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ABSTRACT 
 
 
The transcriptional repressor DREAM (downstream regulatory element antagonist 

modulator) controls the expression of prodynorphin and has been involved in the 

modulation of endogenous responses to pain. To investigate the role of DREAM in 

nociception we used transgenic mice overexpressing a Ca2+- and cAMP-insensitive 

DREAM mutant. The DREAM mutant has been previously shown to function as a 

constitutively cross-dominant active mutant able to block activity-dependent derepression 

of all DREAM/KChIP family members. 

DREAM transgenic mice showed reduced expression of several genes related to pain in 

spinal cord and DRG, including the different members of the opioid system and BDNF, 

and they show a state of basal hyperalgesia. Moreover, daDREAM expressing mice fail to 

develop a normal central sensitization process in response to inflammatory pain. On the 

other hand, daDREAM do not modify the nocifensive response to neuropathic pain, 

suggesting that DREAM is not functionally involved in the molecular mechanisms 

controlling this type of pain. 

Overexpression of dominant active mutant DREAM in the trigeminal ganglia also resulted 

in a phenotype of orofacial hyperalgesia. Genome-wide analysis disclosed several new 

target genes for DREAM repression in trigeminal neurons, which could be involved in the 

specific and differential response of these neurons to inflammatory pain. 
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RESUMENES 
 

 

1. INTRODUCCIÓN 
 

La señal dolorosa se genera por la estimulación de fibras aferentes especificas: los 

nociceptores. Estas neuronas polimodales responden a estímulos de naturaleza térmica, 

mecánica o química que pueden resultar lesivos para el organismo. 

A nivel molecular existen diferentes receptores que pueden convertir los estímulos 

nocivos en señales nerviosas. Para los estímulos térmicos los más caracterizados son el 

canal TRPV1, para altas temperaturas, y el canal TRPM8,  para bajas temperaturas. La 

nocicepción mecánica esta mediada por los canales sensibles a ácidos ASIC1, 2 y 3 

mientras que las señales químicas son transmitidas fundamentalmente por los canales 

TRPV1, TRPM8 y TRPA1. 

El dolor se define como agudo, cuando surge en respuesta a un estímulo nocivo y dura 

solo mientras este perdure. Se define crónico, cuando dura más que el estímulo que lo ha 

generado. Esta hiperalgesia puede tener dos orígenes: inflamatorio o neuropático. En el 

primer caso se debe a una repuesta adaptativa del sistema nervioso que, para favorecer la 

protección de un tejido dañado, aumenta la sensibilidad del mismo a los estímulos 

dolorosos. En el segundo caso , no tiene ningún significado adaptativo y es causada por 

un daño en el sistema nervioso.  

El dolor inflamatorio y el dolor neuropático se caracterizan por una etiología muy distinta 

y se basan en diferentes mecanismos moleculares y celulares. A pesar de todas sus 

especificidades estas dos condiciones tienen un origen común: el fenómeno de 

plasticidad conocido como sensibilización a nivel central. Ésta consiste en una 

facilitación de la transmisión sináptica en respuesta a una estimulación periférica 

sostenida. 

DREAM, conocida también como KChIP3 o Calsenilina, es una proteína multifuncional 

que ejerce diferentes papeles en diferentes localizaciones subcelulares. DREAM ha sido 

estudiada por su interacción con el canal de potasio dependiente de voltaje Kv4 a nivel 

de la membrana plasmática, su interacción con Presenilinas en la membrana del retículo 

endoplasmático y su función como represor transcripcional dependiente de calcio en el 

núcleo.  
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DREAM regula la expresión del gen de la prodinorfina, precursor de la dinorfina, un 

péptido fundamental en el control de la transmisión de la señal nociceptiva. El fenotipo 

hipoalgesico del ratón deficiente de DREAM (Cheng et al., 2002) confirmó la importancia 

de este factor transcripcional en el control de la propagación de los estímulos dolorosos. 

Además, estudios sobre la función de los  canales de potasio dependientes de voltaje en 

la respuesta a estímulos nociceptivos (Hu et al., 2006) pusieron en evidencia nuevos 

posibles papeles de DREAM en el control de la nocicepción.  
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 2. OBJETIVOS 
 
 
El objetivo global fue caracterizar el papel funcional de DREAM en el control de la 

nocicepción a nivel de la medula espinal, de los ganglios de la raíz dorsal (GRD) y del 

ganglio trigémino. En particular hemos tratado de caracterizar: 

 

1. La respuesta basal al dolor en la medula espinal y en los GRD en ratones 

transgénicos que sobre-expresan un dominante activo de DREAM (ratones 

daDREAM). 

 

2. La respuesta al dolor crónico (tanto inflamatorio como neuropático) en la 

medula espinal y en los GRD en los ratones daDREAM. 

 

3. Los cambios transcripcionales  impuestos por el daDREAM que influyen en la 

nocicepción basal. 

 

4. El papel de DREAM en la respuesta molecular al dolor inflamatorio crónico en 

la medula espinal y en los GRD. 

 

5. El papel de DREAM en la respuesta molecular al dolor en el trigémino. 

 

6. Los genes diana de DREAM que están involucrados en la percepción y la 

respuesta al dolor en el trigémino. 
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3. RESULTADOS 
 

En la primera parte de este trabajo de tesis hemos caracterizado desde un punto de visto 

comportamental y molecular el papel de DREAM en el control de los mecanismos que 

regulan la percepción dolorosa en la medula espinal y en los ganglios de la raíz dorsal 

(GRD). Los ratones transgénicos (línea 1) que expresan un mutante dominante activo de 

DREAM (daDREAM) en estas dos áreas presentan cambios sustanciales en su fenotipo 

nociceptivo en respuesta a estimulación térmica y a dolor tónico. A nivel molecular los 

ratones de la línea 1 presentan una bajada generalizada del tono opioide y de la 

expresión de BDNF. 

En nuestro modelo de dolor crónico inflamatorio los ratones de la línea 1 presentan un 

retraso en el desarrollo de la hiperalgesia inducida por CFA.  BDNF es fundamental en 

los procesos de plasticidad sináptica y su expresión se induce en respuesta a una 

estimulación dolorosa sostenida. En los ratones transgénicos daDREAM, BDNF tampoco 

se induce en respuesta a un estimulo inflamatorio. Estos datos moleculares se 

correlacionan con estudios electrofisiológicos que demuestran como la falta de aporte de 

BDNF provoca la ausencia de facilitación sináptica en las neuronas del asta dorsal de la 

medula espinal en los ratones de la línea 1. 

Los ratones transgénicos, además, presentan un nivel basal más alto de fosforilación de la 

quinasa ERK que se puede relacionar con una caída funcional de la inhibición 

GABAérgica inducida por el mutante dominante activo de DREAM. 

En la segunda parte de este trabajo hemos investigado la importancia de DREAM en el 

control del los fenómenos nociceptivos a nivel del ganglio trigémino, mostrando un 

fenotipo hiperalgésico facial en los ratones transgénicos daDREAM (líneas 1 y 16). 

Utilizando un estudio de microarray hemos analizado las diferencias transcripcionales 

inducidas en neuronas trigeminales por la expresión de daDREAM en los ratones de la 

línea 16. Esto nos ha permitido caracterizar la tipología de los genes cuya expresión está 

afectada por daDREAM y aislar un sub-grupo de genes de interés para profundizar con 

nuestra investigación. Finalmente, hemos analizado la respuesta transcripcional en 

neuronas trigeminales al dolor inflamatorio incluyendo los genes opioides, BDNF así 

como los genes seleccionados en nuestro estudio transcriptómico.
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4. DISCUSIÓN 
 

En este trabajo de tesis hemos utilizado un modelo de ratón transgénico que sobrexpresa 

un mutante dominante activo del la proteína DREAM (daDREAM) para el estudio de la 

funcionalidad de este factor de transcripción en el control de los procesos nociceptivos. 

Los ratones transgénicos de la línea 1 presentan una marcada hiperalgesia que se puede 

relacionar con el efecto de la expresión del mutante daDREAM sobre el sistema opioide 

en la médula y en el ganglio de la raíz dorsal (GRD). La bajada del tono opioide en estas 

dos áreas podría deberse a una regulación directa de DREAM sobre los genes que 

codifican los precursores polipeptídicos y de los receptores opioides o a un efecto 

indirecto. En este ultimo caso la represión por parte de DREAM de algunos de los 

promotores de estos genes provocaría una caída generalizada  de todo el sistema 

opioide. 

Además, los ratones de la línea 1 presentan una alteración en la expresión de las 

subunidades del canal de potasio dependiente de voltaje Kv4. Sin embargo, el estudio 

electrofisiológico no mostró cambios en las corrientes de potasio tipo A mediadas por 

dichos canales por lo que descartamos que el fenotipo hiperalgésico de los ratones 

transgénicos pueda atribuirse a una disfunción de los Kv4. 

El papel de DREAM es también fundamental en la regulación de los fenómenos de 

plasticidad sináptica que controlan la respuesta a dolor crónico, en particular a dolor 

inflamatorio. En este contexto, DREAM es importante porque controla de forma directa la 

trascripción del gen de BDNF. A su vez, DREAM puede regular de forma indirecta, a 

través del control sobre el tono GABAérgico de las neuronas del asta dorsal de la medula 

espinal, el nivel de fosforilación basal de la quinasa ERK. 

DREAM participa en la regulación de la percepción dolorosa a nivel del ganglio 

trigémino. En un estudio transcriptómico hemos podido caracterizar los efectos globales 

de la sobrexpresión del mutante dominante activo en este área. Analizando en detalle el 

listado de los genes cuya expresión se ve alterada en los ratones transgénicos hemos 

podido aislar un grupo de nuevos posibles genes diana de DREAM que pueden estar 

relacionados con el control de los estímulos nociceptivos. 

El análisis de la respuesta molecular a dolor inflamatorio ha evidenciado diferencias en la 

función que� la prodinorfina y BDNF desempeñan en el ganglio trigémino respecto a su 

papel en la medula o en el DRG 
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INTRODUCTION 
 

Sensation usually refers to the immediate, relatively unprocessed, result of sensory 

reception in the eyes, ears, nose, tongue and skin. Perception on the other hand better 

describes one’s ultimate experience of the world and typically involves further processing 

of the sensory input. In practice, sensation and perception are virtually impossible to 

separate because they are steps of a continuous process. Thus perception describes the 

process whereby sensory stimulation is translated into organized experience. 

We have a clear example if we analyze a fundamental evolutionary skill such as the 

experience of pain. The perception of pain warns us of a possible danger but our nervous 

system is also able to modulate our response to a constant painful sensation to better 

react to an ongoing threat to our organism. This plasticity is reflected at the molecular 

level by the possibility of modifying cell responses both transcriptionally and post-

translationally. 

 

1. Neuro-anatomy of pain 
Pain sensation is generated by the stimulation of specific receptors, the nociceptors 

(Sherrington, 1906). They are slow adaptation fibers with a high threshold that selectively 

respond to noxious stimuli and to chemicals released from neighboring traumatized 

tissues. 

Three classes of nociceptors can be distinguished on the basis of the type of stimulus to 

which they respond (Basbaum, 2000): 

Thermal nociceptors: are composed of Aδ and C fibers and are excited by 

temperature extremes. They can be sub-divided in two groups, those that respond to high 

temperatures (above 45ºC) and those that respond to noxious cold (below 5ºC) 

Mechanical nociceptors: are composed exclusively of Aβ fibers. They are the 

fastest-conducting nociceptive fibers that respond to painful tactile stimuli, mediating the 

sensation of sharp and prickling pain. 

Polymodal nociceptors: are formed by C fibers only. They respond to a variety of 

destructive mechanical, thermal or chemical stimuli. Stimulation of these receptors leads 

to a sensation of persistent burning pain. 
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Afferent nerves conduct sensory information to the central nervous system (CNS); there 

are three different kinds of fibers that convey the primary sensory input: 

 C fibers: are thin unmyelinated fibers (0,2-1,5 µm of diameter), with the slowest 

conduction velocity of no more the 2 m/s. They account for the perception of persistent 

burning pain. 

Aδ fibers: are thin myelinated fibers (1-5 µm of diameter) with a moderate 

conduction velocity (1-5 m/s), they are associated with acute pain perception. 

 Aβ fibers: are myelinated fibers with a diameter that ranges from 6 to 12 µm, they 

have the highest conductance velocity (from 35 to 75 m/s). These fibers only transmit 

proprioceptive stimuli. 

 

1.1. Afferent nerves 
Afferent nerves can be categorized in two groups, based on where they connect to the 

central nervous system (CNS); the spinal nerves and the cranial nerves. 

 Spinal nerves: are mixed nerves formed by sensory and motor neurons. Afferent 

fibers are connected to the spinal cord through the dorsal root, they are composed of 

pseudo-unipolar neurons whose soma resides in the dorsal root ganglion (DRG). Shortly 

after the DRG the afferent fibers fuse with efferent ones that emerge from the spinal cord 

through the ventral root (Fig. 1 A). 

The grey matter of spinal cord is structurally and functionally divided in a system of ten 

different laminae, the Rexed laminae (Rexed, 1952) (Fig. 1 B); nociceptors are principally 

in direct contact with laminae I, II, III and V. Pain sensation is mainly projected to the 

thalamus via three different ascending pathways; 

 

 

Figure 1. Spinal nerve. A) Schematic representation of a spinal nerve at its insertion site in the 
spinal cord (Adapted from Mandl et al. 2005). B) The ten Rexed laminae in the grey matter of 
the lumbar spinal cord (Adapted from Samojen et al. 2001). 
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 Spinothalamic tract; is the most prominent ascending nociceptive pathway in the 

spinal cord. Neurons in laminae I, V, VI, VII project to the contralateral side of the spinal 

cord and ascend trough the anterolateral white matter terminating directly in the 

thalamus. 

Spinoreticular tract; axons of neurons in laminae V, VI and VII ascend in the 

anterolateral quadrant of the spinal cord and terminate in both the thalamus and the 

reticular formation in the brainstem. 

Corticothalamic tract; neurons in this pathway connect to specific nuclei in the 

thalamus and in the medulla. 

Apart from these, there are two pathways that can convey pain stimuli to other brain 

areas: 

Spinomesencephalic tract; projects to the mesencephalic reticular formation, the 

periaqueductal gray matter and the parabrachial nuclei. This last one in turn, project to 

the amygdala. This tract is thought to contribute to the affective component of pain. 

Spinohypothalamic tract; comprises the axons of neurons in laminae I, V and VIII. 

It projects directly to supraspinal autonomic control centers and it is thought to activate 

complex neuroendocrine and cardiovascular responses. 

 

 

Figure 2. Trigeminal nerve. A) Schematic representation of the trigeminal nerve and of its 
three major branches. B) Schematic representation of the trigeminal nucleus in the brainstem 
(Adapted from Gray et al., 1918) 

 

Cranial nerves; this class of nerves is connected to the CNS directly trough the 

brainstem. There are twelve pairs of cranial nerves, but for the interest of this study we 

will focus our attention specifically on the fifth member of the family, the trigeminal 

nerve. 

The trigeminal nerve is the largest member of the family, it primarily carries sensory 

information from the face but it has also certain motor functions. It has three major 
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branches (the ophthalmic branch, the maxillary branch and the mandibular branch) that 

converge on the trigeminal ganglia (TG) (Fig. 2 A). This ganglion, analogous to the DRG, 

is located in the Meckel’s cave and contains the somas of the sensory neurons. From the 

TG a single root enters in the brainstem at the level of the pons, where all the afferent 

fibers terminate in the trigeminal nucleus. This structure extends throughout the entire 

brainstem, from the midbrain to the medulla. It is divided in three parts that receive 

different types of information: the spinal trigeminal nucleus, the main trigeminal nucleus 

and the mesencephalic trigeminal nucleus (Fig. 2 B). Nociceptors from the trigeminal 

nerve are grouped together and sent to the spinal trigeminal nucleus, they are connected 

to the secondary fibers that ascend to the thalamus via the trigemino-thalamic pathway. 

 

1.2. Pain information in the thalamus 
The thalamus is a complex structure composed by many different nuclei that connect 

incoming inputs to different parts of the cortex. Pain information from the spinal cord is 

mainly directed to the ventral posterolateral nucleus (VPL), while the one from the 

trigeminal nerve is mainly directed to the ventral posteromedial nucleus (VPM). From the 

VPL/VPM the nociceptive stimuli are projected to the primary sensory cortex where they 

are organized somatotopically. 

Differently from the information concerning touch and position, pain inputs are also sent 

to other thalamic nuclei; the medium dorsal thalamic nucleus (that project to the 

cingulated cortex), the ventromedial nucleus (that is connected to the insular cortex) and 

the intralaminar nuclei (that project diffusely to all part of the cerebral cortex). 

These multiple connections allow our brain to fully represent our perception of pain in 

the context of other simultaneous perceptions, of our memories and of our present 

emotional state. 

 

2. Molecular biology of pain 
To understand the nature and the molecular mechanisms regulating pain sensation we 

first have to distinguish among acute, inflammatory and neuropathic pain. In the first 

case, pain is a signal to warn the organism against a possible tissue injury. It originates in 

response to a noxious stimulus (mechanical, thermal or chemical) and lasts only while 

the noxious stimulus is present. Inflammatory pain on the other hand, represents a 

hypersensitive state due to peripheral tissue inflammation. It is a central response from 

the CNS and involves a maintained change in responsiveness to noxious stimulation. This 
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process represents a mechanism to protect and to aid healing of an injured area. Finally, 

neuropathic pain, that neither support nor protect healing. It represents a hypersensitive 

state in the absence of noxious stimulation and involves aberrant plastic changes of the 

somatosensory system caused by a nerve lesion or disease. 

 

2.1. Acute pain  
The mechanisms that underlie acute pain are specific for the stimulus that elicits the 

sensation. There are different peripheral receptors for thermal, mechanical and chemical 

painful stimulation (Fig. 3). 

Heat stimulation: Several lines of evidence support the idea that the receptor for 

noxious heat stimulation is a member of the transient receptor potential (TRP) channel 

family, namely the TRPV1. This channel is specifically activated by capsaicin and by 

temperatures above 43ºC. TRPV1 knockout mice show a slight impairment in their ability 

to detect and respond to noxious heat (Caterina et al., 2000), suggesting that other 

members of the family, e.g. TRPV2, 3 and 4, are also involved in the heat response. 

 Cold stimulation: TRPM8 is sensitive to cold and menthol. Currents through this 

channel match the electrophysiological characteristics of cold-evoked responses in nerve 

fibers. TRPM8 knockout mice show a substantial loss of menthol and cold sensitivity. 

Additional molecules including voltage gated sodium channels (Nav) and potassium 

channel (Kv4.1 and KCNK2 and 4) cooperate with TRPM8 to fine tune cold threshold or 

to propagate cold evoked action potentials (Viana et al., 2002; Zimmermann et al., 2007; 

Noel et al., 2009). 

Interestingly TRPV1 and TRPM8 are expressed in non-overlapping nerve fibers. Therefore 

cold and heat detection is functionally and anatomically organized in two different 

neuronal populations. 

Mechanical stimulation: The molecular basis of the nociceptive response to 

mechanical stimulation is far from being clarified. It is generally accepted, however, that 

a core mechanism for such receptor should involve a mechano-sensitive cation channel 

that is operated by noxious pressure. 

Studies in this direction are focused on a possible role for acid sensing ion channels 

(ASIC) 1, -2 and –3. However, knockout mice for each of these genes did not display any 

clear impairment in mechano-sensitivity (Price et al., 2000; Price et al., 2001; Page et al., 

2004; Roza et al., 2004). Other studies pointed out that TRPA1 could be important in 

modulating the response to mechanical stimulation (Kwan et al., 2009). Finally, it has 

been proposed that the KCNK18 potassium channel could be a critical modulator of the 
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excitability of neurons involved in innocuous and noxious touch sensation (Bautista et al., 

2008). 

Chemical stimulation: The TRP channels play a prominent role as receptors for 

noxious chemicals (see the above mentioned TRPV1 and TRPM8 that respond to 

capsaicin and menthol). Moreover, TRPA1 has emerged as a particularly interesting 

chemoreceptor. This channel in fact responds to structurally diverse compounds that are 

able to form covalent adducts with thiol groups (Hinman et al., 2006; Macpherson et al., 

2007). 

It is important to stress that chemical irritants are also produced endogenously in 

response to tissue damage with the effect of sensitizing nociceptors to thermal and 

mechanical stimulation. Thus, chemo-nociception represents an important interface 

between acute and persistent pain, especially in the context of peripheral tissue injury 

and inflammation. 

 

 

Figure 3. Acute pain. Representation of the molecular mechanisms that underlie the response 
to thermal, mechanical and chemical pain (Adapted from Marchand et al., 2005) 

 
2.2. Inflammatory pain 

Inflammatory associated changes in the chemical environment of the nerve fiber result in 

the sensitization of the peripheral nerve, i.e. the threshold for activation is reduced and 

membrane excitability is increased. 

Tissue damage is accompanied by the accumulation of endogenous factors that are 

released from nociceptors or non-neuronal cells such as immune cells, platelets, mast 

cells, endothelial cells, fibroblasts and keratinocytes. These factors, collectively known as 

“inflammatory soup”, represent a wide array of signaling molecules, such as peptides, 

neurotransmitters, lipids, neurotrophins, cytokines, extracellular proteases and protons. 
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Some components of the inflammatory soup can alter neuronal excitability directly by 

interacting with ion channels, whereas others can bind to metabotropic receptors and 

mediate their effect through second messengers activated signaling cascades (Fig. 4). 

 

 

Figure 4. The inflammatory soup. Cartoon showing the different molecules and receptors 
which compose the inflammatory soup. These molecules alter neuronal excitability and induce 
hyperalgesia (Adapted from Basbaum et al., 2009) 

 

The main compounds present in the inflammatory soup are: 

Bradykinin; signals specifically through BK2 receptors, a GPCR whose activation 

provokes Ca2+ release from intracellular stores and activation of the protein kinase C 

(PKC) signaling cascade (Premkumar and Ahern, 2000). This results in an immediate 

depolarization of the neuronal membrane. 

Neuronal growth factor (NGF); binds to its specific receptor tyrosine kinase A 

(TrkA) causing the downstream activation of mitogen activated protein (MAP) kinase and 

phospholipase C-γ (PLC- γ) (Ganju et al., 1998). The first signaling cascade induces 

changes in gene expression while the second is responsible for some of the short term 

posttranslational modifications that underlie thermal hyperalgesia. Moreover NGF can 

bind, with low affinity, to p75. Binding to this receptor can promote apoptosis through 

the activation of JNK ot NfkB. 

 Prostaglandin E2 (PGE2); is the responsible cyclooxygenase enzyme for the 

conversion of arachidonic acid into PGE2, the main lipid messenger in the inflammatory 

soup. When PGE2 binds to its specific receptor, belonging to the GPCR family, it induces 

a rise in cAMP. As a consequence, protein kinase A (PKA) is activated and phosphorylates 

the tetrodotoxin resistant channels Nav1.8 and Nav1.9 shifting the voltage dependent 

activation of these channels in the hyperpolarizing direction (Fitzgerald et al., 1999). This 
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reduces the extent of membrane depolarization needed to initiate an action potential and 

favors repetitive spiking. 

Protons and tissue acidosis; is a hallmark of physiological response to tissue injury 

(Reeh and Steen, 1996). On one hand protons enhance the response of TRPV1 to both 

capsaicin and heat (Tominaga et al., 1998), on the other, they activate acid sensitive ASIC 

channels (Immke and McCleskey, 2001). 

Cytokines; injury promotes the release of numerous cytokines, including 

interleukin 1β (IL-1β), interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) (Ritner, 

2008). Their contribution to the inflammatory response results in increased pain 

hypersensitivity and production of proalgesic agents 

 

2.3. Neuropathic pain 
Neuropathic pain results from lesions in the nervous system caused by mechanical 

trauma, metabolic disease, neurotoxic chemicals, infection or tumor invasion. Once 

generated, the sensory hypersensitivity typically persists for a prolonged period, even 

though the original cause may have long since disappeared. Under these conditions 

neurons undergo a dramatic change in their activity that is based on a remarkable 

modification in their transcriptome, the expression of up to 2000 genes has been found 

altered in neuropathic pain conditions. 

Spontaneous pain results from ectopic action potentials generated at multiple sites; the 

neuroma (the aberrant neuronal growth that takes place at the nerve injury site), the cell 

body of injured neurons or the neighboring intact fibers. There are different studies trying 

to depict the modifications that underlie these abnormal electrophysiological features of 

injured nerve fibers. Voltage gated sodium channels, for example are known to contribute 

to this ectopic activity (Sheets et al., 2008) even though it is not clear which of these 

channels is responsible for the abnormal generation of action potentials. Experiments 

using gene knockdown or selective blockers point to a possible role for Nav1.3 (Hains et 

al., 2003), Nav1.7 (Hoyt et al., 2007) or Nav1.8 (Roza et al., 2003; Dong et al., 2007). 

On the other hand single knockout mice for these channels do not show any modification 

in their neuropathic pain behavior (Nassar et al., 2004; Nassar et al., 2005) probably 

because of redundancy and gene compensation. 

Other studies highlight a possible role for the hyperpolarization-activated cyclic 

nucleotide-modulated channel (HCN) (Luo et al., 2007), for the KNCQ voltage gated 

potassium channels (Roza and Lopez-Garcia, 2008) and for the voltage gated calcium 

channel Cav2.2 (McGivern, 2006). 
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Another important clue in the understanding of neuropathic pain is the interaction 

between neurons and the immune system. In the PNS, immune surveillance is performed 

by macrophages, which account for the initial reaction to nerve damage. Macrophage 

activation on one side is a central component of the Wallerian degeneration distal to 

axonal injury and also contributes to pain hypersensitivity with its action at the soma of 

nerve fibers (Scholz and Woolf, 2007). 

In the CNS microglia is massively activated in the dorsal horn of the spinal cord and in 

the spinal trigeminal nucleus soon after peripheral nerve injury. These particular glial 

cells share a myeloid lineage and many functional features of macrophages and their 

activation is a typical hallmark of neuropathic pain (Hu et al., 2007). This process is 

evoked by a rise in extracellular ATP (Tsuda et al., 2003), which could be actively 

released from injured primary afferents or increased as these neurons degenerate. 

Activation of microglia is characterized by the phosphorylation of MAP kinase p38, ERK-

1 and -2 and Src-family kinases. It peaks at one week after injury and lasts over several 

weeks (Jin et al., 2003; Zhuang et al., 2005; Katsura et al., 2006). 

Activated microglia releases brain derived neurotrophic factor (BDNF), that provokes an 

alteration in the concentration of chloride ions, likely downregulating the expression of 

the potassium chloride co-transporter KCC2. Consequently anion reversal potential is 

shifted to more positive values than the resting potential. In this condition the effect of 

GABA receptor activation turns out to be a depolarization (Coull et al., 2005). Moreover 

microglia secretes IL-1b, IL-6 and TNF-α; a direct modulation of dorsal horn neuron 

activity by these cytokines may also be part of the development of neuropathic pain 

(Winkelstein et al., 2001) (Fig. 5). 

 

 

Figure 5. Neuropathic pain. Scheme of the principle mechanisms underlying neuropathic pain; 
ectopic activity of afferent fibers, microglia activation and reversion of GABA potential in second 
order neurons (Adapted from Scholz et al., 2008) 
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3. Pain and synaptic plasticity 
Pain sensitivity can be modulated at a peripheral level, as described for inflammatory and 

neuropathic pain, and at a central level in response to an intense noxious stimulus 

(Woolf, 1983). The mechanism that underlies the central control of nociceptive 

transmission relies on synaptic plasticity, a neuronal property that refers to the ability of a 

synapse to change its strength. In the case of nociception there is a use-dependent 

facilitation of synaptic transmission in response to strong peripheral stimulation. This 

phenomenon, known as central sensitization, has been largely characterized in the spinal 

cord but is also important in the trigeminal nucleus. It leads to a reduction in pain 

thresholds, amplification in pain responses and spread of pain sensitivity to non-injured 

areas. 

