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José Daniel Madrigal Mart́ınez

para optar al t́ıtulo de Doctor en F́ısica por la
Universidad Autónoma de Madrid.

Tesis Doctoral dirigida por Dr. D. Agust́ın Sabio Vera,
profesor del Departamento de F́ısica Teórica
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Preface

The dynamics of the high energy limit of gauge theories —and in particular Quantum
Chromodynamics (QCD), the theory of strong interactions— still offers, forty years after
the discovery of asymptotic freedom, a major challenge. This regime, where scattering
processes are characterized by a center-of-mass energy s much bigger than the momentum
transfer |t|, is not only vital for an accurate description of forward and diffractive scattering
in modern hadron colliders, and perhaps most importantly for the study of high density
parton systems, but also displays a number of intriguing deep properties.

When all momentum scales in the problem are high enough, the coupling αs becomes small
and one can rely on perturbation theory for its study. Significant simplifications in scattering
amplitudes occur in this limit, allowing to resum all the contributions enhanced by factors
(αs ln s)n using the self-consistent BFKL ansatz based on Regge theory (which claims that
high-energy scattering proceeds via the exchange of an effective particle, the reggeon). It
should be possible to reproduce in the framework of QCD the appealing features of this
phenomenological theory, rooted on the combination of general properties of the S-matrix
and the analytical continuation of angular momentum to complex values. In particular,
there is (motivated) hope that some smooth transition occurs between the perturbative
and non-perturbative regions of Regge asymptotics, allowing to access fundamental data of
hadron dynamics from the perturbative high-energy limit.

According to Regge theory, QCD can be recast in this limit as a 2+1-dimensional field
theory where the fundamental degree of freedom is the reggeon. An important step towards
the understanding of high-energy QCD is the derivation of the effective reggeon vertices
from QCD. In the leading ln s approximation, known elements of reggeon field theory
exhibit remarkable properties, such as transverse coordinate conformal invariance of the
2–4 and 2–6 reggeon transitions and the integrability in the large-Nc limit of states of
arbitrary many reggeons. It is widely believed that these properties are inherited from
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N = 4 Super-Yang-Mills (SYM) theory, which is equivalent to QCD to leading ln s order.

In fact, the recent impressive discoveries on the structure of scattering amplitudes in
N = 4 SYM, and its major role in the AdS/CFT correspondence, have led to consider this
supersymmetric version of QCD, which is presumably exactly solvable, as a perfect model to
extract —at least qualitatively— important physics of the strong interactions. The parallel
between QCD and N = 4 SYM is expected to be closer in the Regge limit. Important
questions such as the origin of conformal invariance and integrability in high-energy QCD
and the existence of a gravity dual to reggeon field theory remain to be answered.

A promising tool in the study of these questions is the high-energy effective action proposed
by Lipatov. Derived by requiring gauge invariance and agreement with perturbative
computations in the so-called quasi-multi-Regge kinematics, this action encompasses by
construction the unitarity corrections needed in dense partonic systems, and should lead
to 2+1 reggeon field theory after integrating over quark and gluon degrees of freedom. In
the spirit of effective theories, computation of amplitudes in the high-energy limit is greatly
simplified as well.

Lipatov’s action is unusual, however, in the sense that rather than integrating out degrees
of freedom à la Wilson, new reggeon fields are added to the QCD Lagrangian with the
understanding that locality in rapidity is to be imposed. Enforcing this requirement in loop
computations is not a trivial task. New spurious divergences appear as well, calling for a
consistent regularization.

The comparison of QCD and N = 4 SYM behaviors for relevant observables in the Regge
limit and the consistent application of Lipatov’s action beyond tree level constitute the
main topics of the present thesis. Before discussing them, we introduce in the first chapter
important concepts of high-energy scattering in QCD, with the emphasis on the BFKL
formalism. While trying to cover all the relevant concepts that will be used in the following
chapters, this introduction is not aimed at a detailed derivation of results or a comprehensive
description of this vast field. We have preferred in this respect to refer to the literature and
emphasize the main ideas and the connections among them. A large number of interesting
out-of-mainstream remarks have been included, usually in footnotes, that can be skipped
without losing the central ideas. Some remarks on the issue of unitarity corrections and
nonlinear evolution are also given in the last section to put our work also in the context of
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this rapidly developing field.

The second chapter is devoted to a comparative study of QCD and N = 4 SYM in
high-energy scattering. After a concise introduction to the key properties of N = 4 SYM
and the features shared by the two theories, we go on to compute in both models several
observables chosen specifically so that they do not depend on the nonperturbative properties
of the colliding hadrons: the azimuthal decorrelation in dijets widely separated in rapidity,
and the diffusion pattern and multiplicities associated to the BFKL Green’s function.

In Chapter III we turn to applications of the Lipatov’s action approach in loop computations.
After a brief summary of the ideas underlying this action we describe how to account for
the apparent overcounting and light-cone divergences. We then exemplify this procedure
with the computation of the one-loop forward jet vertex and the two-loop gluon Regge
trajectory. We explain how one can consider loop corrections as reggeon wavefunction and
vertex renormalization. Finally, we have provided several appendices with details on color
algebra and Feynman rules, multi-Regge kinematics, the Mellin-Barnes representation and
the explicit evaluation of master integrals for the gluon trajectory at two loops.

Tomelloso, May 2013.
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Prefacio

La dinámica de las teoŕıas gauge en el ĺımite de alta enerǵıa —y en particular de la
Cromodinámica Cuántica (QCD), la teoŕıa de las interacciones fuertes— presenta aún hoy,
cuarenta años después del descubrimiento de la libertad asintótica, importantes desaf́ıos.
Este régimen cinemático, en el que los procesos de dispersión vienen caracterizados por
enerǵıas de centro de masas s mucho mayores que el momento transferido |t|, no sólo es vital
para describir de forma precisa los procesos difractivos y las dispersiones de bajo ángulo en
los colisionadores de hadrones modernos —y quizá mas importante aún para entender la
f́ısica de sistemas con alta densidad partónica— sino que también presenta un buen número
de profundas propiedades de interés per se.

Cuando todas las escalas de momento en el problema son suficientemente grandes, el acoplo
αs se hace pequeño y permite la aplicación de la teoŕıa de perturbaciones. Una simplificación
notable de las amplitudes de dispersión ocurre en el ĺımite de alta enerǵıa (o ĺımite de
Regge), posibilitando la resumación de todas las contribuciones dominantes de la forma
(αs ln s)n mediante el ansatz autoconsistente de BFKL basado en la teoŕıa de Regge (según
la cual la dispersión a alta enerǵıa ocurre mediante el intercambio de una part́ıcula efectiva,
el reggeón). Cabe esperar que QCD reproduzca las atractivas propiedades de esta teoŕıa
fenomenológica, cimentada en las propiedades generales de la matriz S y la continuación
anaĺıtica del momento angular a valores complejos. En particular, hay ciertas indicaciones
de que una transición suave ocurre entre las regiones perturbativa y no perturbativa del
ĺımite de Regge, permitiendo obtener importante información sobre la dinámica hadrónica
desde el régimen perturbativo de alta enerǵıa.

De acuerdo con la teoŕıa de Regge, QCD puede formularse en este ĺımite como una teoŕıa
de campos en 2+1 dimensiones donde el grado de libertad fundamental es el reggeón. La
derivación de los vértices efectivos de esta teoŕıa en el marco de QCD es una cuestión
relevante. En la aproximación dominante en ln s, los elementos conocidos de la teoŕıa de
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campos reggeizados presentan notables propiedades, como la invariancia conforme en el
plano transverso de los vértices describiendo las transiciones de 2 a 4 y de 2 a 6 reggeones,
o la integrabilidad en el ĺımite Nc → ∞ de estados con un número arbitrario de reggeones.
En general, se considera que estas propiedades vienen heredadas de las que posee la teoŕıa
N = 4 Super Yang-Mills, equivalente a QCD en los términos dominantes en ln s.

De hecho, los importantes descubrimientos sobre la estructura de las amplitudes de
dispersión en N = 4 SYM en los últimos años, y el papel protagonista que juega esta teoŕıa
en la correspondencia AdS/CFT, han llevado a considerar esta versión supersimétrica de
QCD, que es probablemente exactamente resoluble, como un perfecto modelo simplificado
para extraer —al menos de forma cualitativa— importantes intuiciones sobre la f́ısica de las
interacciones fuertes. Se espera que este paralelismo entre QCD y N = 4 SYM sea mayor en
cierto sentido en el ĺımite de Regge. Cuestiones importantes como el origen de la invariancia
conforme y la integrabilidad que aparecen en QCD a alta enerǵıa, aśı como la existencia de
un dual gravitacional a la teoŕıa de campos reggeizados, siguen esperando respuesta.

Una herramienta prometedora para el estudio de estas cuestiones es la acción efectiva
propuesta por Lipatov. Derivada mediante el requerimiento de consistencia entre invariancia
gauge y la llamada cinemática de quasi-multi-Regge, esta acción incluye por construcción las
correcciones de unitariedad necesarias en sistemas con gran densidad partónica, y debeŕıa
dar lugar a la teoŕıa de campos reggeizados tras integrar sobre los campos f́ısicos de quarks
y gluones. La acción efectiva también permite simplificar considerablemente el cálculo
perturbativo de amplitudes en el ĺımite de alta enerǵıa.

La acción de Lipatov es no obstante inusual en el sentido de que, en lugar de integrar grados
de libertad à la Wilson, los campos que describen reggeones son añadidos al Lagrangiano
completo de QCD, entendiendo, impĺıcitamente, que se debe imponer que las interacciones
sean locales en rapidez. Este último requerimiento es dif́ıcil de llevar a cabo cuando aparecen
correcciones cuánticas. Un problema relacionado es la aparición de nuevas divergencias que
han de ser consistentemente regularizadas.

La comparación de las dinámicas de QCD y N = 4 SYM para observables relevantes en el
ĺımite de Regge, y la aplicación coherente de la acción de Lipatov más allá del nivel árbol,
constituyen los principales temas de esta tesis. Antes de discutirlos en detalle, presentamos
en el primer caṕıtulo importantes conceptos de QCD a altas enerǵıas, centrándonos en el
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formalismo de BFKL. Aunque tratamos de cubrir de forma lo más autocontenida posible
todos los conceptos que aparecerán en los siguientes caṕıtulos, no pretendemos ofrecer en
esta introducción derivaciones detalladas de los resultados o una descripción en profundidad
de todos los aspectos de este vasto campo de investigación. Hemos preferido referir al lector
interesado a la literatura para estos detalles y poner el énfasis en las ideas principales y
las conexiones entre ellas. Un buen número de ideas que consideramos interesantes pero
que no forman parte de la discusión principal han sido relegadas a notas a pie de página,
que pueden ser omitidas sin perder la continuidad de la discusión. Un breve resumen sobre
restauración de la unitariedad y evolución no lineal se ha incluido en la última sección de la
introducción para poner nuestro trabajo en el contexto de este campo en rápida evolución.

El segundo caṕıtulo se dedica al estudio comparativo de QCD y N = 4 SYM en la dispersión
a altas enerǵıas. Tras una concisa introducción a N = 4 SYM y los rasgos compartidos por
las dos teoŕıas, calculamos en ambas varios observables que han sido elegidos de forma que
no dependen de la f́ısica no perturbativa de los hadrones que participan en la colisión: la
decorrelación azimutal en dijets ampliamente separados en rapidez, y el patrón de difusión
y las multiplicidades asociados a la función de Green de BFKL.

En el Caṕıtulo III pasamos a estudiar las aplicaciones de la acción de Lipatov en cálculos
de amplitudes con correcciones cuánticas. Comenzamos repasando las principales ideas que
aparecen en la construcción de la acción, y explicamos cómo se pueden tratar consistente-
mente el aparente doble contaje y las divergencias en el cono de luz. Este procedimiento es
puesto en práctica mediante el cálculo de las correcciones a un lazo del vértice de jet y a
dos lazos de la trayectoria de Regge del gluón. Explicamos cómo se pueden considerar las
correcciones perturbativas como una renormalización de los vértices y la función de onda del
reggeón. Finalmente, hemos incluido varios apéndices con detalles sobre el álgebra de color,
las reglas de Feynman, la cinemática de multi-Regge, las representaciones de Mellin-Barnes
y algunos cálculos realizados en detalle.

Tomelloso, Mayo de 2013.
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Conventions and Acronyms

Natural units (~ = c = 1) are used throughout the text. Our convention for Minkowski
metric is gµν = gµν = diag (+1,−1,−1,−1). The Levi-Civita density is defined with the
convention ε0123 = +1 (this implies ε0123 = −1). Generic 4-vectors are written in Cartesian
components as Aµ = (A0, A1, A2, A3) = (A0,A⊥, A

3) = (A0,A). Conventions for light-cone
components and normalization of the Sudakov parametrization are given in Appendix B.

Greek indices (α, β, · · · , µ, ν, · · · ) are Lorentz tensor indices. Latin indices are used to label
color: i, j, k are quark color indices (i, j, k = 1, · · · , Nc) and a, b, c are gluon indices (a, b, c
= 1, · · · , N2

c − 1). Einstein summation convention is understood unless otherwise stated.

Conventions for the QCD Lagrangian and Feynman rules follow those of Peskin and Schröder
[PS95]. Dirac spinors are normalized so as to satisfy ū(p, s)γµu(p, s′) = 2pµδss′ . Momentum
eigenstates are normalized as 〈p|p′〉 = (2π)32E δ(p− p′) = (2π)32p+δ(p+ − p′+)δ(p⊥ − p′⊥).

e and g will be employed, respectively, for the electromagnetic and strong couplings, with
α ≡ e2

4π and αs ≡
g2

4π . We will also introduce the shorthand notations ᾱs ≡
αsNc

π
and

[dk] ≡ ddk
(2π)d . The convention for dimensional regularization is d = 4 + 2ε, ε→ 0.

The convention for the Fourier transform is the symmetric one:

F(k) =
∫ dnx

(2π)n/2 F(x)e−ik·x (Euclidean); F(k) =
∫ dnx

(2π)n/2 F(x)eik·x (Minkowski). (1)

Acronyms

BFKL Balitsky-Fadin-Kuraev-Lipatov

BK Balitsky-Kovchegov
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BLM Brodsky-Lepage-Mackenzie

CCFM Ciafaloni-Catani-Fiorani-Marchesini

CGC Color Glass Condensate

CM Center-of-Mass

DGLAP Dokshitzer-Gribov-Lipatov-Altarelli-Parisi

DIS Deep Inelastic Scattering

EFT Effective Field Theory

GGR Gluon-Gluon-Reggeon

IR InfraRed

JIMWLK Jalilian–Marian-Iancu-McLerran-Weigert-Leonidov-Kovner

LHC Large Hadron Collider

(N)LLA (Next-to-) Leading Log Approximation

(N)LO (Next-to-) Leading Order

MB Mellin-Barnes

MOM MOMentum (Subtraction Scheme)

MS/MS (Modified) Minimal Subtraction Scheme

(Q)MRK (Quasi)-Multi-Regge Kinematics

PDF Parton Distribution Function

(p)QCD (Perturbative) Quantum ChromoDynamics

QFT Quantum Field Theory

RFT Reggeon Field Theory

RG/RS Renormalization Group/Scheme

RRG Reggeon-Reggeon-Gluon

(M)SYM (Maximally) Supersymmetric Yang-Mills

UV UltraViolet
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I
High Energy Scattering in QCD

1 QCD and the Renormalization Group
Quantum Chromodynamics (QCD), the field theory of quarks and gluons, has stood the
passing of time since its original formulation in 1973 [FGML73, GW73, Wei73] to become the
generally accepted theory describing strong interactions. Detailed treatments of the basics of
QCD, focusing on the perturbative regime, can be found in [DKS08, Mut10, ESW03, Col11].

QCD is a non-abelian gauge theory with color gauge group SU(3)1. In spite of the apparent
1 The correct clues towards QCD (see [Mut10, DKS08, Man99] for a review) came from the discovery of a

new degree of freedom, color —experimentally supported by the spin-statistics ∆++ paradox [Gre64] in the
flavor SU(3) pattern of the quark model [GM64, Zwe64], and the factors necessary to account, for instance,
for the observed e+e− → hadrons or π0 → γγ cross sections—; and the Bjorken scaling [Bjo69] discovered
in DIS experiments at SLAC [Fri91], which pointed towards the quark-parton model and, eventually, to
asymptotic freedom. Gauge invariance is the only known way to construct a sensible quantum field theory
with interactions mediated by spin-1 massless bosons [Wei95]. Furthermore, as shown by Coleman and Gross
[CG73], asymptotic freedom only appears in non-abelian gauge theories, and then the guess to identify the
color symmetry SU(Nc) with the one to be gauged appeared natural. The gauge group is essentially fixed
by the requirement that all hadron states in the asymptotic spectrum and physical observables are color
singlets (see [Mut10], pp. 14-15).

The history of the discovery of QCD is extremely interesting [Cao97, Cao10]. For a long while Yang-Mills
theory [YM54] was thought incompatible with the short-range of nuclear forces. This difficulty was overcome,
first in the early 60s, with the discovery of spontaneous symmetry breakdown [NJL61a, NJL61b, Gol61], and
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I. High Energy Scattering in QCD

simplicity of its Lagrangian, the theory is outstandingly rich and currently an exact analytic
determination of its correlation functions is out of reach. Indeed, while the problem of
confinement still waits for a satisfactory explanation [JW00, Gre11], asymptotic freedom,
the other conceptual pillar of QCD, took long time to be conveniently understood [Gro98,
tH98], due in particular to a misunderstanding of the renormalization group [LP55, Lan60,
Wei09]. It is asymptotic freedom that allows us to make sense of a perturbative treatment of
short-distance phenomena. On the other hand, nonperturbative effects associated to energy
scales where the theory becomes strongly coupled, will be ubiquitous in the analysis of most
processes. Lattice field theories, QCD sum rules and phenomenological approaches like Regge
theory are the only tools here. Hence the property of factorization —justified by Wilson’s
operator product expansion (OPE) [Wil69]—, allowing us to extract from a given process
the purely perturbative part, will be extremely useful.

1.1 Building Blocks of the QCD Lagrangian

The QCD (classical) Lagrangian, describing the interaction between quark fields ψ and gluon
fields Aaµ is2

Lclass = −1
4F

a
µνF

µν,a +
Nf∑

flavors
ψ̄i(i /D −mf )ijψj. (I.1)

Here F a
µν is the field strength tensor

F a
µν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν , (I.2)

where fabc (a, b, c = 1, · · · , 8) are the structure constants of the SU(3) color group. The
covariant derivative D has the form

(Dµ)ij = ∂µδij − ig(taAaµ)ij; (Dµ)ab = ∂µδab − ig(T cAcµ)ab, (I.3)

when acting on quark and gluon fields, respectively. ta and T a are the generators in the
fundamental and adjoint representations, respectively, of SU(3)3.

then in 1972-73 with the discovery of asymptotic freedom in non-abelian Yang-Mills theories [tH72, GW73,
Pol73], and the proof [tHV72] of the renormalizability of non-Abelian gauge theories.

2We have omitted the so-called Θ-term LΘ = Θ g2

32π2F
a
µν F̃

a,µν . LΘ can be expressed as the total divergence
of a gauge dependent current, contributing only a surface term to the action which näıvely may be neglected.
However, the surface integral is related to a topological invariant, the Pontryagin index, and the non-trivial
topological structure of the vacuum of QCD is such that LΘ gives a non-perturbative contribution. Θ turns
out to be very small, giving rise to the strong CP problem. So we adopt the pragmatic view of simply setting
Θ = 0; in any case the Θ-term does not give rise to any perturbative physics.

3Important relations of color algebra are collected in Appendix A.
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1. QCD and the Renormalization Group

Path integral quantization of QCD —and, in general, non-abelian gauge theories— involves
the Faddeev-Popov procedure [DeW64, DeW67, FP67] to isolate a single contribution to the
partition function, corresponding to the configuration f(Aϑ) = 0, from the infinitely many
equivalent of the gauge orbit (parametrized by ϑ)

Z =
∫
Dψ̄DψDAei

∫
d4xLclass ×

∫
Dϑ det

∣∣∣∣∣δf(Aϑ)
δϑ

∣∣∣∣∣ δ(f(Aϑ))

→
∫
Dψ̄DψDADη†Dη e

i
∫
d4x

[
Lclass−

1
2ξ f(A)2+η†

δf(Aϑ)
δϑ

η

]
.

(I.4)

This results in the addition of two more terms to the effective Lagrangian:4

Lgauge−fixing = − 1
2ξ (∂µAµa)2, Lghost = ∂µη

a†(∂µδab + gfabcA
cµ)ηb. (I.6)

The ghost fields ηa, resulting from the determinant of the Jacobian matrix, are unphysical,
complex valued, Lorentz scalars which obey Fermi-Dirac statistics. We observe that the
bracketed term in Lghost is the covariant derivative for the adjoint representation T abc = −ifabc.
It provides a kinetic term for the ghost fields and in this covariant gauge a ghost-gluon
coupling. The Feynman rules for QCD are presented in Appendix A.

1.2 The Renormalization Group and Effective Field Theories5

The bare charge g and mass m entering the QCD Lagrangian (I.1) are not physical values.
Transition from bare parameters to physical quantities, i.e. to the quantities that can be
(at least in principle) experimentally measured, is called renormalization.

4We choose to work in covariant gauges, what implies the need to incorporate ghosts. Two typical choices
of gauge parameter are ξ = 1 (Feynman gauge) and ξ = 0 (Landau gauge). The form of the gauge-fixing
term is different for other choices: for instance, for axial gauges, which do not require ghosts (at the price
of having a much more involved expression for the gluon propagator, which explicitly forbids non-physical
polarizations), Lg.f. = − 1

2ξ (nµAµa)2. A particularly important choice here is ξ = 1, n2 = 0, the light-cone
gauges, which we will have occasion to use. Polarization sums in this case are evaluated through∑

λ

εµλ(p)εν∗λ (p) = −
(
gµν − pµnν + pνnµ

p · n

)
. (I.5)

Global subtleties in the gauge-fixing from Gribov copies (see e.g. [IFL10]) will not concern us here.
5In this section we provide a detailed conceptual view of renormalization. Our interest lies in showing the

physical meaning of renormalization schemes —which will be important in discussing the BLM procedure
(Sec. II.2.3 )—; discussing the notion of universality, which motivates in many cases the approximation of
QCD by simpler theories; and reviewing the Wilsonian notion of effective theories, which helps understand
the subtleties of Lipatov’s action (Chap. III).
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I. High Energy Scattering in QCD

The word renormalization was attached for many years to the mechanism of sweeping
infinities under the rug. In quantum field theory, the Lorentz-invariant generalization of
the uncertainty principle allows for quantum fluctuations of arbitrarily high energies. When
computing how much interactions of real particles are modified by their interaction with
very energetic virtual particles, one often gets divergent answers. In renormalizable theories,
for which all couplings have non-negative dimensions, a procedure was devised to render
these answers meaningful, being possible to absorb all divergences in the transition from
bare to renormalized quantities. This involves as a first step regularization: suppressing the
high-energy modes of virtual particles introducing a cutoff Λ, in order to get well-defined
(non-divergent) quantities in the integrals over the momenta of virtual particles6. Then a
key observation is that, when the above mentioned requisite for renormalizability is satisfied,
the potentially divergent terms in n-point functions are of the form of the most general
terms in the Lagrangian compatible with the original field content and renormalizability7,
with couplings depending on Λ. Hence, redefining the fields in the Lagrangian, φ→ Zφ(Λ)φ,
and the couplings (which amounts to add counterterms) we can get rid of the divergences.
This usually requires that the bare couplings diverge as Λ → ∞. The procedure can be
shown to be consistent when applied order by order in perturbation theory, in spite of
technical issues like overlapping divergences (see, e.g. [Wei95]).

Getting rid of UV divergences is not enough8. When regularizing the theory we break the
unitarity essential to quantum mechanics, as we have arbitrarily removed part of the phase
space to which there was associated a non-zero amplitude. Moreover, we have a spurious
dependence on Λ, and the ambiguity on choosing the counterterms to adjust the finite
part of renormalization. If we can make all physical observables at an energy scale µ � Λ

6As emphasized by Zee [Zee10], the cutoff must not be seen as just an artifact, but it parametrizes our
ignorance of the physics at even higher energies. Usually, a brute force momentum cutoff, breaking any
underlying symmetry, is not a good choice from the computational point of view. Many other methods exist
to suppress the high-energy modes in a more suitable fashion. Among them, dimensional regularization
[tHV72, BG72], based on the observation that divergencies are milder when lowering the dimension of
spacetime d, and everything appearing in Feynman integrals —but for, possibly, εµ1···µd (and, therefore,
γ5)—, is an analytical function of d, is usually the most convenient. Some integrals are evaluated through
dimensional regularization in Appendix C.

7Actually, this is also true for a non-renormalizable theory if one considers in the Lagrangian all terms
allowed by symmetries. Therefore these theories can be considered perfectly consistent effective theories up
to some energy scale [Wei95, Dun12, Don95].

8Renormalization would make sense even if ultraviolet divergences were absent. Although in this case
that renormalization would be finite, so that physical quantities could be expressed through bare parameters,
it would be more convenient to express the former in terms of experimentally measured ones. In the actual
case of existence of UV divergences, renormalization is not only convenient but mandatory.
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1. QCD and the Renormalization Group

independent of Λ then we can safely take Λ→∞. The procedure that allows removing the
cutoff leaving something that makes sense is the renormalization group (RG) flow9 pioneered
by Wilson [Wil71a, Wil71b, Wil79]. The RG picture formalizes two important observations:
1) the low energy (long distance) behavior of many systems is largely independent of the
details of what goes on at higher energy scales; and 2) couplings and masses are not constant
at all, but depend on the scale at which we are looking [GML54, LAK54].

