accepted; otherwise, the keyword is

rejected. The Spanish speech database at SRI was used for the experiments. 18

keywords were selected as the list of terms to test the system, with 882 occurrences

of them. They showed that the combination of both scores outperformed the use

of each in isolation. Moreover, when it is compared with a medium vocabulary

continuous speech recognition system, composed of 700 words, its performance

is 64.2 as FOM, whereas a 73.5 as FOM was achieved by the continuous speech

recognition system.

3.3.3 Spoken Term Detection

Although methods dealing with STD can be also applied for Keyword Spotting,

this section describes methods just able to STD. Altough STD itself emerged in an

iniciative proposed by NIST at the end of 2006, methods used for this task have

been developed for years, due to its capacity to be applied on Keyword Spotting

and, therefore, on applications for audio information retrieval.

3.3.3.1 1-Best word-to-phoneme conversion plus lexical access for STD

Amir et al. [57] generated the word transcriptions using the IBM speech recog-

nition system with a LM trained from BN data. The equivalent sequence of

phonemes is generated from such word transcriptions. A posterior method based

on the Minimum Edit Distance (MED) plus a likelihood ratio thresholding is used

to hypothesize the final list of query words. They built a phoneme-based confusion

matrix, which represented the probability of substitution, deletion and insertion

for each phoneme. Based on that confusion matrix, they identified the phonemes
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that are more likely to be confused with each other. They formed groups of seven

metaphones, each of these containing between two and ten similar phonemes and

added them to the final confusion matrix. Based on the MED criterion and on

dynamic programming (DP), they computed the necessary transformation which

converts the sequence of hypothesized phonemes H into the correct sequence of

phonemes C for each query word, using a sequence of single phoneme opera-

tions (substitution, deletion and insertion). Such transformation computes the

maximum likelihood (or mininum cost) that allows to convert H into C. Query

words with a likelihood above a preset threshold are hypothesized in the final

output of the system. In the test of the system, they previously converted the

sequence of phonemes of the query word into several three-phoneme keys, each

of them composed of three consecutive phonemes. Each key that contains one or

more phonemes in the metaphones group is indexed using this representation, and

therefore using the same metaphones data in the confusion matrix, by replacing

each phone by the corresponding metaphone. They reported their experiments

over the spoken document retrieval field using data from HUB4 [58] and showed

that the combination of the LVCSR-based approach and this approach improved

between 5-15% the system performance for INV words compared with the use of

the LVCSR-based approach in isolation.

3.3.3.2 Phone-Ngrams and Lattice based STD

Dharanipragada and Roukos [59] presented a new algorithm to spot words in

speech which complements a standard LVCSR system for OOV words. They pre-

sented a method composed of a phoneme-based recognition and a search with

two different steps which aimed to maximize the final system performance. The

phoneme-based recognition consisted of a phone-Ngram representation at all time

locations, where the speech was converted, by means of a time-synchronous Viterbi-

beam search, into a table composed of phone-trigrams with their times (beginning

and end) of occurrence and their normalized likelihood scores (acoustic scores). To

produce such phone-trigrams, the standard HMMs, typically composed of three

states, were substituted by a single-state model consisting of frame-triplets, that

worked on one-third the frame-rate. It causes that each phoneme has a minimum

duration of three frames (as the standard way) but only allows durations in multi-

ple of three frames. The phone-trigrams were extracted from a graph built during

the Viterbi-based decoding. A prefix tree was used as LM, consisting of arbitrary
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sequences of words within the vocabulary, due to its better phoneme accuracy

than a trigram-based LM. Each of the nodes in the tree corresponds to a phone

of the word in the dictionary and each of the leaves corresponds to an end of a

pronunciation of each word. Self-loop probabilities and uniform probabilities to

the transitions between each node and the following were assigned in the LM. For

OOV words, the prefix tree is smoothed to allow for unknown phone-trigrams to

be indexed in the search step. The search stage is composed by two different steps:

the first one is the ”coarse acoustic match for putative hits”, where two different

parameters were found to be relevant to decide if the keyword was spotted or was

not: The first one is the number of phone-trigrams belonging to the keyword that

appears in the table got in the first step. For keywords which contained less than

three phonemes, all trigrams that begin or end with the phonemes in the word

are considered. The second parameter is the likelihood of such phone-trigrams

stored in that table. Keywords remaining after this first step (with a number of

phone-trigrams and a likelihood value that remain above two preset thresholds)

serve as input for the second and final step, the ”detailed matched at the puta-

tive hits”, composed itself of two different stages: In the first one, the Viterbi

algorithm is used to find the best path through a network composed of all of the

alternative pronunciations for each keyword and a filler model (composed by a

loop of phonemes) for the regions classified as putative keywords by the ”coarse

acoustic match for putative hits” step. This algorithm also hypothesizes the be-

ginning and end times for each putative keyword. The second stage calculates a

score for the filler model and for each of the different pronunciations of the key-

word between the start and end times computed in the first stage. Finally all the

putative hits are ranked based on the best normalized likelihood ratio among the

different pronunciations of the keyword. It is computed from the substraction of

the log-likelihood ratios of each pronunciation and the filler model calculated by

the Viterbi algorithm. Experiments, performed over the 1996 English Broadcast

News speech corpus, selecting 36 OOV words, showed that the addition of the

”detailed matched at the putative hits” step, increased the system performance in

a factor of two compared with the ”coarse acoustic match for putative hits”. The

main drawback of this system is that it suffers from a large index size by indexing

individual keyword locations.

To solve the problem of such big index [59], Yu and Seide [60], proposed a system

based on two stages as well. The first stage calculates an index in a fast step, from

which the second stage can hypothesize the final list of keywords according to
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each utterance. This first stage is based on keeping segments in the audio signal,

represented by means of phoneme M-grams (extracted from a lattice), as index,

whose expected term frequency (ETF) remains above a given threshold. This ETF

was approximated for each segment by using M-gram LMs. The second stage is

based on the DP algorithm proposed in [61]. It finds all the paths contained in

the lattice represented by the phoneme M-grams which perform an exact match

with the actual transcription of the keyword. Experiments, run over the LDC

Voicemail corpus [47], with 6058 keywords, 2295 of which were OOV, reported

that this two-stage method presented only about 4% FOM relative less than the

one based on a full linear search over the whole lattice in which all of the segments

in the utterance are computed, being 25 times faster.

Scott et al. [62] presented a system to index conversational speech based on a

heuristic score computed from the expected posterior counts of phone n-grams

within the recognition lattices. In the first step, a phoneme lattice was generated

using the Viterbi algorithm in the HTK tool [63]. To build the final index from

such lattice, all of the expected phone n-grams for n <= 5 are computed and those

whose expected value is less than a preset threshold are rejected in the final index.

The expected value is computed from the number of times that the phone n-gram

appears in the lattice and the widely used posterior probability computed from

the forward-backward algorithm during the lattice generation for such n-gram.

The second step builds the keywords from the previous index. It is based on a

slide-window over the sequence of phonemes corresponding to the query. Each

element of this window is searched in the lattice composed of phone n-grams and

if it is found, a score for the query is computed from the expected value of such

n-grams. Experiments were done over English, Spanish, Mandarin, Levantine and

Persian, using the CTS corpora provided for each by the LDC. In comparing the

system with a search over the 1-Best sequence of phonemes during a phoneme

decoding and a DP-based MED procedure that used a confusion matrix to deal

with insertion, substitution and deletion errors of such sequence, they showed

better performance for all of the languages in terms of Mean Average Precision

(MAP).

Thambiratnam and Sridharan [64] presented a fast algorithm to index speech based

on Dynamic Match Lattice Spotting (DMLS). It combined the fast performance

of lattice spotting with DP-based matching algorithms to obtain a desired system

performance. In the first step, a phoneme lattice is generated by using a bigram
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LM. Next, the resulting lattices were expanded using a four-gram LM and were

pruned removing all paths in these lattices with a total likelihood outside a certain

threshold of the best path (lattice pruning). Finally, the Viterbi algorithm was

used to generate the top ten sequence of phones of length 11 at each node in the

lattice (Viterbi pass). The second step employs a DMLS algorithm. It takes each

node in the lattice and searchs within the lattice for the paths that contain the

sequence of phonemes whose similarity with the sequence of phonemes of each

keyword remains below a threshold to hypothesize such keyword. This similarity

is measured by the MED between both sequence of phonemes by using a confusion

matrix. Several aspects such as the depth of the lattice, the pruning beamwidth in

the lattice pruning stage, the number of tokens in the Viterbi pass and the MED

threshold were investigated in the work. The MED threshold was found to be

substantial to achieve the desired tradeoff between misses and false alarms. Two

methods applied in the search algorithm also increased the speed of the system.

In this address, the estimation of the MED in similar sequence of phones (prefix

sequences) is not necessary each time the same prefix sequence appears in the

lattice. A second method relied on the comparison of two sequences of phones

that are very different. Each element in the MED matrix stores the cost necessary

to transform a phoneme in the lattice into the phoneme of the keyword. In this way,

this method limits the portion in the MED matrix to be computed, by estimating

a lower bound in the column of that matrix which exceeds the MED threshold.

Experiments were run over the Switchboard and TIMIT databases, selecting 200

words of six phonemes each, appearing 480 times in the TIMIT database and 360

words of six phonemes each, with a total of 808 times in the Switchboard corpus.

The DMLS algorithm got excellent detection performance itself and with the two

speed optimizations increased the speed of the algorithm in a factor of five.

3.3.3.3 A phone-state based matrix for STD

Gao et al. [65] proposed an approach based on a phone-state matrix computed

during a phone-based HMM decoding process and a posterior algorithm to hypoth-

esize the keywords from such matrix. This matrix has the time in one dimension

and phone-state in the another dimension and each element is the phone-state

score, obtained during the HMM decoding. This matrix stores for each time t, the

maximum score (i.e., the maximum likelihood) for each state of a phone, denoted

as Lph, from the triphones which contain the phone. The decoding process also
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stored the maximum score (likelihood) of any state of any phone for the same time

t, denoted as Lmax, and the score for each time t by adding all the scores for all

of the states Qt of all of the phones according to the observation Xt. These last

scores are represented by P (Xt|Qt), and the addition of them is denoted as Lall.

The second step builds the keywords from the phone-state matrix and the elements

stored during the decoding process. No LM was used in both steps. Keywords are

proposed by a Viterbi-based search over the matrix stored in the first step. This

search hypothesizes a putative keyword beginning in every time t initializating

each new path by adding the filler information Lmax from the beginning of the

utterance (t = 0) to the current time t. When the optimal path reaches a keyword

end, the confidence of such path is computed based on the Bayesian rule according

to the values stored in the phone-state matrix Lph and Lall. Finally the keyword

is proposed if such confidence remains above a preset threshold. From the next

time t, this process is repeated until the time ends. Experiments were performed

over Mandarin CTS data, selecting 100 words with 405 occurrences in total. They

showed that their approach based on the novel phone-state matrix plus the subse-

quent search algorithm did improve the approaches based on a syllable and a phone

lattice search (from a linear search in these sub-word units of the list of keywords)

although got worse performance than the one based on filler models, applied over

Keyword Spotting but impossible to be used over STD without making any use

of the audio in the search stage.

3.3.3.4 Probabilistic pronunciation model for STD

Pinto et al. [66] proposed a novel probabilistic pronunciation model for each key-

word which compensated the errors (insertions, deletions and substitutions) that

appear during the 1-Best phoneme-based decoding. In this way, it differs from

other approaches because HMMs to integrate contextual error information are

used. First, the 1-Best sequence of phonemes was extracted from the audio signal

by means of the Viterbi algorithm using a bigram as LM. A confusion matrix

to deal with insertion, deletion and substitution errors is trained from such se-

quence of phonemes. Each keyword model is represented by an HMM in which

the phonemes of the keyword are used as hidden states of the model. An addi-

tional insertion state (denoted as ∗) before each phoneme for each keyword model

to deal with insertion errors was also modeled. It is accessed with a probabil-

ity Pi, which represents the unconditional probability of insertion and is skipped
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* *hh ay * d

Ps

Pi

P(p_i|*)

<p> <p>

</p> </p>

P(p_i|/ay/)

Figure 3.1: A probabilistic pronunciation model for the keyword hide with
a transcription of /hh/ /ay/ /d/. The symbol ’*’ denotes the hidden state for
insertion. <p> and </p> denote the entry to the model and the exit from the
model respectively. P(p i|*) refers the insertion probability of the phoneme p i.

with a probability of Ps, which represents the unconditional probability of sub-

stitution. Both values are stored in the confusion matrix. They considered the

deletion error as a special case of substitution error. The insertion state emission

probability is given by the phoneme insertion probability stored in the confusion

matrix as well. The emission probability in each phoneme state pi is given by the

conditional probability P (pj|pi) stored in the confusion matrix. It represents the

probability of the phoneme pi to be substituted by the phoneme pj. The deletion

of the phoneme pi is represented by pj=’*’. The HMM is relaxed by allowing a

begin and an end in each phoneme of the keyword model. An example of an HMM

as probabilistic pronunciation model is depicted in Figure 3.1. In it, it is shown

that the contextual information for each phoneme of each keyword is used. The

search step was applied over the 1-Best sequence of phonemes and consisted of a

Viterbi-based search on a slide window of N phonemes with a shift of 1 phoneme.

A garbage model, built from a phoneme-Ngram LM is added to compute a refer-

ence score with which compare the keyword model score. The Viterbi algorithm

takes the sequence of phonemes hypothesized by the decoding process over each

slide window, the HMMs of the search terms and the HMM which represents the

garbage model and hypothesizes the list of terms whose score is higher than the

score of the garbage model matching. Experiments were run over the CTS data

in the NIST STD evaluation 2006, selecting 243 search terms. Comparing this

system with a phoneme-based lattice system, whose score is computed from the

standard forward-backward algorithm and whose search terms are given from an
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exact match with the actual transcription of the term over the phoneme lattice

by using a recursive match algorithm, it presents a worse STD performance (es-

pecially for keywords with less than 10 phonemes). However, it presents a better

search speed (about 14 times faster) and a smaller index size (about 1500 times

less memory).

3.4 Summary

First, we have reported the main categories related to the OOV modelling in con-

tinuous speech recognition and have discussed if they can be applied on Keyword

Spotting and STD to solve the OOV problem. Later, we have described the most

relevant techniques applied so far on Keyword Spotting and STD. We have also

described the common filler models used for Keyword Spotting.





Chapter 4

Contributions to Keyword

Spotting

4.1 Introduction

Contrary to LVCSR systems, where each word contributes equally to their perfor-

mance (measured in terms of WER), in Keyword Spotting, just a few words are

important. In this way, model such words in an identical fashion as those in an

LVCSR system and absorb the rest of the words of the speech by using some other

models (called filler or garbage models or fillers) is the key point for HMM-based

keyword spotting systems. This chapter presents the filler models used to absorb

those non-keywords of the speech data and introduces several confidence measures

in a second level to improve the rates achieved by an HMM-based keyword spot-

ting process in the first level. Therefore, the contributions in this chapter rely

on the confidence measures proposed after a state-of-the-art HMM-based keyword

spotting process. This chapter is divided into five different parts. The first part

presents the HMM-based keyword spotting process along with the filler models

used in the first level. The second part introduces the confidence measures used

in the second level, along with the additional modules necessary for them. The

third part describes the experimental setup used to evaluate the keyword spot-

ting approaches, the fourth one presents the results using the Albayzin database

and finally the fifth part describes the main conclusions. The framework of the

keyword spotting system is presented in Figure 4.1.

45
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First level: 
HMM-based

keyword
spotting

Second level: 
Confidence

measure

List of
keywords

Input signal
Keywords

+ fillers

Figure 4.1: The framework of the keyword spotting system.

4.2 First level: HMM-based keyword spotting

process

This process is used as first level for all of the approaches presented for Keyword

Spotting in this chapter. It is based on the standard procedure of an LVCSR

system, with these main differences: the lexicon of the system is composed by the

set of relevant keywords to hypothesize from the speech data plus the filler models,

and the LM is also built from those keywords and the filler models. The Viterbi

algorithm is used to present the output of this process as a sequence of keywords

and filler models (referred as Keywords+fillers in Figure 4.1).

The filler models used in this first level are configured as follows:

• Allophone Models (AM): It is composed of a set of 47 phones in Spanish

language [21].

• Phoneme Models (PM): It is composed of the standard set of 24 phonemes

in Spanish language [22].

• Broad class Models (BM): It clusters the standard set of phones in Spanish

language in eight different classes as follows: nasals, closed vowels, opened

vowels, median closed vowels, deaf plosives, deaf fricatives, sound plosives

and liquids. Appendix C shows the phones that are contained in each class.

• Average Phoneme Model (APM): It considers all of the phones as a single

filler, so this filler model is composed of a single model.

A beginning and end silence for each sentence in the Albayzin database were

added to each filler model.
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To train a LM from text data, which is composed of keywords and non-keywords,

causes that such LM should be estimated again when the list of keywords (vocab-

ulary) changes. And, as stated before, the decoding process must be also rerun.

In this thesis, we have tried to minimize the components of the system TO modify

when a change in the vocabulary occurs. For the same reason, the acoustic mod-

els used to build the keywords were trained on the whole training set, (i.e., not

only using the keywords), and the filler models were trained from the same whole

set (i.e., not only using the non-keywords). On the other hand, it is well-known

that when the keywords are modeled by the same acoustic units (phones in our

case) that the filler models, the Viterbi-based decoding tends to hypothesize the

sequence of phones instead of the keyword identifying it. In this way, in the spirit

of Kim et al. [36], the LM used in this first level is defined by a uni-gram where the

frequencies of appearances in such uni-gram for both keywords and filler models

may differ (pseudo N-gram). Therefore, the LM used follows this equation:

prob(kw) = N ∗ prob(filler) (4.1)

where kw denotes a keyword, filler denotes a filler model and N denotes a penalty

for the filler models against the keywords.

As an example of how the LM is built, in case N = 3, we will have the probabilities

for each keyword and for each filler model as follows:

prob(kwi) =
3

3L + M
(4.2)

prob(filleri) =
1

3L + M
(4.3)

where L denotes the number of keywords and M denotes the number of filler

models. It must be noted that the addition of the two probabilities for the L

keywords and the M filler models equals to 1.

Figure 4.2 presents the recognition network used in this first level. Any transi-

tion between keywords and fillers is allowed as well as self transitions for both

keywords and fillers. This configuration allows multiple keywords to appear in a
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single utterance and multiple instances of the same keyword in the same utter-

ance. The keyword HMMs are constructed as concatenations of phone HMMs, so

no additional training is required.

Keyword 1

Keyword L

Filler 1

Filler M

Figure 4.2: The recognition network in the first level: HMM-based keyword
spotting process.

The confidence score is computed from the Viterbi algorithm during the decoding

process. Therefore, for each keyword, it is the sum of the acoustic log likelihood,

the word insertion penalty and the LM log likelihood weighted by the language

scale factor.

4.3 Second level: Confidence Measures

Errors in Keyword Spotting come from two different scenarios. The first one is

produced when a keyword that appears in the speech data is not hypothesized by

the system. The second refers to a keyword hypothesized by the system which

actually does not occur in the speech data. The former is referred as miss and the

latter is referred as false alarm. On the other hand, a hit occurs when the keyword

hypothesized by the system is presented in the speech data. So, the relationship

between hit and miss is expressed as follows:
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prob(hit) = 1− prob(miss) (4.4)

It is obvious to conclude that a system should minimize the number of misses (i.e.,

maximize the number of hits) and the number of FAs. Nevertheless, what actually

happens in keyword spotting systems is that decreasing the number of misses leads

to an increment in the number of FAs and that decreasing the number of FAs

leads to a dramatical increment in the number of misses. Therefore, a tradeoff

between both errors should be found. To conclude, confidence measures are used

in Keyword Spotting with the purpose of decreasing the number of FAs as much

as possible while maintaning the number of misses as low as possible.

Typically, confidence measures extract a set of relevant parameters in a first stage

and take a decision based on such parameters about accepting or rejecting the

keyword in a second stage. Therefore, this is the strategy followed to implement

the confidence measure for each keyword spotting system. For all of the confidence

measures, the same confidence score output by the first level remains in the final

output of the system. Next, the confidence measures developed in the thesis are

described.

4.3.1 Exact Match

4.3.1.1 Motivation

In using the Viterbi algorithm over continuous speech recognition to calculate the

best path composed by a sequence of keywords and filler models, those keywords

are influenced by the filler models, as the optimal path contains both keywords

and filler models. Producing an N-best list from an HMM-based keyword spotting

process has a very high computational cost and when it is applied over continuous

speech, it is very likely that the two few candidates in the N-best list only differ

in filler models and not in the keyword(s) proposed. And extracting a lattice

from the input signal composed of keywords and filler models produces similar

effects. Therefore, a second level which makes use of the acoustic information of

the keywords, rejecting the filler models, and computes a confidence measure from

the words in the lexicon is presented to improve the performance achieved by the

first level in isolation.
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4.3.1.2 System architecture

The whole keyword spotting system with this confidence measure is presented in

Figure 4.3. It is composed of the HMM-based keyword spotting process in the

first level which hypothesizes a set of putative keywords plus filler models, which

are automatically rejected. These keywords are proposed to further verification

in the second level, which is composed of two different processes. The first one

is based on an Isolated speech recognition. It computes the keyword which best

matches with each region of speech over which the first level has hypothesized

each keyword (i.e., it computes the keyword with the highest likelihood). No LM

is used in the Isolated speech recognition. The second one acts as a decision stage

where keywords proposed by the first level are accepted or rejected. The Decision

stage accepts the keyword kw if kw = kw′; otherwise, kw is rejected, where kw

is the keyword proposed by the first level and kw′ is the keyword proposed in the

Isolated speech recognition process. This work has been published in [67].

