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We derive the maximum bias functions of tiM-estimates and the con-
strainedM-estimates olCM-estimates of regression, and compare them to the max-
imum bias functions of th&estimates and the-estimates of regression. In these
comparisons, th&€M-estimates tend to exhibit the most favorable bias-robustness
properties. Also, under the gaussian model, it is shown how one can construct a
CM-estimate which has a smaller maximum bias function than a giestimate,

i.e. the resultingCM-estimatedominatesthe S-estimate in terms of maxbias, and

at the same time is considerably more efficient.

1. Introduction. An important consideration for any estimate is an understanding of
its robustness properties. Different measures exist which try to reflect the general concept
known as robustness. One such measure is the maximum bias function, which measures

the maximum possible bias of an estimate undeontamination. In this paper we study
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the maximum bias functions for tHdM-estimates and the constrainbtiestimates or
CM-estimates of regression and compare them to the maximum bias functions for the

Sestimates and the-estimates of regression.

The maximum bias function for Rousseeuw and Yohai’'s @@ptimates of regression

were originally derived by Martin, Yohai and Zamar [7] under the assumption that the
independent variables follow an elliptical distribution and that the intercept term is known.
More recently, Berrendero and Zamar [1] derived the maximum bias functions for the
S-estimates of regression under much broader conditions. Further general results on the
maximum bias function can be found in [4]. The method used by [1] applies to a wide
class of regression estimates. For example, it allows one to obtain the maximum bias
functions of Yohai and Zamar’s [12]-estimates of regression. Unfortunately, it does not
apply to Yohai’s [11]MM-estimates of regression, which are arguably the most popular
high breakdown point estimates of regression. The MM-estimates, for example, are the

default robust regression estimatesSiplus

The original motivation for the current paper was thus to derive the maximum bias
functions of theMM-estimates of regression and compare them to the maximum bias func-
tions of theS-estimates and-estimates of regression. A lesser known high breakdown
point estimate of regression, namely Mendes and Tyler’s [8] constréihedtimates of
regression (oiCM-estimates for short) has also been included in the study since their
maximum bias functions can be readily obtained by applying the general method given
by [1]. Expressions for the maximum bias functions of MM-estimates and th€EM-
estimates are derived in sections 3 and 4. Comparisons betwee theMM, and
CM-estimates based on bi-weight score functions are given in Section 5. It turns out that
in these comparisons, theM-estimates tend to exhibit the most favorable robustness

properties.
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Consequently, a more detailed theoretical comparison between the maximum bias
function of theS-estimates and thEM-estimates of regression, which helps explain the
computational comparisons made in section 5, is given in section 6. In particular, under
the gaussian model, it is shown how one can constr@leestimate of regression so that
its maximum bias functiodominateghat of a giverS-estimate of regression. That is, the
maximum bias function of th€M-estimate is smaller for some level of contamination
and is never larger for any value af The S-estimate is thus said to l@as-inadmissible
at the gaussian model.

Section 2 reviews the notion of the maximum bias function in the regression setting,
as well as the definitions of theestimates, th&M-estimates and thEM-estimates for

regression. Technical proofs are given in Section 7, an appendix.

2. The regression model and the concept of maximum bias.We follow the general

setup given in [7]. Specifically, we consider the linear regression model
(2.1) y = ao—i—xleo—i—u,

wherey € IR represents the response= (z1, 2, ...,:cp)l € IRP represents a random
vector of explanatory variables,, € IR and@, € IR? are the true intercept and slope
parameters respectively, and the random error termiR is assumed to be independent
of x. Let F, and G, represent the distribution functions afand x respectively, and
let H, represent the corresponding joint distribution function(pfx). The following

assumptions on the distributiad, are assumed throughout the paper.

Al) F, is absolutely continuous with densitf which is symmetric, continuous and

strictly decreasing ofR *.

A2) Pg (x'0=c) <1, forany® € R, 0 #0,c € R.
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As in [7] and [1], we focus on the estimation of the slope paramdtgrne reason
for doing so, it that once given a good estimate of the slope parameters, the problem of
estimating the intercept term and the residual scale reduces to the well studied univariate
location and scale problem. L&trepresent somi&R? valued functional defined ok, a
space of distribution functions dR”™! which includes some weak neighborhoodrf,
and such thafl'(H,) = 0,. For large enough, H almost surely contains the empirical
distribution functionH,, corresponding to a random samglg1,x1), ..., (yn, X, )} from
H,. Furthermore, we assume tha@tis weakly continuous a#{, and so the statistic
T, = T(H,) is a consistent estimate 6f,.

All functionals T considered in this paper are regression equivariant, as defined e.g.
in [7]. For such functionals, a natural invariant measure of the “asymptotic” bidsaf
H is given by

: 1/2
22) by ()= 4 (DU =60 Bo(TUH) —6.)) - HeH

00 H¢H.

Here,X, = 3(G,) is taken to an affine equivariate scatter matrix for the regressors
underG,. We can thus presume without loss of generality that 8,) = 0 andX, = L.

Hence, the asymptotic bias @f at H becomes the Euclidean norm ©f

ITH)|| HeH
(2.3) W(T,H) =

00 H¢H,

whereH is the class of distributions such tHafl'(H) ||< oo. The maximum asymptotic
bias of T overe-contaminated neighborhoods of H,,i.e.,V. ={H | H = (1—¢)H,+
eH*, H* € H*} where’H* is the set of all distribution functions o”*, is defined

to be

(2.4) Br(e) = sup{b(T,H)| H eV},
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and the asymptotic breakdown point is subsequently defined to be
(2.5) " = inf{e | Br(e) = oo}.

From an applied perspective, regardlessShf it may be of interest to derive upper
bounds for the Euclidean distance betwéBfH) and@,, i.e. for |T(H) — 6,||. This
measure is referred to ash@s boundoy Berrendero and Zamar [1], wherein they use it
for adjusting confidence intervals férto include the possibility of bias introduced by a
contaminated model. Note that tb&as bounds regression and scale equivariant but not
affine equivariant, and hence is not directly related to the maximum bias (2.4). In [1],
some results are given for computibgas bounddaking the maximum bias function as

a starting point.