In the spinal cord there are different types of transcription-independent synaptic plasticity 

that originate in response to different patterns of repetitive noxious stimuli and are 

generated through specific molecular mechanisms. This can be homosynaptic, which 

means that the same synapses are activated in the conditioning and in the test inputs, or 

heterosynaptic, that is the synapses activated by conditioning and test inputs are different. 

 

3.1. Wind-up 
Wind-up is a form of homosynaptic activity-dependent plasticity characterized by a 

progressive increase in action potential output from dorsal horn neurons during a train of 

repeated low-frequency C-fiber stimuli. Slow inputs (<5 Hz) summation induces a 

cumulative depolarization. This leads to removal of the voltage dependent Mg2+ blockade 

of the NMDA receptors increasing their sensitivity to glutamate (Thompson et al., 1990). 

In addition, L-type Ca2+ channel current can be recruited, contributing to the 

establishment of a sustained and progressive depolarization over the course of the 

stimulation (Morisset and Nagy, 2000). This phenomenon vanishes when the train of 

stimuli that elicit it is finished. 

 

3.2. Classical central sensitization 
Classical central sensitization is a period of facilitated transmission that outlasts the 

initiating stimulus which is caused by an increased response of the conditioning 

nociceptors pathway (homosynaptic potentiation) and a recruitment of novel inputs in 

non-stimulated pathways (heterosynaptic potentiation). In this condition, low threshold 
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Aβ fibers, which normally signal innocuous sensations, also begin to transmit nociceptive 

stimuli. Classical central sensitization is evoked by either a synchronized train of repeated 

inputs, or by asynchronous activation of peripheral terminals of nociceptors (i.e. frank 

tissue damage). 

At the molecular level this increased synaptic strength is evoked after the secretion from 

the pre-synaptic terminal of BDNF, substance P and glutamate (acting on both ionotropic 

and metabotropic receptors). This produces an increase in internal Ca2+ concentration at 

the post-synaptic level, which triggers the activation of PKA, PKC and CaMKII. Moreover 

BDNF induces the phosphorylation of ERK and Src kinases (Yu and Chuang, 1997; Ji et 

al., 1999). The combined activation of these molecular pathways enhances synaptic 

strength modulating ion channel and/or receptor activity by a post-translational 

processing that favors receptor trafficking to the membrane. On one hand, the AMPA 

receptor is phosphorylated facilitating its membrane expression (Soderling and Derkach, 

2000). On the other hand, there is a phosphorylation and a removal of the Mg2+ blockade 

from the NMDA receptor (Guo et al., 2002). In addition, neuronal excitability can also be 

controlled directly by ERK-dependent phosphorylation of Kv4.2 channels that are the 

major contributors of A-type K+ current (Hu and Gereau, 2003). Phosphorylation of these 

channels reduces de K+ outward flux and decreases hyperpolarizing current resulting in 

enhanced neuronal excitability. 

 

 

Figure 6. Central sensitization. Schematic representation of the molecular mechanisms which 
underlie central sensitization. Primary afferent fibers release BDNF, substance P and glutamate 
that activate specific signaling cascades in dorsal horn neurons. (Adapted from Marx et al., 
2004) 
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3.3. Dorsal horn long term potentiation (LTP) 
Although LTP has been most studied in the hippocampus and the cortex, a similar 

phenomenon can be elicited in the spinal cord, comprising an activity-dependent, long-

lasting homosynaptic facilitation. This is known to occur in response to a brief high 

frequency repetition of trains of stimulation from the nociceptors. This potentiation may 

last for tens of minutes but varies. It requires an interaction between NMDA receptor and 

NK1 activation, as well as activation of low threshold T-type Ca2+ currents. 

 

3.4. Transcription-dependent central sensitization 
Nociceptor activity can produce long-term changes in synaptic activity trough specific 

changes in gene expression. This is known as late-phase LTP and differently from the 

above-mentioned forms of synaptic plasticity it is transcription dependent. This 

phenomenon takes several hours to activate and lasts for prolonged periods. 

As said before, intense nociceptor stimulation results in ERK activation. This kinase can 

enter the nucleus and phosphorylates CREB, stimulating CRE-dependent transcription (Ji 

et al., 2002). In this way, noxious stimulation increases the expression of the immediate 

early genes c-fos and COX-2 (Hunt et al., 1987; Samad et al., 2001) as well as late 

response genes encoding for prodynorphin, NK1 and trkB (Naranjo et al., 1991; Dubner 

and Ruda, 1992; McCarson and Krause, 1994). 

Activity dependent changes in the spinal cord are paralleled by transcriptional changes in 

primary sensory neurons. Following peripheral inflammation, there is an elevation in the 

levels of BDNF and substance P, and after peripheral nerve injury there are changes in 

hundreds of genes that alter primary afferent excitability and synaptic transmission 

properties. Finally, following both peripheral inflammation and nerve injury, there is a 

phenotypic switch in some dorsal root ganglion neurons. Large DRG neurons begin to 

express substance P and BDNF and as a consequence these non-nociceptive afferents 

gain the capacity to induce central sensitization. 

 

4. BDNF and nociception 
Neurotrophins are a family of related proteins including neuronal growth factor (NGF), 

brain derived neurotrophic factor (BDNF), NT-3 and NT-4/5. All neurotrophins are 

synthesized as precursor proteins of approximately 30 kDa and are cleaved to a mature 

form of approximately 13 kDa. All neurotrophins bind with low affinity to the 

transmembrane receptor p75 and each neurotrophin binds with high affinity to tyrosine 
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receptor kinase trk family of transmembrane receptors. NGF binds to trkA, BDNF and NT-

4/5 to trkB and NT-3 to trkC. Activation of trk receptors leads to dimerization and auto-

phosphorylation of different residues that in turn promotes the activation of different 

signaling pathways, notably the MAPK, PI3K, PLC-γ and PKC cascades. On the other 

hand, if the p75 receptor is expressed in the absence of trk or if the ratio of p75/trk is 

high, neurotrophins can activate pathways downstream to this receptor like the JNK or 

the NF-kB signaling cascades. 

During development, neurotrophins support the survival of neuronal subpopulations that 

express appropriate trk receptors, nonetheless they are also important in adulthood 

because of their action as modulators of synapic activity. Specifically BDNF promotes the 

survival of some primary sensory neurons, in particular the mechanoreceptors innervating 

the Meissner and Pacinian corpuscle (Sedy et al., 2004; Gonzalez-Martinez et al., 2005) 

and the chemoreceptor innervating the circuvallate papillae (Uchida et al., 2003). In 

adulthood, BDNF appears to be a central modulator of pain processing both at spinal and 

supraspinal levels, with a particularly remarkable role in the central sensitization 

processes that underlie many forms of hyperalgesia. 

 

4.1. BDNF in the nociceptive pathways 
Neurotrophic factors can be locally synthesized by neurons and/or endocytosed at 

somatodendritic domains to be eventually targeted to terminals by anterograde axonal 

transport (transcytosis) (von Bartheld et al., 2001; von Bartheld, 2004). In the case of 

BDNF, synthesis and subsequent anterograde transport have been widely documented in 

neurons as well as in microglia (Coull et al., 2005). Once synthesized, BDNF is stored in 

dense core vesicles in both central and peripheral neurons (Salio et al., 2007). On the 

other hand transcytosis of BDNF does not seems to be relevant in vivo. 

 Sensory ganglia and spinal cord: BDNF is highly expressed in sensory neurons of 

the DRG and of the trigeminal ganglion (Kashiba et al., 2003; Ichikawa et al., 2006), 

although it has also been detected in the nodose, petrosal, jugular (Ichikawa et al., 2007) 

and geniculate ganglia (Farbman et al., 2004). The concentration of this neurotrophin 

varies in chronic pain condition. Following peripheral inflammation BDNF is increased, 

while in models of neuropathic pain it is deregulated in different, lesion-specific, ways. 

BDNF localization in the spinal dorsal horn is prominent in lamina II, in the terminal of 

primary afferent fibers, where it is stored together with the sensory neuropeptides 

substance P and CGRP. There are no second order neurons expressing this neurotrophin 

in this location. 
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 Supraspinal centers: Among integrative centers, BDNF-expressing neurons are 

particularly abundant in several layers of the somatosensory cortex as well as in neurons 

related to the descending pathways that control the supraspinal modulation of pain 

neurotransmission. It has been suggested that BDNF levels are modulated at supraspinal 

level in some persistent pain states. 

 Glial cells: Another important source of BDNF are glial cells, in particular 

microglia that, once activated, in neuropathic pain condition, can synthesize and secrete 

this neurotrophin directly into the inner layers of the spinal cord. 

 

4.2. trkB in nociceptive pathways 
In the developing and adult CNS alternative splicing generates three different trkB 

isoforms; the full-length trkB receptor (fl-trkB) and two truncated receptor forms (tr-trkB) 

(Klein et al., 1990; Middlemas et al., 1991; Barbacid, 1994). All these isoforms share a 

common extracellular domain, while the truncated ones lack the signal transducing 

intracellular tyrosine kinase domain. tr-trkB is prevalently expressed in choroids plexus, 

ependymal cells and astrocytes whereas both fl-trkB and tr-trkB are expressed in neurons. 

Most sensory ganglia that express BDNF also express trkB, including the DRG, the 

trigeminal, petrosal and geniculate ganglia. The receptor is also expressed in the second 

order lamina II neurons of the spinal cord, in the somato-dendritic membranes and in the 

axon terminals. At the supraspinal level trkB receptor is expressed in virtually all areas 

related to nociception. This includes the main relay centers, which are the sites of third 

order neurons (thalamus, reticular formation, hypothalamus), the integrative centers 

(cortex and amygdala), and neurons in the most important nuclei originating descending 

pathways. 

 

4.3. The control of BDNF expression 
In order to better understand the specific function of BDNF in the context of nociception 

it is necessary to highlight the molecular mechanisms that finely control the activity-

dependent expression of this neurotrophin. The mouse BDNF gene consists of eight 5’ 

non-coding exons and one 3’ exon that includes the entire open reading frame of the 

functional protein. Each of the first eight exons has a 5’ promoter region and a splice 

donor site at the 3’ end. Exon IX contains the only splice acceptor site and two 

polyadenylation signals. Transcription of the gene results in BDNF transcripts containing 

one of the eight 5’ exons spliced to the protein coding exon (Aid et al., 2007). 
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The transcriptional regulation of BDNF is dependent on neuronal activity and relies on 

the combined action of different factors. The gene is upregulated in response to 

intracellular rise both in cAMP and in Ca2+. The promoters for BDNF contains within their 

sequence a CRE element that, binding to CREB, confers the cAMP sensitivity to this gene. 

Moreover there are several Ca2+ responsive regulatory sites that allow the binding to the 

DNA of transcription factor like DREAM (Mellstrom et al., 2004) or the calcium 

responsive factor (CaRF) (Tao et al., 2002). 

Finally there are growing evidences suggesting that DNA methylation and possibly 

chromatin remodeling could take part in the activity dependent control of BDNF 

expression. Methylation of several CpG island in the promoter of BDNF exon IV is 

activity dependent reduced (Martinowich et al., 2003). The mechanism beneath this 

phenomenon could be the Ca2+ dependent unbinding of the methyl-CpG binding protein 

2 from the DNA (Chen et al., 2003). 

 

4.4. Behavioral data suggesting BDNF is a pain modulator 
The functional consequences of BDNF-induced plasticity depend on the type of cells 

affected, their distribution, and the timing of events. In fact, there are evidences that point 

out that BDNF may serve both pro- and anti-nociceptive roles in different contexts. 

BDNF is known to be upregulated in conditions of peripheral inflammation. Sequestering 

endogenous BDNF reduced pain related behaviors in models of inflammatory pain (Kerr 

et al., 1999; Thompson et al., 1999). In addition, behavioral studies in neuropathic 

models report that delivery of antibodies against BDNF at the level of nerve injury 

reduced pain related behavior in rat (Zhou et al., 2000) and in mouse (Yajima et al., 

2005). 

Despite these pronociceptive roles, BDNF exhibits antinociceptive properties when 

delivered pharmacologically in larger amounts in much wider areas of the CNS (i.e. the 

spinal cord or the midbrain). BDNF intracerebroventricular injection (Cirulli et al., 2000), 

or grafts of BDNF expressing cells to the spinal cord (Eaton et al., 2002) reduced pain 

related behavior in neuropathic mice. 

 

5. Downstream Regulatory Element Antagonist Modulator 
The downstream regulatory element antagonist modulator (DREAM) belongs to the 

Neuronal Calcium Sensor (NCS) protein family. DREAM was discovered as the factor in 

trans able to bind and regulate the promoter region of the prodynorphin gene (Carrion et 

al., 1999). It is also known as Calsenilin or KChIP3, one of the four members of the 
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voltage gated Potassium Channel Interacting Protein family. DREAM is expressed 

throughout the central and peripheral nervous system and in other tissues such as heart, 

gonads, thyroid and thymus. 

The full length DREAM protein consists of 256 amino acids with a predicted molecular 

mass of around 29 kDa. The DREAM sequence has four EF-hands of which three bind 

Ca2+, the first one is a non-canonical EF-hand and is not functional. There are also two 

Leucines, Charged residue-rich Domain (LCD) motifs that permit the establishment of 

interactions with other proteins. 

DREAM is a multifunctional protein that exerts different roles depending on its subcellular 

localization. In the nucleus it acts as a transcriptional repressor binding to the promoter 

region of target genes (Carrion et al., 1999). In the cytosol it interacts with different 

proteins modulating a variety of cellular function. 

Recent investigations using mice models for the study of pain processing described the 

importance of DREAM in regulating nociceptive perception. 

 

5.1. DREAM (calsenilin) and presenilin 
Presenilin is a key component of the multi-subunit gamma-secretase complex that 

account for the proteolytic cleavage of the amyloid precursor protein. Vertebrates have 

two presenilin genes that encode for presenilin-1 (PS1) and presenilin-2 (PS2). Mutations 

in presenilin genes are highly associated with most early-onset familial Alzheimer disease 

cases. Calsenilin was isolated in a two-hybrid screen looking for proteins that could 

possibly interact with the two presenilins (Buxbaum et al., 1998). It was found that 

calsenilin binds to the C-terminal part of presenilins at the membrane of the endoplasmic 

reticulum (ER) and of the Golgi apparatus in a Ca2+-independent way. Transient 

transfection of calsenilin together with PS1 or PS2 (Lilliehook et al., 2002) results in 

enhanced apoptosis in response to serum starvation with higher caspase and calpain 

activity. Moreover, the cotransfection of calsenilin with PS1, but not PS2, results in a 

reduction of the [Ca2+] in the ER probably due to an increased leakage of Ca2+ from the 

reticulum (Fedrizzi et al., 2008). 

 
5.2. DREAM (KChIP3) and Kv4 

In the brain, rapidly inactivating (A-type) voltage gated potassium currents operate at sub-

threshold membrane potential to control the excitability of neurons. These currents 

consist in the outward flux of K+ ions through a voltage sensitive channel formed by a 

tetramer of Kv4 pore forming α-subunits. 
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Electrophysiological studies in heterologous cells (An et al., 2000) demonstrated that the 

expression of the Kv4 alone is not sufficient to reconstitute the typical features of the A-

type currents. In order to recover the characteristics of a native A-type current, cells has 

to be co-transfected with Kv4 and the Potassium Channel Interacting Protein (KChIP). 

There are four different genes that encode for KChIP1, KChIP2, KChIP3 (DREAM) and 

KChIP4, all of which are able to interact with the Kv4 tetramer. The proposed model 

(Wang, 2008) pictures that a single KChIP molecule binds as a monomer to the N-termini 

of two adjacent Kv4 fixing the structure of the pore. 

The interaction with KChIP promotes Kv4 expression at the plasma membrane and 

influences the properties of the channel, so that the inactivation kinetic is slowed down 

and the rate of recovery from the inactive state is increased. The binding of KChIP to Kv4 

is independent of Ca2+, whereas the modulation of the A-type current is not. Ca2+-

insensitive mutants of KChIP are able to bind to the potassium channel but do not affect 

the flux through the pore. 

 

5.3. Defining the DREAM interactome 
Listing of the DREAM interactome was initiated by putting together results from yeast 

two-hybrid assays; presenilins and Kv4 channels mentioned above, together with data 

from the functional analysis of DREAM. Three examples illustrate this second source of 

information. The first was the interaction with CREM, discovered while trying to 

understand the regulation by cAMP of the binding of DREAM to DNA (Ledo et al., 

2000a). In this study was also described the existence of Leucine, Charged residue-rich 

domains (LCDs) in DREAM and CREM, which are domains important for the interaction 

between hormone nuclear receptors and the transcriptional machinery (Le Douarin et al., 

1996). Given the high homology between CREM and CREB a similar domain was 

searched for in the CREB sequence, and an LCD motif was found in the KID domain of 

CREB that mediates an interaction with DREAM (Ledo et al., 2002). The second example 

came with the studies trying to understand the function of DREAM in the thyroid gland 

that could explain its high expression level. It was discovered that DREAM interacts with 

TTF-1 and Pax-8 regulating the expression of thyroglobulin (Rivas et al., 2004), and  with 

the TSH receptor in folicular thyroid cells (Rivas et al., 2009). Third, while studying the 

reduction of NMDA-mediated currents in transgenic neurons expressing a Ca2+-

insensitive DREAM mutant, the calcium-dependent interaction with PSD-95 was 

identified and it was shown that this interaction retains PSD-95 from its interaction with 

src precluding NR2B phosphorylation and NMDA receptor full activity (Wu et al., 2010). 
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Interestingly, these interactions identified through functional studies turned out to be 

calcium-dependent in most of the cases, while those discovered using the yeast two-

hybrid assays where not sensitive to calcium. Since high calcium concentrations in the 

yeast cytosol could preclude the interactions sensitive to calcium, a yeast two-hybrid 

assay was designed, using a calcium-insensitive DREAM mutant with inactivation of each 

one of the three functional EF-hands. Yeast two-hybrid screening then permitted the 

identification of new interactions, in all cases independent of the presence of calcium. 

Three of these interactions have been characterized at the molecular and functional level 

The interaction of DREAM with GRK6 or GRK2 kinases phosphorylates DREAM at serine 

95. Mutant S95A-DREAM showed reduced capacity for intracellular trafficking from the 

endoplasmic reticulum to the membrane of different proteins (Ruiz-Gomez et al., 2007). 

The interaction with the SUMO-conjugating enzyme Ubc9 led to the identification of two 

lysine residues where DREAM is sumoylated and that K to R mutants are not sumoylated 

and do not translocate to the nucleus and lose their repressor properties (Palzcewska et 

al., submitted). 

The interaction with peroxyredoxin-3 (Prx3), an antioxidant enzyme that uses the 

thioredoxine system as electron donor and protects neurons from oxidative damage. The 

interaction with Prx3 is functional and showed that DREAM binding to DNA is also 

regulated by redox signaling. A cysteine to serine mutant acts as a permanently reduced 

forms and shows greater dimer formation capacity and stronger repressor effect on DRE-

dependent transcription (Rivas et al., 2010). 

With the exception of one interacting clone that encodes a nucleoprotein, all the positive 

interactions in this yeast two-hybrid screening correspond to cytosolic and membrane 

proteins. This may be related to a low representation of nucleoprotein encoding clones or 

to the fact that these interactions are complex and they are not favored in the yeast 

environment. 

 

5.4. DREAM as a transcription factor 
When DREAM was first isolated (Carrion et al., 1999) it was described as the first known 

Ca2+-binding protein to function as a DNA-binding transcriptional regulator, and 

successive studies contributed to shed light on the mechanisms that underlie the activity 

of DREAM as a transcription factor. 

In basal conditions DREAM binds as a tetramer to the Downstream Regulatory Element 

(DRE) in the promoter of target genes. The DRE site is usually located downstream of the 

TATA box and the consensus sequence is (Carrion et al., 1998): 
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5’-Pu N G T C A Pu Pu G-3’ 

The central core of the sequence is 5’-GTCA-3’, and mutations in any of these four 

nucleotides strongly affect the binding of DREAM to DNA. Interestingly, the central core 

sequence functions also in the inverted arrangement. 

DREAM binding to the DNA blocks transcription, and upon cellular stimulation the 

tetramer is released from the DNA so that the target genes can be transcribed. There are 

two different stimulations able to induce DREAM detachment from the DRE site; the rise 

in nuclear Ca2+ or the interaction with the nucleoproteins α or ε CREM (Ledo et al., 

2000b). On one hand, the DREAM tetramer can sense an increase in nuclear Ca2+ thanks 

to the three functional EF-hands present in every single monomer. When all of these EF-

hands are bound to Ca2+, the tetramer undergoes a conformational change that strongly 

decreases its affinity for the DNA. On the other hand, DREAM can interact with α or ε 

CREM trough the two LCDs that are present in its sequence, as a result of these 

interactions, DREAM is removed from the DRE site, allowing the transcription of target 

genes. The phosphorylation of α or ε CREM by PKA can facilitate the interaction between 

both proteins but is not necessary for CREM mediated derepression at the DRE sites. 

 

 

Figure 7. The transcriptional factor DREAM. In basal condition (A) DREAM is bound to the 
DNA blocking transcription. Upon stimulation (B) trough an increase in nuclear Ca2+ (i), or 
interaction with other nucleoproteins (ii) DREAM is detached from the DNA allowing 
transcription of target genes. (Adapted from Mellström et al., 2008) 

 
Moreover DREAM represents a point of crosstalk between cAMP and Ca2+ signaling 

pathways in the nucleus, influencing in a Ca2+ dependent way the activity of the 

transcription factor CREB (Ledo et al., 2002). To activate CRE-mediated transcription 

CREB needs first to be phosphorylated and then to recruit the coactivator CBP. In the 

absence of Ca2+, DREAM binds to a LCD in CREB located in a region critical for the 

interaction with CBP, preventing the interaction between these two proteins. Upon 

calcium stimulation DREAM is detached from CREB allowing transcription. 
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5.5. Prodynorphin and the endogenous opioid system 
The activity of DREAM as a transcription repressor has been demonstrated in vivo for 

different genes; prodynorphin, fra-2, ICER, AA-NAT, IL-2, IL-4 and NCX3 (Carrion et al., 

1999; Link et al., 2004; Gomez-Villafuertes et al., 2005; Savignac et al., 2005). Among 

these genes, prodynorphin is of particular interest in this study because of its involvement 

in the control of pain perception. It encodes one of the opioid polypeptides that, together 

with their receptors, forms part of a crucial system involved in pain modulation, the 

endogenous opioids.  

The group of the opioid receptors is composed of the mu, delta, kappa and nociceptin 

receptors. They are seven transmembrane domains receptors belonging to the superfamily 

of G-protein coupled receptors (GPCRs), and they share a 60% homology among them. 

Their endogenous agonists are the opioid peptides, which originate from the proteolytic 

processing of four polypeptidic precursors: 

Proopiomelanocortin; produces the opioid peptides β-endorphin-1 and –2 and 

endomorphin-1 and –2. These molecules are selective agonists for the µ opioid receptor 

and induce a strong analgesic effect (Zadina et al., 1997). β-endorphins are expressed in 

the hypophysis and in neurons of the arcuate nucleus of the hypothalamus (Bugnon et al., 

1979; Sofroniew, 1979). Endomorphins are expressed in the spinal cord and in the 

thalamus, in nuclei that are related to pain perception. 

Proenkephalin; is the precursor of met-enkephalin, leu-enkephalin and the 

peptides E, F and B, which are agonists for the µ and δ opioide receptors. It is expressed 

in the limbic system, in the nucleus raphe magnus (RVM), in the periaqueductal gray and 

in the dorsal horn neurons in the spinal cord. The activity of these peptides induces short-

term analgesia. 

 Pronociceptin; gives rise to nociceptin, which is the agonist of the nociceptin 

opioid receptor (ORL-1) (Meunier et al., 1995; Reinscheid et al., 1995). The gene is 

widely expressed throughout the nervous system, its role in pain regulation is still elusive 

and may differ when acting spinally or supraspinally (Mogil and Pasternak, 2001; 

Heinricher, 2003). 

Prodynorphin; is the precursor, through proteolytic processing, of dynorphin-A 

and dynorphin-B, two relatively selective agonists for the κ-opioid receptor. This gene is 

expressed at spinal and supra-spinal levels (Lima et al., 1993) and in sensory nerves. The 

expression of prodynorphin is upregulated in the spinal cord in cases of chronic pain. The 

signaling of dynorphins trough the κ-opioid receptor induces a mild analgesia, while on 
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the other hand the interaction of dynorphin A with bradykinin receptor is fundamental to 

maintain neuropathic pain states (Lai et al., 2006). 

In the promoter region for prodynorphin, apart from DRE, there are five more major 

regulatory regions; three cAMP responding elements (DynCre-1, -2 and -3) (McMurray et 

al., 1989), a non-canonical AP-1site (Naranjo et al., 1991) and a fourth CRE site (DynCre-

4) located after the transcription start. The concomitant action of these elements results in 

a tissue specific regulation able to respond to different physiological stimuli. 

 

5.6. DREAM and pain 
The evidence that DREAM regulates dynorphin level in the spinal cord suggests that it 

could regulate pain transmission by controlling the level of κ-receptor activation. To test 

this hypothesis a knockout mouse for DREAM was generated (Cheng et al., 2002). These 

mice show a markedly increased basal prodynorphin expression throughout the lumbar 

spinal cord without presenting any sign of κ-receptor desensitization. 

DREAM-/- mice were characterized in a series of behavioral experiment. These mutant 

mice had essentially normal motor control, spatial learning and anxiety in the open field 

test. On the other hand, lack of DREAM results in attenuation of pain behavior regardless 

of the modality of the noxious stimuli (thermal, mechanical or chemical) or the tissue 

type affected (cutaneous or visceral). In addition, loss of DREAM similarly results in 

attenuation of both inflammatory and neuropathic pain. 

Moreover, a persistent up-regulation of DREAM in the membrane fraction of the dorsal 

horn of the spinal cord in an inflammatory pain model (Zhang et al., 2007) has been 

described. These data suggest that DREAM could have other roles in pain modulation 

apart from its activity as a transcriptional repressor. At the plasma membrane DREAM 

interacts with the Kv4 channel modulating the A-type K+ currents, one possible 

hypothesis is that DREAM is involved in inflammatory pain through its action on this 

channel. The regulation of A-type currents in the spinal cord plays a central role in the 

control of pain perception. It is known that knockout mice for the Kv4.2 channel present 

an impaired pain perception phenotype with enhanced sensibility to mechanical and 

thermal stimulation (Hu et al., 2006). Intriguingly, these mutated mice show a basal 

downregulation of the levels of KChIP3 (Menegola and Trimmer, 2006), further high 

lightening the importance of the fine-tuning of the interaction between these proteins. 
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OBJECTIVES 
 
 
 
 
The main goal was to study the functional role of DREAM in the control of nociception at 

the spinal cord/DRG level and at the trigeminal ganglia. In particular we aimed to 

characterize: 

 

1. The basal response to pain in the spinal cord and DRG in transgenic mice 

expressing a dominant active mutant of DREAM (daDREAM mice). 

 

2. The response to chronic pain (inflammatory and neuropathic) in daDREAM 

mice. 

 

3. The transcriptional changes imposed by daDREAM that influence basal 

nociception. 

 

4. The role of DREAM in the molecular response to chronic inflammatory pain in 

the spinal cord and DRG. 

