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We derive the maximum bias functions of theMM-estimates and the con-

strainedM-estimates orCM-estimates of regression, and compare them to the max-

imum bias functions of theS-estimates and theτ -estimates of regression. In these

comparisons, theCM-estimates tend to exhibit the most favorable bias-robustness

properties. Also, under the gaussian model, it is shown how one can construct a

CM-estimate which has a smaller maximum bias function than a givenS-estimate,

i.e. the resultingCM-estimatedominatesthe S-estimate in terms of maxbias, and

at the same time is considerably more efficient.

1. Introduction. An important consideration for any estimate is an understanding of

its robustness properties. Different measures exist which try to reflect the general concept

known as robustness. One such measure is the maximum bias function, which measures

the maximum possible bias of an estimate underε contamination. In this paper we study

AMS 2000 subject classifications. Primary 62F35. Secondary 62J05.

Key words and phrases. Robust regression,M-estimates,S-estimates, constrainedM-estimates, maximum

bias curves, breakdown point, gross error sensitivity.
1Partially supported by Spanish Grant MTM2004-00098 and Grant S-0505/ESP/0158 of the Comunidad

de Madrid (first author), partially supported by CNPq-Brazil, Edital CNPq 019/2004 Universal (second author)

and NSF Grant DMS-0305858 (third author).

1



2 J.R. BERRENDERO, B.V.M. MENDES and D.E. TYLER

the maximum bias functions for theMM-estimates and the constrainedM-estimates or

CM-estimates of regression and compare them to the maximum bias functions for the

S-estimates and theτ -estimates of regression.

The maximum bias function for Rousseeuw and Yohai’s [10]S-estimates of regression

were originally derived by Martin, Yohai and Zamar [7] under the assumption that the

independent variables follow an elliptical distribution and that the intercept term is known.

More recently, Berrendero and Zamar [1] derived the maximum bias functions for the

S-estimates of regression under much broader conditions. Further general results on the

maximum bias function can be found in [4]. The method used by [1] applies to a wide

class of regression estimates. For example, it allows one to obtain the maximum bias

functions of Yohai and Zamar’s [12]τ -estimates of regression. Unfortunately, it does not

apply to Yohai’s [11]MM-estimates of regression, which are arguably the most popular

high breakdown point estimates of regression. The MM-estimates, for example, are the

default robust regression estimates inS-plus.

The original motivation for the current paper was thus to derive the maximum bias

functions of theMM-estimates of regression and compare them to the maximum bias func-

tions of theS-estimates andτ -estimates of regression. A lesser known high breakdown

point estimate of regression, namely Mendes and Tyler’s [8] constrainedM-estimates of

regression (orCM-estimates for short) has also been included in the study since their

maximum bias functions can be readily obtained by applying the general method given

by [1]. Expressions for the maximum bias functions of theMM-estimates and theCM-

estimates are derived in sections 3 and 4. Comparisons between theS, τ , MM, and

CM-estimates based on bi-weight score functions are given in Section 5. It turns out that

in these comparisons, theCM-estimates tend to exhibit the most favorable robustness

properties.
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Consequently, a more detailed theoretical comparison between the maximum bias

function of theS-estimates and theCM-estimates of regression, which helps explain the

computational comparisons made in section 5, is given in section 6. In particular, under

the gaussian model, it is shown how one can construct aCM-estimate of regression so that

its maximum bias functiondominatesthat of a givenS-estimate of regression. That is, the

maximum bias function of theCM-estimate is smaller for some level of contaminationε

and is never larger for any value ofε. TheS-estimate is thus said to bebias-inadmissible

at the gaussian model.

Section 2 reviews the notion of the maximum bias function in the regression setting,

as well as the definitions of theS-estimates, theMM-estimates and theCM-estimates for

regression. Technical proofs are given in Section 7, an appendix.

2. The regression model and the concept of maximum bias.We follow the general

setup given in [7]. Specifically, we consider the linear regression model

y = αo + x
′
θo + u,(2.1)

wherey ∈ IR represents the response,x = (x1, x2, ..., xp)
′
∈ IRp represents a random

vector of explanatory variables,αo ∈ IR andθo ∈ IRp are the true intercept and slope

parameters respectively, and the random error termu ∈ IR is assumed to be independent

of x. Let Fo andGo represent the distribution functions ofu and x respectively, and

let Ho represent the corresponding joint distribution function of(y,x). The following

assumptions on the distributionHo are assumed throughout the paper.

A1) Fo is absolutely continuous with densityfo which is symmetric, continuous and

strictly decreasing onIR+.

A2) PGo(x
′θ = c) < 1, for anyθ ∈ IRp,θ 6= 0, c ∈ IR.
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As in [7] and [1], we focus on the estimation of the slope parametersθo. One reason

for doing so, it that once given a good estimate of the slope parameters, the problem of

estimating the intercept term and the residual scale reduces to the well studied univariate

location and scale problem. LetT represent someIRp valued functional defined onH, a

space of distribution functions onIRp+1 which includes some weak neighborhood ofHo,

and such thatT(Ho) = θo. For large enoughn, H almost surely contains the empirical

distribution functionHn corresponding to a random sample{(y1,x1), ..., (yn,xn)} from

Ho. Furthermore, we assume thatT is weakly continuous atHo and so the statistic

Tn = T(Hn) is a consistent estimate ofθo.

All functionals T considered in this paper are regression equivariant, as defined e.g.

in [7]. For such functionals, a natural invariant measure of the “asymptotic” bias ofT at

H is given by

bΣo(T,H) =

 ((T(H)− θo)
′
Σo(T(H)− θo))

1/2
H ∈ H

∞ H 6∈ H .

(2.2)

Here,Σo = Σ(Go) is taken to an affine equivariate scatter matrix for the regressorsx

underGo. We can thus presume without loss of generality that(αo,θo) = 0 andΣo = I.

Hence, the asymptotic bias ofT atH becomes the Euclidean norm ofT,

b(T,H) =

‖ T(H) ‖ H ∈ H

∞ H 6∈ H ,

(2.3)

whereH is the class of distributions such that‖ T(H) ‖<∞. The maximum asymptotic

bias ofT overε-contaminated neighborhoodsVε of Ho, i.e.,Vε = {H | H = (1−ε)Ho +

εH∗, H∗ ∈ H∗} whereH∗ is the set of all distribution functions onIRp+1, is defined

to be

BT(ε) = sup{b(T,H) | H ∈ Vε} ,(2.4)
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and the asymptotic breakdown point is subsequently defined to be

ε∗ = inf{ε | BT(ε) = ∞}.(2.5)

From an applied perspective, regardless ofΣo, it may be of interest to derive upper

bounds for the Euclidean distance betweenT(H) and θo, i.e. for ‖T(H) − θo‖. This

measure is referred to as abias boundby Berrendero and Zamar [1], wherein they use it

for adjusting confidence intervals forθ to include the possibility of bias introduced by a

contaminated model. Note that thebias boundis regression and scale equivariant but not

affine equivariant, and hence is not directly related to the maximum bias (2.4). In [1],

some results are given for computingbias boundstaking the maximum bias function as

a starting point.

2.1. M-estimates with general scale.TheS, MM andCM-estimates of regression all

lie within the class ofM-estimates with general scale considered in [7]. AnM-estimate, or

more appropriately anM-functional, with general scale for the regression parametersαo

andθo, say t(H) andT(H) respectively, can be defined as the solution which minimizes

EH

[
ρ

(
y − α− x

′
θ

σ(H)

)]
(2.6)

over allα ∈ IR andθ ∈ IRp, whereρ is some nonnegative symmetric function andσ(H)

is some scale functional. The scale functionalσ(H) may be determined simultaneously or

independently of{t(H),T(H)}. We assume throughout the paper thatσ(H) is regression

invariant and residual scale equivariant, again as defined e.g. in [7]. Throughout, it is

assumed that the functionρ satisfies the following conditions:

A3) (i) ρ is symmetric and nondecreasing on[0,∞) with ρ(0) = 0,

(ii) ρ is bounded withlimu→∞ ρ(u) = 1, and

(iii) ρ has only a finite number of discontinuities.