2.1. M-estimates with general scaleThe S MM and CM-estimates of regression all
lie within the class oM-estimates with general scale considered in [7].Mu@stimate, or
more appropriately aM-functional, with general scale for the regression parameigrs

andé,, say {H) andT (H) respectively, can be defined as the solution which minimizes

y—a-— X 0
o ()

over alla € IR and@ € IR?, wherep is some nonnegative symmetric function ard?)

is some scale functional. The scale functioméll ) may be determined simultaneously or
independently oft(H), T(H)}. We assume throughout the paper #hgtl ) is regression
invariant and residual scale equivariant, again as defined e.g. in [7]. Throughout, it is

assumed that the functignsatisfies the following conditions:

A3) (i) p is symmetric and nondecreasing [inoo) with p(0) = 0,
(ii) p is bounded witHim,,,, p(u) =1, and

(ii1) p has only a finite number of discontinuities.
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If the function p is also differentiable, thelt(H), T(H)) is a solution to they + 1

simultaneousvi-estimating equations

(27) En {w <y—Uo(4};)x0> x} =0, andEy {¢ (3’_(/_0(‘};))“9) } -0,

wherey(u) « p'(u). By Condition AJi), ¢ is an odd function, nonnegative o cc).
Condition A3i:) implies that theseM-estimates are redescending, ifu) — 0 as
u — oo. A popular choice foM-estimates are Tukey’s biweightdd-estimates, which

correspond to choosing(u) to be

3u? — 3ut +u® for Ju| <1
(2.8) pr(u) =
1 for |u| > 1.
Note that this gives rise to the biweigtitfunction v (u) = u{(1 — u?); }2.
The Sestimates for the intercept, slopes and scale are defined to be the solution

{ts(H), Ts(H),os(H)} to the problem of minimizingr € IR™ subject to the constraint

p<y—a—x9>1<b
g

for some fixed valué, 0 < b < 1. The breakdown point of th&-estimate of regression is

(2.9) Ex

e* = min{b,1 — b}. A drawback to the&S-estimates is that the tuning constaniot only
determines the breakdown point but it also determines the efficiency of the estimate. To
obtain a reasonable efficiency under a normal error model, one must usually substantially
decrease the breakdown point.

This problem with tuning thé&-estimates of regression motivated Yohai [11] to in-
troduce theMM-estimates of regression, which can be tuned to have high efficiency
under normal error while simultaneously maintaining a high breakdown pointp{ et
and p, be a pair of loss functions satisfying A3, and wjgh > p,. Setb = Er, p1(Y).

MM-estimates are defined to be the solutien,,,(H), T, (H)} which minimizes

Lr(,0) =En {f’? <y—:(4[;)x'9>} ’
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where s(H) = os(H) is a preliminarySfunctional of scale defined above based on
p = p1. The breakdown point of th&M-estimates only depends gn, and is given
by € = min{b, 1 — b}. On the other hand, their asymptotic distribution is determined
exclusively byp.. This allows theMM-estimates to be tuned so that they possess both
high breakdown point and high efficiency.

The CM-estimates are another class of regression estimates which can be tuned to
have high efficiency at the normal model while maintaining a high breakdown point.
The CM-estimates for the intercept, slopes and scale are defined to be the solution

(tem (H), Tem (H), 0em (H)) which minimizes
_ _ /
(2.10) Ly(a,0,0) = cEg {p (yozx@ )} + logo
g

subject to the constraint (2.9), whete> 0 represents a tuning constant. As with the
estimates of regression, the asymptotic breakdown point & iestimates of regression
is € = min{b, 1 — b}. Unlike the S-estimates of regression, though, tG&-estimates
of regression can be tuned through the constaint order to obtain a reasonably high
efficiency without affecting the breakdown point.

We again emphasize that our focus here is on the slope functi@t{&ls rather than
on the intercept functionals(H) or the scale functionals (H). Given a good slope
functional, one may wish to consider the wider range of location and scale functionals
based on the distribution gf-x'T(H), such as its median and median absolute deviation,

rather than those arising from & MM or CM-estimate of regression.

3. Maximum bias functions.

3.1. Maximum bias functions for MM-estimatedf F',, A g is the distribution func-
tion of the absolute residualg — o — x’6|, then Berrendero and Zamar [1] give an

expression for the maximum bias function for any estimate whose definition can be



8 J.R. BERRENDERO, B.V.M. MENDES and D.E. TYLER

expressed in the form

(3.11) (t(H), T(H)) = afg(mig) J(F0.0);

where J(F) is a functional possessing certain monotonic properties.S he and CM-
estimates are of this form. Application of their general results t&thed ther-estimates
are given [1]. Application of these results to tBd/-estimates are presented in section
3.2.

The MM-estimates, however, cannot be expressed in the form (3.11) and so a different
approach is needed in order to study its bias behaviorBagl, (¢) be the maximum bias
function of anMM-estimate of regression. In this subsection, lower and upper bounds for
By (€) are obtained under quite general conditions. In some important cases these two
bounds are often equal and so allow for the determination of the maximum bias function
exactly.

Let s = infyey, s(H), S = supgey, s(H), and

. . y—a—x60 y
Ls)= gt it B (0 X0) i (1),
m(t, s) of dnf Hopz( 5 ) P2 5

The following two functions play a key role in the developments below:

(3.12) hi(t) = m(t,3), and ha(t) =

THEOREM 3.1. LetT,,,, be an MM—estimate of the regression slopes with loss
functionsp;, i = 1,2, satisfying A3. Assume that the maximum bias function of the S-
estimate with score functiopy, Bs(e), satisfiesBs(¢) < hy'[¢/(1 — ¢)]. Under Al and

A2, the maximum bias function ®f,,,,, By (e), satisfies

(3.13) ht <1i6> < Buum(e) < hy'! (1i6) .

Note that the conditiorBs(¢) < hy'[¢/(1 — ¢)] of the above theorem together with

(3.13) implies thatBs(e) < Baras(€). This condition usually holds for an appropriately
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choosenp; function. Thus, arMM-estimate does not improve upon the maximum bias
of the initial Sestimate. The trade-off though is that with an appropriately choosen
p2 function, theMM-estimate can greatly improve upon the efficiency of the inial

estimate.

Upper and lower bounds for the maximum bias of MM-estimates have also been
obtained respectively by Hennig [5], Theorem 3.1, and by Martin et. al. [7], Lemma 4.1,
under the assumption of unimodal elliptically distributed regressors. For this special case,
the upper bound given in (3.13) and in [5] agree. On the other hand, the lower bound
given in [7], namelyBasar(€) > hy'[e/(1 — €)], whereho(t) = supg_g_gml(t, s) is

not as tight as that given in (3.13).

In our setup, the assumption of unimodal elliptical regressors is equivalent to:

A2*¥) Under G,, the distribution ofx’0 is absolutely continuous, with a symmetric,

unimodal density and depends @ronly through||@|| for all 6 £ 0.

Under this condition, we can define

(3.14) g(s,t) = En, [p (y_"eﬂ ,

where@ is any vector such thatf|| = ¢. Under conditions Al, A2*, and A3, it is shown
in Lemma 3.1 of Martin, Yohai and Zamar [7] thatis continuous, strictly increasing

with respect t0|@| and strictly decreasing ia for s > 0.
If A2* holds, thens and's are defined so thaj;(s,0) = /(1 —¢) and ¢, (5,0) =
(b —€)/(1 — €) respectively, andn(t,s) = g2(s,t) — g2(s,0), whereg;(s, ) is defined

as in (3.14) after replacing with p;.
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3.2. Maximum bias curves for CM-estimatesA CM-estimate of regression

{tem (H), Tem(H)} can be expressed in the form (3.11) wititaken to be

(3.15) Jom(F) = \>in(fF) cEr[p(y/s)] +logs,

and wheres (F) is the M-scale defined as the solution to the equation

(3.16) Ep[p(y/o(F))] = 0.

