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Este trabajo sólo ha sido posible -por razones obvias- gracias a Enrique
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A.1.3 Poincaré coordinates . . . . . . . . . . . . . . . . . . . . . . . . 65

A.1.4 Conformal Invariance . . . . . . . . . . . . . . . . . . . . . . . . 67

A.2 Conformal structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
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Motivaciones y objetivos

De entre todos los problemas teóricos de la f́ısica actual, el más importante desde cierto
punto de vista es el problema de la gravedad cuántica (QG).1 Los principios fundamen-
tales que subyacen en los dos paradigmas considerados como principales en el pasado
siglo -o sea: la teoŕıa de la relatividad general y la mecánica cuántica- parecen irrec-
onciliables a primera vista. Desentrañar si lo son o no, y las consecuencias de ello es la
definición más exacta de dicho problema. Puede argüirse que una solución satisfactoria
para esta cuestión, incluyendo en “satisfactoria” evidencia experimental, está lejos aún
dada la formidable escala de enerǵıa asociada al regimén cuántico de la gravedad, la
masa de Planck MP , 1016 veces superior a la enerǵıa que presumiblemente se alcanzará
en el acelerador LHC del CERN.

Si resolver el problema de QG pasa por encontrar alguna manifestación del compor-
tamiento cuántico de la gravedad, no puede decirse que, a priori, la teoŕıa cuántica de
campos en espacio-tiempo curvo sea un intento en esta dirección. Este marco teórico
busca describir la influencia del campo gravitatorio sobre la propagación e interacción
de la materia, cuando se toma en plena consideración el comportamiento cuántico de
la última y sólo las ecuaciones clásicas de la primera. Aśı pues, el papel de la gravedad
es el de una fuente clásica acoplada -y no la entidad cuántica y dinámica que debeŕıa
ser en QG- en el esṕıritu de la descripción del átomo de hidrógeno mediante un poten-
cial central electrostático. Que esta “mezcla” de dos paradigmas distintos describe un
cierto régimen de fenómenos f́ısicos es una suposición razonable: se trata de colocarse
en un rango de enerǵıas en el que la curvatura del espacio-tiempo está lejos de la escala
de Planck, pero es lo suficientemente grande como para compararse a las enerǵıas de
las part́ıculas subatómicas: `2

PR� 1 pero R · λ2 ' 1, con λ la longitud de onda de De
Broglie de la materia. Es esta pues una aproximación semiclásica.

Sin embargo, de este enfoque se obtienen resultados destacables. En la cosmoloǵıa
inflacionaria la influencia de la gravedad sobre la evolución de la materia es uno de sus
elementos clave. Aunque no se aplique directamente el formalismo de la teoŕıa cuántica

1Especialmente, atendiendo al primer párrafo de buen número de tesis doctorales en f́ısica teórica.



de campos en espacio-tiempo curvo, se corresponde directamente con el régimen que
hemos descrito anteriormente. Otro campo en el que han aparecido ideas nuevas y
sorprendentes es en la f́ısica de agujeros negros. Los resultados sobre su temperatura
y entroṕıa, apuntando a su descripción como un colectivo termodinámico, junto con la
idea seminal del principio holográfico son las pistas más firmes sobre el comportamiento
de una teoŕıa de QG, y una comprobación que ha de verificar cualquier candidato a
tal. A la luz de estos resultados, se ha de admitir que el razonamiento que haćıamos
anteriormente peca de simplista y no es correcto: la teoŕıa cuántica de campos en
espacio-tiempo curvo śı abre una primera y pequeña ventana a los fenómenos cuánticos
de la gravedad.

Otro enigma crucial, relacionado también con la gravedad, es el llamado problema
de la constante cosmológica. Puesto que puede añadirse un término constante a las
ecuaciones de Einstein para el campo gravitatorio sin contradicción con ningún princi-
pio fundamental, la cuestión de si este término contribuye realmente o no ha de deter-
minarse experimentalmente. Sin embargo, sus efectos son indistinguibles de añadir una
enerǵıa mı́nima distinta de cero para la materia que puebla el espacio-tiempo.2 Esta
enerǵıa del vaćıo permeaŕıa el espacio-tiempo, impulsándolo como una reserva infinita
de enerǵıa.

El mencionado problema consiste en reconciliar los valores observados para dicha
constante con el entendimiento de las teoŕıas cuánticas de campos. Medidas de pre-
cisión en el sistema solar descartan rápidamente un valor apreciable a esas escalas.
Sólo experimentos más recientes han mostrado que el Universo está dominado por una
componente energética con un comportamiento análogo a una constante cosmológica
positiva (repulsiva), con un valor aproximado de (10−3 eV)4. Por otro lado, en el valor
“natural” para la enerǵıa de vaćıo de un campo cuántico, contribuyen todas las transi-
ciones de fase por las que atraviesa el Universo. Una estimación cruda de nueva f́ısica
hasta la escala de Planck arroja valores del orden de M4

P , con 120 ordenes de magnitud
de diferencia.3 El origen y la naturaleza de la constante cosmológica son verdadera-
mente misteriosos.

Es por todo esto que el espacio de De Sitter es de especial interés en lo que concierne
a estos dos problemas. Siendo la solución más simple y simétrica de las ecuaciones
de Einstein con constante cosmológica positiva, es un laboratorio teórico ideal donde
testear cualquier teoŕıa de QG, y esclarecer quizá el problema de la constante cos-

2Acabando con el criterio generalizado de que sólo las diferencias de enerǵıa de un sistema f́ısico
son observables: la reacción del campo gravitatorio a dicha materia es la sonda que calibra el valor
absoluto de la enerǵıa.

3Nótese que la constante cosmológica medida es ∼ 10−120M2
P , mientras que la enerǵıa de vaćıo

correspondiente es ∼ 10−30M4
P ' (10−3 eV)4



mológica. Constituye también una buena descripción del Universo en la etapa infla-
cionaria aśı como en la etapa “tard́ıa” del mismo dominada por enerǵıa oscura, luego
cualquier efecto no trivial asociado a este espacio es susceptible de tener consecuencias
f́ısicas directas, si no medibles.

La teoŕıa cuántica de un campo libre en De Sitter es bien conocida. De los múltiples
estados de vaćıo que respetan sus simetŕıas, el llamado vaćıo de Bunch-Davies posee
propiedades adicionales (analiticidad, la forma de Hadamard, etc.) que indican que es
el vaćıo natural de dicha teoŕıa, y describe un baño térmico alrededor de todo obser-
vador inercial.

En cuanto a la definición de una teoŕıa en interacción en De Sitter, existen dos en-
foques diferentes. En el enfoque “eucĺıdeo”, la teoŕıa se define mediante continuación
anaĺıtica de los correladores definidos en la esfera. Ninguna divergencia infrarroja
puede aparecer mediante este método, puesto que la esfera es compacta. Por otro
lado, en el enfoque “lorentziano”, el punto de partida es el vaćıo de la teoŕıa libre
(Bunch-Davies), el cual es perturbado mediante un cutoff asintótico en la interacción.
Ambos procedimientos son equivalentes en una teoŕıa de campos en espacio plano. Sin
embargo, arrojan resultados diferentes en De Sitter: el enfoque “lorentziano” da lugar
a divergencias infrarrojas que producen una reacción en el campo gravitatorio. Se ha
sugerido que la consecuencia última de este fenómeno es un apantallamiento efectivo
de la costante cosmológica.

En este trabajo hemos avanzado en este enfoque “lorentziano”. En el caṕıtulo 1,
hemos revisado algunos detalles del espacio de De Sitter, a nivel cuántico y clásico.
En el caṕıtulo 2, estudiamos la propuesta del eternity test por A. Polyakov [19] sobre
la inestabilidad de un campo cuántico en De Sitter, y mostramos que no hay efectos
no triviales a un loop. En el caṕıtulo 3, introducimos las reglas de unitariedad para
realizar cálculos a órdenes superiores. En el caṕıtulo 4, presentamos un modelo sencillo
de decaimiento de vaćıo en espacio plano, como ejemplo de la técnica del caṕıtulo an-
terior, y se estudia la dinámica del decaimiento mediante producción de part́ıculas. En
el caṕıtulo 5 presentamos nuestras conclusiones. Hemos recogido alguna información
útil utilizada en el cuerpo del texto en los apéndices.

El contenido de esta tesis está basado en su mayoŕıa en los resultados obtenidos
en [1, 2]. Además de estos, hemos trabajado en otras áreas relacionadas con la grav-
itación [3, 4], pero cuyos resultados no están recogidos aqúı.



Motivation and Objectives

Among all the theoretical problems in physics nowadays, the most important from a
certain perspective is the problem of Quantum Gravity (QG)4. The fundamental prin-
ciples in which the two most remarkable paradigms in the last century - i.e, the theory
of General Relativity (GR) and Quantum Mechanics (QM) - lie seem to be irrecon-
cilables at first sight. The most accurate statement of the problem is to disentangle
whether they are incompatible or not, and the main consequences derived from there.
A possible satisfactory solution to this, including in “satisfactory” some experimental
evidence, is still far away given the overwhelming energy scale of the quantum regime
of gravity, Planck mass MP , 1016 times above the energy which will presumably be
reached at the Large Hadron Collider (LHC) at CERN.

If the solution to QG comes through the observation of any indication of the quan-
tum behaviour of gravity, it cannot be said that, a priori, quantum field theory in
curved spacetime is an attempt in this direction. This theoretical framework aims
to describe the influence of the gravitational field on the matter, when the latter’s
quantum behaviour and the former’s classical equations are taken into consideration.
Therefore, the role of gravity is that of a coupled classical source - and not the quan-
tum and dynamic entity it should be in QG - following the spirit of the description
of the hydrogen atom by means of a central electrostatic potential. It is reasonable
to assume that this “mixture” of two different paradigms describes a certain range of
physical phenomena. This is achieved focusing on an energy range in which spacetime
curvature is far below Planck scale, but sufficiently large in order to be compared to the
energy of subatomic particles: `2

PR� 1 but R · λ2 ' 1, λ being the De Broglie matter
wavelength. Thus, this constitutes a semi-classical approximation to the problem.

Nevertheless, remarkable results are obtained in this approach. The influence of
gravity over matter evolution is one of the key points of Inflationary Cosmology. Even
though the formalism of quantum field theory in curved spacetime is not directly ap-
plied, there is a direct correspondence with the above described regime. Another field

4Specially, paying attention to the first pharagraph of a large fraction of PhD thesis in theoretical
physics.



in which new and surprising ideas have arised is that of black hole physics. The re-
sults about their temperature and entropy suggest that they should be understood as
thermodynamic collectives. These results, together with the idea of the holographic
principle, are the strongest hints we have about QG. Any candidate to such a theory
should clarify this points. In the light of this considerations, one should accept that the
foreseen argument may be too simple and incorrect: quantum field theory in curved
spacetime does open a first and small window to gravitational quantum phenomena.

Another crucial question, which is also related to gravity, is the so-called problem of
the Cosmological Constant (CC). A constant term can be added to Einstein’s equations
for the gravitational field without contradicting any fundamental principle. Therefore,
whether this term really contributes or not is a purely experimental problem. However,
its effects are indistinguishable from those of adding a minimum energy different from
zero to the matter which is occupying spacetime.5 This vacuum energy would permeate
spacetime, driving it as an infinite reservoir of energy.

The problem mentioned above consists in the reconciliation of the observed values
for this constant with our understanding of quantum field theory. Precision measure-
ments in the solar system automatically discard a substantial value at such scales. Only
more recent experiments have proved that the Universe is dominated by an energetic
component with an analogous behaviour to that of a positive cosmological constant
(repulsive), with a value (10−3 eV)4. On the other hand, all phase transitions the Uni-
verse goes through should contribute to a “natural” value for the vacuum energy of a
quantum field. A rough estimate of new physics below the Planck scale would point to
values of ∼ O(MP ), being 120 orders of magnitude above what observations suggest.6

Therefore, the origin and nature of the CC are completely unknown.

It is precisely due to these reasons that de Sitter space turns out to be of special
interest concerning these two problems. This space is the simplest and most symmetric
solution to Einstein’s equations with a positive CC. Thus, it constitutes an ideal theo-
retical laboratory where any QG theory can be tested, and even some light over the CC
problem could also be shed. Moreover, it also constitutes an approximate description
of both the inflationary era and the late dark energy-dominated Universe. Thus, any
non-trivial effect associated to this space is susceptible of presenting direct physical
consequences, if not measurable.

5Notice that this would end the general statement that only the differences in energy are observables
in a physical system: the reaction of the gravitational field to that matter is the probe to the absolute
value of the energy.

6Notice that the experimentally measured value of the cosmological constant is ∼ 10−120M2
P , and

the corresponding vacuum energy is ∼ 10−30M4
P ' (10−3 eV)4.



The quantum field theory of a free field in de Sitter is well-known. From the mul-
tiple vacuum states that respect its symmetries, the so-called Bunch-Davies vacuum
owns certain additional properties (analyticity, Hadamard’s form, etc) which indicate
that it is the natural vacuum of the theory. It describes a thermal bath of particles, as
seen by any inertial observer.

Regarding the definition of an interacting theory in de Sitter, two different ap-
proaches exist. In the “euclidean” approach, the theory is defined by means of the
analytic continuation of the defined correlators in the sphere. No infrared divergence
can appear with this method, given that the sphere is compact. On the other hand,
in the “lorentzian” approach the starting point is the own vacuum in the free theory
(Bunch-Davies), which is perturbed through an asymptotic cutoff in the interaction.
Both procedures are equivalent in a field theory in flat space. Nevertheless, the re-
sults in de Sitter turn out to be different: the “lorentzian” approach produces infrared
divergences which induce a reaction in the gravitational field. It has been suggested
that the ultimate consequence from this phenomenon is an effective screening of the CC.

In this work, we have developed some advances this “lorentzian” approach. In
chapter 1, we give some details about de Sitter space at the classical and quantum
levels. In chapter 2, we study the eternity proposal by A. Polyakov [19] about the
instability of a quantum field on de Sitter, and we show that there is no non-trivial
effect at one loop order. In chapter 3, we introduce the unitariry constraints of such a
theory to perform calculations in higher orders. In chapter 4 we present a simple toy
model of vacuum decay in flat space as an example of this technique. The dynamical
decay through particle production is studied. In chapter 5 we present our conclusions.
We have added some useful information used in the main text in the appendices.

The content in this thesis is mainly based on the results obtained in [1, 2] . In
addition, we have worked on other subjects related to gravity [3, 4]. Those results will
not be contained here.



Chapter 1

De Sitter space in depth

We collect here a basic summary of the de Sitter physics. One of the basic references
is [5].

1.1 Classical de Sitter space

De Sitter space is the lorentzian analogous to an sphere: an embedded hypersurface in
a (1,−1n) Minkowski space given by

ηµνX
µXν ≡ (X0)2 −

n∑

I=1

(XI)2 = −l2 (1.1)

As a matter of fact, it is only one of the many possible real sections of the complex
sphere. A detailed exposition of these spaces can be found in appendix A. The constant
l is the curvature radius of the space, related to the curvature and the cosmological
constant.

The metric inherited from the ambient space can be described using the standard
“global” embedding (cf. A.1.1) of a generalized spheres:

ds2 = dτ 2 − l2 cosh(τ/l)2dΩ2
n−1 (1.2)

The symmetry group of de Sitter (and any generalized sphere) is easily derived con-
sidering its embedding. The subgroup of the ambient Poincare group ISO(1, n) that
leaves invariant the whole surface is precisely the Lorentz group, SO(1, n). It can be
proved that at the classical level, de Sitter space is stable with respect to linear per-
turbations [6].

15



16 De Sitter space in depth

The basic tool to deal with invariant bifunctions in de Sitter space is of course its
distance invariant z (cf. A.1.1). Using the defining embedding:

z = −X · Y
l2

(1.3)

It is obvious that this quantity is de Sitter invariant. In addition, it can be proved that

• z = 1 for any pair of points connected by null geodesics (including the trivial
geodesic that leaves a point static),

• z > 1 for any pair of causally related points. In fact, z = coshσ where σ is the
proper time between the two events.

• z < 1 for any pair of causally disconnected points. There is no geodesic connecting
two points if z < −1, but otherwise, it is still (the cosine of) the geodesic distance.