6 J.R. BERRENDERO, B.V.M. MENDES and D.E. TYLER

If the functionρ is also differentiable, then(t(H),T(H)) is a solution to thep + 1

simultaneousM-estimating equations

EH

{
ψ

(
y − α− x

′
θ

σ(H)

)
x

}
= 0, andEH

{
ψ

(
y − α− x

′
θ

σ(H)

)}
= 0,(2.7)

whereψ(u) ∝ ρ
′
(u). By Condition A3(i), ψ is an odd function, nonnegative on[0,∞).

Condition A3(ii) implies that theseM-estimates are redescending, i.e.ψ(u) → 0 as

u → ∞. A popular choice forM-estimates are Tukey’s biweightedM-estimates, which

correspond to choosingρ(u) to be

ρT (u) =

3u2 − 3u4 + u6 for |u| ≤ 1

1 for |u| > 1.
(2.8)

Note that this gives rise to the biweightψ functionψT (u) = u{(1− u2)+}2.

The S-estimates for the intercept, slopes and scale are defined to be the solution

{ts(H),Ts(H), σs(H)} to the problem of minimizingσ ∈ IR+ subject to the constraint

EH

[
ρ

(
y − α− x

′
θ

σ

)]
≤ b(2.9)

for some fixed valueb, 0 < b < 1. The breakdown point of theS-estimate of regression is

ε∗ = min{b, 1− b}. A drawback to theS-estimates is that the tuning constantb not only

determines the breakdown point but it also determines the efficiency of the estimate. To

obtain a reasonable efficiency under a normal error model, one must usually substantially

decrease the breakdown point.

This problem with tuning theS-estimates of regression motivated Yohai [11] to in-

troduce theMM-estimates of regression, which can be tuned to have high efficiency

under normal error while simultaneously maintaining a high breakdown point. Letρ1

andρ2 be a pair of loss functions satisfying A3, and withρ1 > ρ2. Setb = EFoρ1(Y ).

MM-estimates are defined to be the solution{tmm(H),Tmm(H)} which minimizes

LH(α,θ) = EH

[
ρ2

(
y − α− x′θ

s(H)

)]
,
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wheres(H) .= σs(H) is a preliminaryS-functional of scale defined above based on

ρ = ρ1. The breakdown point of theMM-estimates only depends onρ1, and is given

by ε∗ = min{b, 1 − b}. On the other hand, their asymptotic distribution is determined

exclusively byρ2. This allows theMM-estimates to be tuned so that they possess both

high breakdown point and high efficiency.

The CM-estimates are another class of regression estimates which can be tuned to

have high efficiency at the normal model while maintaining a high breakdown point.

The CM-estimates for the intercept, slopes and scale are defined to be the solution

(tcm(H),Tcm(H), σcm(H)) which minimizes

LH(α,θ, σ) = c EH

[
ρ

(
y − α− x′θ

σ

)]
+ log σ(2.10)

subject to the constraint (2.9), wherec > 0 represents a tuning constant. As with theS-

estimates of regression, the asymptotic breakdown point of theCM-estimates of regression

is ε∗ = min{b, 1 − b}. Unlike theS-estimates of regression, though, theCM-estimates

of regression can be tuned through the constantc in order to obtain a reasonably high

efficiency without affecting the breakdown point.

We again emphasize that our focus here is on the slope functionalsT(H) rather than

on the intercept functionalst(H) or the scale functionalsσ(H). Given a good slope

functional, one may wish to consider the wider range of location and scale functionals

based on the distribution ofy−x′T(H), such as its median and median absolute deviation,

rather than those arising from anS, MM or CM-estimate of regression.

3. Maximum bias functions.

3.1. Maximum bias functions for MM-estimates.If FH,α,θ is the distribution func-

tion of the absolute residuals|y − α − x′θ|, then Berrendero and Zamar [1] give an

expression for the maximum bias function for any estimate whose definition can be
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expressed in the form

(t(H),T(H)) = arg min
(α,θ)

J(FH,α,θ),(3.11)

whereJ(F ) is a functional possessing certain monotonic properties. TheS, τ , andCM-

estimates are of this form. Application of their general results to theSand theτ -estimates

are given [1]. Application of these results to theCM-estimates are presented in section

3.2.

TheMM-estimates, however, cannot be expressed in the form (3.11) and so a different

approach is needed in order to study its bias behavior. LetBMM (ε) be the maximum bias

function of anMM-estimate of regression. In this subsection, lower and upper bounds for

BMM (ε) are obtained under quite general conditions. In some important cases these two

bounds are often equal and so allow for the determination of the maximum bias function

exactly.

Let s = infH∈Vε
s(H), s = supH∈Vε

s(H), and

m(t, s) = inf
‖θ‖=t

inf
α∈IR

EHo
ρ2

(
y − α− x′θ

s

)
− EHo

ρ2

(y
s

)
.

The following two functions play a key role in the developments below:

h1(t) = m(t, s), and h2(t) = inf
s≤ s≤s

m(t, s).(3.12)

THEOREM 3.1. Let Tmm be an MM–estimate of the regression slopes with loss

functionsρi, i = 1, 2, satisfying A3. Assume that the maximum bias function of the S-

estimate with score functionρ1, BS(ε), satisfiesBS(ε) < h−1
1 [ε/(1− ε)]. Under A1 and

A2, the maximum bias function ofTmm, BMM (ε), satisfies

h−1
1

(
ε

1− ε

)
≤ BMM (ε) ≤ h−1

2

(
ε

1− ε

)
.(3.13)

Note that the conditionBS(ε) < h−1
1 [ε/(1 − ε)] of the above theorem together with

(3.13) implies thatBS(ε) < BMM (ε). This condition usually holds for an appropriately
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choosenρ1 function. Thus, anMM-estimate does not improve upon the maximum bias

of the initial S-estimate. The trade-off though is that with an appropriately choosen

ρ2 function, theMM-estimate can greatly improve upon the efficiency of the initialS-

estimate.

Upper and lower bounds for the maximum bias of MM-estimates have also been

obtained respectively by Hennig [5], Theorem 3.1, and by Martin et. al. [7], Lemma 4.1,

under the assumption of unimodal elliptically distributed regressors. For this special case,

the upper bound given in (3.13) and in [5] agree. On the other hand, the lower bound

given in [7], namelyBMM (ε) ≥ h−1
0 [ε/(1 − ε)], whereh0(t) = sups≤s≤sm(t, s) is

not as tight as that given in (3.13).

In our setup, the assumption of unimodal elliptical regressors is equivalent to:

A2*) Under Go, the distribution ofx′θ is absolutely continuous, with a symmetric,

unimodal density and depends onθ only through‖θ‖ for all θ 6= 0.

Under this condition, we can define

g(s, t) = EHo

[
ρ

(
y − x′θ

s

)]
,(3.14)

whereθ is any vector such that‖θ‖ = t. Under conditions A1, A2*, and A3, it is shown

in Lemma 3.1 of Martin, Yohai and Zamar [7] thatg is continuous, strictly increasing

with respect to‖θ‖ and strictly decreasing ins for s > 0.

If A2* holds, thens ands are defined so thatg1(s, 0) = b/(1 − ε) and g1(s, 0) =

(b − ε)/(1 − ε) respectively, andm(t, s) = g2(s, t) − g2(s, 0), wheregi(s, t) is defined

as in (3.14) after replacingρ with ρi.
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3.2. Maximum bias curves for CM-estimates.A CM-estimate of regression

{tcm(H),Tcm(H)} can be expressed in the form (3.11) withJ taken to be

JCM (F ) = inf
s≥σ(F )

cEF [ρ(y/s)] + log s,(3.15)

and whereσ(F ) is the M-scale defined as the solution to the equation

EF [ρ (y/σ(F ))] = b.(3.16)

Consequently, application of the general method in [1] for computing maximum bias

functions leads to the following result.