Consequently, application of the general method in [1] for computing maximum bias

functions leads to the following result.

THEOREM 3.2. Let T, be a CM-estimate of the regression slopes based on a

function p satisfying A3, and suppodé, satisfies A1 and A2. Define
Tem(€) = Jom[(1 — E)FH01070 + €000],
and let

3.17 em(t) = Inf inf 1—-¢)F do-
( ) e () ||éli:t o}IellR Jeuml( €) Ho,,0 + €0

Then, the maximum bias function ®f,,,, denoted byBc,(€), is given by
(3.18) Bev(e) = m;,lL [rem (€)].

This general result can be given a simpler representation when condition A2* also
holds. In particular, in the definition afi.,,(¢), the infimum is obtained whea = 0

and@ is any vector such thaf@| = t. This gives
Mem (1) = Inf{Ac (s,t) | s > ms(t)},

where A; (s, t) = c(1 — €)g(s,t) + logs andm(t) = g(_ﬁ (b/(1 —¢),t), with g(s,t)
being defined in (3.14) ang@(-,t) being the inverse of with respect tos. Also, it is

easy to verify that

rem(€) = inf{A. ((s,0) | s > r5(€)} + ce,
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wherer,(e) = g(_li (b—¢)/(1—¢€),0).

4. Maximum bias functions for two special cases. Maximum bias functions in
general tend to have rather complicated expressions. At some model distributions though
these expressions can be substantially simplified. This is possible for two special cases
considered here, namely the gaussian and the cauchy models. These simplified expressions
are useful for computing and comparing the maximum bias curves of various estimates

for these models, which is done in section 5.

4.1. Maximum bias functions under the gaussian mod#e assume thoughout this
section not only that the error term but also that the regressor variables arise from a mul-
tivariate normal distribution. That is, we assutig has a joint NO, I, ) distribution,
and refer to this as the gaussian model. k&t) = E¢p(Z/s), whereZ is a standard
normal random variable, and defiag, = g~ '[(b—€)/(1—¢)] andv, . = g~ [b/(1—¢)].

Martin, Yohai and Zamar [7] show that the maximum bias function foSastimate of
the regression slope under the gaussian model and based on a fynettisfying A3

is given by

(4.19) Bs(e) = [(2’)2 - 1]

To obtain an expression for the maximum bias function GMestimate of regression

1/2

under the gaussian model, let

(4.20) Ac(s) = o1 — €)g(s) + logs,

Also, defineD.(¢) = infs>,, Acc(s) —infs>,, . Acc(s). We then have the following

result.
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THEOREM 4.1. LetT,., be a CM-estimate of the regression slopes based on a

function p satisfying A3, and assumé, is multivariate normal. It then holds that
(4.21) Beai(e) = {exp [2ce + 2D.(e)] — 1}1/2 .

Turning now to theMM-estimates, ley;(s) = Esp;(Z/s) for i = 1,2, whereZ is a

standard normal random variable. Under the gaussian model,

s =0 (mfaw) = %(8)

Moreover,5 = g; *[(b — €)/(1 —¢)], ands = g; *[b/(1 — ¢)]. Sincep; is the same
p-function used in defining the prelimina&estimate, we have = o, . and s = ;..

Hence,Bsas(€) > ¢(e), where

(4.22)  l(e)=hi" (1 i 6) - qul [gg(ab,:j)b:' e/(1- €>])2 B 1]

A simpler form for the upper bound which can be used for computational purposes

1/2

can be obtained under some additional regularity conditiong.¢t). These conditions

hold in most cases of interest.

A4) (i) g(s) is continuously differentiable, and
(i) ¢(s) = —sg’(s) is unimodal, with its maximum being obtained at;. Set

THEOREM 4.2. In addition to the assumptions of Theorem 3.1, supposegt{al
satisfies A4. Then, wheid, is multivariate normal,
L(e) < Bpyry(e) < max{l(e),u(e)},

where{(¢) is given in (4.22), and

) 5 2_ 1/2
U(e)_[(921[92(717,6)4'6/(1_6)]) 1] |
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The upper bound in Theorem 4.2 coincides with that obtained by Hennig [5]. However,
the tighter lower bound gives us further insight into the maximum bias and enables us
to determine when the bounds are actually an equality. Obviously, whesuch that
u(e) < 4(e), thenBasps(€) = £(€). This occurs in many important cases for a wide range

of € values.

As an example, consider the biweight loss functigndefined by (2.8). If we choose
p1(u) = pr(u/ki) and pa(u) = pr(u/ks) with tuning constantd; = 1.56 and ks =
4.68, and choosé = 0.5, then the resulting MM-estimate has a 50% breakdown point
and is asymptotically 95% efficient under the gaussian model. For this case, it can be
verified that the conditioBg(¢) < hy'[¢/(1 — €)] in Theorem 3.13 holds. From (4.22),
it can be noted that this condition is equivalentggs ) — g2(op.c) < €/(1 —€). It
can also be verified that the corresponditg function is unimodal. A plot ofp, is
displayed in the left hand graph of Figure 1. The bounds given in Theorem 4.2 for this
MM-estimate are displayed in the right hand graph of Figure 1. Both bounds coincide,

and therefore the exact maximum bias function is known for, roughiy,0.33.

s
©

¥

I(e) and u(e)
o

4ls) fora Tukey's loss function
o
2

1
&

L L L L L L L L L L L
0 05 1 15 2 25 3 o 0.05 0.1 0.15 02 0.25 03 035

Fic. 1. The graph on the left represents the functio(s) for a biweight p function. The graph on the
right gives the maximum bias bound4), solid line; u(e) dotted-dashed line) for an MM-estimate based

on biweight loss functions with 50% breakdown point and 95% efficiency under the gaussian model.
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4.2. Maximum bias functions under the cauchy mod&Ve now assume that the
error term and the regressors follow independent cauchy distributions rather than normal
distributions. That is, we assume, ..., X, andy have independent standard cauchy
distributions, and refer to this as the cauchy model. Note that in this case, the distribution
of the regressors is not elliptically symmetric. The derivations for the cauchy model
follow closely those given for the gaussian model.

Let g(s) = Esp(Z/s), whereZ is now a standard cauchy random variable, and again
let oy =g t(b—€)/(1 —¢€)] andyy, = g~ 1[b/(1 — €)]. In the appendix, we show the

maximum bias function for af-estimate of regression to be

(4.23) Bs(e) = 2% 1,
Vb,e
and for aCM-estimates of regression to be
(4.24) Bem(€) = exp{De(e) + ce} — 1,

with D.(¢) being analogous to its definition given after equation (4.20). Upper and lower
bound for the maximum bias function for théM-estimates of regression are shown in

the appendix to be

(4.25) £(e) < By (€) < max{l(e),u(e)}, where

_ Ob,e _ ule) = Vb,e 1
M) = T latong refa e = e s —a]

The conditions given in (4.19), Theorem 4.1 and Theorem 4.2 for the gaussian model are
also being assumed here for (4.23), (4.24), and (4.25) respectively for the cauchy model.
For anMM-estimate of regression, condition A4 can again be shown to hold when using
a biweight loss function.