Input signal
First level: 

HMM-based 
keyword 
spotting 

Selected 
samples Isolated 

speech 
recognition

Decision stage

Keywords + fillers Kws

Final output
<kw>…<kw>

Figure 4.3: The system architecture for the Exact Match confidence measure
in the keyword spotting system. <kw> denotes each keyword in the final output

of the system.
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4.3.2 Likelihood

4.3.2.1 Motivation

The Exact match confidence measure only considers the matching between the

keyword hypothesized in the first level over the continuous speech recognition and

the keyword hypothesized by the isolated speech recognition. Nevertheless, the

widely used posterior probability and likelihood in speech recognition tasks [37,

51, 52, 53, 68, 69, 70] means that a simple modification in the final decision stage

may produce a significant improvement in the system performance. Following

such methods, Dolfing and Wendemuth [69] presented a confidence measure for an

isolated word speech recognition, based on the differences between the likelihood

of the N-best candidates. Here, we have followed the same approach to present

this confidence measure on Keyword Spotting.

4.3.2.2 System architecture

The system architecture presented for this confidence measure is very similar to

that of the Exact Match confidence measure. It is depicted in Figure 4.4 and

only differs in the output of the Isolated speech recognition process. Apart from

computing the keyword which best matches with the regions of speech according

to each keyword hypothesized by the first level (i.e., the keyword with the highest

likelihood in the lexicon), it also outputs the likelihood of each keyword in the

lexicon for those regions of speech. The likelihood is computed from the acoustic

log likelihood. Let kw be the keyword proposed by the first level and let kw′

be the corresponding keyword with highest likelihood (i.e., the keyword which

best matches with the regions of speech of the keyword kw). Defining X as the

difference between the second highest log likelihood and the highest one and Y

as the difference between the third highest log likelihood and the highest one, the

Decision stage accepts the keyword kw if the Equation 4.5 is satisfied; otherwise

kw is rejected.

kw = kw′ and X < Xbeam and Y < Ybeam (4.5)

Therefore, the difference between this confidence measure and the Exact Match

relies on the use of the thresholds Xbeam and Ybeam.



52 Chapter 4. Contributions to Keyword Spotting

It was found during prior research on isolated word speech recognition (out of the

scope in this thesis) that using the three best candidates in the confidence measure

is enough to achieve a reasonable system performance.

Input signal
First level: 

HMM-based
keyword
spotting

Selected
samples Isolated

speech
recognition

Decision stage

Keywords + fillers Kws + likelihoods

Final output
<kw>…<kw>

Figure 4.4: The system architecture for the Likelihood confidence measure in
the keyword spotting system. <kw> denotes each keyword in the final output

of the system.

This work has been published in [67].

4.3.3 Heuristic Rules

4.3.3.1 Motivation

Hybrid approaches for Keyword Spotting, combining word- and phone-based speech

recognition, have been applied in the literature [46]. Such approaches try to bene-

fit from the advantages of both methods. Whereas Yu and Seide [46] merged both

methods to present the final output of the system, we have used the phone-based

speech recognition in the framework of the confidence measure with the objective

of rejecting the FAs presented in the HMM-based keyword spotting process.
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Therefore, in running these two speech recognition processes at the same time, as

more information is added to the system, it is expected that the system perfor-

mance gets improved compared with the HMM-based keyword spotting process in

isolation.

4.3.3.2 System architecture

The system architecture for this confidence measure is presented in Figure 4.5.

Along with the HMM-based keyword spotting process, a Sub-word unit decoder is

run. It outputs the most likely sequence of phones according to the input speech

signal. A bigram LM is used in this Sub-word unit decoder. The three additional

blocks of the system architecture complete the confidence measure to present the

final output of the whole system as follows:

The Substring selection module takes the sequence of phones hypothesized by the

Sub-word unit decoder within the time intervals of each keyword hypothesized

by the first level (referred as Selected strings in Figure 4.5). This sequence of

phones represents the output of the module and is passed towards the Sub-word

performance estimator module.

The Sub-word performance estimator module calculates the number of phones

in the Selected strings which are correct and incorrect (referred as Cs and INs

respectively in Figure 4.5) according to each keyword proposed by the first level,

along with the number of phones of that keyword (referred as Ns in Figure 4.5).

The Decision stage module takes those three parameters (Cs, INs and Ns) com-

puted during the Sub-word performance estimator stage, rejects the filler models

output by the first level and accepts each keyword hypothesized by the first level

if Equations 4.6, 4.7 and 4.8 are satisfied; otherwise, the keyword is rejected.

Cs > INs + F1 + |Ns − Cs − INs| (4.6)

Cs >
Ns

2
− F2 (4.7)

if Ns < F3 then Exact Match (4.8)
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The purpose of the Equation 4.6 relies on the fact that the number of correct

phones should be much greater than the number of incorrect phones in the sequence

of phones to predict the putative keyword is a hit. The purpose of the Equation 4.7

focuses on the comparison between the number of correct phones and the number

of phones of the keyword. Along with these two equations, in case the number of

phones of the keyword is less than a factor F3, the keyword is considered to be

correct just in case the sequence of phones does an exact match with the actual

transcription of such keyword. This third Equation 4.8 was added to prevent the

system with short-length keywords from producing a lot of FAs and to set the

experimental factors F1 and F2 in such a way that the performance of long- and

medium-length keywords does not degradate. This work has been published in

[71].

Input signal

First level: 
HMM-based 

keyword 
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Substring 
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<kw>…<kw>

Sub-word unit 
decoder

Subword unit 
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Sub-word 
performance 

estimator

Selected strings

Key
word

s

Keywords + fillers

Ns,Cs, INs
Keywords

Figure 4.5: The system architecture for the Heuristic Rules confidence mea-
sure in the keyword spotting system. <kw> denotes each keyword in the final

output of the system.
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4.3.4 Lexical Access

4.3.4.1 Motivation

Fissore et al. [72] proposed a method by using a phoneme-based speech recogni-

tion system as a previous step to spot the words within an isolated word speech

recognition. It takes the sequence of phonemes extracted during the phoneme-

based decoding process and by means of a DP algorithm hypothesizes the word

which best matches with such sequence according to the MED criterion.

This confidence measure follows the same approach as the Heuristic Rules but it

differs in the set of parameters computed and passed towards the decision stage.

Instead of using heuristic rules based on the errors produced in the sequence of

phones during the phone-based decoding, we have used the DP algorithm proposed

by Fissore et al. [72] to hypothesize which putative keywords output by the first

level should be rejected.

Apart from the benefits of the Heuristic Rules confidence measure itself, it should

be noted that the Heuristic Rules confidence measure does not make use of any

additional training process to benefit from the phone-based speech decoding. In-

stead, in this Lexical access confidence measure, it is necessary to compute the

confusion matrix to be used during the MED calculation in a previous training

process. In addition to this, this confidence measure does also make use of the

hits and FAs presented in the HMM-based keyword spotting process. Therefore,

as more information is provided to the system in this confidence measure, it is

expected that it improves the Heuristic Rules one performance.

4.3.4.2 System architecture

The system architecture with this confidence measure is depicted in Figure 4.6.

The Sub-word unit decoder and the Substring selection modules are the same as

those in the Heuristic Rules confidence measure. The difference proposed in this

confidence measure relies on the Lexical Access module and the Decision stage as

follows:

The Lexical Access module is composed of two different stages. The first stage is

the training of the alignment costs, which are used in the second stage to compute
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the set of parameters passed towards the Decision stage. The training of the costs

is described as follows: Each keyword W is represented as a sequence of R phone

sub-word units W = {w1, w2, . . . , wR}, and search is performed within S, the

output of the Sub-word unit decoder. This training is based on the DP algorithm

proposed by Fissore et al. [72]. The algorithm computes the cost of matching each

keyword W with the decoded output S. The total cost is computed from the costs

of four types of alignment error: substitution, insertion, deletion, and continuation.

The first three of these are standard in ASR decoding, and ‘continuation’ [72] is

included in order to distinguish an insertion error from, for example, hypothesizing

{baa} during a time interval in which the correct phone sequence is {ba}.

Different costs are associated with each type of alignment error and are estimated

as follows:

Csub(h, k) = − log
Nsub(h, k)

Ntot(h)
(4.9)

Cins(h, k) = − log
Nins(h, k)

Ntot(h)
(4.10)

Cdel(h) = − log
Ndel(h)

Ntot(h)
(4.11)

Ccon(h, k) = − log
Ncon(h, k)

Ntot(h)
(4.12)

where we define:

Nsub(h, k) total substitutions of test symbol k for reference symbol h

Nins(h, k) total insertions of test symbol k after reference symbol h

Ndel(h) total deletions of reference symbol h

Ncon(h, k) total continuations of test symbol k after h

and Ntot(h), the total occurrences of reference symbol h, is given by

Ntot(h) =
∑

k

[Nsub(h, k) + Nins(h, k) + Ncon(h, k)] + Ndel(h) (4.13)

The second stage in the Lexical access module determines the cost of matching

each lexicon word to the hypothesized sequence of phones. DP is used to calculate
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the overall cost of matching each keyword W against the hypothesized sequence

S. For such purpose, the lexical access algorithm is described as follows: Letting

r and u be indices for the position within W and S respectively, the local cost

function G(r, u) is calculated in recursively as:

G(r, u) =

∣∣∣∣∣∣∣∣
G(r − 1, u− 1) + Csub(w

r, su)

G(r, u− 1) + Cins/con(wr, su)

G(r − 1, u) + Cdel(w
r, su)

(4.14)

where

Cins/con(wr, su) =

∣∣∣∣∣ Cins(w
r, su) if su 6= su−1

Ccon(wr, su) otherwise
(4.15)

Finally, the local cost function G(r, u) is divided by the length of the decoded

output S to normalize the cost computed for different-length keywords.

In this way, confidence measures can be derived from both relative and absolute

cost of keywords. For example, if the second-best matching keyword has a cost

which is close to that of the lowest cost keyword, then we can assign low confidence

to the match. Similarly, if the absolute cost for the best matching keyword is high,

then we also have low confidence in this match.

We adapt this idea for detection of FAs as follows: The lexical access algorithm

is run twice, first using a set of costs estimated against the keywords which were

correctly detected by the first level. This identifies a best matching keyword in

the lexicon Kbest, along with its match cost Gbest. In the second run of the lexical

access algorithm, a set of costs trained on FAs produced by the first level, is used

to return the lowest cost GFA. Both sets of costs associated to the hits and FAs

were estimated using another set of data different to the test set.

The Decision stage module rejects the filler models output by the first level and

accepts the keyword kw proposed by the first level if the Equation 4.16 is satisfied;

otherwise it is rejected.

kw = Kbest and GFA −Gbest ≥ α (4.16)

The first part in Equation 4.16 relies on the fact that a keyword corresponding

to a FA will have a sequence of phones so different to the correct transcription of
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such keyword that the best matching between this sequence and the set of correct

costs will produce a different keyword. However, for FAs which contain a very

close sequence of phones to the correct transcription, the keyword proposed by

the Lexical access module will be the same as the one proposed by the first level,

and the use of the threshold α is more discriminative to discard them. In the same

way, for hits, it is very likely that the keyword proposed from the set of correct

costs matches the one proposed by the first level and the costs GFA and Gbest differ

so much that the second part of the Equation 4.16 is also satisfied. This work has

been published in [73].
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Figure 4.6: The system architecture for the Lexical Access confidence measure
in the keyword spotting system. <kw> denotes each keyword in the final output

of the system.

4.4 Experimental setup

4.4.1 Feature extraction

Firstly, the input signal is sampled at 16 Khz with 16 bits per sample and pre-

emphasised and transformed into a sequence of frames, using a Hamming window

(25 msec window size and 10 msec window shift), then characterised by 12 MFCCs

plus energy and their first and second derivatives, giving 39 coefficients in total.



Chapter 4. Contributions to Keyword Spotting 59

4.4.2 Acoustic modelling

Context-independent (CI) allophones (monophones) were used as keyword acous-

tic models and CI filler models explained in Section 4.2 as acoustic filler models

throughout the CI experiments. All these models along with the beginning and

end silence models had a conventional 3-state, left-to-right topology. There was an

additional short pause model which had a single emitting state and a skip transi-

tion. The output distributions for each of these models consisted of 15-components

GMM.

Context-dependent (CD) allophones (triphones) were used as keyword acoustic

models and filler models for the CD experiments. They were cross-word and

were state-clustered using HTK’s standard decision tree method with phonetically-

motivated questions, which leads to 5632 shared states. The output distributions

for each of these models consisted of 8-components GMM.

4.4.3 Language modelling

Apart from the pseudo N-gram explained in Section 4.2, a bigram was used as LM

in the Sub-word unit decoder module for the Heuristic rules and the Lexical access

confidence measures.

4.4.4 Lexicon

A set of keywords was extracted from the geographical corpus in the Albayzin database

based on their high frequency of occurrence in the development and test sets and

suitability as search terms for geographical-domain information retrieval. A com-

plete list of those keywords along with their number of occurrences for both sets

of data are presented in Appendix D.

4.4.5 System tuning

The CI and CD acoustic models were trained on the phonetic training set .

The number of components GMM for each state for both sets of models was tuned

for phone accuracy in the phonetic test set . The bi-gram LM used in the
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phone-based speech recognition modules was built from the phonetic training

set .

Additionally to the HMM- and LM-training procedures, several parameters are

substantial to be tuned for each architecture as follows:

In the first level, three parameters were necessary to be estimated: the word

insertion penalty (p) and language scale factor (s) to be used in the decoding

algorithm along with the value N in the pseudo N-gram used as LM in the first

level. In case the CI experiments, the value N for the N-gram was tuned to achieve

the best rate for each of the two metrics used in the evaluation independently on the

geographic training set . For the RA and FAR metric, a value of N = 6 was used

for all of the filler models, which was chosen to get the desired performance in terms

of RA and FAR (i.e., to achieve as many hits as possible with an acceptable FAR).

For the FOM metric, a different value was achieved for each filler model as follows:

N = 6 for the AM filler model, N = 2 for the PM filler model and N = 1 for the

BM and APM filler models. The parameter p was set to be 0.0 to avoid deletion

errors and the parameter s was tuned to achieve the desired performance in terms

of RA and FAR on the geographic training set . For the CD experiments, to

take advantage of the HMM-based keyword spotting process and its capability of

hypothesizing most of the keywords of the speech signal, all these parameters were

tuned to achieve the best keyword detection rate, maintaining an acceptable FAR.

In this case, the value N in the pseudo N-gram used in the first level was found to

be N = 12.

Finally, the parameters necessary for each confidence measure in the second level

were tuned as follows:

The Exact Match confidence measure does not need any additional parameter to

be tuned.

The Likelihood confidence measure has two parameters, the thresholds Xbeam and

Ybeam below which the keywords proposed by the first level are finally accepted.

Both were tuned on the geographic training set .

The Heuristic Rules confidence measure needs the parameters p and s for the

phone decoding, which were tuned for phone accuracy on the phonetic test set .

The parameters F1, F2 and F3 in the Decision stage were tuned on the geographic

training set .



Chapter 4. Contributions to Keyword Spotting 61

The Lexical Access confidence measure employs the same p and s values for the

phone decoding module that the Heuristic Rules one. To train the confusion

matrix to be used in the DP algorithm we have used the geographic training

set , used to estimate the threshold α as well.

The final evaluation for each confidence measure used the geographic test set .

4.5 Results and discussion

We have divided the results presented for Keyword Spotting into two groups. In

the first group, results achieved for all of the confidence measures for all of the filler

models in the first level using the monophones as acoustic models for the keywords

and CI filler models are presented. Later, we have chosen the best CI filler model

in the first level (the AM model), we have trained its CD filler model and have

evaluated the confidence measures using the triphone-based acoustic models for

the keywords and these same models as filler models in the first level. In this way,

it is expected that these last results improve the system performance presented by

the CI experiments.

4.5.1 CI results

The Recognition Accuracy versus False Acceptance Rate and the FOM metric,

defined in Appendix E, have been used to evaluate the CI results. Significance

tests, by using paired t-tests, were run to show if the differences in the FOM value

were significant across the keywords. The parameters necessary for each confidence

measure were tuned for both metrics independently on the geographic training

set .

Table 4.1 presents the results in terms of Recognition Accuracy (RA) / False

Acceptance Rate (FAR) for the geographic training set . And Table 4.2 presents

the results for such metric for the geographic test set .

Table 4.3 and Table 4.4 present the results for the geographic training set and

geographic test set respectively under the FOM metric.
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No CM Exact Match Likelihood Heuristic Rules Lexical Access
AM 77.7/29.9 76.2/29.8 76.2/24.1 71.6/16.1 76.0/11.8
PM 87.6/43.4 85.7/42.3 76.3/23.8 78.9/22.4 82.6/11.2
BM 97.1/67.6 94.3/67.4 75.7/38.0 84.3/38.6 82.0/13.1
APM 97.0/88.1 93.7/87.7 56.7/45.3 81.5/57.4 74.4/14.6

Table 4.1: Results in terms of RA/FAR for CI acoustic models for the confi-
dence measures in the development set, i.e., the geographic training set .

No CM Exact Match Likelihood Heuristic Rules Lexical Access
AM 74.2/29.5 74.0/29.1 73.0/23.4 69.3/15.6 72.2/13.7
PM 84.9/42.8 84.5/41.7 75.5/23.1 77.5/21.6 77.2/13.2
BM 96.3/66.4 96.2/65.8 76.7/36.3 82.8/38.4 78.2/15.0
APM 95.4/87.4 95.3/86.8 56.9/43.3 80.7/56.6 71.0/15.3

Table 4.2: Results in terms of RA/FAR for CI acoustic models for the confi-
dence measures in the test set, i.e., the geographic test set .

Evaluation in terms of RA/FAR From Table 4.2 it is shown that for the first

level in isolation (No CM), when the filler model is composed by the same acoustic

models as the keywords less keywords are retrieved and therefore less hits and less

FAs are output in using the AM filler model. For all of the confidence measures,

both the number of hits and the number of FAs are decreased compared with the

first level in isolation for all of the filler models. It is interesting to compare the

rates achieved in using the BM and APM filler models. Such table shows that

the BM filler model outperforms the number of keywords detected correctly while

it minimizes the number of FAs compared with the APM filler model for all of

the cases. It means that a single filler model to represent all of the phones is not

discriminative at all in presenting keywords or that filler, due to almost all of the

keywords hypothesized correspond to a FA. In comparing the confidence measures

themselves, it is shown the better performance of the Lexical Access one when it

is compared with the rest for all of the filler models, especially in the AM filler

model, where the RA is almost the same for all of them, with a lot of reduction

in the FAR, and even better in comparing with the Heuristic Rule one, with a

smaller number of FAs. For the PM, BM and APM filler models, the Lexical

access confidence measure presents a small FAR maintaining an acceptable RA.

And when it is compared with the Likelihood one, both rates are improved for the

PM, BM and APM filler models. For the AM filler model, the same effect can
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be deduced as a dramatical decrease in the FAR caused a minimum decrease in

the RA. The best performance of the Lexical Access confidence measure is caused

by the amount of information given to the whole system. In comparing every

confidence measure across the filler models, we showed the following: For the

Exact Match confidence measure, the BM filler model outperforms the rates got

by the APM one. For the Likelihood and Lexical access confidence measures all

of the filler models outperform the APM and the PM one outperforms the rates

got by the AM. It is caused by a better keyword detection rate in the first level,

which contributes to more hits can be retained after such confidence measure is

applied. For the Heuristic Rules, the BM filler model outperforms the APM one.

For the rest of the comparisons, an increase in the RA also caused an increase in

the FAR. In the Exact Match confidence measure, due to most of the occurrences

hypothesized by the first level are also hypothesized by the word-based decoding

process run in such confidence measure, similar rates that of the first level are

achieved for every filler model.

No CM Exact Match Likelihood Heuristic Rules Lexical Access
AM 65.5 65.6 66.3 65.5 69.5
PM 60.9 62.3 64.9 63.2 72.6
BM 64.3 64.4 65.6 64.4 69.2
APM 15.7 16.6 42.9 35.4 65.0

Table 4.3: Results in terms of FOM for CI acoustic models for the confidence
measures in the development set, i.e., the geographic training set . Higher

values indicate better performance.

No CM Exact Match Likelihood Heuristic Rules Lexical Access
AM 64.2 64.2 65.5 64.2 67.5
PM 59.8 60.4 65.1 64.1 69.2
BM 61.5 61.6 63.8 61.6 67.1
APM 18.0 18.6 43.7 37.3 62.9

Table 4.4: Results in terms of FOM for CI acoustic models for the confidence
measures in the test set, i.e., the geographic test set . Higher values indicate

better performance.