THEOREM 3.2. Let Tcm be a CM-estimate of the regression slopes based on a

functionρ satisfying A3, and supposeHo satisfies A1 and A2. Define

rcm(ε) = JCM [(1− ε)FH0,0,0 + εδ∞],

and let

mcm(t) = inf
‖θ‖=t

inf
α∈IR

JCM [(1− ε)FH0,α,θ + εδ0].(3.17)

Then, the maximum bias function ofTcm, denoted byBCM (ε), is given by

BCM (ε) = m−1
cm[rcm(ε)].(3.18)

This general result can be given a simpler representation when condition A2* also

holds. In particular, in the definition ofmcm(t), the infimum is obtained whenα = 0

andθ is any vector such that‖θ‖ = t. This gives

mcm(t) = inf{Ac,ε(s, t) | s ≥ ms(t)},

whereAc,ε(s, t) = c(1 − ε)g(s, t) + log s andms(t) = g−1
(1) (b/(1− ε), t), with g(s, t)

being defined in (3.14) andg−1
(1)(·, t) being the inverse ofg with respect tos. Also, it is

easy to verify that

rcm(ε) = inf{Ac,ε(s, 0) | s ≥ rs(ε)}+ cε,



MAXBIAS FOR MM- AND CM-ESTIMATES 11

wherers(ε) = g−1
(1) ((b− ε)/(1− ε), 0).

4. Maximum bias functions for two special cases. Maximum bias functions in

general tend to have rather complicated expressions. At some model distributions though

these expressions can be substantially simplified. This is possible for two special cases

considered here, namely the gaussian and the cauchy models. These simplified expressions

are useful for computing and comparing the maximum bias curves of various estimates

for these models, which is done in section 5.

4.1. Maximum bias functions under the gaussian model.We assume thoughout this

section not only that the error term but also that the regressor variables arise from a mul-

tivariate normal distribution. That is, we assumeHo has a joint N(0, Ip+1) distribution,

and refer to this as the gaussian model. Letg(s) = EΦρ(Z/s), whereZ is a standard

normal random variable, and defineσb,ε
.= g−1[(b−ε)/(1−ε)] andγb,ε

.= g−1[b/(1−ε)].

Martin, Yohai and Zamar [7] show that the maximum bias function for anS-estimate of

the regression slope under the gaussian model and based on a functionρ satisfying A3

is given by

BS(ε) =

[(
σb,ε

γb,ε

)2

− 1

]1/2

.(4.19)

To obtain an expression for the maximum bias function of aCM-estimate of regression

under the gaussian model, let

Ac,ε(s) = c(1− ε)g(s) + log s,(4.20)

Also, defineDc(ε) = infs≥σb,ε
Ac,ε(s) − infs≥γb,ε

Ac,ε(s). We then have the following

result.
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THEOREM 4.1. Let Tcm be a CM-estimate of the regression slopes based on a

functionρ satisfying A3, and assumeHo is multivariate normal. It then holds that

BCM (ε) = {exp [2cε+ 2Dc(ε)]− 1}1/2
.(4.21)

Turning now to theMM-estimates, letgi(s) = EΦρi(Z/s) for i = 1, 2, whereZ is a

standard normal random variable. Under the gaussian model,

m(t, s) = g2

(
s

(1 + t2)1/2

)
− g2(s).

Moreover,s = g−1
1 [(b − ε)/(1 − ε)], and s = g−1

1 [b/(1 − ε)]. Sinceρ1 is the same

ρ-function used in defining the preliminaryS-estimate, we haves = σb,ε ands = γb,ε.

Hence,BMM (ε) ≥ `(ε), where

`(ε) = h−1
1

(
ε

1− ε

)
=

[(
σb,ε

g−1
2 [g2(σb,ε) + ε/(1− ε)]

)2

− 1

]1/2

.(4.22)

A simpler form for the upper bound which can be used for computational purposes

can be obtained under some additional regularity conditions ong2(t). These conditions

hold in most cases of interest.

A4) (i) g(s) is continuously differentiable, and

(ii) φ(s) .= −sg′(s) is unimodal, with its maximum being obtained atσM . Set

K
.= φ(σM ).

THEOREM 4.2. In addition to the assumptions of Theorem 3.1, suppose thatg2(s)

satisfies A4. Then, whenHo is multivariate normal,

`(ε) ≤ BMM (ε) ≤ max{`(ε), u(ε)},

where`(ε) is given in (4.22), and

u(ε) =

[(
γb,ε

g−1
2 [g2(γb,ε) + ε/(1− ε)]

)2

− 1

]1/2

.
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The upper bound in Theorem 4.2 coincides with that obtained by Hennig [5]. However,

the tighter lower bound gives us further insight into the maximum bias and enables us

to determine when the bounds are actually an equality. Obviously, whenε is such that

u(ε) ≤ `(ε), thenBMM (ε) = `(ε). This occurs in many important cases for a wide range

of ε values.

As an example, consider the biweight loss functionρT defined by (2.8). If we choose

ρ1(u) = ρT (u/k1) and ρ2(u) = ρT (u/k2) with tuning constantsk1 = 1.56 and k2 =

4.68, and chooseb = 0.5, then the resulting MM-estimate has a 50% breakdown point

and is asymptotically 95% efficient under the gaussian model. For this case, it can be

verified that the conditionBS(ε) < h−1
1 [ε/(1− ε)] in Theorem 3.13 holds. From (4.22),

it can be noted that this condition is equivalent tog2(γb,ε) − g2(σb,ε) < ε/(1 − ε). It

can also be verified that the correspondingφ2 function is unimodal. A plot ofφ2 is

displayed in the left hand graph of Figure 1. The bounds given in Theorem 4.2 for this

MM-estimate are displayed in the right hand graph of Figure 1. Both bounds coincide,

and therefore the exact maximum bias function is known for, roughly,ε ≤ 0.33.

FIG. 1. The graph on the left represents the functionφ(s) for a biweight ρ function. The graph on the

right gives the maximum bias bounds (`(ε), solid line; u(ε) dotted-dashed line) for an MM-estimate based

on biweight loss functions with 50% breakdown point and 95% efficiency under the gaussian model.
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4.2. Maximum bias functions under the cauchy model.We now assume that the

error term and the regressors follow independent cauchy distributions rather than normal

distributions. That is, we assumex1, . . . , xn and y have independent standard cauchy

distributions, and refer to this as the cauchy model. Note that in this case, the distribution

of the regressors is not elliptically symmetric. The derivations for the cauchy model

follow closely those given for the gaussian model.

Let g(s) = EΦρ(Z/s), whereZ is now a standard cauchy random variable, and again

let σb,ε
.= g−1[(b− ε)/(1− ε)] andγb,ε

.= g−1[b/(1− ε)]. In the appendix, we show the

maximum bias function for anS-estimate of regression to be

BS(ε) =
σb,ε

γb,ε
− 1,(4.23)

and for aCM-estimates of regression to be

Bcm(ε) = exp{Dc(ε) + cε} − 1,(4.24)

with Dc(ε) being analogous to its definition given after equation (4.20). Upper and lower

bound for the maximum bias function for theMM-estimates of regression are shown in

the appendix to be

`(ε) ≤ BMM (ε) ≤ max{`(ε), u(ε)}, where(4.25)

`(ε) =
σb,ε

g−1
2 [g2(σb,ε) + ε/(1− ε)]

− 1, andu(ε) =
γb,ε

g−1
2 [g2(γb,ε) + ε/(1− ε)]

− 1.

The conditions given in (4.19), Theorem 4.1 and Theorem 4.2 for the gaussian model are

also being assumed here for (4.23), (4.24), and (4.25) respectively for the cauchy model.