It is somewhat surprising that the expressionsBa(¢), Boas(e) and By (€) are

of ordero(e) ase — 0 under the cauchy model in contrast with the usy/alorder. This
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is not a contradiction, however, of known results which establish gerérairder for
the maximum bias functions of regression estimates based on residuals since such results
require either elliptical regressors, as in Yohai and Zamar [13], or the existence of second

moments for the regressors, as in He [3] or Yohai and Zamar [14].

5. Maximum bias curve comparisons.

5.1. Comparisons at the gaussian modeMost estimators need to be tuned so that
they perform reasonably well at some important model, as well as being robust to devi-
ations from the model. In practice, one oftens tunes an estimate so that it has good effi-
ciency at the gaussian model as well as a high breakdown point. For spraatistions,
both theMM and CM-estimates of regression can be tuned to have a 50% breakdown
point and 95% asymptotic relative efficiency at the gaussian model. This is also true for
the class ofr-estimates, see Yohai and Zamar [12] for the details. Thus, these estimates
cannot be ranked on the basis of their efficiency and breakdown point alone. Comparing
their maximum bias behavior at the gaussian model gives further insight into how these

estimates are affected by deviations from the model.

Here, we again consider the estimates associated with the family of Tukey’s biweight
loss function (2.8). The 95% efficient biweighiiM-estimate with a 50% breakdown point
has been discussed in the previous subsection. A 95% efficient bivighdfeistimate with
a 50% breakdown point, is obtained by choosirtg) = pr(u), b = 0.5, and the tuning
constantc = 4.835, see [8] for details. In contrast, a 95% efficent biweiGhstimate
of regression has a 12% breakdown point, whereas a biw&gistimate with a 50%

breakdown point is only 28.7% efficient at the gaussian model.

Figure 2, represents the maximum bias functions at the gaussian model divhe

CM- and r-estimates based on biweight functions, and tuned so that they have 95%
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Maximum bias functions
o
T
\

I I I I I
o 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Fraction of contamination

Fic. 2. Maximum bias functions for a biweight S-estimate (dashed line) MM-estimate (dotted line, lower
bound), r-estimate (solid line) and CM-estimate (dashed-dotted line). All the estimates have 95% efficiency

under the gaussian model. The S-estimate has a breakdown point of 12%, whereas the others have a 50%

breakdown point.

(asymptotic) efficiency under the gaussian model and a 50% breakdown point, as well
as that of the 95% efficient biweigl&estimate. We observe that up ¢o~ 0.28, the
T-estimate has a larger bias than t&/1-estimate, and then a smaller bias afterwards.
The r-estimate, though, has a larger bias thanG@h&estimate over essentially the entire
range ofe. Up to e =~ 0.20, MM- and CM-estimates are roughly equivalent, although for
larger fractions of contamination th@M-estimate is clearly better.

As a further comparison, Figure 3 again shows the maximum bias function at the
gaussian model of the above 95% efficient biweiytl and CM-estimates, as well as
the less efficient 50% breakdown point biweighestimate. Also, included in Figure 3
is the biweightCM-estimate having a 50% breakdown point and an asymptotic relative
efficiency of 61.1% at the gaussian model, which corresponds to choosing the tuning
constantc = 2.568. (The efficiency of theCM-estimate based on a biweight function

with b = 1/2 and ¢ = 2.568 under the gaussian model is incorrectly reported as 28.7%
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Fic. 3. Maximum bias functions for a biweight S-estimate (solid line), MM-estimate (dotted line, lower

bound), and two CM-estimates (dotted-dashed line and solid line). The plot for the S-estimate and the
second CM-estimate are almost identical. All estimates have a 50% breakdown point. The MM-estimate
and the first CM-estimates (dotted-dashed line) has 95% efficiency under the gaussian model. The second

CM-estimate (solid line) has an efficiency of 61.1%, whereas the efficiency of the S-estimate is 28.7%.

rather than 61.1% in Table 1 of Mendes and Tyler [8]. The rest of Table 1 of [8] is

correct).

The maximum bias of the 95% efficieMM-estimate is uniformly larger than that
of the correspondings-estimate. This is consistent with the general result given in
Theorem 3.1. The increase in bias for thié-estimate is compensated by its increase
in efficiency. A curious observation, though, is that for large fractions of contamination
the maximum bias of the 95% efficie@M-estimate is lower than that of the 28.7%
efficient Sestimate. Furthermore, the maximum bias of the 61.1% efficidmestimate
is almost identical to, and as shown theoretically in the next section, is never larger than
that of the 28.7% efficienG&estimate. That is, there is no trade-off between increase
efficiency and maximum bias for thiSM-estimate relative to th&estimate. In practice,

given that the maximum bias function of the 95% effici@M-estimate does not greatly
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differ from that of the 61.1% estimate, the 95% efficient estimate would be preferable.

5.2. Comparisons at the cauchy modeMWe consider now the maximum bias behav-
ior of S MM and CM-estimates at the cauchy model. Figure 4 shows the maximum bias
function at the cauchy model for thdM, and CM-estimates which are 95% efficient at
the gaussian model as well as the 28.7% efficient biweybastimate and the 61.1%
efficient CM-estimate discussed in section 5.1. The breakdown point of each of these
estimates remains 50% under the cauchy model. The estimates though are not re-tuned
here for the cauchy model. Rather, our goal is to make further comparisons among the
same estimates. In practice, given a specific estimate, one would wish to evaluate its
robustness properties under various scenarios. From Figure 4, it can be noted that the
95% efficientCM-estimate tends to have the better maximum bias behavior at the cauchy

model, even better than that of the 61.1% effici€M-estimate.

5.3. Other considerations. Aside from maximum bias functions, a classical way of
evaluating the robustness of an estimate as it deviates from normality is to consider
its efficiency at other distributions. The asymptotic efficiencies at the gaussian model
discussed in section 5.1 depend on the distribution of the error term being normal. They do
not however depend on the distribution of the carrier being normal, only that they possess
second moments. This is also true for the asymptotic efficiencies at other symmetric error
distributions, see e.g. Maronna, Bustos and Yohai [6]. In particular, they note that the
asymptotic variance-covariance matrix &= T, has the formp2 ., whereX, is the
variance-covariance matrix of the carrietsand o, depends only on the distribution of

the error termu.
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FiG. 4. Maximum bias functions for a biweight S-estimate (solid line), an MM-estimate (dotted line, lower

bound), and two CM-estimates (dotted-dashed line and solid line). The plot for the S-estimate and the second
CM-estimate are almost identical. All estimates have a 50% breakdown point under the cauchy model. The
MM-estimate and the first CM-estimate have 95% efficiency at the gaussian model, whereas the second

CM-estimate and the S-estimate have efficiencies of 61.1% and 28.7% respectively at the gaussian model.