 

5. The role of DREAM in the molecular response to trigeminal pain. 

 

6. DREAM target genes that are involved in trigeminal pain perception.  
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MATERIALS AND METHODS 
 

1. Transgenic mice 
Transgenic mice were previously generated in our laboratory (Savignac et al., 2005). 

Briefly, the cDNA encoding human DREAM with two amino acid substitutions at EF-

hands 2, 3 and 4 and a double amino acid substitution at the N-terminal LCD (line 1) or 

in the two LCDs (line 16) was inserted downstream of the human CaMK-IIα promoter 

(Mayford et al., 1996) in a bicistronic expression vector containing an IRES and the LacZ 

reporter gene. The transgenesis cassette was microinjected into the pronuclei of one-cell 

embryos (C57BL/6 x CBA F1) using standard techniques. Transgenic progeny was 

identified by Southern blot and qualitative PCR of tail DNA using specific primers: 

forward 5’-TTGCAGTGCACGGCAGATACACTTGCTGA-3’ and reverse 5’-

CCACTGGTGTGGG CCATAATTCAATTCGC-3’. An amplified fragment of 326 bp 

indicated the presence of the transgene. 

 

BDNF-/- mice were kindly provided by Dr. J. Alberch (University of Barcelona) 

 

DREAM-/- mice were kindly provided by Dr. M. Vallejo (IIB, CSIC, Madrid) 

 

2. Behavioral experiments 
Mice were housed five per cage in a temperature (21 ± 1ºC) and humidity  (65 ± 10%) 

controlled room with a 12/12-light/dark cycle (light from 8 am to 8 pm) with food and 

water ad libitum. 

Unless mentioned, adult (3 to 5 months) male mice were used in all experiments. To 

avoid bias, behavioral experiments were performed blind from 09.00 to 13.00. 

 

2.1. Plantar test 
Heat hyperalgesia was assessed using the plantar test (Hargreaves et al., 1988). Mice 

were habituated for 30 minutes in individual Plexiglas chambers placed on a glass floor. 

During this time, mice initially exhibited exploratory behavior but subsequently stopped 

exploring and stood quietly with occasional bouts of grooming. After habituation, a beam 

of radiant heat (50ºC) was focused to the plantar surface of the hindpaws and the 
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withdrawal response was measured with a plantar test apparatus (Ugo Basile, Comerio, 

Italy). The nocifensive withdrawal reflex interrupts the light reflected from the paw onto a 

photocell and automatically turns off the light and the timer. The latency of the 

withdrawal response (as an indirect measure of the heat-pain threshold) was thus 

recorded automatically. 

 

2.2. Von Frey test 
Mechanical sensitivity was assessed by von Frey filaments (Stoelting, Wood Dale, IL) in 

the hind-paw. Mice were placed into a transparent plastic dome with a metal-mesh floor 

allowing access to the plantar surface of the hindpaws. Mice were placed in the 

experimental cage for habituation 30 minutes before testing. The filament was pressed 

perpendicularly to the plantar surface of the hindpaw with sufficient force to cause a 

slight buckling. A positive response was noted when the hindpaw was sharply 

withdrawn. Flinching immediately after the removal of the filament was also considered 

as a positive response. The force (in grams) producing a 50% probability of withdrawal 

was determined by the “up-down” method (Dixon, 1980). Each trial was repeated twice 

at 2 minutes intervals, and the mean value represented the paw withdrawal threshold. 

 

2.3. Hindpaw formalin test 
Mice were placed in an experimental cage for habituation 30 minutes before testing. The 

formalin test was performed by injection of 10 µl of 8% formalin subcutaneously into the 

plantar surface of the right hindpaw. The total time spent in spontaneous nociceptive 

behavior (licking of the injected paw) was recorded in 5 minutes intervals for 1 hour as 

previously described (Karim et al., 2001). 

 

2.4. Snoot formalin test 
Mice were placed in an experimental cage for habituation 30 minutes before testing. The 

formalin test was performed by injection of 10 µl of 2% formalin (or 4,5% where 

indicated) subcutaneously into the vibrissa pad. The total time spent in spontaneous 

nociceptive behavior (rubbing the injected snoot) was recorded in 3 minutes intervals for 

30 minutes as previously described (Clavelou et al., 1989). 
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3. Chronic pain models 
 

3.1. Inflammatory pain 
As inflammatory agent we used Complete Freund’s adjuvant (CFA, Sigma-Aldrich, St. 

Louis, Missouri), a mineral oil suspension of heat inactivated Mycobacterium tuberculosis 

(Chillingworth and Donaldson, 2003).  

For inflammation in the hind paws we injected 50 µl of CFA into the plantar surface close 

to the tibiotarsal joint. The injection was performed in the right paw for behavioral 

studies, and bilaterally for biochemical studies. 

For inflammation in the snoot we injected 10 µl of CFA subcutaneously into the vibrissa 

pad (Morgan and Gebhart, 2008). The injection was done in the right snoot for 

behavioral studies, and bilaterally for biochemical studies. 

 

3.2. Chronic constriction injury 
Animals were anesthetized with isoflourane inhalation. The sciatic nerve was exposed at 

the level of the middle of the thigh by blunt dissection through biceps femurs. Proximal to 

the sciatic trifurcation, about 7 mm of nerve was freed of adhering tissue and 3 ligatures 

(5.0 chromic gut) were tied loosely around it with about 1 mm spacing. The length of 

nerve affected was about 3 to 4 mm. Great care was taken to tie the ligatures so that the 

diameter of the nerve was seen to be barely constricted when viewed with 40 X 

magnification. The degree of constriction applied retarded, but did not arrest, circulation 

through the superficial epineurial vasculature and sometimes produced a small, brief 

twitch in the muscle surrounding the exposure. The incision was closed in layers. In 

sham-operated mice, an identical dissection was performed except that the sciatic nerve 

was not ligated. 

 

4. Biochemical and biomolecular techniques 
 

4.1. RNA extraction and reverse transcription 
RNA was extracted from whole tissues using TRIzol (Invitrogen Life Technologies, 

Carlsbad, California) following the manufacturer’s protocol. To avoid contamination with 

genomic DNA the total RNA was then treated with DNAse (Ambion, Austin, Texas) for 30 

minutes at 37ºC. The reaction was repeated two times to ensure the purity of samples. 

The reaction was stopped using DNAse Inactivation Reagent (Ambion). 
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One µg of the RNA was resuspended in 70 µl RNAse-free distilled water. Six µl of 50 µM 

random hexamers were added and the mixture was incubated for 10 minutes at room 

temperature. After the incubation, 39 µl of the following reverse transcriptase buffer were 

added to the each sample: 23 µl 5X RT buffer (Invitrogen, Life Technologies); 4 µl DTT 

0,1 M; 4 µl dNTPs 10 µM (dNTPs, set PCR grade, Invitrogen Life Technologies), 0,5 µl 

RNAsine (Superase In, Ambion) 1 µl Moloney Murine Leukemia Virus retro-transcriptase. 

(Invitrogen Life Technologies). The reaction was kept for 90 minutes at 37ºC. The retro-

transcriptase was heat-inactivated for 10 minutes at 70ºC 

 

4.2. Real-Time PCR 
We quantified transcript levels by quantitative real-time PCR (Q-PCR). Q-PCR for 

endogenous and mutated DREAM was performed using a pair of primers able to amplify 

both transcripts: forward 5'-CACCTATGCACACTTCCTCTTCA-3' and reverse 5'-

ACCACAAAGTCCTCAAAGTGGAT-3' and two TaqMan MGB probes (Applied 

Biosystems, Foster City, California): FAM-5'-TGCCTTCGATGCTGAT-3'-MGB and VIC-5'-

CGCCTTTGCTGCGGC-3'-MGB, specific for wild type and mutant DREAM, respectively. 

Primers and probes for quantification of other genes are described below: 

 

BDNF (Sybr Green) FORWARD: 5’-CGAGTGGGTCACAGCGGCAGA-3’ 

REVERSE:   5’-CGAACATACGATTGGGTAGTT-3’ 

TrkB Commercial kit: Applied Biosystems cod.: Mm00435422_m1 

Prodynorphin FORWARD: 5’-CGTGATGCCCTCTAATGTTATGG-3’ 

REVERSE:   5’-AGTCTCCTCACCCTCTGTA-3’ 

PROBE: FAM-5’-TCAACCCCCTGATTTG-3’-MGB 

Proenkephalin Commercial kit: Applied Biosystems cod.: Mm01212875_m1  

Prepronociceptin Commercial kit: Applied Biosystems cod.: Mm00803087_m1 

Proopiomelanocortin Commercial kit: Applied Biosystems cod.: Mm00435074_m1 

Mu opioid receptor Commercial kit: Applied Biosystems cod.: Mm00440568_m1  

Delta opioid receptor Commercial kit: Applied Biosystems cod.: Mm00443063_m1  

Kappa opioid receptor Commercial kit: Applied Biosystems cod.: Mm00440561_m1 

Nociceptin receptor Commercial kit: Applied Biosystems cod.: Mm00440563_m1 

Kv4.1 Commercial kit: Applied Biosystems cod.: Mm00492796_m1 

Kv4.2 Commercial kit: Applied Biosystems cod.: Mm00498065_m1 

Kv4.3 (Sybr Green) FORWARD: 5’-TGGATATGGAGACATGGTGC-3’ 
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REVERSE:   5’-GAGCCAAATATCTTCCCTGCG-3’ 

SV2c Commercial kit: Applied Biosystems cod.: Mm01282630_m1 

MGLL Commercial kit: Applied Biosystems cod.: Mm00449274_m1 

DBNDD2 Commercial kit: Applied Biosystems cod.: Mm00458743_m1 

CTSL Commercial kit: Applied Biosystems cod.: Mm00515597_m1 

DTNBP1 Commercial kit: Applied Biosystems cod.: Mm00458743_m1 

GABAAα1 Commercial kit: Applied Biosystems cod.: Mm00439040_m1 

GABAAα2 (Sybr Green) FORWARD: 5’-AAGACAAAATTGAGCACATGCA-3’ 

REVERSE:   5’-TGGGTCCCACACCAGAAGA-3’ 

GABAAα3 Commercial kit: Applied Biosystems cod.: Mm0043440_m1 

GABAAβ3 (Sybr Green) FORWARD: 5’-CCTTCTGGATCAATTACGATGCA-3’ 

REVERSE:   5’-TGAGTGTTGATGGTTGTCATGGT-3’ 

GABAAγ2 (Sybr Green) FORWARD: 5’-CACAGAAAATGACGCTGTGGAT-3’ 

REVERSE:   5’-TCATCTGACTTTTGGCTTGTGAA-3’ 

 

The results were normalized by quantification of HPRT or GAPDH mRNA, where 

indicated. HPRT was quantified using the specific primers; forward 5'-

TTGGATACAGGCCAGACTTTGTT-3' and reverse 5'-

CTGAAGTACTCATTATAGTCAAGGGCATA-3', and the probe FAM-5'-

TTGAAATTCCAGACAAGTTT-3'-MGB; GAPDH was quantified using a commercial kit 

from Applied Biosystems (cod.: 4352339E). 

Each experiment was done with a minimum number of 6 mice/line/condition and 

repeated at least two times with samples collected from independent experiments. 

 

 4.4. Protein extraction and Western Blot 
 

4.4.1 Dissection of tissue samples 
The dorsal lamina of the spinal cord of wild type and line 1 mice were dissected viewed 

with a 40X magnification to isolate only the outer laminae. Where indicated, mice were 

treated with intraplantar CFA or formalin and the dissection took place at different time 

point after the injection (30 minutes and 6 hours for CFA; 45 minutes for formalin). 

Where indicated mice were pretreated with an intraperitoneal injection of bicuculline 

(Sigma-Aldrich) 1,5 mg/kg, (dissolved in 0,1N HCl and adjusted to pH 5 with 0,1N 

NaOH) 30 minutes before the beginning of the experimental procedures  
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4.4.2 Sample processing 
Tissue samples were lysed by mild sonication in lysis buffer [50 mM Tris-Hcl, pH 7.5; 

150 mM NaCl; 1% Nonidet P-40; EDTA-free protease inhibitor cocktail (Roche Applied 

Science, Bassel, Swiss); phosphatase inhibitors (Phosphatase inhibitor set II. 

Calbiochem)]. The lysis was performed rotating the samples at 4ºC for 30 minutes. The 

lysates were cleared by centrifugation for 10 minutes at 14000 rpm. 

After protein quantification by the Bradford method, 10 to 30 µg of total protein were 

separated in 10% SDS-polyacrylamide gels. After electrophoresis, separated proteins 

were transferred in semi-dry conditions to PVDF membranes (Millipore). Membranes 

were blocked with 5% non-fat dry milk in TBS-T [20 mM Tris pH 7,6; 137 mM NaCl; 

0,1% Tween-20  (Sigma-Aldrich)] and incubated overnight at 4ºC with the indicated 

antibodies. Immunolabeling was detected by enhanced chemiluminiscence (ECL 

Advance. GE Healthcare) 

When necessary, membranes were stripped in a stripping buffer containing 100 mM 2-

mercaptoethanol; 62,5 Tris-HCl, pH 6,8; 2% SDS for 30 minutes at 50ºC. 

 

The following primary antibodies were used following the manufacturer’s instructions: 

 

Anti Phospho-ERK Monoclonal anti-MAP kinase, activated (Sigma-Aldrich) 

Anti ERK Polyclonal anti-ERK 2 (C14) (Santa Cruz Biotechnology) 

 
 

5. Affymetrix microarray 
 

 5.1- Samples preparation 
Total RNA from the trigeminal ganglion of wild type and line 16 mice was prepared as 

described previously. The RNA was purified using a commercial kit following the 

manufacturer’s instructions (RNeasy mini kit. Quiagen). Samples were pooled in groups 

of three to finally obtain 3 pools for line 16 mice and 4 pools for wild type mice. The 

RNA samples were analyzed for purity and integrity using Agilent 2100 Bioanalyzer 

(Agilent technologies). 

 



Materials and Methods 

 69 

5.2. Amplified RNA (aRNA) preparation and fragmentation 
Four µg of the different pools of total RNA were used in this process. Total RNA was 

reverse transcribed to synthesize first-strand cDNA. This reaction was primed using T7 

oligo(dT) that contains a T7 promoter sequence. To prepare the second strand of cDNA, 

DNA polymerase and RNase H were used to simultaneously degrade the RNA and 

synthesize second-strand cDNA. Synthesis of the aRNA was performed by in vitro 

transcription. In this step biotin-conjugated nucleotides were added to the reaction, 

which are incorporated into the newly synthesized aRNA. The quality of the aRNA 

obtained was controlled with the Agilent 2100 Bioanalyzer. Thereafter, 15 µg of aRNA 

were heat-fragmented for 35 minutes at 95ºC obtaining aRNA fragments ranging in length 

between 35 and 200 base pairs. 

 

5.3. Microchip hybridization 
Five ug of the fragmented aRNA were used for preliminary control hybridization with 

TestChip (Affymetrix). In case of positive results 10 µg are hybridized with the MOE 430 

2.0 chip (Affymetrix). This chip includes 45000 different probe sets that analyze the 

expression level of more than 39000 transcripts and variants from 34000 well-

characterized mouse genes. Hybridization buffer [100 mM 2-(N-

morpholino)ethanesulphonic acid; 1 M NaCl; 20 mM EDTA; 0,01% Tween-20 (Sigma-

Aldrich)] was added to each of the samples to a final RNA concentration of 0,05 µg/ml 

and 200 µl of each sample were incubated with each chip for 16 hours at 45ºC. 

The microarrays were stained with streptavidin-phycoerythrin in the Fluidic Station 450 

(Affymetrix) and scanned with the GeneChip Scanner 3700 7G System (Affymetrix) with a 

resolution of 11 µM. Data analysis was carried out using GeneChip Operating System 

(Affymetrix). 

 

5.4. Statistical analysis 
Data normalization and statistical analysis were performed using the R/Bioconductor 

LIMMA package. Data were normalized through robust multi-array averaging. Linear 

methods were used to determine differently expressed genes obtaining an estimation of 

moderated t-statistics p values. The Benjamini-Hochberg correction (Reiner et al., 2003) 

for multiple comparisons (False Discovery Rate) was applied to these p values. 
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6. Data analysis 
Each experiment was repeated at least two times independently and the data are 

expressed as mean ± SEM. Statistical analysis and curve fitting were performed using 

Prism 4.0 (Graphpad). Statistical significance of the differences between experimental 

groups was analyzed using Student's t-test unless otherwise stated. * p < 0,05; ** p < 0,01 

and *** p < 0,001. 
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RESULTS 
 

A. FUNCTIONAL ANALYSIS OF DREAM IN PAIN MECHANISMS 
AT THE SPINAL CORD/DRG LEVEL 

 

A.1. Characterization of daDREAM transgenic lines for the study of 
spinal cord mechanisms of pain 

Regulation of gene expression by DREAM has been associated with changes in the 

response to noxious stimuli (Cheng et al., 2002; Lilliehook et al., 2003). To specifically 

analyze the role of DREAM in the molecular pathways that control the response to pain 

we used transgenic mice that express a dominant active mutant of DREAM (daDREAM) 

(Gomez-Villafuertes et al., 2005; Savignac et al., 2005). The transgene is mutated in the 

three functional EF-hands and in the first LCD. As a result, the mutant DREAM is unable 

to bind Ca2+ and to interact with CREB (Carrion et al., 1999; Ledo et al., 2002). 

 

 A.1.1. Analysis of daDREAM expression levels 
Previous data in our laboratory described the pattern of expression of daDREAM mutant 

in the lumbar spinal cord of the different available transgenic lines. This screening 

showed expression of the transgene in the spinal cord of mice from line 1 (L1). 

To carry out a detailed characterization of transgene expression in sensory areas 

associated with spinal pain we performed quantitative real-time PCR (Q-PCR) analysis of 

of endogenous and daDREAM expression in the lumbar spinal cord and in the DRG from 

wild type and L1 mice (Fig. 8).  

 

Figure 8. Q-PCR analysis of DREAM and daDREAM expression. DREAM and daDREAM 
expression was quantified by Q-PCR in the spinal cord (SC) and dorsal root ganglion (DRG) of 
wild type (n= 12) and line 1 (n= 12) mice. Values are normalized by the content of GAPDH. 
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A first important result from this analysis was that, both in SC and DRG, the expression 

level of daDREAM is comparable with the expression of endogenous DREAM (Fig. 8). 

Based on previous work (Savignac et al., 2005) the ratios of daDREAM versus 

endogenous DREAM obtained are sufficient for the transgene to display its activity as a 

dominant active mutant on the functioning of endogenous DREAM/KChIP proteins in the 

nucleus. Confirming this, and further supporting the idea that DREAM regulates its own 

transcription, expression of endogenous DREAM mRNA was significantly reduced in line 

1 mice, compared to wild type controls, both in the spinal cord (SC) and in dorsal root 

ganglia (DRG) (Fig. 8). Thus, expression level of daDREAM in SC and DRG ensures that 

DREAM target genes are constitutively repressed in our transgenic mice giving us the 

opportunity to study the effect of the transgene expression in vivo at the SC/DRG level.  

 

 A.1.2. Analysis of nociceptive thresholds in daDREAM mice 
Previous experiments showed that DREAM transgenic mice are hyperalgesic when tested 

both for visceral pain (writhing test) and thermal sensitivity (tail flick test). To further 

define the basal nociceptive phenotype of daDREAM expressing mice we carried out a 

complete set of behavioral experiments, including the assessment of pain thresholds to 

different thermal test and mechanical stimulation as well as the responses to 

inflammatory and neuropathic chronic pain. 

Response to thermal noxious stimulation were measured in wild type and transgenic mice 

using the plantar test (Hargreaves et al., 1988) to measure the thresholds for foot 

withdrawal latency. 

 

Figure 9. Basal thermal threshold. Basal thermal threshold was evaluated with a plantar test 
assay in wtild type (n= 19) and line 1 (n= 23) mice. 

 

*** 
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Transgenic mice showed a hyperalgesic phenotype (Fig. 9) with a mean latency of foot 

withdrawal of 1,70 ± 0,06 seconds, while for wild type mice it was 2,83 ± 0,09 seconds. 

These results confirmed previous observations using the tail flick test. 

To identify the response to punctuate low threshold mechanical stimulation we used von 

Frey hairs (Levin et al., 1978).  

 

Figure 10. Basal mechanical threshold. Basal mechanical threshold was evaluated using von 
Frey’s hair in wild type (n= 19) and line 1 (n= 23) mice. 

Transgenic mice and wild type mice showed the same mechanical sensitivity to a 

punctate stimulation in the hindpaw (Fig. 10). The 50% response was evoked by a force 

of 1,60 ± 0,10 grams in the wild type mice, while in transgenic mice it was 1,64 ± 0,06 

grams. These results indicate that transgene expression does not affect nociceptive 

responses to mechanical stimulation, suggesting that endogenous DREAM may not be 

involved in mechanical noxious perception. 

Next, we tested transgenic mice for their response to tonic pain using the formalin test, a 

model for pain studies commonly used in rodents. Intraplantar injection of formalin 

activates nociceptors and results in a typical biphasic nociceptive response (Karim et al., 

2001). The first phase of nocifensive behavior involves direct activation of nociceptors, 

whereas the second phase is evoked by mechanisms of peripheral and central 

sensitization (Puig and Sorkin, 1996). 

 

Figure 11. Formalin test. Wild type (n= 8) and line1 (n=8) mice were tested for their licking 
response after intraplantar injection of formalin. The response was evaluated in blocks of 5 
minutes during one hour after the injection. 
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In the first phase of the formalin test, from 0 to 15 minutes after injection, we did not 

observe differences between wt and transgenic mice. In the second phase, from 15 to 60 

minutes, we recorded a slightly less pronounced response in transgenic mice (Fig. 11). 

Quantification of the area under the curve for wt and daDREAM expressing mice still did 

not show a statistically significant decrease in the total licking behavior (Fig. 12). This 

tendency of a lower response during the second phase of the formalin test could be 

indicative of a slight impairment of sensitization mechanisms in transgenic mice. 

 

 

Figure 12. Total nocifensive response to formalin. The nocifensive response to formalin was 
evaluated measuring the area under the curve in the first phase (0 to 15 minutes) and in the 
second phase (15 to 60 minutes)) of the formalin test in wild type (n= 8) and line 1 (n= 8) mice. 

 
A.1.3. Transcriptional basis for basal hyperalgesia in daDREAM mice 

Earlier transcriptomic analysis of the changes imposed by the expression of daDREAM in 

the lumbar spinal cord of DREAM transgenic mice identified the µ opioid receptor as a 

transcriptional target for DREAM repression. In this work we have quantified by real-time 

PCR some known DREAM target genes as well as DREAM interacting proteins that have 

been related to nociception. Among target genes, we focused on the opioid system and 

on BDNF. Among interacting proteins we analyzed the expression of Kv4 channels. 

  
A.1.3.1. The endogenous opioid system 

Scattered pieces of evidence suggest that DREAM has an important role in the control of 

the endogenous opioid tone. Thus, it has been shown that DREAM regulates the 

expression of prodynorphin (Carrion et al., 1999) and its main receptor, the κ opioid 

receptor, (Cheng et al., 2002). Furthermore, the downregulation of the µ opioid receptor 

in the spinal cord, medulla-pons and periaqueductal grey in daDREAM transgenic mice 

has also been previously shown. To complete the knowledge about the role of DREAM in 
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the control of the endogenous opioid system we measured expression levels for all the 

different opioid ligands and receptors in spinal cord and DRG. 

The results from the analysis at the spinal cord level are shown in Table 1 and indicate 

that the expression of the dominant active mutant of DREAM in the spinal cord produces 

an overall decrease in the transcription of genes encoding both polipeptidic opioid 

precursors and opioid receptors. Levels of POMC were below the limit of detection in the 

spinal cord, suggesting that this precursor is not contributing or has a minor role in 

endogenous opioid mechanisms in this tissue. 

PDYN downregulated 

PENK downregulated 

POMC not detected 

PNOC downregulated 

MOR downregulated 

DOR downregulated 

KOR downregulated 

ORL downregulated 

Table 1. The opioid system in the spinal cord of line 1 mice. The expression  level of the 
different members of the opioid system measured via Q-PCR compared to wild type control 
mice. 

In transgenic DRG, expression of PENK and PNOC was reduced, expression of PDYN 

was not affected and POMC mRNA was again not detectable (Fig. 13). Furthermore, 

transcription of µ, δ and κ receptors was reduced, while the expression of the opioid-like 

receptor was not affected (Fig. 14). These results highlighted the importance of DREAM in 

the transcriptional control of the opioid system also in DRG. 

 

 

Figure 13. Q-PCR analysis of the polypeptidic opioid precursors expression in the DRG. PDYN, 
PENK, PNOC and POMC expression was quantified by Q-PCR in the DRG of wild type (n= 14) and line 1 
(n= 13) mice. Values are normalized by the content of GAPDH. 
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Figure 14. Q-PCR analysis of the expression of opioid receptors in the DRG. MOR, DOR, 
KOR and ORL expression was quantified by Q-PCR in the DRG of wild type (n= 14) and line 1 
(n= 13) mice. Values are normalized by the content of GAPDH. 

 
A.1.3.2. BDNF expression in daDREAM mice 

Accumulated evidence during the last 12 years indicates that BDNF plays a critical role 

in nociception (Kerr et al., 1999; Thompson et al., 1999; Zhou et al., 2000; Yajima et al., 

2005). Two aspects were of particular importance for our study i) the role of BDNF in 

regulation of the response of the second order neurons that transmit pain signal in the 

dorsal horn of the spinal cord (Pezet and McMahon, 2006) and, ii) the evidence from in 

vitro experiments that DREAM regulates the activity of several BDNF promoters 

(Mellstrom et al., 2004). Thus, we first measured, by Q-PCR, BDNF expression level in 

the DRG and in the spinal cord of wt and transgenic mice and found a reduction in both 

areas (Fig. 15). 

 

 

Figure 15. Q-PCR analysis of BDNF expression. BDNF expression was quantified by Q-PCR 
in the spinal cord (SC) and dorsal root ganglion (DRG) of wild type (n= 12) and line 1 (n= 12) 
mice. Values are normalized by the content of GAPDH. 

 

Importantly, decreased BDNF expression did not result in a significant change in the 

expression of its main receptor, the tyrosine kinase receptor trkB, either in spinal cord or 

in DRG from transgenic mice (Fig. 16). 



Results 

 79 

 

 

Figure 16. Q-PCR analysis of trkB expression. trkB expression was quantified by Q-PCR in 
the spinal cord (SC) and dorsal root ganglion (DRG) of wild type (n= 12) and line 1 (n= 12) mice. 
Values are normalized by the content of GAPDH. 

 
A.1.3.3. Kv4 expression in daDREAM mice 

Kv4 channels are the main ion channels responsible for generation of the inhibitory A-

type current. These potassium currents have been associated with neuronal plasticity in 

the hippocampus (Frick et al., 2004) and in the spinal cord (Hu et al., 2006). The calcium 

insensitive DREAM mutant has been previously shown to affect gating properties of 

potassium channels in vitro (An et al., 2000) and a minor change in A-type currents has 

been reported in DREAM deficient neurons (Cheng et al., 2002). Moreover, expression of 

KChIP proteins is altered in genetically modified mice lacking different Kv4 subunits 

(Menegola and Trimmer, 2006). Because of this, it was important to investigate whether 

expression of daDREAM modifies Kv4 channels at the transcriptional or functional level. 

 

 

Figure 17. Q-PCR analysis of Kv4 expression in the spinal cord and in the DRG. Kv4.1, 
Kv4.2 and Kv4.3 expression was quantified by Q-PCR in the spinal cord (A) and in the DRG (B) 
of wild type (n= 12) and line 1 (n= 12) mice. Values are normalized by the content of GAPDH. 

In the spinal cord, quantitative analysis of mRNA levels of the different subunits 

contributing to A-type currents showed a moderate increase of Kv4.2 and Kv4.3 in 

daDREAM mice, while Kv4.1 levels were unaffected (Fig. 17 A). Conversely, in the DRG, 
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expression of the Kv4.1 and Kv4.3 was decreased in transgenic mice while the expression 

of the Kv4.2 subunit was increased (Fig. 17 B). 