In the RG approach, the finite renormalization is fixed by defining the physical (renormalized)
values of n-point functions at some scale µ (R stands for renormalized, 0 for bare quantities)

ΓR(pi; gR, µ) = Z−n/2 (g0(Λ),Λ/µ) Γ0(pi; g0(Λ),Λ). (I.7)

Requiring that physics at scale µ does not depend on Λ (ΛdΓR
dΛ = 0) leads to the RG equation

[Λ∂Λ + β(g0)∂g0 − nη(g0)] Γ0(pi; g0,Λ) = 0, β(g0) ≡ Λdg0

dΛ , η(g0) ≡ 1
2Λ d

dΛ lnZ. (I.8)

In this way, starting from a theory defined at the cutoff Λ with (a set of) bare coupling(s),
we can get the same low energy physics at µ � Λ when integrating out a momentum shell
(Λ − δΛ,Λ) provided the couplings change with the floating cutoff according to the beta
function β(g0) in (I.8). Equivalently, we can demand that Γ0, taken from the fields in the
Lagrangian, is independent of the scale µ at which we define our physical quantities:10

0 = [µ∂µ + β(gR)∂gR + nγ(gR)] ΓR(pi; gR, µ), β(gR) = dgR
d lnµ, γ(gR) = 1

2
d lnZ
d lnµ . (I.9)

This is the Callan-Symanzik equation [Cal70, Sym70, Sym71]. Its solution can be written
(see, e.g. [Mag05]) making explicit the notion of running coupling as

ΓR(upi; gR, µ) = udΓ exp
{
n
∫ lnu

0
γ(geff)(u′)d ln u′

}
ΓR(pi; geff(u), µ), (I.10)

where dΓ is the mass dimension of ΓR and u → 0 in the continuum limit11. From (I.10) we
see that the rescaling of energies, in the limit when masses can be neglected, is summarized

9A very good account on some of these issues can be found in [Sho07, Ban08, AGVM12, Hol13].
10The functional form of the β-functions appearing in (I.8) and (I.9) is intimately related. In fact, from the

relation between bare and renormalized couplings, gR(µ) = Z
(
µ
Λ
)
g0(Λ), it is easy to see that d ln gR

d lnµ = d ln g0
d ln Λ ,

i.e. β(g0) = g0
gR
β(gR). In particular, both β-functions have the same zeros.

11Solution of equation (I.8) is identical to that of (I.9) with the evident substitutions Λ ↔ µ, g0 ↔ gR,
and η(g0)↔ −γ(gR). The effective (floating) cutoff is then Λ/u, which goes to infinity as u→ 0.
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I. High Energy Scattering in QCD

by two effects: 1) naive dimensional analysis breaks12, and instead of a simple overall
factor udΓ we get also a modification determined by the γ function, called the anomalous
dimension; 2) the coupling gR at the scale µ is replaced by geff(u), or geff(E) with E = µ/u,
which is called the running coupling and plays the role of an effective renormalized coupling.

Removing the cutoff (sending u→ 0) means that geff(u→ 0) approaches a zero of the beta
function, as can be seen from the formula

∫ geff(u)
g0

dg′

β(g′) = ln u13. In order not to end with
a trivial (with all couplings being infinity) or scale-invariant theory (in which all relevant
couplings are zero) at the scale µ when Λ→∞, we must take a double scaling limit: we send
the high energy cutoff Λ→∞, simultaneously sending the bare relevant coupling constant14

closer and closer to the critical surface (the surface of null relevant couplings), in such a way
that the limit gives a theory with a finite relevant coupling at the scale µ (Fig. I.1). The
way in which this limit is taken defines the renormalization scheme.

In most cases of interest, just a small number of relevant parameters exist that encode
all the physics at the scale µ. Measuring these couplings we can make unique predictions
of the physics at the scale µ while remaining ignorant about the information encoded in
(potentially infinitely many) irrelevant couplings. This explains why physics at some scale
is shielded off from the effects of physics at much shorter distances. On the other hand, in
nonrenormalizable theories, where some of the irrelevant couplings have non-zero value at
the scale µ, we cannot consistently remove the cutoff: when Λ→∞ those couplings need to
grow without bound (Fig. I.1)15. So nonrenormalizable QFTs are not consistent theories
for all energy scales, in this sense they cannot be fundamental. However, they are perfectly

12This is a consequence of dimensional transmutation: UV divergences force us to introduce a new dimen-
sionful scale, the cutoff Λ, which is eventually traded for the renormalization point µ.

13This is a general property of RG flow when it occurs in multi-dimensional coupling (or theory) space,
and is based upon the fact that the asymptotic behavior of gradient flows is dominated by fixed points
[Pol84]. Fixed points, corresponding to scale-invariant (usually conformal) theories, are relatively few in the
space of theories. This leads to the phenomenon of universality: since points on the same RG trajectory
describe the same macroscopic physics, all the points on the critical surface that lie in the basin of attraction
of the same fixed point correspond to equivalent theories. In this way, the space of possible renormalized
QFTs is split into a few equivalence classes —the university classes— in one-to-one correspondence with the
fixed points on the critical surface. This also expresses the idea that, though in principle one can take the
continuum limit in any point of the critical surface, most of the choices are equivalent. These are different
renormalization schemes which are just different ways of parameterizing the relevant and marginal couplings
(see below). The notion of universality appears naturally in the application of RG methods to statistical
systems, where systems apparently very different microscopically —but with the same dimensionality and
symmetries— share the same critical exponents.

14We distinguish between relevant (renormalizable) and irrelevant (non-renormalizable) operators, accord-
ing to their respective couplings flowing away or towards their fixed point values, respectively.

15This is the case for instance of QED, where one finds the Landau pole problem. In the same way triviality
in the Higgs sector is related to the Higgs coupling λ being marginally irrelevant.
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1. QCD and the Renormalization Group

Coupling Space
Irrelevant

RelevantUV Fixed Point

A B

C

D

µ

Λ

To the IR Fixed Point

Figure I.1: Flow of coupling constants in the vicinity of a fixed point with one relevant and one
irrelevant coupling. Arrows go in the direction of decreasing values of u (asymptotically u → 0).
While point A represents a theory (defined at Λ) where the relevant coupling has been tuned to the
critical surface (the vertical axis where relevant couplings are zero), the theory represented by B
will never hit the fixed point. Point D corresponds to a renormalizable QFT describing the physics
at an energy scale µ: a UV fixed point (e.g. L = 1

2(∂φ)2) is perturbed by a relevant operator (e.g.
1
2m

2φ2). Flowing further to lower energies we eventually hit an IR fixed point (in the scalar field
example, the trivial m =∞). On the other hand, point C corresponds to a nonrenormalizable QFT.
Adding a non-zero coupling to an irrelevant operator shoots us away from the UV fixed point we
naively thought we were perturbing when tracking backwards the RG flow. Adapted from [Sho07].

fine as effective field theories valid below a certain finite cutoff Λ usually identified with the
scale of new physics16. Certainly, renormalizable theories (such as the extremely successful
Standard Model) keep a distinguished role as we expect that at sufficiently low energies all
non-renormalizable interactions are highly suppressed by powers of the cutoff. Nevertheless,
irrelevant operators, though suppressed, may have observable effects, especially when they

16One could think that the need to fix an infinite number of quantities by comparison with experiment,
makes non-renormalizable theories to lose their predictive power beyond tree level. However, this is only an
apparent disaster. The point is that non-renormalizable terms are damped by powers of the cutoff. Thus,
taking for definiteness a coupling with mass dimension −2, λ ≡ 1/M2, and having just one typical energy
scale µ, the renormalized perturbative expansion of an N -point amplitude AN to order n reads

AN (µ) = A0
N (µ)

[
1 + c1

µ2

M2 + c2

(
µ2

M2

)2

+ · · ·+ cn

(
µ2

M2

)n]
(I.11)

While c1, · · · , cn−1 are finite and calculable, once renormalized the amplitudes AI , I > N , because of the
genuinely new divergence at order n, the coefficient cn must instead be fixed by comparison with experiment,
and this is the source of the lack of predictivity. However, at low energy µ � M , lack of predictivity in cn
becomes irrelevant as it is multiplied by the very small quantity (µ/M)2n. So, to any given accuracy, only
a finite number of parameters must be determined experimentally. Of course, we see from (I.11) that non-
renormalizable theories break completely at energies µ ∼ M (it is remarkable, by the way, that the theory
predicts its own range of validity; considering the Standard Model as an effective theory, it is expected to
break as a good description at most at energies ΛSM ∼MPlanck = 1.2 · 1018 GeV). The program we have just
outlined has been applied to computation of quantum corrections in gravity [Don95].
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I. High Energy Scattering in QCD

induce phenomena that cannot be produced by renormalizable terms (e.g. baryon number
non-conservation). Indeed, our best current way to add neutrino masses to the Standard
Model Lagrangian is through a dimension-five (non-renormalizable) operator [Wei79a].17

Reformulation of QFTs as effective field theories that include the relevant degrees of
freedom at some energy scale [Pol92, Man96, Pic98] is as well a very powerful method
for the analysis of multi-scale problems. It simplifies practical calculations and allows to
derive results which are only very hard or even impossible to be obtained from the parent
QFT. In the case of QCD, popular examples of such effective theories are Chiral Perturba-
tion Theory (χPT) [Wei79b], Soft-Collinear Effective Theory (SCET) [BFPS01, BCDF02],
Heavy Quark Effective Theory (HQET) [Geo90] or Non-Relativistic QCD (NRQCD) [CL86].

According to Wilson’s RG picture, to obtain an effective field theory valid up to some energy
scaleM , one divides the fields in the parent theory in high and low frequency modes separated
by some cutoff Λ < M : φ = φL (ω<Λ) + φH (ω>Λ), and obtains the Wilsonian effective action
for cutoff Λ by making the path integral over (integrating out) the hard modes18

Z[JL] =
∫
DφLDφH eiS(φL,φH)+i

∫
ddx JL(x)φL(x) ≡

∫
DφL eiSΛ(φL)+i

∫
dDx JL(x)φL(x) (I.12)

The effective Lagrangian is nonlocal on scales ∆xµ ∼ 1/Λ, and can be written in terms of
local fields using Wilson’s OPE [Wil69], Leff

Λ (x) = ∑
i giOi(x). The Wilson coefficients gi are

determined by matching with the original theory. Only a small number of local operators
Oi(x) is actually relevant, as can be seen from power-counting arguments19 [Neu05, Ynd06].

In Chap. III we will focus on the formulation of an effective action for high-energy QCD.
We will see how this program is difficult to apply in this kinematic region, which problems
arise and how can one make sense of the non-Wilsonian Lipatov’s action.

17It is somewhat ironical that this scaling with the cutoff faces us with very difficult questions when applied
to the well-behaved renormalizable terms. Their couplings should be of order a certain non-negative power
of ΛSM. If they turn out to be much lower, this must be seen as a fine tuning. This is the basis of the Strong
CP Problem (why Θ� Λ0

SM), the Hierarchy Problem (why mHiggs � Λ2
SM), and the Cosmological Constant

Problem (why Λ � Λ4
SM, where Λ here denotes the cosmological constant). This last puzzle entails a fine

tuning of more than 120 orders of magnitude [Wei89, Bou07].
18When this integral is gaussian, it is equivalent to substitute φH by their equations of motion.
19The idea is the same as before: at low energy (E � Λ < M), the contribution of a given operator Oi in

the effective Lagrangian to an observable (which for simplicity we assume to be dimensionless) is expected
to scale on the basis of naturalness as Ci(M/E)γi , with Ci ∼ O(1) and γi the mass dimension of gi. Only
those operators whose couplings have γi ≥ 0 are relevant at low energies. Usually one can construct with
the low-energy fields few operators compatible with symmetry satisfying this condition.
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1. QCD and the Renormalization Group

1.3 From Confinement to Asymptotic Freedom

Returning to equation (I.9), we can see that the qualitative behavior of a theory in the IR
and UV is controlled by the sign of the β-function near the RG fixed points (Fig. I.2).
Defining the perturbative series for the β-function as

β(g) = −g
(
β0
αs
4π + β1

(
αs
4π

)2
+ · · ·

)
, αs ≡

g2

4π , (I.13)

the result found by Gross, Wilczek and Politzer for β0 is20 [GW73, Pol73]

β0 = 11
3 Nc −

2
3Nf . (I.14)

β(g) β(g) β(g) β(g)

g g

g g
g∗ g∗

(a) (b) (c) (d)

Figure I.2: (a) Ultraviolet stable fixed point; (b) Infrared stable fixed point; (c) Asymptotically free
theory; (d) Infrared fixed point. Arrows denote evolution to the UV.

The computation of this result is worked out in detail, for instance in [GSS02, Sre07, IFL10].
It shows that in QCD (Nc = 3, Nf < 33/2) β0 > 0 and the theory is asymptotically free. To
arrive at this result, one renormalizes the bare couplings and fields appearing in (I.1) and
(I.6), denoted with 0

Aa0,µ = Z
1
2
AA

a
µ, ψ0 = Z

1
2
ψψ, η

a
0 = Zηη

a, η†a0 = η†a, g0 = Zgg, m0 = Zmm, ξ0 = Zξξ, (I.15)

giving rise to a Lagrangian in which we explicitly show the addition of counterterms (that
produce new vertices so to speak) by defining δZi = 1− Zi21

20The story of the discovery of asymptotic freedom is quite curious. For many years, a folklore theorem
based on Lehmann positivity [Käl52, Leh54] ruled out the possibility of asymptotic freedom [Hos74]. The
wavefunction renormalization unitarity bound does not apply, however, in non-abelian gauge theories, due to
the existence of states of negative norm in the Hilbert space, viz. ghosts. G. ’t Hooft had computed correctly
(at least the sign of) the beta function before 1973 [tH72], but decided not to publish it for the moment.
Asymptotic freedom could have been discovered even before [Shi01].

21We have directly assumed some relations between the couplings of the possible counterterms that pre-
serve the gauge invariance of the renormalized Lagrangian. These relations follow from the Slavnov-Taylor
identities [Tay71, Sla72], which are a generalization of the Ward identities in QED. While in QED fixing a
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I. High Energy Scattering in QCD

LQCD = −1
4(∂µAaν − ∂νAaµ + gfabcAbµa

c
ν)2 − 1

2ξ (∂µAµa)2 + ψ̄(i/∂ −m)ψ + gAaµψ̄γ
µtaψ

− ηa†∂µ(δab∂µ − gfabcAcµ)ηb + δZψψ̄i/∂ψ − (ZψZm − 1)ψ̄mψ − 1
4ZA(∂µAaν − ∂νAaµ)2

− (ZgZ3/2
A − 1)g∂µAaνfabcAb,µAc,ν + (ZgZ1/2

A Zψ − 1)gAaµψ̄γµtaψ − δZηηa†�ηa

− 1
4(Z2

gZA − 1)g2fabcAbµA
c
νf

adeAd,µAe,ν − (ZgZ1/2
A Zη − 1)gηa†fabc∂µAcµηb.

(I.16)

Notice that Zg appears always together with other renormalization constants in (I.16).
Hence, in order to determine it, one has to work out the radiative corrections coming
from several diagrams, unlike in QED, where the vacuum polarization diagram com-
pletely determines charge renormalization. In particular, one needs to compute the radiative
corrections to the quark propagator, the quark-quark-gluon vertex and the gluon propagator.

Nowadays, the QCD β-function is known to four loops [Cas74, Jon74, TVZ80, vRVL97]. For
these higher order corrections, one must specify the renormalization prescription22. Usually
it is most convenient to use dimensional regularization [tH73a], where renormalization
constants Zi are needed in order to cancel the poles in ε ≡ d/2 − 2 that appear23. The
computed Zg, in MS scheme, will have the form Zg = 1 + ∑∞

n=1
Z

(n)
g

εn
, Z(n)

g = ∑∞
k=n ckng

2k.
From the independence of the bare coupling with respect to µ, it follows that β(g) = g2 dZ

(1)
g (g)
dg

.

From (I.14), we get the running of the coupling at one loop

αs(µ) = αs(µ0)
1 + αs(µ0)

4π β0 ln
(
µ2

µ2
0

) . (I.17)

gauge does not break conservation of the electromagnetic current, from which the Ward identities providing
relations between Green functions that ensure gauge independence of observables follow (though there are
some subtleties, see [LP11]), in non-abelian gauge theories fixing the gauge implies breakdown of current
conservation. So simple Ward identities do not hold.

22The first two coefficients of the β-function, β0 and β1 can be shown to be independent of the renormal-
ization scheme (see, for instance, [Ynd06]), while the rest βi, i ≥ 2 is not. We notice, however, that this
assertion is only valid in the limit of negligible masses, or for mass independent schemes like MS ones. In the
MOM schemes (Sec. II.2.3) even the first coefficients depend on masses. This, which usually is a drawback
of MOM as compared to MS, is sometimes useful. In particular, in MS schemes β and γ functions are mass
independent, while it is quite unnatural that they contain contributions from all quarks independently of
their masses (for energies below their mass, quarks will not be excited in loops). This is in contradiction
with the Appelquist-Carazzone decoupling theorem [AC75]. What one usually does is to introduce by hand
the notion of active flavors: in Eq. (I.14) Nf only stands for the number of quark flavors with a mass m . µ.

23In the MS scheme one removes the combination 1
ε̄ ≡

1
ε − γE + ln 4π, where γE is Euler’s constant. The

renormalization scale µ enters by giving correct dimensions to the coupling: g0 = Zgµ
−εg.
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1. QCD and the Renormalization Group

In terms of the position ΛQCD of the infrared pole of g(µ) we have24:

ln
(

µ

ΛQCD

)
= −

∫ ∞
g(µ)

dg

β(g) ; αs(µ) = 4π

β0 ln
(

µ2

Λ2
QCD

) . (I.21)

After this rather technical sketch of how to compute the β-function and obtain the running
coupling from it, let us address the physical picture behind asymptotic freedom. In theories
like QED, the charge one would observe at small distances (to be associated in a sense with
the bare charge) is screened at large distances by a cloud of virtual electron-positron pairs
that create a dipole field shielding the charge (Fig. I.3).

qG R

RG

RB BG

RB

BB
BG

RG

GGGRBG

RG GB

BBBGRB

BR

+

R B B G G
Test Charge

(a) (b)

Source Source

Test Colour Charge

Screening Antiscreening

−

q q q q q

e+ q

Figure I.3: Screening (a) and antiscreening (b) of color charge. BG, for instance, denotes a
“blue-antigreen” gluon. Adapted from [Nag10].

This phenomenon also occurs in QCD. But here, due to the non-abelian character of the
theory —which implies gluon self-interactions— a new competing phenomenon is present.

24ΛQCD, the scale at which according to (I.17) the coupling becomes infinite, is the so-called Landau pole.
In ill-defined non-asymptotically free theories like QED, this scale is assumed to give the energy at which
the theory breaks (as a good effective theory). In QCD, it should be taken as the scale at which the theory
becomes strongly coupled and the perturbative treatment is no longer reliable. We also note here that, in
higher orders, the definition (I.21) becomes unhandy; it is more convenient to write the solution of (I.13) as

τ ≡ β0 ln
(
µ2

Λ2

)
= L

(
αs(µ)

4π

)
, (I.18)

with

L(a) = 1
a

+ β1

β0
ln(β0a) + 2β0

∫ g

0
dx̃

[
1

β(x̃) −
1

β(2)(x̃)

]
= 1
a

+ β1

β0
ln(β0a) +

∫ a

0
dx

[
1
x2 −

β1

β0x
+ β0

β(4π
√
x)

]
.

(I.19)
Differentiating with respect to a we can see that β(g) = dg/d lnµ as expected, and the integrand is regular
as x→ 0 (see, e.g. [IFL10]). In the 3-loop approximation we get with this representation

αs(µ) = 4π
β0 ln

(
µ2

Λ2

)[1− β1

β2
0

ln
(

ln
(
µ2

Λ2

))
ln
(
µ2

Λ2

) + β2
1

β4
0 ln2

(
µ2

Λ2

) ((ln
(

ln
(
µ2

Λ2

))
− 1

2

)2

+ β2β0

β2
1
− 5

4

)]
. (I.20)
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Gluon virtual loops also give rise to a diamagnetic effect, but at the same time produce an
antiscreening dipole contribution larger by a factor of 12 (see [PS95] for a simple discussion
of the SU(2) case). A qualitative explanation of this is shown in Fig. I.3: if, for instance,
a red quark emits a red-antigreen gluon25 that gives rise to a sequence of splittings, the
quark becomes surrounded by a multitude of virtual gluons that bear its color, thereby
magnifying it. This intuitive interpretation of β0 > 0 is justified by a method designed by
Hughes [Hug81] and Nielsen [Nie81], in which one views the vacuum state as a magnetic
medium, and finds β0 through the response to an external magnetic field. The method is
applicable to any field theory and brings out the interesting view that asymptotic freedom
is the outcome of a competition between Landau diamagnetism and Pauli paramagnetism,
and depends crucially on the spins of the fields in the theory.

Asymptotic freedom is very useful because it tells us that perturbative calculations are
trustable at high momentum transfers. As measured at energies of the order of the mass
of the Z boson, the strong coupling is αs(MZ) = 0.1184(7)26 [Par10]. However, at low
energies, following (I.17) αs becomes bigger. Eventually, for µ sufficiently small, the strong
coupling must become large enough to invalidate perturbation in αs. Putting in the numbers,
and remembering to remove the contribution of each quark flavor as µ falls below its mass

25To see how color charge “flows” in quark-gluon-quark interactions, consider the SU(3) generators, in the
usual Gell-Mann parametrization, forming the following linear combinations between them, while leaving
untouched the diagonal ones (t3 = 1

2diag(1,−1, 0) and t8 = 1
2
√

3diag(1, 1,−2)):

τ12 = t1 + it2 =

0 1 0
0 0 0
0 0 0

 ; τ13 = t4 + it5 =

0 0 1
0 0 0
0 0 0

 ; τ23 = t6 + it7 =

0 0 0
0 0 1
0 0 0

 . (I.22)

The matrix τij is a “color raising” matrix, which changes a quark of color j into one of color i. The hermitian
conjugate τ †ij = τji does the reverse. Now, defining the fields

Aµ ≡ Aµ3 ; Bµ = Aµ8 ; Xµ = 2−1/2(Aµ1 + iAµ2 ); Y µ ≡ 2−1/2(Aµ4 + iAµ5 ); Zµ ≡ 2−1/2(Aµ6 + iAµ7 ), (I.23)

we can rewrite the term in the Lagrangian having to do with quark interactions as

Lquark int = gψ̄ /Aat
aψ = gψ̄(t3 /A+ t8/B)ψ + g√

2
[ψ̄(τ21 /X + τ31 /Y + τ32 /Z)ψ + c.c.]. (I.24)

From this we see that quarks carry two charges, denominated color isospin and color hypercharge, corre-
sponding to eigenvalues of t3 and t8, and they change color by emitting or absorbing the gluons X,Y, Z (which
also carry charge in this way). So we can speak of having six color-anticolor gluons (e.g. red-antigreen) and
two kind of ‘white’ gluons. For an analysis of color flow in gluon-gluon interactions see [Hua92].

26The coupling in itself is not a physical observable, but rather a quantity defined in the context of per-
turbation theory, which enters predictions for experimentally measurable observables. Therefore, it depends
on the renormalization scheme. The values given here are in MS scheme.
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threshold, one finds using (I.17)

αs(MZ) ' 0.12, αs(mb) ' 0.20, αs(mc) ' 0.30, αs(ms) ' 1.7, (I.25)

where mb,mc and ms are the masses of the bottom, charm and strange quarks, respec-
tively27. Since the combination αs/4π is the typical factor accompanying a loop correction,
we may estimate that, although perturbation theory works well for mb ∼ 5 GeV, and is
marginally acceptable for mc ∼ 1.4 GeV, it is expected to fail around µ ∼ ms ∼ 200 MeV.
This is the scale corresponding to ΛQCD. Below this threshold we should expect a dominant
role of non-perturbative effects. The one-loop result (I.17) is not trustable.

So we see that asymptotic freedom at high energies indirectly points to infrared slavery.
This allows us to expect that QCD explains confinement dynamically. Indeed, confinement
is necessary for the consistency of asymptotic freedom. Because of antiscreening, the cloud
of virtual particles surrounding an isolated charge would grow to infinity in a self-reinforcing,
runaway process. The formation of this cloud would cost infinite energy. So an isolated quark
would have infinite energy, and could not exist by itself. It is necessary that it is bounded,
for instance, with an antiquark —whose cloud of charge would cancel the primitive one
when overlapping— to form a meson. A hadron is built in an energetic compromise between
Pauli principle forbidding its constituents to get too close and the energy associated to the
non-canceled contributions to the charge cloud.

1.4 Changing the Renormalization Scheme

To conclude this crash introduction to renormalization, we will study in this section the
ambiguities in perturbative computations derived from the freedom to choose the renormal-
ization prescription. To be concrete, we consider the perturbative expansion of an observable
R which, for simplicity, we choose to be dimensionless and only dependent on one energy
scale Q:

R(Q) = aN(µ)
1 + r1

(
Q

µ

)
a(µ) + r2

(
Q

µ

)
a2(µ) + · · ·

, a = αs
4π = g2

(4π)2 , N > 0. (I.26)

As we saw before, renormalizability of the theory ensures that the perturbative predictions
for physical observables R do not depend on the choice of renormalization scheme (RS), if
we calculate them to all orders. In practice, of course, we have an nth order calculation R(n)

27Due to confinement, the definition of quark masses is not an easy issue, see [Par10], Sec. 9.1.2.
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I. High Energy Scattering in QCD

and all we can say is, formally,

∂R(n)/∂(RS) = O(aN+n). (I.27)

While, in principle, any choice of scheme and scale is admissible, a wrong choice leads to
a bad convergence of the series (I.26) and therefore a large deviation of R(n) from R(Q).
Since it is unlikely, in general, that the most suitable RS for comparing to data is also the
most suitable for calculation, we must know how to transform our result to a new scheme.
Changing from a scheme RS to a new one RS amounts to give a set of quantities {µ, vi}
relating its couplings by

ā(µ̄) = a(µ)
[
1 +

∞∑
k=1

vk

(
µ̄

µ

)
ak(µ)

]
. (I.28)

To be more precise, we will consider results to second order in the coupling

R(2)(Q, µ) = aN(µ)
(

1 + r1

(
Q

µ

)
a(µ)

)
. (I.29)

Here a is really a(2), the solution of the truncated RG equation

1
2
d ln a
d lnµ = −β0a− β1a

2. (I.30)

One can check that (I.30) is invariant, to order O(a3), under the simultaneous rescalings

µ→ µ̄ = ξµ; a→ ā = a(1 + v1a), with v1 = −2β0 ln ξ. (I.31)

So we conclude that, to second order, a change of scheme is basically implemented by a
rescaling of the scale µ, which is exactly the opposite of that for the Landau pole Λ28:

Λ̄ = Λ exp(v1(1)/2β0). (I.32)

28With the generalized definition (I.19), one can use the fact that as an integration constant Λ does
not depend on µ to show that by virtue of asymptotic freedom the relation (I.32) holds to all orders in
perturbation theory [CG79b].
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2 A Tale of Two Limits
2.1 The Paradigm of Deep Inelastic Scattering: Factorization and

DGLAP Evolution

Hadronic scattering, due to the intrinsically non-perturbative scale corresponding to the
binding of quarks and gluons into hadrons, is very difficult to study. When the center-
of-mass energy is large (s > (few GeV)2), the problem becomes tractable to some extent,
because the large value of s sets a scale in the problem where the interactions are weak29.
This means that some quantities are computable or, to be more precise, one can derive
relations between what will be measured in different experiments.