Evaluation in terms of FOM The FOM metric gives a single value for all of

the filler models according to the confidence measures. In Table 4.4 it is shown
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that the Lexical Access confidence measure outperforms the rest for every filler

model. Again, it is caused by the amount of information given to such system. It

must be also noted that, although the Likelihood confidence measure is worse in

terms of RA and FAR than the Heuristic Rule one, the FOM value is better for the

Likelihood one for the PM filler model. It means that both metrics follow different

patterns in evaluating a same system. Actually, in the FOM computation, the

putative keywords with a very low score are not taken into account in the final

value. Contrary, in the RA/FAR values, all of the putative keywords contribute

equally to the final values. All of the confidence measures outperform the final

rate for all of the filler models, except the Exact Match and Heuristic Rules ones

for the AM filler model. It is a consequence of two factors: First, the better

performance of the AM filler model against the rest of the filler models, which

leads to a lower margin of improvement. Second, although the FAs are reduced

from the first level, some hits are also removed in presenting the final output of

the system, which causes this same FOM value. In addition to this, the low score

of some FAs, which are missed in the final metric computation, contributes to

such effect. The AM filler model presents the best final performance for all of

the confidence measures except for the Lexical Access one, where the PM filler

model performs the best. This is caused by the amount of information provided

to such confidence measure along with the worse system performance of the first

level in isolation, which causes that the margin of improvement is greater for such

filler model. The higher keyword detection rate of the PM filler model in the

first level also contributed to such effect. Since the PM filler model presents a

worse value than the AM and BM filler models for the first level (No CM ), when

the Likelihood, Heuristic Rules and Lexical access confidence measures are run,

it produces a better value than the BM filler model. Such effect is not observed

in the comparison between the AM and BM filler models, due to the difference

between the BM and AM performance in the first level is greater than the one

between the PM and BM filler models. However, the Exact Match confidence

measure does not follow this pattern, due to the weakness of it. For the APM

filler model, and due to its much worse system performance in the first level, even

after applying any confidence measure, such filler model does not outperform any

other. Paired t-tests were used to evaluate if the differences presented in the FOM

value for every filler model across each confidence measure are significant or are

not. For the AM filler model, there is only significant difference between the Lexical

access confidence measure and the Exact Match one and between the Likelihood
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and the Exact Match with p < 0.05. For the PM filler model, the difference was

statistically significant between the Heuristic Rules and the Exact Match with

p < 0.02, between Lexical access and Exact Match with p < 0.05 and between

Likelihood and Exact Match with p < 0.04. For the BM filler model, the difference

was significant between Lexical access and Exact Match with p < 0.03 and between

Lexical access and Likelihood with p < 0.001. For the APM filler model, all of

the differences between the confidence measures were found to be significant with

p < 0.001 except the one between Heuristic Rules and Likelihood. Paired t-tests

were also used to compare if the improvements in using the confidence measures

were significant against the No CM and showed the following results: There is no

difference in the confidence measures for the AM filler model compared with the

No CM. For the PM filler model, the difference was found to be significant for

the Heuristic Rules confidence measure with p < 0.04. For the BM filler model,

no difference was found to be significant. Finally, for the APM filler model, all of

the differences in the confidence measures were found to be statistically significant

with p < 0.001.

In comparing every confidence measure across each filler model, the paired t-tests

showed the following: When No CM is applied, there is significant difference

between the AM filler model and PM filler model with p < 0.04, between AM

and APM with p < 0.001, between PM and APM with p < 0.001 and between

BM and APM with p < 0.001. For the Exact Match, Likelihood and Heuristic

Rules confidence measures, the difference was found to be significant between AM

and APM, between PM and APM and between BM and APM with p < 0.001.

Finally, for the Lexical access confidence measure, the difference was found to be

significant for AM and BM, AM and APM, PM and BM and BM and APM with

p < 0.001.

4.5.2 CD results

The CD allophones were used for both the keywords and the filler models due to

the best system performance of the CI allophones in terms of FOM for the first

level in isolation. Here, we have tried to evaluate the best confidence measure

over the best acoustic model configuration. In this case we have used the same

two metrics as for the CI results. The aim of this experiment is to achieve a very

high detection rate (retrieve almost all of the hits in the first level) and evaluate
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the FOM value for such RA and the resulting FAR. Significance tests, as in the

CI experiments, showed if the differences in using each confidence measure are

significant.

FOM RA/FAR Reduction in FAR
No CM 70.4 84.3/29.0 –
Exact Match 70.4 84.2/28.3 3.3%
Likelihood 70.9 83.4/24.0 23.3%
Heuristic Rules 70.4 83.8/26.8 10.5%
Lexical Access 72.5 83.4/17.4 48.9%

Table 4.5: Results in terms of FOM, RA/FAR and the reduction of FAR
compared with No CM for CD acoustic models for the confidence measures in

the development set, i.e., the geographic training set .

FOM RA/FAR Reduction in FAR
No CM 68.3 80.0/25.7 –
Exact Match 68.4 79.9/25.1 2.2%
Likelihood 68.6 79.6/21.1 22.9%
Heuristic Rules 68.2 79.7/24.3 7.8%
Lexical Access 69.4 79.1/16.6 43.2%

Table 4.6: Results in terms of FOM, RA/FAR and the reduction of FAR
compared with No CM for CD acoustic models for the confidence measures in

the test set, i.e., the geographic test set .

Evaluation in terms of FOM From Table 4.6 it it shown that, according to

the FOM value, all of the confidence measures outperform the first level in isolation

except the Heuristic Rules one. It is due to the rules defined for such confidence

measure. Although they rejected some FAs of the first level in isolation, some of

the hits are also rejected in tuning such confidence measure for RA/FAR, giving a

slight worse FOM value. Such reduction is confirmed in the RA and FAR values.

However, for the rest of the confidence measures, the number of FAs is reduced

in such a way that the loss of some hits is not important in presenting the FOM

value. It is confirmed by the relationship between RA and FAR. The Likelihood

and the Lexical Access confidence measures get a high FAs reduction, compared

with the number of hits that are missed, causing the two best FOM values. The

Exact Match only increases slightly the FOM value due to both the number of hits
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and FAs are reduced in more or less the same percentage. Paired t-tests were also

used to evaluate the improvement between these confidence measures in terms of

FOM. In comparing the confidence measures, it was shown that there is significant

improvement between the Likelihood and the Heuristic Rules, between the Lexical

access and the Heuristic Rules, between the Lexical access and the Exact Match

and between the Likelihood and Exact Match with p < 0.05. In comparing with

No CM the difference was found to be significant for the Likelihood confidence

measure with p < 0.03 and for the Lexical access one with p < 0.04.

Evaluation in terms of RA/FAR The strongest results are discussed when

we compare the percentage of FAs that is reduced for each confidence measure. It

is shown that, for a very small decrease in the number of hits (about 1% relative as

much in case the Lexical access confidence measure), the number of FAs decreases

considerably. In this last case, the number of FAs decreases up to 43% relative.

It is also interesting the case of the Likelihood confidence measure. There, in

decreasing the RA in a 0.5% relative, the number of FAs is decreased at about

23% relative. And comparing the Likelihood and the Lexical access confidence

measures, in reducing the number of hits in a 0.6% relative in the latter, the

number of FAs is reduced in a 26.3% relative.

4.5.3 Keyword-length based analysis

It is accepted that the final performance in keyword spotting systems depends a

lot on the length of the keywords chosen. In this way, with short keywords, more

FAs will be generated in the system and with long keywords less FAs will be.

It relies on the fact that short keywords may correspond to a subpart of a long

word or even can be formed as the join of two different words of the speech data.

Contrary, these effects are less likely to occur for long keywords. To represent

how the length of the words affects the performance of the first level and each of

the confidence measures, the keywords are divided into the following groups: The

Short-lengh Keywords Group (SKG) contains the keywords with 4, 5 and 6 phones.

The Medium-length Keywords Group (MKG) contains the keywords between 7 and

9 phones. Finally, the Long-length Keywords Group (LKG) groups the keywords

with more than 9 phones. Table 4.7 shows the FOM value and Table 4.8 shows
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the RA and FAR for each of these three groups. These data correspond to the CD

experiments.

SKG MKG LKG
No CM 44.6 62.1 84.7
Exact Match 44.8 62.3 84.6
Likelihood 45.4 62.7 84.6
Heuristic Rules 44.9 61.9 84.4
Lexical Access 46.8 63.1 85.4

Table 4.7: Results in terms of FOM for the SKG, MKG and LKG in the test
set, i.e., the geographic test set . Higher values indicate better performance.

SKG MKG LKG
No CM 51.3/62.2 80.5/25.2 92.0/3.8
Exact Match 51.3/61.4 80.5/24.7 91.9/3.8
Likelihood 51.0/52.6 79.8/22.9 91.9/3.8
Heuristic Rules 51.3/59.2 79.9/24.7 91.7/3.8
Lexical Access 50.7/36.7 78.9/22.4 91.6/3.1

Table 4.8: Results in terms of RA/FAR for the SKG, MKG and LKG in the
test set, i.e., the geographic test set

Evaluation in terms of FOM From the individual FOM value of each group

it is shown that, as expected, such value improves from short-length keywords to

long-length keywords. It is also shown that the use of the confidence measures gives

more benefit to short-length keywords due to their worse performance in the No

CM system, which allows to a greater margin of improvement. The Heuristic Rules

confidence measure achieves a worse FOM value than the No CM for medium-

and long-length keywords, which follows the same pattern as the final FOM value

explained in the CD experiments. Instead, for short-length keywords, the FOM

value is better, which suggests that such confidence measure can be successfully

applied on keywords with less than 7 phones.

Evaluation in terms of RA/FAR A similar pattern as that of the FOM

metric was found for RA and FAR values across each group. It is shown that

short-length keywords tend to produce a worse RA and FAR than medium- and
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long-length keywords. These last keywords present the best performance as well.

Again, the Lexical access confidence measure gives the greatest benefit for all of

the groups independently. With it, it is shown that for a very small decrease in

the RA value, the FAR is decreased dramatically for each group. Such decrease is

higher for the short-length keywords and lower for the long-length keywords due

to these have a better performance in the No CM case.

4.6 Conclusions

From the CI results, we have shown that all of the confidence measures outperform

the final FOM value proposed by the first level in isolation for all of the filler mod-

els, except for the Allophone Models (AM). Due to the AM system performance is

the best in the first level in isolation, the Likelihood and Lexical access confidence

measures are the only that outperform the final FOM value. For such reason, we

have selected the AM filler model as the best CI filler model. As more information

is provided to the system, better results are achieved. Therefore, the Likelihood

confidence measure, which makes use of more information that the Exact Match

one, outperforms its rates achieved for every filler model. Due to the Lexical ac-

cess confidence measure is the one with the greatest amount of information, the

FOM value is the best for every filler model. The Likelihood confidence measure

outperforms the Heuristic Rules one under the FOM metric because a word-based

speech recognition instead of a phone-based decoding is run. In addition to this,

the likelihood computed during the word-based decoding is more discriminative

than the heuristic rules defined in the latter confidence measure in terms of FOM.

However, such last improvement was not found to be significant. Contrary, the

phone-based decoding in the Lexical access confidence measure with the confusion

matrix and its decision computation which makes use of the hits and FAs involved

in a previous training stage gives greater benefit than the likelihood computed

from the word-based decoding, although it was just found to be significant for

the Broad class Models (BM) and Average Phoneme Model (APM) filler models.

In the same way, the missing of the low-score occurrences, along with the great

dependency of the score in the final FOM value caused that for some confidence

measures and filler models, the comparison of the confidence measures and the

first level in isolation was not found to be significant. In terms of RA and FAR,

it can be also concluded that the Lexical access confidence measure performs the
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best and the Exact Match one performs the worst. However, in comparing the

Likelihood and the Heuristic Rules ones, a similar tradeoff between RA and FAR

is observed for the AM, BM and APM filler models, and, contrary to the FOM

value, better performance for the Heuristic Rules one for the Phoneme Models

(PM) filler model. The different computation used by the two metrics caused this

last effect.

From the CD results, the Lexical access confidence measure presents again the

best performance of the confidence measures presented for Keyword Spotting. It

is caused by the amount of information given to such system. In comparing it with

the approach based on the standard likelihood computation (i.e., the Likelihood

confidence measure), the final FOM rate is better, although the improvement was

not found to be significant. Such conclusion is stronger in comparing the number

of hits and FAs that are presented in each confidence measure: In reducing the

number of hits in a very small percentage (about 1% relative as much) from the

No CM, all of the confidence measures decrease the number of FAs in a greater

percentage. Powerful results are achieved with the Likelihood and Lexical access

confidence measures, where the FAR is decreased up to 43% relative. This last

confidence measure achieved a 26.3% relative reduction in the FAR with a very

slight reduction in the RA when it is compared with the Likelihood one, which

makes use of the standard likelihood got from the word-based speech recognition

for each keyword.

Based on the number of phones of the keywords, we can conclude that short key-

words are more likely to produce more FAs, due to their inherent more probability

to be confused with parts of other long words or even with some segments of two

adjacent words.

4.7 Summary

We have presented in this chapter the approaches developed for Keyword Spot-

ting. All of the approaches presented consisted of a same framework: In a first

level, a state-of-the-art HMM-based keyword spotting process is used to retrieve

a set of keywords according to the input signal. The contributions are presented

in the way of four different confidence measures in the second level to improve the

rates achieved by the first level. Two of them presented an isolated word speech
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recognition process which computed the parameters used in the decision stage to

accept or reject the putative keywords. The two others made use of a phone-

based decoding process along with additional modules to compute the parameters

used in the decision stage. This chapter also described the experiments on the

Albayzin database. The goal was to compare the four confidence measures pre-

sented to form a keyword spotting system. We have shown that the Lexical access

confidence measure, making use of a phone-based decoding and a DP algorithm

which computes a cost for each keyword from a confusion matrix built from the

hits and FAs got in the training stage, presents the best rates for the keyword

spotting system. It is due to the great amount of information given to it, along

with the knowledge and use of the errors appearing in the first level. When it is

compared with the standard confidence measure based on the likelihood computed

during the word-based speech decoding, the final FOM value is better (although

it was not found to be significant) and the FAR is reduced in a 26.3% relative

maintaining a similar RA. We have also reported an analysis of the performance

of such confidence measures depending on the number of phones of each keyword.

Short-length keywords tend to produce more errors than medium- and long-length

ones and the use of the confidence measures gives more benefit to them.





Chapter 5

Contributions to Spoken Term

Detection

5.1 Introduction

STD, as Keyword Spotting does, deals with the search of a set of keywords within

the audio content. However, contrary to Keyword Spotting, and following the

NIST recommendations in terms of speed and accuracy for STD systems, the list

of keywords is unknown during the decoding process. It causes that the decoding

process must be performed by means of sub-word units (phones, graphemes, syl-

lables...) to build an efficient index. A second step hypothesizes the final list of

terms from that index.

This chapter is divided into three different parts. The first part presents a state-

of-the-art STD approach used in the other two parts. The second one presents

a new technique to estimate the confidence score of the final list of terms in

the STD approach along with the results achieved for the Albayzin database.

It also compares this technique with the standard confidence scoring techniques

proposed in the literature and reports the main conclusions derived from such

technique. The third part reports preliminary experiments in information retrieval

over an English meetings domain and presents a confidence measure based on

decision trees to outperform the performance of the STD system. It also reports

the results achieved over the meetings domain and the main conclusions got from

such confidence measure. Therefore, the contributions in this chapter rely on the

73
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new confidence measurement-based technique presented in the second part and

the decision tree-based confidence measure in the third part.

5.2 STD approach

The STD approach used in our work is an implementation provided by the Brno

University of Technology [39]. Although it is not the main objective of this chap-

ter, and this approach is completely defined in the next chapter, it consists of a

decoding process which produces a lattice of phones in the first step and a method

based on a recursive match algorithm to find all the fragments in the lattice that

exactly match the actual phone transcription of any search term in a second step

(lattice search tool).

5.3 Confidence scoring

5.3.1 Motivation and prior research

Confidence scoring plays a very important role in STD systems. As more accurate

the confidence score is, a subsequent threshold-based technique will produce a

better STD performance in rejecting FAs.

Most of the confidence measures presented in the literature make use of the pos-

terior probability (posteriors) estimated by the Viterbi algorithm during the de-

coding process not only for LVCSR and keyword spotting systems [37, 52, 68, 74],

but also for STD systems [39, 66]. In these cases, a final normalization of such

posteriors is necessary in order to present a final score for the hypothesized list of

terms. Such posteriors are estimated directly from the HMMs (trained using the

maximum likelihood criterion) used during the decoding step. These HMMs are

based on a Bayesian approach that presents two main drawbacks: (1) the likeli-

hood is estimated from a generative model (HMM with the maximum likelihood

criterion), which assumes a framewise and component-wise independence of the

acoustic features, and a finite number of GMM; (2) in the STD approach presented

before, the confidence score calculation is expensive and needs the whole lattice

to be computed.
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On the other hand, it is well known that an MLP can be used to compute the class

posterior probabilities for a classification task. This MLP is built from a standard

3-layer network with softmax output activation. In addition to this, MLPs have

been also widely used for speech recognition, by computing the posterior proba-

bilities for phone classes from the acoustic vectors [10]. Silaghi and Bourlard [43]

computed the confidence score for each keyword in their keyword spotting system

without filler models by using the local posteriors computed in the training of an

MLP.

Here, we propose such method to compute the confidence score on the STD ap-

proach explained before and compare it with equivalent HMM-based techniques.

In this way, this method is not used directly during the Viterbi-based decoding as

Silaghi and Bourlard did. Contrary, it is used in a following step after the Viterbi-

based decoding when the phone lattices have been already computed. In addition

to this, the LM component stored in the lattice was used in the final confidence

score computation. Instead, Silaghi and Bourlard did not make use of any LM in

their work. This method does not make any assumption of the acoustic features

and does not need the whole lattice to be computed. It has been implemented

by collaborators in the CSTR group in the University of Edinburgh and in this

thesis, we have evaluated it on Spanish language. This work has been published

in [75].

5.3.2 HMM-based confidence scoring

In STD systems, the posterior probability p(Kt2
t1 |OT ) is the confidence with which

the term K appears between the frames t1 and t2. According to the Bayesian

formulation, it can be expressed as follows:

p(Kt2
t1 |O

T ) =
∑
α,β

p(Kα, Kt2
t1 , Kβ|OT ) (5.1)

=
∑
α,β

p(Kα, Kt2
t1 , Kβ, OT )

p(OT )
(5.2)

=
∑
CK

p(OT |CK , Kt2
t1 )p(CK , Kt2

t1 )

p(OT )
(5.3)
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where Kt2
t1 is the search term from frame t1 to frame t2. Kα and Kβ are any

possible phone strings before and after Kt2
t1 , with Kα starting at frame 1 and Kβ

ending at frame T . Ck groups Kα and Kβ in Equation 5.3 and represents the left

and right context of Kt2
t1 respectively.

In Equation 5.3, the conditional probability p(OT |Ck, K
t2
t1 ) is the acoustic likeli-

hood, and the joint probability p(CK , Kt2
t1 ) is given by the LM. The denominator

p(OT ) is considered to be a constant. Since the Baum-Welch algorithm usually

computes p(OT |Ck, K
t2
t1 ), we denote this confidence measurement as Baum-Welch

confidence. For such confidence, three partial paths are computed: The first one,

denoted as Lbegin(K) computes all the subpaths that reach the node start of the

keyword from the beginning of the lattice to the node start of the keyword. The

second one, denoted as Lend(K) computes all the subpaths that leave the node

end of the keyword from the node end of the keyword to the end of the lattice.

Such subpaths are computed using standard forward-backward processes [9] re-

spectively. The third path, denoted as L(K) is the path that contains the keyword.

Finally, all the subpaths (those that finish in a terminal node) contained in the

lattice, i.e., the whole evidence of the lattice, denoted as Lall are also computed.

In this last case, only the forward step is required. The confidence score for the

partial paths Lbegin(K) and Lend(K) and for the whole path Lall were computed

as a sum of each subpath score. We denote them as Sbwbegin(K), Sbwend(K) and

Sbwall(K) respectively in Equation 5.4. Each subpath score was computed as the

sum of the acoustic log likelihood plus the LM log likelihood (weighted by the lan-

guage scale factor) plus the word insertion penalty of its sequence of phones. The

confidence score for the path L(K), denoted as Sbwkw(K) in Equation 5.4, was

computed in the same way. Therefore, the final confidence score for the keyword

K is computed as follows:

Sbw(K) = Sbwbegin(K) + Sbwend(K) + Sbwkw(K)− Sbwall(K) (5.4)

A significant reduction in computational cost can be achieved by replacing the

sum over all CK in Equation 5.3 with the 1-best path, as in Equation 5.5:

p(Kt2
t1 |O

T ) ≈
maxCK

p(OT |CK , Kt2
t1 )p(CK , Kt2

t1 )

maxKT
1
p(OT |KT

1 )p(KT
1 )

(5.5)
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Such approximate confidence value is also computed from standard forward-backward

processes [9], but in this case, just the best path is considered, and not all the

subpaths as in the Baum-Welch confidence. Therefore, we denote it as Viterbi

confidence. The final confidence score is then computed as in the Baum-Welch

confidence. Equation 5.6 represents the final confidence score for each keyword K

for the Viterbi confidence.

SV iterbi(K) = SV iterbia(K)+SV iterbib(K)+SV iterbikw(K)−SV iterbibest(K)

(5.6)

where SV iterbia(K) denotes the score of the best path from the beginning of the

lattice to the node start of the keyword, SV iterbib(K) denotes the score of the best

path from the node end of the keyword to the end of the lattice, SV iterbibest(K)

denotes the score of the best path of the whole lattice and SV iterbikw(K) denotes

the score of the path that contains the keyword. Such subpath scores are computed

in the same way as in the Baum-Welch confidence.

In addition to these two standard HMM-based methods to compute the confidence

score, in running the lattice search tool in the second step of the STD approach,

it may occur that two occurrences of the same keyword overlap in time (i.e occ1

may appear between T1 and T3 and occ2 may appear between T2 and T4, with

T1 < T2 < T3 < T4). Therefore, we have analyzed two different methods to

compute the final score, which were implemented in the lattice search tool by

the Brno University of Technology [39]. The first one, denoted as Best Time

Best Score (BTBS) method, selects the occurrence of the keyword which has the

best score of all those overlapped. In this case, the confidence score is the one

computed for such occurrence. The second one, denoted as Group Time Group

Score (GTGS) method, selects the occurrence of the keyword with the less starting

point. It computes the confidence score as the sum of all of the confidence scores

of those occurrences overlapped. As it was found no difference in the system

performance in using any kind of these two methods for the Viterbi confidence,

we have chosen the GTGS method for the Baum-Welch confidence and for the

MLP-based approaches.
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5.3.3 MLP-based confidence scoring

The posterior probability for each frame t, denoted as p(Qt|O), is computed by an

MLP. Qt represents the phone class of the search term at frame t and O represents

the sequence of the vectors in the whole observation. Qt is computed from the

lattice produced by the phone-based decoding process. The MLP configuration is

depicted in Figure 5.1.
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Figure 5.1: The MLP network for the MLP-based confidence scoring.

The confidence score for each search term is computed by adding the frame confi-

dence (i.e., the frame-level posterior probability p(Qt|O) estimated by the MLP),

by taking logarithms in Equations 5.7 and 5.8. Therefore this confidence score is

independent of the context Ck and it only takes into account acoustic properties.