In Table 1, we again consider the 95% efficient biwei§hMM, and CM-estimates,
the 28.7% efficient biweigh&estimate and the 61.1% efficie@M-estimate discussed
in section 5.1, where the efficiency is take under a normal error model. These estimates
are labeledS95, MM95, CM95, S2&nd CM61 respectively. For these estimates, we
compute their asymptotic variances (AVAR) under a variety of symmetric error models.
Besides the standard normal (NORM), these models include the slash (SL), the cauchy
(CAU), the t3-distribution (T3), the double exponential (DE), a 90-10% mixture of a
standard normal and a normal with mean zero and variance 9 (CN), and the uniform
distribution on(—1,1) (UNIF). Each of these distributions are normalized so that their
interquartile ranges are all equal to that of the standard normal, nah190. This
corresponds to multiplying the SL, CAU, T3, DE, CN or UNIF random variable by

0.4587, 0.6745,0.8818,0.9731,0.9248 and 1.3490 respectively. Also included in Table
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1 are the residual gross error sensitivities (RGES), see Hampel, et. al. [2]. Formulas for

AVAR and RGES can be found in [8].

NORM SL CAU T3 DE CN UNIF

S95 AVAR 1.053 | 1.798 | 2.209 | 1.257 | 1.429| 1.091| 0.771
RGES || 1.770 | 3.277 | 3.716 | 2.146 | 2.258 | 1.942| 1.415
MM95  AVAR 1.053 | 1.230| 1.312| 1.221| 1.368 | 1.087 | 0.713
RGES || 1.770 | 2.146| 2.243| 1.953 | 2.038 | 1.844| 1.548

CM95  AVAR 1.053 | 1.159| 1.202 | 1.227 | 1.396 | 1.088 | 0.755
RGES || 1.770 | 1.995| 2.061| 1.988 | 2.138| 1.835| 1.439

CM61 AVAR 1.637 | 1.330| 1.059| 2.091| 1.528 | 2.891| 1.128
RGES || 1.838 | 1.900| 1.765| 2.285| 2.045| 2.619| 1.405

S28 AVAR || 3.484 | 1.330| 1.059 | 2.091| 1.528 | 2.891 | 120.336
RGES || 2.850 | 1.900| 1.765| 2.285| 2.045| 2.619| 15.621

TABLE 1

Asymptotic variances and residual gross error sensitivities of some S, MM, and CM estimates of regression

under symmetric error distributions.

From Table 1, it can be noted that the estima¥¥d95 and CM95 behave similarly

with respect to asymtotic variance and residual gross error sensitivity,GM®5 being

slightly better at the longer tailed slash and cauchy distributions and1¥@5 being

slightly better at the more moderatgand double exponential distributions. Bd#iM95

and CM95 perform better thar895at longer tailed distributions. The behavior 28

andCM61 are the same except at the normal and uniform distributions. At longer tailed

distributions, equality tends to hold for the constrain (2.90M61and so as an estimate

it is asymptotically equivalent t828at these distributions. At the normal and the uniform
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distributions, there is a considerable difference in favo€Ebf61 Curiously, the behavior
of S28and CM61 at the cauchy distribution is better than thatMM95 and CM95,
However, based on the overall behavior of the asymptotic variances and residual gross

error sensitivities alone, eithédM95 and CM95 would be preferable in practice.

6. Bias-inadmissibility of S-estimates at the gaussian model.Throughout this sec-
tion, we assume the gaussian model. In section 5.1, it was noted that under the gaussian
model the maximum bias function of the 61.1% efficient biweiGM-estimate is never
smaller than that of the 27.78% efficient biweightstimate. In this section, we ver-
ify this result theoretically rather than computationally. Moveover, we note this result is
not specific to the use of the biweight estimates. In general, we show that for a given
Sestimate, it is usually possible to tune the correspondiiyestimates (through the
value of c) so thaBca(€) < Bg(e) for all €, and with strict inequality for at least one
value ofe. In such a case, we will say that, with respect to the maximum bias criterion,
the estimatd’s is inadmissibleat the gaussian model since it candmminatedoy T,

To show this, we need to compare carefully the maximum bias functions &the
estimates and th®estimates. An alternative representationfBar,, (¢) in terms ofBg(¢)

at the normal model [see equations (4.21) and (4.19)] is given by
(6.26) log[1 + B2y (€)] = log[L + B (e)] + 2d.(e),
whered.(€) = hc(€,Vp,c) — he(€, 0p) and

(6.27) he(€,0) = Ace(0) = inf Ac(s),

The functionalsl'c;; andTys in (6.26) are understood to be defined by using the same
and the same value of b. From representation (6.26), we see that what we need to consider

is the sign ofd.(¢) in terms ofc ande. The following result represents a first step in
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determining appropriate values of the tuning constanecessary for showing the bias

inadmissibility of anS-estimate. The value ok below is defined within Condition A4.

THEOREM 6.1. Suppose thap is such that conditions A3 and A4 hold.
(i) If ¢ <1/K, thenBcas(e) = Bg(e) for all e.

(i) For any e such thatc > c(€) = ¢ log(op.c/Vp.e), it holds B (e) > Bg(e).

As a consequence, for th&M-estimate to improve upon the maximum bias function
of the S-estimate, one needs to choase- 1/K. On the other hand, if, = inf{c(e) :
0 < € < b}, then we also need to choosel ¢,. This range is not empty, since as shown

in the appendix,

(6.28) /K < (1=0)/K +b/¢(m,0) < co,

where¢(s) is defined within Condition A4.

For ¢ < 1/K, the CM-functional is the same as tl&functional atH, as well as at
any H in ane-contaminated neighborhood &f,. This is because equality is obtained in
the constraint (2.9) for th€M-estimate, and when equality is obtained @M-estimate
gives the same solution as the correspondiestimate. Thus, for < 1/K, the CM-
estimate has the same maximum bias function as the correspogdisijmate. On the
other hand, for large values of the CM-estimate tends to give a solution similar to the
least squares solution, and so one expects the maximum bias function to be unacceptably
large even though the breakdown point may be close to 1/2. In fact, one can note from
(4.21) that for any, Beoas(e) — oo asc — oo.

Varying the tuning constant may decrease the maximum bias for some values of
while increasing the maximum bias for other values.oThe question we address now

is whether it is possible to find a moderate value: ¢hecessarily betweeh/ K andc,)
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such that the maximum bias function of tldVi-estimate improves upon the maximum
bias function of theS-estimate.

The following result shows that, in most cases of interest, the conditiore, is not
only necessary but also sufficient to obtd#a ,;(¢) < Bg(e) for all e. The value ofoy,

below is also defined within Condition A4.

THEOREM 6.2. Suppose that the assumptions of Theorem 6.1 holdfc, and

g(oar) < b, thenBep(€) < Bg(e) for all € > 0.

REMARK 6.1. This result cannot be improved upon. That iscif> ¢(e), then
Bs(€) < Ben(€) by Theorem 6.1. Also, if < ¢, and g(oar) > b, then eitherBg(e) <

Be () for somee or Bg(e) = Be(€) for all e. This remark is verified in the appendix.