Reduced expression of Kv4 subunits has been associated with basal hyperalgesia (Hu et 

al., 2006; Chien et al., 2007). In our transgenic model, the hyperalgesia is observed in the 

presence of bidirectional changes in the expression of the Kv4 subunits, both in the spinal 

cord and in the DRG. To investigate whether these transcriptional changes or the 

expression of the daDREAM mutant itself have a functional correlate we characterized A-

type currents in dorsal horn transgenic neurons. In collaboration with Prof. Lopez-García 

from Alcalá University, dorsal horn neurons were recorded in voltage-clamp conditions. 

Interestingly, isolated A-type currents were similar in wild type and transgenic mice and 

no differences were found in their voltage dependent activation, inactivation (Fig. 18 A) 

and reactivation (Fig. 18 B). Moreover, neurons from wild type and transgenic mice were 

recorded in current clamp mode to compare their general state of excitability. We found 

that the intrinsic excitability of transgenic neurons was essentially unchanged (Fig 18 C). 

 

Figure 18. A-type potassium (IA) currents and neuronal excitability. Comparison between IA 
currents observed in dorsal horn neurons from wild type (n= 18) and line 1 (n= 6) mice: 
activation kinetics (A, right axis), inactivation kinetics (A, left axis) and recovery from inactivation 
(B) Mean number of action potential obtained in current clamp recordings (C)  

 

These data indicate that daDREAM does not function as a dominant mutant for Kv4 

channel activity in vivo, and it is therefore unlikely that the basal hyperalgesia observed 

in transgenic mice is related to changes in A-type currents. 

 

A.2. DREAM and the spinal response to inflammatory pain 
The process of central sensitization after chronic pain is defined as the increase in 

synaptic efficacy in somato-sensory neurons in the dorsal horn of the spinal cord 

following intense peripheral noxious stimulation. The slightly reduced response of 

daDREAM transgenic mice in the second phase of the formalin test could be an 

indication of impaired central sensitization process. To investigate if this was the case and 

clarify a potential role of DREAM in sensitization processes during chronic pain we 
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evaluated the response of the transgenic mice in a model of inflammatory pain after 

intraplantar CFA injection. 

 A.2.1. Behavioral response to inflammatory pain in daDREAM mice 
Inflammatory-induced hyperalgesia after CFA was evaluated in wild type and transgenic 

mice at different times after treatment, assaying the response to thermal and mechanical 

stimulation using the plantar test (Fig. 19) and the von Frey hair (Fig. 20), respectively. 

 

Figure 19. Thermal hyperalgesia after CFA injection.  A) Thermal hyperalgesia was 
evaluated by plantar test in basal condition and at different days after intraplantar CFA injection 
in wild type (n= 14) and line 1  (n= 14) mice. B) Relative change in thermal sensitivity was 
calculated with respect to basal levels of wild type and line 1 mice. * = wild type vs line 1 (same 
day); # and # = basal vs treated for  wild type and line 1, respectively. 

Injection of CFA produced a similar redness and paw inflammation in wild type and 

transgenic mice. At 24 hours after CFA, wild type mice developed a pronounced thermal 

hyperalgesia (withdrawal latency of 1,29 ± 0,02 seconds), which lasted for 18 days (Fig. 

19 A). On the contrary, thermal thresholds were only slightly modified in transgenic mice 

24 hours after CFA and the hyperalgesic response was observed only up to day 12 after 

CFA. These differences were better observed when analyzed as relative change to basal 

thermal sensitivity for each genotype (Fig 19 B). Taken together these data suggest that 

daDREAM mice displays impaired response to inflammatory pain with milder and 

shorter-lasting hyperalgesia compared to wild type mice. 

 

Figure 20. Mechanical hyperalgesia after CFA injection. Mechanical hyperalgesia was 
evaluated by von Frey’s hair in basal condition and at different days after intraplantar CFA in 
wild type (n= 14) and line 1  (n= 14) mice. *=  wild type Vs line 1 (same day). # and # = basal vs 
treated for wild type and line 1, respectively. 
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Importantly, similar results were obtained when we tested mechanical sensitivity. Wild 

type mice display a strong hyperalgesic response starting from day 1 after CFA injection 

(Fig. 20). Transgenic mice also show enhanced sensitivity to mechanical stimulation after 

CFA injection, but the hyperalgesia in this case is less pronounced than in wild type 

mice. These data also sustain the hypothesis of an impaired sensitization in response to a 

chronic inflammatory stimulus. 

 
 A.2.2. Transcriptional basis for modified sensitization in daDREAM mice 

To investigate the molecular substrate for the modified sensitization observed in 

transgenic mice following inflammatory pain, we first characterized the transcriptional 

response of endogenous DREAM to intraplantar CFA injection (Fig. 21). 

 

 

Figure 21. Q-PCR analysis of DREAM expression in the spinal cord and DRG after CFA 
injection. Endogenous DREAM expression in the spinal cord was quantified by Q-PCR in the 
spinal cord (A) and DRG (B) of wild type (n=6) and line 1 (n= 6) mice at day 0, 3 and 5 days 
after intraplantar CFA injection. *= wild type Vs line 1 (same day); #= basal Vs treated (same 
line). Values are normalized by the content of GAPDH. 

 

In the spinal cord of wt mice the transcription of DREAM was not affected during 

inflammatory pain (Fig. 21 A). Contrary, in line 1 mice we observed a peak of induction 

at day 3 and the expression returned to basal levels 5 days after CFA injection. 

In the DRG, however, a long lasting increase in DREAM mRNA was observed both in 

wild type and transgenic mice (Fig. 21 B). 

 
 A.2.2.1. The opioid response to inflammatory pain in daDREAM mice 

As described earlier, the opioid system is greatly influenced by the expression of 

daDREAM both in spinal cord and DRG. Thus, we compared the opioid response to 

inflammatory pain in transgenic versus wt mice. 
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First we analyzed by Q-PCR the expression level of the polypeptidic precursors for the 

endogenous opioid peptides in the spinal cord (Fig. 22) 

 

 

 

Figure 22. Q-PCR analysis of polypeptidic opioid precursors expression in the spinal 
cord after CFA injection. PDYN (A), PENK (B) and PNOC (C) expression was quantified by Q-
PCR in the spinal cord of wild type (n=6) and line 1 (n= 6) mice at day 0 and 3 and 5 days after 
intraplantar CFA injection. *= wild type vs line 1 (same day); #= basal vs treated (same line). 
Values are normalized by the content of GAPDH. 

 

PDYN expression revealed a significant increase at day 3 after the treatment with CFA 

that disappeared at day 5 in both genotypes (Fig. 22 A). PENK expression revealed no 

change in wt mice while PENK mRNA was increased in transgenic mice at day 3 and 

remained elevated 5 days after CFA (Fig. 22 B). PNOC expression was reduced at day 3 

and returned to basal level 5 days in wild type mice, on the other hand it was not affected 

in transgenic mice at any time after CFA (Fig. 22 C). 

As for the expression of opioid receptors, i) mu opioid receptor was not affected in wild 

type mice but was increased two-fold at day 3 in daDREAM mice (Fig. 23 A), ii) delta and 

kappa opioid receptors were not significantly modified during inflammatory pain in either 

genotype (Fig. 23 B, C) and iii) expression of ORL was induced at 3 days after CFA in wt 

but not in transgenic mice (Fig 23 D). 
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Figure 23. Q-PCR analysis of opioid receptors expression in the spinal cord after CFA 
injection. MOR (A), DOR (B), KOR (C) and ORL (D) expression was quantified by Q-PCR in 
the spinal cord of wild type (n=6) and line 1 (n= 6) mice at day 0, 3 and 5 days after intraplantar 
CFA injection. * = wild type vs line 1 (same day) and  #= basal vs treated (same line). Values 
are normalized by the content of GAPDH. 

 

In the DRG, the response of the opioid system to inflammatory pain was markedly 

different with respect to the response in the spinal cord (Fig. 24). 
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Figure 24. Q-PCR analysis of polypeptidic opioid precursors expression in the DRG after 
CFA injection. PDYN (A), PENK (B) and PNOC (C) expression was quantified by Q-PCR in the 
DRG of wild type (n=6) and line 1 (n= 6) mice at day 0 and 3 and 5 days after intraplantar CFA 
injection. * = wild type vs line 1 (same day) and # = basal vs treated (same line). Values are 
normalized by the content of GAPDH. 

Following CFA injection, expression of i) PDYN and PNOC mRNA was not modified in 

wt mice but induced at day 3 in transgenic mice (Fig. 24 A, C) and, ii) PENK expression 

was decreased in both genotypes though with a different time course. In wild type mice 

the decrease was significant only at day 5 while in transgenic mice the peak of reduction 

was observed at day 3 (Fig. 24 B). 

Inflammatory pain induced very specific changes in opioid receptors expression in the 

DRG, which were different from the changes observed in the spinal cord: 

 

 

Figure 25. Q-PCR analysis of of the expression of opioid receptors expression in DRG 
after CFA injection. MOR (A), DOR (B), KOR (C) and ORL (D) expression was quantified via 
Q-PCR in the DRG of wild type (n=6) and line 1 (n= 6) mice at day 0 and 3 and 5 days after 
intraplantar CFA injection. *= wild type Vs line 1 (same day); #= basal Vs treated (same line). 
Values are normalized by the content of GAPDH. 
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Following CFA injection, levels of MOR and DOR mRNA were stably reduced in wild 

type mice while a peak of induction at day 3 or no change were observed in transgenic 

DRG, respectively (Fig. 25 A, B). Expression of KOR and ORL were not affected by the 

ongoing inflammation in wild type mice, while a 2-fold increase was observed at day 3 in 

transgenic mice. Elevated KOR mRNA level was still observed at day 5, though to a lower 

extent, while ORL mRNA was decreased at day 5 in transgenic DRG (Fig. 25 C, D). 

In summary we observed that the expression of the dominant active mutant of DREAM in 

the DRG greatly influenced the endogenous response of the opioid system to 

inflammation in transgenic mice. 

 

 A.2.2.2. The BDNF response to inflammatory pain in daDREAM mice 
The neurotrophin BDNF is a key regulator of the sensitization process and previous 

studies have shown that i) inflammation activates the anterograde transport of BDNF from 

DRG to synaptic terminals in the spinal cord (Pezet and McMahon, 2006) and ii) BDNF 

secretion increases neuronal excitability of second-order neurons in external laminae of 

the dorsal horn (Matayoshi et al., 2005). 

Since BDNF is regulated by DREAM in basal conditions, we analyzed the transcriptional 

response of the BDNF gene to the inflammatory pain induced by CFA injection. 

 

 

Figure 26. Q-PCR analysis of BDNF expression in the spinal cord and DRG after CFA 
injection. BDNF expression was quantified via Q-PCR in the spinal cord (A) and DRG (B) of 
wild type (n=6) and line 1 (n= 6) mice at day 0 and 3 and 5 days after intraplantar CFA injection. 
= wild type vs line 1 (same day) and # = basal vs treated (same line). Values are normalized by 
the content of GAPDH. 

 

In DRG from wild type mice, the inflammatory response developed with an increase in 

BDNF mRNA levels that was maximal at day 3 and remained elevated 5 days after CFA 

injection (Fig. 26 A). In transgenic mice, however, expression of the daDREAM mutant 
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blocked the induction of BDNF in response to CFA (Fig. 26 A). At the spinal cord level 

we found a similar situation; stable induction in BDNF expression in response to chronic 

inflammatory pain and no change in line 1 mice (Fig. 26 B). These data suggest that the 

lack of BDNF response in transgenic mice could be responsible for the impairment of 

spinal sensitization in DREAM transgenic mice during inflammatory pain. 

To further sustain our hypothesis of the involvement of BDNF in the abnormal 

sensitization process in daDREAM mice, we studied changes in the process of spinal 

facilitation by analyzing dorso-ventral electrophysiological responses in a model of 

isolated spinal cord in vitro. These experiments were performed in collaboration with the 

laboratory directed by José Antonio López at the University of Alcalá de Henares. 

In this experimental model the entire spinal cord was extracted and placed in a recording 

chamber. Lumbar dorsal roots 4 or 5 were stimulated with a suction electrode to activate 

afferent fibers and the corresponding ventral root reflexes was recorded. Isolated spinal 

cord from wild type mice responded with long-term enhancement of dorsal root-ventral 

root reflexes (DR-VRR) to the application of a conditioning protocol consisting in a 

prolonged low frequency stimulation of C-fibers (200 µA, 200 µs at 2 Hz). Isolated spinal 

cord from transgenic mice, however, did not produce the enhancement of DR-VRR after 

the application of the same protocol (Fig. 27 A). This result parallels the inability of 

transgenic mice to generate central sensitization. 

To confirm the role of reduced BDNF levels in this process, we next analyzed changes in 

DR-VRR before and after exogenous application of BDNF to the isolated spinal cord from 

wild type and transgenic mice. Consistent with our results showing that the expression of 

trkB mRNA is not modified in transgenic mice, exposure to BDNF in vitro resulted in a 

similar facilitation response in isolated spinal cord from wild type and transgenic mice. In 

both cases, BDNF superfusion produced a significant 2-fold increase in spikes associated 

with DR-VRR elicited by a wide range of stimulus intensities involving activation of A- 

and C-fibers (Fig. 27 B, C) 
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Figure 27. Electrophysiological analysis of the effect of BDNF on spinal sensitization. (A) 
Number of spikes elicited by A-fiber intensity stimulus before and after administration of a 
conditioning stimulus (arrow) consisting of 240 shocks (200 µA, 200 µs at 2 Hz). Wild type (n= 
6) developed a significant increase (One-way ANOVA, Bonferroni post- test, P<0,01), whereas 
line 1 (n= 6) mice did not show any change. (B, C) Ventral root responses by graded stimuli 
before and after prolonged superfusion of exogenous BDNF in wild type (B, n= 5) and line 1 (C, 
n= 6) mice. 

 

A.2.3. Modified signaling during inflammatory pain in daDREAM mice 
ERK phosphorylation is the principal intracellular signaling pathway following trkB 

receptor activation. To study the activity of this kinase we quantified by Western Blot the 

level of phosphorylated ERK in wild type and transgenic mice in basal condition and 

during inflammatory pain (Fig. 28). To specifically analyze the activation of ERK due to 

BDNF we micro-dissected superficial laminae of the dorsal horn of the lumbar spinal 

cord, those containing secondary neurons that are directly innervated by nociceptive 

fibers and are the target of the BDNF secreted by primary afferents. 

 

 

Figure 28. ERK phosphorylation in the dorsal horn neurons after intraplantar CFA 
injection. ERK phosphorylation was analyzed by Western Blot in the superficial laminae of the 
lumbar spinal cord in basal condition, 30 minutes and 6 hours after intraplantar injection of CFA. 

 
In wild type mice, induction of ERK phosphorylation was detectable as early as 30 

minutes after CFA injection and was maintained for all the six hours of the experiment 

(Fig. 28). In transgenic mice, by contrast, ERK phosphorylation was enhanced in resting 

conditions with respect to wild type mice and a mild and short-lasting induction of 

phospho-ERK could be observed 30 minutes after CFA (Fig. 28). Thus, in transgenic mice 

the increased basal level of phospho-ERK does not correlate with basal trkB receptor 

activation. 
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To understand the modified signaling in transgenic mice we considered an alternative 

pathway relating ERK activation in dorsal horn neurons and decreased GABAergic tone 

after administration of the GABAA receptor antagonist bicuculline (Baba et al., 2003). To 

explore the possibility of reduced basal GABAergic tone in daDREAM spinal cord, we 

quantified expression levels for the most important GABAA receptor subunits in the 

lumbar spinal cord from wild type and transgenic mice (Fig. 29) 

 

 

 

Figure 29. Q-PCR analysis of the expression of GABAA receptors in the spinal cord after 
CFA injection. GABAA α1 (A), GABAA α2 (B), GABAA α3 (C), GABAA β3 (D) and GABAA γ2 
expression was quantified by Q-PCR in the spinal cord of wild type (n=8) and line 1 (n= 8) mice 
in basal condition and 6 hours after intraplantar CFA injection. * = wild type vs line 1. Values are 
normalized by the content of GAPDH. 

 

We measured transcript levels of GABAA receptor subunits α1, α2, α3, β3 and γ2 in 

basal conditions and 4 hours after intraplantar injection of CFA. Importantly, basal 

expression of the α1 and β3 subunits was significantly reduced in transgenic spinal cord 

(Fig. 29 A, D). Inflammatory pain, however, did not modify the expression of the different 

GABAA subunits in wild type spinal cord and had a minor effect on the expression of the 

γ2 subunit in transgenic spinal cord (Fig. 29 E). Taken together, these results suggest that 

reduced basal GABAergic tone in transgenic mice might account for the loss of neuronal 

inhibition that is responsible for the rise in basal ERK phosphorylation and basal 

hyperalgesia. Nevertheless, expression of different GABAA receptor subunits was not 

modified during inflammatory pain indicating that alternative signaling may contribute to 

ERK phosphorylation and the establishment of central sensitization. To further confirm 

this possibility we quantified the level of ERK phosphorylation in wild type mice before 

and after systemic treatment with bicuculline via intraperitoneal injection (Fig. 30). 
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Figure 30. In vivo effect of bicuculline on ERK phosphorylation in dorsal horn neurons 
before and after formalin injection. Western blot of ERK phosphorylation in the superficial 
laminae of lumbar spinal cord in basal condition and 40 minutes after intraplantar 5% formalin 
injection. Wild type mice were pretreated with intraperitoneal bicuculline or with saline. 

 

A.3. DREAM and the control of spinal response to neuropathic pain 
To further characterize the role of DREAM in the molecular mechanisms that control 

nociception we studied the response of our transgenic mice after unilateral chronic 

constriction injury of the sciatic nerve (CCI) (Fig. 31). CCI is a common model of 

neuropathic pain that consists of a gentle constriction of the sciatic nerve by means of 

three loose ligatures tied around the nerve (Bennett and Xie, 1988). CCI is known to 

provoke a long lasting thermal hyperalgesia. 

 

 

Figure 31. Thermal hyperalgesia after CCI. Thermal hyperalgesia was evaluated by plantar 
test at day 0 and different days after CCI in wild type (n=6) and line 1 (n= 6) mice in both the 
ipsilateral and contralateral paw. * = wild type vs line 1 (same day); # = wild type, ipsilateral vs 
contralateral; # = line 1, ipsilateral vs contralateral. 

 

The analysis of nociceptive thresholds showed that both wild type and transgenic mice 

developed the same level of hyperalgesia starting from day 1 after surgery. The 

hyperalgesia of the ipsilateral paw was recorded throughout the 21 days of the 

experiment with no differences in paw withdrawal latency between wild type and 

transgenic mice (Fig. 31). 

Thus, transgenic mice are not different from wild type mice in their response to 

neuropathic pain. These results agree with the normal response to neuropathic pain 
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displayed by mice carrying a conditional deletion of the BDNF gene in nociceptive 

neurons (Zhao et al., 2006). 

Taken together these data suggest that the involvement of DREAM in the regulation of 

pain perception in neuropathic conditions is minor and much less relevant than its role in 

inflammatory pain. Our data support the notion that the molecular mechanisms 

governing these two chronic pain conditions are substantially different. 

 

B. FUNCTIONAL ANALYSIS OF DREAM IN PAIN MECHANISMS 
IN THE TRIGEMINAL GANGLIA 

 
Studies on the molecular mechanisms of pain perception have traditionally focused on 

the spinal cord/DRG level, while the trigeminal ganglion has received much less 

attention. Two reasons could explain this situation, i) there are few behavioral models to 

study nociception in the area innervated by this nerve (specially in mice) and ii) the 

difficulty to isolate the trigeminal nucleus, the area where the primary afferents fibers 

from the trigeminal nerve synapse with the second order neurons. This lack of basic 

knowledge is unfortunately reflected in the substantial lack of effective treatment for 

trigeminal pain. 

 

B.1. Characterization of daDREAM transgenic lines for the study of 
trigeminal pain 

 
B.1.1. Analysis of daDREAM expression levels. 

Because of the intrinsic difficulties for the accurate dissection of the trigeminal nucleus, 

we limited our study to those primary afferent neurons, whose nuclei are grouped in the 

trigeminal ganglion. 

As a first step for this part of the study we screened all transgenic lines available in the 

laboratory in order to characterize those that express the transgene in the trigeminal 

ganglion (Fig. 32). 
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Figure 32. Q-PCR analysis of DREAM and daDREAM expression. DREAM and daDREAM 
expression was quantified by Q-PCR in the trigeminal ganglion of wild type (n= 10), line 1 (n= 
10) and line 16 (n= 10) mice. Values are normalized by the content of GAPDH. 

Two lines are positive for daDREAM expression in trigeminal neurons (Fig. 32), line 1, 

previously used for the spinal cord analysis and line 16 (L16). L16 mice expresses a 

dominant active DREAM form that in addition to the mutation in the three functional EF-

hands and the N-terminal LCD is mutated also in the C-terminal LCD (Ledo et al., 

2000b). 

 

 

Figure 33 Q-PCR analysis of PDYN and BDNF expression. PDYN and BDNF expression 
was quantified by Q-PCR in the trigeminal ganglion of wild type (n= 10), line 1 (n= 10) and line 
16 (n= 10) mice. Values are normalized by the content of GAPDH. 

 

Importantly, expression of PDYN and BDNF, two bona fide target genes for DREAM, was 

clearly decreased compared to wild type mice in trigeminal neurons from transgenic lines 

expressing daDREAM (Fig. 33). These results confirmed the relevance of DREAM also in 

the trigeminal ganglion and validated the use of both lines for the study of trigeminal 

pain. 
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B.1.2. Analysis of trigeminal nociceptive thresholds in daDREAM mice 
The trigeminal nerve innervates practically the whole facial area. Behavioral testing to 

assess a nociceptive phenotype in this area is particularly complicated because the 

stimulus should be applied and the reaction from the animal recorded without restrictions 

that could induce stress and bias the final output. These difficulties are even more severe 

when working with mice, due to their extreme susceptibility to stress in experimental 

conditions. 

In this framework, we decided to test the mice using a modification of the formalin test, 

which involves minimum manipulation (Clavelou et al., 1989). Injection of 5-10 

microlitres of 2% formalin in the snoot of the mouse results in a biphasic nociceptive 

response that is quantified by measuring the time the mice spend rubbing their face in 

blocks of 3 minutes over a total period of 30 minutes (Fig. 34). 

 

.  

Figigure  34.  Formalin test. Wild type (n= 8), line1 (n=8) and line 16 mice were tested for their 
rubbing response after injection of 2% formalin subcutaneously in the snoot. Transgenic mice 
showed a statistically significant increased in the nocifensive behavior (One-way ANOVA, 
Bonferroni post- test, P<0,01). The response was evaluated in blocks of 3 minutes for 30 
minutes. 

 

In the first phase of the formalin test (0 to 9 minutes) wild type and L1 mice showed a 

similar response to formalin. L16 transgenic mice, however, showed a statistically 

significant increase in the rubbing response (Fig. 34). In the second phase (9 to 30 

minutes), we observed a mild response to 2% formalin in wild type mice, while both L1 

and L16 displayed a strong secondary response suggesting a clear hyperalgesic 

phenotype in daDREAM mice (Fig. 34). If compared with the results after formalin 

injection in the paw (Fig. 11), where no significant differences were observed between 

wild type and transgenic mice, these results highlighted important differences in the 
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mechanisms related to pain perception between the trigeminal ganglion and the spinal 

cord/DRG system.  

To further substantiate the role of DREAM in the response to nociceptive stimulation in 

the trigeminal ganglion we tested DREAM knockout mice in the formalin test. No 

difference between wild type and knockout mice was observed after 2% formalin 

injection (Fig. 35 A). To see if a stronger nociceptive stimulus could evoke a different 

response in these two genotypes we repeated the test using 4,5% formalin (Fig 35 B). 

Again, the response to 4,5% formalin was the same for wild type and knockout mice in 

the first phase of the test. In the second phase knockout mice showed a response that, 

though not statistically different, was constantly smaller than in wild type mice. (Fig. 35 

B). 

                                

 

Figure  35.  Formalin test. Wild type (n= 8) and DREAM knockout (n=8) mice were tested for 
their rubbing response after subcutaneous injection of 2% (A) or 4,5% formalin (B) in the snoot. 
The response was evaluated in block of 3 minutes for 30 minutes. 

 

Analysis of the area under the curve showed that in the second phase of the formalin test 

the response in knockout mice was significantly smaller than in wild type mice, 

indicating a hypoalgesic phenotype. 
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Figure 36. Total nocifensive response to formalin. The nocifensive response to 4,5% 
formalin was evaluated measuring the area under the curve in the first part (0 to 9 minutes) and 
in the second part (9 to 30 minutes) of the formalin test in wild type (n= 8) and DREAM knockout 
(n= 8) mice. 

 

The area under the curve represents an evaluation of the intensity of all the secondary 

nociceptive responses, thus, this quantification is a tool that allows a more profound 

characterization of the response. With this analysis we showed that the total time the 

knockout mice spend rubbing their face during the secondary phase of the formalin test is 

lower with respect to wild type mice (Fig. 36). This hypoalgesic response of DREAM 

knockout mice is in agreement with the previously described general hypoalgesic 

phenotype of these mice (Cheng et al., 2002). Taken together these data suggest that 

DREAM is of importance in the mechanisms underlying nociception in the trigeminal 

ganglion.  

Since BDNF expression is reduced in trigeminal daDREAM neurons, we next analyzed 

the behavioral response to formalin injection in the snoot in BDNF knockout mice (Fig. 

37). To perform this experiment we used mice heterozygous for the BDNF deletion 

because the homozygous have strong developmental deficits and die soon after birth 

(MacQueen et al., 2001). Wild type littermates were used as controls for this experiment. 
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Figure  37.  Formalin test. Wild type (n= 10) and BDNF+/- (n=11) mice were tested for their 
rubbing response after subcutaneous injection of 2% formalin in the snoot. The response was 
evaluated in block of 3 minutes for 30 minutes. 

 

Wild type and BDNF+/- mice showed the same response in the first phase of the test (Fig.  

37). BDNF+/- mice, however, showed a delayed and stronger response in the second 

phase on the formalin test (9 to 30 minutes). In order to quantify the magnitude of the 

response in the second phase of the test we calculate the area under the curve (Fig. 38) 

and found that the response of BDNF+/- mice was increased by 50%. Taken together these 

data indicate that like daDREAM mice, BDNF+/- mice show a hyperalgesic response to 

formalin injection in the snoot. 

 

 

Figure 38. Total nocifensive response to formalin. The nocifensive response to formalin was 
evaluated measuring the area under the curve in the first phase (0 to 9 minutes) and in the 
second phase (9 to 30 minutes) of the formalin test in wild type (n= 10) and BDNF+/- (n= 11) 
mice. 

 
B.1.3. Transcriptomic analysis of the basal trigeminal hyperalgesia in 
daDREAM mice 

Due to a lack of literature on transcriptional responses of trigeminal neurons, we started 

our study with a genome-wide analysis of daDREAM trigeminal ganglia using the 

Affymetrix technology. This methodology permits a comprehensive analysis of genome-

wide expression on a single microarray. It also includes internal controls to verify the 

efficiency of the hybridization, that allows the normalization of different data sets and 

permits an accurate comparison between different conditions. 

Since this experiment was meant to define the basic guidelines for our study we 

compared the transcriptional profiles of wild type and line 16 trigeminal ganglia only in 

basal conditions in an attempt to isolate the changes imposed by the expression of the 

dominant active DREAM mutant. The use of only one transgenic line for the 

transcriptomic analysis was imposed by budget restrictions. The choice of line 16 was 
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based on two main reasons, i) it showed a stronger hyperalgesic phenotype in the 

formalin test (see above) and ii) it had a more restricted pattern of transgene expression in 

the trigeminal ganglion and no expression at the DRG/spinal cord level. 

To compare the expression profile of wild type and line 16 mice we carried out seven 

independent microarray hybridizations, 4 with wild type and 3 with transgenic mice. 