The simplest example of hadronic scattering at high energies is provided by electron-proton
deep inelastic scattering (DIS): e−p → e−X, where X means the multi-hadron final state.
It is convenient to express the kinematics of the process in terms of the following standard
Lorentz invariants (Fig. I.4)

s ≡ (p+ k)2 center-of-mass energy squared;

Q2 ≡ −q2 = −(k − k′)2 virtuality of the photon;

W 2≡ (p+ q)2 = m2
p + 2ν −Q2 invariant mass of hadronic state X;

ν ≡ p · q/mp e− energy loss in proton (p) rest frame;

x ≡ Q2/2p · q = Q2/2mpν Bjorken variable;

y ≡ p · q/p · k fractional energy transferred in p rest frame.

(I.33)

p

e− e−

X

γ,Z

k k′ = k − q
q

p p + q

Figure I.4: Kinematics of DIS. k and p are known from the experimental setup, and k′ is obtained
by measuring the deflected lepton.

29Low energy scatterings (e.g. e−p+ scattering) when there is no energy to prove the structure of the
proton, and scattering involving pions and kaons at slightly higher energies, where chiral perturbation theory
applies, are two other regimes susceptible of good quantitative analysis.
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I. High Energy Scattering in QCD

When Q2 � m2
p, the virtual photon is a well known probe to study the hadron not involving

the strong interactions30. The fact that W 2 ≥ m2
p implies according to (I.33) that 0 ≤ x ≤ 1,

with x = 1 when the proton is scattered elastically. Neglecting the electron mass we also
have the important relation

xy = Q2

s−m2
p

' Q2

s
(0 ≤ y ≤ 1). (I.34)

The simplest cross-section we can compute is the total inclusive one in which we sum over
all possible hadronic final states:

E ′
dσep
d3k′

=
∑
{X}

∫ dΠX

32π3(s−m2
p)

(2π)4δ(p+ k − k′ − pX)〈|AX |2〉, (I.35)

where we have used (A.25)-(A.27) (approximating Källén’s λ to first order in mp/s) and
〈 〉 indicates average over all spin polarizations of the initial state and sum over those in
the final state. The amplitude is decomposed into an electromagnetic part and a hadronic
matrix element

AX = ie

q2 [ū(k′)γµu(k)]〈X|Jµ(0)|P (p)〉, (I.36)

where Jµ is the hadron electromagnetic current coupling to the photon and |P (p)〉 denotes
the state of a proton with momentum p. Squaring the amplitude we have

E ′
dσ

d3k′
= 1

32π3(s−m2
p)
e2

q4 4πLµνWµν , (I.37)

where the leptonic tensor (neglecting the electron mass) is

Lµν ≡ 〈ū(k′)γµu(k)ū(kγνu(k′)〉 = 2(kµk′ν + kνk′µ − gµνk · k′), (I.38)

and Wµν , the hadronic tensor, is defined by

4πWµν ≡
∑
{X}

∫
dΠX(2π)4δ(p+ q − pX)〈〈P (p)|J†ν(0)|X〉〈X|Jµ(0)|P (p)〉〉

=
∫
d4y eiq·y〈〈P (p)|J†ν(y)Jµ(0)|P (p)〉〉.

(I.39)

Wµν cannot be calculated by perturbative methods. It can only depend on the vectors
q, p and the invariants which can be formed from them, Q2 and x. Based only on its

30This is not true in the photoproduction regime. When the virtuality of the photon is small it can
fluctuate e.g. into a ρ meson.
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tensorial structure, parity and time-reversal symmetry (W µν = W νµ) and the Ward identity
qµW

µν = 031, we can express W in terms of two scalar structure functions F1,2(x,Q2)32:

W µν(x,Q2) =
(
−gµν + qµqν

q2

)
F1(x,Q2) + p̂µp̂ν

p · q
F2(x,Q2); p̂µ ≡ pµ −

qµ
2x. (I.40)

F1 and F2 turn out to be positive. Contracting (I.38) and (I.39) one eventually finds

dσ

dx dy
= 4πα2s

Q4

(
xy2F1(x,Q2) +

[
1− y −

xym2
p

s

]
F2(x,Q2)

)
. (I.41)
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Figure I.5: SLAC results on DIS for structure functions F2 and FL. Adapted from [GLV07].

Having presented the basic aspects of DIS (see [Rob90, DCS09] for further details), we
will illustrate with this process two main features of QCD: factorization and evolution. Of
course, discussing these questions in any depth is beyond the aim of this text, and we refer
the reader to [GSS02, Mut10, IFL10] for extensive discussion, and to [GLV07] and [Man99]
for good crash introductions to factorization and evolution respectively. In our approach,
we will discuss the parton model as a motivation for scaling and factorization, and will show
how corrections arise perturbatively in this picture when considering interactions. We will
also be interested in showing that DGLAP evolution is equivalent to a resummation of a
tower of diagrams enhanced by collinear logarithms.

31A brief reminder of the consequences of Ward identities in the polarization structure of am-
plitudes: in QED, when considering an amplitude involving M incoming photons with momenta
kµii , i = 1, · · · ,M , and N outgoing photons with momenta κνii , i = 1, · · · , N , it has the form
A = ε∗ν1

(κ1) · · · ε∗νN (κN )Mν1···νN
µ1···µM ε

µ1(k1) · · · εµM (kM ). Then Ward identities imply that κj,νjM
ν1···νN
µ1···µM =

Mν1···νN
µ1···µMk

µi
i = 0 for any i, j, irrespectively of the value of κ2

j or k2
i (not necessarily on shell), while all

the other momenta are put on shell. This is the result we apply when demanding qµWµν = 0. In QCD, the
analogous restriction for an amplitude with several external gluons is not that constraining: one gets zero for
A if replacing one or several polarization vectors by its corresponding momenta, provided that all of these
kj ’s and κi’s, with the exception of at most one of them, satisfy k2

j = 0 and κ2
i = 0 [LP11].

32A term iεµναβ
qαpβ
2p·q F3(x,Q2) is to be added to Wµν when considering neutrino-initiated DIS, since weak

interactions violate parity. Five additional structure functions dependent on the spin vector s are necessary
when not performing the spin average.
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I. High Energy Scattering in QCD

The parton model proposed by Bjorken and Feynman [BP69, Fey70] was born to explain
the result of the DIS experiments at SLAC (Fig. I.5). It was found that electrons were
scattered with large transfers of momentum more frequently than anticipated [Pan68],
what suggested that the proton contained discrete scattering centers within. Furthermore,
the distribution of scattered electrons in energy and angle exhibited the phenomenon of
Bjorken scaling in the deep inelastic regime (formally Q2 → ∞ with ν/Q2 fixed), which
basically states that the structure functions F1,2 defined in (I.40) (' the DIS cross section
once removed the kinematical dependence of the QED cross section) only depend on the
dimensionless invariant x and not on Q2. This suggested that scattering centers had no
internal structure, and hence were pointlike, since there is no dimensionful scale we could
relate with the size of the target.

The main assumption of the parton model, which considers hadrons as consisting of pointlike
constituents called partons (to be later identified with quarks, antiquarks and gluons) is
that we can neglect parton interactions —so that their number and momenta is conserved—
during the time τint they are probed, the same way we assume atoms to be instantaneously at
rest when describing X-ray diffraction (impulse approximation). In this picture the variable
x can be given a suggestive interpretation. If ξ is the hadronic momentum fraction carried
by a parton, then neglecting the hadron mass and taking the final parton to be on shell

0 ' (ξp+ q)2 ' 2 ξ p · q −Q2 =⇒ ξ = x, (I.42)

i.e. the Bjorken variable is the momentum fraction carried by the interacting parton.
Remarkably it can be measured in DIS by detecting only the scattered lepton.

For the naive parton interpretation to be valid one must work in a reference frame in
which the initial hadron is highly boosted, so that pµ '

(
p+ m2

2p , 0, 0, p
)
, p → ∞.33 In

this frame the transverse momentum of partons can be neglected and no interaction with
vacuum fluctuations arises because their lifetime is considerably smaller than that of partons
[GLR83]; moreover the photon has a very small energy that prevents it from developing its
own parton showers. Such simplicity is lost in the target rest frame, say (Fig. I.6).

33There are infinite choices of such frames that respect the invariants x and Q2, according to the form of
q. One such choice is the Breit frame q = (0, 0, 0,

√
Q2), p =

√
Q2/2x. Another choice is q '

(
Q2

2px , q⊥, 0
)

,
with Q2 = q2

⊥.
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p p p

e e e

e′ e′ e′

γ∗(Q2) γ∗(Q2) γ∗(Q2)

(a) (b) (c)

Figure I.6: Simplicity of the parton model description of DIS space-time structure is lost in
the target rest frame, since in general one must consider time-ordered processes [Gri00] where the
virtual photon creates pairs (a) or scatters in vacuum fluctuations (b), in addition to the scattering
on parton constituents present in the target wavefunction (c). In the limit of large photon energy
process (a) is dominant [DKMT91].

Using the infinite momentum frame we can make the impulse approximation τfree � τint

more quantitative. τfree is the lifetime of a certain partonic configuration inside a nucleus,
and can be estimated as the inverse of the binding energy, which is expected to be at
most the proton mass: τfree & m−1

p . On the other hand, a high energy nucleon as viewed
from the incident electron looks like a flat pancake due to Lorentz contraction by a factor
1/γ ' mp/E, with E the energy of the nucleon. τint is roughly the time that the electron
takes to pass through the nucleon. Since the nucleon has size ∼ m−1

p in its rest frame,
τint ' 1/E and, for E � mp, as is the case in the infinite momentum frame, τint � τfree.34

The parton picture is of course only consistent in an asymptotically free theory, where
interactions are switched off (logarithmically in the case of QCD) at asymptotically high
momenta. It tells us that, because of the hierarchy of scales involved, the DIS cross section is
the incoherent sum of cross sections for scattering off the individual components of the target.

34There is still another condition to be fulfilled in order for the parton picture to apply, namely τph � τfree,
where τph is the duration of the interaction between the virtual photon and one parton

1
τph
∼ q0 ∼

√
p2 +W 2 −

√
p2 +m2

p ∼
W 2 −m2

p

2p = 2mpν −Q2

2p = Q2

2p

(
1
x
− 1
)
. (I.43)

From the parton point of view a finer estimate than m−1
p for τint can be obtained as the energy difference

between the nucleon state and the sum of free partons

1
τfree

∼ ∆E =
√
p2 +m2

p −
∑
i

√
(xipi‖)2 + p2

i⊥ +m2
i ∼

1
2p

[
m2
p −

∑
i

(
m2
i + p2

i⊥
2xi

)]
, (I.44)

where we used that
∑
i xi = 1. τph will be much shorter than τfree if Q2 � m2

p and 1 � xi � µi/p, pi⊥/p.
Summing up, the condition for the impulse approximation to hold is being in the Bjorken asymptotic limit

E, Q2, 2mpν � m2
p, i.e. Q2, ν →∞ with x fixed. (I.45)
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Thus, if we introduce the parton distribution functions fi(ξ), (i = q, q̄, g) as the probability
to find a parton (quark/antiquark/gluon) carrying a fraction ξ of the longitudinal momentum
of the target, we can write the DIS differential cross section dσ (I.41) in the factorized form

dσ =
∑
i

∫
dξ fi(ξ)dσ̂ei→ei

(
x

ξ

)
,

dσ̂

dy
= 1

16π(ξs)2
1
4
∑
λλ′ηη′

A(ei→ei)
ληλ′η′ A

∗(ei→ei)
ληλ′η′ , (I.46)

where Aei→ei is the amplitude for electron-parton scattering via photon exchange. The only
nonvanishing amplitudes are

A++++ = A−−−− = 2ie2ei/y, A+−+− = A−+−+ = 2ie2ei(1− y)/y. (I.47)

ei are the electric charges of partons. Substituting these expressions in (I.46) and comparing
with (I.41) we find that, within the parton model35

F1(x) = −x2g
µνWµν =

∑
i

e2
ixfi(x)δ(x− x′i); FL ≡ F2 − 2xF1 = 0. (I.48)

The relation FL = 0 (Fig. I.5) is the Callan-Gross relation [CG69], first derived in the
framework of current algebra [TJZW85, Cao10], and is a consequence of having assumed
partons to be pointlike fermions with spin 1/236. The verification of the Callan-Gross
relation at SLAC pointed to an identification of partons and quarks. Things are, however,
not so simple. Even supplementing the quark contribution of the valence quarks of the
proton with contributions from the sea of virtual quark-antiquark pairs, the observed cross
section was found to be uncomfortably small [BP69]. Data clearly indicated that there must
be also electrically neutral partons: this is the contribution from gluons.

For all its success, the parton model cannot be the last word, however. No matter
how large Q2 may be making the interaction time smaller, in a quantum field theory
fermions interact by exchanging virtual particles, which can have arbitrarily high mo-
menta, thus having fluctuations associated to arbitrarily short time scales. Even in an
asymptotically free theory, at any finite value of Q2 the coupling will not be zero. So one
expects that QCD calculations reveal violation of Bjorken scaling (Fig. I.7). In order to
see how they arise, consider the first order corrections to γ∗q scattering, depicted in Fig. I.8.

35FL, the longitudinal structure function describes the inclusive cross-section between the proton and a
longitudinally polarized proton. F1 and F2 can also be related, via the optical theorem (App. A), to the
total cross section of virtual photoabsorption [BP02].

36Had we taken scalar partons, we would have found F1(x) = 0 [Chý04] (such a result can be shown to
follow from angular momentum conservation in the Breit frame, see [CL82]).
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Figure I.7: The proton structure function F2(x,Q2) vs Q2 for diverse values of x [Par10]. The line
is the next-to-leading order DGLAP fit. For display purposes c(x) = 0.6(i(x)− 0.4), i(x) = 1, · · · 24
is added to F2 each time the value of x is increased. In the frames to the right, showing combined
data from H1 and ZEUS, the asymptotic approach to exact scaling as Q2 →∞ is clearly seen.
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Figure I.8: Processes contributing to γ∗q scattering to order O(ααs). Diagram (a) is the leading
(Born level) process.

Diagrams (b) and (c) are the real emission corrections to the Born level process. They de-
velop two types of singularities: i) a collinear singularity, arising from the t-channel diagram
(b) in the limit t→ 0 (note that it is proportional to 1/(p̃− k)2 ' 1/(2p̃ · k), which diverges
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I. High Energy Scattering in QCD

when k is emitted parallel to p̃, since p̃ ·k = p̃0k0(1−cos θ) cos θ→1−→ 0, where θ is the scattering
angle in the CM frame); ii) a singularity due to soft gluon emission (when k → 0 in case (b)).

Diagram (c) is also divergent, if k is emitted parallel to p′. This second divergence turns out
to be harmless, since we are summing over all possible final states. Whether the final-state
quark keeps all of its energy, or whether it decides to share it with a gluon emitted collinearly,
an inclusive final-state measurement will not care. The collinear divergence can then be
canceled by a similar divergence appearing in the final-state quark self-energy corrections.
It turns out that soft divergences also cancel out in summing the contributions of real
gluon and virtual gluon diagrams. This is an instance of a general result on the behavior of
infrared singularities in QCD, the Kinoshita-Lee-Nauenberg (KLN) theorem [Kin62, LN64]37.

The first divergence is more serious, since from the point of view of the incoming photon
(which only sees the quark, not the gluon) it does make a difference whether the momentum
is all carried by the quark or is shared between the quark and the gluon. This means that
no cancellation between collinear singularities in the real emission and virtual emission is
possible. To learn how to deal with these singularities, we have to compute the leading
singularity contribution of diagrams (b) and (c) in Fig. I.8. The computation is performed
in detail in [Man99]. A clever choice of gauge avoids having to compute the interference
of both diagrams making it nonsingular in the collinear limit k ‖ p̃ (so that actually only
diagram (b) is to be calculated). The correct answer is a light-cone gauge (see eq. (I.5))

k · ε(k) = p′ · ε(k) = 0;
∑

εµ(k)ε∗ν(k) = −gµν + kµp′ν + kνp′µ

k · p′
. (I.49)

The following Sudakov expansion (App. B) is carried out to isolate the collinear piece

kµ = (1− z)p̃µ + βp′µ + (k⊥)µ; k2 = 0 =⇒ β = k2

2(1− z)p̃ · p′ . (I.50)

37The KLN theorem roughly asserts that, as a consequence of unitarity, transition amplitudes in a theory
with massless fields do not exhibit IR divergences (of collinear or soft origin) when one sums over all initial
and final degenerate states. This theorem ensures that one gets finite answers for completely inclusive
processes, i.e. those in which one does not register the momenta of partons in the initial or final state, like
the total cross section for e+e− annihilation, the jet cross section with fixed resolution in angle and energy,
the transverse energy flux, etc.
When one or several partons are identified by measuring their momenta, the KLN theorem no longer applies,
and the perturbative calculation presents large logarithms due to the collinear singularities. However, these
logarithms can be resummed, as we shall see. In this kind of processes, soft singularities coming from virtual
corrections and real emissions still cancel. This last class of processes includes DIS (where the active parton
momenta is known from the measurement of the lepton), or the cross section for jets with fixed invariant
mass of the observed particles. If one or more hadrons are observed, non-perturbative effects have a stronger
importance and these processes require another kind of treatment.
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2. A Tale of Two Limits

After some algebra, the important result is that the amplitude squared for diagram (b), in
the collinear limit, summed over colors and polarizations, reads

∑
a,λ

|A(b)|2 = 2g2N
2
c − 1
2Nc

1− z
k2
⊥

(
1 + z2

1− z

)
NcTr[/p′Γ/̃pΓ†]︸ ︷︷ ︸

=
∑
|A(a)|2

. (I.51)

The last term corresponds to the (averaged) Born amplitude (Fig. I.8, (a)) squared. So
the one-gluon emission process factorizes in the collinear limit into the Born process times a
factor which is independent of the beam’s nature. This is the basis of collinear factorization38

If we add the gluon phase space (App. A) dΠg ≡ d3k
(2π)32k0 = dz

(1−z)
1

16π2dk
2
⊥, we get39

∑
a,λ

|A(b)|2dΠg = dk2
⊥

k2
⊥
dz
(
αs
2π

)
Pqq(z)

∑
|A(a)|2, Pqq(z) = CF

1 + z2

1− z . (I.53)

Pqq(z) is the so-called Altarelli-Parisi splitting function [AP77] for the q → q transition. z
is the momentum fraction of the original quark taken away by the quark after gluon emission.

Now we are ready to study the corrections to the parton model cross-section. In the naive
parton picture, the cross section (e.g. for a DIS process) is given by (see also (I.46))

σ0 =
∫ 1

0
dξ
∑
i

e2
i fi(ξ)σ̂0(γ∗qi → q′i, ξ);

σ̂0(γ∗qi → q′i) = 1
Φ
∑
|A(a)|2

d3p′

(2π)32p′0
(2π)4δ4(p′ − q − p̃) = 1

Φ
∑
|A(a)|22πδ(p′2),

(I.54)

where Φ is the flux factor. Using that p′ = ξp + q, where p is the proton momentum,
p′2 = 2ξp · q −Q2 and

σ̂0(γ∗q → q′) = 2π
Φ
∑
|A(a)|2

1
2p · q δ(ξ − x). (I.55)

x is here the Bjorken variable. Inserting the last result in (I.54) we get

38For a general parton scattering process with n external legs, by making collinear legs i and j we have

lim
θij→0

|A(n)|2 = αs
πp2

k

Pk→ij(z)|A(n−1)|2, pk = pi + pj ∼ (1− z)pk + zpk, (I.52)

where Pk→ij is the splitting function [AP77, MP91]. Collinear factorization and its breakdown at the level
of the amplitude and the cross section is discussed in [CdR12].

39Further corrections have to be incorporated from the evaluation of the virtual corrections in Fig. I.8
(diagrams (d), (e) and (f)). This gives the final result shown in the caption of Fig I.9 [ESW03].
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σ0 = 2π
Φ

∑|A(a)|2

Q2

∑
i

xfi(x)e2
i = 2π

Φ

∑|A(a)|2

Q2 F2(x). (I.56)

Now, the contributions coming from the one-loop corrections give

σ1 =
∫
dξf(ξ) 1

Φ

∫∫
dz
dk2
⊥

k2
⊥

(
αs
2π

)
Pqq(z)

∑
|A(a)|22πδ(p′2). (I.57)

Using that (p′)2 = (p̃ − k + q)2 ∼ (zp̃ + q)2 = (ξzp + q)2 and δ(p′2) = 1
2p·q

1
z
δ
(
ξ − x

z

)
=

x
z
δ
(
ξ − x

z

)
, one gets

σ1 = 2π
Φ

(∑|A(a)|2

Q2

)∑
i

e2
ix
αs
2π

∫ dk2
⊥

k2
⊥

∫ 1

x

dz

z
Pqq(z)fi

(
x

z

)
. (I.58)

We then find a very important result: the inclusion of the O(αs) correction is equivalent to
a contribution to the parton distribution function:

fi(x)→ fi(x) + αs
2π

∫ dk2
⊥

k2
⊥

∫ 1

x

dz

z
Pqq(z)f

(
x

z

)
. (I.59)

So we see that, thanks to collinear factorization, we can keep the cross section expressed
as a convolution of a short distance cross section40 with (effective, scale-dependent) parton
distributions, like in (I.54). The parton densities redefinition does not depend upon the
hard process in question: it is universal. For instance, if we consider the cross section for a
hadronic collision, it can be expressed as41

σ =
∑
a,b

∫ 1

ζA
dxA

∫ 1

ζB
dxB fa/A(xA, µ2)fb/B(xB, µ2)σ̂ab

(
ζA
xA
,
ζB
xB
, αs(µ2), Q

2

µ2

)
, (I.60)

where fa/A is the probability that parton a is found in hadron A. The upper limit in the

40Notice that this is not actually a cross section at the partonic level. In particular, it depends on the
momentum scale Q2. The point is that it is computable within perturbation theory.

41A rigorous proof of collinear factorization is much harder than the arguments given here. The natural
framework in which factorization is formulated is the OPE (see, e.g. [Pok00, Mut10]). In the case of DIS, one
applies the OPE to the nonlocal product of currents appearing in (I.39). The expansion is organized in powers
of the twist t = d− s where d and s are the dimension and spin of an operator. The collinear factorization
theorem is valid up to higher twist (O(1/Q2)) corrections (notice that we have taken the collinear limit when
computing the amplitude).

The OPE approach was generalized by diagrammatic techniques in which the leading regions in a process
are identified. Factorization is possible only for processes with a limited set of momentum regions of the
space of loop and final state phase space momenta contributing to the leading power. In this way, collinear
factorization was proved for several processes like DIS, e+e− annihilation, Drell-Yan, and jet and heavy
quark inclusive production (see [CSS89] for a detailed review). Generalizations of the factorization theorems
in other kinematic configurations is currently a very active research field [Col11].
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integral
∫
dk2
⊥/k

2
⊥ in (I.59) is basically Q242. The lower limit is in principle 0. Had we

included a quark mass m, the propagator would have effectively cut off the integral at that
value of m. However, the quark is bound inside a hadron and we do not know for sure what
this value is. We tentatively cut off the integral at a scale Q0, and see what happens. The
effective parton density becomes

f(x,Q2) = f(x) + ln
(
Q2

Q2
0

)
αs
2π

∫ 1

x

dz

z
Pqq(z)f

(
x

z

)
. (I.61)

We can relate the parton densities for different choices of the factorization scale43, and this
allows us to remove the dependence on the non-perturbative scale Q0 by defining f(x,Q2)
in terms of the parton density measured at a large, perturbative scale µ2:

f(x,Q2) = f(x, µ2) + ln
(
Q2

µ2

)
αs
2π

∫ 1

x

dz

z
Pqq(z)f

(
x

z

)
. (I.62)

The physical interpretation of the effective PDFs fj(x, µ2) is that it gives (in the infinite
momentum frame) the number of partons of type j carrying a fraction x of the longitudinal
momentum of the incoming hadron and having a transverse dimension r > 1/µ. As we
increase the factorization scale µ, the number of partons will increase. Viewed on a smaller
scale of transverse dimension r′, such that r′ � 1/µ, a single parton of dimension 1/µ is
resolved into a greater number of partons. The same way, Pij(z) gives the probability of
finding a parton i in a parton of type j with a fraction z of the longitudinal momentum of
the parent hadron and transverse size less than 1/µ. This probabilistic interpretation implies
that the following sum rules must hold:

∫ 1

0
dx
∑
i

(Pqiqj(x)− Pq̄iqj(x)) =
∫ 1

0
dx x

(∑
i

[Pqiqj(x) + Pq̄iqj(x)] + Pgqj(x)
)

=
∫ 1

0
dx x

(∑
i

[Pqig(x) + Pq̄ig(x)] + Pgg(x)
)

= 0.
(I.63)

The scale µ in (I.62) is arbitrary, so f(x,Q2) should not depend on it. Imposing this require-
ment we get, in the same way we obtained the renormalization group equations

42Q2 is much greater than any transverse momentum associated to partons entering the hard interaction
(that are almost collinear to the parent proton), because of the strong ordering in the DGLAP ladder.

43The factorization scale separates grosso modo the perturbative and non-perturbative regimes. The same
way it happened with renormalization, the factorization scale dependence of the PDFs should cancel exactly
with that of the coupling, as it is not a physical scale. However, without having computed corrections to all
orders, it is necessary to take an specific choice for Q0. To avoid the appearance of large logarithms it is
usual to set both the factorization and renormalization scales to Q2

0 = µ = Q2, though one should remember
that the two scales are not conceptually the same.
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df(x,Q2)
d lnµ2 = 0 =⇒ µ2df(x, µ2)

dµ2 = αs
2π

∫ 1

x

dz

z
Pqq(z)f

(
x

z
, µ2

)
. (I.64)

This is the famous DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) equation giving
the scale dependence of the PDFs [GL72, Lip75, AP77, Dok77]. The DGLAP equation
shows that, although perturbation theory cannot be used to calculate the PDF at any
particular value µ2 = Q2

0, it can be used to predict how the distribution evolves as µ2 varies.
Recall that qi(x,Q2

0) can be obtained experimentally via qi(x,Q2
0) = 2F1(x,Q2 = Q2

0)/e2
i .