For anMM-estimate of regression, condition A4 can again be shown to hold when using

a biweight loss function.

It is somewhat surprising that the expressions forBS(ε), BCM (ε) andBMM (ε) are

of ordero(ε) asε→ 0 under the cauchy model in contrast with the usual
√
ε order. This
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is not a contradiction, however, of known results which establish general
√
ε order for

the maximum bias functions of regression estimates based on residuals since such results

require either elliptical regressors, as in Yohai and Zamar [13], or the existence of second

moments for the regressors, as in He [3] or Yohai and Zamar [14].

5. Maximum bias curve comparisons.

5.1. Comparisons at the gaussian model.Most estimators need to be tuned so that

they perform reasonably well at some important model, as well as being robust to devi-

ations from the model. In practice, one oftens tunes an estimate so that it has good effi-

ciency at the gaussian model as well as a high breakdown point. For smoothρ-functions,

both theMM and CM-estimates of regression can be tuned to have a 50% breakdown

point and 95% asymptotic relative efficiency at the gaussian model. This is also true for

the class ofτ -estimates, see Yohai and Zamar [12] for the details. Thus, these estimates

cannot be ranked on the basis of their efficiency and breakdown point alone. Comparing

their maximum bias behavior at the gaussian model gives further insight into how these

estimates are affected by deviations from the model.

Here, we again consider the estimates associated with the family of Tukey’s biweight

loss function (2.8). The 95% efficient biweightMM-estimate with a 50% breakdown point

has been discussed in the previous subsection. A 95% efficient biweightCM-estimate with

a 50% breakdown point, is obtained by choosingρ(u) .= ρT (u), b = 0.5, and the tuning

constantc = 4.835, see [8] for details. In contrast, a 95% efficent biweightS-estimate

of regression has a 12% breakdown point, whereas a biweightS-estimate with a 50%

breakdown point is only 28.7% efficient at the gaussian model.

Figure 2, represents the maximum bias functions at the gaussian model of theMM-,

CM- and τ -estimates based on biweight functions, and tuned so that they have 95%
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FIG. 2. Maximum bias functions for a biweight S-estimate (dashed line) MM-estimate (dotted line, lower

bound),τ -estimate (solid line) and CM-estimate (dashed-dotted line). All the estimates have 95% efficiency

under the gaussian model. The S-estimate has a breakdown point of 12%, whereas the others have a 50%

breakdown point.

(asymptotic) efficiency under the gaussian model and a 50% breakdown point, as well

as that of the 95% efficient biweightS-estimate. We observe that up toε ≈ 0.28, the

τ -estimate has a larger bias than theMM-estimate, and then a smaller bias afterwards.

Theτ -estimate, though, has a larger bias than theCM-estimate over essentially the entire

range ofε. Up to ε ≈ 0.20, MM- andCM-estimates are roughly equivalent, although for

larger fractions of contamination theCM-estimate is clearly better.

As a further comparison, Figure 3 again shows the maximum bias function at the

gaussian model of the above 95% efficient biweightMM and CM-estimates, as well as

the less efficient 50% breakdown point biweightS-estimate. Also, included in Figure 3

is the biweightCM-estimate having a 50% breakdown point and an asymptotic relative

efficiency of 61.1% at the gaussian model, which corresponds to choosing the tuning

constantc = 2.568. (The efficiency of theCM-estimate based on a biweight function

with b = 1/2 andc = 2.568 under the gaussian model is incorrectly reported as 28.7%
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FIG. 3. Maximum bias functions for a biweight S-estimate (solid line), MM-estimate (dotted line, lower

bound), and two CM-estimates (dotted-dashed line and solid line). The plot for the S-estimate and the

second CM-estimate are almost identical. All estimates have a 50% breakdown point. The MM-estimate

and the first CM-estimates (dotted-dashed line) has 95% efficiency under the gaussian model. The second

CM-estimate (solid line) has an efficiency of 61.1%, whereas the efficiency of the S-estimate is 28.7%.

rather than 61.1% in Table 1 of Mendes and Tyler [8]. The rest of Table 1 of [8] is

correct).

The maximum bias of the 95% efficientMM-estimate is uniformly larger than that

of the correspondingS-estimate. This is consistent with the general result given in

Theorem 3.1. The increase in bias for theMM-estimate is compensated by its increase

in efficiency. A curious observation, though, is that for large fractions of contamination

the maximum bias of the 95% efficientCM-estimate is lower than that of the 28.7%

efficient S-estimate. Furthermore, the maximum bias of the 61.1% efficientCM-estimate

is almost identical to, and as shown theoretically in the next section, is never larger than

that of the 28.7% efficientS-estimate. That is, there is no trade-off between increase

efficiency and maximum bias for thisCM-estimate relative to theS-estimate. In practice,

given that the maximum bias function of the 95% efficientCM-estimate does not greatly



18 J.R. BERRENDERO, B.V.M. MENDES and D.E. TYLER

differ from that of the 61.1% estimate, the 95% efficient estimate would be preferable.

5.2. Comparisons at the cauchy model.We consider now the maximum bias behav-

ior of S, MM andCM-estimates at the cauchy model. Figure 4 shows the maximum bias

function at the cauchy model for theMM, andCM-estimates which are 95% efficient at

the gaussian model as well as the 28.7% efficient biweightS-estimate and the 61.1%

efficient CM-estimate discussed in section 5.1. The breakdown point of each of these

estimates remains 50% under the cauchy model. The estimates though are not re-tuned

here for the cauchy model. Rather, our goal is to make further comparisons among the

same estimates. In practice, given a specific estimate, one would wish to evaluate its

robustness properties under various scenarios. From Figure 4, it can be noted that the

95% efficientCM-estimate tends to have the better maximum bias behavior at the cauchy

model, even better than that of the 61.1% efficientCM-estimate.

5.3. Other considerations. Aside from maximum bias functions, a classical way of

evaluating the robustness of an estimate as it deviates from normality is to consider

its efficiency at other distributions. The asymptotic efficiencies at the gaussian model

discussed in section 5.1 depend on the distribution of the error term being normal. They do

not however depend on the distribution of the carrier being normal, only that they possess

second moments. This is also true for the asymptotic efficiencies at other symmetric error

distributions, see e.g. Maronna, Bustos and Yohai [6]. In particular, they note that the

asymptotic variance-covariance matrix ofθ̂ = Tn has the formσ2
u Σx, whereΣx is the

variance-covariance matrix of the carriersx andσu depends only on the distribution of

the error termu.
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FIG. 4. Maximum bias functions for a biweight S-estimate (solid line), an MM-estimate (dotted line, lower

bound), and two CM-estimates (dotted-dashed line and solid line). The plot for the S-estimate and the second

CM-estimate are almost identical. All estimates have a 50% breakdown point under the cauchy model. The

MM-estimate and the first CM-estimate have 95% efficiency at the gaussian model, whereas the second

CM-estimate and the S-estimate have efficiencies of 61.1% and 28.7% respectively at the gaussian model.

In Table 1, we again consider the 95% efficient biweightS, MM, andCM-estimates,

the 28.7% efficient biweightS-estimate and the 61.1% efficientCM-estimate discussed

in section 5.1, where the efficiency is take under a normal error model. These estimates

are labeledS95, MM95, CM95, S28and CM61 respectively. For these estimates, we

compute their asymptotic variancesσ2
u (AVAR) under a variety of symmetric error models.

Besides the standard normal (NORM), these models include the slash (SL), the cauchy

(CAU), the t3-distribution (T3), the double exponential (DE), a 90-10% mixture of a

standard normal and a normal with mean zero and variance 9 (CN), and the uniform

distribution on(−1, 1) (UNIF). Each of these distributions are normalized so that their

interquartile ranges are all equal to that of the standard normal, namely1.3490. This

corresponds to multiplying the SL, CAU, T3, DE, CN or UNIF random variable by

0.4587, 0.6745, 0.8818, 0.9731, 0.9248 and 1.3490 respectively. Also included in Table
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1 are the residual gross error sensitivities (RGES), see Hampel, et. al. [2]. Formulas for

AVAR and RGES can be found in [8].

