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1. INTRODUCTION 
 

This thesis seeks to depth in the spatial epidemiology methods aiming to apply them to the 

study of cancer distribution and its relations with environmental factors.  

 

1.1. SPATIAL EPIDEMIOLOGY 

When an epidemiological study is carried out one of the first conclusions about the distribution 

of the health event is: its occurrence is not uniformly distributed either in space or time. 

Variations on the appearance of health events are consequence of population structure, 

population density and variations in the remaining risk factors. Health determinants depend on 

individual characteristics, such as age, sex and genetic factors, but also on lifestyle variables, 

for instance smoking and diet, along with another environmental and occupational exposures. 

Based on that idea there are three main aims or questions in the analysis of a disease spatial 

distribution: 

1. Knowledge about the spatial distribution: Are there areas with higher risk than 

others? 

2. Possible relationship with environmental factors: Is the spatial distribution of the 

disease somehow related to the spatial distribution of a risk factor measured at the 

same aggregation level? 

3. Location of the high risk areas: Are high risk areas geographically clustered or 

randomly spread? 

Spatial epidemiology has been developed to answer these questions. Nowadays it is the 

component of epidemiological science that analyses the spatial variations of health events. A 

formal definition can be: 

Spatial epidemiology is the part of epidemiology that studies the variations in geographical 

distribution of health events, seeking the description and understanding of such variations. 

 

State of the art (in brief) 

In 1854 John Snow presented an analysis of a cholera outbreak in London. He studied the 

geographical location of the cases in relation to the location of water pumps. The results were 

the identification of the pump responsible for the disease (Map 1.1) and a better knowledge 

about the cholera disease. This study is known as one of the first epidemiological analyses in 

history, and it can be considered the first study of spatial epidemiology [Snow, 1855]. Since then 
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until the 90’s decade, spatial epidemiology was mainly used to create maps to describe the 

geographical pattern of health outcomes [Walter S D, 2000]; however during the last 25 years 

epidemiologists and mathematicians have worked together on the development of new 

techniques to solve epidemiological questions of a spatial nature [Elliott et al., 2000]. 

 

 
Map 1.1. Location of the cases (·) and water pumps (x) in a 

cholera outbreak in London in 1854. 

This improvement has been possible because of the greater availability of geographically 

indexed health and population data and, of advances in computing and GIS (Geographical 

Information System). We can take as an example “The Small Area Health Statistics Unit” 

(SAHSU) established in the United Kingdom in 1987 (http://www.sahsu.org/index.php)[SAHSU, 

2009].  

Also, the increasing interest in spatial distribution of diseases is related to the increasing 

concern about the environment and its association with health, thus spatial epidemiology is 

closely linked to environmental epidemiology. Environmental exposures to harmful products can 

affect neighbourhoods, towns even whole regions (e.g. Chernobyl nuclear reactor meltdown in 

the former Soviet Union in the 1980s). The study and assessment of these environmental 

damages and their consequences for the exposed population need spatial characterisation and 

understanding; knowledge about exposures is essential and it can be approached, for instance, 

by maps, ecological correlation analysis or cluster analysis. Spatial epidemiology makes use of 

spatial statistics tools to work on these problems [Cressie N, 2000; Elliott et al., 2000].  

Several books [Cressie N, 2000; Diggle, 1983; Elliott et al., 2000; Lawson A, 2001 ;Lawson, 

1999; Waller and Gotway C., 2004] and an important number of papers have been published 

during the last 25 years presenting as many methods as their applications. Furthermore national 
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and regional incidence and mortality atlases are published every year around the world [Benach 

et al., 2001 ;Boyle and Smans M, 2008; Lopez-Abente et al., 2001; Lopez-Abente et al., 2006b; 

Martinez-Beneito et al., 2005]. 

Nowadays, under the denomination of spatial epidemiology, several statistical methods can be 

found corresponding to the different aims of the study [Elliott et al., 2000]: 

I. Disease mapping. 

II. Ecological regression (geographical correlation studies). 

III. Assessment of risk in relation to a point source. 

IV. Cluster detection and disease clustering. 

I. Disease mapping 

Disease maps are representations of incidence or mortality data in their geographical context  

seeking to summarize the variation of the spatial distribution of diseases [Lawson, 1999]. 

Depending on the purpose the map can show different information: Location of individual cases 

within a region (Map 1.2), counts of cases in areas, rates in cities or countries or other risk 

estimators (Map 1.3). 

The main uses of maps: 

- Descriptive studies looking for: 

o knowledge of the spatial distribution of an event. 

o Improving the knowledge about health needs of the population. 

o Better management of health resources. 

- Analytical studies looking for: 

o Risk factors. For example, comparison with exposure maps 

o Assessment of health programmes and policies. 

Many disease maps use simple descriptive measures such as rates or ratios to describe the 

distribution; however, there are several difficulties when crude ratios are used in small areas. 

Standard Mortality Ratio is one of the most used ratios in disease mapping. It is defined as the 

rate between the number of observed cases and the number of expected cases. This definition 

means that areas with low population have a small denominator therefore they produce SMRs 

with large variability and extreme values may appear when rare diseases are under study, 

misleading the interpretation of the map. 
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    Map 1.2. Location of individual cases                        Map 1.3. Aggregated cases or rates in areas 

The most widely used strategy to approach these problems to estimate the spatial distribution of 

risk is the application models based on Poisson inference (Map 1.4) [2005] (Special Issue of 

Statistical Methods in Medical Research on disease mapping). 

 
Map 1.4. Estimation of the spatial distribution of risk (Smoothed relative 

risk of bladder cancer) 

II. Ecological regression (geographical correlation studies) 

Ecological analysis examines associations between disease incidence or mortality and potential 

risk factors as measured on groups rather than individuals. Typically the groups are defined by 

geographical area such as country, region, municipality or census track. The main advantage of 

this kind of study is the availability of data, both health data and risk factors, at that scale. 

Information about lifestyle, such as diet or smoking, and exposures to environmental factors is 

not usually available at individual level; however, that sort of data is easy to collect at 

aggregated level from official (administrative) sources. On the other hand, the main 

disadvantage is the so-called “ecological fallacy” [Selvin et al., 1992].  
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Ecological fallacy is an error in the interpretation of statistical data in an ecological 

study that can occur when a researcher or analyst makes an inference about an 

individual based on aggregate data. 

Accordingly, when an ecological analysis is performed over geographically referenced data, 

spatial autocorrelation should be also taken into account aiming to reduce the possibilities of 

ecological fallacy [Clayton et al., 1993].  

III. Assessment of risk in relation to a point source 

Point source studies are applied to assess increases in incidence or mortality of diseases in 

adjoining populations of potential environmental hazards. These kind of studies are sometimes 

carried out because of worries of the local population or media reports in reference to point 

sources of pollution. To deal with these analyses specific statistical methods have been 

developed, however, sufficient geographical resolution data are essential to produce accurate 

results. In addition, when the study is carried out because of a worry or a media report 

interpretation of the results is more difficult since the prior hypothesis could be biased. 

Throughout the two last decades, concern about environmental hazard from industrial facilities 

has been illustrate in many studies. In the literature the majority of these studies have been  

focused on the detection of patterns of health events associated with air pollution and ionising 

radiation exposure [Kokki, 2004]. 

The lack of real exposure measurements in many studies has encouraged the use of estimated 

exposure measures. Researchers who have worked analysing air pollution from industrial 

facilities have mainly used the distance to the sources as surrogate of the real exposure.  

During the late 80’s and early 90’s concern about cancer incidence in the surrounding 

population to nuclear plants and nuclear waste processing plants produced diverse point source 

studies in various countries, such as the United Kingdom [Roman et al., 1987; Gardner and 

Winter, 1984; Ewings et al., 1989], France [Viel and Richardson, 1990] and Spain [Lopez-

Abente et al., 1999]. Furthermore in the 90s, other kind of facilities were examined too. Several 

studies about cancer in the vicinity of the petrochemical plant in Baglan Bay, Wales, were 

published [Lyons et al., 1995; Sans et al., 1995]. Also in the United Kingdom, incidence of 

cancer in the proximities of waste incinerators were analysed [Elliott et al., 1992; Elliott et al., 

1996]. Other waste incinerators were studied in Italy [Michelozzi et al., 1998] and France [Viel et 

al., 2000].In 2008, Dreassi discussed the relationship between disease occurrence and distance 

from pollutant sources performing a sensitivity analysis over four different functional forms for 

the decay function of risk with increasing distance [Dreassi et al., 2008]. 
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IV. Cluster detection and disease clustering 

Finally, the last category of spatial epidemiology methods is cluster analysis. These studies 

seek to evaluate clusters of diseases. Normally the analysis involve the use of several statistical 

tests [Lawson A, 2001]. Generally cluster analysis is divided into global clustering and cluster 

detection. Global clustering methods test the overall global spatial correlation, and cluster 

detection methods identify unusual collections of events compared with others. Global 

clustering methods include, among others, Moran’s I, Tango’s and Besag–Newell’s R statistics, 

being these the most widely used. On the other hand, cluster detection methods include, among 

others, circular and elliptic spatial scan statistics (SaTScan), flexibly shaped spatial scan 

statistics [Kulldorff M, 2006], Turnbull’s cluster evaluation permutation procedure, local 

indicators of spatial association, and upper-level set scan statistics [Huang et al., 2008], where 

SaTScan is recognised as one of the most competitive [Duczmal et al., 2005]. 

Some of these methods have been widely applied in medical research, specifically for the study 

of disease occurrence, both communicative and chronic disease. However these methods have 

not been used in the present thesis. 

 

1.2. CANCER 

I. Cancer 

Cancer is a heterogeneous family of diseases, consisting of over 100 different forms, that 

spawn from almost every cell type in the body. Each cell type gives rise to distinct forms of 

cancer, however despite the broad diversity, several features are common to all cancers: 

Cellular proliferation, circumvention of cell cycle control growth without appropriate signals, 

escape from programmed cell death, altered interactions between cells and the surrounding 

environment, evasion of immune-mediated eradication and invasiveness into normal tissue 

[Adami et al., 2002].  

Due to the diversity of possible tumoural locations (Table 1.1) and the variety of possible risk 

factors the study of cancer is particularly complicated. The majority of cancers have a complex 

aetiology where one or more environmental risk factors interact with genetic background, age, 

sex, socio-demographic status and other factors [Wild, 2009].  

During the last decades cancer incidence has been continuously increasing. However, 

scientists consider that in Western countries expansion and ageing of the population, as well as 

progress in cancer detection using new diagnostic and screening tests cannot fully account for 

the observed growing incidence of cancer. Besides, well established risks factors such as 

alcohol consumption and tobacco smoking in men have significantly decreased lately. On the 

other hand, during the same period the environment has substantially changed and many 
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carcinogenic factors have been accumulated in the environment [Belpomme et al., 2007b]. In 

this regard, many researchers have carried out studies analysing the relationship between 

cancer and exposure to environmental factors [Belpomme et al., 2007a]. 

Tumours ICD 9 ICD 10

Buccal cavity and pharynx 140-149 C00-C14
Esophagus 150 C15
Stomach 151 C16
Colon-Rectum 153-154 C18-21
Gall-Bladder 156 C23
Pancreas 157 C25
Larynx 161 C33
Lung 162 C34
Bones 170 C40-41
Connective tissue 171 C49
Melanoma 172 C43
Breast 174 C50
Uterus 179-182 C54-55
Ovary 183 C56
Prostate 185 C61
Bladder 188 C67
Kindney 189 C64
Brain 191 C71
Non Hodgkin's limphomas 200,202 C82
Myeloma 203 C90
Leukemias 204-208 C91-95  
Table 1.1. Most common tumoural locations and their 

codes for ICD 9 and ICD 10. 

II. Cancer figures. (Burden of disease) 

Cancer in Europe 

The European Commission estimates that in Europe cancer affects 1 in 3 men and 1 in 4 

women at some time in their lives and that 1,2 million EU citizens die from cancer each year, 

that is equalling about one in four deaths in Europe. Every year 3.2 million Europeans are 

diagnosed with cancer, which is also the second most common cause of death in Europe (29% 

of deaths for men, 23% for women). The most frequently tumoural locations are breast, 

colorectal and lung cancers [IARC, 2009a]. 

In 2007, Ferlay published estimated incidence and mortality rates for all European countries for 

2006 [Ferlay et al., 2007]. Figures for Spain and Europe are shown in Table 1.2 and Table 1.3. 

From the results it can be seen that Spain presents lower incidence rates than Europe as a 

whole, although it has higher estimated mortality rates for colon-rectum and lung cancer among 

men. 
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Breast Uterus Prostate
M F M F M F F M F

Spain 15.9 8.4 54.4 25.4 68.3 13.8 93.6 24.5 77.2 416.9 263.4
Europe 24.8 11.6 55.4 34.6 75.3 18.3 94.3 33.5 86.9 469.7 303

Stomach Colon-rectum Lung All cancer

 
Table 1.2. Estimated age-standardised incidence rates (European standard population) per 100.0000 

person/year by sex, 2006. Source: Ferlay 2007 

Breast Uterus Prostate
M F M F M F F M F

Spain 12.7 5.8 28.2 14.6 67.2 8.9 19.2 5.6 18.4 237.0 106.5
Europe 18.1 8.3 27.3 16.6 64.8 15.1 26.0 9.3 22.2 244.8 135.4

Stomach Colon-rectum Lung All cancer

 
Table 1.3. Estimated age-standardised mortality rates (European standard population) per 100.0000 

person/year by sex, 2006. Source: Ferlay 2007 

a. b.

c. d.

a. b.

c. d.

 
Figure 1.1. Cancer distribution in Europe: (a) estimated incidence rate from all cancer sites but skin for 

women; (b) estimated incidence rate from all cancer sites but skin for men; (c) estimated mortality rate 

from all cancer sites but skin for women; (d) estimated mortality rate from all cancer sites but skin for men. 

Source: Globocan 2002 

On the other hand, the Globocan 2002 database from the International Agency for Research on 

Cancer, IARC, which has been built using data from the cancer registers of the different 

countries, presents estimates of incidence and mortality for 2002 [IARC, 2005] (http://www-

dep.iarc.fr/). According to Globocan 2002, the estimated number of cancer cases in Europe is 

2.820.774, with a sex distribution of 1.321.130 women and 1.499.664 men. As follows, we 

present some maps and graphs from Globocan 2002. Figure 1.1 shows four maps of Europe 

with the estimated incidence and mortality rates by sex. Again, the maps show that Spain 

generally has lower estimated rates than the European mean: only the estimated mortality rate 

for men reaches the mean of the interval. 
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The following two figures, Figures 1.2 A) ,B) and C), show the temporary trends of the incidence 

rates for both women and men. Data provided from the Eurpean Observatory Cancer [IARC, 

2009a]. The graphs have several lines, one for each European country with available data. All 

the graphs confirm that the trends for the different countries present similar increase with time. 
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Figure 1.2. A)  Time trend of incidence rate for all cancer sites but skin for women. 

Northern Europe. Source: European Observatory Cancer, IARC 
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Figure 1.2. B)  Time trend of incidence rate for all cancer sites but skin for men. Western Europe. 

Source: European Observatory Cancer, IARC 
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Figure 1.2. C)  Time trend of incidence rate for all cancer sites but skin for men. Eastern Europe. 

Source: European Observatory Cancer, IARC 

 

Cancer in Spain 

Incidence rates for Spain show the same trends that those from other European Countries. 

(Figure 1.3). On the other hand the number of cancer cases that Globocan estimated for Spain 

for 2002 was 63.983 among women and 97.765 among men [IARC, 2005]. 
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Figure 1.3. Time trend of estimated incidence rates of all cancer sites but skin. Spain. Source: 

European Observatory Cancer 

 

Finally, for 2007, mortality data from the INE (National Statistic Institute) says that there were 

99,763 deaths by cancer in Spain, 62,430 men and 37,333 women, up to 383,249 of total 
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deaths, which equates to a mean of 26%. In other words, one in four deaths was caused by 

cancer. Disaggregating by cancer type and sex the most important among men was lung cancer 

(17.162 deaths) followed by colorectal (7.857 deaths), and then prostate cancer (5.574 

deaths).For women breast cancer (5.904 deaths) was the most frequent followed by colorectal 

(5.638 deaths) and then lung cancer (2.786 deaths). 

 

1.3. ENVIRONMENTAL INDUSTRIAL POLLUTION 

In the previous section we have talked about cancer and its aetiology. In the present thesis we 

aim to analyse the relation between cancer and environmental exposures from industrial 

pollution: however, the main difficulty in these kind of studies is the availability of suitable and 

accurate information. 

In January 2000 the European Council approved a directive for the implementation of a 

European Pollutant Emission Register (EPER) (Decision 2000/ 479/CE) [EPER, 2004]. Under 

the terms of this Decision, all Member States were required to report industries relative to 50 

pollutant emissions in excess of a given threshold. The European Pollutant Emission Register 

(EPER) collects information about emissions to air, soil and water from all agricultural or 

industrial facilities engaging in one or more activities listed in Annex I to Council Directive 

96/61/EC [Commission of the European Communities, 2000].  

The available information allows classification of different types of industrial activities, besides, 

containing abundant data on emissions of the pollutant substances and the amount released 

annually. In February 2004, EPER data of Spain (for 2001) were published.  

Industrial activities classified in the EPER fall into the following 6 categories: 

1. Energy industries;  

2. Production and processing of metals;  

3. Mineral industry;  

4. Chemical industry and chemical installations;  

5. Waste management; and  

6. Other activities (which include paper and board production, manufacture of fibres or 

textiles, tanning of hides and skins, slaughterhouses, intensive poultry or pig 

rearing, installations using organic solvents, and the production of carbon or 

graphite). 

The database also classifies the 50 declared pollutant substances into the following groups: 
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1. Environmental themes: methane, carbon monoxide, carbon dioxide, 

hydrofluorocarbons, nitrous oxide, ammonia, non-methane volatile organic 

compounds (NMVOC), nitrogen dioxide, perfluorocarbons, sulphur hexafluoride, 

sulphur dioxide, nitrogen and phosphorus. 

2. Metals and metal compounds: arsenic, cadmium, chromium, copper, mercury, 

nickel, lead and zinc. 

3. Chlorinated organic substances: dichloroethane-1,2, dichloromethane, 

chloroalkanes, hexachlorobenzene, hexachlorobutadiene, hexachlorocyclohexane, 

halogenated organic compounds, dioxins and furans, pentachlorophenol, 

tetrachloroethylene, tetrachloromethane, trichlorobenzenes, trichloroethane-1,1,1, 

trichloroethylene and trichloromethane. 

4. Other organic compounds: benzene, toluene, ethylbenzene, xylenes, brominated 

diphenylether, organotincompounds, polycyclic aromatic hydrocarbons (PAH), 

phenols and total organic carbon. 

5. Other compounds: chlorides, chlorine and inorganic compounds, cyanides, 

fluorides, fluorine and inorganic compounds, hydrogen cyanide and PM10. 

The EPER register is public and all information on industrial pollution is accessible as a 

relational database from the European Commission server [EPER, 2004] and from the Spanish 

Environmental Ministry. In addition to classifying the facilities in different industrial categories 

and ordering the pollutant substances in groups, the register has the geographical location of 

each industrial facilities, which is essential information for this thesis. 

Consequently, the EPER enables us to study the relationship between industrial pollution and 

public health consequences in Europe by analyzing the influence of spatial distribution of 

emissions on geographic morbidity and mortality patterns. Thus, in the years after the 

publication of this register a few studies of this kind have been published [Garcia-Perez et al., 

2009; Monge-Corella et al., 2008]. 

 

1.4. BRIEF SUMMARY 

Throughout thesis we define a methodology to study the spatial distribution of health events and 

its relation to environmental factors, from large disease maps for a whole country to clustering 

analysis focused in small areas. We have divided this work in three separate sections. 

The first section is called “Modelling of municipal mortality due to haematological neoplasias in 

Spain”. In this chapter we assess the performance of different methods for disease mapping 

based on Poisson models seeking to describe spatial patters in the distribution of the disease. 

In particular, three Bayesian hierarchical models for relative risk smoothing are analysed: the 
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Besag, York and Mollié model; a model based on zero-inflated Poisson (ZIP) distribution, which 

allowed a large number of event-free areas; and a mixture of distributions that enabled 

discontinuities (jumps in the pattern) to be modelled. The major characteristic of these methods 

is the use of the conditional autoregressive distribution (CAR) to include the spatial 

autocorrelation in the model to create an interpretable risk surface. 

The second part of this thesis is entitled “Study of non-Hodgkin's lymphoma mortality associated 

with industrial pollution in Spain, using Poisson models”. In this second step we analyse the 

association between spatial disease patterns and the exposure to industrial pollution. We use 

three models of ecological regression to estimate the relative risk associated with the proximity 

to pollutant factories: Poisson Regression; mixed Poisson model with random provincial effect; 

and spatial autoregressive modelling (BYM model). To define the exposure variable we classify 

the municipalities either as exposed or non-exposed relative to the distance from the industrial 

facilities. 

 Finally, the third section is called ”Risk around putative focus in a multy-source scenario. Non-

lineal regression models”. In this last step we study in depth the effect on cancer distribution of 

industrial air pollutants released from the different facilities sited within an urban area. We have 

applied an unique model that included all the factories under study and aggregated health data 

in small areas. Due to the lack of real exposure measures we approximate them by using the 

distance between the focus and the areas’ centroid. As above a Poisson regression is used as 

a basic model and is extended with a non-linear term that estimates the variation of the risk with 

the variation of the distance from the focus. 