Each microarray was hybridized with a pool of RNA extracted from the trigeminal 

ganglions of three different mice. The raw data from these seven hybridizations were 

grouped and averaged in order to obtain a matrix that described the final results of the 

analysis. 

Results from the hybridizations were considered significant only if they conformed to the 

following criteria: 

 

Fold change > 1.5 for upregulated gene and < -1.5 for downregualted genes 

P value (LIMMA test) < 0,05 

FDR value (LIMMA test) < 0,1 

A total of 296 downregulated and 295 upregulated genes (see Supplementary data) 

showed modified expression in L16 respect to wild type trigeminal neurons. To better 

understand the relevance of these changes we made a functional analysis using Gene 

Ontology. This protocol categorize the genes of the sub-list in clusters on the basis of 

three different criteria; cellular compartment, biological processes and molecular 

function. 

 

  

 

Figure 39. Cellular compartment clustering. Clustering of the genes whose expression is 
altered il line 16 mice following the Gene Ontology paradigm according to cellular compartment. 
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According to the first criteria, cellular compartment, a majority of the genes in the sub-list 

have a nuclear localization (32%) and includes DNA binding proteins, nuclear kinases 

and a large group of histone-related proteins (Fig. 39). 

According to the second criteria, biological processes, genes involved in transcription 

were the most represented among those influenced by daDREAM expression (19%), 

while proteins associated with a transport function, including different members of the 

solute carrier super-family of proteins, constituted the second group in this classification 

(14%). Proteins involved in metabolic processes and in ion transport were also enriched 

in the sub-list (Fig. 40). 

 

 

Figure 40. Biological processes clustering. Clustering of the genes whose expression is 
altered in line 16 mice following the Gene Ontology paradigm according to biological processes. 

 

Finally, clustering of genes with modified expression in daDREAM trigeminal ganglia on 

the basis of their molecular function highlighted that the vast majority of genes has 

binding activity, the first three groups of this clustering are in fact involved in protein 

binding, ion binding and DNA binding (Fig. 41) 

 

 

Figure 41. Molecular function clustering. Clustering of the genes whose expression is altered 
il line 16 mice following the Gene Ontology paradigm according to molecular function. 
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Overall, the Gene Ontology analysis gave us general guidelines of processes and 

functions that could be altered in L16 trigeminal neurons. To obtain a more clear idea of 

the meaning of these changes in terms of a role for DREAM controlling pain mechanisms 

at the trigeminal level, we searched for direct transcriptional targets for DREAM 

repression that could mediate the function of DREAM. 

We identified 3 genes of potential interest. The shortlist of candidate genes includes; the 

lipase MGLL, the protease CTSL and DBNDD2, a protein with a dysbindin motif. We 

then validated the modification of these genes by quantitative real-time PCR and 

confirmed that indeed they were downregulated in daDREAM trigeminal ganglia (Fig. 

42).  

 

 

Figure 42. Q-PCR analysis of expression of MGLL CTSL and DBNND2. Alteration in 
expression level of MGLL CTSL and DBNND2, found in the microarray, was validated by Q-
PCR in the trigeminal ganglion of wild type (n= 12), and line 16 (n= 12) mice. Values are 
normalized by the content of GAPDH. 

 

Moreover, we analyzed the expression level of two other genes of possible interest in the 

study of the role of DREAM in the control of trigeminal pain. The synaptic vesicle protein 

SV2c, a recently described drug target in the treatment of trigeminal neuralgia, and 

DTNBP1, a member of the dysbindin protein family, closely related to DBNDD2, which 

is involved in nociception. Validation of their reduced expression in daDREAM trigeminal 

ganglia is shown in Fig. 43.  
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Figure 43. Q-PCR analysis of SV2c, and DTNPB1 expression. Expression level of SV2c and 
DTNBP1 was measured by Q-PCR in the trigeminal ganglion of wild type (n= 12), and line 16 
(n= 12) mice. Values are normalized by the content of GAPDH. 

 

B.2. DREAM and the trigeminal response to inflammatory pain 
To further characterize the importance of DREAM in the mechanisms of trigeminal pain, 

we studied the transcriptional response to inflammatory pain following bilateral injection 

of CFA into the snoot. 

First, we measured transcriptional changes in endogenous DREAM, PDYN and BDNF 

expression following inflammation. 

 

 

Figure 44. Q-PCR analysis of DREAM expression in trigeminal ganglion after CFA 
injection. Endogenous DREAM expression was quantified by Q-PCR in the trigeminal ganglion 
of wild type (n=8) and line 16 (n= 8) mice at day 0 and 6 hours, 3 and 5 days after 
subcutaneous injection of CFA in the snoot. * = wild type vs line 16 (same day); # = basal vs 
treated (same line). Values are normalized by the content of GAPDH. 

 

 

In wild type mice, CFA injection produced a rapid and transient increase in endogenous 

DREAM mRNA, which was significant only at 6 hours after CFA (Fig. 44). In transgenic 

mice, however, the peak of expression of endogenous DREAM was delayed and showed 

statistical significance only 3 days after the treatment (Fig. 44). 
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Contrary to the effect observed in the SC/DRG, expression of PDYN and BDNF was 

strongly decreased in wild type mice after CFA (Fig 45 A, B). Expression levels of BDNF 

returned to basal at day 5 after the injection, while PDYN expression remained decreased 

all through the time course of the experiment (Fig. 45 A, B). In transgenic mice, PDYN 

expression was not further reduced after CFA, while BDNF levels were rapidly and 

transiently downregulated and returned to its basal level already at day 3 after CFA (Fig. 

45 A, B). 

 

Figure 45. Q-PCR analysis of BDNF and PDYN expression in the trigeminal ganglion after 
CFA injection. BDNF (A) and PDYN (B) expression was quantified by Q-PCR in the trigeminal 
ganglion of wild type (n=8) and line 16 (n= 8) mice at day 0 and 6 hours, 3 and 5 days after 
subcutaneous injection of CFA in the snoot. * = wild type vs line 16 (same day); # = basal vs 
treated (same line). Values are normalized by the content of GAPDH. 

 

Next, we studied the changes in the opioid system following inflammation (Fig. 46). 

 

 

Figure 46. Q-PCR analysis of the expression of polypeptidic opioid precursors in the 
trigeminal ganglion after CFA injection. PENK (A), POMC (B) expression was quantified by 
Q-PCR in the trigeminal ganglion of wild type (n=8) and line 16 (n= 8) mice at day 0 and 6 
hours, 3 and 5 days after subcutaneous injection of CFA in the snoot. * = wild type vs line 1 
(same day); # = basal vs treated (same line). Values are normalized by the content of GAPDH. 

 

Importantly, basal expression levels of opioid precursors were downregulated in line 16 

mice, resembling the situation described at the spinal cord and DRG level (Fig. 46). After 

CFA injection, PENK expression was rapidly reduced and returned to basal 5 days after 
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the treatment in wild type, while no change was observed in line 16 mice (Fig. 46 A). 

Expression of POMC was also reduced in response to inflammatory pain. This 

downregulation is not as rapid as in the case of PENK and it was significant only at 5 days 

after CFA injection. Curiously, line 16 mice showed an early induction in POMC 

expression at 6 hours, followed by a reduction at day 3 after the treatment (Fig. 46 B). 

PNOC expression in the trigeminal ganglion was below the detection limit. 

The basal expression of opioid receptors MOR and DOR was reduced in line 16 mice, 

while the amount of mRNA for KOR and ORL was not modified (Fig. 47). In summary, as 

showed in spinal cord and DRG, the basal opioid tone is reduced in transgenic trigeminal 

ganglion. Following inflammation, MOR expression was not changed in either genotype 

(Fig. 47 A), DOR levels were reduced at 3 days after CFA injection in wild type but not in 

line 16 mice (Fig 47 B), KOR expression rapidly increased at 6 hours, stayed high at 3 

days and returned to basal at 5 days after CFA in wild type and was not modified at any 

time in line 16 mice (Fig. 47 C) and ORL levels were rapidly and stably increased after 

CFA injection in wild type mice but were initially reduced in line 16 to be later increased 

at 3 and 5 days after CFA (Fig. 47 D). 

 

 

 

 

Figure 47. Q-PCR analysis of opioid receptors expression in the trigeminal ganglion after 
CFA injection. MOR (A), DOR (B), KOR (C) and ORL (D) expression was quantified by Q-PCR 
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in the trigeminal ganglion of wild type (n=8) and line 16 (n= 8) mice at day 0 and 6 hours, 3 and 
5 days after subcutaneous injection of CFA in the snoot. * = wild type vs line 1 (same day); # = 
basal vs treated (same line). Values are normalized by the content of GAPDH. 

 

Finally we studied the transcriptional response of DREAM target genes identified in the 

transcriptomic analysis. 

 

 

Figure 48. Q-PCR analysis of MGLL expression in the trigeminal ganglion after CFA 
injection. MGLL expression was quantified by Q-PCR in the trigeminal ganglion of wild type 
(n=8) and line 16 (n= 8) mice at day 0 and 6 hours, 3 and 5 days after subcutaneous injection of 
CFA in the snoot. * = wild type vs line 1 (same day); # = basal vs treated (same line). Values are 
normalized by the content of GAPDH. 

 

 

MGLL and CTSL expression was reduced at 3 and 5 days after CFA in wild type but was 

not modified in L16 mice (Fig. 48). 

 

 

Figure 49. Q-PCR analysis of CTSL expression in the trigeminal ganglion after CFA 
injection. CTSL expression was quantified by Q-PCR in the trigeminal ganglion of wild type 
(n=8) and line 16 (n= 8) mice at day 0 and 6 hours, 3 and 5 days after subcutaneous injection of 
CFA in the snoot. * = wild type vs line 1 (same day); # = basal vs treated (same line). Values are 
normalized by the content of GAPDH. 
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The expression level for DBNDD2 was not affected by inflammation produced by CFA 

injection in wild type or transgenic mice (Fig. 51). 

 

 

Figure 50. Q-PCR analysis of DBNDD2 expression in the trigeminal ganglion after CFA 
injection. DBNDD2 expression was quantified by Q-PCR in the trigeminal ganglion of wild type 
(n=8) and line 16 (n= 8) mice at day 0 and 6 hours, 3 and 5 days after subcutaneous injection of 
CFA in the snoot. * = wild type vs line 1 (same day); # = basal vs treated (same line). Values are 
normalized by the content of GAPDH. 

 

 

 

 

Figure 51. Q-PCR analysis of SV2c expression in the trigeminal ganglion after CFA 
injection. SV2c expression was quantified by Q-PCR in the trigeminal ganglion of wild type 
(n=8) and line 16 (n= 8) mice at day 0 and 6 hours, 3 and 5 days after subcutaneous injection of 
CFA in the snoot. * = wild type vs line 1 (same day); # = basal vs treated (same line). Values are 
normalized by the content of GAPDH. 

 

In wild type mice SV2c transcription was rapidly and transiently upregulated after CFA 

injection. The induction peaked at 6 hours and was not present 3 and 5 days after the 

treatment. In L16 mice, however, SV2c induction was delayed, peaked at 3 days and 

stays elevated up to 5 days after CFA (Fig. 51) 
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Figure 52. Q-PCR analysis of DTNBP1 expression in the trigeminal ganglion after CFA 
injection. DBNDD2 expression was quantified by Q-PCR in the trigeminal ganglion of wild type 
(n=8) and line 16 (n= 8) mice at day 0 and 6 hours, 3 and 5 days after subcutaneous injection of 
CFA in the snoot. * = wild type vs line 1 (same day); # = basal vs treated (same line). Values are 
normalized by the content of GAPDH. 

 

 

In wild type mice the level of expression for DTNBP1 was reduced 3 and 5 days after 

CFA injection. In line 16 mice, instead, there was an early and transient induction with a 

peak at 6 hours after CFA (Fig. 52). 
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DISCUSSION 
 

Pain is the alert alarm that our CNS developed to ensure the safety of our body, warning 

us from possible dangers and focusing our attention to protect the injured area. As 

important as pain itself, the tonic control of pain is fundamental; the neuronal plasticity 

that allows the fine-tuning of the intensity of pain perception and that permits the 

adaptation to different situations and environments. This is the result of the coordinated 

action of different molecular and cellular mechanisms in the central and peripheral 

nervous system. The study of this complex network of interactions could ensure a better 

understanding of this process and could possibly provide the opportunity for improved 

control of pain perception. 

In the field of pain studies, animal models are of capital importance in our effort to 

picture the mechanisms of nociception in humans. Until the mid nineties the rat was the 

preferred species for the study of pain. Thanks to the development of technologies for 

genetic manipulation, however, mice are nowadays the species of choice, as reflected by 

the 400% growth in studies using mice over the last 15 years (Mogil, 2009). 

DREAM was first described as a transcriptional factor controlling the expression of the 

prodynorphin gene (Carrion et al., 1999) and several studies using DREAM null mice 

have confirmed the importance of this protein in the control of pain perception showing a 

hypoalgesic phenotype in DREAM-/- mice (Cheng et al., 2002; Lilliehook et al., 2003). 

Here we studied the importance of DREAM in the control of pain perception in vivo using 

a transgenic mouse model that over-expresses a dominant active mutant of DREAM 

(daDREAM) in pain-related neurons in the spinal cord, DRG and trigeminal ganglia (line 

1) or only in the trigeminal neurons (line 16). As previously shown in cerebellar neurons 

(Gomez-Villafuertes et al., 2005) and in T cells (Savignac et al., 2005), the daDREAM 

mutant should function in transgenic sensory neurons as a constitutive repressor 

insensitive to Ca2+ and unable to interact with CREB, thus leaving CRE-dependent 

transcription without the tonic inhibitory control of DREAM. 

 

1. DREAM and the control of nociception in the spinal cord and 
DRG 

DREAM represses transcription binding at specific sites in the DNA as a heterotetramer, 

and previous studies from our laboratory have shown that expression of daDREAM has a 
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cross-dominant effect and blocks the function of endogenous KChIP proteins when 

present in a ratio as low as 1/6 (Savignac et al., 2005). In our transgenic mice the ratio of 

daDREAM/DREAM mRNA is 1,8 and 6 in the spinal cord and DRG, respectively. This 

indicates that the expression of the dominant active mutant protein is sufficient to block 

Ca2+ and cAMP dependent derepression by endogenous DREAM/KChIP proteins. 

 

1.1. DREAM and the control of basal pain perception 
When tested for a nociceptive phenotype line 1 mice showed a clear hyperalgesia with 

reduced latencies for thermal sensitivity and greater responses to visceral pain. The 

responsiveness to mechanical stimulation on the other hand is not altered in our 

transgenic mice. A phenotype of hyperalgesia in daDREAM mice is in agreement with the 

hypoalgesia reported in DREAM knockout mice (Cheng et al., 2002) and supports the 

involvement of transcriptional repressor DREAM in pain modulation. 

Since DREAM binds to the promoter of prodynorphin and represses the expression of this 

gene, an initial and plausible mechanism that could explain its effect on nociception was 

through the control of endogenous levels of dynorphin peptides. In this work we went 

one step further and analyzed the expression levels for the different members of the 

opioid system in the spinal cord and in the DRG of our transgenic mice. 

The opioid system is a deeply interrelated network in which secreted peptides interact 

with multiple receptors to orchestrate a complex set of functions. This strong interplay is 

shared by the polypeptidic precursors PDYN, PENK and POMC acting on µ, δ and κ 

opioid receptors. All the opioid peptides arising from these precursors share a common 

N-terminal motif and all the receptors show a high degree of homology (up to almost 

90% in intracellular loops). The ORL receptor on the other hand is peculiar in this 

scenario, showing no binding affinity for conventional opioid ligands and binds 

proteolytic products of the PNOC precursor. PNOC has a slightly different N-terminal 

region from that of the other opioid precursors. The ORL receptor/PNOC system could be 

considered as a separated system with some sequence identity to the other opioid genes. 

In the spinal cord we observed a general repression of the mRNA for polypeptidic opioid 

precursors as well as for their receptors. We encountered a similar situation in the DRG 

with the only, but notable, exception of prodynorphin expression that was not 

downregulated in the DRG of DREAM transgenic mice. Currently, we do not have an 

explanation for this paradoxical result in the DRG, however, absence of DREAM in the 

hippocampus of DREAM null mice does not change prodynorphin peptides at this level, 

but produces a significant increase in dynorphin expression in the spinal cord (Cheng et 



Discussion 

 111 

al., 2002). Moreover, it has been described that the expression of PDYN gene is 

controlled by different regulatory elements in its promoter sequence (Naranjo et al., 

1991) including four CRE sites, an AP-1 site and the DRE site. Then, one possibility is 

that, in the DRG, the specific weight of one or several of these other regulatory elements 

is predominant in controlling the expression of the prodynorphin gene. Nevertheless we 

observed an overall decrease in the opioid tone in our transgenic mice. 

The promoter region of the different opioid receptors had been described and the 

transcription start site identified (Min et al., 1994; Augustin et al., 1995; Liu et al., 1995; 

Pan et al., 1996). Interestingly, µ, δ and κ opioid receptor are TATA-less genes, while the 

ORL receptor, the more distant member of the family, has a TATA box at position -78. 

Using in silico analysis we found DRE sites that are located downstream from the 

transcriptional start in close proximity to the ATG in these genes. Contrary, all the 

promoters for polypeptidic precursors for endogenous opioid peptides have a defined 

TATA box (Kilpatrick et al., 1990; Lamonerie et al., 1996; Mollereau et al., 1996). In 

silico analysis of these promoter regions highlighted the presence of multiple DRE sites. In 

this work, we did not study the functionality of each one of these regulatory elements but 

sequence predictions identified them as bona fide sites for DREAM binding. As a 

representative example, the 5’ untranslated region of the κ opioid receptor gene, shown 

in figure 53, contains up to four consensus DRE sites. Of them, three are grouped in 

tandem, a conformation that confers the most favorable chance to be functionally 

relevant. 

Figure 53. Proximal promoter of the κ  opioid receptor. Bona fide sites for DREAM binding 
are indicated (in blue), as well as two alternative transcription start sites (in green), three SP1 
binding sites (in red) and the ATG (in orange). 

 

In addition, it has been shown that the repression of some elements of the opioid network 

triggers the downregulation of the others. Thus, knockout mice for the δ opioid receptor 

DRE DRE DRE 

DRE 

SP1 SP1 SP1 



Discussion 

 112 

showed reduced expression of µ opioid receptor (Kitchen et al., 1997) and the contrary is 

also true (Slowe et al., 1999). Accordingly, direct repression by DREAM of some opioid 

promoters could produce an unbalanced situation leading to an indirect effect on the 

expression of other opioid genes. The lack or the poor repressor effect of daDREAM 

expression on the levels of the most distantly related members of the opioid network, i.e. 

PNOC and its receptor, could contribute to support this indirect mechanism. In summary, 

our results suggest that the downregulation of the opioid system could account for the 

basal state of hyperalgesia observed by the lower withdrawal thresholds to thermal 

stimuli and the prolonged responses to visceral pain. 

Alternatively or in addition to the involvement of the opioid system in basal hyperalgesia, 

published studies from other laboratories have suggested that changes in the transient A-

type potassium current, mediated by Kv4 channels, could also be responsible for 

hypersensitivity to acute pain stimuli, i) genetic ablation of the Kv4.2 channel that 

reduces A-type potassium currents increases excitability of dorsal horn neurons and 

enhances sensitivity to noxious stimuli (Hu et al., 2006), ii) genetic ablation of Kv4 

channels results in decreased expression of DREAM/KChIP proteins (Menegola and 

Trimmer, 2006), suggesting a genetic regulatory loop between this two gene families. Our 

results, however, do not support this idea, since A-type currents in dorsal horn neurons 

from line 1 mice were undistinguishable from those of wild type mice in terms of their 

electrophysiological properties. 

 

1.2. DREAM and the response to inflammatory pain 
Modified nociceptive response in transgenic mice is not only restricted to basal 

nociceptive thresholds in daDREAM mice but is also observed as an impairment of the 

hyperalgesic response to the inflammatory pain induced by CFA. Given the profound 

effect of the transgene expression on the basal transcription of the different members of 

the opioid system we speculated that daDREAM could also influence the transcriptional 

response of these genes to inflammatory pain 

In the spinal cord of wild type mice only prodynorphin expression is increased in 

response to inflammation. Contrary, in line 1 mice, CFA induced a general increase in 

transcription for all members of the opioid system. For DOR and KOR, this increase 

reversed the downregulation that we measured in basal condition. For PDYN, PENK, and 

MOR it resulted in an increase with respect to the basal level of transcription for these 

genes in line 1 mice. Considering these experiments it may be possible that the ongoing 

inflammation could induce the transcription of the opioid system in line 1 mice in order 
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to revert the effect of the daDREAM mutant as a constitutive repressor. This increase in 

transcription would adjust the opioid tone in transgenic mice making it similar as in wild 

type mice.  

In transgenic mice the response of the PNOC/ORL receptor system to the ongoing 

inflammation is completely blocked by the expression of daDREAM. This result confirms 

the specificity in the regulation of these two members of the opioid system and indicates 

a major effect of dominant mutant DREAM on their transcription. 

In DRG of wild type mice we observed a tendency to a mild decrease in the overall 

opioid tone with reductions in MOR, DOR and PENK mRNAs and no change in PDYN 

after CFA. These results are in line with previous data (Obara et al., 2009) that reported 

little response in the opioid system in the DRG after CFA.  

The response of the opioid system in daDREAM expressing mice is more complex. In this 

case there is an upregulation of the transcription for PDYN, MOR and KOR, DOR is not 

affected and PENK is downregulated by CFA. 

In wild type DRG, the PNOC/ORL system is strongly affected by the treatment with CFA, 

with a downregulation of the polypeptidic precursor and an upregulation of the receptor. 

In transgenic mice it seems again that the expression of the daDREAM mutant completely 

blocks all the changes in the transcription of these two genes. 

 

1.3. DREAM and the central sensitization; the role of BDNF 
DREAM transgenic mice showed a tendency to have a smaller secondary response to 

formalin, as well as a reduced long-standing hyperalgesia during inflammatory pain 

conditions. Both delayed responses rely on the correct functioning of the central 

sensitization process, a plastic reaction of the CNS that like the wind-up phenomena has 

been associated to endogenous BDNF levels (Heppenstall and Lewin, 2001). Since 

previous in vitro studies from our laboratory showed the regulatory effect of DREAM on 

BDNF promoter activity (Mellstrom et al., 2004), it was important to analyze BDNF 

expression in the spinal cord and DRG in line 1 mice in order to understand the 

abnormal central sensitization process in these mice. 

BDNF is expressed in DRG neurons and anterogradely transported to the synaptic 

terminals that are in contact with the dorsal horn neurons in the spinal cord (Merighi et 

al., 2004). In the spinal cord, BDNF is secreted in response to sustained activation of 

peripheral nociceptors and once released BDNF induces a potentiation of the synaptic 

strength (Pezet and McMahon, 2006). 
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Our results showed a significant downregulation of BDNF expression in vivo both in the 

spinal cord and in the DRG in line 1 mice. Interestingly, the decreased BDNF production 

is not counterbalanced by a compensatory upregulation of the transcription of its specific 

receptor trkB in these two areas. Furthermore, we showed that in response to intraplantar 

injection of CFA, BDNF levels increased in the DRG and in the spinal cord from wild 

type mice but not in daDREAM mice, indicating that the transgene is repressing both 

basal and induced BDNF expression in vivo. Electrophysiology experiments, measuring 

the long term enhancement of DR-VRRs after low frequency stimulation of primary C-

fibers, an in vitro model to simulate central sensitization, confirmed the notion that spinal 

cord from transgenic mice does not receive enough BDNF from primary afferents. Thus, 

the decrease of BDNF signaling in the dorsal horn neurons of line 1 mice could be 

associated with the inability of our transgenic mice to develop long term synaptic 

plasticity. 

Next, we focused on the cascade downstream the activation of trkB receptor. For this 

reason we studied ERK kinase activity in dorsal horn neurons in basal condition and in 

response to intraplantar CFA. Complete Freund’s adjuvant is known to induce ERK 

activation in a BDNF-dependent way (Obata et al., 2004). In our transgenic mice basal 

ERK phosphorylation was higher than in wild type mice and its induction after CFA was 

less pronounced and of shorter duration. This result is in line with the hypothesis that the 

inability of line 1 mice to develop full hyperalgesic response to peripheral inflammation 

and central sensitization may be related to deficient BDNF input in the spinal cord from 

primary afferents. 

Increased basal ERK phosphorylation in line 1 mice could be related to decreased 

GABAergic tone in neurons since treatment with bicuculline, a GABAA receptor 

antagonist, results in loss of inhibition in dorsal horn neurons and induces ERK 

phosphorylation (Baba et al., 2003). Q-PCR analysis of the main GABAA receptor 

subunits showed a downregulation of GABAA α1 and β3 in spinal cord from DREAM 

transgenic mice supporting the idea that reduced GABAergic tone is directly responsible 

for the increased basal ERK phosphorylation in line 1 mice. 

 

1.4. DREAM and the response to neuropathic pain 
We completed the analysis of the functional role of DREAM on pain perception in the 

spinal cord/DRG system studying the behavioral response of our transgenic mice to 

neuropathic pain in a well-established model, the chronic constriction injury (CCI) of the 

sciatic nerve. As described, CCI induced a potent and long-lasting hyperalgesia that 
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persisted for all the 21 days of the experiment. Importantly, both wild type and transgenic 

mice developed a similar strong thermal hyperalgesia in the ipsilateral paw starting from 

day 1 after the surgery. Thus, contrary to the results in the CFA model of inflammatory 

pain, transgenic mice did neither show a delay in the development of thermal 

hyperalgesia, nor weaker hyperalgesia and faster recovery. 

Taken together, our results clearly support the idea that molecular mechanisms 

controlling inflammatory and neuropathic pain are very different, especially in terms of 

the functional involvement of DREAM. 

It is interesting to speculate about how the changes in the basal opioid tone of daDREAM 

expressing mice do not have repercussion on the behavioral response to neuropathic 

pain. Nerve injury results in a strong decrease in mRNA for the opioid receptors and for 

all the polypeptidic precursors, with the exception of prodynorphin (Draisci et al., 1991; 

Obara et al., 2009). As a matter of fact, this downregulation could possibly account for 

the reduced effectiveness of locally administrated opioids in neuropathy (Rashid et al., 

2004). It is possible that, following CCI, the opioid tone is decreased to the same level in 

both wild type and line 1 mice compensating the downregulation that we observed in 

basal conditions. In this scenario the lack of differences in the behavioral response to CCI 

could be explained by the fact that, after the surgery, both wild type and transgenic mice 

show the same opioid tone. 

 

2. The effect of DREAM on trigeminal pain 
In the second part of this work we studied the role of DREAM in the nociceptive 

processes controlled by neurons of the trigeminal ganglia. We began our study by 

characterizing daDREAM expression in the trigeminal ganglion in two different lines, the 

above described line 1 and line 16, that showed a daDREAM/DREAM ratio of 0,71 to 1 

and 1 to 1,1 respectively, and a clear downregulation of PDYN and BDNF mRNAs, 

showing the in vivo functionality of the dominant active mutant in this area. As a 

consequence, we were able to observe that transgenic mice had a obvious hyperalgesic 

response to the application of formalin in the snoot, supporting the hypothesis that 

DREAM participates in the control of pain processing also in the trigeminal ganglion. This 

hypothesis was further sustained by the reduced nocifensive response of DREAM 

knockout mice in this same test. 