The MLP input layer consists of a window of 2W + 1 frames of acoustic features

and we have chosen W = 4 in our experiments to form a 9-frame input window.

The output layer consists of 47 phones plus a short silence and a beginning and

end silence (i.e., 50 units). The hidden layer contains 1100 units and the input

layer contains 351 units.
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p(Kt2
t1 |O

T ) =

t2∏
t=t1

p(Qt|OT ) (5.7)

=

t2∏
t=t1

p(Qt|ot−W , ..., ot, ..., ot+W ) (5.8)

This phone-independency assumption means that linguistic information stored in

the lattice is not used. To solve it, dependency between phones has been added as

illustrated in Figure 5.2. Two different implementations have been used to model

such dependency: Direct LM integration and Baum-Welch LM integration. In

both cases, the phone dependency is modeled by a bigram LM.

Q(t-1)

Q(t)

Q(t+1)

Figure 5.2: The phone-dependency representation for the posterior confidence
computation. Q(t) is the phone at frame t and O(t) is the acoustic observation

at time t.

5.3.3.1 Direct LM integration

In adding the linguistic component to the confidence score computation, we define

the variable K l as the search term K in the word layer. Thus, K l represents the
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linguistic layer of the word K. Therefore, the confidence score for a word K is

composed of two different units, one is the acoustic unit and the another is the

linguistic unit. The former assigns probabilities from speech features, while the

latter gets probabilities from the LM. We assume that p(K l, K) = p(K), i.e., K l

represents the K’s phonetic form of the term K. We also consider that K l is

independent of the acoustic observation O, i.e, p(Kl|K, O) = p(Kl|K). Therefore

we can compute the best context C ′
Kl which has the most of the probability of

the accumulated linguistic score, i.e.,
∑

C
Kl

p(K l|CKl)p(CKl) ≈ p(K l|C ′
Kl). In this

way, the posterior probability of the word detected is computed as the product of

the acoustic and LM scores as illustrated in Equations 5.9-5.12.

p(K, K l|O) =
∑
C

Kl

p(K, K l, C l
K |O) (5.9)

= p(K|O)
∑
C

Kl

p(CKl , K l|O, K) (5.10)

= p(K|O)

∑
C

Kl
p(K|CKl)p(CKl)

p(K)
(5.11)

≈ p(K|O)
p(K l|C ′

Kl)

p(K)
(5.12)

In this case, the LM score p(K l|C ′
Kl) is stored in the lattice and the denominator

was considered to be a constant. p(K|O) is given by the acoustic likelihood.

Therefore the confidence score computation process is the same as in the phone-

independent case. We refer to this confidence score computation as Posterior with

Direct LM integration. To compute such confidence for each keyword, we simply

add the acoustic log likelihood plus the LM log likelihood weighted by the language

scale factor plus the word insertion penalty of its sequence of phones.

5.3.3.2 Baum-Welch LM integration

Contrary to the Direct LM integration, where just the path containing the term is

considered for the final confidence score computation, this implementation regards

the whole phone lattice to compute the score. Therefore, the confidence score

computation is also considered as a two-step process. In the first step, only acoustic

confidence is considered. In the second step, the linguistic confidence is considered
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by assuming all the phone alternatives that are stored in the lattice. Therefore, the

final confidence is computed as the product of the acoustic and linguistic posterior,

as illustrated in Equations 5.13-5.15, where L is defined as the whole phone lattice.

p(K, K l|O) = p(K|O)p(K l|L) (5.13)

= p(K|O)
p(K l, L)

p(L)
(5.14)

= p(K|O)

∑
C

Kl
p(K l, CKl)

p(L)
(5.15)

In this implementation, p(K l|L) only takes into account linguistic constraints. It

must be also noted that this confidence is represented by a global score and there-

fore a forward-backward computation is required. That is why we denote p(K l|L)

as a Baum-Welch LM confidence. We refer to this confidence score computation

as Posterior with Baum-Welch LM integration. To compute the final confidence

score for each keyword, we compute all the subpaths that reach the node start of

the keyword in the partial path from the beginning of the lattice to the node start

of the keyword, denoted as Lbwlmbegin(K), all the subpaths that leave the node

end of the keyword in the partial path from the node end of the keyword to the

end of the lattice, denoted as Lbwlmend(K) and all the subpaths (those that reach

a terminal node) contained in the lattice, i.e, the whole evidence of the lattice,

denoted as Lbwlmall(K). Again, the subpaths of the partial paths Lbwlmbegin(K)

and Lbwlmend(K) were computed from standard forward-backward processes [9]

respectively. And the whole path Lbwlmall(K) was computed from the forward

step as well. Therefore the confidence score for each partial path Lbwlmbegin(K),

Lbwlmend(K) and the whole path Lbwlmall(K) is computed as a sum of each sub-

path score. We denote them as Sbwlmbegin(K), Sbwlmend(K) and Sbwlmall(K)

respectively in Equation 5.16. However, contrary to the Baum-Welch confidence,

such score is computed only from the LM component stored in the lattice. There-

fore, each subpath score is computed as a sum of the LM log likelihood weighted

by the language scale factor plus the word insertion penalty of its sequence of

phones. The score for the path that contains the keyword is computed in the

same way as the Direct LM integration. We denote it as Sbwlmkw(K) in Equation

5.16. Therefore, the final confidence score for a keyword K is computed as follows:
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Sbwlm(K) = Sbwlmbegin(K) + Sbwlmend(K) + Sbwlmkw(K)− Sbwlmall(K)

(5.16)

5.3.4 Experimental setup

5.3.4.1 Feature extraction

Standard 12 MFCCs plus energy and their first and second derivatives were ex-

tracted from the input signal. Standard 12 PLPs plus energy and their first and

second derivatives were used as MLP input features. The signal is sampled at

16kHz and stored with 16 bits precision. MFCCs and PLPs were computed at

10ms intervals within 25ms Hamming windows.

5.3.4.2 Acoustic Modelling

The same CD acoustic units as in the keyword spotting experiments in Chapter 4

were used as acoustic models for these experiments.

5.3.4.3 Language Modelling

A bigram trained from the phonetic training set was used for the lattice-based

decoding in the STD approach.

5.3.4.4 System tuning

The lattices used for the HMM- and MLP-based confidence scoring approaches

were fixed in such a way that p and s parameters were tuned for FOM metric from

the Viterbi-BTBS. For the lattice search tool both parameters are tuned again for

both HMM- and MLP-based confidence scoring approaches for the metrics used in

the evaluation independently. The geographic training set was used for both

tunings.

The phonetic training set has been used to train the MLP for the MLP-based

approaches. It contains 4400 sentences. 4000 of them were used to train the MLP
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and the rest, i.e., 400, have been used to tune the number of units in the hidden

layer, the learning factor and the number of epocs in the MLP training, based on

cross-validation accuracy, giving a 70.6% of accuracy. The MLP was trained using

the Quicknet software [20].

5.3.5 Results and discussion

The Albayzin database was used for the experiments. The same set of keywords

listed in Appendix D and used for the keyword spotting experiments in Chapter

4 was selected from the geographical domain. The FOM and ATWV metrics

along with the DET curves were used to evaluate the different confidence scoring

approaches. Paired t-tests showed if the differences across the confidence scoring

approaches were found to be significant.

FOM ATWV
Viterbi-BTBS 50.4 0.25
Viterbi-GTGS 50.4 0.24
Baum-Welch 50.4 0.24
Posterior with Direct LM integration 51.1 0.35
Posterior with Baum-Welch LM integration 50.1 0.26

Table 5.1: Results in terms of FOM and ATWV for the CD phone models
for the confidence scoring approaches for the geographic training set . For all

measures, higher values indicate better performance.

FOM ATWV
Viterbi-BTBS 47.2 0.18
Viterbi-GTGS 47.3 0.18
Baum-Welch 47.3 0.18
Posterior with Direct LM integration 47.5 0.26
Posterior with Baum-Welch LM integration 46.6 0.15

Table 5.2: Results in terms of FOM and ATWV for the CD phone models
for the confidence scoring approaches for the geographic test set . For all

measures, higher values indicate better performance.

Evaluation in terms of FOM Table 5.2 shows that for evaluation in terms of

FOM, as expected, the Posterior with Direct LM integration confidence scoring,

making use of a discriminative approach in calculating the score, achieves the best
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rate. However, paired t-tests showed that such value is just statistically significant

compared with the Posterior with Baum-Welch LM integration confidence scor-

ing. These tests did not show any additional difference between the rest of the

confidence scoring approaches. Thus, no significant difference was found between

HMM- and MLP-based approaches. On the other hand, the Posterior with Baum-

Welch LM integration achieves the worst rate, due to the weak LM (bigram) used

in the experiments.

Evaluation in terms of ATWV Table 5.2 also shows that for evaluation in

terms of ATWV, the Posterior with Direct LM integration outperforms any other

confidence scoring approach and that the addition of the Baum-Welch LM integra-

tion in the posterior computation does not contribute to improve the final system

performance. It must be noted that although the Posterior with Baum-Welch LM

integration outperforms slightly the HMM-based confidence scoring approaches for

the geographic training set , when the parameters tuned are applied over the

geographic test set , such benefit is unreliable. The DET curve in Figure 5.3

shows that although the final absolute ATWV value presented with the Posterior

with Baum-Welch LM integration is worse than the HMM-based approaches, it

oupterforms all of the HMM-based confidence scoring approaches for much of the

range. And the Posterior with Direct LM integration confidence scoring presents

the best DET curve for all the different operating points.

5.3.6 Conclusions

Discriminative approaches, such as NN-based approaches, typically outperform

equivalent generative models-based approaches, such as HMMs trained from the

maximum likelihood criterion, when both are used for the same task (e.g. ASR

task). Here, we have shown that the use of an MLP to compute the posterior

probability of each keyword did improve the HMM-based posterior probability for

a Spanish STD system. Such improvement is a combination of two different things:

(1) the acoustic confidence is a local score, which is very dependent on the current

frame and its neighbours; these neighbours are highly correlated. The MLP is able

to model this frame-wise dependency, contrary to those HMMs. (2) If enough data

are provided to the MLP training, such MLP structure can represent efficiently
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Figure 5.3: The DET curves for the confidence scoring approaches for Spanish
STD.

any kind of posterior distribution, whereas systems based on GMM converge to

the model, instead of a real distribution.

The worst absolute performance of the discriminative approach compared with

the HMM-based approaches in the Posterior with Baum-Welch LM integration

confidence score computation is caused by the weak bi-gram LM used in these

experiments. However, it has been shown that when the system is evaluated from

different operating points, such confidence scoring outperforms the HMM-based

ones for much of the range.

5.4 Decision tree-based confidence measure

5.4.1 Preliminary work

Recently, meetings domain have been of interest of the community research in

finding a selected list of terms on them. In this work we have focused on the STD
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approach from phone-based lattices as we did in the work for Confidence scoring.

Nevertheless, we also present several preliminary results in accessing the informa-

tion from other kind of units such as words in the output (1-Best and lattice) of

an LVCSR system. The data provided by NIST for the RT-04 and RT-05 evalua-

tions have been used in our preliminary experiments for the information retrieval

in meetings. Two sets of experiments were run over such data. The LVCSR sys-

tem used for both word-based recognition and phone-based recognition for both

experiments was provided by the CSTR group in the University of Edinburgh.

The information of the word-based LVCSR system can be found in [76]. For the

phone-based system, the set of phonemes listed in Appendix B was used, along

with a bigram LM trained from the text resources explained in Chapter 2. The

LM used in the word-based LVCSR was trained from such resources as well. The

set of HMMs used for both speech recognition processes has been trained from the

data referred as Meetings 2005 data in Chapter 2.

The first experiment was conducted on the RT-04 data and was composed of

the search of two different sets of terms. The first set contained 85 proper names

appearing in the RT-04 evaluation data (denoted as Proper names in Table 5.3), of

which 76 were INV and 9 were OOV and the second one contains 11500 INV words

(denoted as Common words in Table 5.3) extracted from the CMU dictionary. In

this experiment, INV refers to those proper names whose transcriptions appear in

the CMU dictionary and OOV refers to those whose transcriptions were estimated

from letter-to-sound rules from a CART module. We present these results in Table

5.3 under FOM and ATWV metrics when using the output of an LVCSR system

(in the way of 1-Best and lattice) and when using a phone lattice. The LVCSR

system and the phone-based system were tuned on the RT-04 development data

for WER and FOM metrics respectively. All the words in both sets appear in the

vocabulary of the LVCSR system.

The second experiment was conducted on the RT-05 data and was composed of

two different lists of terms as well. The fist one has 64 proper names appearing

in the RT-05 evaluation data (denoted as Proper names in Table 5.4) and the

second one has the same 11500 INV words as the first experiment. Here, it must

be noted that there are 16 proper names that do not appear in the vocabulary

of the LVCSR system, being unaccesible by the word-based approaches. Their

transcriptions were got from a CART module. The transcription of the rest of

the names used in the evaluation was found in the CMU dictionary. As in the
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first experiment, the LVCSR system was tuned on the RT-04 development data

for WER and the phone-based system was tuned on the RT-04 development data

for FOM. These results are presented in Table 5.4 for the same metrics as in the

first experiment.

FOM
Word (1-Best) Word (lattice) Phone lattice

Proper names 43.0 63.2 59.1
Common words 30.8 36.5 22.6

ATWV
Word (1-Best) Word (lattice) Phone lattice

Proper names 0.42 0.61 0.35
Common words 0.52 0.68 0.25

Table 5.3: Results in terms of FOM and ATWV for the RT-04 evaluation
data. For all measures, higher values indicate better performance.

FOM
Word (1-Best) Word (lattice) Phone lattice

Proper names 29.7 43.9 39.5
Common words 28.3 33.4 16.5

ATWV
Word (1-Best) Word (lattice) Phone lattice

Proper names 0.34 0.48 0.28
Common words 0.59 0.73 0.22

Table 5.4: Results in terms of FOM and ATWV for the RT-05 evaluation
data. For all measures, higher values indicate better performance.

From Tables 5.3 and 5.4 similar conclusions can be extracted. The word-based

lattice approach outperforms the 1-Best word-based approach, as expected for the

two sets of data. However, contrary to what can be expected, the word 1-Best

approach achieves a worse FOM value for Proper names than the phone-lattice

approach. It is due to the fact that the word-based approaches were tuned for WER

and not for the specific FOM metric, which causes that some important words

(those in the list of search terms) can contribute more to an error than others.

The same conclusion can be extracted for the RT-05 evaluation data. However,

as it is explained next, the difference between the 1-Best word-based approach

and the phone-based one was not found to be significant. For ATWV value,

the phone-lattice based approach is worse than the word 1-Best, which exhibits
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different behaviour that the FOM metric. A further explanation of the different

system performance according to the metric used in the evaluation is described

in the next chapter. As we increment the number of terms, more dependency

exists between the WER and FOM, as more words contribute to the final FOM

metric, the phone-lattice approach presents a worse FOM value than the word 1-

Best. Paired t-tests were used to evaluate the significance of the FOM values and

showed these conclusions: For the RT-04 evaluation data, on the Proper names

set of data, there is only significant difference with p < 0.001 between the Word

lattice approach and the Word 1-Best approach. For the set of Common words,

there is also significant difference between these approaches and between the word

lattice and the phone lattice one with p < 0.001. For the RT-05 evaluation data,

there is no significant difference between the approaches for the Proper names set

of data. It is caused by the fact that some of the words do not appear in the

vocabulary of the LVCSR system, causing a worse performance in the word-based

approach. However, in the Common words set, the results achieved by the three

approaches were found to be statistically significant with p < 0.001 between all of

them. The no difference for almost all of the approaches within the Proper names

set is due to the small amount of occurrences of such terms in the corpus (178

occurrences in the RT-04 evaluation and 196 occurrences in the RT-05 evaluation)

along with the WER metric used to tune the word-based approaches. However,

when the number of occurrences is increased (as it is in the Common words set),

the differences become significant.

5.4.2 Decision tree-based approach

5.4.2.1 Motivation and prior research

The terms in the list hypothesized by a STD system are classified in two different

classes according to the metric evaluation (hit and FA). In this address, approaches

dealing with classification tasks such as the ones based on NNs, SVMs and all

able to binary classification can be used for STD. This preliminary work is based

on a decision tree- or CART-based approach. It takes several input (prosodic

and lexical) features and tries to predict if a keyword is actually a hit or a FA.

Decision tree-based approaches have been already proposed in some other tasks

such as sentence boundary detection [77], hot spot in meetings [78] and finding

disfluencies in conversational speech [79]. They have been also used to show the
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correlation between the WER and the prosodic and lexical features according to

the audio signal in LVCSR systems [80]. It determines which words are more

likely to be misrecognized in the decoding process and therefore to produce a

higher WER. Here we propose a new application of the decision trees on STD over

the meetings domain. The goal of the decision tree is to classify the keywords

proposed by the term searching tool (lattice search tool) as hit or FA, with the

purpose of rejecting those classified as FA.

5.4.2.2 Decision tree and selected features

Decision tree is a common method for building statistical models from simple

feature data. Decision trees are powerful because they can deal with incomplete

data, multiple kind of features both in input features and predicted features, and

the output trees they produce often contain rules which are easily readable. The

following features (attributes in the decision tree) have been selected according to

each keyword hypothesized by the STD approach to build the decision tree:

• Duration of the keyword (in hundredth of seconds). It is referred as keyword

duration in Figure 5.5.

• The number of graphemes (letters) of the keyword. It is referred as number

of graphemes in Figure 5.5.

• The number of vowel graphemes of the keyword. It is referred as number

of graphemes vowels in Figure 5.5.

• The number of consonant graphemes of the keyword.

• The number of phones of the keyword.

• The number of vowel phones of the keyword.

• The number of consonant phones of the keyword. It is referred as numer

of phones consonants in Figures 5.4 and 5.5.

• The position of the keyword (related to the beginning of the utterance, the

end of the utterance and the middle of the utterance).

• The posterior probability estimated from the lattice search tool. In this case,

the Viterbi-BTBS score. It is referred as likelihood in Figures 5.4 and 5.5.
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• The language model probability of the keyword, computed from the LM

component (i.e., the bigram). It is referred as prob LM in Figure 5.5.

• The speaker phone rate, defined as the duration of the keyword (in hundredth

of seconds) divided by its number of phones. It is referred as number of

phones duration in Figure 5.5.

• The speaker vowel rate, defined as the duration of the keyword (in hundredth

of seconds) divided by its number of vowels. It is referred as number of

vowels duration in Figure 5.5.

• The gender of the speaker, i.e., male or female.

• The confusability of the keyword, computed as the number of hits divided

by the number of FAs of that keyword. It is referred as confusability in

Figures 5.4 and 5.5.

• The maximum, minimum and average Levenshtein distance for the keyword

when it is matched with the rest. It was computed using the TREP package

[81]. The average Levenshtein distance is referred as average distance in

Figures 5.4 and 5.5.

It must be noted that each audio file is represented by a single speaker. Therefore,

the gender is defined for each file. The position of the keyword is relative to each

utterance and the speaker phone rate and the speaker vowel rate are defined for

each speaker who pronounces a keyword.

As in any classification task, it is very likely that the number of occurrences that

belong to the different classes varies greatly, even when there are only two classes

(hits and FAs in our case). And the problem caused by such imbalanced data

may affect the final performance of the STD system. Several techniques have been

proposed to solve this issue [77]. In this initial work, we have chosen to reduce the

majority class samples (Random downsampling), due to in our case, the minority

class corresponds to hits and the ATWV metric used in the evaluation gives more

penalty to a miss than a FA and the Random downsampling approach results in

poorer performance for the majority class [82, 83] and therefore better performance

for the minority class (hits).

The decision tree was built in the traditional way with the stop value criterion,

represented by the n stop value. It means that at least n samples are required
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in a partition before a question split is considered. In addition to this, a same

attribute may appear several times in the final decision tree. Two different tuning

processes were considered in this work: The first one is depicted in Figure 5.5 and

represents the decision tree when the approach is tuned to retrieve as many hits

as possible (biased towards hits). The second one is depicted in Figure 5.4 and

represents the tree when the system is tuned in terms of Classification Error Rate

(CER).

As it is shown in both figures, the likelihood or score computed from the lattice

search tool is the root of both trees. It means that such attribute has the less

entropy (i.e., the maximum gain of information) of all of the attributes described

previously. Therefore, it is the attribute that provides the best classification for

the keywords. Such value is computed by the lattice search tool and makes use of

the information stored in the lattice (i.e., the acoustic likelihood and the lingustic

likelihood) during the decoding process. Moreover, it represents the confidence

of the keyword, which should be greater when the keyword hypothesized is more

likely to be a hit than a FA. Due to the rest of the features do not make use of

any additional information to hypothesize that the occurrence is more likely to be

a hit or a FA, it caused the likelihood to be the feature that provides with the

best discrimination between hits and FAs. Some of the attributes used as input

features do not appear in the decision tree. It means that such attributes do not

provide the maximum gain of information each time a question split is considered

in the training of the decision tree. Thus, such features are irrelevant given the

whole set of features in classifying the keywords as hit or FA.

The different size of both decision trees, depending on the tuning, is caused by

the different n stop value got from both tuning processes. It was assigned a value

of n = 35 in the CER-based tuning and n = 8 in the biased towards hits tuning.

It means that more questions are necessary to split each node or partition (i.e.,

to form a new level) of the decision tree for the former way of tuning that for the

latter one. At the same time, as the decision tree is growing, less questions remain

to be used for the next level. It causes that decision trees have less levels when

more questions are required to be used before a partition splits.
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5.4.2.3 Experimental setup

A set of 11500 INV keywords (extracted from the CMU dictionary), and referred

as Common words in the experiments explained before, was used as search terms.

The NIST RT-04 evaluation was used as development set to build the decision

tree and the NIST RT-05 evaluation was used as evaluation set. As the CER is

the metric widely used to evaluate the performance of CARTs and the ATWV is

the metric used to evaluate the STD performance, we have presented two different

tuning processes for the whole STD system, composed of the lattice generation, the

lattice search tool and the decision tree-based confidence measure. The first and

more natural one is to select the parameters in the decision tree which presents the

best CER value directly. However, as the ATWV metric gives more penalty to a

miss than a FA, we have also tuned the system to achieve the best hit performance.