NORM SL CAU T3 DE CN UNIF

S95 AVAR 1.053 1.798 2.209 1.257 1.429 1.091 0.771

RGES 1.770 3.277 3.716 2.146 2.258 1.942 1.415

MM95 AVAR 1.053 1.230 1.312 1.221 1.368 1.087 0.713

RGES 1.770 2.146 2.243 1.953 2.038 1.844 1.548

CM95 AVAR 1.053 1.159 1.202 1.227 1.396 1.088 0.755

RGES 1.770 1.995 2.061 1.988 2.138 1.835 1.439

CM61 AVAR 1.637 1.330 1.059 2.091 1.528 2.891 1.128

RGES 1.838 1.900 1.765 2.285 2.045 2.619 1.405

S28 AVAR 3.484 1.330 1.059 2.091 1.528 2.891 120.336

RGES 2.850 1.900 1.765 2.285 2.045 2.619 15.621

TABLE 1

Asymptotic variances and residual gross error sensitivities of some S, MM, and CM estimates of regression

under symmetric error distributions.

From Table 1, it can be noted that the estimatesMM95 and CM95 behave similarly

with respect to asymtotic variance and residual gross error sensitivity, withCM95 being

slightly better at the longer tailed slash and cauchy distributions and theMM95 being

slightly better at the more moderatet3 and double exponential distributions. BothMM95

and CM95 perform better thanS95at longer tailed distributions. The behavior ofS28

andCM61 are the same except at the normal and uniform distributions. At longer tailed

distributions, equality tends to hold for the constrain (2.9) onCM61and so as an estimate

it is asymptotically equivalent toS28at these distributions. At the normal and the uniform
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distributions, there is a considerable difference in favor ofCM61. Curiously, the behavior

of S28 and CM61 at the cauchy distribution is better than that ofMM95 and CM95.

However, based on the overall behavior of the asymptotic variances and residual gross

error sensitivities alone, eitherMM95 andCM95 would be preferable in practice.

6. Bias-inadmissibility of S-estimates at the gaussian model.Throughout this sec-

tion, we assume the gaussian model. In section 5.1, it was noted that under the gaussian

model the maximum bias function of the 61.1% efficient biweightCM-estimate is never

smaller than that of the 27.78% efficient biweightS-estimate. In this section, we ver-

ify this result theoretically rather than computationally. Moveover, we note this result is

not specific to the use of the biweight estimates. In general, we show that for a given

S-estimate, it is usually possible to tune the correspondingCM-estimates (through the

value of c) so thatBCM (ε) ≤ BS(ε) for all ε, and with strict inequality for at least one

value ofε. In such a case, we will say that, with respect to the maximum bias criterion,

the estimateTS is inadmissibleat the gaussian model since it can bedominatedby TCM .

To show this, we need to compare carefully the maximum bias functions of theCM-

estimates and theS-estimates. An alternative representation forBCM (ε) in terms ofBS(ε)

at the normal model [see equations (4.21) and (4.19)] is given by

log[1 +B2
CM (ε)] = log[1 +B2

S(ε)] + 2dc(ε),(6.26)

wheredc(ε) = hc(ε, γb,ε)− hc(ε, σb,ε) and

hc(ε, σ) = Ac,ε(σ)− inf
s≥σ

Ac,ε(s),(6.27)

The functionalsTCM andTS in (6.26) are understood to be defined by using the sameρ

and the same value of b. From representation (6.26), we see that what we need to consider

is the sign ofdc(ε) in terms ofc and ε. The following result represents a first step in
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determining appropriate values of the tuning constantc necessary for showing the bias

inadmissibility of anS-estimate. The value ofK below is defined within Condition A4.

THEOREM 6.1. Suppose thatρ is such that conditions A3 and A4 hold.

(i) If c ≤ 1/K, thenBCM (ε) = BS(ε) for all ε.

(ii) For any ε such thatc > c(ε) .= ε−1 log(σb,ε/γb,ε), it holdsBCM (ε) > BS(ε).

As a consequence, for theCM-estimate to improve upon the maximum bias function

of the S-estimate, one needs to choosec > 1/K. On the other hand, ifco
.= inf{c(ε) :

0 < ε < b}, then we also need to choosec ≤ co. This range is not empty, since as shown

in the appendix,

1/K < (1− b)/K + b/φ(γb,0) ≤ co,(6.28)

whereφ(s) is defined within Condition A4.

For c ≤ 1/K, the CM-functional is the same as theS-functional atHo as well as at

anyH in an ε-contaminated neighborhood ofHo. This is because equality is obtained in

the constraint (2.9) for theCM-estimate, and when equality is obtained theCM-estimate

gives the same solution as the correspondingS-estimate. Thus, forc ≤ 1/K, the CM-

estimate has the same maximum bias function as the correspondingS-estimate. On the

other hand, for large values ofc, theCM-estimate tends to give a solution similar to the

least squares solution, and so one expects the maximum bias function to be unacceptably

large even though the breakdown point may be close to 1/2. In fact, one can note from

(4.21) that for anyε, BCM (ε) →∞ asc→∞.

Varying the tuning constantc may decrease the maximum bias for some values ofε,

while increasing the maximum bias for other values ofε. The question we address now

is whether it is possible to find a moderate value ofc (necessarily between1/K andco)



MAXBIAS FOR MM- AND CM-ESTIMATES 23

such that the maximum bias function of theCM-estimate improves upon the maximum

bias function of theS-estimate.

The following result shows that, in most cases of interest, the conditionc ≤ co is not

only necessary but also sufficient to obtainBCM (ε) ≤ BS(ε) for all ε. The value ofσM

below is also defined within Condition A4.

THEOREM 6.2. Suppose that the assumptions of Theorem 6.1 hold. Ifc ≤ co and

g(σM ) ≤ b, thenBCM (ε) ≤ BS(ε) for all ε > 0.

REMARK 6.1. This result cannot be improved upon. That is, ifc > c(ε), then

BS(ε) < BCM (ε) by Theorem 6.1. Also, ifc ≤ co and g(σM ) > b, then eitherBS(ε) <

BCM (ε) for someε or BS(ε) = BCM (ε) for all ε. This remark is verified in the appendix.

In order to show that anS-estimate can bedominatedby a CM-estimate with c

chosen so that1/K < c ≤ co , it remains to be shown that for some0 < ε < b,

BCM (ε) < BS(ε). For specific examples, this can be checked numerically. Under addi-

tional assumptions, though, this can be shown analytically.

THEOREM 6.3. Suppose that the assumptions of Theorem 6.2 hold. Furthermore,

suppose thatg(s) is convex, and

φ(σb,0) ≥
[1− g(σM )]2(1− b)

2− [b+ g(σM )]
.(6.29)

Then, for any valuec such that

c1
.=

log(σM/σb,0)
b− g(σM )

< c ≤ 1
φ(σb,0)

= co,

the CM-estimate of regressiondominatesthe S-estimate of regression with respect to the

maximum bias function. Furthermore, this range of values forc is not empty.
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REMARK 6.2. From the proof of Theorem 6.3 it follows that a condition more

general than (6.29) under which the conclusions also hold isco = limε→0+ c(ε). However,

(6.29) is easier to check and holds in most cases of interest.

Consider the biweightS-estimate with breakdown pointb ≤ 1/2. It can be verified

that the conditions of Theorem 6.3 holds wheneverb > 0.410, and so any such biweight

S-estimate is inadmissible with respect to maximum bias at the gaussian model. For

b = 1/2, i.e. the 27.78% efficient biweightS-estimate, the value ofc = 2.568 falls

within the interval given in Theorem 6.3. Hence, the 61.1% efficient biweightCM-

estimatedominatesthe 27.78% efficient biweightS-estimate with respect to maximum

bias at the gaussian model. As noted in section 5.1, although the decrease in maximum

bias is negligible, the increase in efficiency is not.