Replacing µ2 by Q2 then tells us how the structure function evolves with Q2.

The DGLAP equations effectively resum a full tower of ladder diagrams giving leading log-
arithms of Q2. To see this, define t = ln(Q2/µ2). Expanding f(x, t) in powers of t, we have
f(x, t) = f(x, 0) + tdf

dt
(x, 0) + t2

2!
d2f
dt2

(x, 0) + · · · . The first derivative is given by (I.64), while
higher derivatives can be obtained by differentiating it:

f ′′(x, t) = αs
2π

∫ 1

x

dz

z
Pqq(z)df

dt

(
x

z
, t
)

= αs
2π

∫ 1

x

dz

z
Pqq(z)αs2π

∫ 1

x
z

dz′

z′
Pqq(z′)f

(
x

zz′
, t
)

;

...

f (n)(x, t) = αs
2π

∫ 1

x
· · · αs2π

∫ 1

x/zz′···z(n−1)

dz(n)

z(n) Pqq(z
(n))f

(
x

zz′ · · ·
, t
)
.

(I.65)

We see that the n-th term in this expansion, proportional to (αst)n, corresponds to the
emission of n gluons. It is just the n-fold iteration of the one-gluon emission case. In-
deed, DGLAP equations can be obtained as a resummation of ladder diagrams with the
emission of n collinear gluons (Fig. I.10). In the same way that we have computed the

q(x) q(x)g(x) g(x)

q(z) q(z) g(z) g(z)
g(z − x) g(z − x)q(z − x) q(z − x)

Figure I.9: The Altarelli-Parisi splitting functions. To leading order, their expressions are
[ESW03]:Pqq(z) = N2

c−1
2Nc

[
1+z2

(1+z)+
+ 3

2δ(1− z)
]

; Pqg(z) = 1
2 [z2 +(1−z)2]; Pgq(z) = N2

c−1
2Nc

1+(1−z)2

z ; Pgg(z) =

2Nc
[

z
(1−z)+

+ 1−z
z + z(1 − z)

]
+
(

11Nc−2Nf
6

)
δ(1 − z), where A+ is defined through

∫ 1
0 dzA+(z)f(z) =∫ 1

0 dz A(z)[f(z)− f(1)].

qq splitting function, three more splitting functions have to be considered (Fig. I.9)44.
The DGLAP equations then become a set of coupled integro-differential equations (see, for

44Because of charge conjugation one has Pqq = Pq̄q̄ and Pqg = Pq̄g. At lowest order Pq̄q = Pqiqj = 0 (i 6= j).
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...

z

k1, x1

kn−2, xn−2
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kn, x

Figure I.10: Gluon ladder diagram.

instance, [ESW03])

d

dt

 q(x, t)
g(x, t)

 = αs(t)
2π

∫ 1

x

dξ

ξ

 Pqq
(
x
ξ
, αs(t)

)
Pqg

(
x
ξ
, αs(t)

)
Pgq

(
x
ξ
, αs(t)

)
Pqg

(
x
ξ
, αs(t)

)
 q(ξ, t)

g(ξ, t)

 . (I.66)

We will not consider its general solution, which usually is given in terms of the Mellin
moments of the distribution functions. However, we find useful to end this section with an
analytic estimate of the behavior of PDFs in the low x limit, which we will consider in next
section. In the small-x regime the dominant PDF is the gluonic one, g(x,Q2) (notice the
divergence of Pgg(x) and Pgq(x) as x→ 0, in the caption of Fig. I.9, while Pqq(x) is constant
at small x), as one can see in Fig. I.11. The enhanced contribution to Pgg at small x tells
us that in the small x regime, gluon ladders with repeated iterations of Pgg dominate in the
region x� 1, i.e. we have strong ordering in x. Indeed, the evaluation of a ladder diagram
with n rungs (Fig. I.10) requires integrations over the internal momenta exchanged between
rungs of the form

αs

∫ dk2
⊥i

k2
⊥i
· · ·

∫ dxi
xi
· · · . (I.67)

The dominant contribution to this kind of integrals comes from the region (see the arguments
in Section I.3.2) of strongly ordered transverse and longitudinal momenta45

Q2 � k2
⊥n � · · · � k2

⊥1 � Q2
0; x� xn−1 � · · · � z. (I.68)

One has

45The DGLAP equation resums the leading logarithms in Q2, corresponding to ladders strongly ordered
in transverse momenta. The requirement of ordering in the longitudinal momenta comes from the DLL
approximation.
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∫ Q2

Q2
0

dk2
⊥n

k2
⊥n

∫ k2
⊥n

Q2
0

dk2
⊥n−1

k2
⊥n−1

· · ·
∫ k2

⊥2

Q2
0

dk2
⊥1

k2
⊥1

= 1
n! lnn Q

2

Q2
0
;∫ 1

x

dxn−1

xn−1
· · ·

∫ 1

x2

dx1

x1

∫ 1

x1

dz

z
zg(z) ' 1

n!

(
ln 1
x

)n
F (0),

(I.69)

where we have used the results
∫ b
a

lnn(x/a)
x

dx = lnn+1(b/a)
n+1 and

∫ 1
a

lnn x
x
dx = − lnn+1 a

n+1 , and taken
F (0)(z,Q2) ≡ zg(z,Q2

0), the so-called input unintegrated gluon distribution, to be roughly
independent of z. For definiteness we shall use the (somewhat unphysical) ansatz

Q2F (0)(x,Q2) = Θ(1− x)Θ
(
Q2/Q2

0 − 1
)
, (I.70)

where the factor Q2 is introduced on dimensional grounds. That the integration over trans-
verse momenta gives a factor 1

n! lnn Q2

Q2
0

was seen when displaying iteratively the DGLAP
equation in (I.65). Now we also want to evaluate g(n)(x, t) in (I.65) within the small-x
approximation. Rewriting this equation in terms of F(x,Q2) = xg(x,Q2),

F (n)(x, t) = αns

∫ 1

x
dz · · ·

∫ 1

x

zz′···z(n+1)

dz(n)Pgg(z(n))
2π F (0)

(
x

zz′ · · · z(n+1) , t
)
, (I.71)

taking into account that for z → 0 (the dominant contribution in the studied regime),
Pgg(z)

2π ∼ Nc
π

1
z
, and inserting the ansatz (I.70) for F (0), one can readily use (I.69) to get

Q2F (n)(x,Q2) = 1
(n!)2

(
ᾱs ln 1

x
ln Q

2

Q2
0

)n
Θ(Q2 −Q2

0); ᾱs ≡
αsNc

π
. (I.72)

Now one can sum the contribution from all rungs using the result ∑n

(
1
n!

)2 (y2

4

)n
= I0(y) ∼

ey√
2πy , |y| � 1,, where I0 is the modified Bessel function, thus getting

Q2F(x,Q2) ∼ exp
[
2
√
ᾱs ln 1

x
ln Q

2

Q2
0

]
. (I.73)

This result [dRGP+74] shows that the gluon distribution rises steeply at small x, with an
effective power

√
ᾱs ln(1/x)
ln(Q2/Q2

0)
46 (Figs. I.11 and I.12). This is a very important result, to which

we will constantly refer in following sections. Note that although the rise is always weaker
than a power of 1/x, such a growth can be mimicked over a small region of x.

46If one includes running of αs the result of the integrations over transverse momenta is modified and the
exponent is found to decrease slightly. This reduction of the scaling violation is not unexpected: since αs
decreases at larger scales, the evolution in Q2 is slowed down.
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Figure I.11: Momentum distributions (x times the unpolarized parton distributions f(x),
where f = uv, dv, ū, d̄, s, c, b, g) and their associated uncertainties using the NNLO MSTW2008
parametrization at a scale µ2 = 10 GeV2 (to the left) and µ2 = 10, 000 GeV2 (to the right).
Adapted from [Par10].

1 1
x x

1
x

Figure I.12: The shape of structure functions can be qualitatively understood as follows: in the
naive parton model the PDF is essentially a δ-function peaked in a certain value of x, say 1/3.
When we turn on the interactions of quarks with gluons this distribution becomes smeared. Finally,
gluons are emitted with a probability ∼ dx/x. Such a factor gives a tail of sea quarks at small x.
Adapted from [CL82].

2.2 Semihard Processes and the Small-x Regime

Up to now, in our study of perturbative QCD features, exemplified by DIS, we have
considered the existence of a unique hard (perturbative) scale set by the virtuality Q2.
When moving to a kinematic region characterized by a hierarchy of two different large
scales, typically large logarithms of the ratio of scales appear in the amplitudes [Wei95],
that can compensate for the smallness of the coupling invalidating a fixed order perturbative
calculation.

In so-called semihard processes, the center-of-mass energy squared s (App. B) is much
larger than the momentum transfer |t|, and amplitudes enhanced by logarithms of the type
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[αs ln(s/|t|)]n have to be resummed to all orders in order for perturbative computations to be
reliable. According to (I.34), this high-energy limit correspond in DIS to the small-x limit,
and the dominant logarithms are of the form [αs ln(1/x)]n. In last section we took the small-
x limit of the DGLAP evolution (sometimes called the double leading log approximation).
When going to very small values of x, we need an all-orders resummation (Fig. I.13). The
small-x resummation is carried out through the BFKL program, which we will treat in detail
in Sec. I.3.

0 1 2 n− 1 n

0

1

2

n− 1

n

lnj(1/x)

lnj(Q2)

Figure I.13: The powers of lnQ2 and ln(1/x) resummed, up to the n-th perturbative order by
DGLAP LL (circles), BFKL LL (crosses) and the double leading logarithmic approximation (DLLA,
circles and crosses). Adapted from [BP02].

Interest in small-x physics was revived in the early 90’s with the discovery at HERA,
DESY, of the dramatic rise of DIS structure functions as x → 0 [H1 93]. The need for
an small-x resummation has been questioned in view that NLO DGLAP fits provide very
good agreement to experimental determination of PDFs up to rather small values of x
[MSTW09, N+08]. In Sec. I.3.5 we will make a brief review of the observables best suited
for disentangling DGLAP and BFKL dynamics. For some of them, indications have been
found in recent years of slight deviations from DGLAP predictions [ZEU06, H1 08, CFR10].

A simple kinematic estimate shows that in typical HERA kinematics the DGLAP ap-
proximation is still reliable. The rapidity span (App. B) at HERA is approximately
[Lev97, FSW05] ln(Q/xmp) ∼ 10 for x = 10−4 and Q = 2.5 GeV. In order for ln(x/x0) to
be large, where x0 ∼ 0.1 is a reference scale determined by the typical momentum fraction
in the initial PDFs, the distance in rapidity between adjacent partons in the ladder (Sec.
I.3.2) should be � 2. Therefore, the number of radiated gluons in multi-Regge kinematics
at HERA is � (10 − 4)/2 − 1 = 2, taking into account that each of the fragmentation
regions occupies at least 2 units of rapidity. Because one (two) logs of x are effectively taken

32



2. A Tale of Two Limits

high-density region

cri
tic
al
lin
e

B
F
K
L

DGLAP

CCFM

0.1 1 10 100 1000

10

100

1000

10 000

100 000

1

1
x

(GeV2)

Color Glass Condensate
lnQ2

s = λ ln 1
x

Q2

Λ2
QCD

dilute system
R
e
g
g
e
re
g
io
n

Figure I.14: Schematic of the different regimes in the ln 1/x − lnQ2 plane and the evolution
equations expected to hold therein. The critical line marks the appearance of saturation effects. The
‘size’ of the partons is also indicated in different regions. Adapted from [Fos01].

into account by the NLO (NNLO) DGLAP approximation (Fig. I.13), there is no need for
a special treatment of ln(x0/x) effects at HERA kinematics. A similar estimate shows that
at LHC kinematics the radiation of 5-6 gluons is permitted. Thus, at LHC energies and
above the resummation of ln(x0/x) terms becomes a practical issue.

Apart from providing a correct framework for forward physics at hadron colliders, a thorough
understanding of the small-x region (i.e., the high energy limit of QCD) will shed light on
a number of very interesting phenomena47. Among them we find: 1) it allows to establish
the connection with Regge theory (Sec. I.2.3), thus providing a handle on nonperturbative
hadron dynamics; 2) the growing of parton densities at small-x (I.73) due to the probability
for gluon bremsstrahlung being proportional to 1/x (dPBrems ∼ αs{CA,CF }

π2
dk2

k2
dx
x

) has to stop
at some point when the hadron is so populated that partons overlap (Fig. I.14): this
leads to the interesting physics of saturation (Sec. I.5); 3) high-energy scattering exhibits
remarkable simplifications, often rooted on hidden symmetry (Sec. I.4.2).

2.3 Insights from Regge Theory

Two basic properties of QFT are locality and unitarity. Locality of quantum fields is nec-
essary for the theory to be causal, while unitarity is required for a meaningful probabilistic

47In the words of A. H. Mueller [Mue90], the small-x problem in QCD is, except for the understanding of
confinement, the most interesting problem in QCD. We want to emphasize here that knowing in detail the
microscopic dynamics of a theory —in our case, the QCD Lagrangian—, is a long way from understanding
the emergent phenomena that it can account for a priori [And72].
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I. High Energy Scattering in QCD

interpretation. The requirement of causality, expressed in the commutativity of local op-
erators at spacelike separations, leads to analyticity properties of the scattering amplitudes48.

Analyticity of the S-matrix amplitudes (on the kinematic variables it depends on, e.g. the
Mandelstam invariants, considered to be complex) is so stringent a constraint that it was
at one time49 believed to provide (in conjunction with Lorentz invariance, unitarity, and the
crossing symmetry property of amplitudes) an adequate basis for a complete theory of strong
interactions, with no need for the explicit introduction of local fields [Man58, CM60, Che61].
This bootstrap program incorporated with time further assumptions to the original postulates;
its logic can be found described in [Che61, Fra63, Str07, Cus90]. In the Regge limit,

s� −t, (I.74)

a number of relevant results can be extracted in a more economic way. Next we give a crash
introduction to Regge theory; for a detailed introduction see [Col77, BP02].

We have postulated that the only singularities of scattering amplitudes are those dictated
by unitarity50 (Fig. I.15). Another postulate (proved perturbatively in QFT) is that of
crossing symmetry: the same amplitude describes the three different processes (B.1) and
(B.3) (and the CPT related amplitudes), being obtained one from the other by crossing51

A13̄→2̄4(s, t, u) = A12→34(t, s, u); A14̄→2̄3(s, t, u) = A12→34(u, t, s). (I.75)

The crossing postulate (I.75) is magnified by analyticity. The fact that the kinematic do-
mains of the three channels are non-overlapping (Fig. B.2) means that in fact the same

48See [Dun12], Sec. 6.6., for a comprehensive discussion of the relation between microcausality and ana-
lyticity.

49The so-called S-matrix approach [Hei43, Che61, ELOP66] was born out of the failures of QFT in describ-
ing strong interactions in the fifties. For all its ambitious views, it had limited success and was practically
abandoned when QCD emerged. However, it has left a lot of interesting ideas. For us, the most important
is Regge theory, from which the important concept of pomeron emerges. In the framework of the bootstrap,
Veneziano [Ven68] found a Regge-behaved crossing symmetric amplitude that eventually gave rise to dual
resonance models, the germ of string theory (see [CCCd12, GSW87] for an account). Some other features of
the S-matrix program are being revived today [Zee10]: in words of A. M. Polyakov, the garbage of the past
often becomes the treasure of the present (and viceversa) [Pol87].

50One can see that, whenever one reaches a threshold for production of new intermediate states, a sudden
new contribution to the sum in the r.h.s. of the unitarity equation (A.30) is added, in such a way that keeping
(A.30) true for all values of the kinematic variables requires singularities of the transition amplitudes at those
threshold values.

51For scattering of identical bosons these conditions lead to very powerful constraints, e.g. A(s, t) =
A(u, t) s/|t|→∞−−−−−−→ A(−s, t). Everything becomes much more complex when dealing with particles with several
quantum numbers [BP02].
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s
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Figure I.15: Singularities of the scattering amplitude in the s plane. Broken lines mean branch-
cuts. Singularities in the right part come from the s-channel propagator (diagram to the right).
Singularities in the l.h.s. come, by crossing, from the t-channel propagator (diagram to the left).

function of s, t and u describes all the amplitudes in (I.75). So, if we know the scattering
amplitude in a given channel, we can in principle analytically continue it to the other chan-
nels. This allows us to extract the full singularity structure of an amplitude. The following
step is to exploit analyticity to derive dispersion relations.

γ2 γ1Γ2 Γ1

C

4m2−t

s

Figure I.16: The Cauchy contour to derive dispersion relations.

Using the contour in Fig. I.16, we have the following Cauchy’s integral representation for
A(s, t) at fixed t:

A(s, t) = 1
2πi

∮
Γ

A(s′, t)
s′ − s

ds′ = 1
2πi

(∮
γ1

+
∮
γ2

+
∮

Γ1
+
∮

Γ2
+
∫
C

)
A(s′, t)
s′ − s

ds′. (I.76)

The first two terms in (I.76) are pole contributions, 1
2πi

(∮
γ1

+
∮
γ2

)
A(s′,t)
s′−s ds

′ = f1(t)
s−m2 + f2(t)

u−m2 ,

where the residues f1 and f2 are unspecified functions of t. If we assume that the amplitude
vanishes uniformly when |s| goes to infinity, A(s, t) −−−−→

|s|→∞
0, we get the (single-variable)

dispersion relation for the scattering amplitude at fixed t

A(s, t) = 1
π

∫ ∞
4m2

Ds(s′, t)
s′ − s

ds′ + 1
π

∫ −t
−∞

Ds(s′, t)
s′ − s

ds′ + pole terms, (I.77)

where
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I. High Energy Scattering in QCD

Ds(s, t) ≡ DiscsA(s, t) ≡ 1
2i lim

ε→0+
[A(s+ iε, t)− A(s− iε, t)] = =m As(s, t), (I.78)

is the discontinuity along the s-channel threshold branchcut. Making in the second integral
in (I.77) the change of variables s′ → u′ = 4m2−s′−t′ we get the more symmetric expression

A(s, t) = 1
π

∫ ∞
4m2

Ds(s′, t)
s′ − s

ds′ + 1
π

∫ ∞
4m2

Du(u′, t)
u′ − u

du′ + pole terms. (I.79)

If A(s, t) ∼
s→∞

sλ, λ ∈ R+, the contribution at infinity is nonvanishing, but still a dispersion
relation can be written for the quantity A(s,t)

(s−s1)(s−s2)···(s−sN ) , N = [λ] + 1, with s1, · · · , sN
arbitrary constants. Proceeding as above one gets the N -times subtracted dispersion relation

A(s, t) =
N−1∑
n=0

cn(t)sn + 1
π

(s− s1) · · · (s− sN)
∫ ∞

4m2

Ds(s′, t)
(s′ − s1) · · · (s′ − sN)(s′ − s)ds

′

+ 1
π

(u− u1) · · · (u− uN)
∫ ∞

4m2

Du(u′, t)
(u′ − u1) · · · (u′ − uN)(u′ − u)du

′ + pole terms,
(I.80)

where ui = 4m2 − si − t52. A concrete realization of (I.80) we shall extensively use is

=m (A(s, t)) = As lnn s =⇒ A(s, t) = − A

(n+ 1)π lnn+1 s. (I.81)

In Regge theory [Reg59], the amount of information to be extracted from dispersion relations
is optimized by separating the components of definite angular momentum. For 2 → 2
scattering, we can write the following partial wave expansion53

52Notice that (I.80) contains an undetermined polynomial of degree N−1. In particular, if σtot ∼
s→∞

const.,
as one expects in Regge theory, =m Ael(s, 0) ∼

s→∞
s because of the optical theorem and the forward elastic

amplitude can be fully reconstructed in terms of the total cross section and two unknowns c0(0) and c1(0).
53In non-relativistic quantum mechanics plane wave momentum eigenstates |p〉 ≡ |p, ϑ, φ〉 are given

in terms of (orbital) angular momentum eigenstates |plm〉 by |p〉 =
∑∞
`=0
∑`
m=−` Y

∗
`m(p̂)|p`m〉. The

spherical harmonics Y`m, which play the role of Clebsch-Gordan coefficients, are given by Y`m(ϑ, φ) =

(−1)
m+|m|

2

[
2l+1)(`−|m|)!

4π(`+|m|)!

] 1
2
P
|m|
` (cosϑ)eimφ, where Pm` (cosϑ) are the associated Legendre polynomials and

` is the orbital angular momentum quantum number. In the case of scattering by a central potential this
expansion reduces to A(θ, φ) =

∑
`(2`+ 1)a`(p)P`(cos θ).

The generalization to relativistic scattering of particles with spin is best carried out in the helicity formalism
[JW59] (see [Dev02] for a pedagogical introduction). Using helicity eigenstates has the advantages of a good
massless limit and no need to split the orbital and spin angular momentum contributions, among others.
A generalized partial wave expansion of the form Aλ3λ4;λ1λ2(ϑ, φ) =

∑
j(2j + 1)Dj∗

λiλf
(ϑ, φ, 0)f jλfλi , with

λi = λa − λb, λf = λc − λd, holds. For the case of spinless particles the total angular momentum quantum
number j reduces to `, λa, λb, λc, λd = 0 and Dj∗

λiλf
(ϑ, φ, 0)→ D`∗

00(ϑ, φ, 0) = P`(cosφ) so that one ends with
the nonrelativistic spinless partial wave expansion. It is within this generalized representation that j should
be interpreted as the spin carried by the intermediate ‘particle’. The reggeization procedure described below
must now be applied to each of the helicity amplitudes separately [DDLN02].
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A13̄→2̄4(s, t) =
∞∑
`=0

(2`+1)a`(s)P`(1+2t/s), a`(s) = 1
2

∫ 1

−1
d cosϑP`(cosϑ)A(s, cosϑ). (I.82)

Using crossing symmetry (I.75) this expression can be analytically continued into the s-
channel by interchanging s and t (cosϑt ≡ 1 + 2s/t ≡ zt)

A12→34(s, t) =
∞∑
`=0

(2`+1)a`(t)P`(1+2s/t), a`(t) = 1
2

∫ 1

−1
d cosϑtP`(cosϑt)A(s, cosϑt). (I.83)

We can apply the machinery of dispersion relations to the partial wave expansion (I.83) by
analytically continuing ` to complex values [Gri61]. The result (see [BP02] for a derivation)
is the Sommerfeld-Watson transform [Wat18, Som49]

A(zt, t) = −
∑
i

π(2αi(t) + 1)β̃i(t)
Pαi(−zt)
sin παi

− 1
2i

∫ c+i∞

c−i∞
(2`+ 1)a(`, t)P`(−zt)sin π` d`, (I.84)

where αi(t) is the location of the i-th pole of a(`, t) in the complex angular momentum
plane (a Regge pole) and β̃i(t) is its associated residue.

A subtle issue is posed by the analytical continuation a`(t)→ a(`, t). From (I.84) it appears
not to be unique since in principle we can add to a(`, t) any analytic function vanishing for
` ∈ Z without affecting the above result. It turns out, however, that a(`, t) is unique provided
a(`, t) < exp(π|`|) as |`| → 0 [Car18]. This is not the case since there are contributions to the
partial wave amplitudes proportional to (−1)` and the required inequality is violated along
the imaginary axis. This can be amended [Gri61, Fro61] introducing two different analytic
continuations of the even and odd partial wave amplitudes. (I.84) is then generalized to

A(zt, t) = −
∑
ξ±1

∑
iξ

1 + ξe−iπαiξ (t)

2 π(2αiξ(t) + 1)β̃iξ(t)
Pαiξ (−zt)
sin παiξ(t)

− 1
2i
∑
ξ±1

∫ c+i∞

c−i∞

1 + ξe−iπ`

2 (2`+ 1)aξ(`, t)P`(−zt)sin π` d`.
(I.85)

The quantum number ξ is called the signature, a kind of parity under exchange of the s and
u channels. The sum iξ is over poles of definite signature.

Our focus is the Regge or high-energy limit s→∞ (for fixed t), i.e. |zt| → ∞. The asymp-
totic behavior of Legendre polynomials [OLBC10] is P`(z) ∼

|z|→∞
1√
π

Γ(`+ 1
2 )

Γ(`+1) (2z)`, <e ` ≥ −1
2 ,
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I. High Energy Scattering in QCD

forcing the contribution along the contour in (I.85) to be suppressed. We can go further and
keep only the dominant (rightmost) pole, located at α(t) and with signature ξ. Redefining
its residue to absorb some factors, β(t) = π

2 (2α(t) + 1)β̃(t)2α(t), we have

A(s, t) ∼
s
|t|→∞

−β(t)1 + ξe−iπα(t)

sin πα(t)

(
s

|t|

)α(t)

. (I.86)

Analogously, from the s-channel partial wave expansion we get

A(s, t) ∼
|t|
s
→∞
−β(s)1 + ξe−iπα(s)

sin πα(s)

(
|t|
s

)α(s)

. (I.87)

For partial wave amplitudes one can see [BP02] from (I.85) that in the Regge limit

aξ(`, t) =
∫ ∞

1
Dξ
s(s, t)

(
s

|t|

)−`−1

d

(
s

|t|

)
, Dξ

s(s, t) ≡ Ds(s, t) + ξDu(s, t) (I.88)

i.e. aξ(`, t) becomes the Mellin transform of the signaturized discontinuity Dξ
s(s, t) (App.

C). We have
Dξ
s(s, t) ∼ sα =⇒ a(`, t) ∼ 1

`− α
(simple pole);

Dξ
s(s, t) ∼ sα(ln s)−1 =⇒ a(`, t) ∼ ln(`− α) (cut).

(I.89)

Equations (I.86) and (I.87) tell us a fundamental result: the leading complex angular
momentum singularity of the partial wave amplitude in a given channel determines the
asymptotic behavior in the crossed channels. In particular, scattering in the Regge limit is
governed by the rightmost complex angular momentum singularity in the t-channel.