Another geometric quantity of interest is the Pauli-Jordan function, that corre-
sponds to the field conmmutator. However, this function is intrinsic to the space and
can be defined as the difference between the retarded and the advanced propagators:

iD(x, y) = G>(x, y)−G<(x, y) (1.4)

For de Sitter space, the Pauli-Jordan function is

D(x, y) = −κn,µσ(x, y) ImF

(
iµ+

n− 1

2
,−iµ+

n− 1

2
,
n

2
,
1 + z(x, y)

2

)
(1.5)

where σ(x, y) is the sign of the time ordering of x and y, µ is related to the mass,

m2l2 = µ2 + (n−1)2

4
and the constant is

κn,µ =
(−1)n|Γ

(
iµ+ n−1

2

)
|2

(4π)
n
2 Γ
(
(−1)n(n

2
− 1) + 1

) (1.6)

iIm f = f(. . . , x + iε)− f(. . . , x− iε) is the difference of the hypergeometric function
across its branch cut. It is obvious that this function vanishes whenever z(x, y) < 1
and that is antisymmetric under time reversal.1

1Please notice that two different prescriptions can be used for two point functions:

1. The propagator is defined in such a way that: (� +m2)G(x, y) = δ(x, y)

2. The propagator is defined through: G(x, y) = T{W (x, y)} = T{〈vac|φ(x)φ(y)|vac〉}.
The first prescription is just i times the second one. In this thesis, we will use the first prescription,
except in chapter 2, where we will use the second one.



1.2 Free quantum fields in de Sitter space 17

1.2 Free quantum fields in de Sitter space

The quantum theory of free fields can be addressed in several a priori different ways.
The standard construction of a Hilbert space over the basic excitations of the fields (cf.
appendix B) is possible. In the other hand, the high degree of symmetry allows us to
try to repeat the Wigner’s construction of particles.2

Since we are mostly interested in scalar fields, the basic construction is enough for
our purposes. The Klein-Gordon equation in the coordinates (1.2) takes the form:

{
∂2

∂τ 2
+
n− 1

l
tanh(τ/l)

∂

∂τ
− 1

l2 cosh(τ/l)2
∆Sn−1 +m2

}
φ = 0 (1.7)

Since the de Sitter’s curvature is constant, we can adopt the convention that any non-
minimal coupling can be reabsorbed into the mass of the field, as long as we are careful
regarding their different conformal behaviours.3 The sphere laplacian suggest us to
decompose the field in terms of hyperspherical harmonics [7], φ ≡ χ ·ΞL~m, so we obtain

{
∂2

∂τ 2
+
n− 1

l
tanh(τ/l)

∂

∂τ
+

(
L(L+ n− 2)

l2 cosh(τ/l)2
+m2

)}
χ = 0 (1.8)

The two independent solutions for this equation are given in terms of Legendre func-
tions of the second kind [8]:

(sech τ/l)
n−1

2 P−iµ
L+n−3

2

(tanh τ/l) , (sech τ/l)
n−1

2 Q−iµ
L+n−3

2

(tanh τ/l) (1.9)

There is no a priori reason to choose one particular combination of these solutions.
The fact that the combination:

χL(τ) =

√
πeπµ/2

2l
n
2
−1

(sech τ/l)
n−1

2

(
P−iµ
L+n−3

2

(tanh τ/l) +
2i

π
Q−iµ
L+n−3

2

(tanh τ/l)

)
(1.10)

corresponds to the most relevant free vacuum in de Sitter space [9] can be explained
only afterwards. This vacuum is the so called Bunch-Davies vacuum, and its two
point-function is:

WBD(x, y) ≡ BD〈vac|φ(x)φ(y)|vac〉BD =
∑

L~m

φL~m(x)φL~m(y)∗ =

= κn,µF

(
iµ+

n− 1

2
,−iµ+

n− 1

2
,
n

2
,
1 + z(x, y)

2
− iεσ(x, y)

)
(1.11)

2This program has been fulfilled [10] constructing the field operators in terms of the “particles” in
the principal series of de Sitter’s UIRs.

3The totally massless case m2 = 0 (no mass and minimal coupling) is known to be very different
from the massive one. There are no de Sitter invariant two-point functions and the construction of
the quantum theory should be carried out carefully [11, 12]. We will not study this case.



18 De Sitter space in depth

The Bunch-Davies vacuum is de Sitter invariant as its two-point depends only on
the invariant distance.4 This vacuum as we have mentioned before appears to be the
most relevant vacuum for a free field in de Sitter for several reasons [13]:

i) Its two-point function is the boundary value of the analytic continuation of the
sphere propagator to the complex sphere. Because of this, sometimes it is called
the “Euclidean” vacuum.

ii) The singularities of the two-point function are the same as those of the Minkowski
vacuum, i.e., it has the Hadamard form.

iii) The modes in (1.10) reduce to plane waves in the flat space limit l→∞.

iv) It is the “natural” vacuum when we adopt Gaussian normal coordinates.

In addition to this, the presence of a Killing horizon implies the existence of a tem-
perature associated with it. A geodesic observer in de Sitter perceives a thermal bath
of particles [14] -analogous to the Hawking radiation or the Unruh effect- of tempera-
ture TdS = 1/2πl.

However, the constraint of de Sitter invariance does not specify a single vacuum.
It can be found a whole 1-complex parameter family of de Sitter invariant vacua, so
called the alpha vacua [15]:5

Wα(z) =
κn,µ

2

{
cosh 2αReF

(
1 + z

2

)
+ sinh 2αReF

(
1− z

2

)
−

− iσ(x, y) ImF

(
1 + z

2

)}
(1.12)

4Actually the two-point function is invariant under de Sitter transformations that do not invert the
order of time. For the time reversal symmetry T , W (Tx, Ty) = W (x, y)∗ because of the antiunitarity
of this operator.

5The most general expression, de Sitter invariant except for the discrete symmetries, is the α, β
vacuum, with β ∈ (−π, π]

Wα,β(x, y) =
κn,µ

2

{
cosh 2αReF

(
1 + z

2

)
+ sinh 2α

[
cosβReF

(
1− z

2

)
−

− sinβ σ(xA, y)ImF

(
1− z

2

)]
− iσ(x, y) ImF

(
1 + z

2

)}

The time ordering sign σ(xA, y) is defined only in the case z < −1, but for z > −1 the imaginary part
of F

(
1−z

2

)
vanishes, as in the case of the conmmutator function. This expression for β 6= 0 is not

fully de Sitter invariant, i.e. it does not depend only on z, due precisely to the presence of this sign.
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where we are abbreviating the parameters of the hypergeometric functions, and the
real part ReF is the average across the branch cut: Re f(z) = f(z + iε) + f(z − iε).
The free in (out) vacua, which is defined through a basis of modes with simple
asymptotic behaviour in the past (future) timelike infinity, corresponds to the val-
ues sinh 2α = cschπµ and β = π/2 (β = −π/2).

These alpha vacua have an additional singularity for antipodal points z(x, y) = −1,
that seems unnatural. Although it is hidden beyond the horizon, these alpha vacua
are believed to be somehow unphysical [16].

1.3 Interacting quantum fields in de Sitter space

It is well known (cf. appendix B) that in the presence of a generic gravitational field,
any kinematically forbidden process for an interacting QFT in flat space, becomes pos-
sible. The case of de Sitter has given rise to the idea of an eternal particle production,
due to its eternal expansion (in the cosmological expanding patch), and perhaps an
associated instability.

The basic idea is simple [13]: to calculate the amplitude for the “forbidden” pro-
cesses and evaluate the particle production rate. In the S-matrix formalism, this is
just a more complicated version of Feynman diagrams, as for example:

Γ0→4 =

∫
W (x, y)4dxdy (1.13)

where the same formula of flat spacetime is applicable, except that the quantities in-
volved (the integration variables, the two-point function) are now referred to de Sitter.

It has been suggested that the ultimate consequence of this particle production is a
instability of the space. It is very different in nature from previous proposals [17] (crit-
icized in [18]), since this is not a quantum gravitational effect. In this phenomenon,the
backreaction of the quantum fields is neglected, at first stage. Of course, a full under-
standing of the process involves to take this backreaction into account.

The instability claim has been recently put on a new basis by A. Polyakov in a series
of papers [19], where he tried to relate this particle production with the presence of an
imaginary part in the effective contribution of the fields to the cosmological constant.



Chapter 2

Eternity up to one loop

In this chapter, we review the so-called “composition principle”, and we put it in a new
basis through the heat kernel formalism. We use this tool to evaluate the free energy
in a constant curvature space to one loop.

2.1 The Composition law

It is well known (cf. for example the discussion in [20]) that in flat space the Klein-
Gordon propagator1 can be recovered from the first quantized path integral

G(x, y) ≡
∫
DX(s)e−mS(X)

where the integral extends to all paths such that X(0) = x and X(1) = y, and the
action for each path is

S(X) ≡
∫ 1

0

dτ

√
δµνẊµẊν

This representation makes manifest that the propagator enjoys a quantum mechan-
ical composition law, at least in the euclidean case:

∫
dnz G(x, z)G(z, y) =

∫
dnzDX(s)DY (s)e−m{S(X)+S(Y )} (2.1)

where X(s) goes from x to z and Y (s) from z to y. Then

∫
dnzG(x, z)G(z, y) =

∫
DX(s)e−mS(X)F

(
m2, S(X)

)
(2.2)

1Remember that along this chapter we will use the prescription 1 in p. 16.

20
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where now X(s) goes from x to y, and the extra factor F (m2, S(X)) takes into account
the integral over the intermediate point z along the curve and leads to

∫
dnz G(x, z)G(z, y) = − ∂

∂m2
G(x, y) (2.3)

(This is equivalent to assert that F (m2, S(X)) = 1
2m
S(X). We are aware of no simple

argument for this).

In a recent paper Polyakov [19] suggests that unitarity in quantum field theory is
equivalent to this path composition. Asymptotically (for large separation between the
points) the propagator should behave as

G(x, y) ∼ e−ims(x,y) (2.4)

where s(x, y) is the geodesic distance between the points x and y.

The flat space Klein-Gordon propagator can be easily recovered [20] through 2

G(x, y) =

∫ ∞

0

dτK(τ ;x, y) (2.7)

where K(τ ;x, y) is the Schrödinger functional

K(τ ;x, y) ≡
∫
DXe−i

∫ τ
0 dσ

(
Ẋ2

2σ
+σm

2

2

)
(2.8)

and τ is the gauge invariant distance τ ≡
∫ 1

0
e(λ)dλ. Polyakov’s path composition is

then a simple consequence of Feynman’s kernel quantum mechanical composition law

∫
dnzK (τ1; y, z)K (τ2; z, x) = K (τ1 + τ2; y, x) (2.9)

Once these facts are understood, the temptation to choose them as the starting point
for the study of quantum fields in a gravitational background is irresistible.

2In flat space this identity is true in any dimension for true propagators (id est, solutions of the
inhomogeneous equation) because using the Fourier representation

G(x, y) =

∫
dnp

(2π)n
eip(x−y)

p2 +m2
(2.5)

and ∫
dnzG(x, z)G(z, y) =

∫
dnz

dnp

(2π)n
dnk

(2π)n
eip(x−z)

p2 +m2

eik(z−y)

k2 +m2
= − ∂

∂m2
G(x, y) (2.6)

Direct verification is more laborious.
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The preceding results are by no means restricted to flat space. We shall explain in
a moment that given the heat kernel, that is, the solution of the heat equation in an
arbitrary spacetime ∂τK = (∆ −m2)K with the initial conditions K(0;x) = δ(x) we
can obtain a Green’s function for the Klein-Gordon equation through

G(x) =

∫ ∞

0

K(τ ;x) dτ =

∫
θ(τ)K(τ ;x) dτ (2.10)

(∆−m2)G(x) =

∫ ∞

0

(∆−m2)K(τ ;x) dτ =

=

∫ ∞

0

∂τK(τ ;x) dτ = K(τ ;x)
∣∣∣
∞

0
= −δ(x) (2.11)

Whenever the composition principle of Schrödinger (or the heat) equation holds

∫
K(τ ;x, z)K(σ; z, y) dnz = K(τ + σ;x, y) (2.12)

this propagator (and others related) enjoys automatically the composition law (2.3)

∫
G(x, z)G(z, y) dnz =

∫

C

dtdsK(t;x, z)K(s; z, y) dnz =

=

∫

C

dtdsK(t+ s;x, y) =
1

2

∫

C′
dτdσK(τ ;x, y) , (2.13)

where the integration domain in the t, s plane is the upper right quadrant C. We have
performed the transformation τ = t + s, σ = t − s, and the new domain C ′ can be
parametrized as

1

2

∫
dτdσ θ(τ + σ)θ(τ − σ)K(τ ;x, y) =

∫
dτ τθ(τ)K(τ ;x, y) = −∂m2G(x, y) (2.14)

where we take in account that the heat kernel for mass m is related to the massless
one by Km2 = e−m

2τKm=0. The conclusion of the above is that starting from the heat
kernel, the “composition principle” is a simple consequence of the quantum mechanical
closure relation ∑

z

|z〉〈z| = 1 (2.15)

2.2 The heat kernel

What we shall denote by heat kernel is what mathematicians call the fundamental
solution of the real heat equation (FSRHE) made popular by Kac when he asked the
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question as to whether one could hear the shape of a drum [21] (the short answer is
that one cannot in general). The mathematicians call heat equation to

∆K(x, y; τ)− µ2∂K(x, y; τ)

∂τ
= 0

where ∆ ≡ ∇µ∇µ, and we have introduced a mass scale µ to make τ dimensionless (or,
what is equivalent, to consider the operator ∆

µ2 , whose eigenvalues are also dimension-

less). The FSRHE is defined as the solution such that lim
τ→0+

K(x, y; τ) = δ(x, y). The

importance of the FSRHE is that it is unique for compact connected C∞ riemannian
manifolds without boundary [22]. Formally, it can be predicated that

K(τ) ≡ e
τ
µ2 ∆

(the convention is that the operator in the exponent is negative definite for τ ∈ R+.)
so that a Green’s function can be defined as

G ≡ −∆−1 ≡
∫ ∞

0

K(τ)dτ

This Green’s function is also unique under the same conditions than the FSRHE is.

We will deal with this equation with an additional mass term, as in the previous
section. In the particular case of euclidean space Rn (which is non compact, by the
way)

K0 (x, y; τ) =
µn−2

(4πτ)n/2
e
−µ

2(x−y)2

4τ
−m

2

µ2 τ

(where µ is an arbitrary mass scale whose physical meaning is the same as the one
appearing in dimensional regularization). The famous integral

∫ ∞

0

dx xν−1e−
β
x
−γx =

(
β

γ

)ν/2
Kν

(
2
√
βγ
)

(2.16)

leads to the euclidean Green’s function

G0 (x, y) ≡
∫ ∞

0

dτK0 (x, y; τ) =
1

2π

(
m

2π|x− y|

)n/2−1

Kn/2−1 (m|x− y|)

where |x|2 ≡ ∑n
1 x

2
i and Kn(x) is the Bessel function of imaginary argument. This is

the mother of all Green’s functions.

This whole procedure can in some sense be reversed. If we consider the heat kernel

corresponding to the massless Klein-Gordon operator, Km=0(τ) ≡ K(τ)e
m2

µ2 τ , then
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the relationship between the heat kernel and the (massive) Green’s function is just a
Laplace transform

Gm(x) =

∫ ∞

0

Km=0(τ)e
−τ m

2

µ2 dτ

This means that whenever the Green’s function as a function of m2 is bounded by
a polynomial in the half plane Rem2 ≥ c, the Laplace transform can be inverted to
yield

Km=0(τ) =
1

µ2

∫ c+i∞

c−i∞
dm2e

τ m
2

µ2 Gm(x)

We shall extend this precise and beautiful mathematical framework in two ways.
First of all, physics forces upon us the consideration of operators somewhat more gen-
eral than the covariant laplacian, for example by allowing a generalized mass term (as
well as nonminimal operators for higher spins [23]). Secondly, we are eventually inter-
ested in pseudo-riemannian, Lorentzian geometries which are moreover non-compact.

One of our main worries will precisely be how to go back and forth from one signa-
ture to the other. What we have seen in the previous paragraph is that this particular
Green’s function also satisfies Polyakov’s composition principle.

2.2.1 Heat kernel on the sphere

In their work on the Schrödinger equation, Grosche and Steiner [24] are led towards
the following integral, which gives what is essentially the Schrödinger propagator:

K (Ω,Ω′; τ) ≡
∫
DΩ e

i
∫ τ
0 dλ

(
ml2

2
Ω̇2+

n(n−2)

8ml2

)
= eiτ

n(n−2)

8ml2

∫
DΩ ei

∫ τ
0 dλml

2

2
Ω̇2 ≡

eiτ
n(n−2)

8ml2 Z (Ω,Ω′; τ) (2.17)

where Ω ≡ ~n is a unit vector, defining a point on the unit sphere ~n ∈ Sn, and can be
characterized in polar coordinates by a set of angles, θ1 . . . θn.