 

Each of these sections has been published or submitted as a paper in a internatinal journal. The 

publication’s details are listed below. They are also included at the end of this thesis. 

 

- Modelling of municipal mortality due to haematological neoplasias in Spain. 

Rebeca Ramis, Valentín Hernández-Barrera, Marina Pollán, Nuria Aragonés, Beatriz 

Pérez-Gómez,  Gonzalo López-Abente. 

Journal of Epidemiology and Community Health. 2007, 61:2. 

- Study of non-Hodgkin's lymphoma mortality associated with industrial pollution in 
Spain, using Poisson models. 

Rebeca Ramis, Enrique Vidal, Javier García-Pérez, Virginia Lope, Nuria Aragonés, 

Beatriz Pérez-Gómez, Marina Pollán and Gonzalo López-Abente. 

BMC Public Health. 2009, 9:26 
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- Risk around putative focus in a multy-source scenario. Non-lineal regression 
models. 

Rebeca Ramis, Peter Diggle, Koldo Cambra and Gonzalo López-Abente. 

Submitted in Epidemiology. 2009 
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2. HYPOTHESIS AND OBJECTIVES 
 

Hypothesis: 

Residential proximity of population to one or several pollutant industrial facilities directly affects 

incidence and mortality risk for different malignant tumours. 

 

Objectives: 

I. To assess which methodology is more efficient to estimate risk surfaces (maps), using 

models for smoothing standard mortality ratios (SMR), seeking to identify spatial pattern  

of diseases and regions at higher risk for different tumoural locations. 

II. To study the relation between cancer mortality risk at small area level and ecological 

exposure to pollutant emissions from industrial factories using the distance as surrogate 

of the real exposure. 

III. To develop a methodology would enable to study risk associated to exposures from 

more than one pollutant focus in an unique statistical model, using he distances to the 

focuses as surrogate of the exposures. 

a.   To obtain a global risk estimation of the effect for the residential proximity to 

industrial pollutant focuses in a spatial framework when data are aggregated in 

small areas. 

b. To detect the more influential focuses in the mortality pattern. 
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3. MODELLING OF MUNICIPAL MORTALITY DUE TO 
HAEMATOLOGICAL NEOPLASIAS IN SPAIN 

 

3.1 INTRODUCTION 

Spatial analysis of health events (spatial epidemiology) is a discipline that, despite still being in 

the development phase, can already claim its own domain in the field of health research [Elliott 

et al., 2000; Lawson, 1999]. Its ability to suggest and detect possible sources of heterogeneity 

which may account for spatial incidence and mortality patterns in different diseases, vest this 

tool with great interest in the sphere of epidemiology and public health. 

Moreover, its potential is being reinforced by the ever increasing availability of geographically-

indexed population mortality and incidence data, as well as ongoing advances in computation 

techniques and Geographic Information Systems. This is a situation that tends, in turn, to favour 

analysis of geographical distribution of health data of ever-finer resolution [Elliott et al., 2000], a 

category into which the so-called “small area studies” fall. 

The main advantages of small area studies are: a) better interpretability than larger-scale 

studies; b) lower susceptibility to ecological biases; and c) greater capacity to detect local 

effects linked to environmental problems, such as industrial pollution of the environment 

[Richardson et al., 2004]. The disadvantages, on the other hand, are well known and determine 

the complexity of the analytical techniques. These drawbacks are: a) the data may be very 

disperse, with a large number of event-free areas; b) the data tend to evidence overdispersion, 

c) as a general rule, there is interdependence among observations, associated with the 

phenomenon of correlation between adjoining areas not taken into account by classic Poisson 

regression models and d) another important disadvantage is measurement of errors in both 

numerators and denominators. 

The most widely used strategy for tackling the problems posed by small area analysis is to 

estimate the spatial distribution of risk by means of simulation based on Bayesian hierarchical 

models [Gilks et al., 1996]. This approach enables relative risk maps to be estimated for an 

entire country embracing a great number of areas, given that there are very few constraints over 

the model complexity and the number of terms included in the linear predictor. It does, however, 

add several problems to the four difficulties enumerated above. These are: a) computation 

times; and b) the use of homogeneous smoothing criteria for the whole country in cases where 

the components of spatial structure might vary between regions.  

In view of the fact that there are several methodological alternatives for generating estimates 
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with Bayesian hierarchical models, comparison of the results yielded by such different 

approaches would probably help ascertain the true surface of risk. Apart from reporting the 

municipal pattern of distribution for haematological tumour mortality in Spain, this study sought 

to compare the goodness of fit of three different models, namely: a) the Besag York and Mollié 

model [Besag J et al., 1991]; b) a model based on zero-inflated Poisson (ZIP) distribution, which 

highlighted a large number of event-free areas [Lambert, 1992]; and c) a mixtures model that 

enables discontinuities (jumps in the pattern) to be modelled [Lawson and Clark, 2002]. Several 

authors have already tried to compare the performance of different spatial models [Fernandez 

and Green, 2002; Lawson and Clark, 2002], but neither of them have evaluated a ZIP model. 

The application of these models to the study of haematological tumours is justified because the 

preliminary results of the umbrella project that encompasses this study (Atlas of Municipal 

Cancer Mortality in Spain) show that leukaemias, non-Hodgkin's lymphomas (NHL) and multiple 

myeloma have a similar distribution pattern, with a number of areas of increased risk, 

suggesting the possible implication of environmental factors in their aetiology. 

This study seeks arguments for help  to decide between the different methods of modelling 

[Fernandez and Green, 2002; Lawson and Clark, 2002] geographical patterns in situations that 

include an important number of small areas (viz.: a complete country), and, as one application 

of the methods, to know the municipal mortality distribution of haematological tumours in Spain. 

Additionally, in this case, we have used a accessible software tool [Spiegelhalter et al., 2002; 

Spiegelhalter et al., 2003], showing that these models can be easily applied in epidemiology 

and Public Health. 

 

3.2 MATERIALS AND METHODS 

Cases were sourced from individual entries recording deaths due to leukaemias, non-Hodgkin’s 

lymphomas (NHL) and multiple myeloma (ICD-9 codes 200, 202, 203 and 204-208), registered 

at a municipal level nation-wide for the period 1989-1998. These data were supplied by the 

National Statistics Institute (Instituto Nacional de Estadística) for the production of a municipal 

cancer mortality atlas, of which these results form part. 

In Figure 3.1 we show a political map of Spain. 
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Figure 3.1. Political map of Spain. 

The municipal populations, broken down by age group (18 groups) and sex, were drawn from 

the 1991 census and 1996 electoral roll. These years correspond to the mid-point of the two 

quinquennia that comprise the study period (1989-1993 and 1994-1998). Person-years for each 

such five-year period  were then obtained by multiplying the above populations by 5.  

Standard mortality ratios (SMR) were calculated as the ratio between observed and expected 

deaths. To calculate expected cases, the overall Spanish mortality rates for the above two 5-

year periods were multiplied by each town’s person-years by age group, sex and quinquennium.   

To plot the maps, smoothed municipal relative risks (RR) were then calculated, using 

conditional autoregressive (CAR) models. These models were based on fitting spatial Poisson 

models with two random-effects terms that took the following into account: a) municipal 

contiguity (spatial term); and b) municipal heterogeneity (Figure 3.2). Three different models 

were fitted.  

The Besag, York and Mollié (BYM) Model   

This model was introduced by Clayton and Kaldor [Clayton and Kaldor, 1987] developed by 

Besag, York and Mollié [Besag J et al., 1991] and subsequently applied in the field of ecological 

studies [Clayton et al., 1993]. It is the most widely used model and is formulated as follows: 
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where:  λi   is the relative risk in area i. 

Oi  is the number of deaths in area i. 

 Ei  are the expected cases. 

 hi   is the municipal heterogeneity term from a Normal distribution. 

 bi   is the spatial term from a Car.Normal distribution. 

 �h is the hyperparameter of the Normal distribution. 

  �b is the hyperparameter of the Car.Normal distribution. 
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Figure 3.2. Random effects: h= municipal heterogeneity; b = municipal contiguity (spatial term). 

The Lawson Mixtures Model  

The second model was proposed by Lawson [Lawson, 2005]. Basing himself on the BYM 

model, Lawson specifies a model that assumes the breakdown of relative risk into three 

components, one addressing heterogeneity (h), and the other two forming a mixture which 

addresses the different behaviours of the spatial correlation (b and d), with b being the spatial 

correlation component and d the component that models the jumps in distribution. Lastly, p i is 
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the proportion of random effect b i for area I, and (1-p i ) the proportion of  d i. This mixture in the 

spatial term is included as treatment for any possible discontinuities displayed by distribution of 

the data.  
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The zero-inflated Poisson model 

Lastly, we used the zero-inflated Poisson (ZIP) model [Hall, 2000;Lambert, 1992]. This model is 

constructed as a mixture of Poisson distributions, one of which has the parameter λ=0 to 

include the high proportion of zeros possessed by these types of distributions. For study 

purposes, we used a ZIP model proposed by Durham et al [Durham et al., 2004], in which the 

Poisson distribution with λ>0 is taken directly from the BYM model. 
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The models were fitted using Markov chain Monte Carlo simulation methods with non-

informative priors [Gilks et al., 1996]. Convergence of the simulations was verified using the 

BOA (Bayesian Output Analysis) R programme library [Smith BJ, 2001]. In view of the great 

number of parameters of the respective models, the convergence analysis was performed on a 

randomly selected sample of 10 towns and cities, taking strata defined by municipal size. 

The Deviance Information Criterion (DIC) [Richardson et al., 2004] was used as the criterion for 

model selection. This criterion entails Bayesian generalisation of the Akaike Information 

Criterion (AIC) and approximately describes the expected posterior loss when a particular 

model is adopted, i.e., it is the description of the expected divergence of the model vis-à-vis the 

real data. The DIC is the parameter used in Bayesian models to assess the goodness of fit. 

Posterior distributions of relative risk were obtained using WinBugs [Spiegelhalter et al., 1996; 

Spiegelhalter et al., 2003]. The criterion of contiguity used was adjacency of municipal 

boundaries [Ferrandiz et al., 2002]. Convergence of estimators was achieved before 100,000 

iterations. For the maps shown, a burn-in (iterations discarded to ensure convergence) of 

300,000 iterations was performed and the posterior distribution was derived with 5,000 

iterations. 

The results of the models were included in a Geographic Information System to plot municipal 

maps that depicted smoothed RR estimates and the distribution of the posterior probability that 
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RR>1. Insofar as this indicator is concerned, we applied Richardson’s criterion [Richardson et 

al., 2004], which recommends that probabilities in excess of 0.8 be deemed significant. 

 

3.3 RESULTS 

A total of 55430 deaths attributable to the haematological tumours covered by this analysis 

were registered from 1989 to 1998 in Spain. There are 8077 towns, in 3061 towns of them, no 

death due to this cause was registered. Using these data, and conventional computers, we 

were able to compile and obtain the posterior distribution of relative risk on the basis of a single 

spatial model, including all of Spain’s towns and the 46398 adjacencies existing between them, 

for the three strategies outlined above. Table 3.1 displays a number of descriptive statistics for 

the population and disease data. The total population was under 40 million, and leukemia 

mortality was two times higher than that of multiple myeloma and quite superior of NHL 

mortality. The mean number of cases per area, for haematological tumours, is 6.9 and the 

median is 1. 

  Total Mean Median Standard 
deviation Min. Max. No. (%) of areas 

with zero counts

Population 38872268 7812.7 600 44081.1 5 3010492 0 (0) 

Observed 55430 6.86 1 70.96 0 4774 3061 (37.8) 

Expected 55744.65 6.9 1.3 65.17 0 4514.3 0 

Observed NHL 18363 2.27 0 25.02 0 1654 5008 (62.0) 

Expected NHL 18471.6 2.28 0.422 21.67 0 1501.7 0 

Observed  Myeloma 11634 1.44 0 14.97 0 1039 5400 (66.8) 

Expected Myeloma 11707.2 1.45 0.29 13.9 0 966.6 0 

Observed Leukaemias 25433 3.15 0 31.13 0 2081 4215 (52.2) 

Expected Leukaemias 25565.9 3.16 0.59 29.6 0 2045.9 0 

Table 3.1 Summaries of population and haematological tumours mortality in the 8077 Spanish towns. 

Results of comparison of models  

The DIC values listed in Table 3.2 show that Lawson’s model furnished the lowest values and 

was thus the one that best fitted our data.  
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Model  

Expected 
deviance.  

E(D) 

Deviance evaluated with 
respect to expected values. 

D(E) 

Number of effective 
model parameters.  

(Pd) DIC 

BYM 8114 7522 592 8706 

Lawson 8058 7436 622 8680 

ZIP 8206 7698 508 8714 

Table 3.2. Deviance Information Criterion (DIC) for the three models. 

The correlation coefficients between the estimated relative risks yielded by the three models 

were very high, with the correlation between the BYM and Lawson models being slightly higher 

than that for the other two (BYM-Lawson r=0.964; BYM-ZIP r=0.938; Lawson-ZIP r=0.932). 

Figure 3.3 shows the combined representations of the cloud of points corresponding to the 

results for each pair of models. In all three cases, the data can be seen to be aligned along the 

main diagonal, indicating equality of results yielded by the two models for any given town. As 

the correlation coefficients confirmed, the BYM and Lawson models were the ones to yield the 

most similar results, since the data are more closely superimposed along the diagonal than in 

the other two cases, in which the clouds of points are wider. 

 
Figure 3.3. Clouds of points representing the RR distributions of the 

respective models, taken in pairs. 

Figures 3.4 a), b) and c) plot the smoothed RR maps for the three models. Comparison of the 

maps shows that the spatial distribution of relative risks was practically identical in all three 

cases. When it came to detecting towns that registered high and medium risks, the behaviour of 

the three models was identical. 
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Figure 3.4. Municipal distribution of haematological tumours mortality in Spain. Distribution pattern of 

smoothed relative risk (RR), according to: a) BYM model; b) Lawson model; c) Zip model; d) Posterior 

probability of RR being greater than 1. Haematological tumours mortality, Spain 1989-1998.  

The differences emerged when it came to allocating low relative risks, i.e., those below 0.77. 

The ZIP model registered most towns with relative risks of this type (804). In contrast, the 

traditional BYM model was the one that had the smallest number of towns with low relative risks 

(316). The Lawson model registered the greatest number of towns with extreme relative risks of 

both types, i.e., very low, below 0.67 (164), and very high, above 1.5 (6). 

Cases in which discordances appeared between the results obtained for smoothed relative risks 

and those obtained for SMR were targeted for specific analysis. These discordances can go two 

different directions: on the one hand, there is the case where the relative risk is high versus an 

SMR of less than 1, viz., when the relative risk has been overestimated, and, on the other hand, 

there is the contrary case, where the smoothed relative risk is less than 1 versus an SMR that is 

greater than unity, viz., when the relative risk has been underestimated. The appearance of 

such cases may be attributable to the influence of the spatial component on the smoothing 

process. 

Examination of these two events in the results yielded by the three models showed that the best 

model in terms of appearance of cases with RR≥1 and SMR<1 was the BYM model, with the 
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lowest percentage of cases. In contrast, the Lawson and ZIP models registered a lower number 

of locations with RR<1and SMR≥1, with both displaying the same percentage. 

The differences in the number of locations with opposite association between RR and SMR 

yielded by the three models were not sufficiently great to allow this criterion to be used for 

comparative purposes. For each model percentages of small areas with RR≥1 and statistically 

significant SMR<1, α=0.95,  were around of 3.7%, and those with RR<1 and statistically 

significant  SMR≥1 around 5%. 

Spatial distribution of haematological tumour mortality 

From maps a) b) and c) in Figure 3.3, which depict the smoothed relative risks estimated by the 

three models, it will be clearly seen that the areas of highest risk were Barcelona Province and 

the Canary Islands (the islands of Gran Canaria, Tenerife and La Palma in particular), though 

Asturias also had a number of towns with high relative risks. 

In terms of the spatial location of the areas with opposite association, the results showed that 

most of the cases with RR≥1 and SMR<1 were concentrated in the Canary Islands and 

Barcelona, whereas the areas with RR<1and SMR≥1 were mostly in the Castile-León Region. 

Map d) in Figure 3.3 depicts the distribution of posterior probability under Lawson’s model, in as 

much as this was the model that furnished the lowest DIC. According to this model, there were 

199 towns with a probability of greater than 0.8 of their estimator of real risk being higher than 

unity. Their geographical distribution displayed two clearly differentiated patterns, namely: one 

with a majority of towns in Barcelona Province (97 towns) and the Canary Islands (49 towns), 

and  the remainder divided up among a series of provinces, e.g., Madrid, Seville, Zaragoza, 

Salamanca, Toledo and Huelva; and the other, with major cities such as Gijón, Vigo and 

Cartagena.  

By combining the two patterns, the following emerges: on the one hand, there are the provinces 

in which the towns having the highest relative risks are concentrated, namely, Barcelona and 

the two Canary Island Provinces; and on the other, there are important towns and cities that do 

not have such high relative risks but, in contrast, do have an almost certain likelihood of such 

relative risks being greater than 1. Table 2.3 shows the towns -excluding those in the Canary 

Island Autonomous Region- which registered probabilities in excess of 0.9. 
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Provincia 
Town Obs Exp SMR 

RR 

(LAWSON)

RR 

(BYM) 

RR 

(ZIP) 

p(RR>1) 

(LAWSON) 
Baleares PALMA DE MALLORCA 463 402.9 1.149 1.130 1.129 1.112 0.994 

Barcelona BADALONA 314 253.9 1.237 1.210 1.219 1.213 0.999 

 BARCELONA 3186 2690.9 1.184 1.180 1.182 1.179 1.000 

 CALELLA 25 17.8 1.408 1.267 1.249 1.294 0.950 

 LLAGOSTA (LA) 18 11.7 1.533 1.202 1.201 1.192 0.913 

 MANRESA 128 110.2 1.162 1.112 1.124 1.127 0.940 

 MATARO 151 130.7 1.155 1.136 1.143 1.144 0.960 

 MOLINS DE REI 33 24.7 1.336 1.156 1.139 1.141 0.915 

 MONTCADA I REIXAC 33 32.6 1.012 1.093 1.074 1.117 0.902 

 PIERA 14 10.1 1.383 1.156 1.169 1.136 0.921 

 PINEDA DE MAR 29 20.1 1.439 1.255 1.243 1.251 0.957 

 PREMIA DE MAR 44 26.9 1.632 1.374 1.331 1.254 0.994 

 RUBI 65 55.8 1.164 1.128 1.133 1.139 0.924 

 SABADELL 313 254.0 1.232 1.196 1.207 1.194 0.999 

 S ADRIA DE BESOS 51 39.6 1.288 1.216 1.214 1.24 0.970 

 VILASSAR DE MAR 22 16.8 1.310 1.189 1.184 1.208 0.924 

 S PERE DE RIUDEBITLLES 8 3.5 2.269 1.278 1.195 1.264 0.919 

 S COLOMA DE GRAMENET 172 147.7 1.165 1.153 1.155 1.174 0.989 

 TERRASSA 255 220.9 1.154 1.133 1.143 1.134 0.992 

 VILAFRANCA DEL PENEDES 64 39.6 1.614 1.374 1.342 1.353 0.995 

 VILANOVA I LA GELTRU 89 66.0 1.347 1.258 1.251 1.251 0.990 

Cuidad Real CIUDAD REAL 95 71.8 1.322 1.146 1.139 1.085 0.937 

A Coruña CORUÑA (A) (CORUNNA) 399 337.6 1.182 1.157 1.156 1.161 0.997 

Granada GRANADA 359 319.7 1.123 1.083 1.091 1.071 0.956 

Guipúzcoa SAN SEBASTIAN 316 267.2 1.182 1.141 1.149 1.143 0.995 

Huelva HUELVA 185 157.6 1.174 1.124 1.126 1.121 0.944 

Madrid MADRID 4774 4514.3 1.058 1.055 1.056 1.054 0.999 

Murcia CARTAGENA 240 210.7 1.139 1.107 1.112 1.112 0.947 

 UNION (LA) 23 14.9 1.534 1.333 1.242 1.333 0.924 

Navarra ALSASUA 22 9.7 2.263 1.188 1.198 1.17 0.921 

 PAMPLONA  330 256.8 1.285 1.179 1.204 1.171 0.999 

Asturias CORVERA DE ASTURIAS 30 20.6 1.458 1.229 1.211 1.211 0.951 

 GIJON 478 400.6 1.193 1.177 1.179 1.186 1.000 

 LLANERA 24 17.1 1.401 1.196 1.177 1.191 0.927 

 OVIEDO 340 296.6 1.146 1.125 1.132 1.13 0.991 

Pontevedra VIGO 393 347.8 1.130 1.101 1.103 1.105 0.972 

Salamanca SALAMANCA 275 240.3 1.144 1.100 1.101 1.088 0.951 

Seville S JUAN DE AZNALFARACHE 35 23.8 1.470 1.232 1.187 1.208 0.912 

 SEVILLE 936 850.7 1.100 1.090 1.094 1.088 0.995 

Toledo TOLEDO 117 82.9 1.410 1.266 1.228 1.158 0.993 

Valencia CANET D'EN BERENGUER 8 2.7 2.902 1.588 1.212 1.436 0.917 

 SAGUNTO 106 82.0 1.292 1.150 1.156 1.112 0.925 

Vizcaya BARAKALDO 173 145.2 1.191 1.104 1.125 1.107 0.920 

Zaragoza ZARAGOZA 953 868.4 1.097 1.065 1.081 1.062 0.972 

Table 3.3. Haematological tumours mortality in Spain. Towns having a posterior probability (PP) superior 

to 0.9 of having an RR greater than 1 (p(RR>1)). Towns, excluding those in the Canary Island 

Autonomous Region, listed in order of province. Observed and expected deaths (Obs, Exp); estimated 

relative risk (RR); standard mortality ratio (SMR).  
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3.4 DISCUSSION 

The geographical patterns, performance and conclusions derived from the results of the three 

models discussed in this study are very similar. Even though conclusions of previous studies 

suggests the mixture models are more appropriate modelling relative risk pattern and do no 

over-smooth maps [Fernandez and Green, 2002; Lawson and Clark, 2002]. Haematological 

tumours register a geographical pattern that might possibly be partially explained by 

environmental determinants, since many of the highest-risk towns are located in heavily 

industrialised areas. The distribution pattern supports the hypothesis that differences in lifestyle 

and urban air pollution may determine the urban mortality pattern of these tumours [Lopez-

Abente et al., 2001], and this conclusion can be reached from any of the models. 