To interpret what these singularities in the crossed channel mean, consider that for some t0
we have α(t0) = `+ iε, ` ∈ Z, ε� 1. Then the partial wave amplitude reads for t→ t0

a(`, t) ∼
`→α(t)

1
`− α(t) ∼t→t0

1
t− t0 + iΓ , Γ ≡ ε

α′(t0) . (I.90)

Assuming that α′(t0) is such that Γ is real, this is the typical Breit-Wigner pattern for a
resonance of mass M =

√
t0 [Wei95, BM07]. Thus, for real and positive (unphysical, see

Fig. B.2) values of t, when t is a mass squared, Regge poles represent resonances and bound
states with angular momentum (spin) `. We say that α(t) is a Regge trajectory (or reggeon)
interpolating between these resonances/bound states. Hence we can visualize the s-channel
asymptotic behavior (I.86) as due to the exchange of a family of resonances in the crossed
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channel. Notice that if α(t) has signature ξ = +1(−1) not only the denominator but also the
numerator in (I.86) vanishes when α(t) crosses an integer spin that is odd (even) respectively,
so that a trajectory with ξ = 1 (−1) interpolates between even (odd) spin resonances.
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Figure I.17: (a) Reggeon exchange; (b) Chew-Frautschi plot showing the four (almost degenerate)
leading mesonic trajectories [DDLN02]: the f2 (P = +1, C = +1, G = +1, I = 0, ξ = +1), the
ρ (P = −1, C = −1, G = +1, I = 1, ξ = −1), the ω (P = −1, C = −1, G = −1, I = 0, ξ = −1) and
the a2 (P = +1, C = +1, G = −1, I = 1, ξ = +1), where P,C,G, and I stand for parity, charge
conjugation, G-parity (see e.g. [HKP98] for a discussion of this quantum number) and isospin.
Particle spins are plotted against their squared masses t. The straight line is α(t) = 0.5 + 0.9 t.

A striking feature of the spectrum of hadrons is that when their spin is plotted against their
mass squared one finds that those mesons or baryons with the same quantum numbers fall on
a straight line. In 1960 Chew and Frautschi conjectured from limited data that all strongly
interacting particles fall into straight Regge trajectories of the form

α(t) = α(0) + α′t, (I.91)

where the Regge slope α′ is universal (though this is not exact, in fact one sees that
approximately α′ = 0.9 GeV−2 for all trajectories). Such a relation was recognized to be the
one expected from a model of mesons like rotating relativistic strings joining a quark and
an antiquark54 [Nam69, Nie70, Sus70, Got71]. α(0) is called the intercept and is equal to
0.5 for the leading mesonic trajectories.

A very rich hadronic phenomenology can be derived from Regge theory [IW77, Col77]. Here
we will just consider two important aspects:

54See [Gre11] for a toy model derivation. In QCD, such a spinning stick with constant energy per unit
length is believed to be associated with chromoelectric flux tubes.
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Factorization When one pole clearly dominates over the others, a scattering amplitude
is dominated by the exchange of a single reggeon (Fig. I.17). Then the residue in (I.86)
factorizes and we get

A(s, t) = η(t)γ13(t)γ24(t)sα(t), η(t) = −1 + ξe−iπα(t)

sin πα(t) . (I.92)

In some sense this is related to high-energy factorization (Sec. I.3.5).

Total Cross-Sections and the Pomeron From (I.86) it is immediate to obtain the total
cross section via the optical theorem. When only the dominant pole α(t) contributes

σtot '
s→∞

1
s
=m A(s, t = 0) ∼

s→∞
sα(0)−1. (I.93)

Though it is usually implicit, in this expression s should be normalized to some fixed value
s0, which gives the scale where the asymptotic approximation (I.93) breaks down, usually of
the order of 1 GeV2. If more than one pole contributes,

σtot ∼
∑
i

Ais
αi(0)−1. (I.94)

The Regge trajectories in Fig. I.17 have intercept lower than 1, so according to (I.93) they
lead to cross sections that decrease with energy asymptotically. However, it is experimentally
known that hadronic total cross sections, as a function of s, are rather flat around

√
s ∼

(10− 20) GeV2 and increase at higher energies (Fig. I.18).
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Figure I.18: Donnachie-Landshoff fit. Adapted from [DDLN02].

Donnachie and Landshoff [DL92] were able to fit quite well the available cross section data
using the ansatz (I.94) with the dominant and subdominant trajectories. Total cross sections
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for pp, p̄p, K±p, π±p and γp are fitted by

σtot = Xs0.0808 + Y s−0.4525. (I.95)

The dominant trajectory at high energies, causing the cross section to rise
with s, has intercept αP(0) ' 1.08 and, according to Pomeranchuk’s theorem55

[OP56, Pom56], must correspond to the exchange of vacuum quantum numbers
(P = +1, C = +1, G = +1, I = 0, ξ = +1). It is called pomeron, after Pomer-
anchuk, and is denoted by P. The pomeron trajectory does not correspond to any known
particle, its recurrences are expected to be glueballs. From fitting elastic scattering data,
one finds that the pomeron trajectory is much flatter than the others (α′

P
' 0.25 GeV−2).

A pomeron intercept greater than 1 conflicts with the Froissart bound 56. One could claim
that at the presently achieved energies we are still far from the asymptotic regime, since
other parameterizations are able to describe the data without such a power dependence
up to the currently explored energies. In any case, this is a good place to point out that
several assumptions have been made during our analysis. Most importantly, we disregarded
contributions from cuts, considering only poles. In fact, the existence of poles automat-
ically requires cuts via unitarity57 [AFS62], since the exchange of several reggeons leads
to branch points at the production thresholds of two or more reggeons in the crossing channel.

The whole picture of Regge theory becomes much more involved with the introduction of
cuts. However, lot of information can still be extracted from the singularity structure of the

55Pomeranchuk’s theorem states that —under some very reasonable hypothesis— the total cross sections
for particle-particle and particle-antiparticle scattering become equal at asymptotically high energies

σtot(ab) '
s→∞

σtot(ab̄). (I.96)

This means that the cross section vanishes asymptotically for processes involving charge exchange. Foldy and
Peierls [FP63] then noticed the converse, that if for a particular scattering process the cross-section does not
fall as s increases then that process must be dominated by the exchange of vacuum quantum numbers (i.e.
zero isospin and even under charge conjugation). In fact, if a particle is exchanged with vacuum quantum
numbers it will couple equally to particles and antiparticles, giving rise to the equality of σtot(ab) and σtot(ab̄)
up to subleading corrections decreasing with s that could be mediated by charge exchange processes.

56The Froissart unitarity bound [Fro61, Mar63] puts a strict limit to the rate of growth with energy of any
total cross section. It states that total cross sections cannot grow faster than ln2 s:

σtot ≤
π

m2
π

ln2 s, as s→∞. (I.97)

An intuitive derivation by Heisenberg [Hei52] is discussed in [DDLN02]. A rigorous derivation from the
S-matrix postulates is offered in [BP02].

57The breakdown of simple Regge factorization due to cuts has recently been proved in pQCD [CdR12].
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complex angular momentum plane, by interpreting reggeons as quasiparticles. The multi-
Reggeon branch-points can be regarded as Reggeon production thresholds. In particular,
Reggeon unitarity relations can be derived forcing the existence of vertices changing the
number of reggeons. The result is a theory of interacting pomerons living in 2+1 dimensions,
with rapidity playing the role of time [Gri68, ABSW75, Mos78]. The Lagrangian of this
reggeon field theory (RFT) can be written as

LRFT(x, y) = i

2φ
†∂yφ−

α′0
2 ∇φ

† · ∇φ−∆0φ
†φ− iλ

2 φ
†φ†φ+ hermitian conjugate. (I.98)

In this approach, no attempt is made to understand the spectrum of Regge trajectories:
instead, one attempts to study their interactions given that they exist. In Ch. III we will
study an effective action derived from QCD aiming at deriving the elements of RFT.

3 Reggeization and the BFKL Pomeron
A natural question now is how the insights from Regge theory, specially the pomeron, emerge
from QCD. Predating this theory, it was shown in the 60s [ELOP66] that Regge pole behavior
could be obtained in field theory resumming leading ln s terms corresponding to diagrams
with ladder exchange (Fig. I.19). The φ3 model of the figure was improved by a more
realistic model where the pomeron couples to quarks as a C = +1 photon [LP71]. Then Low
and Nussinov [Low75, Nus75] proposed to picture the pomeron as a two-gluon exchange.
Two is the minimal number of gluons needed to reproduce vacuum quantum numbers, as the
gluon is a colored object. One can expect that the gluon, with the highest spin, will give a
dominant exchange contribution according to (I.86) and that quark insertions in the gluon
ladder will be subleading in the Regge limit. The picture of the pomeron as a gluon ladder
exchange turns out to be essentially correct, as we will see58.

A(1) ∼ g2

s

∼ means as s→∞

A(2) ∼ g2

s K(t) ln s
A(n) ∼ g2

s
(K(t) ln s)n−1

(n−1)!K(t) ∼ g2
∫

d2k⊥
(k2

⊥+m2)[(k⊥+q⊥)2+m2]

A(s, t) =
∑∞
n=1A

(n) ∼ ∑∞
n=1

g2

s
(K(t) ln s)n−1

(n−1)! ' g2

s e
K(t) ln s ' g2sα(t)

Figure I.19: Resummation of ladder diagrams in φ3 theory gives rise to Regge behavior.

58The details of most of the computations given in this section can be found in [BP02]. See also Appendices
A and B for details on the computation of color factors and Feynman rules for iA.
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3.1 Parton-Parton Scattering in the Leading ln s Approximation

At lowest order in αs, qq scattering proceeds via one-gluon exchange (Fig. I.20). We take
quarks to have different flavors so that there is no u-channel contribution. Helicity indices
are obviated as helicity is conserved at each vertex59. The one-gluon exchange amplitude is

iA
(0)
qq′→qq′(s, t) = ig2taijt

a
klū(p′1)γµu(p1)gµν

q2 ū(p′2)γνu(p2). (I.99)

p1, j p′1, i

p2, l p′2, k

q, a

p′1, a
′

p′2, b
′p2, b

p1, a

q, c

(a) (b)

Figure I.20: (a) Quark-quark and (b) gluon-gluon scattering via one-gluon exchange.

Instead of working directly with the amplitude squared in the large-s limit, a more convenient
procedure we will use henceforth is to take the large-s limit already at the level of the vertices,
introducing the so-called eikonal approximation. Consider the upper vertex in Fig. I.20.
When s� |t| all qµ components are very small compared to those of pµ1 and pµ2 (App. B),

igū(p1 + q)γµu(p1) ' igū(p1)γµu(p1) = 2igpµ1 . (I.100)

(I.100) is the qqg eikonal vertex. Approximating the lower vertex in the same fashion, we
get for large s

A
(0)
qq′→qq′ = g2taijt

a
kl

4p1 · p2

q2 = 8παstaijtakl
s

t
=⇒ |A(0)

qq′→qq′ |
2

= 8
9g

4 s
2

t2
. (I.101)

We get the ggg eikonal vertex in Fig. I.20 the same way60

− gfaa′c[gµµ′(p1 + p′1)ρ + gρµ′(p1 + q)µ − gµρ(p1 + q)µ′ ]

' −gfaa′c[2gµµ′p1ρ − gρµ′p1µ − gµρp′1µ′ ] = −2gfaa′cgµµ′p1ρ.
(I.102)

59This is strictly true within the eikonal approximation, in which one has ū(p1 + q, λ)γµu(p1, λ
′) →

ū(p1, λ)γµu(p1, λ
′) = 2pµ1 δλλ′ .

60In deriving the last equality in (I.102) we have used that, if external gluons have physical polarizations,
the two last terms cancel when contracted with polarization vectors (ε(p1) · p1 = ε(p′1) · p′1 = 0). Notice that
both eikonal vertices (I.100) and (I.102) are proportional to the momentum of the incoming particle, which
has large components.
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Now the amplitude for Fig. I.20 in the high energy limit is

A(0)
gg→gg = −ig2faa

′cf bb
′cgµµ′

4p1 · p2

q2 gνν′ε
µ
λ1(p1)ε∗µ

′

λ′1
(p′1)ενλ2(p2)ε∗ν′λ′2

(p′2). (I.103)

Squaring (I.103), the sum over the gluon polarizations is performed using (I.5) taking n = p2

when summing over εµλ1(p1), n = p1 when summing over ενλ2(p1), and so on61. We have

|A(0)
gg→gg|

2
= g4 N2

c

N2
c − 14s

2

t2
= 9

2g
4 s

2

t2
= CA
CF
|A(0)

qg→qg|
2

=
(
CA
CF

)2
|A(0)

qq′→qq′ |
2
. (I.104)

In deriving (I.104) only the t-channel contribution to gg scattering was considered, which is
the relevant one in the Regge limit.

Now we want to study the radiative corrections to the qq′ → qq′ amplitude. At one loop,
the relevant diagrams are shown in Fig. I.21. Self-energy insertions and vertex corrections
are not considered as they are subleading in ln s: these diagrams indeed have an extra factor
of g2 with respect to the leading graph (Fig. I.20), but no ln s enhancement, as the vertex
or bubble subdiagram cannot depend on s, because the entering momenta when squared
are zero (external legs on-shell) or are of the order of

√
−t62. The most economic way to

compute the diagrams in Fig. I.21 is the application of Cutkosky rules [Cut60] based on
unitarity63. They allow to extract the imaginary piece of the amplitude

=m A
(1)
(a) = 4α2

s(tatb)ij(tatb)kl s
∫ d2k⊥
k2
⊥(k − q)2

⊥
, (I.105)

from which the full amplitude is reconstructed using (I.81)

A
(1)
(a)(s, t) = −16παs

Nc

(tatb)ij(tatb)kl
s

t
ln
(
s

t

)
ω(t); ω(t) ≡ Ncαs

4π2

∫
d2k⊥

−q2
⊥

k2
⊥(k − q)2

⊥
. (I.106)

61Equation (I.5) guarantees that only physical polarization states are taken into account, the crucial
assumption for the legitimate use of the eikonal vertex (I.102). In fact, using (B.35) (with pA → p1, pb →
p2) the sum (I.5) for the upper incoming gluon, with the choice n = p2, becomes

∑
λ1
εµλ1

(p1)εµ
′∗
λ1

(p1) =
−
[
gµν − 2

s (pµ1pν2 + pν1p
µ
2 )
]

= −gµν⊥ .
62All components of the transverse momenta (k, say) are much lower than those of external particles, p1

and p1 − k (App. B), so k · p1 � s too.
63This is a close generalization of the optical theorem in App. A, at the level of the amplitude. The

recipe says that the physical discontinuity of any Feynman diagram (2i times its imaginary part) is given
by the following algorithm: 1) Cut through the diagram in all possible ways such that the cut propagators
can simultaneously be put on shell; 2) For each cut, replace 1

p2−m2+i0 → −2πiΘ(p0)δ(p2 −m2) in each cut
propagator, then perform the loop integrals; 3) Sum the contributions of all cuts. An example of its use is
given below when computing the leading log parton scattering amplitude at two loops.
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p1, j p′1, i

k − qq

p2, l p′2, k

p1 p′1

p′2p2

q k − q

(a) (b)

Figure I.21: qq scattering via two-gluon exchange: (a) the box diagram; (b) the crossed diagram.

The amplitude is essentially real in the Regge limit since ln(s/t) = ln(s/|t|) − iπ. Notice
that ω(t) is infrared divergent. The origin of the singularity is that we have put the external
quarks on-shell. However, quarks are actually confined inside hadrons and their off-shellness
provides an infrared cutoff µ2. Adding eventually the contribution of diagram (b) in Fig.
I.21, which can be obtained through crossing and rearranging color factors, we get

A(1) = A
(1)
(a) + A

(1)
(b) = −16παs

Nc

(tatb)ij
s

t

{
[ta, tb]kl ln

(
s

|t|

)
− iπ(tatb)kl

}
ω(t). (I.107)

Remember that our goal is to build the pomeron in pQCD. Therefore, we must isolate the
color-singlet piece of this amplitude. The qq scattering amplitude Aijkl can be decomposed as
a sum over the SU(3) representations in the t-channel64 (App. A)

Aijkl(s, t) =
∑
R

Pjilk(R)AR(s, t), P ijkl(R)P lkmn(R′) = P ijmn(R)δRR′ . (I.108)

Pjilk(1) and Pjilk(8) are given in (A.20). The amplitudes for singlet and octet exchange are

A1(s, t) = Pjilk(1)Aklji(s, t), A8(s, t) = 1
N2
c − 1P

ji
lk(8)Aklji(s, t), (I.109)

where we have used (A.11). Computing the relevant color factors we get

A
(1)
8 (s, t) = 8παstaijtakl

s

t
ln
(
s

|t|

)
ω(t), A

(1)
1 (s, t) = 4iπ2αsδijδkl

N2
c − 1
N2
c

s

t
ω(t). (I.110)

Color-singlet gluon exchange is suppressed by a factor ln s with respect to the color-octet
exchange at the same order in αs and the amplitude is purely imaginary.

64Notice the ordering of indices in the projector. Pjilk = 〈kl|P|ij〉 is the projector for the process ij → kl.
We have designed by Aijkl the amplitude for the process jl→ ik (see Fig. I.21 for notation). This is because
the projectors derived in Appendix A are not for the t-channel process jl → ik but for the s-channel
associated one ij → kl (the meaning of projection is clearer in the s-channel). Therefore, when studying
quark-quark scattering in the t-channel, it can be viewed as quark-antiquark scattering in the s-channel, and
we have projections on the singlet and the octet (3× 3̄ = 1 + 8).
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I. High Energy Scattering in QCD

One can now try to go to two loops in the perturbative expansion. Many diagrams contribute
here (Fig. I.22). Cutkosky rules come to the rescue by splitting the diagrams into simpler
subamplitudes. Self-energy and vertex corrections are rejected in leading log approximation.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

+ · · ·

Figure I.22: Some diagrams contributing to qq scattering at two loops.

There are two different kinds of contributions: real emissions, in which the cut goes through
one intermediate gluon (Fig. I.24) and virtual corrections (Fig. I.25). A clever insight
of Lipatov is that real emissions may be cast as an effective vertex (Fig. I.23). Then all
relevant real contributions are given by the diagram in Fig. I.24:

Γρ
µν

k2, b, ν

p2, l κ3, ν

p1, j κ1,m

k1, a, µ

k1 − k2, c, ρ

p1, j p1, j

p2, l p2, l

κ1,m κ1,m

κ3, nκ3, n

k1 − k2, c k1 − k2, ck2, b k2, b

p1, j κ1,m

p2, l κ3, nj′

k1, b
k1 − k2, c

p1, j κ1,m

k1, b
k1 − k2, c

κ3, np2, l j′

p1, j κ1,m

κ3, np2, l

k1 − k2, c

k2, b

k1, a

= + +

+ +

(a) (b) (c)

(d) (e)

Figure I.23: The Lipatov effective vertex. The blob gives a factor gfabcΓρµν(k1, k2).

p2, l

p1, j κ1

k1, a

k2, b

κ2, c

κ3 κ3

κ2, c

κ1 p′1, i

p′2, k

k2 − q, b′

k1 − q, a′

Figure I.24: The real-gluon contribution to qq scattering at order α3
s.
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=m A
(2)
real(s, t) = −gρσ2

∫
dΠ3A

ρ
2→3(k1, k2)Aσ†2→3(k1 − q, k2 − q). (I.111)

Introducing the Sudakov parametrization for the t-channel exchanged gluons65

k1 = α1p1 + β1p2 + k1⊥, k2 = α2p1 + β2p2 + k2⊥, (I.112)

the phase space in (I.111) reads

∫
dΠ3 = s2

4(2π)5

∫
dα1dβ1d

2k1

∫
dα2dβ2d

2k2δ(−β1(1− α1)s− k2
1)

× δ(α2(1 + β2)s− k2
2)δ((α1 − α2)(β1 − β2)s− (k1 − k2)2).

(I.113)

The dominant piece in these integrals is given by multi-Regge kinematics (App. B)

k2
1 ' k2

2 ' (k1 − k2)2 ' q2 � s; 1� α1 � α2, 1� |β2| � |β1|. (I.114)

In this approximation66

∫
dΠ3 ∼

1
4(2π)5

∫ 1

α2

dα1

α1

∫ 1

0
dα2

∫∫
d2k1d

2k2δ(α2s− k2
2) ∼ 1

4(2π)5s

∫ 1

q2
s

dα1

α1

∫∫
d2k1d

2k2.

(I.116)
Now, the left subamplitude in Fig. I.24 equals

Aρ2→3 = 4ig3 p
µ
1p

ν
2

k2
1k

2
2
tamjt

b
nlfabcΓρµν , (I.117)

where Γρµν is the Lipatov effective vertex, represented by a blue blob in Fig. I.23:

Γρµν(k1, k2) = 2p2µp1ν

s
Cρ; Cρ =

(α1 + 2k2
1

β2s

)
pρ1 +

(
β2 + 2k2

2
α1s

)
pρ2− (kρ1⊥+ kρ2⊥)

. (I.118)

65From now on, in order not to muddle notation, we will not keep the distinction between Sudakov
components of t-channel exchanges —designated up to now and in App. B with a bar— and of s-channel
emissions, without bar. In the same way we will omit the subindex ⊥ for 2-dimensional transverse vectors.

66From the last equality in (I.115) we can see that MRK (I.114) generates the leading ln s behavior.
Introducing two parameters ε1,2 such that 1� ε1, ε2 � q2

s , we can write the integral over α1 in (I.116) as∫ 1

q2/s

dα1

α1
=
[∫ q2/sε1

q2/s

+
∫ 1/ε2

q2/sε1

+
∫ 1

1/ε2

]
dα1

α1
= − ln ε1 + (ln(ε1/ε2) + ln(s/q2)) + ln ε2. (I.115)

Since s/q2 � 1/ε1, 1/ε2 (at least for extremely large values of s) this is dominated for the middle part of
the integral for which 1 � α1 � q2/s(= α2), as required. Thus we have justified the assumption of strong
ordering in the α’s which, together with the on-shell conditions for the cut lines, give a similar strong ordering
(in the opposite direction) for the β’s.
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This non-local vertex has the important property of being gauge invariant

(k1ρ − k2ρ)Γρµν(k1, k2) = 0. (I.119)

Having computed all the pieces appearing in (I.111), we only need to add the u-channel
contribution (which we get by replacing s by u ' −s and tracking the modifications in the
color factors) and make the color projection as before. For the octet projection the result is

=m A
(2)
8,real(s, t) = α3

s

π2
N2
c

2 taijt
a
kls ln

(
s

|t|

)∫∫
d2k2

1d
2k2

2

 q2

k2
1k

2
2(k1 − q)2(k2 − q)2

− 1
k2

2(k1 − q)2(k1 − k2)2 −
1

k2
1(k2 − q)2(k1 − k2)2

.
(I.120)
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k1k1 − k2

k1 − k2
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p′2

p′1p′1, i

p′2, k

(a1) (a2)

Figure I.25: Two-loop virtual corrections to qq scattering.

The computation of the virtual corrections (Fig. I.25) goes along the same lines:

=m A
(2)
8,virt(s, t) = N2

c α
3
s

2π2 taijt
a
kls ln

(
s

|t|

)∫∫
d2k1d

2k2

 1
k2

1(k2 − q)2(k1 − k2)2

+ 1
k2

2(k1 − q)2(k1 − k2)2

.
(I.121)

And now we see that due to the particular form of the color-octet factors kind of miraculous
cancellation occurs when summing (I.120) and (I.121):
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×
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d2k1d
2k2

1
q2k

2
1k

2
2(k1 − q)2(k2 − q)2 = 8π2αs t
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ijt
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s

|t|
ln
(
s

|t|

)
ω2(t)

=⇒ A
(2)
8 (s, t) = 4παstaijtakl

s

t
ln2

(
s

|t|

)
ω2(t).

(I.122)

No such cancellation arises for the singlet projection. There is a deep reason for this.
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3.2 Gluon Reggeization and the Bootstrap

After having gone through the first three orders in perturbation theory, it is the moment
to make some educated guesses. First of all, our experience suggests that the leading ln s
approximation is given by ladder diagrams67 where the gluons emitted in the rungs are
subject to multi-Regge kinematics (see Fig. I.26, where only the cut subamplitude is shown).
Then, real corrections are considered to all orders by promoting the vertices in the ladder to
effective vertices68. So the amplitude for gluon production is given in the factorized form

k1

k2

ki−1

ki

ki+1

kn

kn+1 an+1, µn+1

an, µn

ai+1, µi+1

ai, µi

ai−1, µi−1

a2, µ2

a1, µ1

p1, j

p2, l

· · · · · ·

· · · · · ·

p′1, i

p′2, k
(a) (b)

b1, ρ1

bi−1, ρi−1

bi, ρi

bn, ρn

Figure I.26: Diagram for the process qq → qq+n gluons: at tree level (a) and with virtual radiative
corrections (b). The blobs represent Lipatov vertices, and the wavy lines reggeized gluons .

Aρ1···ρn
2→n+2 = 2isgta1

ij

i

k2
1

[
−gfa1a2b1C

ρ1(k1, k2) i
k2

2

] [
−gfa2a3b2C

ρ2(k2, k3) i
k2

3

]

· · · ×
[
−gfanan+1bnC

ρn(kn, kn+1) i

k2
n+1

]
gt
an+1
kl .

(I.123)

A rather elegant proof of (I.123) will be presented now [GLR83, FR97]69. Consider the
2→ n+2 amplitude in Fig. I.26. If we cut the ith vertical gluon, with momentum ki, the am-
plitude separates into an upper partMµ(p1, k1, · · · , ki), and a lower part Nν(p2, ki, · · · , kn).
Since all but the cut gluon lines are on shell, these Green functions obey the Ward identities

67Notice the analogy with DGLAP resummation (Sec. I.2.1).
68The eikonal approximation, used in the derivation of Lipatov’s vertex, is enforced here by MRK.
69The basis of the proof consists in exploiting the gauge invariance of Lipatov’s vertex to reduce the

effective ladder in Fig. I.26 to a genuine ladder diagram.
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kµiMµ(p1, k1, · · · , ki) = 0; kνiNν(p2, ki, · · · , kn) = 0. (I.124)

The largest momentum in the amplitude Mµ is p1, hence Mµ will be proportional in the
leading approximation to pµ1 . In the same way, N ν ∝ pν2. Therefore, using the Sudakov
parametrization ki = αip1 + βip2 + ki⊥, and the fact that p2

1 = p2
2 = 0, (I.124) becomes

kµi⊥Mµ(p1, k1, · · · , ki) = −βipµ2Mµ(p1, k1, · · · , ki);

kνi⊥Nν(p2, ki, · · · , kn) = −αipν1Nν(p2, ki, · · · , kn).
(I.125)

Now we can use the Sudakov parametrization (B.23) (or, with our normalization, (B.35)) for
the polarization tensor appearing in the propagator of the ith t-channel gluon. As we have
to contract it with pµ1p

ν
2, we can neglect its transverse part and approximate it by

gµν '
2
s
p2µp1ν

(
= (n+)µ(n−)ν

2

)
, (I.126)

which gives an extra factor of s in the contraction. Then, using (I.124) we can go even further
and say that we can replace the numerator of the cut gluon propagator by gµν →

2kµ
i⊥k

ν
i⊥

αiβis
,

since gµνMµNν ' 2pν1p
µ
2

s
MµNν '

2kµ
i⊥k

ν
i⊥

αiβis
MµNν . This reasoning can be applied to all t-

channel gluons in the ladder, so we can associate a factor of
√

2/skµi⊥/βi with the vertex at
the top of the ith vertical gluon and a factor

√
2/skνi⊥/αi with the corresponding vertex at

the bottom. The amplitude for the ladder then becomes

Aρ1···ρn
2→n+2 = 2isg2ta1

ij t
an+1
kl

i

k2
1

n∏
i=1

faiai+1bi

(−ig)
k2
i+1

×
2kµii⊥kνii+1⊥
αiβi+1s

[
gµiνi(−ki − ki+1)ρi + gρiµi(2ki − ki+1)νi + gρiνi (2ki+1 − ki)µi

]
.