The only parameter necessary to be adjusted is the n stop value, which presents a

different value for CER tuning and for biased towards hits tuning. The lattices and

the final list of terms hypothesized from them for both the RT-04 evaluation and

the RT-05 evaluation, used to build and evaluate the decision tree performance

respectively, were tuned for FOM in the RT-04 development data.

5.4.2.4 Results and discussion

Table 5.6 shows the ATWV values for the STD system with and without the

decision tree-based approach. It shows that the decision tree-based approach out-

performs slightly the final value of the STD system compared with the performance

without it. Contrary to the geographic training set , where CER-based tuning

seems to outperform the biased towards hits tuning, in the geographic test set ,

it is shown that the latter outperforms both the CER-based tuning and the per-

formance without the CART. However, the DET curves in Figures 5.6 and 5.7 for

both the geographic training set and the geographic test set show similar

behaviour for both ways of tuning. For both sets, it is shown that the CER-based

tuning outperforms the two other performances for much of the range.

5.4.2.5 Conclusions

Due to the small improvement achieved in terms of absolute ATWV value, the

DET curve reports strongest conclusions from a set of different operating points.
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No CM CART (Hits) CART (CER)
ATWV 0.33 0.33 0.35

Table 5.5: Results in terms of ATWV without the decision tree-based ap-
proach (No CM) and with it when it is tuned for biased towards hits (CART

(Hits)) and for CER (CART (CER)) for the geographic training set .

No CM CART (Hits) CART (CER)
ATWV 0.19 0.20 0.18

Table 5.6: Results in terms of ATWV without the decision tree-based ap-
proach (No CM) and with it when it is tuned for biased towards hits (CART

(Hits)) and for CER (CART (CER)) for the geographic test set .
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Figure 5.6: The DET curves for the development set without the decision tree-
based approach (No CM) and with it when it is tuned for the biased towards

hits way (CMHits) and for CER (CMCER).

A similar pattern was found in such curve for both the geographic training

set and the geographic test set (contrary to the single best ATWV value) and

shows that the tuning of the CART for CER metric did improve the final STD

performance for much of the range. Although the work done in this direction using

a decision tree to improve the final STD performance is very preliminary (a minor
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Figure 5.7: The DET curves for the test set without the decision tree-based
approach (No CM) and with it when it is tuned for the biased towards hits way

(CMHits) and for CER (CMCER).

improvement is achieved) and more features can be used to build the final decision

tree, we have shown that this approach has achieved encouraging results in STD.

Based on these results, we can conclude that the final set of features plays a very

important role to improve the final STD performance.

5.5 Summary

In this chapter we have presented two approaches applied over STD, which consti-

tute the contributions to STD. The first one is based on a discriminative approach,

by means of an MLP training, to compute the final confidence score of the list

of keywords hypothesized by the system. The second one is based on a deci-

sion tree to reject the keywords proposed by the STD system which it classifies

as FA. We have also presented a set of experiments developed over the Spanish

Albayzin database for the first approach and over the English meetings domain

for the second approach. The final confidence score computation by using the
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MLP and the LM component outperformed the rates achieved by the HMM-based

techniques due to it makes use of a discriminative approach instead of generative

models-based approaches, typically by using HMMs trained with the maximum

likelihood criterion, which suffer from several incorrect assumptions such as the

framewise and the component-wise independence of the acoustic features. In terms

of ATWV, the improvement achieved goes from 0.18 with the best HMM-based

confidence score to 0.26 achieved with such MLP-based approach. The use of de-

cision trees as confidence measure needs a more robust feature selection to achieve

a better performance than the one showed in this preliminary work since a minor

improvement is achieved with the features proposed. Nevertheless, we have shown

the potential possibilities of this approach to be applied over STD.



Chapter 6

Phone- versus Grapheme-based

systems for Keyword Spotting

and Spoken Term Detection in

Spanish

6.1 Introduction

The decoding process is a crucial element for both Keyword Spotting and STD

systems. Therefore, the choice of their units inventory plays a very important role

in the final system performance. Thus, this chapter aims to compare two different

acoustic models for Keyword Spotting and STD on the Spanish language. The

first part compares both acoustic models using a standard MFCC-based feature

extraction. Another important component in Keyword Spotting and STD is the

feature extraction from which the input acoustic signal is transformed into a se-

quence of feature vectors. In this thesis we have studied the influence of the feature

extraction process in the choice of the units inventory. The second part of this

chapter presents the comparison between the two acoustic models in using two dif-

ferent feature extraction processes on the STD task. Finally, the third part of this

chapter presents the combination of both types of acoustic models for both types

of feature extraction processes on the STD task from several confidence scoring

techniques. Experiments, results and main conclusions are reported for each part

separately. The contributions of this chapter rely on the comparison of phone-

97
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and grapheme-based acoustic models for Spanish Keyword Spotting and STD, the

influence of the feature extraction process in both types of acoustic models for

Spanish STD and the combination of both types of acoustic models for Spanish

STD.

6.2 Motivation and prior research

The phoneme-based acoustic models have been widely used for ASR tasks. In

doing, the words in the lexicon of the LVCSR systems were modeled by a sequence

of phones or phonemes, according to a target language. However, some other

related works have been also proposed the use of the graphemes, i.e., letters as

units in the acoustic modelling [84, 85, 86, 87, 88].

Killer et al. [84] showed that grapheme-based LVCSR systems for Spanish can

achieve performance which is close to that of phone-based systems. In some other

languages, notably English, the speech sounds are harder to predict accurately

from graphemes, so grapheme-based units typically perform worse than the phone-

based units for acoustic modelling [84].

However, Dines and Doss [89], showed that the use of graphemes in English can

yield competitive performance for small to medium vocabulary tasks in ASR sys-

tems. In experiments on the OGI Numbers95 task [90], a grapheme-based ASR

system was found to give similar performance to the phone-based approach. How-

ever, on tasks of increased complexity, such as DARPA resource management [91],

and CTS [92], the phone-based system gave lower error rates than the grapheme-

based system.

Doss et al. [93, 94] also proposed the use of a phone-grapheme based system that

jointly model both the phone and grapheme sub-word units during training. Dur-

ing decoding, recognition is performed either using one or both sub-word units.

This was investigated in the framework of a hybrid HMM/ANN system. Improve-

ments were obtained over a CI phone-based system using both sub-word units in

recognition in two different tasks: isolated word recognition [94] and recognition

of numbers [93].

On the other hand, typically in STD task, for OOV search terms, letter-to-sound

rules must be used to generate a pronunciation for each search term. This is usually
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a non-probabilistic issue and a difficult decision, particularly for English language,

and errors introduced in this step are difficult to recover from. Instead of enforc-

ing a potentially hard decision on the sequence of phone units, the relationship

between graphemes and sounds will be modeled probabilistically by HMMs rather

than an external letter-to-sound model. This is expected to work particularly well

in languages such as Spanish, where the letter-to-sound mapping is very regular,

commonly in the way 1-to-N, contrary to languages such as English where the map-

ping is N-to-M. It means that the letter-to-sound conversion can be achieved more

reliably than for some other languages such as English. By modelling grapheme-

based units directly, we have the advantage of replacing a potentially error-prone

hard decision with a probabilistic one which naturally accounts for this variation.

In case of using a letter-to-sound module with no errors (as it occurs in Spanish),

grapheme still presents the advantage of that more powerful LMs can be trained

directly from large text corpora, without such module.

Therefore, given the performance of grapheme-based models for Spanish LVCSR

and the potential advantages of grapheme over phone-based units for tasks involv-

ing OOVs, we propose that grapheme-based acoustic modelling can outperform

phone-based modelling for certain applications.

In addition to this, given the different information stored in the HMMs in phone-

and grapheme-based systems, which may produce different and complementary

detections, we also propose that the combination of both acoustic units can out-

perform each system in isolation.

6.3 Comparison of phone- and grapheme-based

units on MFCC-based feature extraction

Three different architectures have been used in comparing phone- and grapheme-

based acoustic units. The first and second one are able to STD, as it was suggested

by NIST, due to the list of terms is unknown during the decoding process, so the

audio is indexed in terms of both types of sub-word units and a following step

proposes the keywords from such index. The third architecture can be only applied

over Keyword Spotting and not over STD following the NIST recommendations

(i.e., without using the audio in a step different from the first one), due to it makes
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use of a prior knowledge of the list of search terms before the decoding process.

This work has been published in [95] and [96].

6.3.1 Architecture 1-Best : 1-Best sub-word unit decoding

+ lexical access

This architecture is illustrated in Figure 6.1. The first step uses the Viterbi algo-

rithm in the HTK tool [9] to produce the single most likely (1-best) sequence of

phones or graphemes, using the HMM sets trained as described in Section 6.3.4.2.

We refer to this as the Sub-word unit decoder in Figure 6.1, and the output is a

sequence of U phone or grapheme sub-word units S = {s1, s2, . . . , sU}.

Sub-word
unit decoder 

List of 
keywords

Input signal Sub-word
unit string Lexical

access

Figure 6.1: The Architecture 1-Best.

Each keyword W is represented as a sequence of R phone or grapheme sub-word

units W = {w1, w2, . . . , wR}, and search is performed within S, the output of the

Sub-word unit decoder. This approach is based on the DP algorithm proposed by

Fissore et al. [72], and used in the Lexical access confidence measure presented

for Keyword Spotting in Chapter 4. The essence of the algorithm is to compute

the cost of matching each keyword W with the decoded output S. Therefore,

the following algorithm hypothesizes the final list of keywords for both sub-word

units. The keyword search over a length L hypothesized sequence of sub-word

units progresses as follows:

1. For each keyword K, set the minimum window length to Wmin
K = NK/2+1,

where NK is the number of sub-word units contained in the dictionary entry

for keyword K. Set the maximum window length as Wmax
K = Wmin

K + NK .

2. Calculate the cost G for each keyword K over each candidate window.

3. Sort keyword hypotheses according to G, removing any for which the cost

G is greater than a threshold ΘGmax .



Chapter 6. Phone- versus Grapheme-based systems for Keyword Spotting and
Spoken Term Detection in Spanish 101

4. Remove overlapping keyword hypotheses: make a pass through the sorted

keyword hypotheses starting with the highest-ranked keyword, removing all

hypotheses with time-overlap greater than Θoverlap%. If a same keyword is

hypothesized overlapped, the occurrence with the lowest cost G remains.

5. Return all keyword hypotheses with cost less than Gbest+ΘGbeam
, where Gbest

refers to the cost of the highest-ranked keyword and ΘGbeam
is beam width.

To estimate the cost G, the same equations as in the Lexical access confidence

measure in Chapter 4 were used. Such cost G, divided by the length of the

decoded output S, is used as confidence score for all of the keywords hypothesized

in this architecture.

As an example of the windowing in the grapheme-based approach, searching for

the keyword madrid, which has a grapheme transcription {m a d r i d}, given a

grapheme decoder output of {m a i d r i e d a a n}, the minimum and max-

imum windows are Wmin
K = 6/2 + 1 = 4 and Wmax

K = 4 + 6 = 10. The cost G is

therefore computed over the following candidate windows:

{m a i d}, {m a i d r}, {m a i d r i}, {m a i d r i e}, {m a

i d r i e d}, {m a i d r i e d a}, {m a i d r i e d a a}, {a
i d r}, {a i d r i}, . . ., {i e d a}

6.3.2 Arhitecture Lattice: sub-word unit lattice + exact

word matching

Lattice search provides a natural extension to the 1-best path architecture above,

and again search is based on sub-word (phone or grapheme) units.

The decoding process for the 1-best decoder from Section 6.3.1 was used, except

that it was run in N -best mode. The resulting output were lattices generated from

the top N tokens in each state. An example of a grapheme lattice is shown in

Figure 6.2.

A recursive match algorithm provides an efficient method to find all path fragments

in the lattice that exactly match the phone or grapheme string representing search

terms. We used an implementation provided by the Brno University of Technology

(lattice search tool) [39]. This architecture is depicted in Figure 6.3.
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Figure 6.2: An example of a lattice containing graphemes. <s> denotes the
start and the end of the lattice at the left and the right of the lattice respectively.
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Figure 6.3: The Architecture Lattice.

For each hypothesized keyword K which the search returns, a confidence score CK

is calculated as follows:

CK = La(K) + L(K) + Lb(K)− Lbest (6.1)

where:

• La(K) is the log likelihood of the best path from the lattice start to the node

of the first phone or grapheme of K.

• L(K) is the log likelihood of keyword K, computed as the sum of the acoustic

log likelihood, plus the word insertion penalty plus the total language model

log likelihood weighted by the language model scale factor of its constituent

phones or graphemes.



Chapter 6. Phone- versus Grapheme-based systems for Keyword Spotting and
Spoken Term Detection in Spanish 103

• Lb(K) is the log likelihood of the best path from the node of the last phone

or grapheme of K to the end of the lattice.

• Lbest is the log likelihood of the 1-best path over the whole lattice.

La(K) and Lb(K) are computed using standard forward-backward processes [9].

This confidence score is the same as the one denoted as Viterbi confidence ex-

plained in Chapter 5. The Best Time Best Score method explained in Chapter

5 was used to remove overlapped occurrences of the same keyword in the search

stage.

6.3.3 Architecture Hybrid : hybrid word + sub-word sys-

tem

This is the same architecture used for Keyword Spotting which makes use of the

Lexical access confidence measure explained in Chapter 4.

6.3.4 Experimental setup

6.3.4.1 Feature extraction

The input signal is sampled at 16kHz and stored with 16 bit precision. MFCCs

were computed at 10ms intervals within 25ms Hamming windows. Energy and

first and second order derivatives were appended giving a series of 39-dimensional

feature vectors.

6.3.4.2 Acoustic Modelling

The same set of phone-based units used in Chapter 4 for Keyword Spotting as

acoustic modelling was used in these experiments.

The grapheme systems were built in an identical fashion to the phone-based sys-

tems; the only differences were in the inventory of sub-word units and the questions

used for state clustering. The monographeme models used mixtures of Gaussians

with 15 components, and the trigrapheme models used 8 components. There are

3575 shared states retained after clustering in the trigrapheme system.
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To build state-tied CD grapheme models (trigraphemes) requires a set of ques-

tions used to construct the decision tree. There are three ways to generate those

questions: using only questions about single graphemes (“singleton questions”),

converting from the questions used to state-tie triphones according to a phone-to-

grapheme map, or generating questions from data automatically. To simplify the

building of the set of questions, we used a singleton question set for state tying in

our experiments.

6.3.4.3 Language Modelling

Two different LMs were used for the three architectures. For the architecture

Hybrid, we have used a bigram for phone- and grapheme-based decoding and a

pseudo N-gram as explained in Chapter 4 for the HMM-based keyword spotting

process. For the architectures 1-Best and Lattice we have used a bigram as LM

for both phone- and grapheme-based decoding.

6.3.4.4 System tuning

The phonetic test set was used to select the number of components GMM in

each state of each HMM according to phone and grapheme accuracy. Therefore,

the same sets of HMMs were used for the three systems.

The three systems, represented by each of the three architectures used in this

chapter were tuned separately as follows:

In the architecture Hybrid, the value of N in the pseudo N-gram used as LM was

chosen to get a desired tradeoff between precision and recall for all of the acoustic

model configurations. The probability for the keyword class was set to be 6 and 12

times that of the filler models in the CI and CD systems respectively. The p and

s parameters in the Viterbi decoding, for both the HMM-based keyword spotting

process and the Sub-word unit decoder, were tuned for each system according to

the different metrics used in the evaluation. The threshold α in the Lexical access

module was also tuned for each metric. All of these parameters were tuned on the

geographic training set .

In the architecture 1-Best, the p and s parameters in the phone- and grapheme-

based decoding were tuned according to each metric. The thresholds ΘGmax ,
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Θoverlap, and ΘGbeam
, were set on the geographic training set according to the

different metrics used in the evaluation and the window sizes Wmin
K and Wmax

K ,

were set on the geographic training set in order to give the desired tradeoff

between precision and recall. The set of costs was trained on all of the words in

the geographic training set .

In the architecture Lattice, the p and s values were tuned according to each metric

for both the phone- and grapheme-based decoding and the lattice search tool on

the geographic training set . Preliminary experiments [39] found that given a

suitably dense lattice, the accuracy improvement from allowing non-exact matches

was minimal, and that N = 5 gave a suitably dense lattice.

6.3.5 Results and discussion

Apart from the FOM metric already defined for Keyword Spotting, two additional

metrics (OCC and ATWV) explained in Appendix D have been used in these

experiments. Instead of presenting the ATWV value, we have presented those

results graphically in order to show the full range of operating points, using the

DET curves. Significance tests in the form of paired t-tests are used to compare

systems, in order to determine whether differences are consistent across search

terms. The set of keywords used for the keyword spotting experiments in Chapter

4 and listed in Appendix D was used for these experiments.

6.3.5.1 Recognition accuracy

Whilst phone or grapheme recognition is not the main focus of this set of ex-

periments, it is an important factor in STD/Keyword Spotting performance. We

present the phone and grapheme accuracy results in Tables 6.1, 6.2 and 6.3. The

results presented in Table 6.3 used the p and s parameters tuned on the geo-

graphic training set .

For both phone and grapheme systems, performance is improved through the use

of the CD acoustic models. The grapheme recognition accuracy is higher, though

this is expected as there are fewer graphemes than phones.
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monophone triphone monographeme trigrapheme
Recognition accuracy 63.9% 68.2% 75.2% 79.1%

Table 6.1: Phone and grapheme recognition accuracy for MFCC feature vec-
tors for both CI and CD acoustic models. Results are presented on the phonetic

test set .

monophone triphone monographeme trigrapheme
Recognition accuracy 61.9% 65.1% 73.9% 78.6%

Table 6.2: Phone and grapheme recognition accuracy for MFCC feature vec-
tors for both CI and CD acoustic models. Results are presented on the geo-

graphic training set .

monophone triphone monographeme trigrapheme
Recognition accuracy 63.0% 66.4% 74.1% 78.4%

Table 6.3: Phone and grapheme recognition accuracy for MFCC feature vec-
tors for both CI and CD acoustic models. Results are presented on the geo-

graphic test set .

6.3.5.2 Spoken term detection and keyword spotting results

Architecture Hybrid uses a standard HMM-based keyword spotting process in

combination with a sub-word unit-based confidence measure. In order to examine

the gain due to the confidence measure, Table 6.5 presents the results for the

HMM-based keyword spotting process in isolation.

HMM-based keyword spotting process
monophone triphone monographeme trigrapheme

FOM 65.9 70.4 62.3 69.4
OCC 0.81 0.83 0.80 0.84

Table 6.4: Evaluation of the HMM-based keyword spotting process of Architec-
ture Hybrid in isolation. Results are given in terms of FOM and OCC for both
CI and CD acoustic models, using grapheme and phone units for the geographic

training set . For all measures, higher values indicate better performance.

These results show that the performance improvement in moving from CI to CD

acoustic models is greater for grapheme-based models than for phones. Paired

t-tests show that there is no systematic differences between the results of CD

phone- and grapheme-based systems for FOM and OCC values. For the OCC
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HMM-based keyword spotting process
monophone triphone monographeme trigrapheme

FOM 65.9 68.3 61.0 67.6
OCC 0.74 0.73 0.66 0.78

Table 6.5: Evaluation of the HMM-based keyword spotting process of Archi-
tecture Hybrid in isolation. Results are given in terms of FOM and OCC for
both CI and CD acoustic models, using grapheme and phone units for the geo-
graphic test set . For all measures, higher values indicate better performance.

metric, although the triphone-based system outperformed the monophone one in

the geographic training set , the contrary occurs for the geographic test set .

However, such difference was found to be insignificant.

FOM
monophone triphone monographeme trigrapheme

Architecture 1-Best 73.4 73.9 66.4 74.8
Architecture Lattice 44.6 50.3 59.8 68.1
Architecture Hybrid 84.6 84.6 80.6 83.2

OCC
monophone triphone monographeme trigrapheme

Architecture 1-Best 0.70 0.72 0.68 0.76
Architecture Lattice 0.42 0.45 0.53 0.63
Architecture Hybrid 0.86 0.86 0.86 0.89

Table 6.6: Results in terms of FOM and OCC for the three architectures for
CI and CD phone and grapheme acoustic models for the geographic training

set . For all measures, higher values indicate better performance.

Table 6.7 presents the results in terms of FOM and OCC for each of the three

architectures described above in Section 6.3.

We first note that comparing the results of the architecture Hybrid with those in

Table 6.5, the addition of the confidence measure leads to performance improve-

ments for each metric. However, it is only for the monographeme and triphone

systems evaluated under the FOM metric that the increases are statistically sig-

nificant with p < 0.001.

Evaluation in terms of FOM Table 6.7 shows that for evaluation in terms

of FOM, CD acoustic models give the the best performance for all architectures
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FOM
monophone triphone monographeme trigrapheme

Architecture 1-Best 72.7 73.5 65.9 74.4
Architecture Lattice 44.0 47.1 58.1 64.0
Architecture Hybrid 80.3 82.3 76.9 79.6

OCC
monophone triphone monographeme trigrapheme

Architecture 1-Best 0.70 0.72 0.67 0.76
Architecture Lattice 0.40 0.42 0.53 0.61
Architecture Hybrid 0.85 0.84 0.84 0.85

Table 6.7: Results in terms of FOM and OCC for the three architectures for
CI and CD phone and grapheme acoustic models for the geographic test set .

For all measures, higher values indicate better performance.

and for both phone- and grapheme-based models. Significance tests show that

for the architecture Lattice, the grapheme-based systems give consistent increases

in performance over the best and the worst phone-based system with p < 0.001.

Trigraphemes gave the best performance on architecture 1-Best, though this was

not found to be statistically significant. For architecture Hybrid, the best results

are found using phone-based models, though the difference is not statistically

significant.