Previous studies on provincial lymphohaematopoietic tumour mortality patterns have reported 

results with negligible geographical variability and without any defined pattern, save for the 

excess mortality observed for the Canary Islands [Doll, 1991]. The use of towns as a level of 

study allows patterns to emerge that would otherwise remain hidden by virtue of provincial 

averaging, this advantage have been highlighted in previous studies of small areas in Spain 

about different causes of mortality which have not included haematological tumours [Benach et 

al., 2004]. 

Provinces that display the highest number of towns with excess mortality are Las Palmas, 

Tenerife, Barcelona, Asturias and Girona. Equally important are municipal areas, many in the 

form of isolated areas, which correspond to major towns and cities, and the results for which are 

shown in Table 3.3.  

The case of the Canary Islands calls for special mention. This excess mortality was already 

visible in earlier studies, though the origin of this pattern remained unidentified. The pattern is 

repeated for both lymphomas and multiple myeloma, and to a  lesser extent, for leukaemias, 

tumours that register a higher mortality in Las Palmas than in Tenerife [Doll, 1991]. At various 

times, the effect of the proportion of the foreign population on mortality patterns in the Canary 

Islands (reliability of census data and case allocation) has been discussed. One of the problems 

detected is the difference between the population census figures and the municipal electoral 

roll, a difference higher than those found in other Autonomous Regions [Godenau and Arteaga, 

2004]. In our study, both sources were used as denominators. Were the problem to lie in the 

denominators, excess mortality, and probably excess incidence, would be observed in all the 

causes studied. Nevertheless, according to the information drawn from the Canary Island 

cancer registry, reported NHL incidence in both sexes is higher there than for the other 

registries in Spain, with no such excesses being in evidence for the remaining tumour sites. It 

would therefore be of great interest if an in-depth study were to be conducted into the 



Modelling municipal mortality                                                                                                      28 

determinants of these tumours in the Canary Island Autonomous Region, since this difference in 

mortality would not appear to be solely attributable to census-related or demographic artefacts. 

With respect to the results yielded by the different study models, the geographical pattern that 

emerges is very similar. Models that seek to remedy the excess of zeros, display a pattern that 

is almost identical to the classic BYM model, this suggest ZIP model does not distinguish 

between areas with no cases and areas with cases. Although goodness-of-fit criteria indicate 

that the model proposed by Lawson is that which best fits our data, the choice of one or another 

probably has scant practical consequences. In regard to the use of ZIP model, it could be 

unrealistic to think of null risk areas, however this distribution has been used in small areas with 

rare diseases in previous studies [Congdon, 2001; Ugarte et al., 2004]. 

In general, Bayesian models for plotting disease maps are conservative, in that they have a low 

sensitivity for detecting areas with moderate increases in risk, but, in contrast, have a 

pronounced specificity for detecting areas of high risk [Richardson et al., 2004]. That is to say, 

when the smoothing process yields high relative risk values, this is because the relevant SMR is 

high. Environmental risks are low, however, and as a result these methods have a limited power 

for detecting them [Richardson et al., 2004].  

The results that point to large cities could simply be attributable to the greater populations to be 

found there. In other words, statistically significant excesses are detected in places where the 

comparison has sufficient power. Yet, this does not happen with other tumours or groups of 

tumours. The municipal pattern for haematological tumours is thus very specific and is different 

to that observed for other tumour sites. 

With the exception of ionizing radiations and benzene in myeloid leukaemias, the aetiology of 

lymphohaematopoietic tumours is little known. Nevertheless, suspicions surrounding the 

multiple risk factors present in the study, namely, ionizing and non-ionizing radiations and 

exposure to different chemical substances (petroleum by-products, hydrocarbons, pesticides, 

solvents) [Schotenfeld and Fraumen, 1996], are shared vis-à-vis haematological tumours 

(leukaemias, NHL and myeloma). There has been some evidence that leukaemia and 

lymphomas occur in neighbourhoods that contained industrial sites [Benedetti et al., 2001; 

Parodi et al., 2003]. The pattern of municipal distribution linked to large cities suggests that 

factors associated with the process of urbanisation, such as air and/or industrial pollution, may 

be implicated in the aetiology of such processes.  

The geographical pattern is determined by deaths in adults, who account for over 85% of cases, 

since lethality among children is low. Indeed, on examining municipal leukaemia mortality 

distribution in the under-25 age group in Spain, no geographical pattern whatsoever is in 

evidence (data not shown). Although infectious aetiology may be present in haematological 
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tumours, it seems highly unlikely that it would determine the pattern plotted for all age groups. 

With respect to the mechanisms implicated in the infectious aetiology of haematological 

tumours in childhood, the following three hypotheses have been advanced: exposure in the 

uterus or in the period immediately preceding birth; delayed exposure to common infections 

after the first year of life [Greaves, 1997]; and unusual population mixing [Kinlen, 1996; Mcnally 

and Eden, 2004]. The population-mixing hypothesis was initially formulated in terms of 

situations of immigration to isolated, sparsely populated areas [Kinlen et al., 1995]. The 

influence of migratory phenomena on leukaemia mortality has been studied and it has been 

suggested that rural-urban migration may be implicated in leukaemia mortality in Italy and 

Greece [Kinlen and Petridou, 1995]. In the period 1960-1970, important migratory phenomena 

of this type took place in Spain, with Catalonia being a net recipient of immigration from many 

areas, thereby rendering the population-mixing hypothesis plausible. Internal migratory flows 

were linked to the intensification of the industrialisation process and a decline in Spain’s rural 

population [Capel, 1967]. As a consequence, population mixing and exposure to environmental 

and industrial pollution are very closely related phenomena in this country. 

The different Bayesian models used in this study furnished some very similar results. The high 

frequency of areas without cases would not seem to pose a serious difficulty to fitting these 

models, at least in this group of causes. It would be advisable to ascertain whether this 

conclusion can be generalised and, by extension, whether the above observations are therefore 

applicable to other tumour sites. 
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4. STUDY OF NON-HODGKIN'S LYMPHOMA MORTALITY 
ASSOCIATED WITH INDUSTRIAL POLLUTION IN SPAIN, USING 
POISSON MODELS 

 

4.1 INTRODUCTION 

In general, industrial activities constantly release a great amount of toxic substances into the 

environment. At present, evidence regarding the health risk posed by residing near pollutant 

industries and, by extension, being exposed to their emissions, is limited. Non-Hodgkin's 

lymphomas (NHLs) constitute one of the tumour sites that has been linked in the literature to 

proximity to industrial areas[Johnson et al., 2003; Sans et al., 1995; Sharp et al., 1996]. During 

the second half of the 20th century, NHLs witnessed a marked increase world-wide, in terms of 

both incidence and mortality [Muller et al., 2005], which means that they form part of the group 

of so-called emerging tumours. This same increase has also been observed in Spain [Pollan et 

al., 1998].  

Although this tumour's aetiology is rather unknown, its relationship with the immune system has 

generated theories about its increase being connected with the HIV epidemic [Eltom et al., 

2002], though the inclusion of Highly Active Antiretroviral Treatments (HAARTs) does not 

appear to have affected the rising trend in NHLs [Fisher and Fisher, 2004]. 

From the environmental point of view, there are some studies that link lymphomas to exposure 

to substances such as agricultural chemicals [Fisher and Fisher, 2004], and dioxins released by 

incinerators [Floret et al., 2003]. Mention should also be made of the fact that a number of 

occupational exposure studies have reported higher NHL incidence and mortality among 

workers exposed to industrial solvents [Blair et al., 1998; Burnett et al., 1999; Eltom et al., 

2002]. According to Spanish mortality data, NHLs are particularly frequent in the Canary Islands 

[Lopez-Abente et al., 2006b], while on the mainland, higher NHL mortality is observed in 

Asturias, the Basque Country and Catalonia, three of Spain's most industrialised regions 

[Garcia-Perez et al., 2007]. As follow two maps showing risk estimations are presented, Map 

4.1 shows the SMR and Map 4.2 the smoothed relative risk, both at municipal level. 

At the beginning of this decade, specific legislation was passed, both in Spain and in Europe, 

governing the control of pollutant emissions. This initiative included the setting-up of the public 

European Pollutant Emission Register (EPER) [EPER, 2004], which records pollutant emissions 

reported by industries that admit to exceeding pre-established pollution thresholds included in 

the Decision (2000/479/EC) of the European Commission [EPER, 2004; Commission Of The 



Cancer and industrial pollution                                                                                                    32 

European Communities, 2000]. This database furnishes information on the location of industrial 

foci, 50 specific pollutants, and a long list of industrial processes that release emissions to air 

and water, thereby offering a wide range of possibilities for using such information to study 

possible associations between risk of incidence or mortality due to different causes and 

proximity to sources of industrial emissions.  

 
Map 4.1. Standard Mortality Ratio of LNH at municipal level. 

 

 

Map 4.2. Smoothed relative risk of LNH at municipal level. 
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The following map (Map 4.3) shows the location of the industrial facilities registered in EPER 

sited in Spain. 

 

Map 4.3. Location of the industrial facilities registered in EPER sited in Spain. 

Quality information on industrial pollution, as part of the overall environmental pollution to which 

the population is exposed, is a critical point when it comes to evaluating its effects. Due to the 

dearth of such information, a recourse widely used in scientific literature is to estimate exposure 

based on the distance to the polluting source  [Elliott et al., 2000; Johnson et al., 2003; Sans et 

al., 1995; Sharp et al., 1996]. 

This study sought to explore the relationship between municipal NHL mortality in Spain and 

distance to EPER-registered industries, as an indirect measure of exposure to industrial 

pollution, using a series of Poisson-regression-based mathematical models for the purpose.  

 

4.2 MATERIALS AND METHODS 

4.2.1 Data 

Observed NHL cases, broken down by death, sex and age group (18 groups), were drawn from 

entries of individual deaths recorded by the National Statistics Institute (Instituto Nacional de 

Estadística - INE) with ICD9 for the period 1994-2003, in respect of the 8073 Spanish towns 

registered in the 2001 census.  
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Municipal populations, likewise broken down by sex and age group, were used to calculate 

expected cases These populations were obtained from the 1996 electoral roll and the 2001 

census, which respectively correspond to the mid-point of the two five-year periods included in 

the study (1994-1998 and 1999-2003). Person-years for each quinquennium were calculated by 

multiplying the respective populations by 5. Expected cases resulted from multiplying the 

mortality rates for Spain as a whole, for each sex, age group and quinquennium, by the person-

years of each town, broken down by the same strata.  

Industrial pollution data were obtained from the EPER figures published in 2004, which include 

industries that voluntarily reported pollutant emissions exceeding a designated reporting 

threshold for 50 toxic substances. This database contains information identifying the industrial 

activity, the substances emitted, and the installation's geographical location by reference to its 

co-ordinates, previously validated and corrected for poor geocoding [Garcia-Perez et al., 2008]. 

The emission data correspond to information reported by industries for 2001. The 452 industries 

that reported releases to air to the EPER were grouped by industrial sector (Figure 4.1). In this 

study, farms were excluded from the analysis.  

 

Figure 4.1. Location of the industrial facilities registered in EPER sited in Spain for the studied sectors. 

For the construction of the exposure variable and calculation of RRs on the basis of spatial 

autocorrelation models, maps of municipal boundaries and co-ordinates of the centroids of 

population centres were used. This is the only available geographical information for each 

municipality, boundaries of the township and its centroid. We do not know the real limits of the 

inhabited areas; consequently, we assume that the whole population of each town lives in its 

centroid. 

Distance to the emission source was used as an estimator of exposure to pollutant substances 

released by industries, [Diggle, 1990; Elliott et al., 2000; Garcia-Perez et al., 2008; Lawson A, 

2001; Selvin et al., 1992]. Using this criterion, exposed populations were defined as any 
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population corresponding to a town that had EPER-registered industries situated within a radius 

of 2000, 1500 and 1000 metres, in a circle drawn with the municipal centroid as its centre. For 

study purposes, we only considered industrial groups that had a minimum of 10 towns within the 

2-, 1.5- and 1-kilometre areas respectively. On the basis of this definition, an exposure variable 

was constructed for each industrial sector that showed more than 10 towns having industries 

within the predefined radius, for the total Spanish population. This variable was defined as a 

factor with three possible levels, which distinguished among: towns that had no industrial 

installation within the designated radius (unexposed); towns that had installations corresponding 

to the industrial group studied within the designated radius (exposed); and towns that had some 

other type of industrial installation. Finally, with the aim of controlling possible confounding 

effects, the following socio-demographic variables were included in the analysis: percentage of 

illiteracy; percentage of unemployed persons; size of household (persons per home), obtained 

from the 1991 census; and mean income level [Banco Español de Credito, 1993].  

4.2.2 Models 

Firstly, Poisson regression models were fitted, using the following formula:  
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where: �i is the relative risk in area i; Oi is the number of deaths in area i; Ei are the expected 

cases; and xi are the socio-demographic variables. 

This risk estimation method takes no account of any possible spatial correlation in data drawn 

from contiguous areas, such as towns in a given region or country. To take such correlation into 

account, we therefore considered a mixed Poisson-regression-based model that included a 

provincial random effect: 
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where pi is the provincial random term. 

Lastly, a Bayesian hierarchical model was used [Clayton et al., 1993; Ramis et al., 2007; 

Wakefield, 2007]. These types of models, which fall within the category of the so-called 

conditional autoregressive models (CAR), include two random-effects terms that take the 
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following into account: a) municipal contiguity (spatial term); and b) municipal heterogeneity. In 

our case, we used the model proposed by Besag, York and Molliè (BYM) [Besag J et al., 1991]:  
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where: hi is the term of municipal heterogeneity; and bi is the spatial term. 

With each of the three methodologies used, a multivariate model was fitted including the 

distance to the locus of each type of industry, individually, and the remaining possible 

confounders mentioned above. In the Poisson and mixed models, the estimates were calculated 

using the glm and glmmPQL functions of the R software programme [R Development Core 

Team, 2005]. Spatial autocorrelation models were fitted with the aid of the WinBUGS Bayesian 

estimation programme [Spiegelhalter et al., 1996]. To obtain results from the spatial model, a 

burn-in period of 150,000 iterations was performed, which guaranteed convergence of the 

model parameters, and the posterior distribution was derived with a further 25,000 iterations. 

Approximately 15 hours on a conventional computer was required to complete this process. 

 

4.3 RESULTS 

From 1994 and 2003 there were 22,262 NHL-related deaths in Spain, accounting for 2.7% of all 

cancer deaths. In 4758 towns (59%) there was no death due to this cause. 

The industrial sectors considered, together with the number of towns respectively located less 

than 2000, 1500 and 1000 metres away, are shown in Table 4.1. This table also includes the 

population belonging to towns deemed to be exposed within a radius of 2000 metres. 
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No. towns with 
installations at x 

metres 

 Industrial sector 
Total No. 
factories 2000 1500 1000 Population exposed 

at <2000 m 
1 Combustion installations > 50 MW 59 24 13 6 1,034,398 
2 Mineral oil and gas refineries 10 3 3 1 9,520 

3 
Metal industry and metal ore roasting or sintering 
installations, Installations for the production of 
ferrous and non-ferrous metals 

68 52 35 22 113,953 

4 
Installations for the production of cement clinker 
(>500t/d), lime (>50t/d), glass (>20t/d), mineral 
substances (>20t/d) or ceramic products (>75t/d) 

55 79 49 27 665,785 

5 Basic organic chemicals 37 18 8 3 284,852 
6 Basic inorganic chemicals or fertilisers 25 5 3 1 169,963 
7 Pharmaceutical products 8 4 2 1 216,590 

8 Installations for the disposal or recovery of 
hazardous waste (>10t/d) or municipal waste (>3t/h) 8 4 0 0 62,853 

9 Installations for the disposal of nonhazardous waste 
(>50t/d) and landfills (>10t/d) 43 15 4 1 146,811 

10 Industrial plants for pulp from timber or other fibrous 
materials and paper or board production (>20t/d) 18 13 6 3 725,225 

11 
Slaughterhouses (>50t/d), plants for the production 
of milk (>200t/d), other animal raw materials 
(>75t/d) or vegetable raw materials (>300t/d) 

12 14 9 4 208,227 

12 Installations for surface treatment or products using 
organic solvents (>200t/y) 12 13 6 2 418,749 

  
Table 4.1. Industrial sectors. Number of towns with installations at distances of 2000, 1500, 1000 and 500 

metres from the municipal centroid, by type of industry. Population exposed to emissions from each 

industrial sector at a distance of 2000 metres.         

Shown in Table 4.2 and represented in Figure 4.2 are the RRs associated with each of the 

industrial sectors studied, for the respective radii of 2000, 1500 and 1000 metres. This table 

also includes the confidence (models 1 and 2) and credibility intervals (model 3) of the 

estimates. From these estimates, it will be seen that in towns situated within a radius of 2000 

metres of paper, pulp and board installations, exposure to pollutant emissions from this industry 

was associated with excess NHL mortality. This excess risk was statistically significant in all 3 

models, namely: 1.163 (95% CI: 1.06,1.27) for Poisson regression; 1.24 (95% CI: 1.09,1.42) for 

the mixed model; and 1.21 (95% CI: 1.01,1.45) for the spatial BYM model. Analysing the RRs 

associated with the variable of exposure to the paper, pulp and board industry in Table 3.2, it 

will be seen that the highest RR estimate was yielded by the spatial mixed model, followed by 

the BYM model and Poisson regression, in that order. 
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Table 4.2. Relative risks and 95% confidence and credibility intervals for towns with installations lying 

within a radius of 2000, 1500 and 1000 metres from the municipal centroid. Estimates adjusted for age, 

sex and socio-demographic variables. 
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Figure 4.2. Relative risks and 95% confidence and credibility intervals for the relative 

risk associated to the different industrial sectors for a radius of 2000 
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4.4 DISCUSSION 

The results show a possible association between exposure to air pollution from the paper, pulp 

and board industry and excess risk of NHL mortality, regardless of which model is used. 

Analysing the information contained in the EPER for 2001 shows that almost all the paper, pulp 

and board industries reported emissions of the following compounds, above the threshold 

established for their inclusion in the registry: CO; CO2; NO2; sulphur dioxide; organochlorinated 

compound mixtures; and organic carbon. Taken individually, some of these industries also 

reported emissions of metals (chrome, copper, nickel, lead and zinc), as well as phosphorous, 

nitrogen and PM10 particulate matter.  

In the literature, there are few studies that link NHL to environmental exposure to chemical 

substances. Some occupational studies suggest a positive association with exposure to organic 

solvents, such as benzene [Blair et al., 1993;Hardell et al., 1998;Hayes et al., 1997], 

trichloroethylene (TCE), tetrachloroethylene (PCE) and styrene [Wartenberg et al., 2000]. Other 

occupational studies associate exposure to pesticides with an elevated risk of NHLs [Garabrant 

and Philbert, 2002; Lynge et al., 1997]. Lastly, different studies addressing the relationship 

between NHLs and exposure to dioxins furnish contradictory results [EPIYMPH, 2007; Cole et 

al., 2003]. In one study on a large cohort of paper industry workers, mortality from non-

Hodgkin's lymphoma and leukaemia was higher among workers with elevated SO(2) exposure, 

and a dose-response relationship with cumulative SO(2) exposure was suggested for non-

Hodgkin's lymphoma. The cohort included 57,613 workers who had been employed for a 

minimum of 1 year in the pulp and paper industry in 12 countries [Lee et al., 2002]. Aside from 

environmental exposures, there is evidence to indicate that situations associated with chronic 

antigenic stimulation or immunosupression favour the appearance of these tumours [Eltom et 

al., 2002; Fisher and Fisher, 2004]. 