As another example, consider theα-quantile regression estimates. These correspond

to S-estimates withρ(u) = I{|u| ≥ 1} andb = 1 − α. It is straightforward to to verify

that the conditions of Theorem 6.3 hold in this case wheneverb > 0.3173, and so the

α-quantile regression estimates withα < 0.6837 are inadmissible at the gaussian model

with respect to maximum bias. Again the decrease in maxbias is not large. For example,

for the special caseα = b = 0.5, for which the resultingα-quantile estimate corresponds

to Rousseeuw’s [9] least median of squares estimate (LMS), the best improvement is only

95.7% of theLMS bias.

The α-quantile estimates are often referred to as minimax bias regression estimates.

Martin, Yohai and Zamar [7] show that within the class ofM-estimates of regression with

general scale, anα-quantile estimate minimizes the maximum bias atε, with the value

of α depending onε. Yohai and Zamar [13] generalize this minimax result to the class

of all residual admissible estimates of regression. At the gaussian model, anα-quantile

estimate can be shown to have minimax bias for someε whenever0.500 < α < 0.6837,
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or equivalently when0.3173 < b < 0.500. Despite having minimax bias at the gaussian

model for a givenε, theseα-quantile regression estimates are still inadmissible at the

gaussian model with respect to maximum bias. In particular, aCM-estimate can be

constructed which also has minimax bias at the givenε, never larger bias at any otherε,

and smaller bias for some otherε. Although the decrease in the maximum bias may not

be of practical importance, these observations expose some limitations of the notion of

minimax bias.

The minmax bias results given in [13] for theα-quantile regression estimates apply

more generally than to just the gaussian model. They also apply to models having a

symmetric unimodal error term along with elliptically distributed carriers. At such models,

though, we conjecture that theα-quantile regression estimates may again be inadmissible

with respect to maximum bias, but we do not pursue this topic further here. The value

of α which attains the minimum maxbias at a particularε is not only dependent on the

value of ε but also dependent on the particular model. That is, a particularα-quantile

estimate is not necessarily minimax atε over a range of models but is only known to

be minimax atε at a specific model. Any estimate which can be shown todominatean

α-quantile estimate would most likely need to be model specific.

7. Appendix. In this section we include the proof of the results and other technical

questions.

Proof of Theorem 3.1: It can be shown following the proofs of Lemmas 4, 5 and 6 in

[1] that, for all s > 0 andt ∈ IR, there existαt ∈ IR andθt ∈ IRp such that

m(t, s) = EHo
ρ2

(
y − αt − x′θt

s

)
− EHo

ρ2

(y
s

)
.

Also, we can show thatm(t, s) is a strictly increasing function oft, for all s > 0. It

follows thath1(t) is also strictly increasing.
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We show first thatBMM (ε) ≤ t2, wheret2 is such thath2(t2) = ε/(1− ε). Let θ̃ ∈ IRp

be such that̃t = ‖θ̃‖ > t2. We shall prove that

EHρ2

(
y − α− x′θ̃

s(H)

)
> EHρ2

(
y

s(H)

)
, for eachα ∈ IR andH ∈ V ε.(7.30)

Let H = (1− ε)Ho + εH̃. We have that:

m[t̃, s(H)] > m[t2, s(H)] ≥ inf
s≤s≤s

m(t2, s) = h2(t2) =
ε

1− ε
.

Therefore, for eachα ∈ IR andH ∈ V ε,

EHoρ2

(
y − α− x′θ̃

s(H)

)
− EHoρ2

(
y

s(H)

)
>

ε

1− ε
,

that is,

(1− ε)EHo
ρ2

(
y − α− x′θ̃

s(H)

)
> (1− ε)EHo

ρ2

(
y

s(H)

)
+ ε.

It follows that, for everyα ∈ IR andH ∈ Vε,

EHρ2

(
y − α− x′θ̃

s(H)

)
≥ (1− ε)EHoρ2

(
y − α− x′θ̃

s(H)

)

> (1− ε)EHoρ2

(
y

s(H)

)
+ ε ≥ EHρ2

(
y

s(H)

)
,

that is, inequality (7.30) holds. The last inequality above follows from A3(ii).

Next, we show thatBMM (ε) ≥ t1, where t1 is such thath1(t1) = ε/(1 − ε). Since

BS(ε) < t1, we can select an arbitraryt > 0 such thatBS(ε) < t < t1. It is enough to

show thatBMM (ε) ≥ t. We know that there existαt ∈ IR andθt ∈ IRp such that

h1(t) = m(t, s) = EHoρ2

(
y − αt − x′θt

s

)
− EHoρ2

(y
s

)
.

Sinceh1 is strictly increasing,h1(t) < h1(t1) = ε/(1− ε). It follows that

(1− ε)EHo
ρ2

(
y − αt − x′θt

s

)
< (1− ε)EHo

ρ2

(y
s

)
+ ε.(7.31)

Define the following sequence of contaminating distributions:H̃n = δ(yn,xn) where

xn = nθt andyn = αt+x′nθt = αt+nt2. LetHn = (1−ε)Ho+εH̃n andθn = T(Hn).
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Suppose thatsupn ‖θn‖ < t in order to find a contradiction. Under this assumption, there

exists a convergent subsequence, denoted also by{θn}, such thatlimn→∞ θn = θ̃, where

‖θ̃‖ = t̃ < t. Assume for a moment that the sequence of intercept functionals evaluated

atHn, αn = t(Hn), satisfieslimn→∞ |αn| = ∞. Then,

lim
n→∞

EHn
ρ2

(
y − αn − x′θn

s(Hn)

)
= (1− ε) + ε lim

n→∞
ρ2

(
yn − αn − x′nθn

s(Hn)

)
> (1− ε) lim

n→∞
EHo

ρ2

(
y − αt − x′θt

s(Hn)

)
= lim

n→∞
EHn

ρ2

(
y − αt − x′θt

s(Hn)

)
,

but this fact contradicts the definition of(αn,θn). Notice that0 < s < s(Hn) < s <∞

implies thatlimn→∞ EHo
ρ2[(y−αt−x′θt)/s(Hn)] < 1 which in turn implies the strict

inequality above. Therefore, we can assume without loss of generality thatlimn→∞ αn =

α̃, for some finiteα̃ ∈ IR. As a consequence, we have that

lim
n→∞

∣∣∣∣yn − αn − x′nθn

s(Hn)

∣∣∣∣ = ∞, and

∣∣∣∣yn − αt − x′nθt

s(Hn)

∣∣∣∣ = 0, for eachn.(7.32)

We prove now thatlimn→∞ s(Hn) = s, for any convergent subsequences(Hn). Let

s∞ = limn→∞ s(Hn). Notice thats satisfies the equation

(1− ε)EHoρ1(y/s) + ε = b.(7.33)

Let (γn,βn) = (t1(Hn),T1(Hn)) be the regression S–estimate based onρ1. We know

that ‖βn‖ ≤ BS(ε) < t, for all n, so that without loss of generalitylimn→∞ βn = β̃,

where‖β̃‖ < t. Assume thatlimn→∞ |γn| = ∞. Since

EHn
ρ1

(
y − γn − x′βn

s(Hn)

)
= b,(7.34)

letting n→∞, it follows that

b = lim
n→∞

EHn
ρ1

(
y − γn − x′βn

s(Hn)

)
= (1− ε) + ε lim

n→∞
ρ1

(
yn − γn − x′nβn

s(Hn)

)
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> (1− ε) lim
n→∞

EHo
ρ1

(
y − αt − x′θt

s(Hn)

)
= EHn

ρ1

(
y − αt − x′θt

s(Hn)

)
.