Evaluation in terms of OCC We find similar patterns where the evaluation

is in terms of OCC, though the performance for the phone-based models does

not improve by moving from CI to CD acoustic models for architecture Hybrid.

Graphemes give better performance than phones for all of the systems for archi-

tecture Lattice, shown to be significant with p < 0.001. For architecture Hybrid,

the results are very similar, and for architecture 1-Best, the trigrapheme gives the

highest performance, though the result is not statistically significant.

Evaluation in terms of ATWV We present the DET curves of the ATWV

performance for each of the three architectures. Each plot shows miss against false

alarm probability for CI and CD acoustic models, for both phone- and grapheme-

based systems, giving an indication of the system performance at a number of

operating points.
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The DET curves for architecture 1-Best in Figure 6.4 show that the performances

are quite similar for each of the systems, though the trigrapheme acoustic models

marginally outperform the others for much of the range.
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Figure 6.4: The DET curves for MFCC feature vectors for the CI and CD
acoustic models for the Architecture 1-Best.

Figure 6.5 shows the sizable performance gap between phone- and grapheme-based

acoustic models for the architecture Lattice, and that for most of the range, the tri-

grapheme system provides a lower bound. It is also shown that the monographeme

system outperforms both monophone and triphone systems.

The DET curves for the architecture Hybrid are given in Figure 6.6, and show

that the best performance is achieved by the monophone system. It is due to the

amount of additional information provided to the system with the Lexical access

module which helps more the monophone system.

6.3.6 Conclusions

Our results suggest that grapheme-based units perform at least as well as phone-

based units for Keyword Spotting and STD, and that the relative performance of
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Figure 6.5: The DET curves for MFCC feature vectors for the CI and CD
acoustic models for the Architecture Lattice.
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Figure 6.6: The DET curves for MFCC feature vectors for the CI and CD
acoustic models for the Architecture Hybrid.
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phone/grapheme models varies according to the architecture. As expected, better

results were found for vocabulary-dependant systems.

Hybrid approach Architecture Hybrid, which is the most complex and the most

vocabulary dependent, gives the overall best performance for each type of sub-word

unit, and for each evaluation metric. The DET curves in terms of ATWV metric in

Figure 6.6 show that the best performance is achieved by the monophone system.

At the same time the difference in FOM and OCC performance across the different

acoustic models is not significant. These results are attributed to the addition of

other knowledge sources. These include the keyword network in the HMM-based

keyword spotting process and the empirically-trained costs in the Lexical access

module, which makes it more robust to weaker acoustic models. However, this

architecture cannot perform STD (as recommended by NIST) because it requires

knowledge of the keywords when processing the speech data.

1-best approach Architecture 1-Best is capable of STD. Again, there is not

significant variation in performance across the 4 acoustic model types, because of

the additional knowledge used in the form of the Lexical access module. However

the DET curves in terms of ATWV metric in Figure 6.4 shows that the trigrapheme

models marginally outperform the others for much of the range.

Lattice-based approach Architecture Lattice, with no Lexical access module,

is the most vocabulary and corpus independent system and conforms with the

requirements of recent NIST evaluations. Under this architecture we find more

marked performance differences between the different acoustic models. Our exper-

iments give evidence that for the lattice-based approach, grapheme-based systems

outperform equivalent phone-based methods.

Comparing the CI and CD systems, we found that the grapheme-based approach

benefits more from CD modeling than the phone-based approach. This is expected,

as a grapheme may be pronounced quite differently according to context. By

comparison, CD allophones belonging to the same central phone are typically

subject to a smaller degree of variation.
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Grapheme-based modelling We consider that the power of the grapheme-

based system on STD tasks, especially in the lattice-based architecture, is at-

tributed to several factors. The first is the probabilistic description of pronuncia-

tion variation in the grapheme model, which helps represent all possible pronunci-

ations of a search term in a single form. The second is its capacity to incorporate

additional information, including both acoustic and phonological cues, in the lat-

tice, thus improving the decision-making process in the search phase. The regular

mapping between phones and graphemes in Spanish language was also found to

be substantial to the improvement achieved by the grapheme-based systems along

with the fact that there are fewer graphemes than phones, and therefore, less er-

rors are more likely to be presented in the final system. It is confirmed by the

ranking presented in the phone and grapheme accuracy-based experiments, where

the monographeme system achieved better grapheme accuracy than the phone

accuracy got in the triphone system. Although initially such values cannot be

compared directly, as they are used for a same final task (STD), as less errors oc-

cur in the final output in the grapheme decoding, better performance is achieved

by the system when such number of errors plays an important role in the final

performance, as in the Architecture Lattice occurs.

Grapheme-based systems do not appear advantageous under the 1-best and hy-

brid approaches of architectures 1-Best and Hybrid, where the single most likely

phone or grapheme and keyword sequences are used rather than lattices for key-

word search. Given the increased acoustic variation associated with graphemes

compared with phones, the advantage arises from postponing hard decisions and

keeping multiple decoding paths alive. Furthermore, as stated above, the addi-

tional linguistic information from the Lexical access module diminishes the relative

performance of the different acoustic models.

6.4 The influence of the feature extraction for

phone- and grapheme-based units for Span-

ish STD

The use of tandem features in the feature extraction process was shown to improve

the system performance in ASR tasks [10, 11, 12, 13, 14, 15, 89] compared with

the use of the standard MFCC-, PLP- or LPCC-based features in isolation.
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Therefore, in our study of both types of units as acoustic models we have also

added to the standard set of 39 MFCCs to represent the audio signal, the tandem

features computed as explained in Chapter 2. We have selected the architectures

1-Best and Lattice presented in the Section 6.3 to compare both types of fea-

ture vectors for both units for STD on the Spanish language and to extract the

conclusions according to the metrics defined previously.

The tuning of these two systems with tandem features was made in an identical

fashion as those in the Section 6.3. As the CD acoustic units achieved a better

performance than the CI ones, we have used the triphone and trigrapheme config-

urations as the acoustic models over which both types of features are applied. The

tandem features-based triphone system had 8-components GMM, with 8876 shared

states and the tandem features-based trigrapheme system had 8-components GMM

with 4739 shared states retained after clustering.

In building the tandem features, several parameters are necessary to compute and

to tune prior to extract the final set of features:

1. From the phonetic training set , consisting of 4400 utterances, we have

selected 4000 of them to train the MLP and 400 for cross-validation to tune the

number of units in the hidden layer of the MLP and the learning factor and the

number of epocs in the MLP training. They were tuned based on cross-validation

accuracy for both phone- and grapheme-based acoustic units independently.

2. The matrix to be used in the KL transform was computed from the phonetic

training set .

3. The number of coefficients that remain after the KL transform was estimated

from the phonetic training set . They were 19 for the phone-based system and

16 for the grapheme-based system.

The phone-based system contained an input layer composed of 351 units, a hidden

layer with 1100 units and an output layer with 50 units (one for each phone plus

the beginning and end silence and the short pause). The grapheme-based system

contained an input layer composed of 351 units, 1300 units in the hidden layer

and 31 units (one for each grapheme plus the beginning and end silence and the

short pause) in the output layer.

A final set of 58 MFCC+Tandem features coefficients was used for the phone-

based system (39 MFCCs + 19 tandem coefficients after the KL transform) and
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55 MFCC+Tandem features coefficients were used for the grapheme-based system

(39MFCCs + 16 tandem coefficients after the KL transform). In order to compare

both acoustic models separately, the phone acoustic models were built from the

phone-based tandem features and the grapheme acoustic models were built from

the grapheme-based tandem features.

The MLP trained for phone- and grapheme-based acoustic units achieved a 70.6%

and 77.0% respectively of cross-validation accuracy. As it is shown for phone and

grapheme accuracy in Section 6.4.1.1, the cross-validation accuracy for graphemes

is better than for phones, due to there are fewer graphemes than phones.

6.4.1 Results and discussion

The FOM and OCC metrics and DET curves got from the ATWV metric as in

Section 6.3 were used to evaluate both types of acoustic models across each kind

of feature extraction. Paired t-tests were also used to determine if the differences

across the keywords are significant for both the feature extraction processes and

the acoustic models.

6.4.1.1 Recognition accuracy

In Table 6.8 we present the results for phone and grapheme accuracy for the

phonetic test set of the Albayzin database.

Recognition accuracy
triphone trigrapheme

MFCC 68.2% 79.1%
MFCC+Tandem Features 72.1% 81.2%

Table 6.8: Phone and grapheme accuracy for MFCC and MFCC+Tandem
Features configurations for CD phone and grapheme acoustic models on the

phonetic test set .

Once it was shown that the MFCC+Tandem Features configuration outperformed

the use of MFCC in isolation, the next step was to use another different corpus

to tune the p and s parameters of the decoding process and apply them over the

final system evaluation. The tuning of the system was made on the geographic

training set , whose results are presented in Table 6.9.
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Recognition accuracy
triphone trigrapheme

MFCC 65.1% 78.6%
MFCC+Tandem Features 68.2% 80.2%

Table 6.9: Phone and grapheme accuracy for MFCC and MFCC+Tandem
Features configurations for CD phone and grapheme acoustic models on the

geographic training set .

And Table 6.10 presents the final results from the tuning of the parameters on

the geographic training set . It shows an improvement for both acoustic con-

figurations when using tandem features. Paired t-tests showed that all of the

improvements for all of the different corpora were significant with p < 0.001.

Recognition accuracy
triphone trigrapheme

MFCC 66.4% 78.4%
MFCC+Tandem Features 69.4% 80.5%

Table 6.10: Phone and grapheme accuracy for MFCC and MFCC+Tandem
Features configurations for CD phone and grapheme acoustic models on the

geographic test set .

6.4.1.2 STD results

We present in Table 6.12 the results in terms of FOM and OCC for the Architecture

1-Best and those for the Architecture Lattice in Table 6.14.

FOM
triphone trigrapheme

MFCC 73.9 74.8
MFCC+Tandem Features 75.6 76.7

OCC
triphone trigrapheme

MFCC 0.72 0.76
MFCC+Tandem Features 0.75 0.77

Table 6.11: Results in terms of FOM and OCC for MFCC and
MFCC+Tandem Features configurations for the 1-Best architecture for CD
phone and grapheme acoustic models for the geographic training set . For all

measures, higher values indicate better performance.
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FOM
triphone trigrapheme

MFCC 73.5 74.4
MFCC+Tandem Features 75.5 76.4

OCC
triphone trigrapheme

MFCC 0.72 0.76
MFCC+Tandem Features 0.75 0.78

Table 6.12: Results in terms of FOM and OCC for MFCC and
MFCC+Tandem Features configurations for the 1-Best architecture for CD
phone and grapheme acoustic models for the geographic test set . For all

measures, higher values indicate better performance.

FOM
triphone trigrapheme

MFCC 50.3 68.1
MFCC+Tandem Features 54.9 70.7

OCC
triphone trigrapheme

MFCC 0.45 0.63
MFCC+Tandem Features 0.45 0.65

Table 6.13: Results in terms of FOM and OCC for MFCC and
MFCC+Tandem Features configurations for the Lattice architecture for CD
phone and grapheme acoustic models for the geographic training set . For all

measures, higher values indicate better performance.

Evaluation in terms of FOM Tables 6.12 and 6.14 show that for evaluation

in terms of FOM, MFCC+Tandem features gives the best performance for both

phone- and grapheme-based acoustic models for both architectures and that the

trigraphemes perform the best. Significance tests showed that for the architec-

ture Lattice, the grapheme-based system gives consistent increases in performance

over the phone-based system with p < 0.001 for MFCC and MFCC+Tandem Fea-

tures configurations. They also showed that the improvement achieved with the

grapheme-based system and the MFCC feature vectors was significant compared

with the phone-based system and the MFCC+Tandem Features configuration with

p < 0.001. However, there is no significant difference between the use of MFCC

or MFCC+Tandem Features in each kind of acoustic models for such architecture.

Significance tests over the Architecture 1-Best show that there is no difference in
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FOM
triphone trigrapheme

MFCC 47.1 64.0
MFCC+Tandem Features 51.0 65.2

OCC
triphone trigrapheme

MFCC 0.42 0.61
MFCC+Tandem Features 0.45 0.63

Table 6.14: Results in terms of FOM and OCC for MFCC and
MFCC+Tandem Features configurations for the Lattice architecture for CD
phone and grapheme acoustic models for the geographic test set . For all

measures, higher values indicate better performance.

using MFCC+Tandem Features or MFCC in isolation across each kind of acoustic

models and no difference in using phone- or grapheme-based acoustic models for

each feature extraction either. It is caused by the lexical information provided to

such architecture.

Evaluation in terms of OCC We find similar patterns where the evaluation

is done in terms of OCC for the Architecture 1-Best, where the trigraphemes

perform the best. Again, no significant difference exists in using any kind of feature

extraction or any kind of acoustic models. It is due to the lexical information

provided to such approach. However, for architecture Lattice, the difference in

using MFCC+Tandem Features or MFCC was shown to be significant with p <

0.001 for both phone- and grapheme-based systems and the use of the grapheme-

based system was found to be significant with p < 0.001 compared with the

phone-based system for both types of features as well. In addition to this, the

improvement achieved by the grapheme-based system with the MFCC feature

vectors was found to be significant compared with the phone-based system with

the MFCC+Tandem Features configuration with p < 0.001.

The better OCC value and worse FOM value of the MFCC and trigrapheme than

the MFCC+Tandem Features and triphone was found to be insignificant in the

Architecture 1-Best.

Evaluation in terms of ATWV We present the DET curves from the ATWV

performance for each of the two architectures. Figure 6.7 shows the DET curves
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for the Architecture 1-Best comparing both types of feature vectors for both

types of acoustic units. It is shown that MFCC+Tandem Features outperforms

the use of MFCC in isolation for both CD phones and graphemes, and that the

MFCC+Tandem Features with the CD graphemes achieves the best performance

for much of the range. However, for low FA rate, the triphone configuration from

MFCC+Tandem Features achieves the best performance.
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Figure 6.7: The DET curves for the CD acoustic models for MFCC and
MFCC+Tandem Features configurations for the Architecture 1-Best.

Figure 6.8 shows the DET curves for the Architecture Lattice comparing both sets

of features for both acoustic units. Again, it is shown that MFCC+Tandem Fea-

tures outperforms MFCC configuration and that the trigrapheme acoustic models

achieve the best performance for the whole range. In this case, as no additional

information is presented, more improvement is achieved in using the Tandem Fea-

tures than in the Architecture 1-Best, and greater variation is found across the

different configurations as well.
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Figure 6.8: The DET curves for the CD acoustic models for MFCC and
MFCC+Tandem Features configurations for the Architecture Lattice.

6.4.2 Conclusions

We have shown that by augmenting the standard MFCC feature vectors with the

use of tandem features the STD performance for Spanish language for both types

of acoustic units is improved for the two architectures presented in this thesis.

However, the change in the acoustic models from phones to graphemes is more

relevant in the STD system than the change in the feature vectors, as it is shown in

the Architecture Lattice. The improvement achieved in using the tandem features,

is greater for the Architecture Lattice due to it does not receive any additional

information as the Architecture 1-Best does. Contrary to Architecture 1-Best,

where the MFCC+Tandem Features configuration outperforms the MFCC for

both phone- and grapheme-based models (though such difference was not found

to be significant due to the lexical information given to such system), for the

Architecture Lattice, the different performance of the phone- and grapheme-based

units is so great that the use of tandem features in the phone units does not

still outperform the standard MFCC configuration for grapheme-based units. It

indicates that the grapheme-based units are still better sited in dealing with the
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STD task even after a more robust feature extraction for phone-based units is used.

Therefore, we conclude again that the grapheme-based STD system outperforms

the phone-based one for Spanish.

6.5 Combination of phone- and grapheme-based

units for Spanish STD

To evaluate the final system performance in using phone and grapheme acous-

tic models, we have chosen a system where the only information given to it is

the training of the acoustic models. Although it has been shown that the best

system performance is provided by the CD grapheme acoustic models, we pro-

pose to make an analysis about how they complement each other. Therefore, the

Architecture Lattice explained in Section 6.3.2 was used to combine the phone-

and grapheme-based sub-word units. We have chosen a simple system combina-

tion, called detection combination in the spirit of ROVER [97]. In this way, the

hypotheses of the two systems that overlap in time and hypothesize the same

keyword are merged as a single detection and hypotheses with no overlapping or

different keywords overlapped in time are copied into the final system directly. In

case of overlapping of the same keyword, the confidence scores of both detections

are accumulated to form the new confidence score and in case of non-overlapping

or overlapping of different keywords, the individual confidence score of the single

detection (i.e., of each putative keyword) does not change.

In Section 6.3 it was shown that the best results for phone- and grapheme-based

units were achieved with the CD units. Therefore, we have used them as baseline

to show the improvement achieved with the combination of both. In following our

previous work with MFCC and MFCC+Tandem Features as feature vectors, we

will report the combination of both acoustic units by using both types of features.

Three different types of confidence scoring computation have been used in the

combination. They have been explained in Chapter 5, and here, we refer them as

follows: Viterbi-BTBS, Baum-Welch and Posterior with Direct LM integration.

The tuning of the system consisted of the estimation of the parameters p and s

during the Viterbi decoding and the lattice search tool. For the Viterbi-BTBS con-

fidence scoring, they were tuned directly for each metric and the same parameters
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and lattices are used for the Baum-Welch confidence scoring. For the Posterior

with Direct LM integration confidence scoring, the lattices tuned for each metric

for the Viterbi-BTBS confidence scoring were used and new p and s parameters

were estimated for the lattice search tool. Viterbi- and Baum-Welch-based ap-

proaches make use of standard forward-backward processes [9] to compute the

final score, so the values estimated for the Viterbi-based one perform well when

are applied over the Baum-Welch approach. However, for the Posterior with Di-

rect LM integration approach, where the score is computed by using the posterior

probability of each frame for each acoustic unit from the MLP, these parameters

need to be retrained to achieve the best performance.

6.5.1 Results and discussion

The FOM (an occurrence-weighted) and ATWV (a term-weighted) metrics have

been used in the experiments in combining phone- and grapheme-based units.

Paired t-tests were run to show if the differences in the system performance were

found to be significant under the FOM metric.

FOM
triphone trigrapheme combination

Viterbi-BTBS 50.3 68.1 75.9
Baum-Welch 49.7 68.2 75.9
Posterior with Direct LM integration 51.1 67.9 75.2

ATWV
triphone trigrapheme combination

Viterbi-BTBS 0.25 0.36 0.39
Baum-Welch 0.25 0.36 0.39
Posterior with Direct LM integration 0.35 0.36 0.36

Table 6.15: Results in terms of FOM and ATWV for MFCC feature vectors
with the three confidence scoring computations for CD phone and grapheme
acoustic models and their combination for the geographic training set . For

all measures, higher values indicate better performance.

Evaluation in terms of FOM Table 6.16 shows that for evaluation in terms of

FOM, the results achieved for all of the confidence scoring computations are better

when the phone- and grapheme-based units are combined than when they are not.
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FOM
triphone trigrapheme combination

Viterbi-BTBS 47.1 64.0 72.5
Baum-Welch 46.9 63.6 72.2
Posterior with Direct LM integration 47.5 64.3 72.3

ATWV
triphone trigrapheme combination

Viterbi-BTBS 0.19 0.32 0.32
Baum-Welch 0.20 0.31 0.32
Posterior with Direct LM integration 0.26 0.28 0.28

Table 6.16: Results in terms of FOM and ATWV for MFCC feature vectors
with the three confidence scoring computations for CD phone and grapheme
acoustic models and their combination for the geographic test set . For all

measures, higher values indicate better performance.

FOM
triphone trigrapheme combination

Viterbi-BTBS 54.9 70.7 80.4
Baum-Welch 55.0 70.8 80.5
Posterior with Direct LM integration 55.5 70.4 79.0

ATWV
triphone trigrapheme combination

Viterbi-BTBS 0.31 0.45 0.49
Baum-Welch 0.31 0.45 0.49
Posterior with Direct LM integration 0.36 0.31 0.42

Table 6.17: Results in terms of FOM and ATWV for MFCC+Tandem Features
configuration for the three confidence scoring computations for CD phone and
grapheme acoustic models and their combination for the geographic training

set . For all measures, higher values indicate better performance.

It is confirmed by the experiments run on the MFCC+Tandem Features configura-

tion, which present a better value than the MFCC configuration for all of the cases

in Table 6.18. Paired t-tests showed that there is significant difference comparing

CD phones and graphemes with the combination of both for all of the confidence

scoring computations for both MFCC and MFCC+Tandem Features configura-

tions with p < 0.001. There is also significant difference between CD phones and

CD graphemes for all of the confidence scoring computations for both MFCC and

MFCC+Tandem Features configurations with p < 0.001. However, there is no

significant difference when we compare each confidence scoring computation by
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FOM
triphone trigrapheme combination

Viterbi-BTBS 51.0 65.2 75.4
Baum-Welch 51.2 65.2 75.6
Posterior with Direct LM integration 51.6 65.4 74.7

ATWV
triphone trigrapheme combination

Viterbi-BTBS 0.20 0.41 0.42
Baum-Welch 0.20 0.42 0.42
Posterior with Direct LM integration 0.28 0.29 0.34

Table 6.18: Results in terms of FOM and ATWV for MFCC+Tandem Features
configuration for the three confidence scoring computations for CD phone and
grapheme acoustic models and their combination for the geographic test set .

For all measures, higher values indicate better performance.

using CD phones, CD graphemes or their combination for both MFCC+Tandem

Features and MFCC. And there is no significant difference when we compare each

kind of feature extraction across each acoustic model and confidence score com-

putation. It is also interesting to note that although the Posterior with Direct

LM integration confidence scoring performs worse than the two others confidence

scoring computations in the grapheme-based system for both types of feature vec-

tors on the geographic training set , it performs the best on the geographic

test set , although such improvement is not statistically significant. And for the

combination of phone- and grapheme-based systems it is seen that the Posterior

with Direct LM integration confidence scoring is the worst for the MFCC+Tandem

Features configuration. It is due to the best performance of each system in isola-

tion, which causes the combination to be less powerful. However, as stated before,

paired t-tests showed that such difference was not found to be significant. The rest

of small differences in the FOM value for the geographic training set and the

geographic test set , which caused that for example Viterbi-BTBS is worse than

BaumWelch for trigrapheme on MFCC configuration for the geographic train-

ing set but the contrary is observed for the geographic test set were found to

be insignificant as well.