In molecular terms, the trigeminal hyperalgesic phenotype in daDREAM mice could 

underlie a situation similar to the one we observed at the spinal cord/DRG level where 

we characterized a downregulation for genes important for nociception. In basal 
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conditions we measured a reduction of the overall opioid tone in the trigeminal ganglion 

from transgenic mice, with the only exception of the PNOC/ORL receptor system and of 

KOR expression. This decrease in the opioid tone is less marked than the one observed in 

the spinal cord or in the DRG but could still be related to trigeminal hyperalgesia in 

transgenic mice. Moreover, we observed a strong downregulation of the BDNF gene in 

both transgenic lines. This situation resembles the scenario in the spinal cord/DRG and 

could also correlate with the hyperalgesic response to formalin. Interestingly, BDNF+/- 

mice also showed increased nocifensive response, notably during the last part of the 

secondary phase of the formalin test. This result at the orofacial level clearly contrast with 

the strong hypoalgesia shown in BDNF+/- mice after intraplantar injection of formalin 

(MacQueen et al., 2001) indicating that BDNF is playing different and specific roles in 

the control of nociception in the trigeminal ganglion and in the spinal cord/DRG. 

 

2.1. Transcriptomic analysis of daDREAM-expressing trigeminal 
neurons 

Expression of endogenous DREAM is high in sensory neurons, where its localization is 

mainly nuclear. To begin to understand the role of DREAM in sensory neurons in general 

and in the trigeminal ganglion specifically, we decided to perform a genome-wide 

expression analysis comparing the expression in trigeminal neurons from wild type and 

line 16 mice. The selection of line 16 for this analysis was conditioned by the strongest 

hyperalgesic phenotype in adaptation of the formalin test and because it shows a more 

restricted expression pattern of daDREAM compared to line 1, which could allow a more 

precise dissection of DREAM function in trigeminal sensitivity. 

The comparison between the transcriptome of wild type and line 16 mice, filtered for the 

-fold change, the P value and the FDR value generated a sub-list of 296 downregulated 

genes and 295 upregulated genes. 

Functional clustering of these genes using the Gene Ontology program showed a 

predominance of modified gene expression in genes encoding nuclear proteins (32% of 

the total) followed by changes in genes encoding proteins with binding ability (21% have 

protein binding domains, 7% have Ca2+ binding domains and 7% have DNA binding 

domains). Finally, at the cellular level this analysis revealed the importance of changes in 

the expression of genes encoding proteins involved in the transcription process (19% of 

the total) and in cellular transport processes (14% of the total). 
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Since daDREAM functions as a constitutive repressor of DREAM target genes we 

restricted our validation of the microarray data to 3 downregulated genes MGLL, CTSL 

and DBNDD2, coding for proteins previously involved in nociception. 

The monoglyceride lipase (MGLL), together with the hormone-sensitive lipase (HSL), 

hydrolyzes intracellular triglycerides (Fredrikson et al., 1986). In addiction, MGLL 

complements lipoprotein lipase to complete the hydrolysis of monoglycerides resulting 

from the degradation of lipoproteins. MGLL is expressed in astrocytes and participates in 

the hydrolysis of 2-arachidonoyl glycerol (2-AG). 2-AG is an endocannabinoid that binds 

specifically to the CB1 receptor to inhibit presynaptically GABA release (Makara et al., 

2005). It has been also shown that 2-AG production is induced in the periaqueductal grey 

(PAG) in response to stress and induces an opioid independent form of analgesia, the so 

called stress induced analgesia (SIA). Inhibitors of MGLL enhance SIA when 

microinjected in the dorsolateral PAG (Hohmann et al., 2005). This is reflected in an 

increased latency in the tail flick test in rats. 

Cathepsin L (CTSL) is part of the catephsin family of lysosomal cysteine proteases, which 

includes 12 proteases activated by low pH. This protease is involved in the proteolytic 

processing of prodynorphin in secretory vesicles. Thus, brain levels of the proteolytic 

peptides dynorphin A, dynorphin B, and α-neoendorphin were decreased by more than 

70% in cathepsin L knockout compared to wild type mice (Minokadeh et al., 2009). 

Moreover, it has recently been reported that a member of this family, namely cathepsin S, 

is a critical factor for the maintenance of neuropathic pain. After peripheral nerve injury, 

cathepsin S is expressed in spinal cord microglia in the area of the dorsal horn innervated 

by damaged fibers. Release of the protease, in turn, cleaves and liberates the membrane-

bound chemokine fractalkine (FKN). The released FKN feeds back onto the microglial 

cells via the CX3CR1 receptor to activate the p38 MAPK pathway (Clark et al., 2007). 

Activation of this intracellular pathway is thought to contribute to neuropathic pain (Jin et 

al., 2003). Furthermore, the CTSS inhibitor LHVS attenuates spinal microglia activation 

and has an anti-hyperalgesic and anti-allodynic effect in neuropathic pain. 

Dysbindin domain containing protein 2 (DBNDD2) is a member of a protein family that 

shares the dysbindin domain, a coiled coil motif involved in protein-protein interactions. 

So far, DBNDD2 has not been related to pain but DTNBP1, another member of the 

dysbindin domain protein family, plays an important role in neuronal function. Thus, 

DTNBP1 is found in muscle cells, as part of the dystrophin associated protein complex, 

and in neurons, particularly in the synaptic terminals of the mossy fibers in the 

cerebellum and in the hippocampus. In neurons, DTNBP1 is associated with snapin and 
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is part of the SNARE protein complex that is involved in the process of synaptic docking 

and fusion (Benson et al., 2001). Mutations of this gene are associated with cases of 

schizophrenia (Straub et al., 2002). Sandy mice (sdy) harbor a spontaneous deletion of 

the DTNBP1 gene and behavioral characterization of these mice highlighted strong 

cognitive impairment with deficits in spatial and visual memory and emotionally 

motivated learning and memory. Moreover sdy mice show a hypoalgesic phenotype with 

an increased paw withdrawal latency when tested for their nociceptive thermal threshold 

(Bhardwaj et al., 2009). This altered nociception is probably related to impairment in the 

glutamatergic and dopaminergic systems. 

We also added to our list of genes of interest SVc2, a member of the SV2 family of 

synaptic vesicle proteins, which has a distant relationship with nociception since it has 

been described in biotechnology protocols as a carrier for the botulinum neurotoxin 

(BoNT) in the treatment of different forms of pain. SV2 proteins are involved in the 

regulation of synaptic exocytosis. The two most abundant isoforms, SV2a and SV2b, have 

a wide distribution throughout the brain. SV2c, on the other hand, has a more restricted 

pattern of expression (Janz and Sudhof, 1999). SV2 also share homology with mammalian 

ion and sugar transporters, but transport activity has so far not been demonstrated 

(Bajjalieh et al., 1992). Botulinum neurotoxin binds to the inner surface of synaptic 

vesicles, specifically to SV2c, during their exposure to the external medium and is 

internalized by the subsequent vesicle endocytosis. This mechanism favors internalization 

in hyperactive nerve terminal (Verderio et al., 2006). BoNT has been thoroughly studied 

as a treatment for several pain syndromes. In a mouse model of inflammatory pain there 

are evidence that suggest a role for BoNT in the central control of nociception (Luvisetto 

et al., 2003). More recently, the clinical effect of subcutaneously injected BoNT in the 

treatment of idiopathic trigeminal neuralgia has been shown (Zuniga et al., 2008). 

The promoter regions of CTSL and MGLL have been extensively studied (Troen et al., 

1991; Karlsson et al., 2001) and the transcription start sites have been characterized. In 

both cases using in silico analysis we were able to find bona fide DRE sites located 

downstream to the start of transcription. On the other hand, we were able to find some 

bona fide DRE sites in the 5’ untranslated regions of SV2c, DBNDD2 and DTNBP1 genes 

with no well characterized transcriptional start site. 

 

2.2. Effect of chronic trigeminal pain on DREAM target genes 
Like at the spinal cord/DRG level, expression of endogenous DREAM was rapidly 

increased in trigeminal ganglia after CFA injection in wild type mice, which supports a 
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role for DREAM in the development and maintenance of the inflammatory induced 

hyperalgesia also in trigeminal neurons. Line 16 mice also showed an increase in 

endogenous DREAM transcription, but this was significant only at 3 days after CFA 

injection. This could reflect the need for a stronger stimulation to overcome the self-

blockade imposed by daDREAM expression on endogenous DREAM in transgenic mice. 

Importantly, BDNF expression was rapidly decreased in trigeminal neurons of wild type 

and transgenic mice after CFA injection. This result is opposite to that observed in spinal 

cord and DRG. The clear influence of BDNF on nociception in the trigeminal ganglion is 

far from being clarified but it is interesting to stress that our molecular data parallel our 

behavioral data in BDNF+/- mice. At the molecular level we saw an opposite response to 

CFA in the DRG and in the trigeminal ganglion and again we saw a completely different 

response to formalin injection in the hindpaw and in the snoot. All together these data 

suggest that BDNF plays a specific role in the control of pain in the trigeminal ganglion. 

In a recent work it has been described that BDNF expression is upregulated 7 to 14 days 

after the induction of chronic pain induced by tooth pulp inflammation (Tarsa et al., 

2010). Currently, we do not have an explanation for this discrepancy other than the 

different time course and the different models of inflammation used in these two studies. 

Comparison of the transcriptional response of the opioid system in the trigeminal 

ganglion and in the DRG outlined some similarities but also important differences. In 

general, the transcriptional response of opioid receptor genes is highly specific in the 

trigeminal ganglion and differs from what we observed in the DRG with the only 

exception of DOR, which shows a similar downregulation in both ganglia. 

In wild type mice the polypeptidic opioid precursor PENK and PNOC display a similar 

response in these two ganglia. PDYN expression, however, is strongly downregulated in 

the trigeminal ganglion, while it is induced in spinal cord and did not change after CFA in 

the DRG. 

In daDREAM trigeminal ganglion the response of the opioid system to inflammation is 

completely blocked with the only exception of the ORL receptor and POMC, which are 

upregulated after CFA injection. Again, the different influence of daDREAM on the opioid 

systems in the DRG and in the trigeminal ganglion highlights the specificities in 

processing of nociceptive inputs in the different afferent fibers. 

The expression of the candidate genes MGLL, CTPL and DTNBP1 in wild type trigeminal 

ganglia was downregulated in response to inflammatory pain. For MGLL and DTNBP1, 

both with a pro-algesic function, though through different mechanisms, a downregulation 

after CFA could be interpreted as a compensatory mechanism to reduce the hyperalgesia 
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associated with the inflammation. Oddly, expression of DBNDD2 was not modified after 

CFA in wild type or in transgenic mice and DTNBP1, contrary to the result in wild type, 

showed an early and transient induction in line 16 mice after CFA. The molecular 

mechanisms regulating the expression of dysbindin-containing proteins and their 

functional significance in pain-controlling mechanisms are presently far from being 

understood. Finally, the down regulation of CTPL, involved in the proteolityc processing 

of the prodynorphin precursor, could be related to the downregulation of PDYN in 

trigeminal neurons after CFA and the existence of a putative auto-regulatory loop that 

controls the expression of these two genes in order to adjust the amount of proteolytic 

enzyme and substrate. 

As a curiosity, perhaps with some biotechnological interest, SV2c expression was 

upregulated. Since SV2c is involved in the regulation of synaptic exocytosis, the 

upregulation after CFA injection may be a reflection of the increased synaptic activity 

induced in primary afferent fibers by the ongoing inflammatory process.
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CONCLUSIONS 
 
 
 

1. DREAM participates in the overall control of the opioid tone in primary afferent 

neurons and in the spinal cord. 

 

2. DREAM regulates spinal sensitization through the control of BDNF gene expression. 

 

3. daDREAM does not function as a dominant mutant for the spinal modulation of Kv4 

potassium channel activity in vivo. 

 

4. DREAM influences basal ERK phosphorylation in vivo, in part through the control of 

the expression of different GABA receptor subunits in dorsal horn neurons. 

 

5. DREAM plays a different role in the control of inflammatory and neuropathic chronic 

pain. 

 

6. We have developed a model of orofacial hyperalgesia overexpressing daDREAM in 

trigeminal neurons. 

 

7. In response to inflammatory pain, the expression of BDNF and PDYN are differently 

regulated in the spinal cord/DRG system and in the trigeminal ganglion. 

 

8. Genome-wide analysis has identified new DREAM target genes that could be involved 

in the differential response to inflammatory pain in the trigeminal ganglia. 
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CONCLUSIONES 
 
 
 

1. DREAM participa en el control del tono opioide en las neuronas primarias aferentes y 

en la medula espinal. 

 

2. DREAM regula la sensibilización espinal a través del control de la expresión génica de 

BDNF. 

 

3. La sobre-expresión de daDREAM no altera las características electrofisiológicas de la 

corriente de potasio de tipo A en la medula espinal.   

 

4. DREAM influye en los niveles de fosforilación basal de ERK in vivo, reduciendo la 

expresión génica de diferentes subunidades del receptor GABA en las neuronas del asta 

dorsal de la medula espinal y con ello el tono inhibitorio. 

 

5. DREAM juega un papel distinto en el control del dolor inflamatorio y neuropático. 

 

6. La sobre-expresión de daDREAM en neuronas de trigémino permite el desarrollo de un 

modelo de hiperalgesia orofacial. 

 

7. En respuesta a dolor inflamatorio, la expresión de BDNF y PDYN se regula 

diferentemente en el sistema medula espinal/DRG y en el ganglio trigémino. 

 

8. A través de un análisis genómico hemos identificado nuevos genes diana de DREAM 

que podrían estar implicados en la respuesta diferencial a dolor inflamatorio en el 

ganglio trigémino. 
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SUPPLEMENTARY DATA 
 
 

List of downregulated genes 
 

Fold change < -1,5; P value (LIMMA) < 0,05; FDR value (LIMMA) < 0,1 
 
 

fold change pval FDR probe ID gene symbol 

 -2.46   0.00000010   0.00006349   1415694_at   Wars | tryptophanyl-tRNA synthetase 

-1.60  0.00152236  0.07297937  1415903_at  Slc38a1 | solute carrier family 38, member 1 

-1.52  0.00003902  0.00569589  1416247_at  Dctn3 | dynactin 3 

-1.57  0.00049380  0.03400132  1416594_at  Sfrp1 | secreted frizzled-related sequence 
protein 1 

-2.03  0.00000145  0.00049118  1417185_at  Ly6a | lymphocyte antigen 6 complex, locus A 

-1.68  0.00007159  0.00885543  1417261_at  Mbtd1 | mbt domain containing 1 

-1.94  0.00008924  0.01026761  1417379_at   Iqgap1 | IQ motif containing GTPase 
activating protein 1 

-1.54  0.00020823  0.01904920  1417495_x_at  Cp | ceruloplasmin 

-1.67  0.00023745  0.02071556  1417789_at  Ccl11 | small chemokine (C-C motif) ligand 11 

-2.20  0.00025426  0.02171862  1417933_at  Igfbp6 | insulin-like growth factor binding 
protein 6 

-1.93  0.00000025  0.00012695  1418172_at  Hebp1 | heme binding protein 1 

-2.19  0.00022071  0.01985323  1418174_at  Dbp | D site albumin promoter binding protein 

-2.27  0.00001322  0.00250517  1418191_at  Usp18 | ubiquitin specific peptidase 18 

-2.10  0.00000271  0.00074025  1418294_at  Epb4.1l4b | erythrocyte protein band 4.1-like 
4b 

-1.70  0.00017896  0.01675741  1418392_a_at  Gbp3 | guanylate nucleotide binding protein 3 

-1.57  0.00010574  0.01171768  1418414_at  Kcnh1 | potassium voltage-gated channel, 
subfamily H (eag-related), member 1 

-1.55  0.00000645  0.00142755  1418472_at  Aspa | aspartoacylase (aminoacylase) 2 

-15.46  0.00000000  0.00000019  1418493_a_at  Snca | synuclein, alpha 

-1.57  0.00005104  0.00691246  1418580_at  Rtp4 | receptor transporter protein 4 

-1.55  0.00055914  0.03653064  1418652_at  Cxcl9 | chemokine (C-X-C motif) ligand 9 

-1.73  0.00005830  0.00768343  1418684_at  2310012P17Rik | RIKEN cDNA 2310012P17  

-1.51  0.00029114  0.02370181  1418697_at  Inmt | indolethylamine N-methyltransferase 

-1.96  0.00000206  0.00062459  1418774_a_at  Atp7a | ATPase, Cu++ transporting, alpha 
polypeptide 

-1.73  0.00195498  0.08389294  1418877_at  Foxd1 | Forkhead box D1 

-1.52  0.00002645  0.00430674  1418941_at  Pcdhb22 | protocadherin beta 22 

-2.50  0.00000160  0.00052950  1419043_a_at  Iigp1 | interferon inducible GTPase 1 

-1.52  0.00067348  0.04115392  1419564_at  Zfp467 | zinc finger protein 467 

-1.64  0.00000255  0.00070978  1419672_at  Spock1 | sparc/osteonectin, cwcv and kazal-
like domains proteoglycan 1 

-1.90  0.00069427  0.04217593  1419903_at  Dbndd2 | Dysbindin (dystrobrevin binding 
protein 1) domain containing 2 

-1.72  0.00017835  0.01675741  1420039_s_at  Cbx7 | chromobox homolog 7 

-1.52  0.00224337  0.08971951  1420256_x_at  Prph1 | Peripherin 1 

-2.28  0.00011558  0.01244145  1420287_at  --- | Transcribed locus 

-2.22  0.00194169  0.08385249  1420357_s_at  
Xlr3a | X-linked lymphocyte-regulated 3A /// 
X-linked lymphocyte-regulated 3B /// 
predicted gene, EG574437 

-1.54  0.00101498  0.05502684  1420861_at  Dctn4 | dynactin 4 

-1.78  0.00008400  0.00981469  1420863_at  Dctn4 | dynactin 4 

-1.63  0.00039996  0.02952322  1421087_at  Per3 | period homolog 3 (Drosophila) 

-1.71  0.00000805  0.00170718  1421139_a_at  Zfp386 | zinc finger protein 386 (Kruppel-like) 

-24.33  0.00000000  0.00000019  1421144_at  Rpgrip1 | retinitis pigmentosa GTPase 
regulator interacting protein 1 

-1.96  0.00007042  0.00877357  1421339_at  Extl3 | exostoses (multiple)-like 3 

-1.54  0.00034522  0.02616784  1421512_at  Cep250 | centrosomal protein 250 

-2.89  0.00000043  0.00019623  1422903_at  Ly86 | lymphocyte antigen 86 

-1.64  0.00006259  0.00808867  1423000_a_at  Dgke | diacylglycerol kinase, epsilon 

-2.08  0.00000031  0.00015259  1423150_at  Scg5 | secretogranin V 
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-2.16  0.00000004  0.00003442  1423216_a_at  2510049I19Rik | RIKEN cDNA 2510049I19 

-1.71  0.00004459  0.00630365  1423314_s_at  Pde7a | phosphodiesterase 7A 

-1.51  0.00021024  0.01907893  1423693_at  Ela1 | elastase 1, pancreatic 

-1.62  0.00274559  0.09993060  1424101_at  Hnrpl | heterogeneous nuclear 
ribonucleoprotein L 

-2.15  0.00007256  0.00887786  1424176_a_at  Anxa4 | annexin A4 

-2.95  0.00000171  0.00054382  1424836_a_at  Clasp2 | CLIP associating protein 2 

-3.75  0.00000002  0.00001912  1424893_at  Ndel1 | nuclear distribution gene E-like 
homolog 1 (A. nidulans) 

-1.54  0.00192232  0.08352466  1424987_at  5430435G22Rik | RIKEN cDNA 5430435G22  

-1.62  0.00038254  0.02870728  1425191_at  Ocel1 | occludin/ELL domain containing 1 

-2.25  0.00000611  0.00136526  1425385_a_at  Igh-6 | Immunoglobulin heavy chain 6 (heavy 
chain of IgM) 

-1.72  0.00002433  0.00406487  1425856_at  Cib1 | Calcium and integrin binding 1 
(calmyrin) 

-1.51  0.00060691  0.03867460  1425879_at  Zfp352 | zinc finger protein 352 

-5.39  0.00000000  0.00000089  1426289_at  Qrich1 | glutamine-rich 1 

-1.52  0.00003822  0.00563335  1426441_at  
Slc11a2 | solute carrier family 11 (proton-
coupled divalent metal ion transporters), 
member 2 

-1.59  0.00023255  0.02040540  1426785_s_at  Mgll | monoglyceride lipase 

-1.73  0.00001064  0.00211329  1427246_at  Magi1 | membrane associated guanylate 
kinase, WW and PDZ domain containing 1 

-4.19  0.00000003  0.00002456  1427328_a_at  Clasp2 | CLIP associating protein 2 

-2.01  0.00034204  0.02610226  1427329_a_at  Igh-6 | immunoglobulin heavy chain 6 (heavy 
chain of IgM) 

-2.36  0.00000025  0.00012695  1427351_s_at  Igh-6 | immunoglobulin heavy chain 6 (heavy 
chain of IgM) 

-2.16  0.00064773  0.04029441  1428055_at  Rian | RNA imprinted and accumulated in 
nucleus 

-2.47  0.00000296  0.00080016  1428692_at  Hddc3 | HD domain containing 3 

-1.66  0.00011273  0.01225490  1428851_at  1300014I06Rik | RIKEN cDNA 1300014I06 
gene 

-1.55  0.00029673  0.02406987  1428921_at  2810021B07Rik | RIKEN cDNA 2810021B07 
gene 

-1.58  0.00013145  0.01366027  1429040_at  2610005L07Rik | RIKEN cDNA 2610005L07  

-2.30  0.00000022  0.00011671  1429215_at  2310058N22Rik | RIKEN cDNA 2310058N22  

-1.52  0.00016796  0.01618657  1429219_at  1200009F10Rik | RIKEN cDNA 1200009F10  

-1.57  0.00026506  0.02244810  1429247_at  Anxa6 | annexin A6 

-2.02  0.00000052  0.00022062  1429335_at  Snapc1 | small nuclear RNA activating 
complex, polypeptide 1 

-1.54  0.00016111  0.01579653  1429688_at  Arntl2 | aryl hydrocarbon receptor nuclear 
translocator-like 2 

-1.52  0.00268826  0.09891671  1429725_at  Atbf1 | AT motif binding factor 1 

-1.58  0.00006207  0.00804396  1429785_at  5830458C19Rik | RIKEN cDNA 5830458C19  

-3.78  0.00000002  0.00002078  1429870_at  C630040K21Rik | RIKEN cDNA C630040K21  

-2.34  0.00011676  0.01250870  1429882_at  2610005L07Rik | RIKEN cDNA 2610005L07  

-16.60  0.00000000  0.00000089  1429951_at  Ssbp2 | single-stranded DNA binding protein 2 

-2.03  0.00000423  0.00103625  1430047_at  Brctd1 | BRCT domain containing 1 

-2.21  0.00001205  0.00232315  1430196_at  8430408J09Rik | RIKEN cDNA 8430408J09  

-1.68  0.00045456  0.03243868  1430529_at  Csnk1a1 | casein kinase 1, alpha 1 

-1.66  0.00051820  0.03488270  1430556_at  Spag9 | sperm associated antigen 9 

-1.89  0.00014651  0.01474983  1430829_s_at  Fto | fatso 

-4.60  0.00000000  0.00000019  1430979_a_at  Prdx2 | peroxiredoxin 2 

-1.79  0.00001378  0.00258220  1431006_at  --- | --- 

-1.74  0.00050883  0.03459179  1431044_at  Thoc1 | THO complex 1 

-1.79  0.00050236  0.03432881  1431406_at  Agxt2l1 | alanine-glyoxylate aminotransferase 
2-like 1 

-1.54  0.00068021  0.04140077  1431700_at  Grin2b | glutamate receptor, ionotropic, 
NMDA2B (epsilon 2) 

-1.80  0.00000225  0.00065785  1432606_at  2610012C04Rik | RIKEN cDNA 2610012C04 
gene 

-5.40  0.00000002  0.00001768  1432646_a_at  
EG640370 | predicted gene, EG640370 /// 
predicted gene, EG667653 /// hypothetical 
protein LOC672953 

-1.54  0.00048820  0.03377012  1433557_at  Cbx7 | chromobox homolog 7 

-1.68  0.00016019  0.01577423  1433623_at  Zfp367 | zinc finger protein 367 

-1.98  0.00000058  0.00023850  1433685_a_at  C330011F01Rik | RIKEN cDNA C330011F01 
gene /// RIKEN cDNA 6430706D22 gene 

-1.82  0.00003772  0.00562049  1434045_at  Cdkn1b | cyclin-dependent kinase inhibitor 1B 

-5.53  0.00000000  0.00000070  1434171_at  C330011K17Rik | RIKEN cDNA C330011K17  

-1.56  0.00006094  0.00792073  1434329_s_at  Adipor2 | adiponectin receptor 2 
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-7.22  0.00000000  0.00000019  1434340_at  1110020P15Rik | RIKEN cDNA 1110020P15  

-2.65  0.00000041  0.00019284  1434341_x_at  1110020P15Rik | RIKEN cDNA 1110020P15  

-2.31  0.00000190  0.00059321  1434441_at  1110018J18Rik | RIKEN cDNA 1110018J18  

-1.58  0.00007187  0.00885656  1434632_at  --- | Transcribed locus 

-2.72  0.00000036  0.00017075  1435129_at  Ptp4a2 | Protein tyrosine phosphatase 4a2 

-1.55  0.00016678  0.01610693  1435267_at  A430108E01Rik | RIKEN cDNA A430108E01  

-1.53  0.00012764  0.01339458  1435459_at  Fmo2 | flavin containing monooxygenase 2 

-3.31  0.00001775  0.00317712  1435521_at  Msi2 | Musashi homolog 2 (Drosophila) 

-6.40  0.00000000  0.00000288  1435579_at  4933409K07Rik | RIKEN cDNA 4933409K07  

-1.61  0.00005272  0.00705596  1435618_at  Pnma2 | paraneoplastic antigen MA2 

-1.84  0.00026505  0.02244810  1435906_x_at  Gbp2 | guanylate nucleotide binding protein 2 

-1.57  0.00002708  0.00436178  1436319_at  Sulf1 | sulfatase 1 

-2.11  0.00000520  0.00119051  1436356_at  Lgals7 | lectin, galactose binding, soluble 7 

-9.51  0.00000000  0.00000002  1436520_at  AI450948 | expressed sequence AI450948 

-1.67  0.00069626  0.04220704  1436713_s_at  Gtl2 | GTL2, imprinted maternally expressed 
untranslated mRNA 

-23.45  0.00000000  0.00000140  1436853_a_at  Snca | synuclein, alpha 

-1.55  0.00088362  0.05019167  1437142_a_at  Pigo | phosphatidylinositol glycan anchor 
biosynthesis, class O 

-1.61  0.00174730  0.07935159  1437214_at  Lrrtm4 | leucine rich repeat transmembrane 
neuronal 4 

-1.76  0.00000221  0.00065038  1437297_at  Chd8 | chromodomain helicase DNA binding 
protein 8 

-1.55  0.00178900  0.08060530  1437612_at  Nup62 | Nucleoporin 62 

-1.56  0.00007266  0.00887786  1437710_x_at  1700021P22Rik | RIKEN cDNA 1700021P22 
gene 

-1.63  0.00019680  0.01815144  1437717_x_at  
2610005L07Rik | RIKEN cDNA 2610005L07 
gene /// RIKEN cDNA A430108E01 gene /// 
similar to p47 protein isoform a 

-1.84  0.00003466  0.00529936  1437767_s_at  Fts | fused toes 

-1.55  0.00039538  0.02932894  1437878_s_at  Ttc14 | tetratricopeptide repeat domain 14 

-1.64  0.00027747  0.02303030  1437892_at  Zfp306 | zinc finger protein 306 

-1.79  0.00154506  0.07373929  1437932_a_at  Cldn1 | claudin 1 

-1.86  0.00002546  0.00417480  1438041_at  --- | --- 

-1.87  0.00000044  0.00019623  1438049_at  A430108E01Rik | RIKEN cDNA A430108E01  

-1.88  0.00092514  0.05168821  1438112_at  9430021M05Rik | RIKEN cDNA 9430021M05  

-3.74  0.00000001  0.00000697  1438130_at  Taf15 | TAF15 RNA polymerase II, TATA box 
binding protein (TBP)-associated factor 