Assessment of exposure to environmental agents that are noxious to human health is a very 

complex process. At present, there is a great variety of exposure-measurement strategies, 

depending on the timeliness and availability of resources, which include the use of remote 

sensors, biomarkers, or estimates of pollutant dispersion using theoretical or statistical models 

[Nieuwenhuijsen et al., 2006]. With respect to this last avenue of research, there are a number 

of studies in the literature that seek to estimate the risk associated with proximity to hazardous 

sites (focused clustering) [Sans et al., 1995; Wakefield and Morris, 2001]. In these and other 

studies, the authors have explored the idea of estimating risk according to distance [Elliott et al., 

2000; Muller et al., 2005; Sans et al., 1995].  

At present, the real availability of data from remote sensors or biomarkers is negligible. Hence, 

in the absence of such information, many studies have used distance as an exposure marker. 

This approach has been further refined, by endeavouring to model pollutant dispersion using 
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anisotropic models that take data, such as wind direction or geographical relief [Lawson A, 

2001], into account. These models could not be applied to this study, however, for lack of 

information of this type. 

With respect to our study, using the distance from the industry to the municipal centroid means 

that, as the study radius is reduced, the number of towns deemed to be exposed falls 

drastically. This situation leads to the elimination of exposure variables and the impossibility of 

studying variation in risk according to a more stringent definition of exposure for most of the 

emissions considered. Based on the results for the two industrial groups analysed at the three 

distances (production and processing of metals and mineral industries), no conclusion can be 

reached as to variation in risk with variation in distance to the emission source.  

In ecological spatial correlation studies, Poisson regression is one of the basic tools applied to 

analysing the association between risk of mortality and the various potential risk factors [Elliott 

et al., 2000; Lawson A, 2001]. This type of regression forms part of so-called generalised linear 

models and assumes independence between observations or counts, an assumption that could 

be violated when working with data that have a spatial structure [Clayton et al., 1993; Elliott et 

al., 2000]. Nevertheless, the use of Poisson regression may help obtain an initial assessment of 

the presence or absence of this association. Indeed, a number of authors have used this 

method to evaluate the relationship between risk factors and excess incidence or mortality in 

the study of non-communicable diseases in a spatial context [Kokki and Penttinen, 2003; 

Wakefield and Morris, 2001]. The second model used -the mixed model- is included as an 

intermediate step between a model that assumes total independence and a model that 

assumes autocorrelation among observations, and has the advantage of circumventing the 

problems of extra-Poisson dispersion, lending robustness to the estimators and using the 

provincial level to approach autocorrelation, which amounts to a form of stratification in the 

comparisons. Lastly, the third model -the BYM model- assumes that each observation is 

conditionally independent of the others, i.e., that observations are spatially correlated amongst 

themselves, with the aim of modelling the spatial effect of the risk [Besag J et al., 1991; 

Congdon, 2001; Kokki and Penttinen, 2003]. In none of the  models, multiple comparison 

adjustment was considered. The probability of one spurious test result was 0.33. Due to this low 

probability and the number of comparisons, we decided to asses the adjustment for multiple 

testing by the consistency of the associations showed by the results of the different models. 

In our results for almost all the industrial sectors considered, the related risks were observed to 

increase as the random effects covered by the spatial structure of the data were included. The 

relative risks yielded by the mixed model are, in general, higher than those yielded by the 

Poisson regression, while those yielded by the BYM model are the highest for most of the 

variables. The inclusion of random spatial effects terms in risk estimation, not only improves the 

study of the associations between environmental exposures and mortality, but also reduces 
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proneness to "ecological bias" as a result of working on a larger scale and adjusting for 

unknown confounders which have a spatial distribution different to that of mortality [Clayton et 

al., 1993]. However, bearing the similarity of results in mind, the decision to apply the spatial 

model in exploratory studies of this magnitude must be carefully evaluated, due to the excessive 

time of computation. The ever increasing availability of health and exposure data calls for the 

definition of a fast and easy methodology of analysis that would optimise available resources 

within research groups when it came to embarking upon exploratory studies [Ramis et al., 

2007]. 

None of the socio-demographic variables considered in our study appeared to act as a potential 

confounder, inasmuch as their elimination in the various models led to no substantial changes in 

the effect estimators of the distance to the industrial foci studied (data not shown). Furthermore, 

these possible confounding variables, defined a priori, displayed no important direct effect on 

risk of NHL mortality, registering RRs close to unity. 

As stated above, little is known about the possible role of environmental exposures in NHL 

aetiology, which may be due to the fact most of the studies undertaken to date focused on small 

towns and poor-quality exposure measures. This implies a limited statistical power that hinders 

the estimate of modest RRs [Floret et al., 2003]. This paper presents a first approach to the 

exploration of the influence of exposures to industrial air pollution and risk of NHL mortality vis-

à-vis the entire population of a country, something that is an advantage in terms of the sheer 

size of the exposed population but is a drawback in terms of possible misclassification of 

exposure or the uniqueness of each of the installations.  

Other possible limitation is the use of ICD9, that classification has not different code for each 

type of lymphoma included in the LNH; as a result we can not know the spatial patterns of each 

individual type. Moreover, mortality data only includes the more aggressive type of lymphoma. 

Less aggressive lymphomas have a low mortality rate and, consequently, they are not included 

in this study. 

It should also be pointed out that the data referring to environmental industrial exposures were 

drawn from the first edition of the EPER. The quality of this information may conceivably 

improve with the new European Pollutant Release and Transfer Register (E-PRTR), which will 

completely replace the EPER in 2009, thereby allowing for the validity of a study of this type to 

be enhanced, with the possibility of evaluating the effect of specific pollutants. Moreover, though 

the "near versus far" analysis conducted in this study assumes all the industries of a single 

sector to be equal, it must nevertheless be borne in mind that each industrial source has its own 

characteristics, and subsequent studies will therefore have to address these on a case-by-case 

basis.  
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Finally, we should not forget that the use of aggregated data implies important assumptions. We 

assume that the whole population within a municipality lives in its centroid; even more, we 

assume that they have always been living there. Also, we do not consider the daily movement 

of the people to go to work or study, for instance. Hence, we are assuming that everybody 

within an area is exposed to the same type and amount of pollutant substances. 

The results suggest a possible increased risk of NHL mortality among populations residing in 

the vicinity of paper and pulp industries, an excess mortality that is observable using different 

models. In order to confirm or reject these results, it would be of great interest to seek to 

improve the exposure markers and ascertain precisely what is happening in the environs of 

each specific installation. In addition, the availability of incidence data would be very useful to 

study less aggressive lymphomas with low mortality rate, which are not included in this study. 

Those data would provide valuable information to analyse the spatial patterns of individual type 

of lymphomas integrated in modern classifications of the LNH in reference to specific locations 

and exposures. Unfortunately, currently there are no incidence data available at national level in 

Spain. 
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5. RISK AROUND PUTATIVE FOCUS IN A MULTY-SOURCE 
SCENARIO. NON-LINEAL REGRESSION MODELS 

 

5.1 INTRODUCTION 

At present, there is a constant release of toxic substances to the environment from industrial 

activity. However evidence regarding the health risk of living near to pollutant factories and, 

therefore, being exposed to their pollution is limited. One of the most studied health problems 

related to exposure to pollution is cancer. Some authors have described associations between 

lung cancer, metallurgical industry and other industrial areas [Gottlieb and Carr, 1982; Monge-

Corella et al., 2008; Parodi et al., 2005]. Also, lymphomas and leukaemia are more frequent in 

the proximities of industrial areas [Benedetti et al., 2001; Gottlieb and Carr, 1982; Lopez-Abente 

et al., 1999; Sans et al., 1995; Sharp et al., 1996; Viel et al., 2000]. However, others studies 

have not found association between cancer and proximity to industrial facilities and incinerators 

[Elliott et al., 1992; Michelozzi et al., 1998; Pekkanen et al., 1995]. On the other hand, a 

municipal mortality atlas recently published in Spain presents heterogeneous patterns of spatial 

distributions for some cancer causes which suggest that environment factors may be important 

in their aetiology [Lopez-Abente et al., 2006b].  

Assessment of exposure to environmental agents that are noxious to human health is a very 

complex process. At present, there is a great variety of exposure measurement strategies, 

depending on the availability of resources, which include the use of remote sensors, 

biomarkers, or estimates of pollutant dispersion using theoretical or statistical models 

[Nieuwenhuijsen et al., 2006]. With respect to this last research possibility, there are a number 

of studies in the literature that seek to estimate the risk associated with proximity to hazardous 

sites (focused clustering) [Elliott et al., 2000]. In these and other studies, the authors have 

explored the idea of estimating risk according to distance [Biggeri et al., 1996; Diggle and 

Rowlingson, 1994; Draper et al., 2005; Elliott et al., 1996; Maule et al., 2007]. At present, the 

availability of data from remote sensors or biomarkers in this context is very limited. Hence, in 

the absence of such information, many studies have used distance as an exposure marker. This 

approach has been further refined by endeavouring to model pollutant dispersion assuming 

multiplicative risk factors from separate sources [Diggle et al., 1997]. 

This study seeks to explore the relationship between municipal cancer mortality in Spain and 

distance from industrial facilities, as an indirect measure of exposure to industrial pollution in a 

multi-source scenario, using a Poisson-regression-based model.  



Risk around putative focus in a multy-source scenario                                                               44 

5.2 MATERIALS AND METHODS. 

5.2.1 Data 

The study region is the Basque Country, sited in the north of Spain (Map 4.1). Considering the 

data from the 2001 official census, the population of the Basque Country is 2.082.587 

inhabitants, distributed between 247 municipal areas or 1645 census tracts, and the total 

extension of the region is 7.234 km2 hence the population density is 289 inhabitants per km2. 

This region is one of the most industrialize of Spain. Specifically there are 77 industrial facilities, 

registered in EPER*, sited within the region (Map 5.2). Moreover, the Basque Government 

facilitated census tract mortality and geographical data to carryout this study.  

 
Map 5.1. Spain. Basque Country in red                   Map 5.2. Basque Country, municipalities and factories 

 

I. Cases: Mortality data 

This study uses two different sets of cancer mortality data. Even though in both sets the source 

of cases is the individual death entries of the mortality register provided by the National 

Statistics Institute (Instituto Nacional de Estadística – INE).  

The first set collects the number of deaths caused by cancer during the period 1994-2003, 

aggregated at municipal level. Table 5.1 displays the list of causes considered as well as the 

number of deaths per cause and the rate per 1000 inhabitants. This data was furnished by the 

National Statistics Institute (Instituto Nacional de Estadística – INE) for the production of a 

municipal cancer mortality atlas [Lopez-Abente et al., 2006b].  
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Tumours ICD 9 Obs rate=obs/100000

Buccal cavity and pharynx 140-149 1593 79.65
Esophagus 150 1449 72.45
Stomach 151 3745 187.25
Colon-Rectum 153-154 6288 314.4
Gall-Bladder 156 820 41
Pancreas 157 2328 116.4
Larynx 161 1166 58.3
Lung 162 9121 456.05
Bones 170 123 6.15
Connective tissue 171 212 10.6
Melanoma 172 362 18.1
Breast 174 3187 159.35
Uterus 179-182 921 46.05
Ovary 183 894 44.7
Prostate 185 2753 137.65
Bladder 188 2001 100.05
Kindney 189 1149 57.45
Brain 191 1264 63.2
Non Hodgkings limphomas 200,202 1205 60.25
Myeloma 203 760 38
Leukemias 204-208 1325 66.25  

Table 5.1. Causes, ICD 9, number of cases and rate per 100.000 

inhabitants for the period 1994-2003 

The second data set belongs to the Health Department of the Basque Country Government; it 

gathers the number of deaths between the years 1996 and 2003, but in this case the data is 

broken down by census tract, the much finer spatial resolution. Table 5.2 shows the causes, the 

number of deaths and the rate per 1000 inhabitants. The populations of the census tracts vary 

between 1000 and 2000 inhabitants 

Tumours ICD 9 Obs rate=obs/1000

Esophagus 150 1156 57.8
Stomach 151 2960 148
Colon-Rectum 153-154 8750 437.5
Larynx 161 909 45.45
Lung 162 7385 369.25
Breast 174 2544 127.2
Prostate 185 2268 113.4
Bladder 188 1639 81.95
Kindney 189 936 46.8
Haematilogical 200-208 2831 141.55  

Table 5.2. Causes, ICD 9, number of cases and crude rate per 

100.000 inhabitants for the period 1996-2003 

II. Expected cases 

The estimation of expected cases is done using indirect standardization as follows. For the first 

data set the whole period of time under study was divided in two quinquennia (1994–1998 and 

1999-2003). The overall Spanish mortality rates for the above two 5-year periods are multiplied 

by each town's person-years, age group, sex and quinquennium. The person-years for each 

five-year period are obtained by multiplying the populations by 5; the municipal populations, 
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broken down by age group (18 groups) and sex, are obtained from the 2001 census and the 

1996 municipal roll. These years correspond to the mid-points of the quinquennia.  

In the second data set, the number of expected cases in each census tract is also estimated 

using the overall Spanish mortality rates but, in contrast to the first case, the data set is not 

divided into two periods. The census tracts populations are extracted from the 2001 census and 

processed using same strategy employed in the first data set [Barcelo et al., 2008]. 

III. Socio-demographic covariates 

Previous to introducing the socio-demographic covariates included in this study we are going to 

present the concept of confounding. 

“Confounding can be defined as confusion, or mixing, of effects. The effect of the 

exposure variable is mixed together with the effect of another variable that is associated 

with the exposure and is an independent risk factor for the disease. The consequence is 

that the estimated association of the exposure is not the same as its true effect” 

[Rothman K, 2002]. 

Cancer incidence and mortality have many known and unknown risk factors. Some of the 

known factors are socio-demographic characteristics of the population. The influence of these 

factors should be controlled when the aim is to explore the effect of different factors in order to 

control the possible confounding. Age and sex are very important cancer risk factors and they 

should be always taken into account. In this study they are controlled by the use of indirect 

standardization when the number of expected cases is estimated. However, there are many 

more socio-demographic characteristics in a population that can determine the distribution of 

cancer over the population. Also, it is very important to consider the latency period of a disease 

such as cancer. Specialists suggest that for most of the cancer locations the latency period 

could be quite long, 10 years or more. For this reason the socio-demographic information used 

for this kind of study should be previous to the studied period, in our case the best information 

available comes from the 1991 census, even though the aggregation level of this data is 

municipal, not census tract. 

The selected covariates from 1991 census to be included in the analysis are: percentage of 

illiterates, percentage of unemployed and cohabitants per house. The census does not include 

data about the socio-economic status. For this purpose we use an indicator of socio-economic 

level, income, provided by the Spanish Credit Bank for 1991 [Banco Español de Credito, 1993]. 

This index classifies towns and cities into 10 levels according to the estimated average 

domestic income. All these covariates are standardized at national level. Finally, we also 

wanted to consider prevalence of tobacco as a covariate but unfortunately such information is 

no available at the required aggregation level. Consequently, we decided to use the Standard 
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Mortality Ratio of lung cancer as an approximation of the tobacco prevalence [Lopez-Abente et 

al., 2006a].  

Summarizing, the five socio-demographic covariates are: 

1. Percentage of illiterates = Education (-) 

2. Percentage of unemployed 

3. Cohabitants per house = cph 

4. Income 

5. RR lung cancer = Tobacco 

IV. Factories 

As a source of information about the industrial facilities we used the European Pollutant 

Emission Register (EPER) [Garcia-Perez et al., 2008;Garcia-Perez et al., 2009]. This data-base 

collects information regarding emissions to air, soil and water from agricultural or industrial 

facilities and data of 50 pollutant substances. The information available allows us to identify 

different types of industrial activities. In February 2004, EPER data on Spain (for 2001) was 

published. Industrial activities classified in the EPER fall into the following 6 categories: 1) 

Energy industries; 2) Production and processing of metals; 3) Mineral industry; 4) Chemical 

industry and chemical installations; 5) Waste management; and 6) Other activities (which 

include paper and board production, manufacture of fibres or textiles, tanning of hides and 

skins, slaughterhouses, intensive poultry or pig rearing, installations using organic solvents, and 

the production of carbon or graphite). 

In the present study, we are working with the industrial facilities that declare emissions to air 

only. For this specific group of industries, EPER collects information about 61 industrial facilities 

sited in the Basque Country. The distribution of the factories between the six main industrial 

categories is show in the next table. 

  Industrial categories Nº of 
fa cil ities

1   Energy industries 4
2   Product ion and processing of metals 28
3   Mineral ind ustry 8
4   Chemical industry and chemical installations 4
5   Waste management 5

6

  Other activities (which include paper and board production, manufacture of 
fib res or texti les,  tan ning of hides  and skins, slaughterhouses, intensive pou ltry or 
pig rearing, installation s using organic solvents, and the production of carbon or 
graphite)

12

 
Table 5.3. Industrial categories and number of facilities. 
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An exhaustive classification (Table 5.4) can be performed based on a more specific definition of 

the industrial activity (Industrial sector). 

Industrial 
ca tegories   Industrial Sector Nº of 

faci lities

1   Combust ion ins tal lat ions > 50 MW 3
1   Mineral oil and gas refineries 1

2 Metal industry and metal ore roasting or sintering installations, Installation s for
the production of ferrou s and n on -ferrous metals

28

3 Installat ions for the production of cement klinker (>500t/d ), lime (>50t/d), glass
(>20t/d ), mineral substances (>20t/d) or ceramic products (>75t/d)

8

4   Basic organic chemicals 2
4   Basic inorganic chemicals or fertilisers 2

5 Installations for the d isposal of nonhazardous waste (>50t/d) and landfills
(>10t/d ) 5

6 Industrial plants for pulp from timber or other fibrous materials and paper or
board product ion (>20t/d) 4

6 Slaughterhouses (>50t/d), plants for the product ion of milk (>200t/d ), other
animal raw materials (>75t/d) or vegetable raw materials (>300t/d) 1

6   Installations for surface treatment  or products usin g organic solvents (>200t/y) 7  
Table 5.4. Industrial categories, industrial sectors and number of facilities. 

 

5.2.2 Methods 

I. Model 

In epidemiology the standard method to analyse aggregated data is ecological regression, 

specifically the Poisson regression is used for chronic diseases such as cancer. On this 

occasion, we have extended the standard Poisson model with the inclusion of a term based on 

the distance to the point source, to analyse the effect of the exposure to pollutant substances 

released by industrial facilities over the spatial distribution of cancer mortality. The log-linear 

formulation of the standard Poisson regression is unrealistic for this study because of the need 

to combine an elevated risk close to the source with a neutral long-distance effect; therefore, we 

extend the model by the inclusion of a non-linear distance function proposed by Diggle [Diggle 

and Rowlingson, 1994], f(dij) 

)(~ iii EPoO µ  

( ) ( )∏∑ ⎥
⎦

⎤
⎢
⎣
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ij
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- ρ  is the overall risk 

- θk  are the parameters of the socio-demographic covariates Zik 

- αj and βj are the parameters of the distance function, and dij  is the distance between the 

centroid of the area i and the focus j.  

 

II. Inference 

The approximate log-likelihood function for this model without constant term is [Diggle et al., 

1997]: 

( ) ( )i
i

i
i

i OL µµβαϑρ log,,, ∑∑ +−=  

III. Parameter estimation 

The estimators of the parameters are obtained by direct maximisation of the likelihood function 

using the numerical optimization function “optim”, included in R.  The R code for this function is 

in the appendix. 

We have carried out examples to assess the performance of this function, comparing its results 

with those from the “nlr” function included in the “gnlm” library by J. K. Lindsey [Linsey, 2001], 

which was developed to fit non-linear regression models.  

Example: as observed data we use the stomach cancer cases aggregated at municipal level and the 

exposure from the industrial facilities 3689 and 3716 belonging to “basic organic chemical” sector. The 

socio-demographic covariates are also included in the models. (Table 5.5) 

Parameter 
estimators

Study 
function

Lindsey 
Function

rho 1.0158 1.0219

education -0.0477 -0.0460

unemployment 0.1378 0.1363

income 0.0927 0.0927

cohabitans -0.0957 -0.0948

alpha1 0.1836 0.1836

alpha2 0.0735 0.0679

beta1 0.1644 0.1657

beta2 0.6299 0.5745  
Table 5.5. Parameter estimators. Study 

function vs Lindsey function. 

 

(2) 
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IV. Standard error calculations 

A common way to approximate the standard errors of the parameters estimators in a non-linear 

regression model is through the inverse of the Hessian. Usually optimization algorithms in R, 

such as “optim”, provide the Hessian matrix, though we have found that for point source models 

like the one described above, even when numerically accurate values are returned for the 

maximum likelihood parameter estimates, the associated standard errors derived by inverting 

the estimated Hessian can be unreliable. As an alternative strategy, we obtain standard errors 

by combining the R function for direct maximisation of the likelihood with replicated Monte Carlo 

simulations of the fitted model. In Table 5.6 presents results of a simulation experiment; we 

have simulated a dataset of observed cases from a model with four socio-demographic 

covariates and two pollutant sources. In the left column the given values for the parameters are 

presented. The next 3 columns give standard errors; the first from the left (Standard errors) 

have the Monte Carlo standard errors calculated through the given values; the second (Monte 

Carlo standard errors) have the Monte Carlo standard errors calculated through the estimated 

parameters; and the last column shows the standard errors provided from Lindsey algorithm 

calculated with the Hessian Matrix.  