(I.127)

Substituting ki and ki+1 by its Sudakov decomposition in the last bracket representing the
ordinary 3-gluon vertex, one can check that the second line in (I.127) is equal to Cρi(ki, ki+1)
up to terms proportional to the momenta of the emitted gluons (ki − ki+1)ρ, which vanish
when contracted with the polarization vectors of these gluons, because they are on-shell and
hence their polarization vectors must be transverse. This finishes our proof of (I.123).

It remains to incorporate virtual corrections. Putting together the results of the
first three orders of perturbation theory (I.101), (I.110) and (I.122), we find that
up to O(α3

s) the color-octet amplitude in LLA has the suggestive form A8(s, t) =
8παs st t

a
ijt

a
kl

[
1 + ω(t) ln

(
s
|t|

)
+ ω2(t)

2 ln2
(
s
|t|

)
+ · · ·

]
.. It is then natural to conjecture that

50



3. Reggeization and the BFKL Pomeron

these are the first three terms in the expansion of

A8(s, t) = 8παstaijtakl
s

t

(
s

|t|

)ω(t)

= −8παstaijtakl
(
s

|t|

)αg(t)

, αg(t) = 1 + ω(t), (I.128)

that would mean that the gluon reggeizes (see Eq. (I.92)). The reggeization hypothesis
(I.128) is equivalent to modify the t-channel gluon propagator by

−i
k2
i

→ −i
k2
i

(
− si
k2
i

)ω(−k2
i )

' −i
k2
i

(
αi−1

αi

)ω(−k2
i )
, (I.129)

where si = (ki−1 + ki)2 ' αi−1
αi
k2
i (Eq. (B.41)). Indeed, (I.128) is obtained from (I.101) by

performing the substitution (I.129).

As we have seen, Regge poles (reggeons) can be interpreted as bound states or resonances
exchanged in the t-channel, not as elementary particles in the usual sense, since their
effective spin α(t) is in general complex and depends on t. However, if there exist some
physical particle of mass m and spin j with the same quantum numbers (apart from spin)
of a given Regge trajectory, then it is often the case that α(m2) = j. The idea that ele-
mentary particles may reggeize dates back to the days of Chew’s S-matrix program [Cao91]70.

The contribution of an elementary particle with mass m and spin j to the partial wave
amplitude is proportional δ`j and therefore not analytically continuable in the `-plane
[Col77]. Gell-Mann, Goldberger and others [GMG62, GMGL+64a, GMGL+64b] then
pointed out that in a vector field theory elementary particles could become reggeized as
a consequence of radiative corrections, that in particular would generate terms canceling
the non-analytic behavior. Conditions for such behavior to be possible were studied
[Man65, AKT70, GST73] and perturbative calculations to several loops were carried in QED
[FGL70, FGL71, CW69, CW70b, CW70a, MW76], QCD [Mas76, Tyb76, FS76, Lip76, CL77]
and unification theories with general gauge groups (see, e.g. [GS79, Bar80b]). The general
conclusion is that in gauge theories reggeization of gauge bosons is possible —and most
probably takes place— only in non-abelian gauge theories with semi-simple gauge groups.
Also fermions reggeize. So in QED the electron reggeizes while the photon does not; in the

70In their aim to show that no particles are more elementary than others, Chew and Frautschi formulated
the following criterion: composite particles lay on Regge trajectories, associated to poles in the `-plane
moving with s (for the process obtained by crossing symmetry in which the reggeon is exchanged in the
s-channel), whereas elementary particle poles are associated with unique angular momenta, and do not
admit continuation in `. Since all particles involved in hadronic processes have been found to lie in Regge
trajectories, this would question the existence of elementary particles.
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SU(2)×U(1) electroweak sector the W± reggeize but the Z and the photon do not, being
related with the original U(1); and in QCD both gluons and quarks reggeize.

Reggeization of any particle assumes the signaturized71 amplitude to acquire an asymptotic
behavior like sα(t) when exchanging this particle in the t-channel in the Regge limit s� t. If
we assume from the form of the octet amplitude that radiative corrections build the reggeized
gluon, then it is natural to assume that at the level of the production amplitude (I.123) the
effect of incorporating virtual corrections is reggeizing any of the intermediate t-channel
gluons of the ladder. Thus we have the following ansatz72 (Fig. I.26)

Aρ1···ρn
2→n+2 = 2isgta1

ij

(
i

k2
1

)( 1
α1

)ω(−k2
1) [
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(
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)(
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2)
]
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(
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3

)(
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)ω(−k2
3)
]
× · · ·

×

−gfanan+1bnC
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(
i

k2
n+1

)(
αn
αn+1

)ω(−k2
n+1)

 gtan+1
kl

= 2isg2ta1
ij t

an+1
kl

(
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k2
1

) [ 1
α1

]ω(−k2
1) n∏
i=1

−gfaiai+1biC
ρi(ki, ki+1) i

k2
i+1

[
αi
αi+1

]ω(−k2
i+1)

 .

(I.130)

The consistency of our reggeization picture requires that if we assume (I.130) to be correct we
must find, after resumming all ladders and projecting onto the antisymmetric octet, that the
amplitude is given by (I.128), corresponding to the exchange of one reggeized gluon73. This
is what we will find indeed when performing the BFKL resummation. Gluon reggeization
can moreover be proven by checking the compatibility of the s-channel unitarity equations
(A.30) in all the subchannels with the form of the amplitude (I.130), which is an infinity of
non-trivial constraints to be satisfied [Bar80b, BFF03]74. Bootstrap conditions have been
proved to NLL order [FFKR06].

71When speaking of reggeization of the intermediate gluons in a ladder (see Fig. B.3), signature in the
tl-channel means the (anti)-symmetrization with respect to the substitution sij ↔ −sij , for i < l ≤ j,
where sij is defined in (B.33). This generalizes the concept of signature as parity under the interchange
s→ u ' −s for multiparticle production in the Regge limit. For the case of gluon reggeization the signature
will be ξ = −1, corresponding to the antisymmetric octet, because we advanced that ξ = 1(−1) corresponds
to even (odd) spin resonances.

72Often this amplitude is expressed in terms of rapidities using that αi
αi+1

= eyi−yi+1 . We note that this is
only the s-channel contribution. We will add later on the u-channel contribution in the same way we made
for lower orders.

73We note that the reggeized gluon is quite an unusual construction that is composed of ladders of reggeized
gluons (and so on), so we are effectively resumming an infinity of diagrams with the most diverse topologies.
Is what Forshaw and Ross [FR97] call ladders within ladders.

74See [Whi76, Col77] for the necessary background on the general structure of inelastic production ampli-
tudes in the multi-Regge limit.
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3.3 The BFKL Equation

Once we have the structure of the production amplitude (I.130), we can use unitarity to
extract (the imaginary part of) the elastic scattering amplitude in which we are interested

=m A(s, t) = 1
2(−1)ngρ1σ1 · · · gρnσn

∫
dΠn+2A

ρ1···ρn
2→n+2(k1, · · · kn)Aσ1···σn†

2→n+2 (k1 − q, · · · kn − q);
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2n+1(2π)3n+2
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dαi
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∫ 1
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∫
d2kjδ(αn+1s− k2).

(I.131)
From (I.131), it follows that

=m AR(s, t) = 1
2

∞∑
n=0

4s2g4GR
∫
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1
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( 1
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)ω(−k2
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×
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(
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,
(I.132)

where the kernel is given by the contraction of Lipatov vertices

−1
2C

ρi(ki, ki+1)Cρi(−ki+q,−ki+1+q) =
[
q2 − k

2
i (ki+1 − q)2

(ki − ki+1)2 −
k2
i+1(ki − q)2

(ki − ki+1)2

]
≡ K(ki,ki+1).

(I.133)
The color octet and singlet projections only differ in color factors

G1 = N2
c − 1
4Nc

, G8 = −Nc

8 ; η1 = Nc, η8 = Nc

2 . (I.134)

Rather than applying directly a dispersion relation to (I.132) in order to reconstruct the full
amplitude, it is convenient to work in terms of partial wave amplitudes

fR(ω, t) =
∫ ∞

1
d

(
s

|t|

)(
s

|t|

)−ω−1 =mAR(s, t)
s

=⇒ =mAR(s, t)
s

= 1
2πi

∫ c+i∞

c−i∞
dω

(
s

|t|

)ω
fR(ω, t).

(I.135)
The reason why we work in terms of the Mellin transform is the convolution property (C.6)
that allows us to disentangle the nested integrations appearing in (I.131). Addition of the
u-channel contribution, that we have omitted up to now, is automatic using crossing and the
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definition of signature (I.85)

=m AR(s, t) = −ξR=m AR(u, t) ' −ξR=m AR(−s, t), ξ1 = +1, ξ8 = −1, (I.136)

which amounts to substitute fR(ω, t) → (1 − ξRe
−iπω)fR(ω, t) in the partial wave ampli-

tude. Now we can finally apply a dispersion relation to (I.135) or use directly the Watson-
Sommerfeld transform

AR(s, t) = − 1
4πi

∫ c+i∞

c−i∞
dω

(
s

|t|

)ω+1
ξR − e−iπω

sin πω fR(ω, t), (I.137)

that can be obtained taking the asymptotic behavior of the Legendre polynomials in (I.85).
We get, applying (C.3) and (C.6) to (I.132)

fR(ω, q2) = (4παs)2GR
∞∑
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(I.138)

The great observation is that (I.138) can be recast as a recursive relation

fR(ω, q2) = (4παs)2GR
∫ d2k

(2π)2
FR(ω,k, q)
k2(k − q)2 , (I.139)

where the function FR(ω,k, q) satisfies the integral equation

[
ω − ω(−k2)− ω(−(k − q)2)

]
FR(ω,k, q) = 1− 2αsηR

4π2

∫
d2κ

K(k,κ)
κ2(κ− q)2FR(ω,κ, q).

(I.140)
This can be seen by solving the equation iteratively, starting with F (0)

R (ω,κ, q) = 0.
(I.140) is the general form of the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation
[FKL75, Lip76, FKL76, FKL77, BL78, BL79].

For the particular value of the color factor η8 = Nc
2 , corresponding to the octet projection,

(I.140) simplifies dramatically

ωF8(ω,k, q) = 1− Ncαs
4π2

∫
d2κ

q2

κ2(κ− q)2F8(ω,κ, q). (I.141)

This equation admits the k-independent solution
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F8(ω, q) = 1
ω − ω(−q2)

(I.139)−−−→ f8(ω, q2) = 2π2αs
ω(−q2)
q2

1
ω − ω(−q2) . (I.142)

From (I.142) we see that f8(`, t) has a pole at ` = αg(t) = 1+ω(t), as required by bootstrap.
Taking the inverse Mellin transform we get

=m A8(s, t) = 2π2αsω(t)
(
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] ( s
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.

(I.143)
For the singlet projection (η1 = Nc), (I.140) takes a less compact form

[
ω − ω(−k2)− ω(−(k − q)2)

]
F1(ω,k, q) = 1− Ncαs

2π2

∫
d2κ

K(k,κ)
κ2(κ− q)2F1(ω,κ, q),

(I.144)
or, in terms of the BFKL Green’s function

F1(ω,k, q) =
∫ d2k′

k′2
k2f(ω,k,k′, q), (I.145)

directly related to the 4-point amplitude for off-shell gluons [FR97]

[
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]
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(I.146)
k

k′

k − q

k′ − q

= + κf(ω,k,k′,q)

f(ω,k,k′,q)
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k′
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k′ − q

f(ω,k,k′,q)
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ν1 ν2
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42
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f(ω,k,k′,q) f(ω,k,k′,q)

f(ω,k,k′,q)

Figure I.27: (a) The four-gluon singlet Green function; (b) diagrammatic representation of the
singlet BFKL equation in terms of the four-gluon Green function. Adapted from [FR97].

The singlet BFKL equation (I.146) is represented diagrammatically in Fig. II.3.1. It enjoys
important properties. First of all, it is UV finite, as can be seen by taking the limits
κ2 → ∞ and k2 → ∞ in the integrand of (I.146). As far as the IR behavior is concerned,
(I.146) is regular for κ2 → 0, and at k = κ. For k2 → 0 infrared divergences arising
from the virtual-gluon terms persist but one should recall that in the physical situation of
colorless particle scattering, these divergences are regulated by the confinement of quarks
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and gluons [Lip86]75. From (I.146), using (I.136) and (I.145), we have the imaginary part of
the scattering amplitude via singlet exchange
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s

= (8π2αs)2N
2
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(2π)2
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|t|

)ω
f(ω,k,k′, q).

(I.147)

In the case of elastic scattering (t = 0), the BFKL equation is greatly simplified76

ωf(ω,k,k′) = δ2(k − k′) +
∫
d2κ K(k,κ)f(ω,κ,k′) ≡ 1+K ⊗ f ;

K(k,κ) = 2ω(−k2)δ2(k − κ) + Ncαs
π2

1
(k − κ)2 .

(I.149)

One can find an analytic solution of (I.149) by diagonalizing the kernel

K ⊗ φα = ωαφα,
∑
α

φα(k)φ∗α(k′) = δ2(k − k′) =⇒ f(ω,k,k′) =
∑
α

φα(k)φ∗α(k′)
ω − ωα

. (I.150)

Just with dimensional analysis arguments [BP02] one can realize that the eigenfunctions are

φnν(|k|, ϑ) = 1
π
√

2
(k2)− 1

2 +iνeinϑ,
n∈Z
ν ∈ R;

∫
d2k φnν(k)φ∗n′ν′(k) = δnn′δ(ν − ν ′). (I.151)

The labels n and γ = 1
2 + iν are called conformal spin and anomalous dimension respectively

(see [IFL10], Ch. 10.2, and Sec. I.4.2). Plugging in these eigenfunctions in (I.150), and
making some algebra [dD95], we get the eigenvalues, expressed in terms of ψ(z) = Γ′(z)/Γ(z)

75Using dimensional regularization, we can see that divergences of the integral with the kernel cancel with
those of the trajectory (I.106) for the case of the singlet [IFL10]. This does not happen for other color
projections in the t-channel. Within perturbation theory it is perfectly legitimate to consider projectiles
which are not color singlets, even though the cross section of scattering of two nonsinglet objects is infrared
divergent. In position space, the divergence appears as the result of integration over impact parameter, which
is not bounded by confinement. When considering the non-perturbative effects leading to confinement, the
projectiles must be color singlets, so that they can only exchange states that are overall color singlets.
Amplitudes for other projections must then be considered unphysical. This is why the octet amplitude,
though enhanced by a ln s factor with respect to the singlet one, is not usually paid much attention but for
its role in gluon reggeization.

76From now on when talking about the BFKL equation we will refer to the singlet one unless explicitly
stated. Notice that we can rephrase (I.149) as an integro-differential equation describing the evolution of
the BFKL amplitude f(s,k,k′) ≡ f(s,k,k′, 0) in ln s. Using ∂f(s,k,k′)

∂ ln(s/k2) = 1
2πi
∫ c+i∞
c−i∞ dω

(
s
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)ω
ωf(ω,k,k′),

we get from (I.149)
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[
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κ2 + (k − κ)2 f(s,κ,k′)
]
. (I.148)
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ω(n, ν) = −2αsNc
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<e

[
ψ

(
|n|+ 1
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)
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]
≡ ᾱsχ0(|n|, ν), ᾱs ≡

αsNc

π
, (I.152)

where ψ(1) = −γE is the Euler-Mascheroni constant. Now, (I.150) becomes
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)
,

(I.153)

with y = ln(s/k2) being the rapidity. The asymptotic behavior as s → ∞ is controlled by
the rightmost singularity of f(ω,k,k′) on the real ω axis. Since ω(n, ν) decreases with n

(Fig. I.28), we can retain only the n = 0 term in (I.153). Furthermore, we can take the
saddle point approximation around ν = 0

ω(0, ν) = ᾱs(4 ln 2−14ζ(3)ν2+· · · ) ≡ λ−1
2λ
′ν2+· · · ; λ = 4 ln 2ᾱs, λ′ = 28ζ(3)ᾱs, (I.154)

and then perform the Gaussian integral over ν to get the pomeron solution of the leading
ln s BFKL equation

f(s,k,k′) = 1√
2π3λ′k2k′2

1√
ln(s/k2)

(
s

k2

)λ
exp

[
− ln2(k2/k′2)

2λ′ ln(s/k2)

]
. (I.155)

The quantity
αP(0) = 1 + λ = 1 + Ncαs

π
4 ln 2, (I.156)

is the intercept of the perturbative QCD (or BFKL) pomeron. Inserting the solution (I.155)
into (I.147) gives, via the optical theorem, the total cross section for quark-quark scattering

σqqtot = 1
s
=m A1(s, t = 0) = 4α2

s

(
N2
c − 1
4N2

c

)∫
d2k

∫
d2k′

f(s,k,k′)
k2k′2

. (I.157)

The integral over k diverges in the IR when substituting (I.155) in (I.157). In physical
situations a natural cutoff kmin is provided by confinement. Then, defining ȳ = ln s

k2
min

,

σqqtot = π(N2
c − 1)
N2
c

α2
s

k2
min

eλȳ√
πλ′ȳ/8

∼ sλ

ln s. (I.158)
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Figure I.28: (a) The leading order BFKL eigenvalue with n = 0 for αs = 0.14. (b) χ0(n, ν)
decreases with n.

3.4 Going Beyond the Leading Approximation

There are a number of important limitations inherent to the BFKL leading log approxi-
mation (LL). LL BFKL predictions have restricted phenomenological applications because
there are a longitudinal and transverse scale that are not fixed. The longitudinal one is
the scale s0 that scales s and determines the kinematic range of validity of BFKL through
αs ln s

s0
∼ O(1). The transverse one is the scale at which the coupling should be evaluated.

The running of the coupling and the value of s0 are not taken into account in LL BFKL
because they give contributions that are formally subdominant.

Another problem is related to the lack of energy and longitudinal momentum conservation
in the description of hadronic collisions. This is because the momentum fraction x of the
incoming parton is reconstructed without the contribution to the total energy from the
radiation of the BFKL ladder. Therefore, the analytic BFKL approach systematically
underestimates the exact value of the x’s, and can thus grossly overestimate the parton lumi-
nosities77. This problem, however, is not exclusive of the LL realm. Apart from computing
the NLL corrections, which is extremely important, one often has to use some other crite-
rion to select relevant contributions (see e.g. the discussion on collinear resummation below).

Looking back we find many places where we made approximations only valid at the leading
logarithmic level: the strict multi-Regge kinematic regime, the strict eikonal approximation,
the absence of fermion loops, the domination of ladders with reggeized gluons in their
vertical lines, etc. We can then understand that the computation of NLL (αs(αs ln s)n)
corrections to the BFKL singlet equation is a formidable program. In fact, ten years of hard

77To see this in detail consider (B.31). The contribution in the r.h.s. coming from the radiation of n
gluons cannot be accounted for, since the BFKL equation is solved by summing over any number of gluons
radiated and integrating over the full allowed rapidity-ordered gluon phase space.
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work by many authors were needed to complete the task since Fadin and Lipatov initiated
the program computing the vertex for two gluon production [FL89] until all the pieces
of the NLL BFKL kernel for t = 0 were put together and the corresponding eigenvalues
computed by the same authors in 1998 [FL98] (see also [CC98]). A summary of the com-
putations is given in [IFL10], where more recent developments on the field are also discussed.

With reggeization proved to hold at NLL order[FFKR06], the BFKL equation takes the same
form as for LL order, the kernel having a similar structure:

K(k,κ) = 2ω(−k2)δ2(k − κ) +Kreal(k,κ). (I.159)

But now the reggeized gluon trajectory ω(−k2) needs to be computed in the two-loop ap-
proximation [FFK95, FFK96a, FFQ96, BRvN98, dDG01], and Kreal gets contributions from
gluon production at one-loop level [FL93, FFQ94, FFK96b, dDS99] and from two-gluon and
qq̄ production [FL89, CCH91, FL96, dD96b, dD96a, FKL97, FFFK98] (Fig. I.29). In the
subleading approximation we have to include contributions where multi-Regge kinematics
(MRK) is relaxed so that we lose one ln s factor. This is what we call quasi-multi-Regge
kinematics (QMRK), where we allow two of the emitted gluons, or the components of an
emitted quark-antiquark pair, to have similar rapidities. A generalized notion of QMRK will
be needed for the use of the effective action (Ch. III).

1 0

2-loop trajectory 1-loop
gluon emission

pair production

02

Figure I.29: Schematic representation of the corrections included at next-to-leading order. The
number in the blob is the number of loops. Taken from [Cha06].

The action of the NLL kernel and its eigenvalues, are more conveniently expressed in bra-ket
formalism [IP06, Sab06], defined by

q̂|qi〉 = qi|qi〉; 〈q1|1̂|q2〉 = δ(2)(q1 − q2); 〈n′, ν ′|n, ν〉 = δ(ν − ν ′)δnn′ . (I.160)

The basis of LL eigenfunctions reads in this formalism 〈q|n, ν〉 = 1
π
√

2(q2)iν− 1
2 einϑ. In the

NLL case, these are no longer eigenfunctions of the kernel due to the running of the coupling
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(I.17), ᾱs(q2) ' ᾱs(µ2)−ᾱ2
s(µ2) β0

4Nc ln q2

µ2 , which breaks scale invariance (see also Sec. I.4.2)78.
The action of the NLL kernel —given in the MS scheme— on the basis |n, ν〉 reads [KL00]

〈n, ν|K|ν ′, n′〉 ≡ ω(n, ν) = ᾱs,MS

[
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(
|n′|, 1

2 + iν ′
)
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)
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8Nc
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){
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}
+ i

ᾱs,MSβ0

8Nc
∂ν′χ0

(
|n′|, 1

2 + iν ′
)]

δn,n′δ(ν − ν ′),

(I.161)
where a symmetrized version in ν and ν ′ to express ln q2 as a derivative with respect to either
ν or ν ′ has been used [Sch07]. This is the natural choice when the two transverse scales q2

1

and q2
2 are similar, allowing us to discard the terms proportional to χ′0 in the NLL kernel for

our analysis of Sec. II.2, without redefining the LL eigenfunctions79 [FL98]. All the other
functions in (I.161), with ν = i

(
1
2 − γ

)
, are
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2ζ(3)− β0

8Nc
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(I.162)

Ω(n, γ) ≡ 1
4

[
ψ′′
(
γ + n

2

)
+ ψ′′

(
1− γ + n

2

)
− 2φ(n, γ)− 2φ(n, 1− γ)

]
; (I.163)

φ(n, γ) =
∞∑
k=0

(−1)k+1

k + γ + n
2

(
ψ′(k + n+ 1)− ψ′(k + 1) + (−1)k+1(β′(k + n+ 1)

+ β′(k + 1)) + ψ(k + 1)− ψ(k + n+ 1)
k + γ + n

2

)
; 4 β′(γ) = ψ′

(1 + γ

2

)
− ψ′

(
γ

2

)
.

(I.164)

In Fig. I.30 the n = 0 component of the LL and NLL kernels are compared, for a typical
value of the coupling ᾱs = 0.14. The LL kernel has a single saddle point at γ = 1

2 . This
property changes in the NLO case for ᾱs above 0.05. If we examine the contour γ = 1

2 +iν for
real ν we find, instead of a maximum at ν = 0, two maxima at ν 6= 0 and a local minimum
at ν = 0. We have two saddle points off the real axis, at γ = 1

2 + iν0 and γ = 1
2 − iν

∗
0 . These

saddle points determine the high-energy behavior of the Green’s function. From (I.153),
considering only the n = 0 component, we can write

78To see this, look at the action of the kernel on the LL eigenfunctions (I.161). The eigenvalues depend
on q2 —and not only on n and ν— through factors ∼ ln q2

µ2 arising from the running of the coupling. So the
LL eigenfunctions do no longer diagonalize the NLL kernel.

79In general the kernel includes a piece not symmetric in γ → 1− γ. Though in our study we will be able
to dispose of it because it cancels with the symmetric choice in ν, ν′ when acting onto our impact factors,
it can be avoided anyway by adding a factor

√
ᾱs(q2

1)
ᾱs(q2

2) in the definition of the eigenfunctions. However, this
redefined set is no longer orthonormal.
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(a) (b)

Figure I.30: (a) Structure in the complex γ plane of the n = 0 eigenvalue of the scale invariant
part of the NLL kernel (for a scale µ = 30 GeV), sometimes called itself the kernel by abuse of
language; (b) Comparison of the LL and NLL kernels, for ᾱs = 0.14. We also show for comparison
the NLL BFKL kernel of N = 4 SYM (MSYM), which will be of importance in Ch. II.

π|k||k0|f(y,k,k0) =
∫
C

dγ

2πie
yω(0,ν)

(
k2

k2
0

)γ− 1
2

∼ eyω(0, 12 +iν0) + eyω( 1
2−iν

∗
0)
(
k2

k2
0

)−iν∗0
. (I.165)

where C is the contour γ = 1
2 + iν, ν ∈ R. Since ω(0, γ) = ω∗(0, γ∗) this gives

f(y,k,k0) ∼ e
y<e ω(0, 12 +iν0)−=m (ν0) ln k2

k2
0

π|k||k0|
cos

{
<e (ν0) ln k

2

k2
0

+ y=m
[
ω

(
0, 1

2 + iν0

)]}
. (I.166)

We see that, though we can make ω(0, 1/2 + iν0) real by getting rid of the term in the
kernel not symmetric under γ ↔ 1 − γ, we run into problems when we have large collinear
logarithms, i.e. k2 � k2

0. In this case the Green function presents an oscillatory behavior
that is the source of many problems, to the point of leading to negative cross sections [Ros98].