In order to show that ars-estimate can belominatedby a CM-estimate with ¢
chosen so that/K < ¢ < ¢, , it remains to be shown that for sonfle< e < b,
Bew(e) < Bs(e). For specific examples, this can be checked numerically. Under addi-

tional assumptions, though, this can be shown analytically.

THEOREM 6.3. Suppose that the assumptions of Theorem 6.2 hold. Furthermore,

suppose thay(s) is convex, and

[1— gloa)P(1— b)

(6.29) dlovo) 2 5
Then, for any value such that
. log(on/ob ) 1
= —FF< < = Co,
T T glow) T o)

the CM-estimate of regressia@lominatesthe S-estimate of regression with respect to the

maximum bias function. Furthermore, this range of valuescf not empty.
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REMARK 6.2. From the proof of Theorem 6.3 it follows that a condition more
general than (6.29) under which the conclusions also hotd is lim,_ o+ ¢(e). However,

(6.29) is easier to check and holds in most cases of interest.

Consider the biweighS-estimate with breakdown poirdt < 1/2. It can be verified
that the conditions of Theorem 6.3 holds whendyver 0.410, and so any such biweight
Sestimate is inadmissible with respect to maximum bias at the gaussian model. For
b = 1/2, i.e. the 27.78% efficient biweighB-estimate, the value of = 2.568 falls
within the interval given in Theorem 6.3. Hence, the 61.1% efficient biwe@ki
estimatedominatesthe 27.78% efficient biweigh&-estimate with respect to maximum
bias at the gaussian model. As noted in section 5.1, although the decrease in maximum

bias is negligible, the increase in efficiency is not.

As another example, consider thequantile regression estimates. These correspond
to S-estimates withp(u) = I{|u| > 1} andb = 1 — «. It is straightforward to to verify
that the conditions of Theorem 6.3 hold in this case whenéver0.3173, and so the
a-quantile regression estimates with< 0.6837 are inadmissible at the gaussian model
with respect to maximum bias. Again the decrease in maxbias is not large. For example,
for the special casa = b = 0.5, for which the resultingv-quantile estimate corresponds
to Rousseeuw’s [9] least median of squares estimd¥s), the best improvement is only
95.7% of theLMS bias.

The a-quantile estimates are often referred to as minimax bias regression estimates.
Martin, Yohai and Zamar [7] show that within the clasd\Wfestimates of regression with
general scale, an-quantile estimate minimizes the maximum bias atvith the value
of o depending ore. Yohai and Zamar [13] generalize this minimax result to the class
of all residual admissible estimates of regression. At the gaussian modelgaantile

estimate can be shown to have minimax bias for semlenever).500 < o < 0.6837,
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or equivalently wher9.3173 < b < 0.500. Despite having minimax bias at the gaussian
model for a givene, thesea-quantile regression estimates are still inadmissible at the
gaussian model with respect to maximum bias. In particulaGMrestimate can be
constructed which also has minimax bias at the givemever larger bias at any other

and smaller bias for some otherAlthough the decrease in the maximum bias may not
be of practical importance, these observations expose some limitations of the notion of
minimax bias.

The minmax bias results given in [13] for thequantile regression estimates apply
more generally than to just the gaussian model. They also apply to models having a
symmetric unimodal error term along with elliptically distributed carriers. At such models,
though, we conjecture that thequantile regression estimates may again be inadmissible
with respect to maximum bias, but we do not pursue this topic further here. The value
of a which attains the minimum maxbias at a particulds not only dependent on the
value of e but also dependent on the particular model. That is, a partiewiguantile
estimate is not necessarily minimax eabver a range of models but is only known to
be minimax ate at a specific model. Any estimate which can be showddminatean

a-quantile estimate would most likely need to be model specific.

7. Appendix. In this section we include the proof of the results and other technical

questions.

Proof of Theorem 3.1:1t can be shown following the proofs of Lemmas 4, 5 and 6 in

[1] that, for all s > 0 andt € IR, there existy; € IR and@; € IR such that

—ap —x'0
) =B (1) s (4),

Also, we can show that(t, s) is a strictly increasing function of, for all s > 0. It

follows thath(t) is also strictly increasing.
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We show first thatB s (¢) < ta, Wheret, is such thatia(t2) = €/(1 — ¢). Letd € R
be such that = ||8]| > t,. We shall prove that

y—a—x'0

(7.30) Enp2 ( ()

Y
) > Egpa (s(H)) , foreacha € R andH € Ve.

Let H = (1 — €)H, + eH. We have that:

mlf, s(H)] > mlts, S(H)] > inf m(ts, ) = ho(ts) = 1i .
58S €

Therefore, for eacly € IR and H € Ve,

y—a—x'0 Yy €
EHU”( S(H) ) EH°p2(s(H))>le’

that is,

-0 (Ui ) = 0 0mnn () e

It follows that, for everya € IR and H € V,

s (st ) 2 0 8 (U

Y Y
i < > <
> (1= €)Emu,p2 <5(H)) €2 Eup <5(H))’
that is, inequality (7.30) holds. The last inequality above follows from A3(ii).

Next, we show thatBsy(e) > t1, wheret; is such thath,(t1) = ¢/(1 — ¢€). Since
Bg(e) < t1, we can select an arbitraty> 0 such thatBg(e) < t < t;. It is enough to

show thatBjys () > t. We know that there exist; € IR and@; € IR such that

y
—E (:)
H0p2 5

Sinceh, is strictly increasinghi (¢t) < hi(t1) = €/(1 — ¢). It follows that

_ _ !
Ba(t) = m(t,5) = En,ps (yo‘sx‘))

Yy — o — X’et Yy
(7.31) (1= OB, po (L) < (1= OB, (£) +e

Define the following sequence of contaminating distributiofs; = O(y,.xn) Where

x, = n@; andy, = a;+x,0; = a,+nt?. Let H, = (l—e)HO—&—eﬁn andd, = T(H,).
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Suppose thatup,, ||0..|| < t in order to find a contradiction. Under this assumption, there
exists a convergent subsequence, denoted al$@by, such thatim,, ... 0,, = 0, where
|6]| = # < t. Assume for a moment that the sequence of intercept functionals evaluated

atH,, a, = t(H,), satisfiedim,,_, |a,| = co. Then,

— G — /en n— %n — /0”
lim Ex. ps (W):@_EHE lim ps (y)

S(Hy) n—o0 S(Hy)
. y—a;—x'60; . y— oy — X0
1—¢) lim E )= limE -_—
> ( 6) nl_{go H, P2 ( S(Hn) ) nl_{féc H, P2 ( S(Hn) ,

but this fact contradicts the definition ¢f,, 8,,). Notice that) < s < s(H,) <5 < o0
implies thatlim,, .o Eg, p2[(y — ar —x'60,)/S(H,,)] < 1 which in turn implies the strict
inequality above. Therefore, we can assume without loss of generalityinthat, ., o, =

&, for some finitea € IR. As a consequence, we have that

/
Yn — Qp — X 0,

/
n Yn — O — Xngt

(7.32) lim )

= and
n—oo S(Hn) 0,

=0, for eachn.