Values Standard errors Monte Carlo standard 
errors

Lindsey standard 
errors (Hessian)

ρ 0.019 0.160 (0.146-0.177) 0.216 (0.196-0.239) 0.245

θ1 0.111 0.172 (0.156-0.190) 0.254 (0.231-0.282) 0.263

θ2 0.099 0.100 (0.091-0.110) 0.129 (0.117-0.143) 0.125

θ3 -0.020 0.066 (0.060-0.073) 0.089 (0.081-0.099) 0.101

θ4 -0.093 0.074 (0.067-0.082) 0.098 (0.089-0.108) 0.100

α1 0.100 0.238 (0.216-0.263) 0.270 (0.246-0.299) 0.192

α2 0.100 0.179 (0.162-0.198) 0.208 (0.189-0.230) 0.180

β1 0.200 0.232 (0.211-0.257) 0.174 (0.159-0.193) 0.123

β2 0.400 0.340 (0.308-0.375) 0.395 (0.360-0.438) 1.149  
Table 5.6. Real values, real standard errors, Monte Carlo standard 

errors and Lindsey standard errors (Hessian). 

 V. Hypotheses testing 

To test hypotheses about the parameters we use the likelihood ratio test. Likelihood ratios 

statistic D;                  
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VI. Approximate null distribution of likelihood ratio statistic D 

Previous studies pointed out that usual asymptotic properties of the likelihood ratio test are not 

clear for models with a non-linear component [Diggle and Rowlingson, 1994;Diggle et al., 1997]. 
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To clarify this point we run a simulation experiment generating data from the following models 

for each area of the region: 

1. Null model: ρµ =i  

2. Distance model : ( )∏=
j

iji dfρµ  

For the distance model we contemplate two scenarios, one with 3 focuses and another with 4. 

For each of the scenarios we set of 100 simulations and calculate the corresponding likelihood 

ratio statistic D. Due to the form of the distance function, when α =0, β is indeterminate. We 

think this fact may affect to the number of effective parameter of the model and consequently 

may affect to the degrees of freedom. Thus we consider two reference distributions to test, χ2
n 

and χ2
2n, where n is the number of focuses in the empirical model. We have performed 

graphical and numerical tests, such as QQ-plot and Kolmogorov-Smirnov test, to contrast the 

form of the empirical distribution against the two theoretical distributions; we also include a 

graph of densities. For the first scenario Figure 5.1 shows three graphs: a density graph with the 

empirical distribution and the two reference distributions (a); Q-Q plot of sample D-values with 

χ2
3 (b); and Q-Q plot of sample D-values with χ2

6 (c). Moreover, as follows, we give the p-values 

for the Kolmogorov-Smirnov goodness-of-fit statistic. In the left graph we can see how the 

density of D-statistic almost overlap the density of χ2
3; on the contrary, the shape of the χ2

6 

density is different from the empirical density. In the QQ-plot for χ2
3 almost all points are over 

the main diagonal, only the last dots are away of it; alternatively dots in the second QQ-plot do 

not follow the main diagonal. Finally, results of Kolmogorov-Smirnov test are consistent with the 

graphical tests. P-value for the first contrast, empirical distribution of D vs χ2
3, is 0.4767; hence 

the null hypothesis can not be rejected. The second p-value is 6.881e-07, therefore null 

hypothesis is rejected for χ2
6. 
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                           (a)                                         (b)                                            (c) 
Figure 5.1 Comparison between the empirical distribution and the reference distributions in a three focus 

scenario. Density graph with the empirical distribution and the two reference distributions (a); Q-Q plot of 

sample D-values with χ2
3 (b); and Q-Q plot of sample D-values with χ2

6 (c). 
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        Two-sample Kolmogorov-Smirnov test 

data:  D and chi3, D = 0.121, p-value = 0.4767 

data:  D and chi6, D = 0.3973, p-value = 6.881e-07  

Next, Figure 5.2 shows the graphs for the scenario with four focuses followed by the p-values 

for the Kolmogorov-Smirnov goodness-of-fit statistic. As in the previous case, results of the 

tests are clear in their conclusions. The empirical distribution of D-statistic can be approximated 

by a χ2
4 distribution, but not for a χ2

8 distribution. 
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Figure 5.2 Comparison between the empirical distribution and the reference distributions in a four focus 

scenario. Density graph with the empirical distribution and the two reference distributions (a); Q-Q plot of 

sample D-values with χ2
4 (b); and Q-Q plot of sample D-values with χ2

8 (c). 

        Two-sample Kolmogorov-Smirnov test 

data:  D and chi4, D = 0.0888, p-value = 0.8707 

data:  D and chi8, D = 0.4676, p-value = 1.497e-08 

The results of this simulation experiment suggest that a χ2
n is a good approximation of the null 

sampling distribution of the likelihood ratio statistic D. On the other hand χ2
2n seems to be a bad 

a approximation. This conclusion is opposite to that taken from previous papers [Diggle and 

Rowlingson, 1994;Diggle et al., 1997], where χ2
2n was the distribution of the generalized 

likelihood ratio statistic, however some authors have discussed about the failure of asymptotic 

properties in non-regular likelihood when indeterminate parameters are involved . 

 

5.2.3 Exploratory analysis 

The three data sets used in this project, two mortality data sets and one pollutant emissions 

data set, provide a large number of possible analyses. To reduce this number and to focus only 

in those associations with a potentially positive result we first carry out an exploratory analysis 

where we fit a standard Poisson regression model that include the socio-demographic 
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covariates (Zik) and a variable derived from the distance between the point source and the 

centroid of the area (Di).  

)(~ iii EPoO µ  
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- ρ  is the overall risk 

- θk  are the parameters of the socio-demographic covariates Zik 

- φ  is the parameter associate to the distance variable Di 

For this first approach, the distance based variable takes a simple form. We create a binomial 

variable giving value 1 to those municipal areas, or census tracts, which have a factory within a 

circumference of fixed radius, and value 0 to the remaining areas. To assess the possible 

variation of the risk with the variation of the distance, we vary the length of the radius over the 

following values: 0.5km, 1km, 1.5km, 2km, 3km, 4km, 5km and 6km. Moreover, to reduce the 

number of regressions to fit, we aggregate the factories by industrial sector. Tables 5.7 and 5.8 

show the number of areas within the fixed radius for the different distances aggregated by 

sector. 

500* 1000* 1500* 2000* 3000* 4000* 5000* 6000*
Combustion installations > 50 MW 3 0 2 3 4 5 10 14 18
Metal industry and metal ore roasting or sintering
installations, Installations for the production of ferrous and
non-ferrous metals 28 5 18 25 34 51 63 78 93
Installations for the production of cement klinker (>500t/d),
lime (>50t/d), glass (>20t/d), mineral substances (>20t/d) or
ceramic products (>75t/d) 8 1 3 6 9 17 22 39 51
Basic organic chemicals 2 1 1 1 2 4 6 9 10
Installations for the disposal of nonhazardous waste (>50t/d)
and landfills (>10t/d) 5 0 1 2 5 6 10 20 22

Industrial plants for pulp from timber or other fibrous
materials and paper or board production (>20t/d) 5 0 1 3 6 8 13 20 22
Installations for surface treatment or products using organic
solvents (>200t/y) 6 0 2 4 7 11 17 22 32

Number of areas within the distance of * metres from a factoryNº 
factoriesIndustrial Sector

 
Table 5.7. Municipal level. Number of areas aggregated by industrial sector within the fixed radius. 

 

 

 

(3) 
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500* 1000* 1500* 2000* 3000* 4000* 5000* 6000*
Combustion installations > 50 MW 3 2 15 62 132 264 383 450 517
Metal industry and metal ore roas ting or sintering
ins tal lat ions, Installations for the production of ferrous and
non-ferrous metals 28 29 104 283 484 938 1528 2370 3104
In stallat ions for the production of cement klink er (>500t/d),
lime (>50t /d), glass (>2 0t/d), mineral substances (>20t/d) or
ceramic p roducts (>75t/d) 8 17 87 196 307 606 867 1032 1221
Basic organic chemicals 2 6 36 74 96 165 253 314 414
In stallat ions for the disposal of nonhazardous waste (>50t/d)
and landfi lls (>10t/d) 5 1 4 18 46 133 304 556 749

In dustrial plants for pulp from timber or other fibrous
materials and paper or board production (>20 t/d) 5 1 2 6 11 36 73 92 141
In stallat ions for surface treatment or products using organ ic
solvents (>20 0t/y) 6 4 33 80 125 247 347 450 539

Number of  areas within the distanc e of * metr es from a factory
Industrial Sector Nº 

factories

 
Table 5.8. Census tract level. Number of areas aggregated by industrial sector within the fixed radius. 

A different model is fitted for each cause, industrial sector and distance. Three sectors are not 

analysed for the following reasons: alimentation has only one facility; combustion has a small 

number of areas within the circumferences; and Inorganic chemicals has both facilities located 

in the same municipality. 

I. Municipal analysis results 

Covariates Eso phag us Stomach Colon-Rectum Gall-Bladder Pancreas Larynx Lung Breast Uterus Ovary Prostate Bladder Kidney Brain Leukemias
Percentage of illi terates 1 .303 2.485 1.494

Percentage of unemployed 1.368 1 .120 1.247 1.568 1.479 1.180 1.193 0.590
Income 0.862 0.890 0.890 1.346

Cohabitants  per house 0.884  
Table 5.9. Risk estimations for the covariates by cancer cause. Municipal level. 

Using model (3); the relative risks for each cause linked to the socio-demographic covariates 

suggest some associations (Table 5.9). The percentage of illiterates is a risk factor for stomach, 

larynx and bladder cancer, specifically the relative risk is very high for larynx, 2.485. The 

percentage of unemployed is associated with esophagus, stomach, colon-rectum, larynx, lung, 

breast and bladder cancer. Income is a protective factor for esophagus, colon-rectum and 

breast, and a risk factor for kidney cancer. Finally, the covariate “cohabitants per house” is a 

protective factor for bladder cancer. 

The following table shows only the distances with some statistically significant relative risks. 

Lung cancer does not appear because of did not show statistically significant associations. 

Some sectors seem to have a trend connected to the distance, the risks increase with the 

proximity to the focus. However, others show isolated risks that appear to be unrelated to 

interpretable any distance effect. (Table 5.10) 
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Dist Nº Areas Esophagus Stomac h Colon-Rectum Gall-Bladder Pancreas Larynx Breast Uterus Ovary Prostate Bladde r Kidney Brain Leukemias

6000 18 1.059 1.107 1.185 1.193

5000 14 1.107 1.085 1.25 1.146
4000 10 1.091 1.101 1.306 1.157
3000 5 1.17 1.079 1.382 1.245
2000 4 1.156 1.1 1.472 1.118 1.243 1.14
1500 3 1.447 1.285 1.536
1000 2 1.661 1.256 1.54 1.496

6000 93 1.029 1.017

5000 78 1.037
4000 63 1.052 1.012
3000 51 1.053 1.016
2000 34 1.033 1.108
1500 25 1.072
1000 18 1.268
500 5 1.234

Mineral 6000 51 1.074 1.077
5000 39 1.073 1.083
4000 22 1.087 1.069
3000 17 1.1
2000 9 1.116
500 1 4.115

6000 10 1.087 1.319

5000 9 1.086
4000 6 1.33
3000 4 1.318
2000 2 1.326 1.285
1500 1 1.567 1.244

6000 22 1.071 1.133 1.115
5000 20 1.088 1.091 1.132 1.188
4000 10 1.109
3000 6 1.555
2000 5 1.564
1000 1 2.897

6000 22 1.314 1.318

5000 20 1.248 1.329
4000 13 1.311 1.378
3000 8 1.394
1500 3 1.557

Solvents 6000 32 1.061 1.169 1.039 1.126 1.084
5000 22 1.083 1.178 1.053 1.113 1.092
4000 17 1.016 1.086 1.184 1.109 1.114 1.096
3000 11 1.153 1.377 1.124 1.2 1.169
2000 7 1.557 1.392 1.129 1.219
1500 4 1.392
1000 2 1.523

Paper 
industry  

Combustion 
installations  

Organic 
chemicals  

Metal 
industry  

Nonhazardous 
waste 

Installations

 
Table 5.10. Risk estimations for the distance variables by cancer cause. Municipal level. 

Summarizing the result by industrial sector, four causes show a trend in risk in relation with the 

combustion installations: stomach, colon-rectum, gall-bladder and bladder cancer. Only prostate 

cancer has a statistically significant distance-trend risk relative to the metal industry. The 

mineral industry may be related in long distances with stomach and colon-rectum cancer risks. 

Chemical organic sector analysis reveals a distance-trend risk with uterus cancer, though the 

number of areas exposed is very low. The risk associated with the non-hazardous waste 

installations can be considered as punctual and not connected to changes in the distance 

between the point source and the centroid. Paper factories yield statistically significant trend-

distance risks with larynx and uterus. Industrial facilities which use solvents have distance-trend 

associations with: stomach, gall-bladder, pancreas, bladder and kidney. Finally, in contrast, the 

following cancer types do not show interpretable distance-trends: esophagus, lung, breast, 

ovary, brain and leukaemia.  

II. Census tracts analysis results 

The socio-demographic data from the 1991 census is only available at municipal level, rather 

than at the disaggregated lever of census tracts. Accordingly, we use the municipal value as an 
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approximation of the census tract value to introduce socio-demographic information in the 

following models:  

Covariates Esophagus Stomach Colon-Rectum Larynx Lung Breast Prostate Bladder Haematological

Percentage of ill iterates 2.710 0.974 1.749

Percentage of unemployed 1.274 1.178 1.212 1.556 1.493 1.302 1.162

Income
Cohabitants per house 0.870 0.785  

Table 5.11. Risk estimations for the covariates by cancer cause. Census tract. 

Risks associated to the covariates have almost the same behaviour as at the municipal level. 

The percentage of unemployed seems to be a risk factor to nearly all causes. However we find 

no statistically significant risks related to income.  

D ist Nº Areas Esophagus Stomach Colon-Re ctum Larynx Lung Bre ast Pr ostate Bladde r Haematologic al

6000 517 1.115 1.116 1.082 1.134

5000 450 1.129 1.122 1.091

4000 383 1.113 1.124 1.137
3000 264 1.18 1.098 1.249

2000 132 1.107 1.325

1500 62 1.424 1.108 1.247

1000 15 1.659 1.307 1.693

500 2 1.549

Metal industry 6000 3104 1.021

4000 1528 1.037

1500 283 1.119

1000 104 1.302 1.332

Mine ral 6000 1221 1.089 1.107

5000 1032 1.078

4000 867 1.067

3000 606 1.095

2000 307 1.088 1.107

1500 196 1.067 1.131

1000 87 1.143

Organic che micals 6000 414 1.071 1.088

5000 314 1.091

4000 253 1.141

3000 165 1.134

2000 96 1.179

1500 74 1.156

6000 749 1.083 1.071 1.067

5000 556 1.083

4000 304 1.071
3000 133 1.114

Pape r industry  1500 6 1.961

Solve nt s 6000 539 1.1

5000 450 1.079 1.083

4000 347 1.18 1.113

3000 247 1.116 1.174

2000 125 1.211 1.274

1500 80 1.449
1000 33 1.81

Combustion 
installations  

Nonhazar dous 
waste Installat ions

 
Table 5.12. Risk estimations for the distance variables by cancer cause. Census tract level. 

The following cancer types reproduce the associations shown in the previous analysis such as: 

stomach cancer, colon-rectum and bladder. The remaining cancer types have behaved 

differently. Lung and breast cancer show distance-trends that do not appear in the municipal 

level analysis. 
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III. Conclusions of the exploratory analysis 

Both previous analyses suggest that three cancer types, stomach, colon-rectum and bladder, 

have associations with some industrial sectors derived from the distance between the point 

source and the centroid of the area. Based on these results, these three causes seem suitable 

candidates for a deeper analysis.  

The spatial distribution of bladder cancer mortality in Spain has been related to the exposure of 

industrial pollution in a recent study [Lopez-Abente et al., 2006a]. On the other hand, stomach 

and colon-rectum are part of the digestive system and tumours located in these organs seem to 

be more associated with diet.  

We also reduce the area of study to focus on a multi-focus scenario. The new study area is the 

so-called “Gran Bilbao” region, which includes 15 municipalities, one of them is the city of 

Bilbao, and is divided into 657 census tracts. Its population is 906.222 inhabitants and the 

population density is 1.811,1 habitants per km2. There are 20 industrial facilities either within the 

area or on its borders, half of them belong to the metal industry.  (Map 5.3) 

Accordingly, the next part of this report will study bladder cancer mortality. Also we are going to 

repeat this analysis over other two causes: haematological tumours and prostate cancer. In the 

literature it can be found studies where haematological tumours seem to be associated with 

exposure to industrial pollution [Parodi et al., 2003; Ramis et al., 2009]. Finally, in this previous 

analysis prostate cancer was the only tumours showing a distance-trend risk relative to the 

metal industry. 

 

Map 5.3. Basque Country by census tract. Gran Bilbao is the red area. Factories locations blue dots. 
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5.3 RESULTS. MORTALITY IN GRAND BILBAO 

In the following models the level of aggregation of the data is census tracts; therefore, the 

analysis includes 657 areas and 20 industrial facilities. 

Factories 

As a source of information about the industrial facilities we used the European Pollutant 

Emission Register (EPER). The information available allows us to identify different types of 

industrial activities. The register presents the following 6 categories: 1) Energy industries; 2) 

Production and processing of metals; 3) Mineral industry; 4) Chemical industry and chemical 

installations; 5) Waste management; and 6) Other activities (which include paper and board 

production, manufacture of fibres or textiles, tanning of hides and skins, slaughterhouses, 

intensive poultry or pig rearing, installations using organic solvents, and the production of 

carbon or graphite). In the present study, we are working with eight industries located in central 

axis of the area; three metal factories, one mineral factory, three chemicals factories and one 

from group “others activities”. For the following analyses, the exposure variables are defined as 

distance between the centroid of the census tract and the location of the factories. Moreover, 

we aggregate these variables in the four industrial categories: metal, mineral, chemical and 

other activities; in order to increasing the statistical power the data.  

The following figure is a map of Gran Bilbao by census tract where locations of factories are 

represented by squares of different colours according to its industrial category,  

 

 
Map 5.4. Gran Bilbao by census tract. Factories by industrial categories in colour squares blue for metal industry, brown 

for mineral industry, green for chemical industry and purple for other activities. Remaining factories in blue dots. 

Metal 
Mineral 
Chemical 
Others 
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5.3.1 Bladder cancer. 

I. Descriptive analysis 

During the period under study there were 664 deaths 

caused by bladder cancer. The graph shows a scatter-plot 

of the observed cases (black dots) and the expected cases 

(orange dots). 

On average there is one case per census tract, the median 

and the mean are 1 and 1.01 respectively. The value of the 

standard deviation is 1.05; consequently, there is no 

overdispersion in the data.  

Min.  1st Qu.  Median   Mean   3rd Qu.   Max.    sd 

0.000   0.000   1.000    1.011   2.000   5.000   1.051 

 

The following map (Map 5.5) shows the distribution of the standard mortality ratio 

(observed/expected) all across the Gran Bilbao area. The industrial facilities are also shown. 

Finally, the circumference marks an area around the “3724” facility of 4 km of radius. 

 

 

Map 5.5. Standard Mortality Ratio of bladder cancer by census tract in Gran Bilbao 
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On this occasion, the exposure to each pollutant focus is estimated by the distance between the 

centroid of the census tract and the location of the factory. With the aim of helping with the 

computation process the unit distance used in the models is 100km.  

II. Regression Poisson. Covariates 

Multiple regressions have been fitted to find the possible association between the socio-

demographic covariates and the distribution of the bladder cancer mortality in Gran Bilbao. 

Three covariates yield a statistically significant relative risk: percentage of illiterates, income and 

standard mortality ratio of lung cancer (tobacco prevalence). In accordance with the results, the 

percentage of illiterates and level of tobacco prevalence are risk factors whilst income is a 

protective factor. The remaining socio-demographic covariates seem to be unrelated with 

bladder cancer mortality. 

Model 1 

glm(formula = O ~ offset(log(E)) + educ + income + lung, family = poisson) 

 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)  0.46410    0.20538   2.260 0.023841    

educ         1.36290    0.39409   3.458 0.000544  

income      -0.18414    0.10180  -1.809 0.070485    

lung         0.11677    0.06809   1.715 0.086354    

--- 

    Null deviance: 733.38  on 656  degrees of freedom 

Residual deviance: 717.11  on 653  degrees of freedom 

 

These three covariates are included in all the following analyses where we use the model (1) 

described in the methods section.   

III. Model (1): individual regressions 

Firstly, we have studied the 20 industrial locations one by one, adding to the spatial model the 

distance variable and the socio-demographic covariates. We have fitted an independent model 

for each point source. The results show that the deviances for these 20 models are very similar 

to the deviance of model 1 (717.11) and according to the likelihood test none of them is 

significantly better than the initial Poisson model. Results are included in the appendix. 