Evaluation in terms of ATWV Tables 6.16 and 6.18 also show that for the

evaluation in terms of ATWV, the results achieved with the combination of phone-

and grapheme-based models outperform each model or achieve a similar result.
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Figure 6.9: The DET curves for MFCC feature vectors for the three confidence
scoring computations for the CD phone and grapheme acoustic models and their

combination.

We show that the use of MFCC+Tandem Features did improve or did achieve

the same result that the standard MFCC features for all of the acoustic models

and confidence scoring computations. It is also interesting to note that although

the Posterior with Direct LM integration confidence scoring performs always bet-

ter for phone-based acoustic models than the two others, the contrary occurs for

grapheme-based systems. It results in the worst system performance for the com-

bination with such confidence scoring computation of phone- and grapheme-based

systems. Despite this lower ATWV value, the DET curves in Figures 6.9 and 6.10

show that in using MFCC feature vectors, the grapheme-based Posterior with Di-

rect LM integration outperforms the two others confidence scoring computations

when the FA is low and achieves similar performance when the FA is high. In

using MFCC+Tandem Features the contrary effect is observed. The Posterior

with Direct LM integration outperforms or achieves similar performance when the

Miss is low and worse performance than the two others when the FA is low. Since

the Posterior with Direct LM integration makes use of a discriminative approach

to calculate the final score, it is more reliable that the MFCC feature vectors

benefit more from such approach than when using the MFCC+Tandem Features
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for the grapheme-based system, where the features got from such approach are

added prior to the decoding process. However, it is also shown in both figures

that, for much of the range, all of the confidence scoring computations perform

the same in the grapheme-based system. Contrary, in the phone-based system, the

improvement achieved with the Posterior with Direct LM integration confidence

scoring is similar for both MFCC and MFCC+Tandem Features configurations

due to the posterior probabilities are computed more reliable for the set of phones

than for the set of graphemes. The DET curves also show that the combination

in using the Posterior with Direct LM integration confidence scoring outperforms

the others, despite the final worst ATWV value, especially for MFCC+Tandem

Features for almost all the range, except when the FA is extremely low, where

the two others perform the best and the same. For MFCC feature vectors, all of

the combinations perform almost the same, except when the FA is extremely low,

where the Posterior with Direct LM integration confidence scoring is worse than

the two others.
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Figure 6.10: The DET curves for MFCC+Tandem Features configuration
for the three confidence scoring computations for the CD phone and grapheme

acoustic models and their combination.



126
Chapter 6. Phone- versus Grapheme-based systems for Keyword Spotting and

Spoken Term Detection in Spanish

Variation in the performance of a same system according to the metric

Two metrics have been used to evaluate the combination of phone- and grapheme-

based systems for Spanish STD. As it is shown in Tables 6.16 and 6.18, the choice

of the best acoustic model, the best features along with the best confidence scor-

ing computation, depends on the metric used in the evaluation. The Posterior

with Direct LM integration performs the best in terms of FOM (although such

difference was not found to be significant) and the worst in terms of ATWV for

the grapheme-based system for both types of feature vectors. And the combina-

tion of phone- and grapheme-based systems only provides a powerful result for

the MFCC+Tandem Features and the Posterior with Direct LM integration confi-

dence scoring in terms of ATWV, whereas in terms of FOM the difference is much

higher and significant for the combination for all of the cases. It reveals that both

metrics follow different patterns in analyzing a same system. The FOM metric

is occurrence-weighted, which means that it is computed from all of the terms,

so it needs to know which term is evaluated to compute the final FOM value.

In addition to this, such metric assigns a different threshold for each term when

the final value is computed. Contrary, the ATWV metric is term-weighted, which

means that all of the detections are considered to be independent in the formula,

and there is no need in knowing which term is. Moreover, a single threshold is

provided to such metric for all of the terms. In addition to this, if there is a term

that has a very high occurrence, and such term has a very good performance in

the system, the FOM metric and in general, all the occurrence-weighted metrics,

will be biased towards such term. However, in the ATWV metric, the final value

is computed for each term and then is averaged over all of the terms.

6.5.2 Analysis of the complementary behaviour of phone

and grapheme acoustic units

The complementary behaviour of both acoustic models has been analyzed by

grouping the keywords to form the same groups as for Keyword Spotting. Table

6.19 shows the combination along with the FOM values for both acoustic models

for each group from the MFCC feature vectors and the Viterbi-BTBS confidence

scoring.

From Table 6.19, it is shown that for long-length keywords, the phone-based sys-

tem outperforms the grapheme-based one, while the contrary occurs for short- and
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SKG MKG LKG
triphone 36.9 41.4 57.0
trigrapheme 72.6 72.8 51.6
combination 75.0 75.0 68.9

Table 6.19: Results in terms of FOM for the SKG, MKG and LKG on the
geographic test set with the MFCC feature vectors and the Viterbi-BTBS

confidence scoring. Higher values indicate better performance.

medium-length keywords. Therefore, it causes that both systems provide comple-

mentary detections, and thus the combination provides an improvement in the

final system. The rest of the results from the different confidence scoring com-

putations and the MFCC+Tandem Features feature extraction follow the same

pattern. A more exhaustive analysis was made from the individual FOM accord-

ing to each keyword from the results presented in Table 6.19: Figures 6.11, 6.12

and 6.13 show that some keywords have the best FOM value with the phone-based

system and others with the grapheme-based one for the three groups. Such effect

is greater in short and long keywords. Again, it is shown that both systems provide

complementary information, and therefore better rates are achieved in combining

them.

6.5.3 Conclusions

The combination of both phone- and grapheme-based acoustic units for the Span-

ish STD task outperforms each of these units in isolation, even when we augment

their performance varying the feature extraction process and we make use of a

discriminative approach to compute the confidence score for each of the terms

hypothesized. This is more noticeable in the analysis in terms of FOM. Due to

some keywords have a better FOM value in the phone-based system and others

benefit more from the grapheme-based system, the combination causes that the fi-

nal system performance is improved. This improvement is caused by two different

things: (1) there is theoretical evidence [98] that in the combination of two dif-

ferent systems, although one of them achieves the best performance, the patterns

misclassified by both would not necessarily overlap. It causes that both systems

provide complementary errors and therefore, complementary detections, making

the combination improve the rates achieved by each system. The complementary
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Figure 6.11: The FOM value for the phone- and grapheme-based systems for
each keyword in the SKG (Short-length keywords group).
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Figure 6.12: The FOM value for the phone- and grapheme-based systems for
each keyword in the MKG (Medium-length keywords group).
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Figure 6.13: The FOM value for the phone- and grapheme-based systems for
each keyword in the LKG (Long-length keywords group).

detections are caused by the different information modeled (phone and grapheme)

in both systems, which causes that the search space is represented in a different

way by the set of phones and the set of graphemes. (2) the probability of a term

not to be proposed by the phone-based system is p1, the probability of a term not

to be proposed by the grapheme-based system is p2, whereas the probability of a

term not to be proposed by either the phone- or the grapheme-based system is

always smaller than p1 and p2.

6.6 Summary

In this chapter we have presented and compared two different types of acoustic

units to be used for Keyword Spotting and STD on the Spanish language. We

have shown that grapheme-based systems outperform phone-based systems when

the only information that is trained is the acoustic units used during the decoding

stage. In terms of FOM, such improvement goes from 47.1 to 64.0 for the CD

systems. In terms of OCC, such improvement goes from 0.42 to 0.61 for the same
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CD systems. Under both metrics, the differences were found to be significant. It

is a consequence of the regular letter-to-sound mapping that exists in the Spanish

language and the less number of graphemes (letters) compared with the number of

phones defined in the standard set of allophones for such language. However, when

some lexical information is added to both systems, the differences were not found

to be significant, since more information is provided to the system. It has been

also shown that the grapheme-based system still outperforms the phone-based

one even when we augment the standard MFCC -based feature extraction with

the tandem features when the only information used is the acoustic units. In this

case, in terms of FOM, the improvement goes from 51.0 using the MFCC+Tandem

Features for the CD phones to 64.0 using the MFCC for the CD graphemes and

to 65.2 using the MFCC+Tandem Features for CD graphemes. In terms of OCC,

the same comparison causes that the improvement goes from 0.45 to 0.61 and 0.63

respectively. Again, such differences were significant for the paired t-tests. We

have also shown the powerful combination of them which leads to a significant im-

provement in the final STD system performance when the results achieved by each

unit in isolation are merged. It is due to the different system performance exhib-

ited for some keywords in running both systems. In terms of FOM, it was shown

that such improvement goes from 65.4 to 74.7 for the best system performance in

isolation, corresponding to the MFCC+Tandem Features with the CD graphemes

and the Posterior with Direct LM integration confidence scoring computation.



Chapter 7

Summary, contributions and

future work

7.1 Summary

This thesis addressed the problem of accessing the OOV words in traditional

LVCSR systems to find a set of keywords within the audio content. Keyword

Spotting and STD approaches try to solve such problem. While Keyword Spotting

achieves better accuracy due to the set of keywords is known prior the decoding

process, STD allows to search for such keywords faster without the need of run-

ning the decoding process again. In this section we present a summary of the work

presented in this thesis for both Keyword Spotting and STD.

7.1.1 Prior research and State-of-the-art

Most of the keyword spotting systems are based on HMMs where the list of key-

words to search is represented by their phonetic transcription and filler models

are used to absorb the non-keywords in the speech data [33, 35, 39]. Confidence

measures have been also proposed to improve the performance of the final system.

Some of these are based on the posterior probability or likelihood computed from

the Viterbi-based decoding process [35, 37]. SVMs and NNs have been also applied

to classify the putative keywords as hit or FA from a defined set of input features

[38, 53].
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On the other hand, STD as defined and recommended by NIST, differs from

Keyword Spotting in that the list of keywords to search is unknown during the de-

coding process. Therefore, such decoding process must be performed by means of

sub-word units (commonly in the way of a lattice) and a subsequent search within

them hypothesizes the final list of keywords without making use of the audio in

this stage. For this task, hybrid LVCSR-based techniques to deal with the INV

words and sub-word based techniques to deal with the OOV words have been used.

The main approaches which deal with those OOV words are based on a modified

Levenshtein distance computation where a confusion matrix deals with the errors

contained in the sub-word unit recognition process [57, 64]. This distance is com-

puted between the sequence of sub-word units and the actual transcription of each

keyword.

7.1.2 Keyword Spotting approaches

In Chapter 4, we have proposed several approaches to deal with Keyword Spot-

ting. All of them make use of a two-level architecture design. The first level is

based on the same HMM-based keyword spotting process. The difference between

the approaches relies on the confidence measures presented for each. The first and

second confidence measures present an isolated word speech decoding, which com-

putes the keyword kw which best matches with the frames corresponding to each

keyword hypothesized by the first level. It also computes a likelihood for all the

keywords. With such data, the first confidence measure makes use of the keyword

kw in isolation and the second one uses both the keyword kw and the likelihoods

to decide if each keyword proposed by the first level is accepted or rejected. The

third confidence measure is based on the output of a phone-based decoding, com-

posed of a sequence of phones. It is matched with the actual transcription of the

keyword prior to decide if each keyword proposed by the first level is accepted or

rejected based on the number of errors in such sequence. The fourth confidence

measure differs from the third one in that the errors are used to train a confusion

matrix (computing deletion, insertion and substitution errors) prior to calculate a

modified Levenshtein distance between the hypothesized and the actual sequence

of phones according to each keyword which decides if each keyword proposed by

the first level is accepted or rejected.
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In Chapter 4, we have also presented the results achieved by the keyword spotting

approaches by grouping the short-length, medium-length and long-length keywords

together. We have shown that short keywords contribute more to an error than

long ones. It has been also shown that the best confidence measure, which makes

use of the confusion matrix, achieved the best improvement for short keywords.

7.1.3 Spoken Term Detection approaches

In Chapter 5, two different approaches have been proposed for STD. The first one

is based on a discriminative approach to compute the final confidence score for

each keyword proposed by the term search tool from a phone lattice. It is based

on the posterior probability computed by an MLP for each phone contained in

the keyword along with the language model for that keyword. The second one is

based on a decision tree to reject FAs proposed by the term search tool from a

phone lattice. The decision tree is built from a set of features (prosodic and lexical

features) according to the keywords proposed by that tool and is used to reject

those keywords that it classifies as FA.

7.1.4 Phone- and grapheme-based units for Spanish Key-

word Spotting and STD

Chapter 6 explores two different sets of units for Keyword Spotting and STD on

the Spanish language. Traditionally, phone-based acoustic units, widely used in

LVCSR systems, have been used for such tasks. In this work we have compared

keyword spotting and STD approaches by using the HMMs corresponding to both

sets of units. We have also presented the combination of the output of each system

from each set of acoustic units on a STD system prior to present the final output

of the whole STD system.

7.1.5 Experimental results

This thesis presents the experiments on the Spanish geographical domain in the

Albayzin database [26] and on the English meetings domain [30, 31].
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For Keyword Spotting on the Spanish Albayzin database, we have shown that

the approach based on the phone-decoding and the confusion matrix outperforms

the rest of the confidence measures in terms of FOM and RA and FAR and that

such approach is statistically significant in terms of FOM when it is compared with

the other phone-based decoding approach and with the isolated word speech-based

confidence measure which does not make use of the likelihood computation. It is

also significant when no confidence measure is applied (i.e., the first level in isola-

tion). This best approach achieves a 43% relative improvement in terms of FAR

when it is compared with the first level in isolation and a 26% relative improve-

ment when it is compared with the second best confidence measure (the one based

on the likelihood computed from the isolated speech recognition), maintaining a

similar RA in both cases.

For STD, we have shown that the MLP-based discriminative approach on the Al-

bayzin database outperforms the final system performance in terms of FOM and

ATWV when it is compared with traditional approaches for confidence scoring

based on generative models (HMMs trained with the maximum likelihood crite-

rion) (see Section 5.3.2). Although in terms of FOM, such approach was not found

to be significant, and the improvement achieved is very low (from 47.2 to 47.5)

compared with the best approach based on HMMs, the improvement achieved in

terms of ATWV goes from 0.18 to 0.26, which is about 44% relative better. The

DET curves also showed that such discriminative approach did improve the final

STD performance for much of the range. The decision tree-based approach was

found to improve the system on the English meetings domain in about 5% rela-

tive (from 0.19 to 0.20). In addition to this, the DET curves showed that such

approach did improve slightly the final system performance for much of the range.

However, more features are necessary to be used in the decision tree to achieve a

better performance.

In comparing phone- and grapheme-based acoustic units for Spanish language,

we have shown that for STD, when no more information apart from the acoustic

models is presented to the STD system, the grapheme-based system outperforms

significantly the phone-based one for all of the metrics presented. In terms of FOM,

the improvement achieved is about 36% relative (from 47.1 to 64.0). In terms of

OCC, the improvement is about 45% relative (from 0.42 to 0.61). Even when

we augment the standard MFCC-based feature extraction with the Tandem Fea-

tures, the MFCC-based grapheme system still outperforms the MFCC+Tandem
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Features-based phone system. In terms of FOM, the improvement is about 25%

relative (from 51.0 to 64.0) with the grapheme-based system. In terms of OCC,

the improvement is about 35% relative (from 0.45 to 0.61). The combination of

both systems was found to be significant in terms of FOM for the best feature

extraction (when Tandem Features are merged with the standard MFCCs) and

for the best confidence score computation (Baum-Welch confidence). In this case,

about 16% (from 65.2 to 75.6) of relative improvement was achieved with the

combination compared with the grapheme-based system. The difference was also

found to be significant for the best grapheme-based system and its combination

with the phone-based one in terms of FOM. The improvement in this case is about

14% relative (from 65.4 to 74.7). However, in terms of ATWV the combination

was not found to be so strong, achieving similar rates that of the grapheme-based

system for the best system, except for the Posterior with Direct LM integration

confidence score computation and MFCC+Tandem Features configuration, where

the combination achieved about a 17% relative improvement (from 0.29 to 0.34)

compared with the grapheme-based system. Nevertheless, the DET curves showed

that the combination of both systems did improve the final system for much of

the range for all of the confidence score computations and feature vectors used.

To compare the different approaches presented for Keyword Spotting and STD

throughout this thesis work, Figure 7.1 shows the different performance provided

by the best confidence measure applied over Keyword Spotting and the 1-best- and

lattice-based approaches for STD to search for the set of keywords on the Spanish

Albayzin database. As expected, Keyword Spotting achieves better performance

than the STD-based approaches paying the vocabulary-dependent price. The sec-

ond best performance is achieved by the 1-Best approach (referred to as Lexical

Access STD in Figure 7.1), which makes use of a confusion matrix trained pre-

viously to deal with the errors appearing in the sub-word based decoding. And

the combination of phone- and grapheme-based STD systems (referred to as com-

bination STD in Figure 7.1), which makes use of a search in a lattice for the

sequence of sub-word units representing the term, achieved the worst rate, due to

it is the less-trained and a vocabulary-independent approach. However, when the

Miss is low, both STD approaches perform the same.
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Figure 7.1: The comparison of the Keyword Spotting and STD approaches
for OOV words in information retrieval.

7.2 Contributions and publications

Here, we present a highlight of the most important contributions and findings

extracted throughout the thesis:

• A confidence measure based on a modified Levenshtein distance criterion

and a phone-based speech decoding, which outperforms the widely used

confidence measure based on the likelihood that in our case is computed

during an isolated word speech decoding for a keyword spotting system (see

Chapter 4).

• Application of an MLP-based technique along with the LM to compute the

confidence score for the list of terms in an STD approach, which outperforms

traditional HMM-based techniques (see Chapter 5).

• The use of decision trees over STD to reject the occurrences classified as

FAs, which improves the STD performance (see Chapter 5).
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• The comparison of grapheme- and phone-based acoustic units for Spanish

STD. It was found that grapheme-based acoustic units outperform phone-

based acoustic units for Spanish STD (see Chapter 6).

• The combination of grapheme- and phone-based STD systems, which out-

performs each system in isolation for Spanish STD (see Chapter 6).

These contributions resulted in the following publications:

• J. Tejedor, D. Bolaños, J. Garrido and J. Colás, ”Búsqueda y extracción

de información en Audio Mining”, In Proceedings of IADIS International

Conference WWW / INTERNET, October 6-7, 2006. Murcia, Spain.

• J. Tejedor and J. Colás, ”Spanish keyword spotting system based on filler

models, pseudo N-gram language model and a confidence measure”, In Pro-

ceedings of IV Jornadas en Tecnoloǵıa del Habla, November 8-10, 2006.

Zaragoza, Spain.

• J. Tejedor, R. Garćıa, M. Fernández, F.J. López-Colino, F. Perdrix, J.A.

Maćıas, R.M. Gil, M. Oliva, D. Moya, J. Colás and P. Castells, ”Ontology-

based retrieval of human speech”, In Proceedings of International Workshop

on web semantics (DEXA), September 3-7, 2007. Regensburg, Germany.

• D. Wang, J. Frankel, J. Tejedor and S. King. ”Comparison of phone and

grapheme-based spoken term detection”, In Proceedings of IEEE Interna-

tional Conference on Acoustics, Speech and Audio Processing (ICASSP),

March-April 30-4, 2008. Las Vegas, USA.

• J. Tejedor, D. Wang, J. Frankel, S. King and J. Colás. ”A comparison

of grapheme and phoneme-based acoustic units for Spanish spoken term

detection”, Speech Communication (SPECOM), November, 2008.

• J. Tejedor, S. King, J. Frankel, D. Wang, J. Colás and J. Garrido. ”A

novel two-level architecture plus confidence measures for a keyword spotting

system”, In Proceedings of V Jornadas en Tecnoloǵıa del Habla, November

12-14, 2008. Bilbao, Spain.

• D. Wang, J. Tejedor, J. Frankel, S. King and J. Colás. ”Posterior-based con-

fidence measures for spoken term detection”, In Proceedings of IEEE Inter-

national Conference on Acoustics, Speech and Audio Processing (ICASSP),

April 19-24, 2009. Taipei, Taiwan.
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7.3 Future work

Apart from the research addressed in this work, there are still enough lines that

must be investigated in the future either to improve the performance of the systems

presented here or to use them within a full information retrieval system. Here, we

propose some possible future work as follows:

• The choice of the units inventory was found to be substantial in STD systems.

Such units are used to index the audio in terms of sub-word units during the

decoding process. In this thesis work, two types of acoustic units (graphemes

and phones) have been explored for Spanish STD. In the future, new acoustic

units will be analyzed to choose the most efficient set of them for Spanish

STD (e.g. phonemes, broad classes, graphones and so on).

• In this thesis work, a simple combination of the output of the grapheme-

and phone-based STD systems has shown to outperform the final STD per-

formance. New combinations of these acoustic units and the ones referred in

the previous item will be explored to improve the STD performance trying to

achieve a performance as close as possible to keyword spotting approaches.

Based on the results achieved in this thesis work, we propose MLP-based

techniques from grapheme-based units to compute the confidence score of

each occurrence hypothesized by the phone-based STD system. In the same

way, MLP-based techniques from phone-based units will compute the confi-

dence in the grapheme-based STD system.

• Features used in the decision tree building are a key point to achieve ac-

curate and precise classification rate. In this thesis work, a preliminary set

of features has been explored. However, more features such as pitch and

energy will be used in the decision tree to improve the final performance.

OOV words, contrary to the set of INV words used in this work, will be also

selected to try the effectiveness of such approach.

• A complete Information Retrieval system will be addressed in the future.