The path integral will be done by means of Feynman’s time slicing technique. The
action reads

S =
ml2

2

n∑

i=1

(
~Ωi − ~Ωi−1

)2

= ml2
n∑

i=1

(1− cos ψi−1) (2.18)

where we have defined
cos ψi−1 ≡ ~Ωi · ~Ωi−1 (2.19)
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The expansion discussed in the appendix C conveys the fact that

ez cos ψ =
(z

2

)−n−1
2

Γ

(
n− 1

2

) ∞∑

j=0

(
j +

n− 1

2

)
Ij+n−1

2
(z)C

n−1
2

j (cos ψ) (2.20)

Z (θ, θ′; τ) = eiτ
n(n−2)

8ml2

∫
DΩ ei

∫
ml2

2
Ω̇2

= eiτ
n(n−2)

8ml2

∫ ∏

i

dΩi e
iml2

∑
i(1−cos ψi−1) (2.21)

the integrations to be done are, schematically,

∫
dΩ1 . . . dΩn−1

∑

j1 ~m1

∑

j2 ~m2

. . . Yj1 ~m1(Ω1)Y ∗j1 ~m1
(Ω0)Yj2 ~m2(Ω2)Y ∗j2 ~m2

(Ω1) . . .

. . .
∑

Yjn ~mn(Ωn)Y ∗jn ~mn(Ωn−1) =
∑

j ~m

Yj ~m(Ωn)Y ∗j ~m(Ω0) ∼
∑

j

C
n−1

2
j (cos ψ)

The final result of [24] is

K (Ω,Ω′; τ) =
1

V (Sn)

∞∑

j=0

2j + n− 1

n− 1
C

n−1
2

j (Ω · Ω′)e− iτ
2ml2

j(j+n−1) (2.22)

Our main tool in order to study the effective potential in constant curvature spaces
will be the analogous of the preceding computation for our Klein-Gordon equation,
as well as the representation of the delta function on the sphere Sn−1 by means of
Gegenbauer polynomials (cf. appendix C) , id est,

K(τ ; Ω,Ω′) =
1

V (Sn)

∑

j

n− 1 + 2j

n− 1
C

n−1
2

j (Ω · Ω′)e−τ(m2l2+j(j+n−1)) (2.23)

that is the solution of the heat equation such that

lim
τ→0+

K(τ ; Ω,Ω′) = δ (Ω− Ω′) (2.24)

where the delta function reads

δ(Ω− Ω′) =
1

V (Sn)

∑

j

n− 1 + 2j

n− 1
C

n−1
2

j (cos θn) (2.25)
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2.2.2 Free energy

We can see the heat kernel formally as

K(τ) ≡ e−τM̄
2

(2.26)

where M̄2 is the positive definite operator acting on quadratic fluctuations around the
background field, id est,

M̄2 ≡ −∆ + ∂2V (φ̄) (2.27)

and we include masses in the potential.

Let us mention that whenever the full eigenvalue problem for the operator M̄2 is
known, there is a formal FSRHE. Using the discrete notation,

M̄2un(x) = λnun(x) (2.28)

with eigenfunctions which can be chosen to obey

(un, um) ≡
∫
dµ(x)u∗n(x)um(x) = δnm (2.29)

(where the measure dµ(x) is usually
√
|g|dnx) as well as a completeness relationship

of the type ∑

n

u∗n(x)un(y) = δ(x− y) (2.30)

then the following is the sought for FSRHE

K(x, y|τ) =
∑

n

e−λnτu∗n(x)un(y) (2.31)

whose imaginary part is determined by the one of the eigenvalues themselves.

As we have already advertised, in order to study the free energy up to one loop
order, it is much more convenient to study the heat kernel, than the Green’s function,
because it gives the desired result directly

W =
1

2

∫ ∞

0

dτ

τ
tr

∫
dnx
√
|g|K (τ ;x, x) (2.32)

This definition includes the definition based to the zeta-function (which is the finite
part) as well as the divergent counterterms.
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2.3 Green’s functions in constant curvature spaces.

Before computing the free energy, let us clarify a few points on the relationship between
Green’s functions in constant curvature spaces. Although the defining equations of the
different spaces themselves in Weierstrass coordinates are analytic continuations of the
equation of the sphere, some subtleties appear with the analytic continuation of Green’s
functions.

We shall mainly be concerned in this section with fundamental solutions of the
Klein-Gordon equation in the real sections of the sphere, invariant under the full group
of isometries. Related analysis have been performed in [25, 26]. The homogeneous
version of this equation takes always the same form in these spaces:

(z2 − 1)G′′ + nzG′ ±m2l2 = 0 (2.33)

where z is the corresponding geodesic distance for each space (cf. A.1.1).

The problem of finding the invariant Green’s functions of this equation can be
solved in a simple and general way. The full space of solutions is two-dimensional. All
we have to do is extending the domain of definition of these functions to the appropiate
region of the real axis for each surface.

We have to take care also of the singularities we obtain. We are interested in a
single source (tipically in the “north pole” z = 1), or perhaps in symmetric solutions
under Z2 in order to obtain Green’s functions for the projective case.

In the Fig. 2.1 we have summarized the results. Combining solutions of the generic
Klein-Gordon equation (hypergeometric functions) with the appropriate singularity
(F
(

1+z
2

)
, R), we can build several different propagators for each space. Here R is

proportional to a Legendre Q function, finite at z =∞. G∞ means a Green’s function
that diverges at infinity. Gα stands for the Green’s functions of the α-vacua.

2.3.1 Flat spacetime

The flat spacetime case is interesting in order to know the appropriate short distance
behaviour. We saw in the previous that the calculation of the n-dimensional Green’s
function in an euclidean flat spacetime gives

G(x) =

∫
eipx

p2 +m2

dnp

(2π)n
=

1

2π

( m

2πr

)n
2
−1

Kn
2
−1(mr) (2.34)
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Sn dSn

F
(
1+z
2

)

R(z)

Solutions to (� +m2)G = δ

EAdSn
AdSn

G(z)
GBD(z) ∈ Gα

R(z)

R(z) ∈ Gα(z)

|z| < 1
z ∈ R

z ∈ Rz > 1

G∞(z)

R(z)
G∞(z)

Figure 2.1: Route sheet of analytic continuations.

When we perform the analytic continuation to the Feynman propagator in lorentzian
signature, we implicitly chose the prescription such that the result is still a propagator,
i.e. that keeps the appropriate singularity:

GF (x) =
i

2π

(
m

2π
√
−x2 + iε

)n
2
−1

Kn
2
−1(m

√
−x2 + iε)

That this is correct, can be checked performing the integral

∫
dnk

(2π)n
eikx

−k2 +m2 − iε
explicitly. The branch cut of

√
−x2 does not depend on the sign on time, but just on

|t|, as was expected from a time ordering.
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The singularity of this propagator is:

G(x)
x2→0−−−→ i

(2π)
n
2

2
n
2
−2Γ

(n
2
− 1
)

(−x2 + iε)1−n
2 + [log(−x2 + iε)] (2.35)

where the term in brackets appears when n is even.

This prescription precisely gives us the correct singularity to recover a delta func-
tion. Other possibilities lead to homogeneous solutions which correspond to important
functions:

• Wightman function −iW : x2 → −x2 + iεt

• Symmetric function G(1): Re W

• Pauli-Jordan function (conmmutator) D: Im W

2.3.2 Sphere

In the appendix A we give some details on different metrics for constant curvature
spaces with different signatures. The Klein-Gordon equation in the n-dimensional
sphere reads:

1

sin θn−1
∂θ(sin θ

n−1∂θG)−m2l2G = 0 =
1

(1− z2)
n−2

2

∂z((1− z2)
n
2 ∂zG)−m2l2G (2.36)

where z = cos θ. This is almost an hypergeometric equation:

(z2 − 1)G′′ + nzG′ +m2l2G = 0 (2.37)

with the solutions3:

G(z) = F±(z) = F

(
1± z

2

)
≡ F

(
iµ+

n− 1

2
,−iµ+

n− 1

2
;
n

2
;
1± z

2

)
(2.38)

where m2l2 = µ2 + (n−1)2

4
. Each one is singular respectively in z = ±1, and this singu-

larity corresponds precisely to delta function in opposite points. in this way we recover
the well known fact that there is a single Green’s function in the sphere.

The composition law holds for this Green’s function, given that is unique and
therefore, proportional to the alternate expression:

G(Ω · Ω′) =
∑

j~k

Yj~k(Ω)Yj~k(Ω
′)∗

j(j + n− 1) +m2
(2.39)

given in terms of eigenfunctions of ∆, i.e. spherical harmonics, and their eigenvalues.
It is straightforward to check the composition law with this formula.

3The possible values of µ are real and positive, or imaginary, with n−1
2 > −iµ > 0
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2.3.3 de Sitter space

The Klein-Gordon equation in this case reads

1

cosh τn−1
∂τ
(
cosh τn−1∂τG

)
− 1

cosh τ 2 sin θn−2
∂θ
(
sin θn−2∂θG

)
+m2l2G = 0

(z2 − 1)G′′ + nzG′ +m2l2G = 0 , z = cosh τ cos θ (2.40)

The solution is given by the same expression as before. In order to provide a func-
tion defined over the full de Sitter space (for all z ∈ R), we must specify the values
in the branch cuts. In addition, since the signature of spacetime has changed, this
prescription will determine the character of the singularity, i.e. homogeneous or not.

Looking to the flat spacetime case, the solution is simple, since the short distance
behaviour should match. The correct analytic continuation is:

GBD(z) = F

(
iµ+

n− 1

2
,−iµ+

n− 1

2
;
n

2
;
1 + z

2
− iε

)
(2.41)

and this is (proportional to) the euclidean or Bunch-Davies propagator. In addition
we can continue the both solutions in such a way that they remain homogeneous, for
example:

ReF±(z) = ReF

(
iµ+

n− 1

2
,−iµ+

n− 1

2
;
n

2
;
1± z

2

)
(2.42)

where we denote by Re, iImf(z) = f(z+ iε)± f(z− iε). This combination cancels the
delta divergence.

The above expression spans the space of homogeneous invariant solutions that orig-
inates the ambiguity in the propagator:

G(z) = GBD(z) + αReF+(z) + β ReF−(z) (2.43)

However, if the propagator comes from a vacuum expectation value, we know [15] that
just a 1-parameter family survives, the α (α > 0) vacuum:

Gα(z) =
i|Γ
(
iµ+ n−1

2

)
|2

2(4π)
n
2 {−Γ(2− n

2
)|Γ(n

2
)}

{
cosh 2αReF

(
1 + z

2

)
+

+ sinh 2αReF

(
1− z

2

)
− i ImF

(
1 + z

2

)}
(2.44)

The term in the {|} corresponds to the {odd|even} case.
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2.3.4 Euclidean Anti de Sitter space

Now the Klein-Gordon equation reads

(z2 − 1)G′′ + nzG′ −m2l2G = 0 (2.45)

The solutions are pretty similar to the sphere case:

G(z) = F

(
µ+

n− 1

2
,−µ+

n− 1

2
;
n

2
;
1± z

2

)
(2.46)

where µ2 = m2l2 +
(
n−1

2

)2
. This time µ > n−1

2
.

The negative sign solution is regular in z = 1 so it is purely homogeneous. Given
that now z ≥ 1, the positive sign solution needs a prescription in the branch cut to be
meaningful. The exact behaviour near z = 1 depends on the parity of n, but in both
cases the expressions are like:

F

(
1 + z

2

)
= . . .+ . . . ·

(
1− z

2

)1−n
2

(2.47)

where . . . something regular in z = 1 (or a logarithm). We can see from this equation
that taking the upper or lower limit in the real axis, z ± iε gives us a Green’s function
G∞.

However, this propagator G∞ diverges in the infinity, as we can see from the ex-
pansion of the hypergeometric function near the infinity:

F (α, β; γ; z)
z→∞−−−→ const (−z)−α + const (−z)−β (2.48)

from wich we get:

G∞(z)
z→∞−−−→ const

(
−1 + z

2

)−µ−n−1
2

+ const

(
−1 + z

2

)µ−n−1
2

(2.49)

Both the imaginary and the real part of this expression diverge (this is due to the sec-
ond term), so in general no prescription gives us a propagator that vanishes at infinity4.

An appropiate solution can be obtained combining the G∞ with the homogeneous
solutions. The exact expression can be given in terms of Legendre associated functions:

G(z) = (z2 − 1)
1−n

4 Q
n−1

2

µ− 1
2

(z) ∼ z−µ−
n−1

2 F

(
µ

2
+
n+ 1

4
,
µ

2
+
n− 1

4
;µ+ 1;

1

z2

)
(2.50)

4In fact, some specific values of m are such that taking only the imaginary [real] part of the function,
for n odd [even], this term is cancelled.
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This special combination, that we will abbreviate R
n−1

2

µ− 1
2

, is a solution of (2.45). The

composition principle holds for this propagator, given that this solution is the Laplace
transform of the Schrödinger propagator of EAdS [24].

2.3.5 Anti de Sitter space

The Klein-Gordon equation in AdS is identical to the EAdS case. The variable z can
take any real value again, as in de Sitter, so the the solutions to (2.45) can be continued
in the same way as in (2.41), (2.42). We have just to take in account that now iµ→ µ,
where µ means the same as in the EAdS case.

Since the Anti de Sitter space has a well defined spatial infinity at z = ∞, if we
require the propagator to vanish there, we will obtain the same R expression as in the
EAdS case (2.50). However, in this case we have to extend the domain to the full real
axis. In order to get the correct prescription, we need the relationship between the R
and the hypergeometric solutions:

R
n−2

2
ν (z) = ρn,ν

{
e∓iπνF

(
1− z

2

)
+ ϕ± F

(
1 + z

2

)}
(2.51)

ρn,ν =
2−

n
2 πΓ(n

2
+ ν)

Γ(n
2
)Γ(2− n

2
+ ν){i cos πν| sin πν} ; ϕ± = {i(−1)

n±1
2 |(−1)

n
2 }

where again we write togheter the {odd|even} case, and the upper (lower) sign is for
positive (negative) imaginary part of z.

An expression like (2.43) is the most general Green’s function. Since the delta
singularities are in the imaginary part of the F solutions, and the homogeneous pieces
are the real parts, we have to eliminate the imaginary part of F− ≡ F

(
1−z

2

)
, and it is

easy to see that the appropriate combination to achieve it is

R̃
n−2

2
ν (z) = eiπνR

n−2
2

ν (z + iε) + e−iπνR
n−2

2
ν (z − iε) (2.52)

The detailed expressions in the even and odd cases are respectively:

R̃
n−2

2
ν (z) ∼ ReF−(z) + (−1)

n
2 cos πν ReF+(z)− (−1)

n
2 sin πν ImF+(z) =

= ReF−(z) + (−1)
n
2 i sinhπµReF+(z) + (−1)

n
2 coshπµ ImF+(z) (2.53)

R̃
n−2

2
ν (z) ∼ ReF−(z) + (−1)

n−1
2 sin πν ReF+(z) + (−1)

n−1
2 cosπν ImF+(z) =
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= ReF−(z)− (−1)
n−1

2 cosh πµReF+(z) + (−1)
n−1

2 i sinhπµ ImF+(z) (2.54)

The second line in each case come from ν = iµ − 1
2
, i.e. the de Sitter case. As

we can see, if and only if the dimension n is odd the R solution can be analitically
continued into an alpha-beta vacuum, because of the inappropiate i factors in the even
case. The parameters of that vacuum are sinh 2α = cschπµ, and β = 0 (β = π) for

(−1)
n+1

2 positive (negative).5

2.3.6 Projective spaces

A function defined over the projective version of these spaces can always be lifted to
an symmetric function defined over the original space. It is very easy to obtain the
most general Green’s function of such an space, given the previous classification.

For the projective plane RPn = Sn/Z2, there is a single Green function correspond-
ing to the projection of G(z) + G(−z), where G(z) is the propagator in 2.38 with the
positive sign.