Then, there existssn < s(Hn) such that

EHnρ1

(
y − αt − x′θt

sn

)
= b

but this fact contradicts the definition of(γn,βn). Therefore, we can also assume

without loss of generality thatlimn→∞ γn = γ̃, for some finitẽγ ∈ IR. As a consequence,

letting n→∞ in (7.34) we obtain

b = (1− ε)EHo
ρ1

(
y − γ̃ − x′β̃

s∞

)
+ ε ≥ (1− ε)EHo

ρ1(y/s∞) + ε.

Comparing the last equation with (7.33), we deduce thats∞ ≥ s. Since

s = supH∈Vε
s(H), then s∞ = s. We use this fact to obtain equations (7.35)

and (7.36) below.

Equations (7.31) and (7.32) imply,

lim
n→∞

EHn
ρ2

(
y − αn − x′θn

s(Hn)

)
= (1− ε)EHo

ρ2

(
y − α̃− x′θ̃

s

)
+ ε(7.35)

≥ (1− ε)EHo
ρ2

(y
s

)
+ ε > (1− ε)EHo

ρ2

(
y − αt − x′θt

s

)
On the other hand, applying (7.32),

lim
n→∞

EHnρ2

(
y − αt − x′θt

s(Hn)

)
= (1− ε)EHoρ2

(
y − αt − x′θt

s

)
.(7.36)

Therefore, for large enoughn,

EHn
ρ2

(
y − αn − x′θn

s(Hn)

)
> EHn

ρ2

(
y − αt − x′θt

s(Hn)

)
.

This last inequality is a contradiction with the definition of(αn,θn). For everyt > 0

such thatBS(ε) < t < t1 we have found a sequence of distributions{Hn} in the

neighborhoodVε such thatsupn ‖T(Hn)‖ ≥ t. ThereforeBMM (ε) ≥ t1. �
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Proof of Theorem 3.2.It is enough to check that the functionalJ(F ) defined in (3.15)

satisfies condition A1 in [1]. For instance, the monotonicity condition A1(a) follows

immediately from the monotonicity of the M-scaleσ(F ). �

Proof of Theorem 4.1: We will apply Theorem 3.2. LetFo = (1 − ε)FHo,0,0 + εδ∞.

Then,σ(Fo) = σb,ε and

rcm(ε) = JCM (Fo) = inf
s≥σb,ε

Ac,ε(s) + cε.(7.37)

On the other hand, if‖θ‖ = t andFt = (1 − ε)FHo,0,θ + εδo. Then, whenHo is

multivariate normal, we have thatσ(Ft) = (1 + t2)1/2γb,ε and

mcm(t) = JCM (Ft) =
1
2

log(1 + t2) + inf
s≥γb,ε

Ac,ε(s).(7.38)

From (3.18), we know thatBCM (ε) = tε, wheremcm(tε) = rcm(ε). Matching the

expressions in equations (7.37) and (7.38), and solving fort yields the result.�

Proof of Theorem 4.2:Let t ∈ IR arbitrary. Under the assumptions, the functionm(t, s)

is continuously differentiable with respect tos, with derivative given by

∂m(t, s)
∂s

=
1
s

[
φ2(s)− φ2

(
s

(1 + t2)1/2

)]
.

Sinceφ2(s) is unimodal, for eachε we have thatm(t, s) is (a) strictly increasing

for s ∈ [s, s], (b) strictly decreasing fors ∈ [s, s], or (c) it has a unique critical point

s̃ ∈ (s, s), which is a local maximum. In any of the three cases, the global minimum of

m(t, s) for s ∈ [s, s] is attained at one of the two extremes of the interval. That is,

h2(t) = inf
s≤s≤s

m(t, s) = min{m(t, s),m(t, s)}.

From Theorem 3.1, an upper bound for the maximum bias is given by the value oftε

such thath2(tε) = ε/(1 − ε). If h2(tε) = m(tε, s), thenh1(tε) = h2(tε), and therefore
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tε = `(ε). On the other hand, ifh2(tε) = m(tε, s), then we have thattε = u(ε). Hence,

the result follows.�

Proof of (4.23). We apply Theorem 1 in [1]. Following the notation in that paper, we

have thatc = σb,ε. On the other hand,

m(t) .= inf
‖θ‖=t

inf
α∈IR

JS [(1−ε)FHo,α,θ+εδ0] = inf
‖θ‖=t

JS [(1−ε)FHo,0,θ+εδ0] = inf
‖θ‖=t

S(θ),

whereS(θ) is such that

(1− ε)EH0ρ

(
y − x′θ
S(θ)

)
= b.(7.39)

Sincey − x′θ is distributed as(1 +
∑

i |θi|)Z, whereZ is standard Cauchy, we have

that (7.39) amounts to

(1− ε)g
(

S(θ)
1 +

∑
i |θi|

)
= b.

Therefore,

S(θ) =
[
1 +

∑
i

|θi|
]
γb,ε

and

m(t) = inf
‖θ‖=t

[
1 +

∑
i

|θi|
]
γb,ε = (1 + t)γb,ε.(7.40)

Finally, sinceBs(ε) = t, wherem(t) = σb,ε, the result follows from (7.40).�

Proof of (4.24).Clearly, Under the Cauchy model, the expression forrcm(ε) is formally

the same as that corresponding to the Gaussian model. We just have to computeg(s)

with respect to the Cauchy distribution instead of the normal. On the other hand, under

the Cauchy model it is not difficult to check that

mcm(t) = log(1 + t) + inf
s≥γb,ε

Ac,ε(s),

whereAc,ε(s) is defined by (4.20). Since the bias satisfiesm[Bcm(ε)] = rcm(ε), the

result follows.�
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Proof of (4.25). The same arguments as above yield the following expression for the

functionm(t, s) under the cauchy model:

m(t, s) = g2

(
s

1 + t

)
− g2(s).

From this expression the computation of`(ε) andu(ε) under the cauchy model is straight-

forward:

`(ε) = h−1
1

(
ε

1− ε

)
=

σb,ε

g−1
2 [g2(σb,ε) + ε/(1− ε)]

− 1,

and

u(ε) =
γb,ε

g−1
2 [g2(γb,ε) + ε/(1− ε)]

− 1.

Since we are assuming thatφ(s) is unimodal, the same proof as in the case of the gaussian

model yields (4.25).

Proof of Theorem 6.1.(i) Computing the derivative ofAc,ε(s) with respect tos, we see

thatAc,ε(s) is non decreasing whenc < [(1− ε)φ(s)]−1. SinceK−1 < [(1− ε)φ(s)]−1

for all ε ands > 0, the conditionc ≤ K−1 implies thatAc,ε(s) is non decreasing for all

ε ands > 0. As a consequence,hc(ε, σ) = 0 for all ε andσ > 0. Then,dc(ε) = 0 for

all ε what implies thatBCM (ε) = BS(ε) for all ε.

(ii) Since g(σb,ε) = (b− ε)/(1− ε) andg(γb,ε) = b/(1− ε), it follows that

Ac,ε(σb,ε) < Ac,ε(γb,ε) ⇔ c > c(ε).(7.41)

However, ifAc,ε(σb,ε) < Ac,ε(γb,ε), thendc(ε) > 0 and henceBS(ε) < BCM (ε). �

Proof of (6.28).By using implicit differentiation, one obtains

∂ σb,ε

∂ ε
=

1
(1− ε)2

(1− b)σb,ε

φ(σb,ε)
, and

∂ γb,ε

∂ ε
=

1
(1− ε)2

−b γb,ε

φ(γb,ε)
.