IV. Model (1). Multiple  regression inside the circumference 

The second approach is done across the area inside the circle. The industrial facilities 3693, 

3702, 3702, 3716, 3724, 7333 and 3739 are located within this area. However, there are two 
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pairs of factories very close to each other, 3693-3707 and 3722-3739; therefore, each pair is 

treated as just one pollutant focus. We have fitted a model that includes the five focuses. The 

statistic of the likelihood test has a value of 3.6726 and the 5% critical value of chi-square with 5 

df is 11.07. These results suggest that the model with 5 focuses is not better than the model 

with just covariates. (More results are included in the appendix) 

V. Model (1). Multiple  regressions with 8 focus (Multiple focus scenario) 

As a final step, we have studied the whole area of Gran Bilbao again, but this time the industrial 

facilities are grouped by industrial area (table 3). Moreover, only 8 of the industrial facilities, 

which are centred in the area, are introduced in the models in order to analyse the potentially 

most influential hazardous locations according to the distribution of the population. These eight 

factories belong to four different industrial areas: 

• Metal: 3724, 3733, 3745 

• Mineral: 3702 

• Chemical: 3693, 3707, 3716 

• Others: 3739 

Several models are fitted. The variables introduced in each model are in Table 5.13. 

rho Educa tio n 
(-) Income Tobacco Metal     

3f
Mineral    

1f
Chemical  

3f
Others    

1 f

Model 1 X X X X

Model 2 X X X X X

Model 3 X X X X X X

Model 4 X X X X X X

Model 5 X X X X X X X

Model 6 X X X X X X X X  
Table 5.13. Covariates introduced in the multiple regressions 

Although, the null model is the one with no covariates, in this case we are going to consider 

model 1 as the reference model for the likelihood ratio tests. It can be seen in Table 5.14 that 

the deviances obtained from all the fitted models are just slightly smaller than the deviance of 

model 1 and the likelihoods are slightly bigger. As a result, none of the likelihood ratio tests are 

statistically significant. 

As follows we give the results for different analysis performed over other two tumoural causes: 

haematological tumours and prostate cancer. A similar scheme has been developed. 
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Deviance Likelihood D Stat P-value

Null 733.4

Model 1 717.11 -612.81

Model 2 716.02 -612.26 1.10 0.29

Model 3 715.90 -612.20 1.22 0.54

Model 4 715.65 -612.08 1.46 0.69

Model 5 715.77 -612.14 1.34 0.73

Model 6 715.81 -612.16 1.30 0.86  
Table 5.14. Deviances, likelihood, D statistics and P- values for 

a  χ2
n  for the multiple regressions 

 

5.3.2 Haematological tumours 

I. Descriptive analysis 

The total number of deaths by haematological tumours 

during the period 1996-2003 in “Gran Bilbao” was 1175. 

On average, there were 1.788 per area.  

 Min.  1st Qu.  Median  Mean   3rd Qu.   Max.    sd 

0.000   1.000   2.000   1.788   3.000   7.000   1.4375 

 

3,7073,693

3,721

3,700

3,702

3,7243,739
3,733

3,716

3,743

3,701

3,712

3,727 3,723

3,745

3,737

3,742 3,641

3,686

3,689

Haematological

1.5  a 200   (174)
1.3  a 1.5   (42)
1.1  a 1.3   (58)
1  a 1.1   (13)
0.95 a 1.05   (30)
0.91 a 0.95   (13)
0.77 a 0.91   (48)
0.67 a 0.77   (52)
0  a 0.67  (227)

P t t

 
Map 5.6. Standard Mortality Ratio of haematological tumours by census tract in Gran Bilbao 
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II. Regression Poisson. Covariates 

Initially, we fit multiple regressions with the socio-demographic covariates. Income, cohabitants 

per house (cph) and “tobacco” are risks for haematological tumours morality. (Model 1) 

            Estimate Std. Error z value Pr(>|z|)    

(Intercept)  0.41733    0.13624   3.063  0.00219  

Income       0.15131    0.08546   1.770  0.07664   

cph         -0.37284    0.14641  -2.547  0.01088   

lung        -0.09006    0.05250  -1.715  0.08630  

--- 

    Null deviance: 714.43  on 656  degrees of freedom 

Residual deviance: 705.44  on 653  degrees of freedom 

Likelihood: -427.0215 

 

III. Model (1). Multiple  regressions with 8 focus 

In a second analysis, we work over the multiple focus scenario, in other words, we work with the 

8 factories sited within the region and all the census tracks of “Gran Bilbao”. Two models with 

distance variables are built: model 2 and model 3. The following table (Table 5.15) shows the 

sequence of covariates introduced in each model. 

rho Income Cohab. 
house Tobacco Metal     

3f
Mineral   

1f
Chemical 

3f
Others    

1f

Model 1 X X X X

Model 2 X X X X X X X

Model 3 X X X X X X X X  
Table 5.15. Covariates introduced in the multiple regressions 

Table 5.16 gives the results for these models. The inclusion of the distance variables does not 

improve significantly the fitting of the data. Values of deviance and likelihood are very similar for 

the three models and p-values for the D statistic indicate non advance in models 2 and 3 with 

reference to the model 1.  

Deviance Likelihood D Stat P- value

Null 714.43

Model 1 705.44 -427.02

Model 2 704.38 -426.49 1.06 0.78

Model 3 704.19 -426.40 1.25 0.87   
Table 5.16. Deviances, likelihood, D statistic and P-value 

for a χ2
n  for the multiple regressions 
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5.3.3 Prostate cancer 

I. Descriptive analysis  

There were a total of 883 deaths by prostate cancer in the 

region of “Gran Bilbao” during the period 1996-2003. On 

average, there were 1.344 cases per census track with a 

standard deviation of 1.36. 

   Min.  1st Qu.  Median   Mean   3rd Qu.   Max.    sd 

  0.000   0.000   1.000    1.344   2.000    7.000  1.36 
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1.5  a 200   (168)
1.3  a 1.5   (36)
1.1  a 1.3   (54)
1  a 1.1   (16)
0.95 a 1.05   (25)
0.91 a 0.95   (10)
0.77 a 0.91   (49)
0.67 a 0.77   (35)
0  a 0.67  (264)

 
Map 5.7. Standard Mortality Ratio of prostate cancer by census tract in Gran Bilbao 

 

II. Regression Poisson. Covariates 

As we have done with the previous cancer causes, we start the analysis by fitting a multiple 

Poisson regression. This regression yields the following estimators of risk for the five socio-

demographic covariates: 
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glm(formula = O ~ offset(log(E)) + educ + unemploy + income + cph + lung, family 

= poisson) 

 

            Estimate Std. Error z value Pr(>|z|) 

(Intercept) -0.25224    0.60168  -0.419    0.675 

educ        -0.04131    0.62761  -0.066    0.948 

unemploy     0.15271    0.41977   0.364    0.716 

income      -0.14905    0.19922  -0.748    0.454 

cph         -0.16938    0.32768  -0.517    0.605 

lung         0.06971    0.05965   1.169    0.243 

 

    Null deviance: 818.04  on 656  degrees of freedom 

Residual deviance: 807.51  on 651  degrees of freedom 

Likelihood -537.8797 

 

III. Model (1). Multiple  regressions with 8 focus 

We also repeat analysis over the multiple focus scenario defined before. 

On this occasion the five socio-demographic covariates are confounders for the effect of the 

distance variables; consequently, we are going to use these five covariates in the following 

models. 

Table 5.17 shows the sequence of fitted models and the different covariates included in each of 

them. 

rho Education  
(-) Unemployed Income Cohab. 

house Tobacco Metal    
3f

Mineral   
1f

Chemical 
3f

Others    
1f

Model 1 X X X X X X

Model 2 X X X X X X X

Model 3 X X X X X X X X

Model 4 X X X X X X X X
Model 5 X X X X X X X X X
Model 6 X X X X X X X X X X  

Table 5.17. Covariates introduced in the multiple regressions 

Table 5.18 gives the values for the deviance and likelihood for the 6 models. The table shows 

also the P-values of the likelihood ratios test with model 1 as reference. There is evidence that 

the inclusion of the distance variables in model 6 is an improvement over model 1. The value of 

the D statistic is 10.42 with a P-value of 0.03. With regard to the remaining models, there seems 

to be no improvement in contrast to model 1 since their P-values are superior to 0.05. 
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Deviance Likelihood D Stat P-value

Null 818.04

Model 1 807.51 -537.88

Model 2 807.38 -537.81 0.13 0.72

Model 3 803.05 -535.65 4.46 0.10

Model 4 802.54 -535.39 4.97 0.17

Model 5 802.54 -535.37 5.03 0.17

Model 6 797.09 -532.67 10.42 0.03  
Table 5.18. Deviances, likelihood, D statistic and P- value for a χ2

n  for the multiple regressions 

As we just saw, only model 6 is significantly better than the model with just socio-demographic 

covariates, model 1.  

Relative risks associated to each socio-demographic variables for models 6 are in Figure 5.3.  

In d u str ia l 
a r e a D is ta n c e  fu n c t io n s In d u str ia l 

a r e a D is ta n c e  fu n c t io n s

M e ta l C h e m ic a l

M in e r a l O th e r s

( )( )21.0exp4.01 dist−+

( )( )21.18exp42.01 dist−+

( )( )24.0exp18.01 dist−−

( )( )2002.0exp2.131 dist−+

Covariate rho Education 
(-) Unemployed Income Cohabitants 

house Tobacco

Relative Risk 0.827 1.192 0.671 1.265 0.488 1.080
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( )( )21.18exp42.01 dist−+

( )( )24.0exp18.01 dist−−

( )( )2002.0exp2.131 dist−+
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( )( )21.0exp4.01 dist−+

( )( )21.18exp42.01 dist−+

( )( )24.0exp18.01 dist−−

( )( )2002.0exp2.131 dist−+

Covariate rho Education 
(-) Unemployed Income Cohabitants 

house Tobacco

Relative Risk 0.827 1.192 0.671 1.265 0.488 1.080

 
Figure 5.3. Relative risk of the socio-demographic covariates and distance functions. 

In concordance with these estimations, income, percentage of illiterates (education -) and RR of 

lung cancer (tobacco prevalence) are risk factors for prostate cancer mortality. On the other 

hand, percentage of unemployed and cohabitants per house have the opposite effect. Risks 

associated with the distance from the industrial factories are also presented in table 17, though 

the understanding of these mathematical functions is easier with the help of the graphs showed 

in Figure 5.4. 

As follows, we have several graphs related to the results of this model. Firstly, we have graphs 

with the densities of the empirical distributions of the estimation of the parameters for the socio-

demographic covariates and the intercept (Figure 5.6). These graphs show the shape of the 

densities and their location in reference to 1, even though, as we said before, all socio-

demographic covariates are confounders for the distance variable effects. In general, all 

densities are rather symmetric with a sharp shape pointing the mean. As a particular case, the 

effect of tobacco shows a extremely sharp density in a narrow interval. For this reason, even if 

the relative risk associated with tobacco is not the largest, 8%, the estimation is the most 
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consistent. 
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Figure 5.4. Densities of the empirical distributions of the estimation of the parameters 

Secondly, the following graphs represent risk functions and confidence intervals at 95% linked 

to the distance from the factories of each industrial activity. As seen below, the graphs of each 

function have a different shape, meaning different risk effects. Risk related to metal industries 

has a starting value of 1.4 decaying with distance until 1.085 at 12 km, though the confident 

interval reaches the neutral value, 1, slightly above 10 km. The risk function associated with the 

mineral factory is constant and does not change with distance to the focus. Alternatively, the 

risk function linked to distance from chemicals factories has a positive slope with a risk of 0.83 

at distance 0 increasing until 1 at 6 km. But the confident interval reaches the value 1 before 3 

km. Finally, the risk function for “other kind of industries” is almost vertical dropping from 2.7 to 

1 in 500m; however, the lower limit of the interval is 1 for the entire range. 
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Figure 5.5. Pairwise scatterplot of the empirical distributions of the 

estimation of the parameters 
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Figure 5.6. Risk functions and confident intervals (95%) for the distance to the factories by industrial area 
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Finally, we have graphs of the residuals in order to assess the goodness-of-fit of the model 

(Figure 5.7). The top graph shows deviance residuals against fitted values; the remaining 

graphs show deviance residuals against distances from the industries. In all the graphs a non 

spatial structure can be detected. 
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Figure 5.7. Graphs of residuals. Deviance residuals vs fitted values and distances. 
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5.4 DISCUSSION 

In the empirical example, we have studied the distribution of bladder, haematological and 

prostate cancer mortality in the so-called Gran Bilbao area in relation to the exposure to 

pollutant substances emitted from the factories sited within the area, using the model described 

in the methods section. This model was initially developed by Diggle and Rowlingson to fit 

individual data; however, in this study we are using aggregated data.  

In the analysis of the first data set, bladder cancer mortality, different approaches have been 

used in reference to the inclusion of factories and the extension of the area under study whilst 

searching for evidence. The final scenario includes the 8 factories sited in the central axis of the 

region, aggregated in four industrial categories, metal, mineral, chemical and other activities. 

The main result is that the model which better fits the available data is the one that only includes 

the socio-demographic covariates, income, cohabitants per house and education; in other 

words, relation between distance to industrial factories and bladder cancer mortality is not 

statistically significant. The remaining data sets, haematological tumours and prostate cancer 

mortality, have been studied in the last scenario only. For haematological tumours mortality no 

evidence of association with distance to factories has been found, moreover, as with the 

example of bladder cancer, some socio-demographic characteristics can be considered as risk 

factors, such as income, cohabitants per house and tobacco. Finally, results for prostate cancer 

mortality suggest an association with distance to the factories. The proposed model identifies 

different risk functions for the different activities. The metal industries function has decaying 

slope with starting risk value of 1.4 and reaches the neutral effect above 10km of distance. 

This is one of the first studies analysing the relation between the spatial distribution of cancer 

mortality and the exposure to industrial pollution using aggregated data in Spain. Thus, it is 

important to discuss some conceptual and methodological issues. 

Cancer is a complex disease and has many known and unknown risk factors [IARC, 2009b]. 

Environmental exposure could be one important factor, although there are many others 

involved. Lifestyle is the main factor, diet (30-35%), tobacco (25-30%) and obesity (10-20%). On 

the other hand infections (15-20%). And finally genetic predisposition (5-10%). However, the 

interaction between these factors is very important in the development of the disease [Anand et 

al., 2008]. In the present study only ecological data about the socio-demographic status of the 

population and estimation of the exposition to industrial pollution have been included, which 

means that important information is not being taken into account. For some tumoural locations, 

those with high survival rate, a weakness is the use of mortality data instead of incidence data. 

This implies that the data is biased because many cases of cancer are not taken into 

consideration for the study. 
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It is important to discuss the definition of distance when data are spatially aggregated whilst it 

can be introduced misclassification. In this work we have considered the centroid of the area as 

the reference point to calculate distances from sources. That decision may bias the results due 

to the use of centroids as co-ordinates to position an area’s entire population, when, in reality, 

the population may be considerably dispersed. This classification error becomes much less 

important in smaller-sized areas.  

There are others important assumptions linked to the use of aggregated data. Initial, we assume 

that the whole population within an area, municipality or census tract, lives in its centroid; even 

more, we assume that they have always been living there. Also, we do not consider the daily 

movement of the people to go to work or study, for instance. Hence, we are assuming that 

everybody within an area is exposed to the same type and amount of pollutant substances. 

Finally, it should be mentioned that other sources of environmental pollution, such as traffic or 

indoor pollution, are not included in this study. Exposure to such pollution can contribute to the 

development of cancers [Belpomme et al., 2007a]. As example, substances such as polycyclic 

aromatic hydrocarbons produced by combustion of organic fuels are considered as mutagens 

[IARC (International Agency for Research on Cancer), 1989] and indoor pollutants as volatile 

organic compounds, benzene for instance, are rated as carcinogens [IARC (International 

Agency for Research on Cancer), 1995].  

On the other hand, it should also be pointed out that the data referring to environmental 

industrial exposures was drawn from the first edition of the EPER. The quality of this information 

may conceivably improve with the new European Pollutant Release and Transfer Register (E-

PRTR), which will completely replace the EPER in 2009, allowing enhancement of the validity of 

a study of this type, with the possibility of evaluating the effect of specific pollutants. 

Conclusions 

The proposed model is able to identify different risk functions associated with different focus 

when we work in a multiple focus scenario, using aggregated data in small areas. 

We have found evidence of association linking the distribution of prostate cancer mortality 

aggregated by census tracts and exposure to pollutant substances from the metal industrial 

facilities located within the area; exposure estimated through the distance between the point 

source and the centroid of the census tract.  

The socio-demographic characteristics of the population are related to many cancer causes, as 

the results for the previous analysis yield.  
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6. GENERAL DISCUSION AND FUTURE WORK 

Spatial epidemiology 

Before the general discussion we end this thesis with a summary of general conclusions for the 

three approached areas of the spatial epidemiology. 

I. Disease mapping 

Disease maps are the best method to represent any health event data in their geographical 

context when the aim is to summarize the variation of spatial distribution of diseases. 

Disease mapping methods have proved to be an excellent instrument for the description of the 

spatial distribution of incidence or mortality rates. They are, as well, a helpful hypothesis 

generator, useful in the assessment of inequalities and the allocation of health care resources.  

The most common summary risk measure represented in the disease maps is the standardised 

mortality or incidence ratio (SMR or SIR). However, the SMR and SIR are inconsistent 

estimations with high sampling variability when the aggregation unit is small, such as 

municipalities or census tract. Nevertheless, this variability can be reduced by the smoothing of 

the raw rates via hierarchical modelling giving the so-called smoothed relative risk. Thus, when 

the basic unit of aggregation is big, such as provinces or whole countries the use of SMR or SIR 

gives a accurate representation of the risk surface. However, when the basic aggregation unit is 

small the best estimated risk measure is the smoothed relative risk. 

II. Ecological regression (Poisson regression) 

Poisson regression is one of the basic tools applied to the analysis of the association between 

disease and potential risk factors. The main advantage of this analytical method is the 

increasing availability of information, both health and risk factors, at aggregated scale. However, 

we should not forget the necessity and relevance of ecological analyses when environmental 

factors and effects are under exploration, despite the fact that no cause-effect relationship 

conclusions can be accounted for. However, the main disadvantage of this method is the so-

called “Ecological fallacy”, so non-individual level associations can be explained by ecological 

regression studies. 

In general, in spite of its sometimes imputed weaknesses, the use of ecological regression is of 

major help to achieve an initial assessment of the presence or absence of association among 

the studied risk factors and the disease. Moreover, it allows to work out the relationships and 

interactions between different risk factors over a disease outcome when they are studied jointly. 
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III. Assessment of risk in relation to a point source 

Point source studies can be applied to assess increases in incidence or mortality of diseases in 

adjoining populations of potential environmental hazards. 

For this kind of studies the main difficulty is the measurement of the real exposure suffered by 

the population: consequently several strategies have been developed to cope with it. In many 

studies distance to the source is employed as a surrogate of the real exposure by defining a 

decay function of the risk as the distance increases. Different authors propose different methods 

to approach the definition of the decay function, although the accuracy of this approximation it 

has been widely disputed. 

Lastly, ad-hoc studies regarding specific pollution sources are carried out when the media or the 

political authorities express concern in relation to the risk of pre-specified exposures. In some of 

these cases there is not a prior biological hypothesis what causes an especially complicated 

interpretation of the results. 

 

6.1 DISCUSSION 

Although each section has a discussion, below we are going to discuss briefly the common 

materials and methods. 

6.1.1 Mortality data 

It has already been mentioned several times throughout this thesis that mortality data have 

some weakness because they just include lethal cases of a disease. A better dataset would be 

one with all cases, mortality and incidence from tumoural registers. Unfortunately, as we have 

said before, nowadays there is not a nation wide cancer register in Spain. The lack of 

information about non-lethal cancer cases in the data set may bias the analysis for some 

tumoural locations, those with high survival rate, while, on the other hand, tumours with lower 

survival rates are well represented using death certificates. In Spain, quality of cancer death 

certificates was analysed by Pérez-Gómez and Aragonés in 2006 [Perez-Gomez et al., 2006]. 

Their main conclusions were: first, overall accuracy of cancer death certificates in Spain was 

comparable to that reported for other industrialised countries. Secondly, the accuracy contrasts 

by tumoural location, the main leading cancer sites were well certificated (i.e. lung, colon-

rectum, female breast cancer, prostate, haematological..); however, less common locations are 

less accurate certified (i.e. larynx, bladder and ovary).  According to this study our data are 

useful to analyse cancer mortality in Spain. 
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6.1.2 Population data 

The municipal populations used for this study come from the 1996 Electoral Roll and 2001 

Census. These two years correspond to the midway points of the two quinquennia that 

comprise the study period (1994-1998 and 1999-2003). To estimate the number of person-

years these population have been multiplied by five. Census and electoral rolls are the most 

exhaustive source of information related to population; however, they are not completely 

reliable. Census data are collected for a snapshot in time, every decade, consequently they do 

not consider changes in population between census counts. Alternatively, in Spain electoral 

rolls are now continuous, updating every month, which can mean an advantage over census 

data but there are a percentage of the population who do not live in the same municipality 

where they are registered in; therefore, for some municipalities the electoral roll overestimates 

the population while in others it underestimates. In spite of these weaknesses the census and 

the electoral roll are the best source of information for population counts in Spain and they are 

the only ones available at municipal and census tract level. 