In the projective versions of de Sitter or Anti de Sitter, dSn/Z2 and AdSn/Z2, we
found that the most general Green’s function is:

G(z) = GBD(z) + αReF+(z) + β ReF−(z) (2.55)

where α and β are arbitrary constants. If we symmetrize this expression, we get the
general propagator for these spacetimes:

GP (z) = GBD(z) +GBD(−z) + α (ReF+(z) + ReF−(z)) (2.56)

In particular, we can symmetrize the R̃ solution finite at z = ±∞.

2.4 The imaginary part of the effective potential.

In flat space there is a systematic way of determining the ground state of a physical
system, namely, to minimize the effective potential (the effective action for constant
backgrounds). This is the physical principle that generalizes minimization of energy for
classical systems. Things get more complicated when gravitational fields are present.

5This is valid only in the case of m > n−1
2 in de Sitter. For lower masses there is no possibility of

analytic continuation, because of the i factors again.
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First of all there is no fully satisfactory concept of energy in general gravitational
backgrounds. In de Sitter space a Killing energy with support on the space orthogonal
to a given observer, u, is well-defined through

E(u) ≡
∫
dn−1xuµT

µνkν (2.57)

where the energy-momentum tensor is defined by expanding à la Abbott-Deser around
a background. The lack of global existence of the Killings means that precise state-
ments are only possible outside the corresponding horizons. In the general situation the
situation is even worse, and several definitions (such as the Hawking-Geroch, Penrose,
Nester-Witten or Brown-York, [27]) of quasilocal energy exist, none of which is fully
satisfactory, and besides all of them seem difficult to compute in quantum field theory.
What we have done instead is to compute the simplest and most naive expression for
the energy, namely the effective potential.

As a matter of fact, the formula (2.23) for the sphere Sn could be directly continued

to de Sitter space, given that the Gegenbauer polynomials C
n−1

2
j are defined for all real

z. Then, the expression:

K(τ ; z) =
1

V (Sn)

∑

j

n− 1 + 2j

n− 1
C

n−1
2

j (z)e−τ(m2l2+V ′′(φ̄)+j(j+n−1)) (2.58)

is a natural candidate for the heat kernel in de Sitter as well.

Then we can evaluate the free energy given by formula (2.32):

W =
1

2

∫ ∞

0

dτ

τ

∫
dnx
√
|g|K (τ ;x, x) =

VoldS
2

∫ ∞

0

dτ

τ
K(τ ; 1) =

=
VoldS

2V (Sn)

∫ ∞

0

dτ

τ

∑

j

n− 1 + 2j

n− 1
C

n−1
2

j (1)e
− τ
µ2 (m2+V ′′(φ̄)+j(j+n−1)/l2)

(2.59)

where we have redefined the heat kernel in order to get a mass dimension 2 equation.

Here C
n−1

2
j (1) =

(
j + n− 2

j

)
. This expression, which is divergent,6 is purely real (the

C
n−1

2
l (1) are integers), so no imaginary parts appear.

It seems plain that the analytic continuation, should it work at all, it not will do it
term by term. The eigenvalues are not the same in the sphere as in de Sitter space, not

6General theorems imply that the trace of the heat kernel must diverge when τ → 0 as K ∼
µnτ−n/2. This just means that the sum and the integral do not commute.
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to mention the fact that the sphere is a compact space whereas de Sitter is not. Nev-
ertheless, there is a well-known duality between compact and non-compact symmetric
spaces [28]. Some further caveats on the analytic continuation of the heat kernel have
been made in [29]. It is true that until the whole sum is performed and then the explicit
continuation is made, surprises may appear, so perhaps some wise restrain is called for.

Laplacian spectrum In the reference [30] the spectrum of the laplacian for de Sitter
space, dSn, anti de Sitter space AdSn and euclidean (anti) de Sitter space EAdSn is
computed and the eingenfunctions are constructed as well. The spectrum is identical7

for both dSn and AdSn and has got a discrete part (similar to the one corresponding
to the sphere)

−L (L+ n− 1) /l2

where
L = −

[n
2

]
+ 1,−

[n
2

]
+ 2, . . .−

[n
2

]
+ j . . .

and we represent by [z] the integer part of z. The starting point of the spectrum is
actually the only difference between the sphere and both de Sitter and anti de Sitter
spaces, as long as the discrete part of the said spectrum is concerned. In terms of
j ∈ N, for even dimension, n = 2m, or else for odd dimension n = 2m+ 1

L = −−j (j − 1) +m (m− 1)

4l2

There is also a continuous piece of the spectrum, which can be written in the form

1

l2

(
Λ2 +

(n− 1)2

4

)
where Λ ∈ [0,∞)

In the case of EAdSn only the continuous spectrum appears. So the situation is as
follows: the two euclidean spaces enjoy only one type of spectrum; discrete in the case
of the sphere Sn and continuum in the case of EAdSn; whereas the two manifolds with
lorentzian signature (AdSn and dSn) carry both discrete and continuous spectra. In
all cases the eigenvalues are of course real.

The eigenfunctions are explicitly known and can be find in the references just
quoted. It is enough for our purposes though to point out that they obey a com-
pleteness relationship,

∑

L

YL(x)∗YL(y) +

∫
dΛZΛ(x)∗ZΛ(y) = δ (x, y) (2.60)

7Except for a sign perhaps, depending on the sign chosen for the metric for each space.
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Let us nevertheless perform a simple approximation (in the case of the sphere; the
other cases are very similar), just to get an idea of the result. We shall explore the
high angular momentum region,

∑

j

jn−1e
− τ
µ2 (j+n−1)j/l2 ∼

∫ ∞

0

djjn−1e
− τ
µ2l2

j2
=

(µl)n

2τ
n
2

Γ
(n

2

)

We then get in this approximation

W ∼ µnln
∫ ∞
µ2

Λ2

dτ

τ 1+n
2

e
−m

2+V ′′(φ̄)
µ2 τ

= (m2l2 + V ′′(φ̄)l2)
n
2 Γ

(
−n

2
,
m2 + V ′′(φ̄)

Λ2

)
=

=

{
odd n : 0

even n : − (−1)
n
2

(n
2

)!
(m2l2 + V ′′(φ̄)l2)

n
2 log Λ2

m2+V ′′(φ̄)
+ 2Λnln

n
+ . . .

(2.61)

Here, as in flat space, the only possible imaginary part comes from the logarithm,
that is, when

m2 + V ′′
(
φ̄
)

µ2
≤ 0

This is in agreement with general theorems [31] asserting that the only way a non
vanishing imaginary part can appear in a manifestly real integral is from the region in
which the integral diverges.

On the other hand, this is exactly the situation when spontaneous symmetry break-
ing occurs in flat space, that it is believed to be well understood.



Chapter 3

Unitarity and vacuum decay

In this chapter, we analyze the presence of an imaginary part in the free energy to
two loops. Assuming some basic form of unitarity, it is showed how it can be estab-
lished a direct relation between this imaginary part and the production of particles in
“forbidden processes”.

3.1 Unitarity relations

In an interesting series of papers, Bros, Epstein and Moschella [32] following early
work 1 in [33] and [13], have shown that one particle decays in φ3 or φ4 theories are
not forbidden kinematically in de Sitter space. Representing by h(x) the scalar field,
such decays imply a nonvanishing width

Γ (h→ hh) or else Γ (h→ hhh)

This is in sharp contrast with the situation in flat space, where momentum conser-
vation forbids them. The reason for that is the lack of translational invariance (there
is no abelian translation subgroup of the de Sitter group; pseudotranslations do not
commute), so that two-point functions are not necessarily functions of the difference
between spacetime coordinates of the two points, which is the root of global momentum
conservation in any physical process. In fact this effect is common to any quantum
field theory in a nontrivial gravitational background.

Once momentum conservation is not working, nothing forbids the vacuum decay in
to physical particles, which essentially related to the effect pointed out by A. Polyakov
[19]. Assuming, as we do, crossing symmetry, the preceding channels are related to the

1In the book by Birrell and Davies [34] some earlier references can be found.

37



38 Unitarity and vacuum decay

vacuum decay in the tree approximation

Γ (0→ hhh) or else Γ (0→ hhhh)

Once there is a nonvanishing amplitude for this sort of decay into several particles,
it seems plain that the inverse reaction is much less likely, so that there is an enhanced
production until the particle density n is so high that

n1/3 ∼ Γ

at which point detailed balance should establish itself and the particle production grow-
ing stops.

We will use the formalism for interacting quantum fields detailed in B.2. Even when
S-matrix elements are not defined sensu stricto (such as in de Sitter space) transition
amplitudes for finite time intervals can still be computed using Feynman’s rules. Our
point of view is similar to the one in [35] in that we assume that enough of the analyt-
ical scheme of flat space quantum field theory survives to justify the formal use of the
interaction representation and related path integral techniques.

In any S-matrix perturbative framework, unitarity precisely relates the imaginary
part of the vacuum diagrams to creation and absorption of physical particles from the
vacuum,

S ≡ 1 + iT
Unitarity means that for any couple of states |a〉 and |b〉, and any closure relation

∑
|n〉〈n| = 1

the following is true

〈a|b〉 = 〈a|SS†|b〉 = 〈a| (1 + iT )
(
1− iT †

)
|b〉

so that
〈a|i

(
T − T †

)
|b〉 = −〈a|T T †|b〉 = −

∑

n

〈a|T |n〉〈n|T †|b〉

In a λφ4 theory, to second order we have for the vacuum-to-vacuum amplitude:

〈vac|i
(
T (2) − T (2)†) |vac〉 = −

∑

n

〈vac|T (1)|n〉 · 〈n|T (1)†|vac〉

where we do not specify the appropriate asymptotic limit (i.e. in or out), since the
obtained result is identical

2Im 〈vac|T (2)|vac〉 =
∑

n

|〈vac|T (1)|n〉|2 (3.1)
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Up to second order, the T matrix for a λφ4 theory is

S = T exp

{
−i λ

4!

∫
dx : φ(x)4 :

}

T = − λ
4!

∫
dx : φ(x)4 : +i

λ2

2 · 4!2

∫
dxdy T (: φ(x)4 : × : φ(y)4 :) + . . . (3.2)

so the previous relation gives2

Re

∫
dxdy G(x, y)4 =

∫
dxdyW (x, y)4 (3.3)

where G(x, y) ≡ 〈vac|Tφ(x)φ(y)|vac〉 is the “Feynman” propagator and W (x, y) ≡
〈vac|φ(x)φ(y)|vac〉 the Wightman function. This algebraic relation, that is equally
valid in the non-flat case, is the basis of our study.

3.2 Vacuum decay

In Poincaré coordinates the metric of de Sitter space reads

ds2 =

(
l

u

)2

(du2 − dx2)

A conformally coupled scalar field is massless and the value of the curvature coupling
is ξ = 1

4
n−2
n−1

, where n is the dimension of spacetime. In de Sitter space, where the

curvature is constant, R = n(n−1)
l2

, this is equivalent to a minimally coupled (ξ = 0)

scalar field with mass m2 = 1
4
n−2
n−1

R = n(n−2)
4l2

.

This mass is in the complementary series of the de Sitter group SO(n, 1), with a

iµ = 1
2

parameter (m2l2 = µ2 + (n−1)2

4
) , and the functional form of their two-point

functions (without entering into the iε prescriptions for the time being) is particularly
simple

Γ
(
n
2
− 1
)

ln−2(4π)
n
2

F

(
n

2
,
n

2
− 1,

n

2
;
1 + z

2

)
=

Γ
(
n
2
− 1
)

2(2π)
n
2 ln−2

(1− z)1−n
2

Let us concentrate in this simplest example for the time being. In the coordinates
we are using

1− z =
− (u− u′)2 + (~x− ~x′)2

2uu′
(3.4)

2We ignore the tadpole contributions that disappear by considering normal order in the interaction
term.
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Exploiting the conformal invariance of the setup 3, we can expand the free field
expansion in term of the n-dimensional modes

fk(u,x) =
un/2−1

(2π)
n−1

2 ln/2−1
√

2k
e−ikueikx

which are equivalent to choosing the Euclidean or Bunch-Davies vacuum.

It is a fact that the closure relation for the complete set of solutions gives a partic-
ular solution of the homogeneous equation (id est, without the delta function source)
namely4

∫
dn−1k fk(u,x) f ∗k(u′,x′) =

(uu′)n−2

ln−2

∫
dn−1k

(2π)n−12k
e−ik(u−u′)eik(x−x′) =

=
Γ
(
n
2
− 1
)

2(2π)
n
2 ln−2

(
2uu′

(i(u− u′ − iε))2 + r2

)n
2
−1

(3.7)

where the integrations needs an small negative imaginary part in u− u′. This closure
relation appears in the derivation of (3.3), and this particular homogeneous solution is
precisely the Wightman function. It is plain in (3.7) that the iε prescription depends
on the time ordering of the arguments. The unitarity relations rely on this subtle dif-
ference with the Feynman propagator.

In the λφ4 theory, the bubble diagram G(x, y)4 can be computed for the conformally

coupled case in 4 dimensions. The propagator is
1

l2
1

z − 1− iε where z is the geodesic

distance, times a constant we will ignore. Given that de Sitter space is homogeneous,
the diagram is proportional to the infinite spacetime volume V4 ≡

∫
d4y
√
‖g‖:

M0→0 = i
λ2

2 · 4!l8
V4

∫
d4x
√
‖g‖ 1

(z(x, x0)− 1− iε)4

3Broken by the interactions, however.
4The integrals can be done with

∫ 1

−1

dy(1− y2)
n−4
2 eiay =

√
π

(
2

a

)n−3
2

Γ
(n

2
− 1
)
Jn−3

2
(a) (3.5)

∫ ∞

0

dxJn−3
2

(βx)e−αxx
n−3
2 =

(2β)
n−3
2 Γ

(
n
2 − 1

)
√
π(α2 + β2)

n
2−1

(3.6)
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and we can choose x0 as an arbitrary point. Choosing x0 as the north pole N =
(0, l, 0, . . . , 0), we get

M0→0 = i
λ2

2 · 4!l8
V4

∫
d4x
√
‖g‖ 1

(z(x, x0)− 1− iε)4
= i

λ2(4π)

2 · 4!l4
V4

∫
dt dθ

cosh3 t sin2 θ

(cosh t cos θ − 1− iε)4

To compute the imaginary part, we can use the well-known formula [36]

1

(x− i0)4
=

1

x4
− iπ

6
δ(iii)(x)

It follows that

ImM0→0 =
λ2(4π)

2 · 4!l4
V4

∫
dt dθ

cosh3 t sin2 θ

(cosh t cos θ − 1)4
=

=
λ2(4π)

2 · 4!l4
V4P

∫
dx

x4
dθ

sin2 θ

cos 3θ

(1 + x)3sgn(x, θ)√
(1 + x)2 − cos2 θ

(3.8)

where the principal part P regularizes the divergence at x = 0 and sgn(x, θ) is zero
except in the case (1 + x) cos θ > 0. It seems clear that the angular integral diverges
owing to the behaviour of the integrand in a neighborhood of θ = π

2
.

This is a very strange result indeed, because as we shall see in a moment, this
is equivalent to a corresponding divergence in the vacuum decay amplitude in the
tree approximation, which has been reported [37] to be finite in the literature. This
interesting calculation will be reviewed later on.

Keeping ε finite, we get an exact result

M0→0 = i
λ2(4π)

2 · 4!l4
V4 lim

ε→0+
sgn(ε)

(
iπ

6ε2
+
π

6ε
+
iπ

8
+ . . .

)
≡ i

λ2(4π)

2 · 4!l4
V4 lim

ε→0+
·I(ε) (3.9)

Figure 3.1: Unitarity relation in the vacuum-to-vacuum amplitude to second order.
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This expression is divergent in the limit when ε → 0+, and it has got a finite part
in this regularization of sorts we are using. Of course we are aware that only the limit
when ε→ 0+ has got any physical sense, so that the divergent parts are regularization
dependent and just have to be renormalized away.

Let us now turn our attention to the computation of the vacuum decay rate. We use
again the de Sitter homogeneity as we did for the vacuum bubble5. The corresponding
integral contains Wightman functions instead of propagators

|M0→4|2 =
λ2V4

4!

∫
d4x
√
‖g‖

4∏

i=1

dkifki(x)f ∗ki(x0) =

=
λ2

4!l8
V4

∫
d4x
√
‖g‖W (x, x0)4 =

λ2

4!l8
V4

(∫

X0>0

d4x
√
‖g‖G(x, x0)4+

+

∫

X0<0

d4x
√
‖g‖ (G(x, x0)∗)4

)
=
λ2(4π)

4!l4
V4

(
I(ε)

2
+
I(−ε)

2

)
=
λ2(4π)

4!l4
V4 ·

π

6|ε|
(3.10)

where we are again ignoring the concrete normalization factors of the two-point func-
tions; and we have used that the integral of the propagator over half of the full hyper-
boloid (over t ∈ [0,∞)) is precisely the integral in (3.9), I(ε), divided by two.