We prove now thatim,, ., S(H,) =S, for any convergent subsequeng@d,,). Let

Seo = lim, 00 S(H,,). Notice thats satisfies the equation

(7.33) (1—€)En,pi(y/5) +e=0b.

Let (yn,0,,) = (t1(H,),T1(H,)) be the regression S—estimate base@orwWe know
that || 3,,|| < Bs(e) < t, for all n, so that without loss of generalitym,, ... 3,, = B,

where||3|| < t. Assume thatim,, . |v,| = co. Since

Y= —%XB,\
(7.34) Eu, p1 (S(Hn)> =b,

letting n — oo, it follows that

Y—"7n _x/6n>

b= lim Bu,pr ( sy ) =9t pl(

n—oo
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. y— oy —x' 0, y— oy —x' 0,
1-— | E | =E .
> (1—c¢) JAm By, pr ( S(Hy) ) H, P1 ( s(H,)

Then, there exists,, < s(H,,) such that

—ay —x'0
En (ya;Xt):b

but this fact contradicts the definition @f,,3,,). Therefore, we can also assume
without loss of generality thdim,, ., v, = 7, for some finitey € IR. As a consequence,

letting n — oo in (7.34) we obtain

— ~ — /~
b:“‘@&W(yflxﬂ)ﬂzu—d&mwm@+a
Comparing the last equation with (7.33), we deduce that > S. Since
S = supyey. S(H), then s, = S. We use this fact to obtain equations (7.35)
and (7.36) below.

Equations (7.31) and (7.32) imply,

) y—on—xX6,\ y—a—x'60
(7.35) nlLITolo Ey, po ( () > =(1—€)Eny, p2 ( 3 +e

1 —ay —X%'0
> (1= 9B (1) +e> (1= 9Bap (L00)

On the other hand, applying (7.32),

. y—ar—x0;\ y—ay —x0;
(7.36)  lim Ep,p; ( (L) ) =(1-€)En,p2 ( 3 :

Therefore, for large enough,

y—a, —x0, y— oy —x' 0,
Emu, p2 (S(H)) > Ep, p2 <S(tH)f .

This last inequality is a contradiction with the definition (ef,,, 8,,). For everyt > 0

such thatBg(e) < t < t; we have found a sequence of distributiopd,,} in the

neighborhoodV; such thatup,, ||T(H,)|| > t. ThereforeByras(e) > t1. O
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Proof of Theorem 3.2.1t is enough to check that the function&(F') defined in (3.15)
satisfies condition Al in [1]. For instance, the monotonicity condition Al(a) follows

immediately from the monotonicity of the M-scad€ F'). [J

Proof of Theorem 4.1: We will apply Theorem 3.2. Lef, = (1 — e)FHO 0.0 1 €0cc-

Then,o(F,) = o3, and

(7.37) Tem(€) = Jom (F,) = inf Ag(s) + ce.

$20p,e

On the other hand, ifl0|| = ¢t and F; = (1 —€)Fy; g + €d,. Then, whenH, is

multivariate normal, we have that( F;) = (1 + ¢2)'/2+, . and

1
(7.38) Mem (t) = Jom (Fy) = §1Og(1 + %)+ inf Acc(s).

SZ27b,e

From (3.18), we know thaBcj/(€) = t., whereme,,(t.) = ren(€). Matching the

expressions in equations (7.37) and (7.38), and solving faelds the result.(]

Proof of Theorem 4.2:Let ¢ € IR arbitrary. Under the assumptions, the functiefx, s)

is continuously differentiable with respect o with derivative given by

8m§?8) _ % {¢2(8) — 2 ((1+j2)1/2>] .

Since ¢2(s) is unimodal, for eactke we have thatn(t,s) is (a) strictly increasing

for s € [s,5], (b) strictly decreasing fos € [s,5], or (c) it has a unique critical point
5 € (s,S), which is a local maximum. In any of the three cases, the global minimum of
m(t,s) for s € [s,S] is attained at one of the two extremes of the interval. That is,
ho(t) = inf m(t,s) = min{m(t,s), m(t,S)}.
5<s<5
From Theorem 3.1, an upper bound for the maximum bias is given by the vatye of

such thathy(t.) = €¢/(1 —€). If ha(t.) = m(t.,’S), thenhy(t.) = ha(t.), and therefore
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t. = £(¢). On the other hand, k2 (t.) = m(t., s), then we have that. = u(e). Hence,

the result follows ]

Proof of (4.23). We apply Theorem 1 in [1]. Following the notation in that paper, we

have thatc = o . On the other hand,

m(t) = inf inf Js[(1—€)Fy _ g+€do] = inf Js[(1—¢)F +edg] = inf S(6),
10)|=t o€ R Ho o0 19)|=t H,,0,0 =

where S(0) is such that

(7.39) (1 - €)Egyp (W} = b.

Sincey — x’0 is distributed ag1 + ", |0;|)Z, where Z is standard Cauchy, we have

that (7.39) amounts to

(1_6)9( 56) ) b

Therefore,
S(6) = [1+ Z 10i]] 5.
and l
(7.40) m(t)= if [1+ Z 10:[]76,¢ = (14 )7,e-

Finally, sinceB;(¢) = t, wherem(t) = oy ., the result follows from (7.40)]

Proof of (4.24).Clearly, Under the Cauchy model, the expression-for(e) is formally
the same as that corresponding to the Gaussian model. We just have to cefyute
with respect to the Cauchy distribution instead of the normal. On the other hand, under

the Cauchy model it is not difficult to check that

mcm(t) = log(l + t) + ;nf AC,E(S)7

SZ7b,e

where A, (s) is defined by (4.20). Since the bias satisfie§B.,,(¢)] = rem(€), the

result follows.O
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Proof of (4.25). The same arguments as above yield the following expression for the
function m(t, s) under the cauchy model:

S

mit,s) = g2 () e

1+t
From this expression the computation/¢f) andu(e) under the cauchy model is straight-

forward:

€ Ob,e 1

_ -1 _
ey ="m <1€> g5 ga(one) +e/(1—e)]

and

Vb,e

i g /A —a]

u(e) =

Since we are assuming thats) is unimodal, the same proof as in the case of the gaussian

model yields (4.25).

Proof of Theorem 6.1.(i) Computing the derivative ofl. .(s) with respect tos, we see
that A.. (s) is non decreasing when< [(1 — €)¢(s)] L. Since K1 < [(1 — €)¢(s)]~*
for all ¢ ands > 0, the conditionc < K~! implies thatA.. .(s) is non decreasing for all
e ands > 0. As a consequencé,.(¢,0) = 0 for all e ando > 0. Then,d.(¢) = 0 for
all e what implies thatBej(€) = Bgs(e) for all e.