6.1.3 Aggregated data 

In this thesis we have used aggregated data for health events, population, socio demographical 

variables and industrial pollution exposure approximation. Many authors have considered the 

limitations of ecological studies in spatial epidemiology [Beale et al., 2008; Elliott et al., 2000; 

Lawson A, 2001]. First, when a study is based solely on aggregated data its results must not be 

interpreted at the individual level because they can suggest misleading conclusions about 

associations (problem known as ecological fallacy or ecological bias, [Selvin, 1958]). For 

instance, when we exploit socio demographical variables at area level we must be aware of the 

assumptions involved: we suppose the entire population in the same area has the same socio 

demographical characteristics. Nevertheless, using small area data reduces the ecological bias 

with more detailed information but by no means rules it out. Moreover, in small area studies 

local effects (e.g. pollution from local sources or local health experiences) can be assessed. 

Alternatively, in reference to the estimation of the pollution’s exposure, we assume that the 

whole population within an area lives in its centroid; even more, we assume that they have 

always been living there. Also, we do not consider the daily movement of the people to go to 

work or study, for instance. Hence, we are assuming that everybody within an area is exposed 

to the same type and amount of pollutant substances. However, exposure data at area level can 

be more accurate than the corresponding individual exposures [Richardson, 1992]. 

Furthermore, in term of risk estimates, for certain exposure measures misclassification at 

ecological level is less important that misclassification at individual level [Armstrong B, 2004]. 
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In this regard, recent studies have started to consider the daily mobility of the population with 

the intention of reducing this misclassification. Specify, one of these studies has included the 

daily mobility by taking into account where people live and work [Jerrett et al., 2005]. 

6.1.4 Pollution data. 

Distance as a proxy of exposure 

Sections 4 and 5 already discuss this point; however, a more general discussion can be done. 

The lack of real exposure measures to harmful pollutant substances released from industrial 

facilities hinders the study of their potential effect on health. Scientists and researchers have 

developed different strategies to deal with this problem and during the last few years several 

methodologies have been presented (in the introduction to section 5 some of these strategies 

are mentioned). When exposure is estimated by the distance to the focus many assumptions 

ought to be considered and the results must be carefully interpreted. Furthermore, cause-effect 

associations can not be concluded, although the results may point to an unknown 

environmental health problem, supporting or rejecting a previous hypothesis. Additionally 

studies that use these kind of proxies should be the first approach to deeper analyse exposure 

to specific pollutants and health problems. 

Data source. EPER 

The first data published from the EPER, corresponding to 2001, included 1,437 companies. 

Those installations had reported pollutant emissions excess over the established thresholds for 

one or more of the pollutants listed in European Union Decision 2000/479/CE. This first list had 

several weaknesses [Garcia-Perez et al., 2008] and was unreliable in reference to the amount 

of substances released; however, it has enabled us to locate the most pollutant industrial 

facilities and to study the distribution of cancer in their vicinity. 

Since 2008 the EPER has been replaced by the European Pollutant Release and Transfer 

Register (E-PRTR), which includes more comprehensive information on industrial pollution from 

91 substances and 65 industrial activities and, besides, it is compulsory.  

6.1.5 Socio demographical variables 

Aims of this thesis do not comprise the study of the associations between cancer mortality and 

the socio-demographic characteristics of the population. However, those factors are important in 

the cancer aetiology. Furthermore, areas with more exposure to pollution are generally the 

areas with high poverty rates, thus both factors should be studied together even when we are 

interested primarily in one of them. In a 2005 study on mortality in small areas associated with 

air pollution and social-demographic variables, it was shown that some socio-demographic 



General discussion and future work                                                                                            77 

variables were confounded by pollution, specifically the poverty effect on mortality was reduced 

by 50% by the inclusion of pollution as a covariate [Jerrett et al., 2005]. Hence, this relationship 

between the social-demographic characteristics and exposure to pollution should always be 

integrated in the models to avoid misleading conclusions in the analyses. 

Data source 

Information about the socio-demographic characteristics comes from the 1991 census. We have 

already discussed the validity of census data and its advantages and weaknesses. For the 

purpose of this study the 1991 census was the best data source available.  

6.1.6 Bayesian inference versus classic inference. 

Throughout this thesis we have applied several statistical models to estimate their parameters. 

For the third section three Bayesian models have been assessed. In the fourth section both 

Bayesian and classical inference are performed. And, finally, the proposed model of the third 

section is fitted by classical maximum likelihood estimation.  

The use of Bayesian or classical statistical estimation has depended on the convenience of the 

method more than the preference for one of them over the other. 

6.1.7 Summary of the methodology 

The main goal of this thesis has been the setting of a methodology to study the spatial 

distribution of health events and its relation to environmental factors, from large disease maps 

for a whole country to clustering analysis focused in small areas. To achieve this main objective 

three steps have been taken. First, we have explored the performance of different methods for 

disease mapping based on Poisson models seeking to describe spatial patterns in the 

distribution of the disease. In particular, three Bayesian hierarchical models for relative risk 

smoothing have been assessed: the Besag, York and Mollié model; a model based on zero-

inflated Poisson (ZIP) distribution, which allowed a large number of event-free areas; and a 

mixture of distributions that enabled discontinuities (jumps in the pattern) to be modelled. The 

major characteristic of these methods is the use of the CAR distribution to include the spatial 

autocorrelation in the model to create a interpretable risk surface. 

In a second step we have sought to analyse the association between the spatial disease 

patterns and the exposure to industrial pollution. Again, we have used three models of 

ecological regression to estimate the relative risk associated with the proximity to pollutant 

emitting factories: Poisson Regression; mixed Poisson model with random provincial effect; and 

spatial autoregressive modelling (BYM model). We have classified as exposed populations 

those having an industry within a radius of 1, 1.5, or 2 kilometres from the municipal centroid 
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and as reference populations those outside those radii. To analyse particular harms related to 

different industrial activities we have aggregated the facilities by sectors. 

Finally, the last step has been to study in depth the effect on public health of industrial air 

pollutants released from the different facilities sited within an urban area. For this purpose we 

have applied an unique model that included all the factories under study and aggregated health 

data in small areas. Due to the lack of real exposure measures we have approximated it by 

using the distance between the focus and the areas’ centroid. The model is able to capture a 

risk increase around the factories and a risk decay in long distances. As above a Poisson 

regression is used as a basic model and is extended with a non-linear term to model that risk 

decay; distance’s function. This distance function has two parameters, the first one is the risk at 

focus and the second is the decay parameter. 

In summary, this thesis should provide environmental epidemiologists and other researchers 

who are unfamiliar with techniques of spatial analysis of environmental factors the tools for 

defining an appropriated methodology to approach these kind of studies. 

 

6.2 FUTURE WORK 

We conclude this thesis with a brief account of areas of future work that are related to the three 

proposed objectives. 

Objective 1: An interesting improvement to the study of the spatial distribution of the risk would 

be its longitudinal analysis by adding the time effect as factor and converting the spatial model 

in a spatio-temporal model. This advance would contribute in the following points: 

1. Establishment of the temporal pattern of the disease. 

2. Study of the temporal persistence of patterns and its association with steady risk 

factors, such as environmental conditions, welfare services, etc. 

3. Detection of unusual spatio-temporal patterns by the insertion of the interaction effect 

when the pattern is linked to short-term environmental harms or changes in the data 

collection, for instance. 

4. Improvement in the epidemiological interpretation of the risk patterns. 

The functional form of this spatio-temporal model could be: 



General discussion and future work                                                                                            79 

( )ittiiti EPoO λµ =~

ittiit νξϑαλ +++=)log(
Baseline

risk
Spatial
effect

Temporal 
trend

Spatio-temporal 
interaction

( )ittiiti EPoO λµ =~

ittiit νξϑαλ +++=)log(
Baseline

risk
Spatial
effect

Temporal 
trend

Spatio-temporal 
interaction  

Recently, some authors have approached the spatio-temporal analysis proposing different 

methodologies. Martinez-Beneito considers the inclusion of the temporal trend in the classical 

model of Besag, York and Molliè [Martinez-Beneito et al., 2008]. Richardson presents a 

Bayesian spatio-temporal analysis of joint patterns of two diseases [Richardson et al., 2006]. 

Consequently, the temporal extension of the model could follow any of these methodologies. 

Objective 2: As we have seen throughout this thesis, in many situations the availability of data 

about risk factors is insufficient, so new strategies to assess these factors are needed. With this 

aim, several studies have used the rates of a disease with well established risk factors to 

analyse the influence of those risk factors over a second disease [Best and Hansell, 2009; 

Lopez-Abente et al., 2006a; Dabney and Wakefield, 2005; Dabney and Wakefield, 2005; Held 

et al., 2005]. 

Therefore, another possible extension to this thesis is the joint study of several cancer locations 

seeking for environmental and socio-demographic common risk factors, in the spatial 

framework.  We would use the recently published works of cluster analysis that use generalized 

linear models [Jung, 2009; Zhang and Lin, 2009] together with the joint diseases analysis, 

searching for a methodology able to identify the aggregation of areas with high risk for those 

different diseases and  similar values for the socio-demographic covariates.  

With this model we would be able to locate the high risk areas shared for the different diseases 

and to identify common risk factors. 

Objective 3: Finally, a motivating extension for Section 3 would be the expansion of the 

proposed model with spatial autocorrelation effects. This extension could be done by including 

the spatial contiguity effects in the multi-focus model. In other words, the distance function 

would be introduced in the BYM model as a new term. 
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However, this extension would transform the model into a hierarchical Bayesian model. 



General discussion and future work                                                                                            80 

),(.~
),(~

bii

hi

NormalCarb
Normalh

τη
τµ

 

    
),(~
),(~

δγτ
βατ

Gamma
Gamma

b

h  

These spatial autocorrelation terms would work in the model as a surrogate of unmeasured 

confounders with spatial behaviour, which would contribute to improving the interpretation of the 

relative risk associated to the environmental exposure from the sources.  

 

Finally, we would like to mention that spatial epidemiology is a growing interdisciplinary area 

where new methods are developed by methodologists and statisticians in collaboration with 

epidemiologists and other specialists. Health politicians and administrators should, then, make 

good use of them. 
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7. CONCLUSIONS 

 

Conclusions objective 1 

1. The three assessed models generate a very similar geographical pattern for the 

distribution of haematological tumours.  

2. The model that seeks to remedy the excess of zeros (ZIP), display a pattern that is 

almost identical to the classic BYM model, suggesting that ZIP model does not improve 

substantially the performance of BYM model when it tries to differentiate between areas 

with no cases and areas with cases.  

3. The goodness-of-fit criteria points as the best model the one proposed by Lawson; 

however, the choice of one or another probably has scant practical consequences. 

4. The different Bayesian models used furnished some very similar results. The high 

frequency of areas without cases would not seem to pose a serious difficulty to fitting 

these models, at least in the studied causes, haematological tumours.  

 

Conclusions objective 2 

1. The results suggest a possible increased risk of NHL mortality among populations 

residing in the vicinity of paper and pulp industries, an excess of mortality that is 

observable using different models.  

2. The three different approaches produce similar results. Therefore, the decision to apply 

the spatial model in exploratory studies of this magnitude must be carefully evaluated 

due to the excessive time of computation. 

3. Distance as a surrogate of the real exposure helps researchers to identify possible 

harmful industrial sectors when there are not direct measures; however, it has many 

weaknesses.  
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Conclusions objective 3 

1. The proposed model is able to identify different risk functions associated with different 

focus when we work in a multiple focus scenario, using aggregated data in small areas. 

2. The distance function is a useful estimation of the risk because it allows to know the risk 

in the focus and the decay with the distance. Therefore, the most influential focuses can 

be identified. 

3. We have found evidence of statistical association linking the distribution of prostate 

cancer mortality aggregated by census tracts and exposure to pollutant substances 

from metal industrial facilities located within the studied area; exposure estimated 

through the distance between the point source and the centroid of the census tract.  

4. Our exploratory analysis suggests that the socio-demographic characteristics of the 

population are related to many cancer causes.  
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9. ABSTRACTS 

9.1 MODELLING OF MUNICIPAL MORTALITY DUE TO HAEMATOLOGICAL NEOPLASIAS 
IN SPAIN 

Background..  

Spatial analysis of health events (spatial epidemiology) has the ability to suggest and detect 

possible sources of heterogeneity which may account for spatial incidence and mortality 

patterns in different diseases. 

This study seeks to explore the geographical pattern of mortality by haematological tumours in 

Spain at municipal level using  three models and to compare their the goodness of fit. 

Methods.  

The fitted Bayesian hierarchical models were: a) the Besag, York and Mollié model; b) a model 

based on zero-inflated Poisson (ZIP) distribution, which allowed a large number of event-free 

areas; and c) a mixture of distributions that enabled discontinuities (jumps in the pattern) to be 

modelled. The tree models allow to obtain smoothed relative risk maps for the all country. The 

goodness of fit was evaluated using the deviance information criteria. 

Results.  

The three models yielded very similar results. The ZIP model plotted a pattern almost identical 

to the BYM model. The goodness-of-fit criteria indicate that the mixture model is the one that 

best fits our data. Haematological tumours display a geographical pattern that could possibly be 

in part explained by environmental determinants, since many of the highest-risk towns belong to 

heavily industrialised areas.  

Conclusions.  

The choice of one or another model has scant practical consequences. The pattern of 

distribution supports the hypothesis that differences in lifestyles, air/industrial pollution and 

migratory phenomena may determine the pattern of urban mortality due to these tumours. 
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9.2 STUDY OF NON-HODGKIN'S LYMPHOMA MORTALITY ASSOCIATED WITH 
INDUSTRIAL POLLUTION IN SPAIN, USING POISSON MODELS 

Background. 

Non-Hodgkin's lymphomas (NHLs) have been linked to proximity to industrial areas, but 

evidence regarding the health risk posed by residence near pollutant industries is very limited. 

The European Pollutant Emission Register (EPER) is a public register that furnishes valuable 

information on industries that release pollutants to air and water, along with their geographical  

location. This study sought to explore the relationship between NHL mortality in small areas in 

Spain and environmental exposure to pollutant emissions from EPER-registered industries, 

using three Poisson-regression-based mathematical models.  

Methods. 

Observed cases were drawn from mortality registries in Spain for the period 1994-2003. 

Industries were grouped into the following sectors: energy; metal; mineral; organic chemicals; 

waste; paper; food; and use of solvents. Populations having an industry within a radius of 1, 1.5, 

or 2 kilometres from the municipal centroid were deemed to be exposed. Municipalities outside 

those radii were considered as reference populations. 

The relative risks (RRs) associated with proximity to pollutant industries were estimated using 

the following methods: Poisson Regression; mixed Poisson model with random provincial effect; 

and spatial autoregressive modelling (BYM model).  

Results. 

Only proximity of paper industries to population centres (>2 km) could be associated with a 

greater risk of NHL mortality (mixed model: RR:1.24, 95% CI:1.09-1.42; BYM model: RR:1.21, 

95% CI:1.01-1.45; Poisson model: RR:1.16, 95% CI:1.06-1.27). Spatial models yielded higher 

estimates. 

Conclusions. 

The reported association between exposure to air pollution from the paper, pulp and board 

industry and NHL mortality is independent of the model used. Inclusion of spatial random effects 

terms in the risk estimate improves the study of associations between environmental exposures 

and mortality. 

The EPER could be of great utility when studying the effects of industrial pollution on the health 

of the population.  
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9.3 RISK AROUND PUTATIVE FOCUS IN A MULTY-SOURCE SCENARIO. NON-LINEAL 
REGRESSION MODELS 

Backgrounds. 

We consider the problem of investigating the risk of non-infectious diseases in populations 

exposed to pollution from different point sources.  

The data most commonly available to study this question consist of counts of cases of disease 

over given areas (Oi) and distances between the focus and a central point within the areas (dij). 

Also covariates related to the socio-economic status are considered (Zk). 

This study seeks to explore the relationship between small area (municipalities or census tracts) 

cancer mortality in Spain and distance from industrial facilities, as an indirect measure of 

exposure to industrial pollution in a multi-source scenario, using a Poisson-regression-based 

model.  

Methods. 

The classic approach to the study of non-infectious disease with data counts is the ecological 

regression. Although, for our specific problem this Poisson regression is extended with the 

inclusion of a distance’s function ( f(dij) ) and the result is non-lineal model. This function models 

an elevated risk close to the source (alpha) with a neutral long-distance effect (beta). 

)(~ ii PoO µ  

( ) ( )∏∑=
j

ij
k

ikki dfZ *** ϑρµ ;      ( ) ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+=

2

exp*1
j

ij
jij

d
df

β
α  

- ρ  is the overall risk 

- θk  are the parameters of the socio-demographic covariates Zik 

- αj and βj are the parameters of the distance function, and dij  is the distance between 

the centroid of the area i and the focus j.  

This model is applied to study the spatial variation of the cancer mortality risk in Gran Bilbao 

region related to exposure to pollutant substances released from the industrial facilities located 

within the region. Data is aggregated in census tracts and socio-demographic information has 

been included in the models as covariates. 
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Results. 

We have studied the distribution of bladder, haematological and prostate cancer mortality.  

The used model has given different risk functions associated with different focus. However, only 

for prostate cancer mortality the model with the distance’s function was statistically significantly 

better than the model with the socio-demographic covariates only. For the remaining models the 

maximum likelihood tests were not statistically significant. 

Conclusions. 

The proposed model is able to identify different risk functions associated with different focus 

when we work in a multiple focus scenario, using aggregated data in small areas. 

We have found evidence of association linking the distribution of prostate cancer mortality 

aggregated by census tracts and exposure to pollutant substances from the metal industrial 

facilities located within the area; exposure estimated through the distance between the point 

source and the centroid of the census tract.  

The socio-demographic characteristics of the population are related to many cancer causes, as 

the results for the previous analysis yield.  
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10. APPENDIX 
 
 
10.1 APPENDIX SECTION 3 
 
 
WinBUGS code for the BYM Model 
 
model 

{ 

  for (i in 1 : N) { 

      O[i]  ~ dpois(mu[i]) 

      log(mu[i]) <- log(E[i]+.000001) + alpha + b[i] + h[i] 

      theta[i]<- log(E[i]+0.00000001) + alpha + b[i] + h[i] 

      RR[i] <- exp(alpha +  b[i] + h[i])   # Area-specific relative risk (for 

maps) 

      h[i] ~ dnorm(0, tau.h)        # Unstructured random effects 

     PP[i] <- step(RR[i]-1) 

  dev.i[i] <- O[i]*log((O[i]+step(-O[i]))/mu[i])-O[i]+mu[i] 

  } 

 

  # CAR prior distribution for spatial random effects:  

  b[1:N] ~ car.normal(adj[], weights[], num[], tau.b) 

  for(k in 1:sumNumNeigh) { 

      weights[k] <- 1 

  } 

  

  # Other priors: 

  alpha  ~ dflat()   

  tau.b  ~ dgamma(0.5, 0.0005)       

  sigma.b <- sqrt(1 / tau.b)                       

  tau.h  ~ dgamma(0.5, 0.0005)        

  sigma.h <- sqrt(1 / tau.h)    

  dev <- 2*sum(dev.i[])                    

} 

 

DATOS  

INITS 

 



Appendix                                                                                                                                    100 

WinBUGS code for the Lawson Model 
 
 
model 

{ 

d[1:regions]~car.l1(adj[],weights[],num[],tau1) 

b[1:regions] ~ car.normal(adj[], weights[], num[], tau1) 

b.mean <- mean(b[]) 

d.mean<-mean(d[]) 

dev <- 2*sum(dev.i[])    

for (i in 1 : regions) { 

O[i] ~ dpois(mu[i]) 

log(mu[i]) <- log(E[i] + .000001) + alpha0 + a[i]+p[i]* b[i]+(1-p[i])*d[i] 

theta[i]<- log(E[i] + .000001) + alpha0 + a[i]+p[i]* b[i]+(1-p[i])*d[i] 

dev.i[i] <- O[i]*log((O[i]+step(-O[i]))/mu[i])-O[i]+mu[i] 

 

RR[i] <- mu[i] / (E[i] + .000001) 

 

PP[i] <- step(RR[i]-1) 

} 

 for(k in 1:sumNumNeigh) { 

      weights[k] <- 1 

  } 

alpha0 ~ dflat() 

tau1 ~ dgamma(rstar, dstar) sigma1<- 1 / sqrt(tau1) 

tau2~dgamma(0.5,0.0005) sigma2<-1/sqrt(tau2) 

for(j in 1:regions){ 

p[j]~dbeta(0.7,0.7) 

a[j]~dnorm(0.0,tau2)} 

} 

 

 

DATOS 

 

INITS 
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WinBUGS code for the ZIP Model 
 
 
model 

{ 

  for (i in 1 : N) { 

      z[i]<-0 

      z[i]  ~ dpois(phi[i]) 

      phi[i] <--ll[i] 

      p[i]~ dbeta(1,1) 

ll[i]<-zero[i]*(log(p[i])-mu[i]+log(1-p[i]))+(1-zero[i])*(log(1-p[i])-

mu[i]+O[i]*log(mu[i])-logfact(O[i])) 

      zero[i] <- equals(O[i],0) 

      log(mu[i]) <- log(E[i]+.0000001) + alpha + b[i] + h[i] 

      theta[i]<- log(E[i]+.00000001) + alpha + b[i] + h[i] 

      RR[i] <- exp(alpha +  b[i] + h[i])  # Area-specific relative risk 

      h[i] ~ dnorm(0, tau.h)        # Unstructured random effects 

  dev.i[i] <- O[i]*log((O[i]+step(-O[i]))/mu[i])-O[i]+mu[i] 