The vacuum decay matches exactly the imaginary part of the vacuum energy in the
regularized theory (as in (3.1)), which is more than is necessary for unitarity, which
does not necessarily hold for the regularized theory (id est, before taking the limit
ε→ 0+ in our case).

It is worth remarking that the total vacuum decay rate per unit volume and unit
time interval at tree level appears to be divergent in the ε→ 0 limit. Given the fact that
the corresponding tree level amplitude is indeed finite, the divergence is entirely due to
the integration over the phase space. We are not aware of any such divergences, except
the ones associated to bremsstrahlung corrections in the external legs [38]. It would
be interesting to study what happens in the non-conformal case as well as to investi-
gate whether this divergences are related to the ones found in [39] in a classical context.

In the next section we discuss a different way of computing the vacuum decay rate,
in a form that results proportional to the covariant four-volume in a way consistent
with Fermi’s Golden Rule; there seems to be an ambiguity as to whether the Rule can

5The Wightman functions are not fully de Sitter invariant (not under time reversal). However this
is enough to repeat the procedure.
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be applied in arbitrary coordinates.

Indeed, in [19] some arguments are given for finiteness (after substraction) of the
massive contribution to the imaginary part of the effective action, and in [13, 32] it is
similarly argued for the finiteness of the forbidden decay width, which is, as is has been
already argued for, a closely related quantity through crossing symmetry.

General case The result above is quite general, as these unitarity relations are
“built-in” in the S matrix formalism. In an λφn theory with an arbitrary mass, the
relevant identity to second order is

Re

∫
dxdy G(x, y)n =

∫
dxdyW (x, y)n (3.11)

Using again the homogeneity of de Sitter, we obtain

Re

∫
dxG(x, x0)n =

∫
dxW (x, x0)n (3.12)

and the relationship between the propagator and the Wightman function G(x, y) =
T (W (x, y)) allows us to decompose these integrals

∫
dxG(x, x0)n = I+ + I− ,

∫
dxW (x, x0)n = I+ + (I−)∗ (3.13)

where we separate de Sitter space in two regions, future and past of x0, and those are
their respective contributions. More in detail, the argument x can be in the future,
the past or be causally disconnected from x0. We are splitting artificially the spatial
region in two pieces (respect to some time parameter) and including them in the two
causal contributions. This procedure is correct, because both the propagator and the
Wightman function have the same real value in that region. So now our identity looks

ImI+ = ImI− (3.14)

The decomposition of the Feynman propagator is

G(x, y) =
1

2
(G(1)(x, y) + iσ(x, y)D(x, y)),

where the Hadamard symmetric function G(1) and the Pauli-Jordan commutator func-
tion D are real, σ(x, y) is the sign of the time ordering of x and y, and D is antisymmet-
ric and zero for causally disconnected points, i.e. has the form D(x, y) = σ(x, y)∆(x, y)
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with ∆(x, y) symmetric.

The imaginary part of the nth power of the propagator is then proportional to
i∆(x, y) times asymmetric function (built with odd powers of G(1) and even powers of
D), in such a way that the integrand depends only on z(x, x0), and not on the sign of
the time ordering, so the transformation X0 → −X0 leaves unaltered the value of the
integral. This proves the unitarity relation.

Largest time equation There is a formulation of unitarity called the largest time
equation6 which acts of position space Feynman diagrams themselves and, as such is
most suitable for application in curved spacetimes. This set up is due to Veltman [40],
and asserts that for any diagram F (x1, . . . , xn),

2ReF (x1, . . . , xn) = −
∑

cuttings

F (x1, . . . , xn)

This formula stems from a representation of the Feynman propagator as

GF (x, y) = θ(t)G+
F (x, y) + θ(−t)G−F (x, y)

such that (
G+
F (x, y)

)∗
= G−F (x, y)

Those conditions are fulfilled in our case. It is always possible to argue that all we are
doing is to check the largest time equation, without necessarily committing ourselves
to the thorny [16] issue of unitarity in de Sitter space.

3.2.1 Alternative computation of the vacuum decay rate.

The particle production in the conformally coupled case has been calculated in the
expanding patch of de Sitter by A. Higuchi [37]. Let us review this calculation. In the
conformally flat patch

ds2 =
l

u

2

(du2 − dx2)

For a conformally coupled scalar field, we can expand the free field expansion in term
of the modes (we represent by k ≡ |k|).

fk(u,x) =
u

l(2π)3
√

2k
eikueikx

6To be precise, the statement is that in flat space the largest time equation can be shown to imply
unitarity of the S-matrix.
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which are equivalent to choosing the Euclidean or Bunch-Davies vacuum. The normal-
ization is such that [a1, a

†
2] = (2π)3δ12. This expansion is the same for the interacting

field in the interaction picture, so the amplitude 0→ k1k2k3k4 is simply

M(ki) =

∫ ∞

0

du dx〈k1k2k3k4|
λ

4!
φ(u,x)|vac〉 = λ(2π)12

∫
du dx

4∏

i=1

f ∗ki(u,x) =

= λ

∫
dudx

4
√
k1k2k3k4

e−iu
∑
i kie−i

∑
i x.ki = λ(2π)3

∫
du

4
√
k1k2k3k4

e−iu
∑
i kiδ(

∑

i

ki)

(3.15)

The total decay rate is

P =
1

4!

∫ 4∏

i=1

dki
(2π)3

|M(k1,k2,k3,k4)|2 =
λ2(2π)3Vc
4!(2π)3·416

∫
dudv

4∏

i=1

dki
ki
e−i(u−v)

∑
i kiδ(

∑
i

~ki)

(3.16)
We consider that the infinite quantity Vc = (2π)3δ(0) represents the volume of 3-space.
The following changes of variables are considered:

u ≡ l e−
t1
l , 2T = t1 + t2

v ≡ l e−
t2
l , τ = t1 − t2; (3.17)

yielding

P =
λ2Vc

4!(2π)916

∫ ∞

−∞
dT dτ

4∏

i=1

dki
ki
δ(

4∑

i=1

ki)e
−2T

l exp

{
2il
∑

i

ki e
−HT sinh

τ

2l

}

In the reference we are annotating unity is introduced in the form
∫∞

0
dKδ(

∑4
i=1 ki−

K) = 1 and the momenta are normalized by ki = Kyi, so that using

∫ 4∏

i=1

dyi
yi
δ(
∑

i

yi − 1)δ(
∑

i

yi) =
π3

4

yields

P =
λ2Vc

3(8π)6

∫
dTdτdKK4e−2T

l exp

{
2iK

H
e−

T
l sinh

τ

2
l

}
=

=

∫
dTe3T

l Vc

(
λ2

48l4(8π)6

∫ ∞

0

dκκ4

∫
dη exp(iκ sinh η)

)

where κ = 2Kle−
T
l and η = τ

2l
the particle production rate per unit volume is

Γ =
λ2

48l4(8π)6

∫ ∞

0

dκκ4

∫
dη exp(iκ sinh η) =

λ2

48l4(8π)6

∫ ∞

0

dκκ42K0(κ) =
3λ2

4l4(16π)5
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This formula is very appealing physically; it gives a finite result for a tree-level cross
section, which is a good thing, because the only known place in which divergent cross
sections appear at tree level is in bremsstrahlung effect (correction to external legs by
emission of massless particles), and this is not our case. 7

This means that whereas the calculation in section 2 was proportional to the co-
variant spacetime volume, V4 (times a divergent expression), Higuchi’s is proportional

to Vc times the integral over dTe3T
l times a finite expression. If we identify

V4 ∼ V3

∫
dTe3T

l

both calculations are inconsistent. But this identification is not compulsory. As has
been already pointed out in [32] it is not clear in which coordinates the particle pro-
duction per unit volume per unit time is to be defined.

Ay any rate, by consistency, in case the computation of [37] is preferred, the imag-
inary part of the free energy should also be finite.

3.3 Imaginary part in the vacuum energy

The standard lore on renormalization in Quantum Field Theory [41] includes the fact
that the cosmological constant is additively renormalized away, the finite part being
fully undetermined. There is an exception to this, however. In some cases, when
nontrivial boundary conditions are imposed on the fields (like vanishing electromag-
netic field in two fixed parallel plates in the classical example) the difference between
the vacuum energy corresponding to nontrivial boundary conditions and the one with
“trivial” boundary conditions is computable and in many cases, finite. Confer [42] for
a clarifying review.

This effect is usually known as the Casimir effect and has nothing to do with the
present work; boundary conditions are kept fixed (“trivial”) in our setting.

Let us review this in the presence of an external gravitational field. In order to do
that, we shall consider a simple model of a scalar quantum field

S =

∫
dnx
√
|g|
(

1

2
gµν∂µφ∂νφ−

λ

4!
φ4 − 1

2
ξRφ2 + α3R

2 − α1R
µνρσRµνρσ + α2R

µνRµν

)

7In the last formula the integral representation for the Bessel function K0(z) has been used. This
is for −π/2 ≤ arg z ≤ π/2

K0(z) =

∫ ∞

0

e−z cosh tdt =

∫ ∞

0

eiz sinh (t+iπ/2)dt =

∫ ∞+iπ/2

iπ/2

eiz sinh tdt

which seems to require that Imη = π/2, which is not the case, but again the integral can be interpreted
as the analytical continuation of a convergent one.
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(the terms quadratic in the curvature are necessary for renormalization). We do not
believe that our physical conclusions depend upon the details of the model. Standard
computation of the one-loop effective potential [43] yields the result

Veff = Λ0 +
1

2
ξRφ̄2 − α3R

2 − α1R
µνρσRµνρσ − α2R

µνRµν +
1

2
m2

0φ̄
2
0 +

λ0

4!
φ̄4

0+

~
32π2

(
1

n− 4
+
γ

2
− 3

4

)(
m2

0 +
λ0

2
φ̄2

0

)2

+
~

64π2

(
m2

0 +
λ0

2
φ̄2

0

)2

log
m2

0 + λ0

2
φ̄2

0

4πµ2

Defining renormalized quantities in the MS scheme

Λ0 = µ4+ε

(
Λ +

aΛ(λ)

n− 4

)

(where Λ is dimensionless) leads to

βΛ = −4Λ +
~

32π2

m4

µ4

The physical Cosmological Constant (CC) 8 is given by

Λphys ≡ µ4Λ

so that

βΛphys =
~

32π2
m4

Let us define the cosmological constant9 in the MS scheme as

Λ(λ) ≡ Veff (φ̄ = 0)

8This is entirely analogous to ’t Hooft’s [44] beta function for the dimensionless mass

βm = −m+
λm

32π2

in such a way that the physical mass
mphys ≡ mµ

and

βmphys
=
λmphys

32π2

9Of course the CC is put by hand equal to zero if we were to use Coleman-Weinberg’s [45] renor-
malization condition

Veff (φ̄ = 0) = 0



48 Unitarity and vacuum decay

Assuming
∂Veff
∂φ̄

∣∣∣
φ̄=0

= 0, that is, absence of spontaneous symmetry breaking, the

CC obeys the renormalization group (RG) equation

(
µ
∂

∂µ
+ β(λ)

∂

∂λ
+ βξ

∂

∂ξ
+
∑

i

βαi
∂

∂αi

)
Λ(λ) = 0

A successfully employed technique to compute the effective potential in many cases [35]
stems precisely from using this equation in a recursive way. Feeding the RG equation
with the MS one loop result

Λ1 = Λ0 +
~

32π2

(
γ

2
− 3

4

)
m4 +

~
64π2

m4 log
m2

µ2

and using the well-known one-loop beta functions and anomalous dimensions 10 yields
the µ dependence of the two loop piece:

Λ2 =

(
λ~

256π4

(
γ

2
− 3

4

)
m4 +

~
512π4

λm4 log
m2

4π
+

~λm4

1024π4

)
log µ−

~
512π4

λm4 (log µ)2 + f(gi)

where gi stands for all coupling constants not including the CC itself, but including
the αi; this piece is not determined by the RG equations.

No imaginary part appears ever by this procedure. Some ambiguity remains in
the finite part independent of the coupling constants, which is usually fixed by the
renormalization conditions, that is, renormalized to zero ([35]).

Following the logic of [19] and the previous section generically, owing to lacking of
translation invariance, the matter vacuum is unstable (that is, it can decay to physical
particles with a certain computable width) so that by unitarity the vacuum energy
must have a unambiguous finite imaginary part. Assuming analyticity in the coupling
constants, this in turn puts restrictions on the possible real part of the cosmological
constant through the dispersion relations as a consequence of Cauchy’s theorem. This
explicitly contradicts previous claims in the literature [46].

10To wit:

βΛphys
=

~
32π2

m4 , βmphys
=

λmphys

32π2 , βλ =
3

16π2
λ2

βξ =
λ

16π2

(
ξ − 1

6

)
, βα1 = − 1

180
1

16π2 , βα2 =
1

180

1

16π2

βα3
= − 1

72

1

16π2

ξ

2

(
ξ − 1

3

)
(3.18)
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Another consequence of all this is that the usual analysis of quantum field theory
in curved space-times is incomplete without a careful self-consistent consideration of
the back-reaction problem, owing precisely to this imaginary part. We shall comment
on this point in the conclusions.



Chapter 4

Unstable vacuum in flat space

We present in this chapter a toy model in flat space coupled to an external source. In
this way we can examine the phenomenon of the vacuum decay in a simple framework.
The particle production is studied through the kinematical equations of the model.

4.1 Toy model for vacuum decay

We have just witnessed a few paragraphs ago that explicit computations even in the
simplest of background spacetimes, such as constant curvature de Sitter or anti de
Sitter spaces, are quite involved [32], and besides, the physical interpretation of the
divergences found is not clear.

This is the rationale for first performing the complete analysis in a much simpler
context in flat space, a toy model of sorts. It is clear that the main new ingredient of
a curved space in this context is the non-conservation of four momentum. This can
be achieved through an explicit time-dependent interaction term in flat space which
violates energy-conservation. The mapping between a subclass of scalar models in
Friedmann spacetimes and flat models with spacetime dependent coupling constants is
spelled out at the end of the section.

Let be the lagrangian

L =
1

2
∂φ2 − m2

2
φ2 − λ(t)

3!
φ3 (4.1)

with a non-homogeneous coupling λ(t) = λ
2

(1 + cos ηt). With this choice, energy is no
longer conserved and a fixed amount (η) can be created or destroyed at any vertex. In
the limit η → 0 we recover an standard λφ3 theory.

50
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With this interaction, the second order vacuum-to-vacuum amplitude reads:

S = T exp

{
− i

3!

∫
λ(x0) : φ(x)3 : dx

}
(4.2)

〈vac|S(2)|vac〉 = − 1

2 · 3!

∫
λ(x0)λ(y0)G(x, y)3 dxdy =

= i
(2π)3V λ2

8 · 3!

∫
dx0dy0

{
dpi

(2π)4

}
(1 + cos ηx0)(1 + cos ηy0)

δ3 (pT ) eip
0
T (x0−y0)

Dp1Dp2Dp3

(4.3)

where we abbreviate by Dp the p2 −m2 + iε denominators. {dpi} and pT mean
∏

i dpi
and

∑
i pi; V is an infinite volume factor.

The time dependent coupling can be expressed as proportional to 1+ 1
2
eiηx

0
+ 1

2
e−iηx

0
,

so the “energy conservation” factors are now different

〈vac|S(2)|vac〉 =

= i
(2π)4V Tλ2

8 · 3!

∫ {
dpi

(2π)4

}
δ3 (pT )

Dp1Dp2Dp3

(
δ(p0

T ) +
1

4
(δ(p0

T − η) + δ(p0
T + η))

)
=

= i
(2π)4V Tλ2

8 · 3!

(
T234(0,m,m,m) +

1

2
T234(η2,m,m,m)

)
(4.4)

so the creation of energy at one vertex should be compensated in the other. T is an
infinite time factor. The standard integral T234 is well known [47] in general dimension:

T234(p2,m2,m3,m4) =

∫
dnk2d

nk3d
nk4

(2π)3n

δn(k1 + k2 + k3 − p)
(k2

2 −m2
2 + iε)(k2

3 −m2
3 + iε)(k2

4 −m2
4 + iε)

(4.5)
and corresponds to the self energy “setting sun” diagram Σ(η2) in a λφ4 theory.