-2.25  0.00013007  0.01357972  1438211_s_at  Dbp | D site albumin promoter binding protein 

-1.90  0.00000393  0.00097383  1438398_at  Rbm39 | RNA binding motif protein 39 

-1.61  0.00001124  0.00219733  1438466_at  
Dnahc7c | dynein, axonemal, heavy chain 7c 
/// dynein, axonemal, heavy chain 7b /// 
dynein heavy chain-related 

-3.03  0.00000496  0.00116425  1438528_at  Pcm1 | Pericentriolar material 1 

-6.60  0.00000001  0.00000648  1438754_at  --- | --- 

-1.60  0.00016445  0.01595031  1438772_at  Zfp367 | zinc finger protein 367 

-6.43  0.00000000  0.00000346  1438936_s_at  Ang1 | angiogenin, ribonuclease A family, 
member 1 

-2.88  0.00000377  0.00095086  1438937_x_at  Ang1 | angiogenin, ribonuclease A family, 
member 1 

-10.10  0.00000000  0.00000019  1439059_at  BC031748 | CDNA sequence BC031748 

-3.33  0.00000786  0.00168059  1439195_at  --- | --- 

-1.53  0.00001486  0.00275812  1439249_at  Wac | WW domain containing adaptor with 
coiled-coil 

-4.01  0.00000004  0.00003269  1439279_at  3110007F17Rik | RIKEN cDNA 3110007F17  

-2.28  0.00002375  0.00401822  1439300_at  --- | --- 

-1.83  0.00017705  0.01667043  1439406_x_at  Fars2 | phenylalanine-tRNA synthetase 2 
(mitochondrial) 

-1.76  0.00017479  0.01653714  1439614_at  --- | Transcribed locus 

-2.33  0.00005126  0.00692243  1439655_at  Ube2d2 | Ubiquitin-conjugating enzyme E2D 2 

-2.64  0.00000240  0.00068030  1439712_at  Ints10 | integrator complex subunit 10 

-1.61  0.00213149  0.08723451  1439968_x_at  Dbndd2 | dysbindin (dystrobrevin binding 
protein 1) domain containing 2 

-2.60  0.00001380  0.00258220  1440046_at  BC031748 | cDNA sequence BC031748 

-1.57  0.00005175  0.00696687  1440223_at  Rbm6 | RNA binding motif protein 6 

-1.58  0.00130192  0.06575361  1440416_at  Usp46 | Ubiquitin specific peptidase 46 

-2.06  0.00000386  0.00096272  1440636_at  Mrpl3 | Mitochondrial ribosomal protein L3 

-2.53  0.00000068  0.00027664  1440651_at  Dusp16 | Dual specificity phosphatase 16 

-2.34  0.00054674  0.03615646  1440771_at  Zkscan1 | zinc finger with KRAB and SCAN 
domains 1 

-1.87  0.00000930  0.00190307  1440781_at  B830007D08Rik | RIKEN cDNA B830007D08  
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-1.59  0.00001901  0.00336759  1440871_at  Magi1 | membrane associated guanylate 
kinase, WW and PDZ domain containing 1 

-1.67  0.00268890  0.09891671  1440893_at  --- | --- 

-2.46  0.00000165  0.00053813  1441100_at  Mbtd1 | mbt domain containing 1 

-1.90  0.00001276  0.00243780  1441142_at  2700081L22Rik | RIKEN cDNA 2700081L22 
gene 

-1.65  0.00023046  0.02030116  1441238_at  9030416H16Rik | RIKEN cDNA 9030416H16 
gene 

-1.54  0.00032559  0.02552795  1441293_at  EG635504 | Predicted gene, EG635504 

-3.32  0.00000043  0.00019623  1441373_at  Msi2 | Musashi homolog 2 (Drosophila) 

-3.14  0.00000087  0.00033423  1441404_at  Pafah1b1 | Platelet-activating factor 
acetylhydrolase, isoform 1b, beta1 subunit 

-1.96  0.00000310  0.00082826  1441576_at  2410002O22Rik | RIKEN cDNA 2410002O22 
gene 

-2.80  0.00000009  0.00006037  1441580_at  Sgpp2 | Sphingosine-1-phosphate 
phosphotase 2 

-1.68  0.00052667  0.03530768  1441604_at  Esd | Esterase D/formylglutathione hydrolase 

-2.56  0.00001471  0.00274216  1441643_at  March3 | membrane-associated ring finger 
(C3HC4) 3 

-2.25  0.00002469  0.00409469  1441683_at  1110033M05Rik | RIKEN cDNA 1110033M05 
gene 

-1.70  0.00004598  0.00646015  1441746_at  --- | --- 

-1.51  0.00264661  0.09824273  1441862_at  Ppox | protoporphyrinogen oxidase 

-1.61  0.00007567  0.00912504  1441975_at  Acpp | acid phosphatase, prostate 

-1.80  0.00002112  0.00366379  1442017_at  Nfs1 | nitrogen fixation gene 1 (S. cerevisiae) 

-2.03  0.00000069  0.00027716  1442024_at  Ppp1r3e | Protein phosphatase 1, regulatory 
(inhibitor) subunit 3E 

-1.83  0.00004568  0.00643768  1442188_at  
--- | 0 day neonate cerebellum cDNA, RIKEN 
full-length enriched library, clone:C230031C13 
product:unclassifiable, full insert sequence 

-1.84  0.00004929  0.00677723  1442201_at  --- | Transcribed locus 

-3.97  0.00000015  0.00008819  1442213_at  LOC552908 | hypothetical LOC552908 

-1.86  0.00006813  0.00855857  1442279_at  Epc1 | Enhancer of polycomb homolog 1 
(Drosophila) 

-2.59  0.00000880  0.00183697  1442384_at  --- | Transcribed locus 

-2.05  0.00000193  0.00059640  1442447_at  Znrf3 | Zinc and ring finger 3 

-3.55  0.00000000  0.00000133  1442742_at  Atp2c1 | ATPase, Ca++-sequestering 

-2.52  0.00000005  0.00004066  1442824_at  8030497I03Rik | RIKEN cDNA 8030497I03 
gene 

-4.43  0.00000002  0.00001816  1442886_at  Tra2a | transformer 2 alpha homolog 
(Drosophila) 

-2.41  0.00000005  0.00003564  1443095_at  --- | --- 

-7.41  0.00000000  0.00000315  1443153_at  Trip11 | Thyroid hormone receptor interactor 
11 

-1.66  0.00007167  0.00885543  1443239_at  Mtap2 | Microtubule-associated protein 2 

-1.67  0.00014463  0.01460463  1443256_at  Clca6 | Chloride channel calcium activated 6 

-1.63  0.00142430  0.06956862  1443741_x_at  
Whsc1 | Wolf-Hirschhorn syndrome candidate 
1 (human) /// similar to Wolf-Hirschhorn 
syndrome candidate 1 protein isoform 1 

-1.58  0.00027805  0.02303030  1443778_at  LOC672274 | similar to Transcription factor 
SOX-4 

-1.70  0.00000690  0.00151013  1443858_at  LOC552905 | Hypothetical LOC552905 

-1.63  0.00005491  0.00728402  1443876_at  Camk2a | Calcium/calmodulin-dependent 
protein kinase II alpha 

-1.52  0.00009785  0.01108871  1444486_at  Klhl5 | kelch-like 5 (Drosophila) 

-2.38  0.00003633  0.00549862  1444517_at  --- | --- 

-2.31  0.00000919  0.00189360  1444878_at  Dock10 | Dedicator of cytokinesis 10 

-1.64  0.00001942  0.00340833  1444971_at  Rbm5 | RNA binding motif protein 5 

-3.22  0.00000369  0.00094457  1445307_at  Auts2 | Autism susceptibility candidate 2 

-1.59  0.00067720  0.04127339  1445428_at  --- | --- 

-1.53  0.00051815  0.03488270  1445680_x_at  F2rl2 | coagulation factor II (thrombin) 
receptor-like 2 

-1.75  0.00000122  0.00042981  1445724_at  Iqgap1 | IQ motif containing GTPase 
activating protein 1 

-1.52  0.00022098  0.01985323  1445892_at  Per2 | Period homolog 2 (Drosophila) 

-1.57  0.00230990  0.09154532  1445957_at  Evl | Ena-vasodilator stimulated 
phosphoprotein 

-1.96  0.00028967  0.02369808  1446102_at  D9Ertd292e | DNA segment, Chr 9, ERATO Doi 
292, expressed 

-2.57  0.00000360  0.00092904  1446140_at  Pcm1 | Pericentriolar material 1 

-3.82  0.00000444  0.00107611  1446144_at  Pex2 | peroxin 2 

-1.52  0.00038216  0.02870728  1446220_at  Gm484 | gene model 484, (NCBI) 

-1.66  0.00002947  0.00467149  1446391_at  Snca | Synuclein, alpha 

-1.82  0.00005080  0.00691246  1446406_at  Paqr8 | Progestin and adipoQ receptor family 
member VIII 
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-1.68  0.00007211  0.00886133  1446514_at  Dpp10 | Dipeptidylpeptidase 10 

-1.82  0.00000088  0.00033423  1446648_at  Stxbp4 | Syntaxin binding protein 4 

-1.54  0.00048086  0.03360991  1446951_at  --- | --- 

-1.57  0.00088851  0.05040580  1447147_at  Atg7 | Autophagy-related 7 (yeast) 

-1.80  0.00247713  0.09483952  1447176_at  A930008G19Rik | RIKEN cDNA A930008G19  

-3.09  0.00000008  0.00005768  1447723_at  

--- | 16 days neonate cerebellum cDNA, 
RIKEN full-length enriched library, 
clone:9630018J10 product:unclassifiable, full 
insert sequence 

-1.51  0.00027150  0.02280286  1447937_a_at  

4933409K07Rik | RIKEN cDNA 4933409K07 
gene /// similar to 4933409K07Rik protein /// 
similar to 4933409K07Rik protein /// 
hypothetical protein LOC622738 /// similar to 
similar to 4933409K07Rik protein /// 
hypothetical protein LOC665845 

-1.59  0.00016953  0.01623366  1448293_at  --- | --- 

-1.84  0.00000235  0.00067062  1448395_at  Sfrp1 | secreted frizzled-related sequence 
protein 1 

-1.84  0.00027587  0.02300792  1449025_at  Ifit3 | interferon-induced protein with 
tetratricopeptide repeats 3 

-3.72  0.00007474  0.00903709  1449347_a_at  
Xlr4b | X-linked lymphocyte-regulated 4B /// 
X-linked lymphocyte-regulated 4A /// X-linked 
lymphocyte-regulated 4E 

-4.17  0.00000013  0.00007612  1449603_at  AI594671 | expressed sequence AI594671 

-2.05  0.00000519  0.00119051  1449874_at  Ly96 | lymphocyte antigen 96 

-2.05  0.00000166  0.00053813  1450154_at  Folh1 | folate hydrolase 

-3.51  0.00001518  0.00280500  1450170_x_at  H2-K1 | Histocompatibility 2, K1, K region 

-1.53  0.00021213  0.01917322  1450391_a_at  Mgll | monoglyceride lipase 

-1.63  0.00011062  0.01209404  1450702_at  Hfe | hemochromatosis 

-2.27  0.00005196  0.00697436  1450783_at  Ifit1 | interferon-induced protein with 
tetratricopeptide repeats 1 

-3.42  0.00000012  0.00007507  1450933_at  Pde7a | phosphodiesterase 7A 

-1.72  0.00005434  0.00722969  1451022_at  Lrp6 | low density lipoprotein receptor-related 
protein 6 

-2.06  0.00000016  0.00009301  1451146_at  
Zfp386 | zinc finger protein 386 (Kruppel-like) 
/// similar to zinc finger protein 386 (Kruppel-
like) isoform a 

-3.88  0.00000000  0.00000353  1451411_at  Gprc5b | G protein-coupled receptor, family C, 
group 5, member B 

-1.67  0.00017318  0.01651064  1451478_at  Angptl7 | angiopoietin-like 7 

-1.62  0.00000978  0.00197885  1451555_at  Nln | neurolysin (metallopeptidase M3 family) 

-1.69  0.00011978  0.01277144  1451777_at  BC013672 | cDNA sequence BC013672 

-1.76  0.00000482  0.00114258  1451993_at  9130404D08Rik | RIKEN cDNA 9130404D08 
gene 

-1.51  0.00269683  0.09912789  1452401_at  Wtap | Wilms tumour 1-associating protein 

-1.80  0.00005606  0.00741472  1452439_s_at  Sfrs2 | splicing factor, arginine/serine-rich 2 
(SC-35) 

-1.68  0.00000986  0.00198611  1452442_at  Usp13 | Ubiquitin specific peptidase 13 
(isopeptidase T-3) 

-1.68  0.00003589  0.00544991  1452640_at  
3110007F17Rik | RIKEN cDNA 3110007F17 
gene /// predicted gene, EG546368 /// 
predicted gene, EG625591 

-1.99  0.00000169  0.00054346  1452730_at  1110033J19Rik | RIKEN cDNA 1110033J19  

-8.19  0.00000000  0.00000288  1452907_at  Galc | galactosylceramidase 

-1.79  0.00000709  0.00153674  1452997_at  2610005L07Rik | RIKEN cDNA 2610005L07  

-1.63  0.00000386  0.00096272  1453196_a_at  Oasl2 | 2-5 oligoadenylate synthetase-like 2 

-1.95  0.00000213  0.00063714  1453332_at  2410002O22Rik | RIKEN cDNA 2410002O22  

-1.68  0.00002204  0.00377611  1453377_at  Sh2d4a | SH2 domain containing 4ª 

-1.54  0.00005093  0.00691246  1453589_a_at  2610005L07Rik | RIKEN cDNA 2610005L07  

-1.69  0.00006290  0.00810550  1453836_a_at  Mgll | monoglyceride lipase 

-1.67  0.00022553  0.02005773  1453841_at  2310050P20Rik | RIKEN cDNA 2310050P20 

-1.66  0.00045878  0.03263642  1454232_at  9430027B09Rik | RIKEN cDNA 9430027B09 

-2.04  0.00000020  0.00010826  1454686_at  C330011F01Rik | RIKEN cDNA C330011F01 
gene /// RIKEN cDNA 6430706D22 gene 

-1.52  0.00054998  0.03631698  1454904_at  Mtm1 | X-linked myotubular myopathy gene 1 

-2.16  0.00000275  0.00074603  1455213_at  4930488E11Rik | RIKEN cDNA 4930488E11 

-1.53  0.00024217  0.02096414  1455647_at  Ar | androgen receptor 

-1.61  0.00000549  0.00124431  1455649_at  Ttc9 | tetratricopeptide repeat domain 9 

-1.65  0.00003095  0.00486389  1455657_at  2610207I05Rik | RIKEN cDNA 2610207I05  

-6.92  0.00000000  0.00000144  1455715_at  2610044O15Rik | RIKEN cDNA 2610044O15  

-1.59  0.00004407  0.00628986  1455849_at  --- | --- 

-1.84  0.00002210  0.00377611  1455933_at  Tra2a | transformer 2 alpha homolog 
(Drosophila) 
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-1.62  0.00030307  0.02436654  1456288_at  Slfn5 | schlafen 5 

-1.82  0.00001669  0.00301035  1456351_at  Brd8 | bromodomain containing 8 

-2.15  0.00000096  0.00034677  1456386_at  Rbm39 | RNA binding motif protein 39 

-1.65  0.00003873  0.00568645  1456430_at  Ttc14 | tetratricopeptide repeat domain 14 

-2.11  0.00026529  0.02244810  1456532_at  Pdgfd | Platelet-derived growth factor, D 
polypeptide 

-1.87  0.00000944  0.00191800  1456570_at  Epb4.1l4b | Erythrocyte protein band 4.1-like 
4b 

-1.55  0.00008459  0.00985826  1456596_at  6430550H21Rik | RIKEN cDNA 6430550H21  

-1.51  0.00004977  0.00682324  1456748_a_at  
Nipsnap1 | 4-nitrophenylphosphatase domain 
and non-neuronal SNAP25-like protein 
homolog 1 (C. elegans) 

-1.93  0.00016902  0.01623366  1456775_at  Ints8 | integrator complex subunit 8 

-3.42  0.00000198  0.00060711  1456781_at  
--- | 10 days neonate cortex cDNA, RIKEN 
full-length enriched library, clone:A830044L07 
product:unclassifiable, full insert sequence 

-1.68  0.00002660  0.00431545  1456807_at  Ppp1r3e | protein phosphatase 1, regulatory 
(inhibitor) subunit 3E 

-2.79  0.00000004  0.00003269  1456911_at  Clasp2 | CLIP associating protein 2 

-1.51  0.00186902  0.08270928  1456943_a_at  Dbndd2 | dysbindin (dystrobrevin binding 
protein 1) domain containing 2 

-1.85  0.00002706  0.00436178  1456947_at  Pafah1b1 | Platelet-activating factor 
acetylhydrolase, isoform 1b, beta1 subunit 

-2.81  0.00000006  0.00004204  1457231_at  Hif1a | Hypoxia inducible factor 1, alpha 
subunit 

-2.18  0.00000025  0.00012695  1457259_at  --- | Transcribed locus 

-2.04  0.00000107  0.00038189  1457262_at  2610207I05Rik | RIKEN cDNA 2610207I05  

-2.66  0.00000170  0.00054382  1457324_at  4933409K07Rik | RIKEN cDNA 4933409K07 
gene 

-1.68  0.00076865  0.04555450  1457350_at  Per2 | period homolog 2 (Drosophila) 

-1.56  0.00004054  0.00589794  1457483_at  Arid5b | AT rich interactive domain 5B (Mrf1 
like) 

-1.84  0.00046484  0.03270661  1457551_at  Acvr1 | Activin A receptor, type 1 

-1.65  0.00039721  0.02936812  1457658_x_at  Anxa4 | annexin A4 

-2.75  0.00000084  0.00032889  1457724_at  Ctsl | cathepsin L 

-1.76  0.00051005  0.03459179  1457839_at  Dhx40 | DEAH (Asp-Glu-Ala-His) box 
polypeptide 40 

-1.52  0.00039395  0.02932894  1457934_at  Rbm12 | RNA binding motif protein 12 

-2.09  0.00004440  0.00629722  1457969_at  Rabif | RAB interacting factor 

-2.26  0.00000609  0.00136526  1458003_at  Zfp398 | zinc finger protein 398 

-1.94  0.00008642  0.00996881  1458123_at  9630002A11Rik | RIKEN cDNA 9630002A11  

-1.76  0.00205917  0.08588374  1458147_at  Mamdc1 | MAM domain containing 1 

-2.17  0.00000073  0.00029013  1458188_at  Dpysl2 | Dihydropyrimidinase-like 2 

-1.52  0.00015240  0.01520706  1458220_at  Dlc1 | deleted in liver cancer 1 

-1.69  0.00006770  0.00852942  1458317_at  Eml1 | Echinoderm microtubule associated 
protein like 1 

-1.54  0.00005863  0.00768729  1458400_at  9630050P21Rik | RIKEN cDNA 9630050P21 
gene 

-1.66  0.00017946  0.01675741  1458586_at  --- | --- 

-1.72  0.00013905  0.01431286  1458669_at  --- | Transcribed locus 

-1.72  0.00084453  0.04902061  1458684_at  Ss18 | synovial sarcoma translocation, 
Chromosome 18 

-1.87  0.00202840  0.08549783  1458719_at  --- | Transcribed locus 

-1.87  0.00056083  0.03655202  1458892_at  9430047G12Rik | RIKEN cDNA 9430047G12 
gene 

-1.99  0.00123162  0.06329239  1459224_at  Ppp1r13b | Protein phosphatase 1, regulatory 
(inhibitor) subunit 13B 

-2.05  0.00010399  0.01160912  1459450_at  Chd9 | Chromodomain helicase DNA binding 
protein 9 

-1.66  0.00030667  0.02461036  1459475_at  D10Ertd761e | DNA segment, Chr 10, ERATO 
Doi 761, expressed 

-2.01  0.00002175  0.00374490  1459710_at  --- | Transcribed locus 

-14.93  0.00000000  0.00000033  1459747_at  --- | --- 

-1.93  0.00010740  0.01184366  1460045_at  Cdh7 | cadherin 7, type 2 

-1.58  0.00002389  0.00401822  1460330_at  Anxa3 | annexin A3 

-2.48  0.00000044  0.00019623  1460587_at  B230215L15Rik | RIKEN cDNA B230215L15  
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List of upregulated genes 
 

Fold change < 1,5; P value (LIMMA) < 0,05; FDR value (LIMMA) < 0,1 
 
 

fold change pval FDR probe ID gene symbol 

 +1.51   0.00022398   0.02000378   1460592_at   Epb4.1l1 | erythrocyte protein band 4.1-like 1 

+2.12  0.00000023  0.00011709  1460466_at  
1700047I17Rik | RIKEN cDNA 1700047I17 
gene /// similar to signal recognition particle 
54 

+2.45  0.00026182  0.02228006  1460187_at  Sfrp1 | secreted frizzled-related sequence 
protein 1 

+1.88  0.00000541  0.00123185  1460167_at  Aldh7a1 | aldehyde dehydrogenase family 7, 
member A1 

+1.74  0.00013263  0.01371920  1460113_at  B930093H17Rik | RIKEN cDNA B930093H17 
gene 

+1.73  0.00000266  0.00073183  1460102_at  Clasp1 | CLIP associating protein 1 

+2.81  0.00003801  0.00562049  1460092_at  Lsamp | Limbic system-associated membrane 
protein 

+2.40  0.00000008  0.00005632  1459698_at  EG622320 | Predicted gene, EG622320 

+1.62  0.00015573  0.01547042  1459609_at  Arhgap10 | Rho GTPase activating protein 10 

+8.86  0.00000000  0.00000168  1459253_at  Arrdc3 | Arrestin domain containing 3 

+1.58  0.00125590  0.06407507  1459197_at  --- | --- 

+2.71  0.00000300  0.00080438  1458886_at  --- | --- 

+1.65  0.00212140  0.08713776  1458693_at  Scn8a | Sodium channel, voltage-gated, type 
VIII, alpha 

+4.87  0.00000000  0.00000027  1458585_at  --- | Transcribed locus 

+2.18  0.00007933  0.00943823  1458541_at  Dctn4 | dynactin 4 

+2.19  0.00000463  0.00111054  1458324_x_at  
--- | 16 days embryo head cDNA, RIKEN full-
length enriched library, clone:C130051K14 
product:unclassifiable, full insert sequence 

+7.90  0.00000000  0.00000006  1458240_at  Magi1 | Membrane associated guanylate 
kinase, WW and PDZ domain containing 1 

+1.81  0.00154870  0.07383503  1458203_at  Spire1 | Spire homolog 1 (Drosophila) 

+1.97  0.00023423  0.02051227  1458128_at  1110028C15Rik | RIKEN cDNA 1110028C15  

+2.00  0.00000253  0.00070875  1457751_at  4832420A03Rik | RIKEN cDNA 4832420A03  

+1.69  0.00002145  0.00370663  1457712_at  Chd8 | chromodomain helicase DNA binding 
protein 8 

+1.57  0.00060292  0.03857259  1457651_x_at  Rem2 | rad and gem related GTP binding 
protein 2 

+1.87  0.00000767  0.00165525  1457338_at  Ppp1r12b | Protein phosphatase 1, regulatory 
(inhibitor) subunit 12B 

+2.07  0.00000219  0.00064926  1457306_at  --- | Transcribed locus 

+1.53  0.00002849  0.00454056  1457270_at  B230343A10Rik | RIKEN cDNA B230343A10  

+2.37  0.00006952  0.00870910  1457257_x_at  
--- | 0 day neonate lung cDNA, RIKEN full-
length enriched library, clone:E030046E07 
product:unclassifiable, full insert sequence 

+1.59  0.00004880  0.00673116  1457140_s_at  4632411J06Rik | RIKEN cDNA 4632411J06 
gene 

+1.59  0.00013936  0.01431286  1457040_at  Lgi2 | leucine-rich repeat LGI family, member 
2 

+1.54  0.00008492  0.00986517  1456981_at  Tmc7 | transmembrane channel-like gene 
family 7 

+2.20  0.00014941  0.01497497  1456663_x_at  Tm2d2 | TM2 domain containing 2 

+1.96  0.00000115  0.00040892  1456449_at  Supt16h | Suppressor of Ty 16 homolog (S. 
cerevisiae) 

+1.53  0.00001110  0.00219581  1456293_s_at  Ccnh | cyclin H /// similar to cyclin H 

+2.05  0.00025064  0.02149082  1456187_at  
Slc7a14 | solute carrier family 7 (cationic 
amino acid transporter, y+ system), member 
14 

+1.54  0.00181973  0.08150112  1456084_x_at  Fmod | fibromodulin 

+1.53  0.00004426  0.00629704  1455806_x_at  
Ndufa12 | NADH dehydrogenase (ubiquinone) 
1 alpha subcomplex, 12 /// similar to 13kDa 
differentiation-associated protein 

+3.16  0.00000200  0.00060926  1455773_at  --- | --- 

+3.60  0.00000211  0.00063413  1455600_at  Rps3 | ribosomal protein S3 

+2.04  0.00000090  0.00033860  1455452_x_at  AI449310 | expressed sequence AI449310 

+1.92  0.00001629  0.00297366  1455444_at  Gabra2 | gamma-aminobutyric acid (GABA-A) 
receptor, subunit alpha 2 

+2.92  0.00003250  0.00503695  1455380_at  Pcyox1l | prenylcysteine oxidase 1 like 

+1.61  0.00216099  0.08788354  1455277_at  Hhip | Hedgehog-interacting protein 

+1.66  0.00002048  0.00357958  1455012_s_at  Trim37 | tripartite motif protein 37 
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+1.93  0.00000646  0.00142755  1454950_at  B930006L02Rik | RIKEN cDNA B930006L02  

+1.58  0.00015637  0.01549946  1454924_at  Fut10 | fucosyltransferase 10 

+2.09  0.00016220  0.01586875  1454817_at  Utp18 | UTP18, small subunit (SSU) 
processome component, homolog (yeast) 

+1.62  0.00041498  0.03038302  1454159_a_at  Igfbp2 | insulin-like growth factor binding 
protein 2 

+1.82  0.00050949  0.03459179  1454040_at  5730591J02Rik | RIKEN cDNA 5730591J02  

+2.31  0.00000012  0.00007507  1453791_at  2810449C10Rik | RIKEN cDNA 2810449C10 
gene 

+1.93  0.00000484  0.00114258  1453755_at  Lsm11 | U7 snRNP-specific Sm-like protein 
LSM11 

+1.56  0.00056715  0.03682474  1453744_a_at  Ankrd40 | ankyrin repeat domain 40 

+3.16  0.00000003  0.00002901  1453715_at  Sv2c | synaptic vesicle glycoprotein 2c 

+1.86  0.00000995  0.00199370  1453698_at  6030451C04Rik | RIKEN cDNA 6030451C04  

+1.53  0.00014433  0.01460463  1453550_a_at  Mlstd2 | male sterility domain containing 2 

+1.57  0.00034422  0.02613560  1453540_at  5430404G13Rik | RIKEN cDNA 5430404G13  

+1.53  0.00021105  0.01911366  1453485_s_at  1110005A03Rik | RIKEN cDNA 1110005A03  

+1.51  0.00008339  0.00977157  1453179_at  Phca | phytoceramidase, alkaline 

+1.66  0.00003787  0.00562049  1452947_at  Gprc5c | G protein-coupled receptor, family C, 
group 5, member C 

+1.67  0.00009235  0.01054441  1452754_at  Creld2 | cysteine-rich with EGF-like domains 2 

+1.96  0.00000806  0.00170718  1452590_a_at  Plac9 | placenta specific 9 

+1.51  0.00071815  0.04324332  1452462_a_at  Banp | Btg3 associated nuclear protein 

+5.23  0.00000001  0.00001259  1452406_x_at  Erdr1 | erythroid differentiation regulator 1 