      PP[i] <- step(RR[i]-1) 

      } 

  # CAR prior distribution for spatial random effects:  

  b[1:N] ~ car.normal(adj[], weights[], num[], tau.b) 

  for(k in 1:sumNumNeigh) { 

      weights[k] <- 1 

  } 

  # Other priors: 

  alpha  ~ dflat()   

  tau.b  ~ dgamma(0.5, 0.0005)       

  #sigma.b <- sqrt(1 / tau.b)                       

  tau.h  ~ dgamma(0.5, 0.0005)        

  #sigma.h <- sqrt(1 / tau.h)    

  dev <- 2*sum(dev.i[])                    

} 
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10.2 APPENDIX SECTION 4 
 
R code for Poisson Regression and Mixed Model 
 
##libraries 

library(MASS) 

library(nlme) 

 

 

## fuctions loading for confidence intervals CI 

source("C:/Eper/R/Poisson/ic-rr.R") 

source("C:/Eper/R/Poisson/ic.rr.glmm.R") 

 

 

##data files loading eper y lnh 

source("C:/Eper/lnh/datos lnh ambos.dmp") 

 

 

##tables 

tt3<-tt.3 

tt3$O<-datos$O 

tt3$E<-datos$E 

 

 

####################### regressions ############################### 

##gp1##### 

 

rg1_m<-glmmPQL(O~ offset(log(E+.000001))+factor(gp1)+factor(gpob)+ 

analk+parok+rentk+phogk, random= ~ 1|factor(PROV), family=poisson, verbose=F, 
data=tt3) 

 

rg1<-glm(O~ offset(log(E+.000001))+factor(gp1)+factor(gpob)+ 

analk+parok+rentk+phogk, family=poisson, data=tt3) 

 

##graphs 

plot(rg1_m) 

plot(rg1) ##la regresión sin efecto aleatorio (glm) tiene 4 gráficos 

 

##ic 

rg1_ic<-ic.rr(summary(glm(O~ offset(log(E+.000001))+factor(gp1)+factor(gpob)+ 

analk+parok+rentk+phogk, family=poisson, data=tt3))) 
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rg1_m_ic<-ic.rr.glmm(summary(glmmPQL(O~ 
offset(log(E+.000001))+factor(gp1)+factor(gpob)+ 

analk+parok+rentk+phogk, random= ~ 1|factor(PROV), family=poisson, verbose=F, 
data=tt3))) 

 

 

###gp5######### 

rg5_m<-glmmPQL(O~ offset(log(E+.000001))+factor(gp5)+factor(gpob)+ 

analk+parok+rentk+phogk, random= ~ 1|factor(PROV), family=poisson, verbose=F, 
data=tt3) 

 

rg5<-glm(O~ offset(log(E+.000001))+factor(gp5)+factor(gpob)+ 

analk+parok+rentk+phogk, family=poisson, data=tt3) 

 

##ic 

rg5_m_ic<-ic.rr.glmm(summary(glmmPQL(O~ 
offset(log(E+.000001))+factor(gp5)+factor(gpob)+ 

analk+parok+rentk+phogk, random= ~ 1|factor(PROV), family=poisson, verbose=F, 
data=tt3))) 

 

rg5_ic<-ic.rr(summary(glm(O~ offset(log(E+.000001))+factor(gp5)+factor(gpob)+ 

analk+parok+rentk+phogk, family=poisson, data=tt3))) 

 

###gp6####### 

rg6_m<-glmmPQL(O~ offset(log(E+.000001))+factor(gp6)+factor(gpob)+ 

analk+parok+rentk+phogk, random= ~ 1|factor(PROV), family=poisson, verbose=F, 
data=tt3) 

rg6<-glm(O~ offset(log(E+.000001))+factor(gp6)+factor(gpob)+ 

analk+parok+rentk+phogk, family=poisson, data=tt3) 

 

##ic 

rg6_m_ic<-ic.rr.glmm(summary(glmmPQL(O~ 
offset(log(E+.000001))+factor(gp6)+factor(gpob)+ 

analk+parok+rentk+phogk, random= ~ 1|factor(PROV), family=poisson, verbose=F, 
data=tt3))) 

 

rg6_ic<-ic.rr(summary(glm(O~ offset(log(E+.000001))+factor(gp6)+factor(gpob)+ 

analk+parok+rentk+phogk, family=poisson, data=tt3))) 

 

 

###gp8####### 

rg8_m<-glmmPQL(O~ offset(log(E+.000001))+factor(gp8)+factor(gpob)+ 

analk+parok+rentk+phogk, random= ~ 1|factor(PROV), family=poisson, verbose=F, 
data=tt3) 
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rg8<-glm(O~ offset(log(E+.000001))+factor(gp8)+factor(gpob)+ 

analk+parok+rentk+phogk, family=poisson, data=tt3) 

 

##ic 

rg8_m_ic<-ic.rr.glmm(summary(glmmPQL(O~ 
offset(log(E+.000001))+factor(gp8)+factor(gpob)+ 

analk+parok+rentk+phogk, random= ~ 1|factor(PROV), family=poisson, verbose=F, 
data=tt3))) 

 

rg8_ic<-ic.rr(summary(glm(O~ offset(log(E+.000001))+factor(gp8)+factor(gpob)+ 

analk+parok+rentk+phogk, family=poisson, data=tt3))) 

 

###gp13############## 

rg13_m<-glmmPQL(O~ offset(log(E+.000001))+factor(gp13)+factor(gpob)+ 

analk+parok+rentk+phogk, random= ~ 1|factor(PROV), family=poisson, verbose=F, 
data=tt3) 

 

rg13<-glm(O~ offset(log(E+.000001))+factor(gp13)+factor(gpob)+ 

analk+parok+rentk+phogk, family=poisson, data=tt3) 

 

##ic 

rg13_m<-ic.rr.glmm(summary(glmmPQL(O~ 
offset(log(E+.000001))+factor(gp13)+factor(gpob)+ 

analk+parok+rentk+phogk, random= ~ 1|factor(PROV), family=poisson, verbose=F, 
data=tt3))) 

 

rg13<-ic.rr(summary(glm(O~ offset(log(E+.000001))+factor(gp13)+factor(gpob)+ 

analk+parok+rentk+phogk, family=poisson, data=tt3))) 

 

###gp14############ 

rg14_m<-glmmPQL(O~ offset(log(E+.000001))+factor(gp14)+factor(gpob)+ 

analk+parok+rentk+phogk, random= ~ 1|factor(PROV), family=poisson, verbose=F, 
data=tt3) 

 

rg14<-glm(O~ offset(log(E+.000001))+factor(gp14)+factor(gpob)+ 

analk+parok+rentk+phogk, family=poisson, data=tt3) 

 

##ic 

rg14_m_ic<-ic.rr.glmm(summary(glmmPQL(O~ 
offset(log(E+.000001))+factor(gp14)+factor(gpob)+ 

analk+parok+rentk+phogk, random= ~ 1|factor(PROV), family=poisson, verbose=F, 
data=tt3))) 

 

rg14_ic<-ic.rr(summary(glm(O~ 
offset(log(E+.000001))+factor(gp14)+factor(gpob)+ 
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analk+parok+rentk+phogk, family=poisson, data=tt3))) 

 

 

###gp17############## 

rg17_m<-glmmPQL(O~ offset(log(E+.000001))+factor(gp17)+factor(gpob)+ 

analk+parok+rentk+phogk, random= ~ 1|factor(PROV), family=poisson, verbose=F, 
data=tt3) 

 

rg17<-glm(O~ offset(log(E+.000001))+factor(gp17)+factor(gpob)+ 

analk+parok+rentk+phogk, family=poisson, data=tt3) 

 

##ic 

rg17_m_ic<-ic.rr.glmm(summary(glmmPQL(O~ 
offset(log(E+.000001))+factor(gp17)+factor(gpob)+ 

analk+parok+rentk+phogk, random= ~ 1|factor(PROV), family=poisson, verbose=F, 
data=tt3))) 

 

rg17_ic<-ic.rr(summary(glm(glm(O~ 
offset(log(E+.000001))+factor(gp17)+factor(gpob)+ 

analk+parok+rentk+phogk, family=poisson, data=tt3))) 

 

 

###gp20############ 

rg20_m<-glmmPQL(O~ offset(log(E+.000001))+factor(gp20)+factor(gpob)+ 

analk+parok+rentk+phogk, random= ~ 1|factor(PROV), family=poisson, verbose=F, 
data=tt3) 

 

rg20<-glm(O~ offset(log(E+.000001))+factor(gp20)+factor(gpob)+ 

analk+parok+rentk+phogk, family=poisson, data=tt3) 

 

##ic 

rg20_m_ic<-ic.rr.glmm(summary(glmmPQL(O~ 
offset(log(E+.000001))+factor(gp20)+factor(gpob)+ 

analk+parok+rentk+phogk, random= ~ 1|factor(PROV), family=poisson, verbose=F, 
data=tt3))) 

 

rg20_ic<-ic.rr(summary(glm(O~ 
offset(log(E+.000001))+factor(gp20)+factor(gpob)+ 

analk+parok+rentk+phogk, family=poisson, data=tt3))) 
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WinBUGS code for the BYM Model 
 
model 

{ 

  for (i in 1 : N) { 

      O[i]  ~ dpois(mu[i]) 

      log(mu[i]) <- log(E[i]+.000001) + alpha + b[i] + h[i] 
+Id*Paro[i]+Ir*Rent[i]+Ih*Phog[i]+ bcont*cont[i]+Ia*Analf[i] 

      theta[i]<- log(E[i]) + alpha + b[i] + h[i] 
+Id*Paro[i]+Ir*Rent[i]+Ih*Phog[i]+ bcont*cont[i]+ Ia*Analf[i] 

      RR[i] <- exp(alpha +  b[i] + h[i] +Id*Paro[i]+Ir*Rent[i]+Ih*Phog[i]+ 
bcont*cont[i]+ Ia*Analf[i])   

  # Area-specific relative risk (for maps) 

      h[i] ~ dnorm(0, tau.h)        # Unstructured random effects 

      PP[i] <- step(RR[i]-1) 

      #dev.i[i] <- O[i]*log((O[i]+step(-O[i]))/mu[i])-O[i]+mu[i] 

  } 

 

  # CAR prior distribution for spatial random effects:  

  b[1:N] ~ car.normal(adj[], weights[], num[], tau.b) 

  for(k in 1:sumNumNeigh) { 

      weights[k] <- 1 

  } 

  

  # Other priors: 

  Ia ~ dnorm(0.0, 1.0E-5) 

  Id ~ dnorm(0.0, 1.0E-5) 

  Ir ~ dnorm(0.0, 1.0E-5) 

  Ih ~ dnorm(0.0, 1.0E-5)   

  bcont ~ dnorm(0.0, 1.0E-5) 

 

  alpha  ~ dflat()   

  tau.b  ~ dgamma(0.5, 0.0005)       

  sigma.b <- sqrt(1 / tau.b)                       

  tau.h  ~ dgamma(0.5, 0.0005)        

  sigma.h <- sqrt(1 / tau.h)    

  #dev <- 2*sum(dev.i[])                    

} 
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10.3 APPENDIX SECTION 5 
 

R code. 
 
#### Function to estimate parameters in a Poisson regression 

#### with a non-linear term for the distance effect to multiple pollutant focuses. 

#### we include lung cancer smr as Proxy of tobacco consumption 

 

## data: INE;O;E;Analf;Rent;pulmon;distancias  

## (distance unit 100.000 metres) 

 

## the function gives the estimated parameters and the Monte Carlos simulations 

## to calculate the variances 

 

reg.dist2<-function(data) 

{ 

 

##inits 

  n<-ncol(data)-6   

  rg<-glm(O~ offset(log(E))+Analf+Rent+pulmon, family=poisson, data=data) 

  alpha1<-rep(0.1,n) 

  beta1<-rep(0.3,n) 

  rg.coe<-as.numeric(rg$coefficients) 

  inic<-c(rg.coe,alpha1,beta1) 

 

## Likelihood function 

  Log.lik<-function(data, Theta, n) 

  { 

    sc<-as.matrix(data[,4:6]) 

    rho<-Theta[1] 

    theta<-Theta[2:4] 

    alpha<-Theta[5:(5+n-1)] 

    beta<-Theta[(5+n):(5+2*n-1)] 

    Q<-sc%*%theta 

    dist<-data[,7:(6+n)] 

    mu=0 

    k=0 

    for(i in 1:nrow(data)) 

    { 

      t<-0 

      for(j in 1:n) 

      { 

      t[j]<-1+alpha[j]*exp(-(dist[i,j]/beta[j])^2) 

      } 

    k[i]<-prod(t) 
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    mu[i]<-data$E[i]*exp(rho+Q[i])*k[i] 

    } 

    L<--sum(mu)+sum(data$O*log(mu)) 

    L1<--L 

    list(L1) 

  } 

 

## mid function 

Log.Lik<-function(Theta) 

  { 

    data=data 

    n<-ncol(data)-6 

    res<-Log.lik(data,Theta,n) 

    res 

  } 

 

## optimization function  

  theta.hat<-optim(par=inic,fn=Log.Lik) 

 

## convergence 

  conver<-theta.hat[[4]] 

  inic1<-theta.hat[[1]]   

  con<-1 

  while(conver>0) 

  {  

    theta.hat<-optim(par=inic1, fn=Log.Lik) 

    conver<-theta.hat[[4]] 

    inic1<-theta.hat[[1]] 

    con<-con+1   

  } 

print(theta.hat) 

 

## MLE 

  theta<-theta.hat[[1]] ## estimadores 

 

######## Standard errors ############ Simulatión 

  sc<-as.matrix(data[,4:6]) 

  rho<-theta[1] 

  t1<-theta[2:4] 

  alpha<-theta[5:(4+n)] 

  beta<-theta[(5+n):length(theta)] 

  Q<-sc%*%t1  

  dist1<-data[,7:(7+n-1)] 

  mu=0 
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  k=0 

  for(i in 1:nrow(data)) 

  { 

    t<-0 

    for(j in 1:n) 

    { 

    t[j]<-1+alpha[j]*exp(-(dist1[i,j]/beta[j])^2) 

    } 

  k[i]<-prod(t) 

  mu[i]<-data$E[i]*exp(rho+Q[i])*k[i] 

  } 

 

## Monte Carlo simulations  

  data1<-data 

  theta.hat.S<-0 

  for(k in 1:100) 

   { 

   print(k) 

   ###simulaciones de Oi -> Yi 

     Y=0 

     for(i in 1:nrow(data)) 

     { 

       Y[i]<-rpois(1,mu[i]) 

     } 

     data1$O<-Y 

     Log.Lik<-function(Theta) 

     { 

       data=data1 

       res<-Log.lik(data,Theta,n) 

       res 

     } 

     theta.hat.S[k]<-optim(par=theta, fn=Log.Lik) 

    } 

  Theta.hat.S<-t(as.data.frame(theta.hat.S)) 

  sd<-apply(Theta.hat.S,2,sd) 

list(theta,sd) 

} 

 

More results of section 5. 

(5.2.2) Standard errors 

Simulations experiment to assess the performance of Hessian standard errors against 

Montecarlo standard errors.  
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We generate a sample of observed cases from a model with four socio-demographic covariates 

and two factories (the model has real values as parameters). We calculate the real standard 

errors via Monte Carlo. We generate 100 different samples from the model and we estimate the 

parameters; with these 100 estimators we get the standard errors. We use the first sample we 

calculate the Monte Carlo standard errors and the Hessian standard errors. Results of this 

experiment are included in the next table. 

Real Values

Real    
standard 

errors

Monte Carlo 
standard 

errors

Hessian 
standard 

errors
ρ 0.01877 0.16027 0.1824 0.2446
θ1 0.11056 0.17157 0.2255 0.2630
θ2 0.09949 0.09970 0.1149 0.1247
θ3 -0.01997 0.06585 0.1000 0.1012
θ4 -0.09325 0.07401 0.0936 0.1000
α1 0.10000 0.23807 0.2654 0.1915
α2 0.10000 0.17869 0.2164 0.1801
β1 0.20000 0.23244 0.1725 0.1232
β2 0.40000 0.33953 0.4110 1.1490  

Table. Real values, real standard errors, Monte Carlo standard errors and Hessian standard errors. 

 

(5.3.1) More results of the analysis of bladder cancer. Tables. 

 Spatial model: individual regressions 

Firstly, we study the 20 industrial locations one by one, adding to the spatial model the distance 

variable and the socio-demographic covariates. We fit an independent model for each point 

source. The results show that the deviances for these 20 models are very similar to the 

deviance of model 1 (717.11) and according to the likelihood test none of them is significantly 

better than the initial Poisson model. 

Industrial facility Deviance Industrial facility Deviance
d3641 716.68 d3721 716.24
d3686 716.44 d3723 716.17
d3689 716.11 d3724 715.92
d3693 716.13 d3727 716.22
d3700 716.55 d3733 716.06
d3701 716.38 d3737 716.17
d3702 715.78 d3739 716.04
d3707 715.91 d3742 716.33
d3712 716.12 d3743 716.14
d3716 715.71 d3745 716.28  

Table. Deviances for the individual regressions. 
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Industrial facility Deviance Alpha Lower limit Upper limit Beta Lower limit Upper limit

d3641 716.68 -0.184 -0.572 0.204 37.255 19.715 54.795

d3686 716.44 0.535 -0.262 1.332 0.104 -0.049 0.258

d3689 716.11 1.311 0.041 2.581 0.049 0.006 0.092

d3693 716.13 0.294 -0.276 0.865 0.04 -0.049 0.128

d3700 716.55 0.237 -0.503 0.978 0.085 -0.234 0.404

d3701 716.38 0.171 -0.563 0.905 0.178 -0.483 0.838

d3702 715.78 0.674 0.014 1.333 0.11 -0.085 0.305

d3707 715.91 0.311 -0.543 1.164 0.039 -0.084 0.162

d3712 716.12 0.168 -0.529 0.865 0.182 -0.646 1.011

d3716 715.71 0.85 0.127 1.574 0.091 -0.069 0.252

d3721 716.24 0.447 -0.549 1.443 0.061 -0.033 0.155

d3723 716.17 -0.029 -0.489 0.431 6.445 1.664 11.227

d3724 715.92 0.325 -0.377 1.026 0.07 -0.145 0.285

d3727 716.22 0.185 -0.52 0.889 0.066 -0.318 0.45

d3733 716.06 1.246 0.482 2.01 0.112 -0.014 0.238

d3737 716.17 0.757 -0.637 2.151 0.025 -0.022 0.073

d3739 716.04 0.408 -0.266 1.082 0.134 -1.284 1.553

d3742 716.33 0.26 -0.548 1.068 0.386 -1.383 2.154

d3743 716.14 0.517 -0.022 1.057 0.23 -7.928 8.387

d3745 716.28 0.268 -0.276 0.812 0.099 -0.356 0.554  

             Table. Deviances and estimators of the parameters of the distance function for the 20 focuses of Gran Bilbao. 

Only one of the focuses (3689) has both parameters of the distance function, alpha and beta, 

are inside the limits, even though this factory is located outside of the area of study. 

Spatial model. Multiple  regression inside the circumference 

The second approach is done across the area inside the circle. The industrial facilities 3693, 

3702, 3702, 3716, 3724, 7333 and 3739 are located within this area. However, there are two 

pairs of factories very close to each other, 3693-3707 and 3722-3739; therefore, each pair is 

treated as just one pollutant focus. We fit a model that includes the five focuses. Moreover, 

when we reduce the area of study two of the three covariates are not statistically significant 

anymore, income and tobacco prevalence, thus we remove these two covariates from the 

model. 

 

glm(formula = O ~ offset(log(E)) + educ + income + lung, family = poisson) 

Deviance Residuals:  

    Min       1Q   Median       3Q      Max   

-1.7514  -1.1476  -0.1687   0.5012   2.8590   

Coefficients: 

            Estimate Std. Error z value Pr(>|z|)   

(Intercept)   0.5143     0.3524   1.459   0.1445   

educ          1.7809     0.8170   2.180   0.0293 * 

income       -0.4288     0.4728  -0.907   0.3644   

lung          0.1485     0.1137   1.307   0.1914   

--- 

    Null deviance: 260.68  on 247  degrees of freedom 
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Residual deviance: 253.05  on 244  degrees of freedom 

AIC: 594.32 
 
glm(formula = O ~ offset(log(E)) + educ, family = poisson) 

Deviance Residuals:  

    Min       1Q   Median       3Q      Max   

-1.7363  -1.1573  -0.1909   0.5170   2.7334   

Coefficients: 

            Estimate Std. Error z value Pr(>|z|)   

(Intercept)   0.6642     0.3117   2.131   0.0331 * 

educ          1.3672     0.6249   2.188   0.0287 * 

--- 

    Null deviance: 260.68  on 247  degrees of freedom 

Residual deviance: 255.51  on 246  degrees of freedom 

AIC: 592.77 
 

The likelihood for the model with one covariate, education level, and 5 focuses is -225.777 and 

the likelihood for the Poisson model with one covariate is -227.6133. The statistic of the 

likelihood test has a value of 3.6726 and the 5% critical value of chi-square with 5 df is 11.07. 

These results suggest that the model with 5 focuses is not better than the model with just one 

covariate.  
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