Notice that we have assumed that η 6= 0, so the regular λφ3 theory result is not
recovered when η → 0 in the last formula, i.e. the limit is discontinuous.

The corresponding vacuum decay rate can be calculated as the square of the T-
matrix up to first order, T (1) = − 1

3!

∫
dxλ(x0) : φ(x)3 :

Γ0→3 = 〈vac〉|T (1)T (1)†|vac〉 =

=
1

3!2

∫
dxdy〈vac| : φ(x)3 :: φ(y)3 : |vac〉 =

1

3!

∫
λ(x0)λ(y0)W (x, y)3 dxdy (4.6)
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We ca use now the expression for the Wightman function of the scalar field

W (x, y) =

∫
dp

(2π)4
(2π)δ+(p2 −m2)e−ip(x−y) =

∫
dp

(2π)32Ep
eip(x−y)e−iEp(x0−y0) (4.7)

and then

Γ0→3 =
(2π)3V λ2

3!4

∫
dx0dy0

{
(2π)δ+(p2

i −m2)dpi
(2π)4

}
(1 + cos ηx0)(1 + cos ηy0)e−ip

0
T (x0−y0)δ3(pT ) =

=
(2π)4V Tλ2

3!4

∫
(2π)δ+(p2

i −m2)dpi
(2π)4

(
δ(p0

T ) +
1

4
(δ(p0

T − η) + δ(p0
T + η))

)
δ3(pT ) =

=
(2π)4V Tλ2

3!16

∫
(2π)δ+(p2

i −m2)dpi
(2π)4

δ(p0
T − η)δ3(pT ) =

=
(2π)4V Tλ2

3!16

∫
dp1dp2

(2π)98E1E2E12

δ(E1 + E2 + E12 − η) (4.8)

where E12 =
√

(p1 + p2)2 +m2. From the three delta function factors for te energy,
only the one with positive increment of energy contributes, for kinematical reasons.

This expression is just the standard three-body phase space factor

Γ0→3 =
(2π)4V Tλ2

3!16

∫
dE1dE2

4(2π)7
θ(Emax

T − η)θ(η − Emin
T ) (4.9)

where E
max
min = E1 +E2 +

√
(p1 ± p2)2 +m2 correspond to parallel and anti-parallel con-

figurations of momenta. There is also an implicit kinematic factor θ(η−3m) indicating
the minimun energy necessary to create 3 particles.

The final expression for this rate is

Γ0→3 =
(2π)4V Tλ2

3!16

∫ η2−3m2

2η

m

dE

4(2π)7
I(E, η) (4.10)

with

I(E, η) =

√
(E2 −m2)(η2 +m2 − 2Eη)(η2 − 3m2 − 2ηE)

m2 + η2 − 2ηE
(4.11)

This rate is proportional to the decay rate of a particle with mass η, ΓM=η. We can
give he approximate result of this integral if η is very close to or much bigger than 3m:

∫ η2−3m2

2η

m

dEI(E, η) ' 2
√

3m2ε2 , if η = 3m(1 + ε) (4.12)
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∫ η2−3m2

2η

m

dEI(E, η) ' η2

8
, if η � m (4.13)

From the application of Cutkosky’s rules, the “setting sun” self-energy diagram has
an imaginary part given by the corresponding decay rate, Im Σ(η2) = ΓM=η, which is
based in the identity [47]

∫ η2−3m2

2η

m

dE I(E, η) =
1

4π5
Im
(
(2π)3nT234

)fin
∣∣∣
n=4

(4.14)

Since the processes in our model are directly related to the aforementioned dia-
grams, we can establish easily the unitarity relation

−2Re〈vac|S(2)|vac〉 = Γ0→3 (4.15)

In the previous calculation, we avoided to deal with the tadpole diagrams by taking
the interaction operator to be normal ordered. If we choose to include those extra
diagrams, the unitarity relation still holds. The tadpole contribution in (4.15) is then:

−2Re〈vac|S(2)|vac〉 = Γ0→3 + Γ0→1 (4.16)

Here the left member acquires a new term which is

〈vac|S(2)
tad|vac〉 = −1

8

∫
dxdyλ(x0)λ(y0)G(x, x)G(y, y)G(x, y) (4.17)

The closed loops G(x, x) and G(y, y) are constants, and they are always real (at least
in dimensional regularization) and so, not very relevant for the calculation.

〈vac|S(2)
tad|vac〉 = − i

8 · 16
G2

0

∫
dxdydp

(2π)4
(2 + 2 cos ηx0)(2 + 2 cos ηy0)

eip(x−y)

Dp

=

= −i(2π)2V3

8 · 16
G2

0

∫
dx0dy0dp0(2 + 2 cos ηx0)(2 + 2 cos ηy0)

eip
0(x0−y0)

(p0)2 −m2 + iε
=

= −i(2π)4V4

8 · 16
G2

0

(
4

m2
+

2

η2 −m2 + iε

)
(4.18)

In the other hand, the total decay rate Γ0→1 is

Γ0→1 =
1

3!2

∑

1−particle

∫
dxdyλ(x0)λ(y0)〈vac|φ(x)3|1〉〈1|φ(y)3|vac〉 =

1

4
G2

0

∫
dxdyλ(x0)λ(y0)W (x, y) =

=
1

64
G2

0

∫
dxdydp

(2π)32Ep

eip(x−y)(2 + 2 cos ηx0)(2 + 2 cos ηy0)e−iEp(x0−y0) =

=
(2π)5V4

64
G2

0

1

2m
(δ(η −m) + δ(η +m)) (4.19)
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We have assumed W (x, x) = G(x, x).

These new contributions to (4.15) should match each other. It is easy to check that
they actually do by applying the Weierstrass theorem

i

η2 −m2 + iε
=

π

2m
(δ(η −m) + δ(η +m)) + . . . (4.20)

where the dots indicate imaginary contributions. No infinities nor ambiguities have
been encountered in our toy model.

4.1.1 Time dependent coupling and scale factor

Let us look for the cases in which a Minkowski space lagrangian with time-dependent
coupling constants such as

L =
1

2
∂µψ∂

µψ − m(t)2

2
ψ2 − λ(t)

6
ψ3

is equivalent to a scalar field in a curved, conformally flat gravitational background

ds2 = a(t)2ηµνdx
µdxν

namely

L =
√
‖g‖

(
1

2
gµν∂µφ∂νφ−

m2

2
φ2 − λ

6
φ3

)
=
a2

2

(
φ̇2 − (φ′)2

)
− a4m

2

2
φ2 − a4λ

6
φ3

This is always possible, up to a total derivative, with the identifications

ψ = aφ

λ(t) ≡ λa(t)

m2(t) ≡ m2a2 − ä

a
(4.21)

It would also be interesting to find a mapping for the different vacuum states as
well.

4.2 Kinetic equations

The effects shown in the previous section, allowed because of the non-conservation of
energy, led to the production of particles in the initially empty space. In our very
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simplified model there are no conserved quantum numbers; but in general the set of
produced particles must enjoy the quantum numbers (id est, charges) of the vacuum.
An important physical question is towards which final state this instability leads to?
Again, this question has many faces. In the general case in which a gravitational exter-
nal field is present, the backreaction is surely important, but difficult to compute. It
is not even clear that the usual procedure of solving again Einstein’s equations with a
second member given by the expectation value of some energy-momentum tensor [48]
would be good enough for our purposes.

A second facet of this problem is the evolution of the particle (in general, conserved
quantities) density. We can study this phenomenon by considering a spacetime box
V × T , with an initial number of particles (in our simplified model there is only one
type of particles) N , do that the initial density is n ≡ N

V
. 1

It is well-known [49] that the transition rate dΓ (α→ β) ≡ dP (α→β)
T

of a given process
in which Nα particles in the initial state evolve into Nβ particles in the final state
depends on the three-space volume, V , as V 1−Nα . This clearly means that the vacuum
decay terms in Boltzmann’s equation (or whatever improvement thereof) will clearly
dominate, because they are the only ones which are extensive, id est, proportional to
the ordinary volume. Let us build up a simplified model for this equation. The essential
thing is to capture the volume as well as the power of the distribution function itself.
Taking into account the vacuum decay and absorption only, the balance equation in
our fiducial spacetime box is of the schematic form

dNp

dt
= Γp

03 − Γp
30

Here Np dp represents the total number of particles with momentum between p and
p + dp in the fiducial volume V , and T is our fiducial time. The constructs Γp

03

and Γp
30 denote the amplitude for vacuum decay or annihilation to the vacuum when

precisely one of the particles has momentum p. The transition rate is simply related
to the transition probability dP (α→ β) by dΓ(α→ β) = dP (α→β)

T
. General arguments

implicate

dΓ(α→ β) = (2π)3Nα−2V 1−Nα|Mβα|2δ4(pα − pβ)dβ

where the matrix M is intimately related to the matrix S:

Sβα ≡ −2πiδ4(pα − pβ)Mβα

1A finer description would be provided by the Wigner function, in which both momentum and
position distributions are correlated, to the extent that this is compatible with Heisenberg’s principle.
This construct obeys suitable generalizations of Boltzmann’s equation.
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and
dβ ≡

∏

i∈Nβ

dpi

With this proviso, the mass dimension of |M |2 is 8− 3(Nα +Nβ).

It is now clear that the increase in the density of particles of momentum p out of
the vacuum in the fiducial volume V during the time interval T is

Γp
03 ≡

∫
dΓ03(p,p′2,p

′
3) dp′2 dp

′
3(1 +Np)(1 +Np2)(1 +Np3).

The decrease in the density of particles of momentum p due to annihilation to the
vacuum (id est, the reverse process) in the same fiducial volume and time interval is
proportional to the existing density cube of particles:

Γp
30 ≡

∫
NpNp2Np3 dp2 dp3 dΓ30 (p,p2,p3)

The total (integrated) widths are given by

Γ03 =
V λ2

3!64(2π)3

∫ η2−3m2

2η

m

dE I(E, η) ' V λ2

√
3 64(2π)3

m2ε2 (4.22)

where the last equality holds approximately when η = 3m(1 + ε).

Γ30 =

∫
dp1dp2dp3Np1Np2Np3dΓ30(p1,p2,p3) =

=
λ2(2π)4

16V 2

∫
Np1Np2Np3

dp1

2E1

dp2

2E2

dp3

2E3

δ3(p1 + p2 + p3) (4.23)

A toy model that embodies some of the characteristics of our integro-differential
equation is

dn

dt
= C

(
M4 − n3

M5

)

where C is a constant and we have saturated all dimensions with an average mass scale,
M . It is clear that in any such model the density of particles will rapidly grow as

n ∼ CM4t

until it becomes so big that
n ∼M3

which happens in a characteristic time

τ ≡ 1

CM



Chapter 5

Conclusions and Outlook

In this work, we have examined the possible hints of an instability of de Sitter space
given by the behavior of an interacting theory living on it. It is not clear whether such a
phenomenon could be still present in a more realistic set, such as a quasi-de Sitter phase
in the Universe. Still, the possibility of a runaway particle production has an intrin-
sic interest from the theoretical point of view, as valuable as the black hole evaporation.

The eternity proposal by Polyakov has been reformulated from a different perspec-
tive. The guiding principle for the quantum theory (the composition principle) has
been enlighted in terms of the heat kernel formalism. In addition to this, a careful
classification of invariant bifunctions for the generalized spheres has been presented.
This allowed us to examine the properties of the propagators in the light of this new
guiding principle. With these tools, we have derived the absence of any imaginary part
in the effective potential for an interacting scalar in de Sitter to one loop order.

However, this effect is present in higher orders. We have shown that there is a
connection between the imaginary part of the vacuum energy, and a dynamical mech-
anism for its decay. This is a consequence of the unitarity of the quantum theory.
The unitarity rules, as in the flat case for the Cutkosky’s rules, have been presented
as a valuable tool to check the consistency of the different results regarding particle
production and propagation amplitudes. A simple toy model in flat space has been
introduced as an example of this technique. Also the particle production of the vacuum
has been calculated (in an special case) and compared with previous results.

There are still open questions concerning the internal consistency of the theory
of interacting fields in de Sitter and its possible consequences in cosmology. We can
summarize some of the possible future developments:
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• There is necessity of clear, well-defined observable quantities, that can be com-
puted unambiguously. The scattering matrix relies on certain assumptions over
the asymptotics of the space in order to define it. This assumptions do not seem
to fit quite well with the eternal expansion of de Sitter. Computations of finite
time interactions could be very enlightening.

• Related to the previous point, the behaviour of interaction amplitudes in de Sitter
is very different from the flat case. As remarked in [32], the Fermi’s Golden
Rule works in some particular cases. However, this matter deserves a careful
examination.

• In general, the problem of the backreaction of quantum systems over classical
backgrounds is still poorly understood, even for toy models. The ultimate conse-
quence of the imaginary part of the vacuum energy is that we cannot describe a de
Sitter phase indefinitely in time, without taking into account this backreaction.
This is completely analogous to the problem of describing black hole evaporation.
This direction necessarily points to the “mother” theory of Quantum Gravity.

Work in these matters is in progress.



Conclusiones y Perspectivas

En este trabajo, hemos examinado las posibles indicaciones de una inestabilidad en De
Sitter, dada por la dinámica de una teoŕıa en interacción definida sobre el mismo. No
está claro si este fenómeno podŕıa estar presente en circunstancias más realistas, como
una fase cuasi-De Sitter en el Universo. Aun aśı, la posibilidad de una producción
de part́ıculas exponencial tiene interés intŕınseco desde un punto de vista teórico, tan
valiosa como la evaporación de los agujeros negros.

La propuesta del “eternity test” de A. Polyakov ha sido reformulada desde una
perspectiva diferente. El principio gúıa para la teoŕıa cuántica (el principio de com-
posición) ha sido clarificado en términos del formalismo de heat kernel. Además, se
ha presentado una clasificación cuidadosa de las funciones escalares invariantes en las
esferas generalizadas. Esto nos ha permitido examinar las propiedades de los propa-
gadores a la luz de este nuevo principio gúıa. Con estas herraminetas, hemos de-
mostrado la ausencia de una parte imaginaria en el potencial efectivo de un escalar en
interacción en De Sitter a un loop.

Sin embargo este efecto está presente en órdenes superiores. Hemos mostrado que
hay una conexión entre la parte imaginaria de la enerǵıa del vaćıo, y el mecanismo
dinámico para su decaimiento. Esto es consecuencia de la unitariedad de la teoŕıa
cuántica. Hemos presentado estas reglas de unitariedad, como en el caso plano con
las reglas de Cutkosky, como una herramienta valiosa para comparar distintos cálculos
de producción de part́ıculas y amplitudes de propagación. Hemos introducido un toy
model sencillo como ejemplo de esta técnica. También se han mostrado cálculos de
producción de part́ıculas (en un caso especial) y comparado con resultados previos.

Hay aún cuestiones abiertas concernientes a la consistencia de la teoŕıa de campos
en interacción en De Sitter, y sus posibles consecuencias en cosmoloǵıa. Podemos
resumir algunos de los posibles futuros desarrollos:

• Es necesario encontrar observables que puedan ser calculados sin ambigüedad.
La matriz de scattering necesita hipótesis complicadas de justificar para ser
definida. Dichas hipótesis no parecen encajar con la expansión eterna de De
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Sitter. Cálculos para interacciones a tiempo finito podŕıan ser muy esclarece-
dores.

• Relacionado con el punto anterior, el comportamiento de las amplitudes de inter-
acción en De Sitter es muy diferente al caso plano. Como se enfatiza en [32], la
regla de oro de Fermi funciona en algunos casos particulares. Sin embargo, esta
cuestión merece ser estudiada en detalle.

• En general, el entendimiento del problema de la backreaction de sistemas cuánticos
sobre fuentes clásicas es insatisfactorio. La consecuencia última de una parte
imaginaria de la enerǵıa del vaćıo es que no podemos describir una fase De Sitter
indefinidamente en el tiempo, sin tener esta backreaction en cuenta. Esto es com-
pletamente aálogo al problema de describir la evaporación de un agujero negro.
Necesariamente, esta dirección apunta a la teoŕıa “madre”, la gravedad cuántica.

Actualmente estamos trabajando en estas cuestiones.



Appendix A

Spaces of constant curvature

A.1 Taxonomy of the complex sphere

Figure A.1: A pictorial representation of Anti de Sitter (X2
0 +X2

1 = l2 + ~X2 in Rn+1
n−1).