32 J.R. BERRENDERO, B.V.M. MENDES and D.E. TYLER

This then gives

∂ εc(ε)
∂ ε

=
1

(1− ε)2

(
1− b

φ(σb,ε)
+

b

φ(γb,ε)

)
≥ 1− b

K
+

b

φ(σb,0)
.(7.42)

The last inequality follows since as noted previously,γb,ε < σb,0 < σM . This then implies

(6.28).�

Proof of Theorem 6.2.For c ≤ 1/K, it has already been noted that the maximum bias

functions are the same, and so we only need to consider1/K < c ≤ co. In general, for

c > 1/K and under assumption A4, the functionAc,ε(s) has the following properties:

i) Ac,ε(0) = −∞ andAc,ε(∞) = ∞.

ii) Ac,ε(s) has two critical points, sayσL(c, ε) ≤ σU (c, ε), with

Ac,ε(s) ⇑ over 0 to σL(c, ε),

Ac,ε(s) ⇓ over

σL(c, ε) to σU (c, ε), and

Ac,ε(s) ⇑ overσU (c, ε) to ∞.

iii) Ac,ε(s) is concave fors < σM and convex fors > σM .

Note that the critical points ofAc,ε(s) correspond to the two solutions toφ(s) =

1/[(1 − ε)c]. The value ofσM , though, does not depend onc or ε. Graphs of a typical

functionAc,ε(σ) for two different values ofε are given in Figure 5.

Some further properties which are easy to verify are the following.

a) γb,ε, σb,ε, σL(c, ε), σU (c, ε), andAc,ε(s) are continuous inε.

b) As ε ⇑: γb,ε ⇓, σb,ε ⇑, σL(c, ε) ⇑, σU (c, ε) ⇓, andAc,ε(s) ⇓ .

c) γb,ε ≤ σb,ε with γb,0 = σb,0.
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FIG. 5. Graph of Ac,ε(σ).

d) if γ < σ, thenAc,ε(γ)−Ac,ε(σ) is decreasing inε.

Now, for 1/K < c ≤ co,

if σb,ε ≤ σU (c, ε), thenBCM (ε) ≤ BS(ε).(7.43)

since in this casedc(ε) ≤ 0. So, to prove Theorem 6.2, it only needs to be shown that

if σb,ε > σU (c, ε), thenAc,ε(γb,ε) ≤ Ac,ε(σU (c, ε))(7.44)

since this impliesdc(ε) = 0 and henceBCM (ε) = BS(ε).

To show (7.44), first note thatσb,0 ≤ σM sinceg(σb,0) = b ≥ g(σM ). Thus, since

σb,ε ⇑ andσU (c, ε) ⇓ asε increases and both are continuous, there exists anεb such that

σb,εb
= σU (c, εb). For anyε ≤ εb, it then follows thatσb,ε ≤ σb,εb

= σU (c, εb), and so

to show (7.44), it is only necessary to considerε > εb.

For ε > εb, we have

Ac,εb
(γb,ε) ≤ Ac,εb

(γb,εb
) ≤ Ac,εb

(σb,εb
) = Ac,εb

(σU (c, εb)) ≤ Ac,εb
(σU (c, ε)).
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The first inequality follows sinceγb,εb
≤ σL(c, εb), the second inequality follows

from (7.41), and the third inequality follows from (b) sinceσU (c, εb) > σU (c, ε) > σM .

Statement (7.44) then follows from (d) above.�

Proof of Remark 6.1. The remark forc > c(ε) and for c ≤ 1/K have already been

established. Ifc > 1/K andg(σM ) > b, thenγb,0 = σb,0 > σM . Now, if σb,0 ≥ σU (c, 0),

then sinceσb,ε ⇑ andσU (c, 0) ⇓ asε increases, it follows thatσb,ε ≥ σU (c, ε) for all ε.

This then impliesdc(ε) ≥ 0 and henceBCM (ε) ≥ BS(ε).

On the other hand, ifσM < σb,0 < σU (c, ε), then by continuity for small enoughε,

σM < γb,ε < σb,ε < σU (c, ε). This impliesAc,ε(γb,ε) < Ac,ε(σb,ε), and so by (7.41),

c > c(ε). �

Proof of Theorem 6.3.Note that, under the conditions of Theorem 6.2,BS(ε) > BCM (ε)

if and only if

σb,ε < σU (c, ε) andAc,ε(σb,ε) > Ac,ε(σU (c, ε)).(7.45)

So, to prove that an S-functional is inadmissible, one only needs to establish (7.45)

for someε. First, we will show that the conditionco = limε→0+ c(ε) implies that there

existsε such that (7.45) holds. Then, we will show that (6.29) is enough to guarantee

co = limε→0+ c(ε). Note that by using L’Hopital’s rule one obtains

c(0) = lim
ε→0+

c(ε) =
1

φ(σb,0)
.(7.46)

Also, note that

c > c1 =
log(σK/σb,0)
b− g(σM )

⇔ Ac,0(σb,0) > Ac,0(σM ).(7.47)

Sinceσb,0 < σM , this impliesc1 ≥ 1/K since otherwiseAc,0(s) would be monotone ins.

Now, for anyc > c1, we then haveσb,0 < σM < σU (c, 0) andAc,0(σb,0) > Ac,0(σM ) ≥

Ac,0(σU (c, 0)). By continuity, statement (7.45) then follows for small enoughε. Now,



MAXBIAS FOR MM- AND CM-ESTIMATES 35

we show thatc1 ≤ c(0). To show this, note that whenc = c(0), σb,0 = σL(c, 0) and so

Ac,0(σb,0) > Ac,0(σM ). The first part of the proof then follows from (7.47).

Notice that the lower boundc1 can be tighten by working with (7.45) directly. In

general, it is difficult to use (7.45) to obtain a closed form expression, but it can be used

for specific examples.

From (7.46), in the second part of the proof we need to show that (6.29) implies

ε c(ε) ≥ ε/φ(σb,0).(7.48)

Since equality holds in (7.48) whenε = 0, to show (7.48) it is sufficient to prove that

the derivative of the left-hand side is never less than the derivative of the right-hand side,

i.e. [see equations (7.42) and (7.46)]

1
(1− ε)2

{
1− b

φ(σb,ε)
+

b

φ(γb,ε)

}
≥ 1
φ(σb,0)

.(7.49)

Recall that we are assumingg(σM ) < b = g(σb,0), or equivalently thatσb,0 < σM . This

implies φ(γb,ε) < φ(σb,0), and after some simple algebraic manipulations, we note that

(7.49) holds if

ab,ε φ(σb,ε) ≤ φ(σb,0),(7.50)

whereab,ε = [(1− ε)2 − b]/(1− b).

Sinceσb,ε is increasing inε, thenφ(σb,ε) is decreasing inε wheneverσb,ε ≥ σM ,

it follows that if (7.50) holds forσb,ε = σM then it holds forσb,ε ≥ σM . Thus, it is

sufficient to show that (7.50) holds forσb,ε ≤ σM , or equivalently for

ε ≤ εM
.=
b− g(σM )
1− g(σM )

.

Given thatg(s) is convex,−g′(σb,ε) ≤ −g′(σb,0), and so (7.50) holds ifab,ε σb,ε ≤ σb,0.

Sinceg(s) is also nonincreasing, this is equivalent to

g(ab,ε σb,ε) ≥ b(7.51)



36 J.R. BERRENDERO, B.V.M. MENDES and D.E. TYLER

Thus, the theorem is proven if (7.51) holds forε ≤ εK . By the convexity ofg(s), for

ε ≤ εK ,

g(ab,ε σb,ε) ≥ g(σb,ε) + (ab,ε − 1)σb,εg
′(σb,ε)

= b−ε
1−ε + ε(2−ε)

1−b φ(σb,ε) ≥ b−ε
1−ε + ε(2−ε)

1−b φ(σb,0)

The last term is≥ b if and only if

φ(σb,0) ≥
(1− b)2

(1− ε)(2− ε)
.(7.52)

Notice that if (7.52) holds forε = εM , then it holds for allε ≤ εM . With ε = εM , though,

(7.52) corresponds to the bound (6.29). This completes the proof.�
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