Its architecture will be based on an LVCSR system to deal with the INV

words and a module to deal with the OOV words. The implementation of

this module will be based on the results achieved during this thesis work,

for both Keyword Spotting and STD. A description of the system has been

published in [99].



Appendix A

Inventory of Spanish phones

The following table presents the inventory of phones used for the experiments on

the Spanish language. An example of a word containing such phone, where the

phone in the word is emphasized, is also presented.

139



140 Appendix A. Inventory of Spanish phones

Phone Example Phone Example
a casa d duero
e ordenador D verde
i folio f golf o
o perro g galicia
u usar G agotar
A casa X rioja
E perro j asturiana
I casino J/ yolanda
O zaragoza J castillay león
U lustro k casa
an almanzor l elche
en formentera L castilla
in minero m mano
on montera n nada
un numerito Nn niño
An manta p pato
En menta r santander
In nimio R sierra
On monte s segre
Un mundo t trafalgar
b beso T zaragoza
B nevada w pisuerga
T/ china gs exacto
N hungŕıa – –

Table A.1: Inventory of Spanish phones along with an example of each. Phone
denotes the name of the phone and Example denotes the word example for each

phone.



Appendix B

Inventory of English phonemes

The following table presents the inventory of phonemes used for the experiments

on the English language. An example of a word containing such phoneme, where

the phoneme in the word is emphasized, is also presented.
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Phoneme Example Phoneme Example
hh help ow smote
ey liberator p press
aa helicopter iy oaky
l helga jh mythology
ih heinrich m munch
s hearst ao oscars
t injust ice eh optometrist
k joker dh though
ay library y yule
ax abbreviate uw two
n needs aw ow l
w needlework sh shape
b abate er router
ng ping g goths
ah hut uh hooray
f f lush th thong
v vain ch charitable
z tribulations oy toy ing
d succeed zh seizure
ae ab r retype

Table B.1: Inventory of English phonemes along with an example of each.
Phoneme denotes the name of the phoneme and Example denotes the word

example for each phoneme.



Appendix C

Broad class model as filler model

The following table groups the set of allophones (phones) in Spanish defined in the

Appendix A into the following eight classes to form the broad class filler model

used for Keyword Spotting.

Broad Class Phones
opened vowels a, an, A, An
closed vowels i, in, I, In, u, un, U, Un, w, j

median closed vowels e, en, E, En, o, on, O, On
deaf plosives p, t, T/, k

sound plosives b, B, d, D, g, G, X
deaf fricatives f, T, s, gs

nasals m, n, N, Nn
liquids l, L, R, r, J, J/

Table C.1: Eight broad class models to build the broad class filler model.
Broad Class denotes the name of each class and Phones denotes the name of

the phones contained in each class.
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Appendix D

Keywords from the

Albayzin geographical domain

The following table presents the list of keywords used for the Keyword Spotting

and STD tasks on the Spanish language along with the number of occurrences of

each in the development and test sets and the total number of them in both sets.
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Keyword Occ. dev Occ. test Keyword Occ. dev Occ. test
sistema ibérico 70 32 cataluña 94 62

sevilla 27 12 mediterráneo 281 148
castilla y león 71 46 pirineos 84 48

duero 67 36 guadiana 42 24
guadalquivir 43 30 elche 2 2

belcaire 0 2 cabo de gata 16 14
santander 6 14 arosa 19 8
caudaloso 59 32 galicia 140 58

golfo de cádiz 11 4 tomelloso 0 2
antequera 0 2 murcia 22 14

aragón 52 28 gijón 2 2
segre 5 2 ŕıo ebro 58 50

puig campana 0 2 jándula 0 2
trafalgar 1 2 navarra 14 6
segura 27 14 la rioja 34 8

archipiélago 95 68 asturias 53 30
kilómetros 202 140 finisterre 30 4
guadalent́ın 0 6 manzanares 9 6

canarias 33 24 penibético 25 20
sistema central 43 38 madrid 135 72

zaragoza 11 10 sierra nevada 17 14
cantábrico 176 66 páıs vasco 60 30
formentera 0 2 mulhacén 20 8

ferrol 1 4 pico del moro almanzor 1 2
atlántico 129 72 picos de europa 25 16

macizo galaico 4 6 júcar 41 32
riotinto 0 2 pisuerga 11 10

golfo de san jorge 3 2 veleta 10 12
barcelona 29 12 cabo verde 0 2
asturiana 2 4 montes de toledo 0 6

cabo de masca 0 2 miño 49 32
columbretes 4 2 sierra de aitana 0 2

baleares 56 20 mallorca 17 8
tarifa 3 2 pedraforca 1 2
nav́ıa 0 2 océano 55 18
urbión 2 2 pico maroma 0 2

mar menor 4 4 la coruña 12 6
viana del bollo 0 2 sierra morena 25 10

valencia 91 70 andalućıa 141 60
TOTAL 2872 1672 - - -

Table D.1: List of keywords from the Albayzin geographical domain along
with the number of occurrences (Occ.) in development (dev) and test sets for

each and the total (TOTAL) number of them in both sets.



Appendix E

Evaluation metrics

The following metrics have been used throughout this thesis to evaluate the sys-

tems presented:

• The Recognition Accuracy and False Acceptance Rate are defined as follows:

Recognition Accuracy(%) =
Number of hits

Number of true occurrences
∗ 100 (E.1)

False Acceptance Rate(%) =
Number of FAs

Number of FAs + Number of hits
∗ 100 (E.2)

where Number of hits is the number of correct keywords detected by the

system, Number of true occurrences is the total number of actual keyword

occurrences in the speech data and Number of FAs is the number of false

alarms output by the system.

• The Figure-of-Merit (FOM) was defined by Rohlicek et al.[100] for the task

of keyword spotting. It gives the average detection rate over the range [1, 10]

false alarms per keyword per hour. The FOM is computed as follows: all

of the occurrences for each keyword are ranked in score order. The number

of hits before the 5 ’th false alarm is used to compute a single FOM value

for each keyword. Next, all of the individual FOM values are averaged over

the total number of occurrences. Let T the set of keywords, then for each
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keyword k ∈ T , let Hk(f) be the number of correct detections of the keyword

k allowing f FAs per hour. The FOM value for each keyword k is computed

as follows:

FOM(k) =
1

10

f=10∑
f=0

Hk(f) ≈ Hk(5) (E.3)

Finally, the FOM value is computed as follows:

FOM =

∑
k∈T Ntrue(k)FOM(k)∑

k∈T Ntrue(k)
(E.4)

where Ntrue(k) represents the number of actual occurrences of the keyword

k.

• The Detection Error Tradeoff (DET) curve shows the system performance

from different operating points. From a set of terms (keywords) and speech

data, let Ncorrect(t), NFA(t) and Ntrue(t) represent the number of correct,

false alarm, and actual occurrences of term t respectively. In addition, we

denote the number of non-target terms (which gives the number of possi-

bilities for incorrect detection) as NNT (t). We define miss and false alarm

probabilities, Pmiss(t) and PFA(t) for each term t as:

Pmiss(t) = 1− Ncorrect(t)

Ntrue(t)
(E.5)

PFA(t) =
NFA(t)

NNT (t)
(E.6)

Finally, the DET curve plots the Pmiss against the PFA by computing all of

the occurrences of the terms.

• The occurrence-weighted value (OCC) was defined by NIST [8] specifically

for the spoken term detection task. In this metric, a cost CFA = 0.1 for

false alarms is defined, along with a value V = 1.0 for correct detections.

The OCC value, according to the definitions in the DET curve calculation,

is computed by adding a value for each correct detection and substracting a

cost for the false alarms as follows:
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OCC =

∑
t∈terms [V Ncorrect(t)− CFANFA(t)]∑

t∈terms V Ntrue(t)
(E.7)

• The Actual Term Weighted Value (ATWV) metric, defined also specifically

by NIST [8] for the spoken term detection task, averages a weighted accu-

mulation of miss and false alarm probabilities, Pmiss(t) and PFA(t), over all

of the terms, as follows:

ATWV = 1−
∑

t∈terms [Pmiss(t) + βPFA(t)]∑
t∈terms 1

(E.8)

where β = C
V

(Pprior(t)
−1 − 1). The NIST evaluation scoring tool sets a uni-

form prior term probability Pprior(t) = 10−4, and the ratio C
V

to be 0.1 with

the effect that there is an emphasis placed on recall compared to precision

in the ratio 10:1.





Appendix F

Conclusiones

Las principales contribuciones y conclusiones extráıdas a lo largo de la tesis son

las siguientes:

• La medida de confianza presentada en el caṕıtulo 4 para el ”Reconocimiento

de Palabras Clave”, basada en un reconocedor de alófonos y el cálculo de

una distancia de Levenshtein modificada a partir de la secuencia de alófonos

reconocida correspondiente a los intervalos temporales de las palabras clave

propuestas por el primer nivel, mejora en un 43% relativo la tasa de falsas

aceptaciones con una ligera reducción de un 1% relativo en la tasa de palabras

correctas comparado con el primer nivel. Cuando esta medida de confianza

se compara con la que hace uso de un reconocedor de palabras aisladas y

la puntuación (confianza) obtenida durante dicho proceso, la mejora que

se produce es de un 26% relativo, con un mı́nimo empeoramiento del 0.6%

relativo en la tasa de palabras correctas.

• El uso de un perceptrón multi-capa junto con el modelo de lenguaje presen-

tados en el caṕıtulo 5 para estimar la puntuación (confianza) de cada palabra

clave propuesta por el sistema de ”Detección de Términos Hablados” mejoró

en un 44% relativo el uso de las técnicas basadas en Modelos Ocultos de

Markov.

• El uso de árboles de decisión para rechazar aquellas palabras clave propuestas

por el sistema de ”Detección de Términos Hablados” del caṕıtulo 5 que se

clasifican como falsas aceptaciones mejoró en un 5% relativo el rendimiento

final del sistema.
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• En el caṕıtulo 6, las unidades acústicas basadas en grafemas mejoraron a las

basadas en alófonos en el sistema de ”Detección de Términos Hablados” que

únicamente contiene la información de dichas unidades para español.

• En el caṕıtulo 6, la combinación del sistema de ”Detección de Términos

Hablados” basado en grafemas y el basado en alófonos, para presentar la sal-

ida final del sistema de ”Detección de Términos Hablados” que únicamente

contiene la información de dichas unidades para español, mejoró a cada sis-

tema por separado.

Estas contribuciones han dado lugar a las siguientes publicaciones:

• J. Tejedor, D. Bolaños, J. Garrido y J. Colás, ”Búsqueda y extracción de

información en Audio Mining”, En las Actas de la Conferencia Internacional

IADIS WWW / INTERNET, 6-7 Octubre 2006. Murcia, España.

• J. Tejedor y J. Colás, ”Spanish keyword spotting system based on filler

models, pseudo N-gram language model and a confidence measure”, En las

Actas de las IV Jornadas en Tecnoloǵıa del Habla, 8-10 Noviembre, 2006.

Zaragoza, España.

• J. Tejedor, R. Garćıa, M. Fernández, F.J. López-Colino, F. Perdrix, J.A.

Maćıas, R.M. Gil, M. Oliva, D. Moya, J. Colás y P. Castells, ”Ontology-based

retrieval of human speech”, En las Actas de las Jornadas Internacionales de

la web semántica (DEXA), 3-7 Septiembre, 2007. Regensburg, Alemania.

• D. Wang, J. Frankel, J. Tejedor y S. King. ”Comparison of phone and

grapheme-based spoken term detection”, En las Actas de la Conferencia

Internacional IEEE en Procesamiento acústico, de voz y de audio (ICASSP),

30-Marzo-4-Abril, 2008. Las Vegas, Estados Unidos.

• J. Tejedor, D. Wang, J. Frankel, S. King y J. Colás. ”A comparison of

grapheme and phoneme-based acoustic units for Spanish spoken term detec-

tion”, Speech Communication (SPECOM), Noviembre, 2008.

• J. Tejedor, S. King, J. Frankel, D. Wang, J. Colás y J. Garrido. ”A novel two-

level architecture plus confidence measures for a keyword spotting system”,

En las Actas de las V Jornadas en Tecnoloǵıa del Habla, 12-14 Noviembre,

2008. Bilbao, España.
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• D. Wang, J. Tejedor, J. Frankel, S. King y J. Colás. ”Posterior-based confi-

dence measures for spoken term detection”, En las Actas de la Conferencia

Internacional IEEE en Procesamiento acústico, de voz y de audio (ICASSP),

19-24 Abril, 2009. Taipei, Taiwan.
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Madrid, 1996.

[25] G.D. Forney. The viterbi algorithm. Proc. of IEEE, 61(3):268–278, March

1973.

[26] A. Moreno, D. Poch, A. Bonafonte, E. Lleida, J. Llisterri, J.B. Mariño, and

C. Nadeu. Albayzin speech database: Design of the phonetic corpus. In

Proc. of European Conference on Speech Communication and Technology

(Eurospeech), volume 1, pages 653–656, September 1993.



158 BIBLIOGRAPHY

[27] A. Janin, D. Baron, J. Edwards, D. Ellis, D. Gelbart, N. Morgan, B. Peskin,

T. Pfau, E. Shriberg, A. Stolcke, and C. Wooters. The icsi meeting corpus.

In Proc. of IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), volume 1, pages 364–367, April 2003.

[28] S. Burger, V. MacLaren, and H. Yu. The isl meeting corpus: the impact

of meeting type on speech style. In Proc. of International Conference on

Spoken Language Processing (ICSLP), pages 301–304, September 2002.

[29] T. Hain, L. Burget, J. Dines, G. Garau, M. Karafiat, M. Lincoln, J. Vepa,

and V. Wan. The ami meeting transcription system: Progress and per-

formance. In Proc. of International Workshop on Machine Learning for

Multimodal Interaction (MLMI), pages 414–431, May 2006.

[30] NIST. http://www.nist.gov/speech/tests/rt/2004-spring/index.html. Rich

Transcription Spring 2004 Evaluation. National Institute of Standards and

Technology, May 2004.

[31] NIST. http://www.nist.gov/speech/tests/rt/2005-spring/index.html. The

2005 Spring NIST Rich Transcription (RT-05S) Evaluation database. Na-

tional Institute of Standards and Technology, July 2005.

[32] I. Bazzi. Modelling Out-of-vocabulary words for robust speech recognition.

PhD thesis, Electrical Engineering and Computer Science, Massachusetts

Institute of Technology, June 2002.

[33] R.C. Rose and D.B. Paul. A hidden markov model based keyword recognition

system. In Proc. of IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pages 129–132, April 1990.

[34] A.S. Manos and V.W. Zue. A segment-based wordspotter using phonetic

filler models. In Proc. of IEEE International Conference on Acoustics,

Speech, and Signal Processing (ICASSP), volume 2, pages 899–902, April

1997.

[35] H. Cuayahuitl and B. Serridge. Out-of-vocabulary word modeling and rejec-

tion for spanish keyword spotting systems. In Proc. of Mexican International

Conference on Artificial Intelligence (MICAI), pages 156–165, 2002.



BIBLIOGRAPHY 159

[36] J.G. Kim, H.Y. Jung, and H.Y. Chung. A keyword spotting approach based

on pseudo n-gram language model. In Proc. of the Conference on Speech

and Computer (SPECOM), pages 156–159, September 2004.

[37] L. Xin and B. Wang. Utterance verification for spontaneous mandarin speech

keyword spotting. In Proc. of International Conference on Info-tec and Info-

net (ICII), volume 3, pages 397–401, November 2001.

[38] J. Ou, C. Chen, and Z. Li. Hybrid neural-network/hmm approach for out-

of-vocabulary words rejection in mandarin place name recognition. In Proc.

of International Conference On Neural Information Processing (ICONIP),

November 2001.

[39] I. Szoke, P. Schwarz, P. Matejka, L. Burget, M. Karafiat, M. Fapso, and

J. Cernocky. Comparison of keyword spotting approaches for informal con-

tinuous speech. In Proc. of International Conference on Spoken Language

Processing (ICSLP), pages 633–636, September 2005.

[40] T.J. Hazen and I. Bazzi. A comparison and combination of methods for oov

word detection and word confidence scoring. In Proc. of IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), volume 1,

pages 397–400, May 2001.

[41] Q. Guo, Y.H. Yan, Z.W. Lin, B.S. Yuan, Q.W. Zhao, and J. Liu. Keyword

spotting in auto-attendant system. In Proc. of International Conference

on Spoken and Language Processing (ICSLP), volume 2, pages 1050–1052,

October 2000.

[42] C. Yining, L. Jing, Z. Lin, L. Jia, and L. Runsheng. Keyword spotting

based on mixed grammar model. In Proc. of International Symposium on

Intelligent Multimedia, Video and Speech Processing, pages 425–428, May

2001.

[43] M-C. Silaghi and H. Bourlard. Iterative posterior-based keyword spotting

without filler models. In Proc. of IEEE workshop Automatic Speech Recog-

nition and Understanding (ASRU), December 1999.

[44] H. Bourlard and N. Morgan. Connectionist speech recognition. Kluwer Aca-

demic Publishers, 1994.



160 BIBLIOGRAPHY

[45] L.F. Lamel, J-L. Gauvain, and M. Eskenazi. Bref, a large vocabulary spoken

corpus for french. In Proc. of European Conference on Speech Communica-

tion and Technology (Eurospeech), pages 505–508, September 1991.

[46] P. Yu and F. Seide. A hybrid word/phoneme-based approach for improved

vocabulary-independent search in spontaneous speech. In Proc. of Interna-

tional Conference on Spoken Language Processing (ICSLP), pages 635–643,

2004.

[47] M. Padmanabhan, G. Ramaswamy, B. Ramabhadran, P.S. Gopalakrishnan,

and C. Dunn. Voicemail corpus part i (ldc98s77) and part ii (ldc2002s35).

In http://www.ldc.upenn.edu, 1998.

[48] P. Schwarz, P. Matejka, and J. Cernocky. Towards lower error rates in

phoneme recognition. In Proc. of International Conference on Text, Speech

and Dialogue (TSD), pages 465–472, September 2004.

[49] D.A. Dahl, M. Bates, M. Brown, W. Fisher, K.H. Smith, D. Pallet, C. Pao,

A. Rudnicky, and E. Shriberg. Expanding the scope of the atis task: The

atis-3 corpus. In Proc. of DARPA Human Language Technology Workshop,

pages 43–48, March 1994.

[50] R. El Méliani and D. O’Shaughnessy. Accurate keyword spotting using

strictly lexical fillers. In Proc. of IEEE International Conference on Acous-

tics, Speech and Signal Processing (ICASSP), volume 2, pages 907–910, April

1997.

[51] T. Schaaf and T. Kemp. Confidence measures for spontaneous speech recog-

nition. In Proc. of IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), volume 2, pages 875–878, April 1997.

[52] S. Cox and R. Rose. Confidence measures for the switchboard database.

In Proc. of IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), volume 1, pages 511–514, May 1996.

[53] Y. Ben Ayed, D. Fohr, J. P. Haton, and G. Chollet. Keyword spotting using

support vector machines. In Proc. of International Conference on Text,

Speech and Dialogue (TSD), pages 285–292, November 2002.



BIBLIOGRAPHY 161

[54] Y. Ben Ayed, D. Fohr, J.P. Haton, and G. Chollet. Confidence measures for

keyword spotting using support vector machines. In Proc. of IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing (ICASSP),

volume 1, pages 588–591, April 2003.

[55] L. Ferrer and C. Estienne. Improving performance of a keyword spotting

system by using a new confidence measure. In Proc. of European Conference

on Speech Communication and Technology (Eurospeech), pages 2561–2564,

September 2001.

[56] J. Junkawitsch, L. Neubauer, H. Hge, and G. Ruske. A new keyword spotting

algorithm with pre-calculated optimal thresholds. In Proc. of International

Conference on Spoken Language Processing (ICSLP), pages 2067–2070, Oc-

tober 1996.

[57] A. Amir, A. Efrat, and S. Srinivassan. Advances in phonetic word spot-

ting. In Proc. of International Conference on Information and Knowledge

Management (CIKM), pages 580–582, November 2001.

[58] 1998 hub-4 broadcast news evaluation english test material. In

http://www.ldc.upenn.edu, 1998.

[59] S. Dharanipragada and S. Roukos. A multistage algorithm for spotting new

words in speech. IEEE Transactions on Speech and Audio Processing, 10(8):

542–550, November 2002.

[60] P. Yu and F. Seide. Fast two-stage vocabulary independent search in spon-

taneous speech. In Proc. of IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pages 481–484, March 2005.

[61] F. Seide, P. Yu, C. Ma, and E. Chang. Vocabulary-independent search in

spontaneous speech. In Proc. of IEEE International Conference on Acous-

tics, Speech and Signal Processing (ICASSP), volume 1, pages 253–256, May

2004.

[62] J. Scott, J. Wintrode, and M. Lee. Fast unconstrained audio search in

numerous human languages. In Proc. of IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), volume 4, pages 77–80,

April 2007.



162 BIBLIOGRAPHY

[63] S.J. Young, N.H. Russel, and J.H.S. Thornton. Token passing: A simple

connectionist model for connected speech recognition systems. Cambridge

University Engineering Department, 1989.

[64] K. Thambiratnam and S. Sridharan. Rapid yet accurate speech indexing

using dynamic match lattice spotting. IEEE Transactions on Audio and

Speech Processing, 15(1):346–357, January 2007.

[65] P. Gao, J. Liang, P. Ding, and B. Xu. A novel phone-state matrix based

vocabulary-independent keyword spotting method for spontaneous speech.

In Proc. of IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), volume 4, pages 425–428, April 2007.

[66] J. Pinto, I. Szoke, S.R.M. Prassana, and H. Hermansky. Fast approximate

spoken term detection from sequence of phonemes. In Proc. of Speech search

workshop at SIGIR, July 2008.

[67] J. Tejedor, S. King, J. Frankel, D. Wang, J. Colás, and J. Garrido. A

novel two-level architecture plus confidence measures for a keyword spotting

system. In Proc. of V Jornadas en Tecnoloǵıa del Habla, November 2008.
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