The real sections of the complex sphere can be treated in an unified way. Let us
choose coordinates in the embedding space in such a way that in the defining equation
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we have

X2 =
n∑

A=0

εAX
2
A ≡ ηABdX

AdXB = ±l2 (A.1)

on a flat space with metric ds2 = ηABdX
AdXB. If we change in an arbitrary manifold

gAB → −gAB, then both Christoffels and Riemann tensor remain invariant, but the
scalar curvature flips sign R → −R. We can furthermore group together times and
spaces, in such a way that

ηAB = (1t, (−1)s) (A.2)

If we call n + 1 ≡ t + s, then this ambient space is Wolf’s Rn+1
s where the subindex

indicates the number of spaces.

The standard nomenclature in Wolf’s book [50] is

Sns : X ∈ Rn+1
s , X2 = l2

Hn
s : X ∈ Rn+1

s+1 , X
2 = −l2 (A.3)

Figure A.2: A pictorial representation of euclidean Anti de Sitter (X2
0 +X2

1 = l2 + ~X2

in Rn+1
n−1).

The curvature scalar is given by:

R = ±n(n− 1)

l2
(A.4)
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and

Rµν = ±n− 1

l2
gµν

Rµνρσ = ± 1

l2
(gµρgνσ − gµρgνσ) (A.5)

Please note that the curvature only depends on the sign on the second member, and
not on the signs εA themselves.

It is clear, on the other hand, that the isometry group of the corresponding manifold
is one of the real forms of the complex algebra SO(n+ 1). The Killing vector fields are
explicitly given (no sum in the definition) by

LAB ≡ εAX
A∂B − εBXB∂A ≡ XA∂B −XB∂A (A.6)

The square of the corresponding Killing vector is

L2 = εBX
2
A + εAX

2
B (A.7)

Figure A.3: A pictorial representation of de Sitter (X2
0 = −l2 + ~X2) in Rn+1

n ).

Our interest is concentrated on the euclidean and minkowskian cases:
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• The sphere Sn ≡ Sn0 ∼ Hn
n is defined by ~X2 = l2, with isometry group SO(n+1).

• The euclidean Anti de Sitter (or euclidean de Sitter) EAdSn ≡ Snn ∼ Hn
0 is

defined by (X0)2 − ~X2 = l2, with isometry group SO(1, n).

• The de Sitter space dSn ≡ Hn
n−1 ∼ Sn1 is defined by (X0)2 − ~X2 = −l2, with

isometry group SO(1, n). In our conventions de Sitter has negative curvature,
but positive cosmological constant.

• The Anti de Sitter spaceAdSn ≡ Snn−1 ≡ Hn
1 is defined by (X0)2+(X1)2− ~X2 = l2,

with isometry group SO(2, n − 1). For us AdSn has positive curvature and
negative cosmological constant.

A.1.1 Global coordinates

A very useful coordinate chart for these spaces is the one called global coordinates,
wich nevertheless do not cover the full space in any case:

(XA) = l (cosh τ ~ut(Ω), sinh τ ~ns(Ω
′)) (A.8)

where ~u and ~n are unit vectors of both t− 1 and s− 1 dimensional spheres. This is for
Sns spaces. For Hn

s spaces is simply:

(XA) = l (sinh τ ~ut−1(Ω), cosh τ ~ns+1(Ω′)) (A.9)

Our convention for a unit vector of a (n− 1)-dimensional sphere is:

~un(Ω) = (cos θ1, sin θ1 cos θ2, . . . , sin θ1 . . . sin θn−1) (A.10)

so that our convention for the “north pole” is:

Sns : N = (l, 0, . . .) ; Hn
s : N = (0, . . .︸ ︷︷ ︸

t−1

, l, 0, . . .) (A.11)

The invariant distance, that we call z, is defined as z(X, Y ) = ±X·Y
l2

, where the
sign is chosen to make z(X,X) = 1 in every space. In our cases of interest:

• Sphere: X = l ~un(Ω), z = cos θ1

• Euclidean Anti de Sitter: X = l(cosh τ, sinh τ~un−1(Ω)), z = cosh τ

• de Sitter: X = l(sinh τ, cosh τ ~un−1(Ω)), z = cosh τ cos θ1

• Anti de Sitter: X = l(cosh τ cos θ, cosh τ sin θ, sinh τ~un−2(Ω′)), z = cosh τ cos θ

where we take z ≡ z(X,N) with our previous conventions about the “North pole”.
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A.1.2 Projective coordinates

We shall further assume that εk = ±1, that is, the choosen coordinate has the same
sign for the metric as the second member in (A.3). We then define the south pole (i.e.
Xk = −l) stereographic projection for µ 6= k, as

xµS ≡
2l

Xk + l
Xµ ≡ Xµ

ΩS

(A.12)

The equation of the surface then leads to

Xk = l(2ΩS − 1) ; ΩS =
1

1± x2
S

4l2

; x2
S ≡

∑

µ 6=k

εµ (xµS)2 (A.13)

The metric in these coordinates is conformally flat:

ds2 = Ω2
Sηµνdx

µ
Sdx

ν
S (A.14)

We could have done projection from the North pole (for that we need that Xk 6= l).
Uniqueness of the definition of Xk needs

ΩN + ΩS = 1 (A.15)

and uniqueness of the definition of Xµ

xµN =
ΩS

ΩN

xµS = ±4l2

x2
S

xµS (A.16)

The antipodal Z2 map XA → −XA is equivalent to a change of the reference pole
in stereographic coordinates

xµN ↔ xµS (A.17)

A.1.3 Poincaré coordinates

A generalization of Poincaré’s metric for the half-plane can easily be obtained by in-
troducing the horospheric coordinates. It will always be assumed that ε0 = +1, that
is that X0 is a time, and also that εn = −1, that is Xn is a space, in our conventions.
Otherwise (like in the all-important case of the sphere Sn) it it not possible to construct
these coordinates.

l

z
≡ X− = Xn −X0

yi ≡ zX i (A.18)
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The promised generalization of the Poincaré metric is:

ds2 =

∑n−1
1 εidy

2
i ∓ l2dz2

z2
(A.19)

where the sign is the opposite to the one defined in (A.3), and the surfaces of constant
z are sometimes called horospheres. This form of the metric is conformally flat in a
manifest way.

• In de Sitter space, dSn, z is a timelike coordinate, and its metric reads

ds2
dSn =

−∑n−1 δijdy
idyj + l2dz2

z2
(A.20)

The square of the Killing vectors M0A (candidates to be timelike) are

M2
0A = X2

0 −X2
A =

∑

B 6=A

X2
B − l2 (A.21)

so they are timelike only outside the horizon defined as

H0A ≡
∑

B 6=A

X2
B = l2 (A.22)

For example, the horizon corresponding to H0n is
∑

y2
i = l2z2 (A.23)

This means that de Sitter space, dSn is not globally static.

• What one would want to call Euclidean anti de Sitter, EAdSn, has got all its
coordinates spacelike, and positive curvature. To be specific

ds2
EAdSn =

−∑n−1 δijdy
idyj − l2dz2

z2
(A.24)

• Finally, when the metric is given by

ds2
AdSn =

∑n−1 ηijdy
idyj − l2dz2

z2
(A.25)

(where as usual, ηij ≡ diag(1,−1n−2)) this is the Anti de Sitter, AdSn. In this
case there is a globally defined timelike Killing vector field, namely M01

M2
01 = X2

0 +X2
1 = l2 +

∑

A>1

X2
A (A.26)

that is everywhere positive. This means that Anti de Sitter space is globally
static, as opposed to de Sitter.
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A.1.4 Conformal Invariance

Let us be very explicit with the definition of Poincaré coordinates: Let us denote

x2 ≡ y2 ∓ l2z2 ≡
∑

εiy
2
i ∓ l2z2 (A.27)

Then

X0 =
l2 − x2

2lz

Xn = − l
2 + x2

2lz

X i =
yi

z
(i = 1 . . . n− 1) (A.28)

This is a legitimate change of coordinates as long as we keep the radius l itself as one
of the coordinates.

Conversely,

yi =
X i

X0 −Xn
l

z =
l

X0 −Xn

l2 = ∓
(
X2

0 −X2
n + εiX

2
i

)
(A.29)

Some useful formulas:

∂

∂X0

= −z
l
yi∂i −

z2

l
∂z ∓

l2 − x2

lz
∂l2

∂

∂Xn

=
z

l
yi∂i +

z2

l
∂z ∓

l2 + x2

lz
∂l2

∂

∂Xi

= z∂i ∓ 2
εiyi
z
∂l2 (A.30)

The full isometry group is some noncompact form of SO(n + 1). In Poincare coordi-
nates, there is a ISO(n − 1) manifest isometry group not involving the horographic
coordinate. It will be important for us to understand all isometries in Poincaré coor-
dinates. Let us work out the non-explicit generators:

L0n ≡ X0∂n +Xn∂0 = yi∂i + z∂z

L0i = X0∂i − εiXi∂0 =
∑

j

(l2 − x2) δij + 2εiyiyj
2l

∂j + εiy
i z

l
∂z
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Lni = −Xn∂i − εiXi∂n =
∑

j

(l2 + x2) δij − 2εiyiyj
2l

∂j − εiyi
z

l
∂z

Translations of the yi correspond to the combination:

ki ≡ l
∂

∂yi
= − (Lni + Loi) (A.31)

All spaces we are considering here, which in Poincaré coordinates enjoy the metric

ds2 =

∑i=n−1
i=1 εidy

2
i ∓ l2dz2

z2
(A.32)

are obviously scale invariant

yi → λ yi

z → λ z (A.33)

This corresponds in Weierstrass coordinates to the Lorentz transformation in the plane
(X0Xn)

(X ′)
0

=
(λ2 + 1)X0 + (λ2 − 1)Xn

2λ

(X ′)
n

=
(λ2 − 1)X0 + (λ2 + 1)Xn

2λ
(A.34)

id est,

X− → λX−

X+ → X+

λ
(A.35)

(This ought to be more or less obvious already from the previous formula for the
generator L0n). Not only that, but also they are invariant under inversions, id est,

yi →
yi∑

εiy2
i ∓ l2z2

z → z∑
εiy2

i ∓ l2z2
(A.36)

Inversions in Weierstrass coordinates look even simpler; just exchange the two light-
cone coordinates in the aforementioned plane (X0Xn):

X+ ↔ X− (A.37)
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The remaining isometries are the somewhat nasty combinations

L0i − Lni =
∑

j

(−x2) δij + 2εiyiyj
l

∂j + 2εiy
i z

l
∂z (A.38)

We are now in a position to study the little group H of a given point (which can
always be rotated to

P ≡
(
~y = ~0, z = 1

)
(A.39)

We know that then the space will be isomorphic to SO(n + 1)/H. The translational
isometries must be generated by the n generators

Lni + L0i

L0n (A.40)

It seems then that

H+ = {Lij, Lni}
H− = {Lij, L0i} (A.41)

The number of not compact generators is equal to the number of times in the coordi-
nates yi in the + case, and the number of times plus one in the minus case. This seems
to imply that

AdSn = SO(2, n− 1)/SO(1, n− 1)

EAdSn = SO(1, n)/SO(n)

dSn = SO(1, n)/SO(1, n− 1)

EdSn = SO(n, 1)/SO(n) (A.42)

Euclidean anti de Sitter EAdSn is just de Sitter dSn with imaginary radius. Eu-
clidean de Sitter EdSn is Euclidean anti de Sitter dSn with negative ambient metric.
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A.2 Conformal structure

• dSn From the global coordinates in de Sitter (cf. A.1.1), we can define cosT =
1

cosh τ
where −π/2 ≤ T ≤ π/2 so it yields

ds2 =
l2

cos2 T

(
dT 2 − dΩ2

n−1

)
(A.43)

which is conformal to a piece of R × Sn−1, which is the Einstein static universe
to study conformal structure. The piece is a slab in the timelike direction, but
otherwise including the full three-sphere at each time. The fact that conformal
infinity is spacelike means that there are both particle and event horizons.

• AdSn The same change of coordinates from the global chart can be used, cos ρ =
1

cosh τ
, where ρ ∈ (0, π/2). The space is again conformal to a piece of half Einstein’

s static universe:

ds2 =
l2

cos2 ρ

(
dθ2 − dρ2 − sin2 ρdΩ2

n−2

)
=

l2

cos2 ρ

(
dθ2 − dΩ2

n−1

)
(A.44)

If we want to eliminate the closed timelike lines, one can consider the covering
space −∞ ≤ θ ≤ ∞. The slab of R×Sn−1 to which AdSn is conformal to includes
now the full timelike direction, but only an hemisphere at each particular time.
Null and spacelike infinity can be considered as the timelike surfaces ρ = 0 and
ρ = π/2. This implies that there are no Cauchy surfaces.
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A.3 Poincaré patch

z � ¥

z < 1

z � 1

z > 1

z � 0

T

Θ

Figure A.4: Conformal structure of dSn. The coloured lines are z =const. surfaces in
Poincaré coordinates.

• dSn

If we call un the n-th component of the unit vector ~u, then there is a critical
value of the parameter τ such that

tanh τ(u) = un(Ω) (A.45)

which is such that
τ < τ(u)⇒ z > 0 (A.46)

and
z → ±∞⇔ τ → τ(n)∓ (A.47)

This means that at any given value of τ only those points on the sphere that
obey

un(Ω) ≥ tanh τ (A.48)

can be represented in Poincaré coordinates. For example, when τ = ∞, that is
T = π/2, tanh τ = 1, so that only the North pole (n = 1) can be covered. At the
other extreme, when, τ = −∞, that is T = −π/2, tanh τ = −1, we can cover
the full sphere.
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On the other hand, it is clear that

z → 0± ⇔ τ → ∓∞ (A.49)

There is a discontinuity at τ(n) which depends on the point in de Sitter space.

• AdSn

As in the previous case, it is clear that the region 1/z = 0 corresponds to

un−1(Ω) sin ρ = cos θ (A.50)

and the region z > 0 to

un−1(Ω) sin ρ > cos θ (A.51)

The region

z = 0 (A.52)

is dubbed the boundary (of the Poincaré patch) of AdS and corresponds to

ρ = π/2 (A.53)

Finally

z =∞ (A.54)

is usually called the horizon and corresponds to (A.50)
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z < 1

z � 1

z > 1

z � ¥

z � 0

Ρ

Θ

Figure A.5: Conformal structure of AdSn. The coloured lines are z =const. surfaces
in Poincaré coordinates.



Appendix B

Quantum Field Theory in Curved
Spacetime

We detail in this appendix the standard and well known way to define the quantum
theory of a free scalar field over a curved spacetime. Nothing here is substantially
different from the classic references [34] [51].

B.1 Free scalar field

The action of a real scalar field in a curved spacetime M with metric g is:

S[φ] =

∫

M

dnx
√
g

1

2

(
gµν∂µφ∂νφ−m2φ2 − ξRφ2

)
(B.1)

where ξ is an a priori non-minimal coupling to the curvature. The field equation, the
Klein-Gordon equation, is easily derived:

0 =
1√
g
∂µ (
√
g gµν∂νφ) (B.2)

In order to have a well defined wave propagation, the most general class of target space-
times for our scalar field has to have a clear and global separation between “space” and
“time”. This is the case for the so-called globally hyperbolic spaces, i.e. those that
possess an n− 1 dimensional Cauchy surface Σ. The technical definition of a Cauchy
surface is not as important as the following theorem:

Theorem A globally hyperbolic spacetime M is topologically equivalent to R×Σ.
Furthermore, the “time” function t : M → R given by (the first component of) this
homeomorphism can be chosen to be a C∞ function whose gradient is non-vanishing
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everywhere.

Thus, this theorem clearly establishes this expected separation. Our spacetime can
be seen as foliated into “copies” of the Cauchy surface, Σt. The Cauchy problem is well
defined in every globally hyperbolic space, in the sense that there is always a solution to
the Klein-Gordon equation with given initial conditions defined over a certain Cauchy
surface. In addition to this, we also get a symplectic structure over the space of all
fields, given by:

(φ, ϕ) = −i
∫

Σt

dy
√
gΣ n

µ (φ ∂µϕ
∗ − ∂µφϕ∗) (B.3)

where the integration is taken over any Cauchy surface, and n is the only unit, future-
directed vector field orthogonal to the surfaces Σt. This product is of course indepen-
dent of t.