An even more important problem with the NLL BFKL kernel concerns the size of the cor-
rections. The size of corrections is estimated by the ratio r(γ) = −χ1(0, γ)/χ0(0, γ). For
γ = 1

2 , corresponding to the largest eigenvalue in LL, and hence to the pomeron intercept,
one has [FL98]

r(1/2) ' 6.46 + 0.05Nf

N3
c

+ 2.66Nf

N3
c

=⇒ αNLL
P

(0)
αLL
P

(0) = 1− ᾱsr(1/2) =
Nf=0

0.0747. (I.167)

The value of the correction is very large, canceling the LL contribution practically. The
prospects are not however that pessimistic and various proposals for the inclusion and
resummation of higher-order terms with a view to stabilizing the perturbative series have
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I. High Energy Scattering in QCD

been carried out through three basic strategies: 1) BLM resummation together with an ap-
propriate scheme change (discussed in detail in Sec. II.2.3), a rapidity veto [Sch99, FRS99],
and resummation of collinearly enhanced terms [Sal98, FRS01, CCSS03, AS03, AS04b].

Several studies showed that the origin of the bad behavior of the NLL kernel had its origin
in the two-particle production in QMRK. Since we impose no restriction on the values of the
transverse momenta for the emissions within the pair of particles close in rapidity, there can
be final configurations where the transverse momenta of the pair of particles are strongly
ordered. This leads to large logarithms of transverse momenta (collinear logarithms) that
render the expansion in αs ln s unstable (remember the discussion after Eq. (I.166)). To
account forg these unphysical logarithms one can perform a complete DGLAP resummation
of these large logarithms [CC99, CCS99].

The implementation of the program is based on the study of the pole structure of the
kernels in the collinear (anticollinear) regions γ = 0 (γ = 1), that dominate the saddle point
integration when two very different scales are present. From (I.152) and (I.162) we have

χ0(0, γ) = 1
γ

+ {γ → 1− γ}+O(γ0); χ1(0, γ) = − 1
2γ3 + a

γ2 + b

γ
+ {γ → 1− γ}+O(γ0).

a = 5
12

β0
Nc
− 13

36
Nf

N3
c

− 55
36 , b = −1

8
β0
Nc
− Nf

6N3
c

− 11
12 .

(I.168)
Now the BFKL equation should have the same collinear pole structure of the DGLAP equa-
tion for the case in which the ratio of transverse scales is large (or small, indeed the situation
should be symmetric for the collinear and anticollinear regions [Sal99]). The Mellin trans-
form of the DGLAP kernel αs

2π
xPgg(x)
Q2 Θ(Q2 − k2) '

x→0
ᾱs
Q2 Θ(Q2 − k2) (analogous to the BFKL

kernel ᾱsχ0(0, γ)), is ᾱs
γ

(
+ ᾱs

1−γ

)
. So the terms with collinear poles of higher order should

be canceled from corrections of higher order in the ln s expansion. As said before, these
contributions give by far the largest contribution to the NLL kernel. The origin of each piece
is discussed in detail in [Sal99]. The 1/γ2 pole comes from running coupling and branching
effects. The 1/γ3 pole, most interestingly, is related to the asymmetry in the two transverse
scales. Indeed when passing from a symmetric choice of the scale q1q2 ≡

√
q2

1q
2
2 to a DIS-like

situation with Q2 ≡ q2
1 � q2

2, the NLL DGLAP contribution (n = 2 in (I.72)) changes by

1
4

(
ᾱs ln s

q1q2
ln q

2
1
q2

2

)2

= 1
4

(
ᾱs ln 1

x
ln q

2
1
q2

2

)2

+ 1
4 ᾱ

2
s ln 1

x
ln3 q

2
1
q2

2
+ NNLL. (I.169)

The Mellin transform of the ln3 term then gives a term proportional to 1/γ3. Instead of
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3. Reggeization and the BFKL Pomeron

decreeing that the terms not consistent with DGLAP in the NLL kernel should not be
there (which would left uncanceled many collinear terms of presumable importance in higher
orders) a hint on how to perform a full resummation canceling collinear logarithms to all
orders comes from observing the effects of this change of scale to all orders. Using (I.147)
and (I.153) we can write, for a symmetric choice of scale

f(s, q1, q2) ∼
∫ dω

2πi

∫ dγ

2πi

(
s

q1q2

)ω (
q2

1
q2

2

)γ−1/2 1
ω − ᾱsχ0(γ)

=
∫ dω

2πi

∫ dγ

2πi

(
s

q2
1

)ω (
q2

1
q2

2

)γ− 1
2 1
ω − ᾱsχ0(γ − ω/2) ,

(I.170)

where we have used for the second equality that
(

s
q1q2

)ω (q2
1
q2

2

)γ
=
(
s
q2

1

)ω (q2
1
q2

2

)γ+ω/2
. So the

effect of the scale asymmetry is a shift in the position of the ω-pole. When exchanging q2
1

and q2
2 in (I.170) (anticollinear limit) the shift changes sign. In the collinear limit γ ∼ 0,

χ0(γ) ∼ 1
γ
. Now the effect of the shift produced by the scale asymmetry is to introduce

collinear poles of higher collinear order in the kernel80

ω ∼ ᾱs
γ − ω/2 → ω ∼ ᾱs

γ
+ ᾱ2

s

2γ3 +
∞∑
n=2

(2n)!
2nn!(n+ 1)!

ᾱn+1
s

γ2n+1 , (I.171)

that are not consistent with DGLAP RG evolution, because the powers of the collinear
logarithms (taking the inverse Mellin transform) are higher than that of the coupling. To
cancel these terms the obvious choice is to shift the collinear and anticollinear poles in the
kernel in the other direction. So one should find the value of ω for which

ω = ᾱs

(
2ψ(1)− ψ

(
γ + ω

2

)
− ψ

(
1− γ + ω

2

))
. (I.172)

Salam [Sal99] was able to generalize the shift (I.172) to also include the running coupling
and not-small-x branching effects to all orders [AGS96]

ω = ᾱs

(
1 +

(
a+ π2

6

)
ᾱs

)(
2ψ(1)− ψ

(
γ + ω

2 − bᾱs
)
− ψ

(
1− γ + ω

2 − bᾱs
))

+ ᾱ2
s

(
χ1(0, γ) +

(1
2χ0(γ)− b

)
(ψ′(γ) + ψ′(1− γ))−

(
a+ π2

6

)
χ0(γ)

)
,

(I.173)

80When introducing firstly the approximation χ0(γ−ω/2) ' 1/(γ−ω/2) the terms neglected are of higher
order in αs or γ than the powers appearing in (I.171). One could object that the solution ω of the iterative
equation may not be small. However, the numerical value one obtains for ω goes to 0 as αs and γ approach
zero. To obtain the r.h.s. of (I.171) one finds αs = γ ±

√
γ2 − 2ᾱs = γ(1 ±

√
1− (2ᾱs/γ2) from the l.h.s.

and uses the Taylor series 1−
√

1− x = −
∑∞
n=1

xn(2n−3)!
22(n−1)n!(n−2)! . For γ > 0 the result (I.171) is obtained.
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I. High Energy Scattering in QCD

where a and b were defined in (I.168). A suitable implementation of the shifted kernel was
found by Sabio Vera [Sab05], who showed that the shift (I.173) is equivalent to replace the
term − ᾱ2

s

4 ln2 q2
1
q2

2
in the NLL kernel by

(
q2

1
q2

2

)−bᾱs ||q2|−|q1|||q2|−|q1|
√√√√√2(ᾱs + aᾱ2

s)
ln2 q2

1
q2

2

J1

(√
2(ᾱs + aᾱ2

s) ln2 q
2
1
q2

2

)
− ᾱs − aᾱ2

s + bᾱ2
s

||q2| − |q1||
|q2| − |q1|

ln q
2
1
q2

2
.

(I.174)
The resummed kernel avoids the instabilities we previously encountered (Fig. I.31) and
gives a reasonable value of the pomeron intercept.
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Figure I.31: (a) Value of the high energy exponent (pomeron intercept). The NLL resummed kernel
gives results in agreement with data. NLLanom

resum indicates the high energy exponent that governs
anomalous dimensions; (b) Suppression of the ν 6= 0 saddle point causing oscillatory behavior in
the resummed kernel. ‘All poles’ refers to the prescription (I.174), which reproduces very well the
numerical results of the resummed kernel. Taken from [Sal99] (a) and [Sab05] (b).

3.5 Small-x Phenomenology and kT Factorization

Before addressing in Sec. I.4 some properties of the BFKL pomeron solution, it is interesting
to make a brief review of the phenomenological applications of BFKL physics. Figs. I.32,
I.33 and I.34 show some of the processes where BFKL signatures should arise more clearly.

So far we have worked at the partonic level, considering the interacting partons to be
on shell. In order to compute the physical cross sections for these processes, involving
hadrons in most cases in the initial or final states, we need some form of factorization. The
kinematics here is quite different from that studied in Sec. I.2.1, and collinear factorization
(I.60) does not apply.
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Figure I.32: Summary of some good observables to look for BFKL dynamics (from [Car01]).
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The amplitude for qq scattering via pomeron exchange, which we can get applying a disper-
sion relation to (I.147), reads

A1(s, t) = (8π2αs)2N
2
c − 1
4Nc

δijδkl i s
∫ d2k

(2π)2
d2k′

(2π)2
f(s,k,k′, q)
k′2(k − q)2 . (I.175)

The amplitude for the elastic scattering of two hadrons A and B via pomeron exchange
(Fig. I.35 (a)), in a generalization of (I.175), can be written as

A(s, t) = is C
∫ d2k

(2π)2

∫ d2k′

(2π)2 ΦA(k, q)ΦB(k′, q)F (y,k,k′, q)
k′2(k − q)2 , (I.176)

where the impact factors Φi encode all intrinsically nonperturbative information from the
initial and final states. The case of quark-quark scattering (I.175) is recovered for the color
factor C = N2

c−1
4Nc and the quark impact factor Φq = 8π2αs. Eq. (I.176), inspired in Regge

factorization (I.92), is to be properly justified. Notice that the presence of two hard scales
in the BFKL regime makes the transverse momenta of gluons not negligible as in collinear
factorization. We are thus prompted to introduce the unintegrated gluon distribution81

F(x,k2) = ∂[xg(x,k2)]
∂ lnk2 , xg(x,Q2) =

∫ Q2 dk2

k2 F(x,k2). (I.178)

The new form of factorization that holds in the BFKL regime is the k⊥-factorization [CCH90,
CCH91]. For the γ∗p cross section it reads

σγ
∗p
λ (x,Q2) =

∫ dk2

k2 F(x,k2)
∫ 1

x

dx′

x′
σγ
∗g
λ (x′,k2, Q2), (I.179)

where λ is the polarization of the virtual photon and σγ
∗g
λ the gluonic cross section. An

intelligible proof of (I.179) is given in [BP02], Sec. 9.5.4. To make contact with the impact
factor formalism we have from (I.176), using the optical theorem and reabsorbing the color
factors in the definition of impact factors

σγ
∗p
λ (x,Q2) = 1

(2π)4

∫ d2k

k2

∫ d2k′

k′2
Φλ(k2, Q2)Φp(k′2)f(x,k,k′), (I.180)

81The BFKL equation (I.148) can be recast as an evolution equation for F(x,k2) (see [BP02], Sec. 9.6)

∂F(x, γ)
∂ ln(1/x) = K(γ)F(x, γ), F(x, γ) =

∫ ∞
1

d

(
k2

k2
0

)(
k2

k2
0

)−γ−1

F(x,k2), K(γ) = ᾱsχ0(0, γ). (I.177)

Such an equation allows to relate rigorously predictions for amplitudes and cross sections and predictions
for gluon densities. One finds in particular the famous result F(x,k2) ∼ x−λ.
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where Φλ is the photon impact factor and recall that y = ln(1/x). Defining the relation
between the unintegrated gluon distribution and the BFKL amplitude by

F(x,k2) = 1
(2π)3

∫ d2k′

k′2
Φp(k′2)k2f(x,k,k′), (I.181)

leads to a definition of the photon impact factor

σγ
∗p
λ (x,Q2) = 1

2π

∫ d2k

k4 F(x,k2)Φλ(k2, Q2); Φλ(k2, Q2) = 2k2
∫ 1

0

dx′

x′
σγ
∗g
λ (x′,k2, Q2).

(I.182)
Of course we lack a fundamental knowledge of hadronic impact factors, that have to
be modeled the same way we had to take an ansatz for the PDFs at some scale in the
DGLAP evolution. The situation is much better when hadrons are replaced by virtual
photons (Fig. I.35 (b)). Computation of the photon impact factor at LO is sketched in
[FR97], Sec. 6.7. Since as we will see the total cross section of two photons with large and
similar virtualities is the golden BFKL signature, lots of efforts have been directed to com-
pute the NLO impact factor [BGK02, BCGK02, BK04], a task recently accomplished [BC11].

As advanced in Sec. I.2.2, it is difficult to have good probes of BFKL dynamics in the
kinematic range explored up to now. Considerable effort was put at the HERA collider in
this direction, in particular into the measurement of the F2 proton structure function, shown
in Fig. I.7 (see, e.g. [ZEU96]), for which a rise of the form ∼ x−λ was expected for values of
Q2 ensuring the applicability of BFKL. Moreover, strong scaling violations (possibly reduced
by the effects of the running of the coupling, as we remarked after Eq. (I.73)) should be
observable from the dependence on k2 of g(x,k2) as obtained from (I.177) [BP02]

g(x,k2) ∼ (k2)1/2 x
−(αP−1)√
ln(1/x)

exp
(
− π ln2(k2/k2

0)
56αsNcζ(3) ln(1/x)

)
. (I.183)

Both qualitative features were indeed observed at HERA, but the data were shown to be
also consistent with NLL DGLAP evolution [BF94, GRV95]. One can try with observables
more directly sensitive to the gluon distribution than F2. For instance, the charm quark
component of the structure function F c

2 is particularly sensitive because at leading order
heavy quarks are only produced through gluon-boson fusion γ∗g → qq̄ [Wit76] (see also
[DDT80, LRSvN93]). However, from the experimental point of view, the low efficiency in
the tagging of charm mesons makes the measurement difficult [Lan96]. Something similar
happens for the longitudinal structure function [CSDL91].
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Other properties of the hadronic final state have also been studied, such as transverse
energy flows [GBKMS94, H1 95] or the distribution of jet multiplicities [KLM96]. In general
one should expect from BFKL evolution larger multiplicities and transverse energy flow,
because of the larger phase space available as we do not impose strong ordering in transverse
momenta. However, the predictions of the parton-level calculation get smudged as we take
into account the uncertainties in hadronization. As a general rule, the presence of a soft
scale is bound to create problems.
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Figure I.36: The total γ∗γ∗ cross section as measured by the OPAL and L3 Collaborations at
LEP, compared with BFKL and fixed order predictions. Adapted from [BFK+02].

The golden signature in which this kind of problems is absent (though one should take
into account the intrinsic restrictions imposed by diffusion, see Sec. I.4.1) is the study of
the γ∗γ∗ total cross-section for large values of Q2 [BdRL96]. It can be measured at e+e−

colliders by tagging both outgoing leptons close to the forward direction. The main practical
limitation is that, because of the photon propagators, the event rate for the process falls off
very rapidly with increasing photon virtualities, so that one cannot reach very large values
of Q2. Such a measurement of σγ

∗γ∗

tot was performed by the L3 and OPAL Collaborations at
LEP. The data are shown in Fig. I.36. While the LL BFKL prediction overestimates the
cross section (as expected because of the higher value of the pomeron intercept), NLO fixed
order predictions fail in the large rapidity region (also expected), while NLL BFKL with
BLM scale setting (Sec. II.2.3) seems to improve the agreement with data [BFK+02]. The
inclusion of the recently computed NLL impact factor [BC11] is to be done.
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Perhaps a much better strategy is to consider less inclusive final states where DGLAP evo-
lution is suppressed. A paradigmatic configuration is that of Mueller-Navelet jets, discussed
in detail in Sec. II.3, in which the tagging of two jets is required to be well-separated
in rapidity and with moderately large and similar tranverse momenta, in such a way that
the DGLAP evolution is suppressed and BFKL one is enhanced. Particularly convenient
are diffractive events (Figs. I.33 and I.34), characterized by a large rapidity gap where no
emissions take place (see [BP02, Kep09, KL12] and references therein). It is not possible to
review here all the advances in the field made in recent years. For up-to-date reviews, and
prospects for the forward and diffractive physics program at the LHC, see [Sch09, dR12].

4 Properties of the BFKL Equation
In the last section we reviewed in detail the construction of the BFKL pomeron, which
appeared as the solution to a Bethe-Salpeter-like equation describing the evolution in rapidity
of a bound state of two reggeized gluons. Now we want to examine briefly some relevant
aspects of this solution.

4.1 Unitarity and Diffusion Issues

We begin with two puzzling features of the BFKL equation: the violation of unitarity and
the diffusion into the nonperturbative regime. Although we will consider here the leading
log approximation, both two features persist at any order in the perturbative expansion.

Violation of the Froissart bound (I.97), and therefore, of unitarity, is apparent from the LL
BFKL cross section (I.158). The pomeron intercept (I.156) is bigger than 1, in fact for a
typical value of the coupling αs ' 0.2 it is quite large (αP − 1 ' 0.5). As shown in Fig.
I.31, this value is lowered to approximately 0.3 using an all-orders collinear resummation,
in agreement with the HERA data for the effective pomeron intercept λ(Q2) (Fig. I.37),
defined by

σ(γ∗p) ∼ F (Q2)(W 2)λ(Q2) =⇒ f(Q2)x−λ(Q2). (I.184)

Fig. I.37 is actually very interesting. It shows that the effective intercept interpolates
smoothly between the value for the NLL BFKL pomeron at big virtualities, and the
Donnachie-Landshoff result (I.95), λ ∼ 0.1, for the soft pomeron, which is nonperturbative
in essence (Q2 < ΛQCD). The result points in the direction that only one pomeron exists,
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Figure I.37: Fit of the combined HERA data for the effective pomeron intercept [H1 10] using the
collinear resummed BFKL kernel together with BLM renormalization prescription [HSS13].

with a smooth transition from hard to soft properties. The modification of the BFKL
exponent at low Q2 should be due to nonperturbative effects. An attempt to take them into
account by modifying the gluon propagators according to properties of the QCD vacuum
was undertaken by Landshoff and Nachtmann [LN87] (see also [DDLN02] for a wider
exposition). Their analysis turns out to be equivalent to the insertion of an effective mass
by hand in the gluon propagator [NZZ94]. The effect of this mass is indeed to decrease
the pomeron intercept. However, a fully non-perturbative treatment implies much more
than merely modifying the gluon propagators [KLRW10, KLR12]. A promising approach to
address non-perturbative QCD and, in particular, the pomeron, is based on the AdS/CFT
correspondence [PS02, BPST07].

The diffusion problem is also related to the appearance of non-perturbative phenomena. The
solution (I.155) of the BFKL equation has the form of a Gaussian distribution in ln(k2/k′2),
with a width growing with y = ln(s/k2) (Fig. I.38). This means that, as the energy
increases, a wider range of transverse momenta is explored, and we finally enter the non-
perturbative regime, invalidating the perturbative treatment. In fact, the BFKL equation
(I.149) can be approximated (in the high energy limit) by a diffusion equation. To see this
we write (I.149) as a recursion relation, where N is the iteration step. Using the equality[

1
(k−q)2 − 1

q2+(k−q)2

]
= q2

(k−q)2[q2+(k−q)2] and neglecting the inhomogeneous δ-term, irrelevant
for N high enough, we get

ωf (N)(ω,k1) = Ncαs
π2

∫
d2k2

{
f (N−1)(ω,k′2)− (k2

1/k
2
2)f (N−1)(ω,k1)

(k1 − k2)2 + k2
1f

(N−1)(ω,k1)
k2

2[k2
2 + (k1 − k2)2]

}
(I.185)

We omitted the second argument in f(ω,k1,k2) since we will not consider the depen-

70



4. Properties of the BFKL Equation

0

1

2

3

4

5

6

7

8

9

x = 10−4

x = 10−3

10−210−1 1 10 102 103 104
k2 (GeV2)

F(x,k2)
(k2)1/2

(GeV−1)

x = 10−2

Figure I.38: BFKL evolution of F(x,k2)/(k2)1/2. The unintegrated gluon distribution F(x,k2)
is defined in (I.178). An infrared cutoff k2

0 has been introduced by hand. Adapted from [AKMS94].

dence on it. From the form of the solution (I.153) we make the ansatz f (N)(ω,k2
i ) ∼

(k2
i )−1/2ψN(ξi), ξi = ln(k2

i /k
2
0) for some reference scale k2

0. In multi-Regge regime all trans-
verse momenta are similar and we can approximate ψN−1(ξ2) ' ψN−1(ξ1)+ 1

2(ξ2−ξ1)2 ∂2ψN1 (ξ1)
∂ξ2

1
.

Then (I.185) takes the form [dD95]

ωψN(ξ1) = Ncαs
π

∫ ∞
0

dξ2

{[
e(ξ2−ξ1)/2 − 1
|1− eξ2−ξ1 | + 1√

1 + 4e2(ξ2−ξ1)

]
ψN−1(ξ1)

+ (ξ2 − ξ1)2

2
e(ξ2−ξ1)/2

|1− eξ2−ξ1|
∂2ψN−1(ξ1)

∂ξ2
1

}
= λψN−1(ξ1) + λ′

2
∂2ψN−1(ξ1)

∂ξ2
1

,

(I.186)

with λ and λ′ defined in (I.154). Taking now the continuum limit we find

ω
∂ψ(N, ξ)
∂N

= (λ− ω)ψ(N, ξ) + λ′

2
∂2ψ(N, ξ)

∂ξ2 , (I.187)

and sitting in the minimum of the potential term λ = ω we find a diffusion equation with N
playing the role of time. To get the physical meaning of N we match the solution of (I.187)

ψ(N, ξ) ∼
(

λ

2λ′N

) 1
2

exp
(
− λξ2

2λ′N

)
for an initial condition ψ(0, ξ) = 1

(πσ2)
1
4

exp
(
− ξ2

2σ2

)
(I.188)

(note that we eventually neglected the initial width, λσ2 � λ′N) with (I.153) and find the
correspondence N/λ ↔ y = ln(s/k2). So in the diffusive limit the BFKL equation can
be recast in the form of a Schrödinger equation where, up to small redefinitions, angular
momentum plays the role of energy and rapidity the role of time82.

82It is interesting to reformulate the BFKL equation in Hamiltonian formalism. One can formally solve

71



I. High Energy Scattering in QCD

The discussion of diffusion reminds us the importance of non-perturbative effects even if we
study purely hard processes such as γ∗γ∗ collisions at very high Q2, for which no pomeron-
hadron coupling has to be studied. In Sec. II.3, we will study in detail the diffusion pattern
in QCD and N = 4 SYM in the NLL approximation.

4.2 The Appearance of Conformal Invariance and Integrability

In 1986, Lipatov noticed [Lip86] that the LL BFKL equation (I.146) (for the general case t 6=
0) could be analytically solved using that it possesses a two-dimensional SL(2,C) conformal
symmetry, which is uncovered by taking the Fourier transform with respect to the transverse
momenta, expressing the amplitude in impact parameter space

δ(q−q′)f(ω,k,k′, q) =
∫
d2ρ1d

2ρ2d
2ρ′1d

2ρ′2 exp{i[k·ρ1+(q−k)·ρ2−k′ ·ρ′1−(q′−k′)·ρ′2]}. (I.192)

Then, introducing the holomorphic coordinates ρ = ρx + iρy (and their antiholomorphic
complex conjugates ρ̄ = ρx − iρy), and defining ∂ = ∂ρ and ∂̄ = ∂ρ̄, the BFKL equation in
impact parameter space reads schematically [Lip93a]

(I.149), with the kernel identified as the Hamiltonian, in the form

f(ω) =
[
ω − αsNc

π
HBFKL

]−1
f (0)(ω). (I.189)

Here f (0) corresponds to the δ-factor accounting for the free exchange of two reggeized gluons. Now the
singularities of the partial waves f(ω) are determined by the eigenvalues of the Hamiltonian

HBFKLΨnν = EnνΨnν , Enν = −πω(n, ν)
αsNc

. (I.190)

The high energy behavior of the scattering is dominated by the maximal eigenvalue, (Enν)max = E00,
corresponding to the rightmost singularity of f(ω), for which ω = 1 +ωg, with ωg the trajectory. (I.190) has
the interpretation of a 2d Schrödinger equation, Ψnν being the pomeron wavefunction.

When rescaling the eigenfunctions by a factor (k2)−1/2, φ̃nν(ξ = ln(k2/k2
0), ϑ) = (k2)1/2φnν(k2, ϑ), as

we have made in the previous paragraph, the variables n and ν labelling the eigenvalues are dual to ϑ and
ξ = ln(k2/k2

0) respectively (rescaling y it can be considered a rapidity). If considered as operators they can
be represented as n → −i ∂∂ϑ and ν → −i ∂∂y . This can be seen from the action of these operators on the
eigenstates (I.151): −i∂ϑφ̃nν(ξ, ϑ) = nφ̃nν(ξ, ϑ), −i∂ξφ̃nν(ξ, ϑ) = νφ̃nν(ξ, ϑ).