+1.76  0.00005909  0.00771968  1452366_at  4732435N03Rik | RIKEN cDNA 4732435N03  

+1.72  0.00001167  0.00226883  1452365_at  4732435N03Rik | RIKEN cDNA 4732435N03 
gene 

+1.54  0.00001227  0.00235575  1452258_at  Phf20 | PHD finger protein 20 

+2.39  0.00000053  0.00022142  1451602_at  Snx6 | sorting nexin 6 

+1.51  0.00141050  0.06929719  1451542_at  Ssbp2 | single-stranded DNA binding protein 2 

+2.96  0.00000095  0.00034569  1451513_x_at  

Serpina1a | serine (or cysteine) peptidase 
inhibitor, clade A, member 1a /// serine (or 
cysteine) preptidase inhibitor, clade A, 
member 1b 

+2.77  0.00000009  0.00006242  1451447_at  Cuedc1 | CUE domain containing 1 

+1.57  0.00042758  0.03100384  1451336_at  Lgals4 | lectin, galactose binding, soluble 4 

+2.03  0.00000815  0.00171275  1451319_at  Senp1 | SUMO1/sentrin specific peptidase 1 

+1.62  0.00053438  0.03570524  1451198_at  Gatad2a | GATA zinc finger domain containing 
2A 

+1.55  0.00098614  0.05377974  1450852_s_at  F2r | coagulation factor II (thrombin) receptor 

+1.85  0.00034045  0.02610226  1450843_a_at  Serpinh1 | serine (or cysteine) peptidase 
inhibitor, clade H, member 1 

+1.81  0.00001120  0.00219733  1450523_at  Cntn2 | contactin 2 

+2.01  0.00044723  0.03206776  1450483_at  Gja12 | gap junction membrane channel 
protein alpha 12 

+2.14  0.00000035  0.00016787  1450470_at  --- | --- 

+2.24  0.00007110  0.00883346  1450208_a_at  Elmo1 | engulfment and cell motility 1, ced-12 
homolog (C. elegans) 

+1.56  0.00057020  0.03686671  1450089_a_at  Srprb | signal recognition particle receptor, B 
subunit 

+1.53  0.00209496  0.08659531  1449936_at  8430419L09Rik | RIKEN cDNA 8430419L09  

+1.65  0.00191694  0.08343713  1449866_at  Syt2 | synaptotagmin II 

+5.00  0.00000003  0.00002441  1449578_at  Supt16h | suppressor of Ty 16 homolog (S. 
cerevisiae) 

+2.69  0.00000050  0.00021592  1449491_at  Card10 | caspase recruitment domain family, 
member 10 

+1.60  0.00002500  0.00411548  1449148_a_at  Phtf1 | putative homeodomain transcription 
factor 1 

+1.53  0.00062801  0.03933900  1449135_at  Sox18 | SRY-box containing gene 18 

+1.74  0.00001873  0.00333907  1448908_at  Ppap2b | phosphatidic acid phosphatase type 
2B 

+2.00  0.00024137  0.02093483  1448756_at  S100a9 | S100 calcium binding protein A9 
(calgranulin B) 

+1.53  0.00019526  0.01804617  1448698_at  Ccnd1 | cyclin D1 

+2.59  0.00004354  0.00623339  1448680_at  Serpina1c | serine (or cysteine) peptidase 
inhibitor, clade A, member 1c 

+1.55  0.00202118  0.08535341  1448397_at  Gjb6 | gap junction membrane channel 
protein beta 6 

+1.60  0.00204771  0.08588374  1448229_s_at  Ccnd2 | cyclin D2 

+1.65  0.00007694  0.00922639  1448140_at  Ciapin1 | cytokine induced apoptosis inhibitor 
1 

+25.93  0.00000000  0.00000019  1447831_s_at  Mtmr7 | myotubularin related protein 7 

+1.87  0.00003781  0.00562049  1447808_s_at  Slc15a2 | solute carrier family 15 (H+/peptide 
transporter), member 2 

+1.60  0.00033820  0.02599164  1447745_at  Aqp4 | aquaporin 4 
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+1.96  0.00000226  0.00065802  1447396_at  LOC545253 | Hypothetical protein LOC545253 

+1.52  0.00034328  0.02611784  1446981_at  A830010M20Rik | RIKEN cDNA A830010M20 

+1.62  0.00066817  0.04088909  1446598_at  Prkca | Protein kinase C, alpha 

+1.93  0.00000266  0.00073183  1446445_at  

--- | 12 days embryo spinal ganglion cDNA, 
RIKEN full-length enriched library, 
clone:D130018F08 product:unclassifiable, full 
insert sequence 

+1.57  0.00012289  0.01304156  1446357_at  BC020402 | cDNA sequence BC020402 

+2.25  0.00003727  0.00562049  1446332_at  Pcdhgc3 | Protocadherin gamma subfamily C, 
3 

+1.69  0.00010717  0.01184366  1446155_at  
--- | 11 days embryo head cDNA, RIKEN full-
length enriched library, clone:6230415F21 
product:unclassifiable, full insert sequence 

+2.41  0.00000091  0.00033860  1446148_x_at  C79248 | expressed sequence C79248 

+2.72  0.00000048  0.00021249  1446147_at  C79248 | expressed sequence C79248 

+3.44  0.00000004  0.00003180  1446130_at  Pctk2 | PCTAIRE-motif protein kinase 2 

+2.32  0.00002397  0.00401822  1445710_x_at  1110051B16Rik | RIKEN cDNA 1110051B16  

+1.60  0.00092655  0.05168821  1445618_at  --- | --- 

+2.50  0.00000371  0.00094559  1445281_a_at  B230311B06Rik | RIKEN cDNA B230311B06  

+2.08  0.00002497  0.00411548  1445235_at  Ythdf3 | YTH domain family 3 

+1.51  0.00232765  0.09192574  1445104_at  E230029C05Rik | RIKEN cDNA E230029C05  

+1.61  0.00008146  0.00961716  1444801_at  2900041M22Rik | RIKEN cDNA 2900041M22  

+1.63  0.00001615  0.00296171  1444714_at  LOC667452 | Similar to Doublecortin domain-
containing protein 2 

+3.57  0.00000019  0.00010090  1444260_at  --- | Transcribed locus 

+2.50  0.00001285  0.00244503  1444198_at  --- | --- 

+2.15  0.00000191  0.00059321  1444195_at  Rmnd5a | Required for meiotic nuclear 
division 5 homolog A (S. cerevisiae) 

+6.41  0.00000000  0.00000011  1444128_at  Pip5k2b | Phosphatidylinositol-4-phosphate 5-
kinase, type II, beta 

+2.93  0.00000050  0.00021592  1444037_at  Lman1 | lectin, mannose-binding, 1 

+1.87  0.00004669  0.00651934  1443922_at  Rcor3 | REST corepressor 3 

+2.51  0.00000003  0.00002901  1443904_at  Fads6 | fatty acid desaturase domain family, 
member 6 

+1.53  0.00050235  0.03432881  1443882_at  --- | Transcribed locus 

+2.24  0.00000057  0.00023850  1443865_at  Gabra2 | gamma-aminobutyric acid (GABA-A) 
receptor, subunit alpha 2 

+1.88  0.00000152  0.00050708  1443799_at  --- | --- 

+2.38  0.00000141  0.00048182  1443212_at  Large | Like-glycosyltransferase 

+1.63  0.00242385  0.09398547  1443127_at  9630021D06Rik | RIKEN cDNA 9630021D06  

+1.65  0.00001723  0.00309657  1443087_at  Cdc23 | CDC23 (cell division cycle 23, yeast, 
homolog) 

+2.99  0.00000002  0.00002180  1443020_at  Hmbox1 | Homeobox containing 1 

+3.54  0.00000000  0.00000140  1442916_at  Psd3 | Pleckstrin and Sec7 domain containing 
3 

+1.58  0.00008509  0.00986517  1442725_at  --- | --- 

+2.32  0.00000017  0.00009328  1442654_at  A530054K11Rik | RIKEN cDNA A530054K11  

+1.53  0.00003741  0.00562049  1442624_at  C920008N22Rik | RIKEN cDNA C920008N22  

+1.60  0.00020688  0.01900314  1442256_at  Prkcd | protein kinase C, delta 

+2.66  0.00001035  0.00206562  1442019_at  Rcvrn | Recoverin 

+1.79  0.00210687  0.08676338  1441978_at  Aqp6 | aquaporin 6 

+2.86  0.00000011  0.00006930  1441493_at  Erc1 | ELKS/RAB6-interacting/CAST family 
member 1 

+1.75  0.00000148  0.00049927  1440989_at  --- | --- 

+2.61  0.00000005  0.00003725  1440699_at  --- | --- 

+1.75  0.00085601  0.04943268  1440342_at  G530011O06Rik | RIKEN cDNA G530011O06  

+8.59  0.00000000  0.00000017  1440142_s_at  Gfap | glial fibrillary acidic protein 

+2.30  0.00041382  0.03034765  1440139_at  Nedd4l | Neural precursor cell expressed, 
developmentally down-regulated gene 4-like 

+3.03  0.00000004  0.00003269  1440125_at  A530054K11Rik | RIKEN cDNA A530054K11  

+1.51  0.00006327  0.00812959  1440081_at  Cep192 | centrosomal protein 192 

+1.52  0.00003290  0.00506585  1440071_at  Magi1 | membrane associated guanylate 
kinase, WW and PDZ domain containing 1 

+2.07  0.00000918  0.00189360  1439998_at  Jmjd1c | jumonji domain containing 1C 

+2.60  0.00000050  0.00021592  1439843_at  Camk4 | calcium/calmodulin-dependent 
protein kinase IV 

+1.60  0.00000455  0.00109817  1439578_at  Lsm11 | U7 snRNP-specific Sm-like protein 
LSM11 

+3.60  0.00000000  0.00000181  1439538_at  Ccdc127 | coiled-coil domain containing 127 

+1.68  0.00154463  0.07373929  1439422_a_at  C1qdc2 | C1q domain containing 2 

+2.11  0.00076287  0.04527111  1439364_a_at  Mmp2 | matrix metallopeptidase 2 

+2.65  0.00000030  0.00014968  1439336_at  Tcf4 | Transcription factor 4 
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+2.09  0.00000374  0.00094681  1439272_at  Lcorl | ligand dependent nuclear receptor 
corepressor-like 

+1.86  0.00002396  0.00401822  1439241_x_at  Srd5a2l | steroid 5 alpha-reductase 2-like 

+6.02  0.00000000  0.00000089  1439200_x_at  --- | --- 

+4.72  0.00000019  0.00010370  1439170_at  --- | --- 

+2.22  0.00003213  0.00501412  1439138_at  2310035C23Rik | RIKEN cDNA 2310035C23  

+1.56  0.00008558  0.00989666  1438980_x_at  4732466D17Rik | RIKEN cDNA 4732466D17  

+2.97  0.00000251  0.00070859  1438862_at  A630005I04Rik | RIKEN cDNA A630005I04 

+1.82  0.00000346  0.00089641  1438756_at  Ankrd29 | ankyrin repeat domain 29 

+1.71  0.00032761  0.02560742  1438730_at  BC028801 | cDNA sequence BC028801 

+1.77  0.00010532  0.01169911  1438642_at  --- | --- 

+1.54  0.00240993  0.09386038  1438590_at  Rapgef3 | Rap guanine nucleotide Exchange 
factor (GEF) 3 

+2.31  0.00000087  0.00033423  1438543_at  Spata13 | Spermatogenesis associated 13 

+1.64  0.00001933  0.00340609  1438491_x_at  A530054K11Rik | RIKEN cDNA A530054K11  

+1.71  0.00000816  0.00171275  1438444_at  Spink10 | serine peptidase inhibitor, Kazal 
type 10 

+4.22  0.00000001  0.00000648  1438435_at  Phca | phytoceramidase, alkaline 

+1.66  0.00002788  0.00447468  1438418_at  4932432K03Rik | RIKEN cDNA 4932432K03  

+1.53  0.00074210  0.04433069  1438188_x_at  
Slc25a29 | solute carrier family 25 
(mitochondrial carrier, palmitoylcarnitine 
transporter), member 29 

+2.05  0.00000131  0.00045528  1438187_at  
Slc25a29 | solute carrier family 25 
(mitochondrial carrier, palmitoylcarnitine 
transporter), member 29 

+1.63  0.00018640  0.01733402  1438183_x_at  Sord | sorbitol dehydrogenase 

+1.76  0.00008341  0.00977157  1438123_at  --- | --- 

+2.10  0.00000344  0.00089641  1437923_at  AI314760 | expressed sequence AI314760 

+1.99  0.00000067  0.00027488  1437432_a_at  Trim12 | tripartite motif protein 12 

+1.84  0.00000503  0.00116944  1437388_at  Fut10 | fucosyltransferase 10 

+1.68  0.00002570  0.00420036  1437308_s_at  F2r | coagulation factor II (thrombin) receptor 

+2.42  0.00002365  0.00401822  1437126_at  Immt | Inner membrane protein, 
mitochondrial 

+1.52  0.00014475  0.01460463  1437018_at  Pnma2 | paraneoplastic antigen MA2 

+3.63  0.00000436  0.00106271  1436734_at  E130309F12Rik | RIKEN cDNA E130309F12  

+6.91  0.00000000  0.00000052  1436733_at  E130309F12Rik | RIKEN cDNA E130309F12  

+1.64  0.00001904  0.00336759  1436544_at  Atp10d | ATPase, Class V, type 10D 

+71.49  0.00000000  0.00000000  1436240_at  Sost | sclerostin 

+2.06  0.00004207  0.00608153  1436239_at  Slc5a5 | solute carrier family 5 (sodium iodide 
symporter), member 5 

+1.83  0.00012905  0.01350417  1436148_at  
--- | Adult male olfactory brain cDNA, RIKEN 
full-length enriched library, clone:6430531K17 
product:unclassifiable, full insert sequence 

+2.40  0.00000005  0.00003631  1436133_at  Ccdc127 | coiled-coil domain containing 127 

+1.69  0.00022250  0.01993242  1436090_at  Enpp6 | ectonucleotide 
pyrophosphatase/phosphodiesterase 6 

+1.80  0.00003397  0.00521089  1435998_at  Gm288 | gene model 288, (NCBI) 

+2.04  0.00000123  0.00042981  1435929_at  LOC677429 | similar to RIKEN cDNA 
9630033F20 gene 

+8.54  0.00000000  0.00000003  1435792_at  Csprs | component of Sp100-rs /// predicted 
gene, EG665338 

+1.66  0.00003883  0.00568645  1435491_at  9830167H18Rik | RIKEN cDNA 9830167H18  

+1.52  0.00002835  0.00453333  1435417_at  AI464131 | expressed sequence AI464131 

+2.23  0.00000885  0.00183952  1435166_at  Cntn2 | contactin 2 

+1.63  0.00205827  0.08588374  1434902_at  Rnf157 | ring finger protein 157 

+2.67  0.00012662  0.01334234  1434585_at  2210038L17Rik | RIKEN cDNA 2210038L17  

+1.61  0.00011075  0.01209404  1434554_at  Trim37 | tripartite motif protein 37 

+1.54  0.00025478  0.02172153  1434510_at  Papss2 | 3-phosphoadenosine 5-
phosphosulfate synthase 2 

+1.63  0.00098303  0.05376307  1434449_at  Aqp4 | aquaporin 4 

+3.12  0.00000000  0.00000288  1434375_at  B930006L02Rik | RIKEN cDNA B930006L02  

+2.53  0.00000088  0.00033423  1434374_at  B930006L02Rik | RIKEN cDNA B930006L02  

+1.64  0.00001581  0.00291067  1434296_at  BC049349 | cDNA sequence BC049349 

+1.65  0.00000399  0.00098457  1434208_at  2900057K09Rik | RIKEN cDNA 2900057K09  

+2.06  0.00000039  0.00018539  1433906_at  4933402J24Rik | RIKEN cDNA 4933402J24 

+2.00  0.00006741  0.00852942  1433774_x_at  Cog1 | component of oligomeric golgi complex 
1 

+1.51  0.00048949  0.03380777  1432304_a_at  9030624J02Rik | RIKEN cDNA 9030624J02  

+2.16  0.00000323  0.00085093  1432130_a_at  Ttc14 | tetratricopeptide repeat domain 14 

+1.94  0.00000780  0.00167530  1431821_a_at  Eps8l1 | EPS8-like 1 
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+8.08  0.00000000  0.00000116  1431708_a_at  Tia1 | cytotoxic granule-associated RNA 
binding protein 1 

+1.70  0.00000233  0.00067062  1431684_at  4933402J24Rik | RIKEN cDNA 4933402J2 

+2.33  0.00000703  0.00153193  1431255_at  Calr3 | calreticulin 3 

+1.88  0.00026684  0.02249455  1431225_at  Sox11 | SRY-box containing gene 11 

+1.56  0.00006508  0.00831378  1431207_at  2900024O10Rik | RIKEN cDNA 2900024O10  

+1.59  0.00056746  0.03682474  1430971_a_at  Aqr | aquarius 

+1.91  0.00000092  0.00033860  1430889_a_at  Tpmt | thiopurine methyltransferase 

+1.52  0.00070906  0.04275296  1430667_at  Pcdh10 | protocadherin 10 

+4.04  0.00000000  0.00000279  1430485_at  3010009O07Rik | RIKEN cDNA 3010009O07  

+4.21  0.00000001  0.00001259  1430352_at  A730049H05Rik | RIKEN cDNA A730049H05  

+1.55  0.00130517  0.06584412  1430317_at  Ube2j2 | ubiquitin-conjugating enzyme E2, J2 
homolog (yeast) 

+1.94  0.00001649  0.00298617  1429926_at  6720473G16Rik | RIKEN cDNA 6720473G16  

+1.66  0.00011276  0.01225490  1429784_at  C130032J12Rik | RIKEN cDNA C130032J12 
gene 

+1.84  0.00007349  0.00893411  1429463_at  Prkaa2 | protein kinase, AMP-activated, alpha 
2 catalytic subunit 

+1.79  0.00010157  0.01139489  1429443_at  Cpne4 | copine IV 

+2.63  0.00000002  0.00002093  1429331_at  4632427E13Rik | RIKEN cDNA 4632427E13 
gene 

+1.77  0.00000652  0.00143378  1429184_at  Gvin1 | GTPase, very large interferon inducible 
1 

+1.75  0.00000498  0.00116425  1429076_a_at  Gdpd2 | glycerophosphodiester 
phosphodiesterase domain containing 2 

+1.60  0.00208825  0.08659531  1429023_at  2900042E01Rik | RIKEN cDNA 2900042E01  

+2.50  0.00000015  0.00008566  1428738_a_at  D14Ertd449e | DNA segment, Chr 14, ERATO 
Doi 449, expressed 

+1.52  0.00086088  0.04946051  1428343_at  Rcor3 | REST corepressor 3 

+1.67  0.00001125  0.00219733  1428302_at  Mrpl48 | mitochondrial ribosomal protein L48 

+1.54  0.00259231  0.09732058  1428023_at  3110009E18Rik | RIKEN cDNA 3110009E18  

+1.87  0.00029005  0.02369808  1426876_at  4732466D17Rik | RIKEN cDNA 4732466D17  

+2.09  0.00000017  0.00009328  1426704_at  Gak | cyclin G associated kinase 

+1.92  0.00000133  0.00045946  1426584_a_at  Sord | sorbitol dehydrogenase 

+2.06  0.00000072  0.00028649  1426544_a_at  Ttc14 | tetratricopeptide repeat domain 14 

+1.53  0.00013186  0.01367180  1426519_at  
P4ha1 | procollagen-proline, 2-oxoglutarate 4-
dioxygenase (proline 4-hydroxylase), alpha 1 
polypeptide 

+1.76  0.00027363  0.02289571  1426361_at  Zc3h11a | zinc finger CCCH type containing 
11A 

+1.75  0.00001172  0.00226883  1426360_at  Zc3h11a | zinc finger CCCH type containing 
11A 

+1.69  0.00004317  0.00622053  1426359_at  Zc3h11a | zinc finger CCCH type containing 
11A 

+1.54  0.00017490  0.01653714  1426008_a_at  Slc7a2 | solute carrier family 7 (cationic amino 
acid transporter, y+ system), member 2 

+2.06  0.00000175  0.00055119  1425343_at  Hdhd3 | haloacid dehalogenase-like hydrolase 
domain containing 3 

+1.73  0.00047477  0.03330108  1425099_a_at  Arntl | aryl hydrocarbon receptor nuclear 
translocator-like 

+2.26  0.00000038  0.00018212  1425054_a_at  2510006D16Rik | RIKEN cDNA 2510006D16  

+1.82  0.00026911  0.02264386  1424952_at  Ociad1 | OCIA domain containing 1 

+2.58  0.00000012  0.00007455  1424877_a_at  Alad | aminolevulinate, delta-, dehydratase 

+2.95  0.00000018  0.00010090  1424857_a_at  Trim34 | tripartite motif protein 34 /// similar 
to Tripartite motif protein 34 

+1.63  0.00003072  0.00484388  1424843_a_at  Gas5 | growth arrest specific 5 

+1.66  0.00016360  0.01594833  1424749_at  Wdfy1 | WD repeat and FYVE domain 
containing 1 

+1.51  0.00012602  0.01331099  1424738_at  4932432K03Rik | RIKEN cDNA 4932432K03 
gene 

+1.76  0.00001641  0.00298414  1424730_a_at  Slc15a2 | solute carrier family 15 (H+/peptide 
transporter), member 2 

+1.73  0.00004629  0.00648343  1424615_at  Frag1 | FGF receptor activating protein 1 

+1.86  0.00000480  0.00114258  1424508_at  Ttc5 | tetratricopeptide repeat domain 5 

+1.59  0.00017352  0.01651064  1424466_at  Ipo9 | importin 9 

+1.53  0.00009101  0.01041774  1424360_at  BC019943 | cDNA sequence BC019943 

+1.53  0.00022908  0.02021870  1424317_at  
Slc25a19 | solute carrier family 25 
(mitochondrial deoxynucleotide carrier), 
member 19 

+1.57  0.00007712  0.00922639  1423746_at  Txndc5 | thioredoxin domain containing 5 

+1.75  0.00000565  0.00127492  1423606_at  Postn | periostin, osteoblast specific factor 

+2.47  0.00000003  0.00002369  1423554_at  Ggcx | gamma-glutamyl carboxylase 

+1.60  0.00055969  0.03653064  1423484_at  Bicc1 | bicaudal C homolog 1 (Drosophila) 
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+1.52  0.00117937  0.06170602  1423424_at  Zic3 | zinc finger protein of the cerebellum 3 

+1.52  0.00002089  0.00363851  1422466_at  Nxn | nucleoredoxin 

+1.80  0.00000344  0.00089641  1422141_s_at  Csprs | component of Sp100-rs 

+2.89  0.00000011  0.00006930  1422140_at  

Sp100-rs | similar to component of Sp100-rs 
/// similar to component of Sp100-rs /// 
predicted gene, EG665338 /// predicted gene, 
EG665378 /// similar to component of Sp100-
rs /// similar to component of Sp100-rs /// 
similar to component of Sp100-rs /// similar 
to component of Sp100-rs /// similar to 
component of Sp100-rs /// similar to 
component of Sp100-rs 

+1.55  0.00111630  0.05895358  1422051_a_at  Gabbr1 | gamma-aminobutyric acid (GABA-B) 
receptor, 1 

+3.79  0.00000002  0.00001739  1421850_at  Mtap1b | microtubule-associated protein 1 B 

+1.53  0.00031589  0.02508259  1421604_a_at  Klf3 | Kruppel-like factor 3 (basic) 

+1.82  0.00206109  0.08588374  1421426_at  Hhip | Hedgehog-interacting protein 

+3.74  0.00000315  0.00083516  1421385_a_at  Myo7a | myosin VIIa 

+3.45  0.00000000  0.00000315  1421090_at  Epb4.1l1 | erythrocyte protein band 4.1-like 1 

+1.65  0.00022609  0.02005773  1421018_at  1110018J18Rik | RIKEN cDNA 1110018J18 
gene 

+2.70  0.00000011  0.00006930  1421011_at  Hsd17b11 | hydroxysteroid (17-beta) 
dehydrogenase 11 

+1.53  0.00060810  0.03867460  1420984_at  Pctp | phosphatidylcholine transfer protein 

+1.80  0.00063370  0.03958544  1420873_at  Twf1 | twinfilin, actin-binding protein, 
homolog 1 (Drosophila) 

+1.56  0.00007004  0.00875047  1420849_at  Crnkl1 | Crn, crooked neck-like 1 (Drosophila) 

+2.62  0.00000234  0.00067062  1420286_at  --- | Transcribed locus 

+1.56  0.00006759  0.00852942  1419905_s_at  Hpgd | hydroxyprostaglandin dehydrogenase 
15 (NAD) 

+1.73  0.00062314  0.03914239  1419741_at  Supt16h | suppressor of Ty 16 homolog (S. 
cerevisiae) 

+2.25  0.00000520  0.00119051  1419612_at  4632415L05Rik | RIKEN cDNA 4632415L05 
gene 

+2.04  0.00000165  0.00053813  1419469_at  Gnb4 | guanine nucleotide binding protein, 
beta 4 

+2.03  0.00000933  0.00190307  1419394_s_at  S100a8 | S100 calcium binding protein A8 
(calgranulin A) 

+1.59  0.00007375  0.00894186  1419363_a_at  Mrpl35 | mitochondrial ribosomal protein L35 

+1.52  0.00020780  0.01904856  1419362_at  Mrpl35 | mitochondrial ribosomal protein L35 

+1.55  0.00186132  0.08262554  1419291_x_at  Gas5 | growth arrest specific 5 

+1.72  0.00214502  0.08731293  1419157_at  Sox4 | SRY-box containing gene 4 /// similar 
to Transcription factor SOX-4 

+1.57  0.00087697  0.05000254  1418925_at  Celsr1 | cadherin EGF LAG seven-pass G-type 
receptor 1 

+1.59  0.00002952  0.00467149  1418903_at  Aqp2 | aquaporin 2 

+1.57  0.00014155  0.01444323  1418464_at  Matn4 | matrilin 4 

+1.62  0.00131036  0.06588483  1418429_at  Kif5b | kinesin family member 5B 

+1.56  0.00008093  0.00958003  1418427_at  Kif5b | kinesin family member 5B 

+2.89  0.00000008  0.00005377  1418310_a_at  Rlbp1 | retinaldehyde binding protein 1 

+4.40  0.00000000  0.00000112  1418282_x_at  Serpina1b | serine (or cysteine) preptidase 
inhibitor, clade A, member 1b 

+1.52  0.00032050  0.02531535  1418245_a_at  Rbm9 | RNA binding motif protein 9 

+1.83  0.00024094  0.02093483  1417961_a_at  Trim30 | tripartite motif protein 30 

+1.51  0.00019178  0.01776110  1417903_at  Dfna5h | deafness, autosomal dominant 5 
homolog (human) 

+2.74  0.00000006  0.00004203  1417764_at  Ssr1 | signal sequence receptor, alpha /// 
similar to signal sequence receptor, alpha 

+2.57  0.00000092  0.00033860  1417600_at  Slc15a2 | solute carrier family 15 (H+/peptide 
transporter), member 2 

+1.57  0.00266951  0.09874270  1417432_a_at  Gnb1 | guanine nucleotide binding protein, 
beta 1 

+1.57  0.00169470  0.07830735  1416946_a_at  Acaa1a | acetyl-Coenzyme A acyltransferase 
1A /// acetyl-Coenzyme A acyltransferase 1B 

+1.51  0.00004820  0.00666784  1416203_at  Aqp1 | aquaporin 1 

+2.19  0.00033165  0.02578924  1416136_at  Mmp2 | matrix metallopeptidase 2 

+1.73  0.00005074  0.00691246  1415977_at  Isyna1 | myo-inositol 1-phosphate synthase 
A1  
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