This structure allows us to construct a set of basic modes, a basis that spans the
whole space of real solutions. For example, a real solution of the Klein-Gordon equation
in Minkowski space can always be expressed as a combination of plane waves:

φ(t,x) =

∫
dk

{
α(k)

eikxe−iωkt

(2π)
n−1

2

√
2ωk

+ α(k)∗
e−ikxeiωkt

(2π)
n−1

2

√
2ωk

}
(B.4)

We define in general a basis of modes {ui} as a set which is complete, in the sense that
every real solution of the Klein-Gordon equation φ can be expressed as

φ = αiui + α∗iu
∗
i (B.5)

and that is orthogonal with respect to the Klein-Gordon product:

(ui, uj) = −(u∗i , u
∗
j) = δij , (ui, u

∗
j) = 0 (B.6)

Now that the basic modes are established, the quantization can take place. We interpret
these modes as the basic excitations of the theory, so we postulate a field operator φ̂(x)
and a vacuum state |vac〉u, with the following properties:

φ̂(x) = âiui(x) + â†iui(x)∗ (B.7)

âi|vac〉u = 0, ∀i (B.8)

Of course the basis is highly non unique, and the space of solutions can be split
into “positive frequency” and “negative frequency” subspaces in many different ways.
This means that we can describe the quantum theory with respect to many spectrums
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of basic excitations. For example, assuming that {vi} is another modes basis, there is
relation between the new and the old modes, because of the completeness of both sets:

vi = αijuj + βiju
∗
j (B.9)

where α and β are the Bogoliubov coefficients, obtained from:

αij = (vi, uj) , βij = −(vi, u
∗
j) (B.10)

Of course, these coefficients should obey some constraints if the v’s are orthogonal.
From (B.6) we obtain

αα† − ββ† = I , αβ† = βα† (B.11)

These coefficients can be used to transform also the quantum states. From the expresion
for the quantum field

φ̂(x) = âiui(x) + â†iui(x)∗ = b̂ivi(x) + b̂†ivi(x)∗ (B.12)

we obtain that âi = αjib̂j − β∗jib̂j. From this formula we can compute quantities
associated to the overlap between different vacua, as for example:

v〈vac|
∑

i

â†i âi|vac〉v =
∑

j

|βji|2 (B.13)

B.2 Interacting scalar field

In order to develop some sort of scattering theory for interacting field, well-behaved
asymptotic regions are assumed. This implies that near the future (past) infinity, the
field operator behaves as a free field, φ̂out (φ̂in).

Now four different vacua can be defined as usual in an S-matrix approach

âin
i |vac〉uin = 0 âout

i |vac〉uout = 0

b̂in
i |vac〉vin = 0 b̂out

i |vac〉vout = 0

using two different expansions for each field:

φ̂in,out(x) = âin,out
i ui(x) + (âin,out

i )†ui(x)∗ = b̂in,out
i vi(x) + (b̂in,out

i )†vi(x)∗ (B.14)

The two sets of modes are related by a Bogoliubov transformation, so that a given
vacuum contains particles as defined with respect to a different vacuum (that is, using
a different definition of positive frequency). When interactions are taken into account
even with the same definition of positive frequency the vacuum is not stable

|u,vout〈vac|vac〉u,vin | 6= 1 (B.15)
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In practice both effects (that is, particle creation due to the external gravitational
field at zero coupling as reported, for example, in [52], and the effects of the interaction)
compete, and in order to separate them one has to study specific channels as well as
their dependence on the coupling.

The physical matrix elements to calculate in a α→ β are referred to the appropriate
notion of particles 2

out〈β|α〉1in, i.e. choosing the modes that correspond to the appropiate
notion of free particles for each asymptotic (past and future) region.

In order to separate the true interaction effects from the creation of particles due
to the gravitational field, we need to focus in the out〈β|α〉in matrix elements, referred
to a common notion of vacuum, which are related by a Bogoliubov transformation to
the previous ones.

For this matrix elements we can define the S-matrix as S†|α〉in = |β〉out, which has
the familiar interaction representation form

S = T exp{−i
∫
HI(φ)}



Appendix C

Spherical harmonics

• The n-dimensional sphere. The simplest way of getting eigenfunctions of the
Laplace operator in the sphere is Helgason’s (confer [28]). Consider the following
harmonic polynomial in Rn+1

fa,λ ≡ (~a.~x)λ (C.1)

with ~a ∈ C, ~a2 = 0.

Now we know that the full laplacian in Rn+1 is

∆Rn+1 =
∂2

∂r2
+
n

r

∂

∂r
+

1

r2
∆Sn (C.2)

This yields

∆Rn+1fa,λ = 0 =
λ2 + (n− 1)λ

r2
fa,λ +

1

r2
∆Snfa,λ (C.3)

so that the eigenvalues of the Laplacian in the sphere Sn are

−λ(λ+ n− 1) (C.4)

It is more or less equivalent to start from traceless homogeneous polynomials

P ≡
∑

P(i1...ik)x
i1 . . . xik (C.5)

The number of such animals is the number of symmetric polynomials in n vari-
ables of degree λ minus the number of symmetric polynomials of degree λ− 2:

d(λ) =

(
λ+ n− 1

λ

)
−
(
λ+ n− 3

λ− 2

)
=

(n+ 2λ− 2) (λ+ n− 3)!

λ! (n− 2)!
(C.6)
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• If we represent by µ an appropiate collection of indices, then we first build har-
monic polynomials such that

∫

Sn

dΩh∗λ′µ′hλµ = δλλ′δµµ′r
λ+λ′ (C.7)

The hyperspherical harmonics are then defined by

hλµ ≡ rλYλµ (C.8)

and are normalized in such a way that
∫

Sn

dΩY ∗λ′µ′Yλµ = δλλ′δµµ′ (C.9)

• Gegenbauer polynomials are generalizations of Legendre polynomials, in the sense
that

1

|~x− ~x′|n−2
=

1

rn−2
>

(
1 +

(
r<
r>

)2 − 2
(
r<
r>

)
x̂.x̂′

)n−2
2

=
1

rn−2
>

∞∑

λ=0

(
r<
r>

)λ
C

n−2
2

λ (x̂.x̂′)

(C.10)
Let us now prove the sum rule for hyperspherical harmonics. For concreteness,
let us assume that

r ≡ |~x<|
r′ ≡ |~x>| (C.11)

Then it is a fact of life that

∆
1

|~x− ~x′|n−2
= 0 =

∞∑

λ=0

1

(r′)λ+n−2
∆
(
rλC

n−2
2

λ (x̂.x̂′)
)

(C.12)

Imposing term by term vanishing leads to
(

1

rn−1

∂

∂r
rn−1 ∂

∂r
− 1

r2
∆Sn−1

)(
rλC

n−2
2

λ (x̂.x̂′)
)

= 0 (C.13)

which conveys the fact that

∆Sn−1C
n−2

2
λ (x̂.x̂′) = −λ (λ+ n− 2)C

n−2
2

λ (x̂.x̂′) (C.14)

Since the hyperspherical harmonics are by assumption a complete set of eigen-
functions,

C
n−2

2
λ (x̂.x̂′) =

∑

µ

aλµ (~x′)Yλµ (x̂) (C.15)
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where

aλµ (~x′) =

∫

x̂

C
n−2

2
λ (x̂.x̂′)Y ∗λµ (x̂) =

2(n− 2)πn/2

Γ(n/2) (2λ+ n− 2)
Y ∗λµ (x̂′) (C.16)

This is related to the degeneracy d(λ) of hyperspherical harmonics in the following
way. Choosing x̂ = x̂′, the sum rule leads to

C
n−2

2
λ (1) = Kλ

∑

µ

Y ∗λµ (~x′)Yλµ (x̂) (C.17)

Integrating now over the unit sphere

C
n−2

2
λ (1)V (Sn−1) = Kλ

∑

µ

1 = Kλd(λ) (C.18)

The result is

d(λ) =
(n+ 2λ− 2) (λ+ n− 3)!

λ! (n− 2)!
(C.19)

• Let us now become more specific and perform some computations in gory detail.
The metric on Sn is

ds2
n = dθ2

n + sin2 θndθ
2
n−1 + . . .+ sin2 θn sin2 θn−1 . . . sin

2 θ2dθ
2
1 (C.20)

id est, in a recurrent form

ds2
1 = dθ2

1

ds2
n = dθ2

n + sin2 θn ds
2
n−1 (C.21)

This corresponds to polar coordinates in Rn

Xn+1 = cos θn

Xn = sin θn cos θn−1

. . .

X2 = sin θn sin θn−1 . . . cos θ1

X1 = sin θn sin θn−1 . . . sin θ1 (C.22)

Spherical harmonics have been constructed quite explicitly by Higuchi [7], are
such that

∆nYjn...j1(θn . . . θ1) = −jn(jn + n− 1)Yjn...j1(θn . . . θ1) (C.23)
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We shall explicitly write down the laplacian in a moment. They are orhonormal
with respect to the induced riemannian measure

dΩn ≡
√
|g|dθ1 ∧ . . . dθn = dθ1 . . . dθn sinn−1 θn sinn−2 θn−1 . . . sin θ2 (C.24)

The laplacian is easily found to be

∆Sn =

(
∂2

∂θ2
n

+ (n− 1) cot θn
∂

∂θn

)
+

1

sin2 θn

(
∂2

∂θ2
n−1

+ (n− 2) cot θn−1
∂

∂θn−1

)
+ . . .

+
1

sin2 θn sin2 θn−1 . . . sin
2 θ2

∂2

∂θ2
1

(C.25)

Another useful recurrence

dΩn = sinn−1 θndθndΩn−1 (C.26)

and

V (Sn−1) =

∫
dΩn−1 =

2πn/2

Γ(n/2)
(C.27)

To be specific,

∫
dΩnYjn...j1(θn . . . θ1)Y ∗j′n...j′1(θn . . . θ1) = δjn,j′n . . . δjn,j′n (C.28)

• It is obvious that any function on the sphere can be expanded

f(Ω) =
∑

jn...j1

Cjn...j1Yjn...j1(θn . . . θ1) =

∑

jn...j1

∫
dΩ′Y ∗jn...j1(θ′n . . . θ

′
1)f(θ′n . . . θ

′
1)Yjn...j1(θn . . . θ1)

which means

∑

jn...j1

Y ∗jn...j1(θ′n . . . θ
′
1)Yjn...j1(θn . . . θ1) ≡ δ(Ω− Ω′) (C.29)

where by definition ∫
dΩ′δ(Ω− Ω′)f(θ′) = f(θ) (C.30)

whence in a somewhat symbolic form,

δ(Ω−Ω′) = δ(θ′1−θ1) . . . δ(θ′n−θn) sin−(n−1) θ′n sin−(n−2) θ′n−1 . . . sin
−1 θ′2 (C.31)
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Now we can expand this function, as any other function, in series of Gegenbauer
polynomials

δ(Ω− Ω′) =
∑

j

djC
ν
j (cos θn) (C.32)

Let us choose our reference frame in such a way that

Ω · Ω′ ≡ cos θn (C.33)

id est, Ω′ is pointing towards the North pole.

On functions constant on Sn−1,

dΩn =
2π

n
2

Γ(n
2
)

sinn−1 θn dθn (C.34)

and, denoting x ≡ cos θn

dΩn =
2π

n
2

Γ(n
2
)

(
1− x2

)n−2
2 dx (C.35)

as well as

δ(Ω) =
Γ(n

2
)

2π
n
2

δ(θn)
1

sinn−1 θn
=

Γ(n
2
)

2π
n
2

δ(1− x)(1− x2)
2−n

2 (C.36)

We can now integrate the two sides of the equation (C.32) against Cν
j′(x)(1 −

x)ν−1/2. The orthogonality property

∫ 1

−1

dxCν
j (x)Cν

j′(x)(1− x2)ν−1/2 = δjj′
21−2νπΓ(j + 2ν)

j!(ν + j)Γ(ν)2
(C.37)

then implies

dj
21−2νπΓ(j + 2ν)

j!(ν + j)Γ(ν)2
=

Γ(n
2
)

2π
n
2

∫ 1

−1

dxCν
j (x)(1−x2)1−n/2δ(x−1)(1−x2)ν−1/2 (C.38)

The member of the right converges when ν = n−1
2

. Given in addition the fact
that

Cν
j (1) =

Γ(j + 2ν)

j! Γ(2ν)
(C.39)

we can write

dj =
Γ(n

2
)(j + n−1

2
)Γ(n−1

2
)2

Γ(n− 1)π
n+1

2 23−n
=

1

V (Sn)

n− 1 + 2j

n− 1
(C.40)
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(using Γ(2x) = 21−2x
√
πΓ(x+ 1

2
)/Γ(x)) as well as

δ(Ω− Ω′) =
∑

j

1

V (Sn)

n− 1 + 2j

n− 1
C

n−1
2

j (cos θn) (C.41)

∑

jn...j1

Y ∗jn...j1(θ′n = 0 . . . θ′1)Yjn...j1(θn . . . θ1) =
∑

j

1

V (Sn)

n− 1 + 2j

n− 1
C

n−1
2

j (cos θn)

(C.42)
If we employ the notation j ≡ jn and ~m ≡ (jn−1 . . . j1), then the preceding
formula presumably means that

∑

~m

Y ∗j... ~m(Ωz)Yj... ~m(Ω) =
1

V (Sn)

n− 1 + 2j

n− 1
C

n−1
2

j (cos θn) (C.43)

• We begin by defining some eigenfunctions of the differential operator:

D ≡ ∂2

∂θ2
+ (N − 1) cot θ

∂

∂θ
− j (j +N − 2)

sin2 θ
(C.44)

such that
DP̄ j

Nk(θ) = −k (k +N − 1) P̄ j
Nk(θ) (C.45)

The form we are going to need is

(
∂2

∂θ2
+ (N − 1) cot θ

∂

∂θ

)
P̄ j
Nk(θ) =

(
j (j +N − 2)

sin2 θ
− k (k +N − 1)

)
P̄ j
Nk(θ)

(C.46)
To be specific,

P̄ j
Nk(θ) ≡ cjNk (sin θ)−

N−2
2 P

−(j+N−2
2 )

k+N−2
2

(cos θ) (C.47)

where P µ
ν (z) are Legendre functions , and the normalization is given by

cjNk ≡
√

2k +N − 1

2

(k + j +N − 2)!

(k − j)! (C.48)

The differential equation that Legendre functions P µ
ν (z) are solutions of is given

by

Lw(z) ≡
(
1− z2

) d2w

dz2
− 2z

dw

dz
+

(
ν (ν + 1)− µ2

1− z2

)
w = 0 (C.49)
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Changing variables z = cos θ this reads
(
∂2

∂θ2
+ cot θ

∂

∂θ
− µ2

sin2 θ

)
w (cos θ) = −ν (ν + 1)w (cos θ) (C.50)

and using this it is not difficult to actually prove the basic equation (C.45).

The harmonics themselves are given by:

Yjn...j1(θn, . . . , θ1) ≡
n∏

m=2

P̄
jm−1

mjm
(θm)

1√
2π
eij1θ1 (C.51)

It is actually easy to check. From the expression for the laplacian, the operator
acting on θ1, just leads to

− j2
1

sin2 θn . . . sin
2 θ2

(C.52)

Next, the operator acting on θ2, corresponding to N = 2,k = j2 and j = j1, yields

j2
1

sin2 θn . . . sin
2 θ2

− j2(j2 + 1)

sin2 θn . . . sin
2 θ3

(C.53)

Next, the operator acting on θ3, which corresponds to N = 3, k = j3 and j = j2,
gives

j2(j2 + 1)

sin2 θn . . . sin
2 θ3

− j3(j3 + 2)

sin2 θn . . . sin
2 θ4

(C.54)

After all pairwise cancellations, we are left with the last term, corresponding to
N = n, k = jn and j = jn−1, yielding the eigenvalue

−jn(jn + n− 1) (C.55)

• We can now employ the expansion ([8], formula 8.534)

eimρ cos φ = 2νΓ(ν)
∞∑

k=0

(ν + k)ik(mρ)−νJν+k(mρ)Cν
k (cos φ) (C.56)

and using our expansion of the Gegenbauer polynomials in terms of spherical
harmonics,

eizΩ.Ω
′
= 2n/2−1Γ(n/2− 1)

∞∑

k=0

(n/2− 1 + k)ik(z)−(n/2−1)Jn/2−1+k(z)

Ck,n
∑

~m

Y ∗k...~m(Ω)Yk...~m(Ω′) (C.57)

where Cl,n are apropiate constants.
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