(i) Since g(op,e) = (b—¢€)/(1 — ¢) and g(yp,.) = b/(1 — ¢), it follows that

(7.41) Acc(0p,e) < Ace(,e) & ¢ > c(e).

However, if A. c(0p.e) < Ace(Tp,e), thend.(e) > 0 and henceBg(e) < Bea(e). O

Proof of (6.28).By using implicit differentiation, one obtains

0 Ob,e - 1 (]- - b)ab,e
ge - v " ™ B T TR e

0 Vb,e 1 -b Vo,e
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This then gives

Jecle) 1 1-5b b 1-b b
742 e Tuee (¢<ab,e> * ma) S SPTEanE

The last inequality follows since as noted previously, < o0 < oa. This then implies

(6.28).00

Proof of Theorem 6.2.For ¢ < 1/K, it has already been noted that the maximum bias
functions are the same, and so we only need to condidkr < ¢ < ¢,. In general, for

¢ > 1/K and under assumption A4, the functieia .(s) has the following properties:
i) Ace(0) = —o0 and A, .(o0) = 0.
i) Ac.(s) has two critical points, sayy,(c,¢) < oy(c, €), with

Ac(s) frover0to or(c,e),
Ace(s) | over
or(c,€) to oy(e ), and

A (s) fr overoy(c, €) to oo.
iif) Ac(s) is concave fors < ops and convex fors > oyy.

Note that the critical points of. .(s) correspond to the two solutions t(s) =
1/[(1 — €)c]. The value ofo,,, though, does not depend eror e. Graphs of a typical
function A, (o) for two different values ot are given in Figure 5.

Some further properties which are easy to verify are the following.
a) Ve, Obe, orn(c,€), oulc,e), and A, (s) are continuous ir.
b) AS € ﬂ 'qu,e “U’7 Ub,e ﬂ? UL(C7 6) ﬂa UU(Ca 6) ‘U’v andAC,E(S) ‘U’ -

C) Yo,e < Ope with Yb,0 = Op.0-
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FIG. 5. Graph of Ac (o).

d) if v < o, thenA. (v) — Ac(0) is decreasing if.

Now, for 1/K < ¢ < ¢,,

(7.43) if ope < oylee), thenBea(e) < Bg(e).

since in this casé.(¢) < 0. So, to prove Theorem 6.2, it only needs to be shown that

(7.44) if ope > oulce), thenA; (p,e) < Ace(ou(c,e))

since this impliesi.(¢) = 0 and henceBc s (e) = Bg(e).

To show (7.44), first note that, o < o sinceg(opo) = b > g(oa). Thus, since
ope f @andoy (¢, €) | ase increases and both are continuous, there exists anch that
obe, = ou(c, ). For anye < ¢, it then follows thato,, . < oy, ., = oy(c, €), and so

to show (7.44), it is only necessary to consides ¢,.

For e > ¢,, we have

Ac,eb (,Yb,e) < Ac,eb (7b7eb) < Ac,eb (Ub,eb) = Ac,eb (UU(Ca eb)) < Ac,eb (UU(Cv 6))
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The first inequality follows sincey, ., < or(c,€), the second inequality follows
from (7.41), and the third inequality follows from (b) sineg (¢, e,) > ou(c,€) > our.

Statement (7.44) then follows from (d) aboe.

Proof of Remark 6.1. The remark forc > ¢(¢) and forc < 1/K have already been
established. It > 1/K andg(oys) > b, theny, o = 0p.0 > oar. Now, if o0 > o (e, 0),
then sinces,, . ft andoy (¢, 0) | ase increases, it follows that;, . > oy (c, €) for all e.
This then impliesi.(e) > 0 and henceBe s (€) > Bg(e).

On the other hand, ifa < 040 < ou(c, €), then by continuity for small enough
oM < Ve < 0pe < opy(c,e). This implies A (p.c) < Acc(op.e), and so by (7.41),

c>cle). O

Proof of Theorem 6.3.Note that, under the conditions of Theorem @32,(¢) > Bc s (€)

if and only if
(7.45) ope < oylc,e) andAg (op.c) > Ace(ou(c,€)).

So, to prove that an S-functional is inadmissible, one only needs to establish (7.45)
for somee. First, we will show that the condition, = lim,._,+ c(€) implies that there
existse such that (7.45) holds. Then, we will show that (6.29) is enough to guarantee

¢, = lim._, g+ c(€). Note that by using L'Hopital’'s rule one obtains

(7.46) c(0) = Eli%lJr cle) = oono);

Also, note that

log(ok/ob0)

7.47 c>c =
(7.47) L g

Aad A(:,O(Ub,o) > Ac,o(UM)-

Sinceoy, o < o, this impliese; > 1/ K since otherwisel. o(s) would be monotone is.
Now, for anyc > ¢;, we then haver, o < o < oy (c,0) and A o(op,0) > Acolon) >

Aco(ou(c,0)). By continuity, statement (7.45) then follows for small enougliNow,
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we show that; < ¢(0). To show this, note that when= ¢(0), o0 = or(c,0) and so
Aco(ob,0) > Acolon). The first part of the proof then follows from (7.47).

Notice that the lower bound; can be tighten by working with (7.45) directly. In
general, it is difficult to use (7.45) to obtain a closed form expression, but it can be used
for specific examples.

From (7.46), in the second part of the proof we need to show that (6.29) implies

(7.48) e c(e) > €/d(on,0)-

Since equality holds in (7.48) when= 0, to show (7.48) it is sufficient to prove that
the derivative of the left-hand side is never less than the derivative of the right-hand side,

i.e. [see equations (7.42) and (7.46)]

1 1-b b 1
7.49 + } > .
(7:49) T e * Fo ) 2 5es
Recall that we are assumindo,s) < b = g(op,0), Or equivalently that,, o < ops. This
implies ¢(vs,e) < ¢(0p,0), and after some simple algebraic manipulations, we note that

(7.49) holds if

(7.50) ap.e 9(0b,e) < P(op0),

wherea, . = [(1 —€)? — b]/(1 —b).
Since oy, is increasing ine, then ¢(oy ) is decreasing ire wheneveroy, . > oy,
it follows that if (7.50) holds foro, . = o then it holds foro, . > oar. Thus, it is

sufficient to show that (7.50) holds fer, . < o, Or equivalently for

Given thatg(s) is convex,—g'(op.c) < —¢'(0b,0), and so (7.50) holds iy, . b < 0p.0.

Sinceg(s) is also nonincreasing, this is equivalent to

(7.51) glape ope) > b
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Thus, the theorem is proven if (7.51) holds foK ex. By the convexity ofg(s), for
€ < €k,
glape obe) > g(obe) + (ape — 1)ob.cqg (Ob,¢)
== 4 C96(0y ) > b=t + L= ()

The last term is> b if and only if

(1 b)?
I-02-o

Notice that if (7.52) holds foe = ¢, then it holds for alk < ¢,,. With € = ¢;,, though,

(7.52) d(op,0) >

(7.52) corresponds to the bound (6.29). This completes the pfdof.
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