Now that we have operator representations of n and ν one can express the Hamiltonian (acting on the
redefined eigenfunctions) by its eigenvalues with operator-valued arguments, according to (I.190). The
eigenvalues, Enν = −ω(n,ν)

ᾱs
, are approximated in the diffusion limit by (I.154), and we can write

HBFKL(ν) = HBFKL

(
−i ∂
∂ξ

)
' − 1

ᾱs

(
λ− 1

2λ
′ ∂

2

∂ξ2

)
. (I.191)

This is equivalent to the Schrödinger equation (I.187).
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ωf(ω) = f(ω)(0) +HBFKLf(ω), HBFKL = αsNc

2π (H + H̄), (I.193)

where the holomorphic part of the Hamiltonian HBFKL takes the form

H(ρ1, ρ2) = ln[(ρ1 − ρ2)2∂1] + ln[(ρ1 − ρ2)2∂2]− 2 ln(ρ1 − ρ2)− 2ψ(1), (I.194)

with ψ(z) the digamma function. The antiholomorphic part H̄ has the same functional form
in terms of the coordinates ρ̄1 and ρ̄2. Written in the form (I.194) it is easy to check that
HBFKL is invariant under the SL(2,C) group of Möbius transformations

ρi →
aρi + b

cρi + d
, a, b, c, d ∈ C ad− bc = 1. (I.195)

The generators of holomorphic SL(2,C) transformations are

Lk,− = −∂ρk , Lk,0 = ρk∂ρk , Lk,+ = ρ2
k∂ρk , k = 1, 2; (I.196)

with corresponding antiholomorphic generators. One can see that

[HBFKL, L1,a + L2,a] = [HBFKL, L̄1,a + L̄2,a] = 0; a = +,−, 0. (I.197)

Therefore the BFKL Hamiltonian only depends on the two-particle Casimir operators of the
SL(2,C) group

H = H(L2
12), H̄ = H̄(L̄2

12); L2
12 = −(ρ1 − ρ2)2∂1∂2, L̄

2
12 = −(ρ̄1 − ρ̄2)2∂1̄∂2̄, (I.198)

and the solutions of the BFKL equation have to be eigenstates of the Casimir operators

L2
12Ψn,ν = h(h− 1)Ψn,ν , L̄2

12Ψn,ν = h̄(h̄− 1)Ψn,ν ; {h, h̄} = 1± n
2 + iν. (I.199)

n and ν label the irreducible (principal series) representation of SL(2,C) to which Ψn,ν

belongs. The solutions to (I.198) are

Ψn,ν(b1, b2) =
(

ρ12

ρ10ρ20

)(1+n)/2+iν (
ρ̄12

ρ̄10ρ̄20

)(1−n)/2+iν

. (I.200)

They describe the pomeron wavefunction built from two reggeized gluons with coordinates
b1 = (ρ1, ρ̄1 and b2 = (ρ2, ρ̄2). The integer n fixes the two-dimensional Lorentz spin of the
state, while ν ∈ R gives the scaling dimension ` = 1 + 2iν. The coordinate b0 = (ρ0, ρ̄0)
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reflects the translational invariance of the system and can be understood as a center-of-mass
coordinate. Finally, the BFKL eigenvalues turn out to coincide with those for the forward
case (I.190).

Apart from conformal symmetry, another striking property of high energy QCD is inte-
grability. Integrability is a very useful feature of selected physical models, that allows one
to rely on certain algebraic properties to solve them exactly and to determine physical
observables efficiently. Unfortunately, as a general rule, integrability is restricted to at
most two-dimensional systems, like spin chains or σ-models [FS10]. Despite this severe
restriction, integrability appears also in four-dimensional gauge theories. The crucial
additional assumption which enables integrability here is the ’t Hooft large-Nc or planar
limit [tH73b], which effectively reduces the gauge group dynamics to two-dimensional
surfaces on which the integrable structure lives.

Such an integrability in high-energy QCD was first discovered by considering the iteration
of the BFKL Hamiltonian in the s-channel, describing multiple reggeon exchanges in the
generalized leading logarithmic approximation [Bar80a, Bar80b, CDLO81] (Fig. I.39). In
this approximation one includes all diagrams for which the number of reggeons exchanged in
the t-channel is conserved, i.e., three-reggeon vertices are neglected. This turns out to be the
minimal subset necessary to restore unitarity of the scattering amplitude in the direct (s-
and t-) channels (though not in subchannels corresponding to different groups of particles
in the final state). The amplitude AN(s, t) corresponding to the exchange of N reggeized
gluons satisfies the Bartels-Kwieciński-Prasza lowicz equation [Bar80a, KP80, Jar80, Ewe03,
BFLV13]. In the large Nc limit, the relevant Feynman diagrams have the topology of a
cylinder [Lip94] and HBKP, N reduces to the sum of terms corresponding to pairwise nearest-
neighbor BFKL interactions

N....31 2

Figure I.39: Multiple reggeon exchange in the generalized leading log approximation. In the large
Nc limit the relevant diagrams have a cylinder topology (to the right).
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HBKP, N
Nc→∞−−−−→ 1

2

N∑
r=1

HBFKL r,r+1; HBFKL
N,N+1 = HBFKL

N,1 . (I.201)

Lipatov [Lip93b, Lip94], and Faddeev and Korchemsky [FK95] showed that the Hamiltonian
(I.201) is that of an integrable spin chain, that of the Heisenberg XXXs=0 model. They
were also able to map the problem of diagonalizing the XXX0 chain into a diagonalization
of the XXX−1 chain [Kor95], which admits a Bethe Ansatz [Bet31].

Another instance of integrability in large-Nc gauge theory is DIS where anomalous di-
mensions of local operators are responsible for scaling violations (Sec. I.2.1) in the OPE
language. These anomalous dimensions are described by DGLAP evolution, but usually the
corresponding Wilson operators, built from a number of quark and gluon fields together with
covariant derivatives, are mixed under renormalization with other operators of the same
spin and twist. Diagonalizing the mixing matrix for higher twist operators is a formidable
problem already at one loop. Remarkably, the spectrum of anomalous dimensions can be
found exactly in QCD in the sector of the so-called maximal-helicity Wilson operators,
taking advantage of the fact that the one-loop mixing matrix can be mapped in the large-Nc

limit into the Hamiltonian of the Heisenberg SL(2,R) chain (see [Kor12, BKM03] and
references therein).

There is indeed an interesting connection between the integrable structures appearing in the
calculation of anomalous dimensions of gauge invariant twist-2 spin-M operators in N = 4
SYM, and in MRK. As it was shown in [KLR+07], the link to the BFKL equation appears
upon analytically continuing the anomalous dimension function to complex values of M . In
particular, the pomeron corresponds to the first singularity at M = ω − 1, for small ω.

5 Unitarity Corrections and Nonlinear
Evolution

5.1 Saturation and Restoration of Unitarity

In the last section we saw how unitarity is violated by the BFKL equation. This
is, as we will see, a consequence that it is a linear evolution equation. In order to
see which is the mechanism behind the restoration of unitarity, let us have a look at
Fig. I.14. The transverse size of the partons which can be resolved by a probe of
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virtuality Q2 is proportional to 1/Q, so that the area of partonic dots in Fig. I.14 falls
as Q2 rises. The figure also reflects that parton densities grow dramatically as x gets smaller.

But then, for particular combinations of parton size and density, the proton will eventually
become ‘black’ to probes or, equivalently, the component gluons will become so dense that
they cannot any longer be considered as free fields because their wavefunctions start to
overlap (shadowing) and recombination effects must be taken into account. Naively, it can
be assumed that the gluons inside the proton each occupy, on average, a transverse area
of order πQ−2, so that the total transverse area occupied by gluons is proportional to the
number density multiplied by this area, i.e. πQ−2xg(x,Q2)83. As x decreases this area
becomes large, and we expect saturation to become important when

αs(µ2)
µ2 xg(x, µ2) & πR2, (I.202)

where R ∼ 5 GeV−1 is of the order of the proton radius. The additional factor of the
coupling enters because the effective gluon-gluon cross section is σgg ∼ αs(µ2)/µ2. The
constraint (I.202) is essentially equivalent to demand that unitarity is not violated and the
Froissart bound applies [Lev95].

Saturation corrections are indeed expected to end at some value of x with the steep rise of
structure functions predicted by BFKL evolution. The main idea is that, in the same way
that gluon splitting leads to a very high gluon density, recombination processes gg → g,
driven primarily by so-called fan diagrams (Figure I.40, (b)), must become important for
large values of gluon densities. If the probability for the emission process in a cascade is of
order αsρ, where ρ = xg(x,Q2)

πR2 is shorthand for the parton density in the transverse plane,
the probability for the recombination process will be, in first approximation, proportional to
αsσggρ

2. The extra factor of αs can be seen from the number of couplings taking part in the
bifurcation in the fan diagram of Fig. I.40. The balance at which one arrives, including a
non-linear recombination term, is called the Gribov-Levin-Ryskin (GLR) equation,

∂2xg(x,Q2)
∂ ln 1

x
∂ lnQ2 = αsNc

π
xg(x,Q2)− α2

sγ

Q2R2 (xg(x,Q2))2, (I.203)

after the authors that derived it by considering a full resummation of fan diagrams [GLR83].
The parameter γ was calculated order by order in perturbation theory by Mueller and Qiu

83Recall that the gluon momentum distribution gives the number of gluons per unit of longitudinal phase
space dx/x = |d ln(1/x)| with a transverse size greater than 1/µ, when probed at a scale Q2 = µ2.
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Figure I.40: Ladder diagrams characteristic of linear evolutions (a) and fan diagrams (b), giving
rise to non-linear terms. We should keep in mind that evolution is usually depicted from below
to above. The three-ladder vertex consists of a sum of several non-planar diagrams. An arbitrary
number of branchings can take place in a fan diagram.

[MQ86] and it is equal to 81
16 for Nc = 3. The GLR equation predicts saturation at the

asymptotic value xg(x,Q2
s)SAT = 1

27παsQ
2
sR

2 for which the second term exactly compensates
the first one. However, in spite of this important prediction, the GLR equation only includes
the first non-linear term. It considers no correlations between partons in the hadron, given
by higher powers of ρ, and would be most important at even higher densities.

The appearance of a new dynamically-generated scale Qs � ΛQCD, the saturation momen-
tum, ensures that saturation can be understood with perturbative methods. Balitsky and
Kovchegov [Bal96, Kov99] showed systematically, from an effective Lagrangian and from
Müller’s dipole formulation84 respectively, that in the large-Nc limit the important terms
are fan diagrams85 and obtained the correct kernel for the non-linear term. The BK evolu-
tion equation reads (in momentum space, so that we can see how it reduces to BFKL when
discarding the nonlinear term)

∂yf(k, q) = ᾱs
π

∫
d2κ

(k − κ)2

{
f(κ, q)− 1

2

[
k2

κ2 + (k − κ)2 + (q − k)2

(q − κ)2 + (k − κ)2

]
f(k, q)

− ᾱs
2π

∫
d2kf(k,κ)f(k − κ, q − k).

(I.204)

84The color dipole approach to photon-hadron interactions [Mue94, MP94, NZZ94] can be seen to be
equivalent to BFKL in momentum space and indeed it is maybe within this framework where a full derivation
of the BFKL equation can be most simply obtained [KL12]. In this picture, low-x DIS is described in the
proton rest frame. In this frame, when x → 0, the virtual photon is resolved into a quark-antiquark pair
(sometimes called onium) at very large distances upstream the target. Then, after quite a long time, the
qq̄ pair scatters off the proton. Since the interaction time is much shorter than the formation time of the
pair, the transverse size of the qq̄ dipole is approximately frozen during the scattering process. The emission
of soft gluons by the initial qq̄ pair gives rise to a cascade of secondary dipoles which build up the BFKL
gluonic tower. One should notice that in this approach, however, the appearance of the important property
of bootstrap is not clear.

85In fact, the nonlinear term in the BK equation (I.204) can be obtained from the triple-pomeron vertex
[BW95] in the large-Nc limit [Bra00].
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f (k,κ) f (k − κ, q − κ)

k − qk − κ

k

k

k − q

f (k, q)

Figure I.41: Nonlinear contribution in the Balitsky-Kovchegov equation. Adapted from [KL12].

(c)(b)(a)

Figure I.42: (a) Recombination diagrams summed by the BK/JIMWLK equation. The upper blob
represents the target; (b) Splitting diagrams; (c) Loop diagrams. Adapted from [HIM+06].

The BK equation is a central tool for understanding the initial conditions in hadronic col-
lisions in situations where transverse gluon density approaches unitarity limits (see next
section). Among its important properties is that it allows for traveling wave solutions
[MP03, MP04] explicitly exhibiting geometric scaling [SGBK01], i.e. the property that
in DIS collisions, σγ∗p(x,Q2) = 4π2αF2(x,Q2)/Q2 only depends on the two independent
kinematic invariants Q2 and W 2 through the specific combination τ = Q2/Q2

s(x), where
Q2
s(x) ∼ Q2

0(x/x0)−λ [GBW99]. However, there are a number of contributions not consid-
ered in (I.204) that can be sizable, in particular running coupling [KL12] and pomeron loop
contributions [Tri05] (Fig. I.42). In general, the scattering of two dilute systems remains
still essentially an open problem.

5.2 High Parton Density QCD

The increase of the gluon distribution at small x leads to a major complication when
applying QCD to compute processes in this regime. Perturbation theory is best suited for
dilute systems, where a rather small number of diagrams contribute at each order. On the
contrary, when parton densities increase, processes involving many parton become more
and more important. The extreme situation arises when the gluon occupation is of order
1/αs. Then, despite the coupling being weak, the problem becomes non-perturbative in the
sense that there is an infinite number of graphs contributing at each order. Moreover, this
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situation requires some knowledge of the two colliding projectiles, something which is not
provided by the usual parton distributions (which only give the single-parton density).

Figure I.43: Hadronic collisions in the dilute (left) and dense (right) regimes. From [Gel11].

A usual approach in this regime is the so-called color glass condensate (CGC) effective
theory [ILM01b, ILM01a, FILM02] (for a review, see [Ian08, GIJMV10, KL12]). The main
ideas of the CGC are two: 1) large occupation numbers or large charges give rise to classical
fields (see, e.g. [Dun12], Sec. 8.2) —this is the origin of the term condensate; 2) there is
a natural separation of scales in the problem (glass). To see this, recall from Eq. (I.43)
that, for x� 1, the lifetime of a gluon is τ ∼ 2xp/k2. Hence, the smaller x, the shorter the
lifetime. In an infinite momentum frame and considering light-cone gauge, for which the
parton notion makes sense, gluons with x′ � x are frozen over the typical time scale for the
dynamics τ at x86.

The idea now, first put forward by McLerran and Venugopalan [MV94], is the separation of
the small-x degrees of freedom, treated as classical fields, from the fast color sources with
x′ � x that give rise to these fields and are frozen (in some random configuration) during the
collision. One can imagine the various field configurations at a given rapidity y as described
by a wave functional Φy[A]. Since the field does not change during the collision, the average
over the field configurations will naturally involve the square of the wave function

〈· · · 〉y =
∫
DA|Φy[A]|2〈A| · · · |A〉. (I.205)

86One can understand from this point of view the exponential increase of gluon density towards low x.
In a gluon cascade with strongly ordered longitudinal momenta, all gluons below the final one (notice that
we usually depict in figures the target, source of the cascade, in the bottom part) act as a frozen color
charge distribution for the emission of the last gluon. Therefore the average color charge squared 〈QaQa〉τ ,
representing the source for the emission of a new gluon, is proportional to the number of preexisting gluons
N(τ), which is of course the condition for an exponentially rising density.
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By taking the field Aµ as the solution of the classical Yang-Mills equations

[Dµ, F
µν ] = Jν , (I.206)

in the presence of a frozen color source, typically taken as Jµ(x−, x⊥) = δµ+ρ(x−, x⊥) for a
hadron/nucleus moving at nearly the speed of light in the positive direction, the question
of determining the distribution of field configurations |Φy[A]|2 is reduced to that of finding
the distribution of color charges, denoted by Wy[ρ].

In the final step, Wy[ρ] is determined by a DGLAP-like renormalization group equation,
the BK/JIMWLK equation [Bal96, Kov99, Kov00, JMKMW97a, JMKMW97b, JMKW98],
which schematically reads

∂yWy[ρ] = HJIMWLK

[
ρ,

δ

δρ

]
Wy[ρ]. (I.207)

For weak fields (or low density) HJIMWLK reduces to the BFKL Hamiltonian. Moreover, the
BK equation is recovered in this formalism in the large-Nc limit. However, it is not clear at
all if this formalism can reproduce e.g. perturbative computations in the quasi-multi-Regge
regime (Ch. III).

We should remark here that a thorough understanding of the physics of high parton density
is key for the computation of the early-time dynamics in heavy ion collisions. A related
problem is the rapid thermalization of the quark-gluon plasma (see e.g. [CSLM+11] and
references therein). For a review of other open issues in high parton density physics see
[KL12], Ch. 9.
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II
Comparing QCD and N = 4 SYM in the

Regge Limit

1 N = 4 SYM as a Testing Ground for QCD

1.1 The Maximally Supersymmetric Yang-Mills Theory

We begin with a brief review of N = 4 SYM1 (or MSYM, Maximally Supersymmetric
Yang-Mills) theory. It will necessarily consist of a sketchy set of statements that we will
not analyze in depth and will not try to justify. A short course in supersymmetry with the
material needed to introduce the present subject is given in [Ura07]. Good references to
consult in more detail the formulation of supersymmetric Yang-Mills theories, including the
superspace formalism, are [Soh85, FO01, Bin06, Säm09]. The exceptional properties of the
theory are reviewed in [Kov98, Min11].

N = 4 SYM in 4 dimensions was originally obtained by applying the method of di-

1N denotes the number of Weyl spinor supercharges QIα, Q̄α̇I , with I = 1, · · · ,N . Since Weyl indices
take two values, the number of supercharges for N -extended supersymmetry is 4N .
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mensional reduction à la Kaluza-Klein in a 6d torus to N = 1 SYM in 10 dimensions
[BSS77, GSO77]. The latter is the low energy effective theory coming from type I super-
string theory and describes a N = 1 vector multiplet in 10 dimensions consisting of one
real vector and one Majorana-Weyl spinor. The trivial holonomy of the torus leads to
a multiplet of fields in 4 dimensions inheriting an additional SU(4)∼SO(6) global symmetry2.

The gauge multiplet of N = 4 SYM consists of one vector field Aµ, four chiral spinors λI
(and four antichiral ones λ̄I) and six real scalars XM . The gauge multiplet transforms under
the adjoint representation of the gauge group SU(Nc). The Lagrangian of the theory reads3

LN=4
SYM = Tr

{
− 1

4FµνF
µν + 1

2DµXMD
µXM + iλIσ

µDµλ̄
I − igλI [λJ , XIJ ]− igλ̄I [λ̄J , XIJ ]

+ 1
4g

2[XM , XN ][XM , XN ]
}

; DµΦ = ∂µΦ− ig[Aµ,Φ] (Φ = X,λ).
(II.1)

Fµν is defined in (I.2). In (II.1) we have omitted the Weyl indices α, α̇ that label the two
different SU(2) components in which the Lorentz group is split, so that λσµλ̄ stands for
λασµαα̇λ̄

α̇. We have also introduced the notation Aµ = AaµT
a. Indices I, J transform in a

certain representation of the R-symmetry group SU(4)R. XM and XIJ are related by the
SU(4)R ∼ SO(6)R Σ symbols4

XIJ = −1
2(ΣM )IJXM , XIJ = 1

2(Σ−1
M )IJXM ; Tr(ΣMΣ−1

N ) = 4δMN , XMXM = XIJX
IJ .

(II.2)
Then we get

LN=4
SYM =− 1

4(∂µAaν − ∂νAaµ)2 + 1
2∂µX

a
M∂

µXa
M + iλ̄aIσ

µ∂µλ̄
Ia − gfabc∂µAaνAµbAνc

− 1
4g

2fabefcdeA
a
µA

b
νA

µcAνd + gfabcA
µaXb

M∂µX
c
M + 1

2g
2fabefcdeA

a
µX

b
MA

µcXd
M

− igfabcAaµλbIσµλ̄cI −
1
4g

2fabefcdeX
a
MX

b
NX

c
MX

d
N + gfabcX

aIJλbIλ
c
J + gfabcX

a
IJ λ̄

bI λ̄cJ .

(II.3)

2In general, in the dimensional reduction on a Riemannian manifold of dimension n the spin connection
is a SO(n) gauge field and consequently the spinors transform, upon parallel transport around a closed
contractible curve, under a subgroup of SO(n), which is the holonomy group. In the case at hand of T6

every spinor is covariantly constant, so that the whole SO(6)∼SU(4) becomes a global symmetry of the
model. From the point of view of the N = 4 theory this SU(4) global symmetry is identified with the R-
symmetry group of the N = 4 supersymmetry algebra. This R-symmetry (SU(N ) for N -extended SUSY) is
a generalization of the U(1) global symmetry of N = 1 SUSY which does not commute with supersymmetry:
[Qα, R] = Qα; [Q̄α̇, R] = −Q̄α̇.

3The Lagrangian can be also expressed in terms of N = 1 superfields. This formulation is manifestly
supersymmetric invariant. However, we are more interested in making contact with QCD.

4The scalars XIJ transform in the 6 of SU(4), while λI and λ̄I transform in the 4 and 4̄, and A in the
singlet 1. (ΣM )IJ are Clebsch-Gordan that couple two 4s to a 6, being 6d generalizations of the 4d σµαα̇.
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Since all the fields transform in the adjoint, color indices a, · · · , d go from 1 to N2
c − 1.

Remember that the normalization of the generators in the adjoint is Tr (T aT b) = Ncδ
ab.

One can recognize in the Lagrangian (II.3) terms which are very similar to those of the QCD
Lagrangian (I.16). Indeed the gluonic sector of both theories is identical. Note that the
coupling appearing in each of the vertices is the same g5, which is a strong constraint coming
from the requirement of supersymmetry.

1.2 N = 4 SYM as the Harmonic Oscillator of Quantum Field Theory

N = 4 SYM is an outstanding theory. It has the maximum possible amount of super-
symmetry for a 4d gauge theory without gravity, i.e. including fields with spin equal or
lower than 1: 16 real supercharges. Though its Lagrangian may seem at first sight quite
complicated, we have reasons to consider it the simplest non-trivial quantum field theory
[AHCK10]. It has been christened as the harmonic oscillator of 21st century, the same way
that black holes are said to be the hydrogen atom of quantum gravity [Mal96].

Historically the interest in N = 4 SYM arose from the vanishing of its β-function. For any
SU(N) gauge theory, the one-loop coefficient of the β-function (of which (I.14) is a particular
case) is given by

β0 = 11
3 N −

1
6
∑
i

Ci −
1
3
∑
j

C̃j, (II.4)

where the first sum is over all real scalars with quadratic Casimir Ci and the second over all
Weyl fermions with quadratic Casimir C̃j. All fields in MSYM are in the adjoint, hence all
Casimirs are N . Now we see that the theory has the exact matter content, six real scalars
and eight Weyl fermions, to cancel β0. The non-renormalization of the coupling (and hence
the finiteness of the theory) was then subsequently proven to two [Jon77, PP77] and three
loops [VT80, GRS80] by direct computation. Eventually several proofs confirming the fact
that β(g) = 0 to all orders in perturbation theory6 emerged, based on the computation of the
axial anomaly, related to breaking of conformal invariance [SW81], or using the light-cone
gauge [Man83, BLN83]. N = 4 SYM is then UV-finite, and the conformal invariance of the
Lagrangian at the classical level (deduced from the absence of any dimensionful parameter
in it) is preserved at the quantum level.

5The N = 4 SYM coupling is usually denoted gYM in order not to mix up with the QCD coupling g. We
will only use this notation when confusion could arise.

6There are also strong arguments to think that the superconformal symmetry of the theory is also pre-
served non-perturbatively.
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The conformal symmetry, the supersymmetry and the R-symmetry of the N = 4 SYM
Lagrangian are in fact part of a larger symmetry group PSU(2,2|4), called the N = 4 super-
conformal group. This symmetry group is unbroken by quantum corrections and imposes
strong constraints on the theory, in particular the form of the amplitudes. The last years
have witnessed important developments that exhibit the amazing properties of scattering
amplitudes in N = 4 SYM7, starting from the strikingly compact Parke-Taylor formula
[PT86, BG88] for MHV8 (n-gluon) amplitudes using the spinor helicity formalism. Recur-
sion relations such as the BCFW [BCFW05] and CSW [CSW04] ones, inspired by Witten’s
ground-breaking connection with twistor theory [Wit04], were found that related tree-level
amplitudes to amplitudes with fewer external legs, allowing to go beyond MHV amplitudes.
With the help of a formalism that incorporates the constraints of supersymmetry [Nai88], all
tree-level amplitudes in N = 4 SYM could be eventually constructed [DH09]. To go beyond
tree-level, unitarity methods have been employed (see, e.g. [BDDK94, DHKS08]). Again
MHV amplitudes are simpler to deal with, being proportional to the tree-level amplitude,
AMHV
n = AMHV, tree

n Mn. Moreover, the finite part of the loop correction Mn satisfies the BDS
ansatz [BDS05]

Fn = 1
4γK(g2)F (1)

n ; Fn ≡ lnMn,finite (II.5)

up to a remainder term [BLS09, GSVV10]. F (1)
n in (II.5) is a kinematic factor that can be

obtained through a 1-loop computation and γK(g2) is the cusp anomalous dimension, given
to all loops by an integral equation based on integrability [BES07]. Behind the BDS form
of n-point amplitudes there is the constraint of a hidden dual conformal symmetry, that
in addition to the original superconformal symmetry generates a so-called Yangian algebra
[DHP09]9. This is an infinite dimensional symmetry algebra characteristic of integrable
systems.

It is expected indeed that N = 4 SYM in the planar limit10 becomes the first example of an
7Good reviews on (part of) the subject are [MP91, Dix96, AR08, Hen09a]. Further references can be

found there. For more informal introductions to the subject see, for instance, [Zee10] and [Gun10].
8MHV (Maximally Helicity Violating) amplitudes are amplitudes with n external gluons, where two of

them have an helicity opposite to the rest. At tree level they violate helicity conservation to the maximum
extent possible. Tree amplitudes where all (or all but one) gluons have the same helicity vanish.

9This is a rapidly evolving field. An example of late development in this direction is a dual formulation of
the S-matrix in which all-tree level amplitudes and the leading singularities of the amplitudes to all orders
are determined from a surprisingly compact Grassmannian integral, whose integrand is essentially fixed by
Yangian symmetry [AHCCK10, AHCC10, AHBC+11].

10The planar or ’t Hooft limit [tH73b] is the limit N → ∞ (for a SU(N) gauge theory) with the ’t
Hooft coupling λ ≡ g2N fixed. Usually gauge theories are simplified in this limit. To first order in the
1/N expansion only planar diagrams (with the topology of an sphere) contribute, hence the name. Indeed,
this expansion is a genus expansion like the one in string theory, the first order corresponding to the weak
coupling limit.
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integrable non-trivial quantum field theory in 4d [B+12]. This is surely related to the key
role of this theory in the AdS/CFT correspondence [Mal98, GKP98, Wit98, AGM+00]11.
Maldacena’s conjecture states that there is a dictionary that maps string theory defined
on a d-dimensional space —product of Anti-de Sitter (AdS) space and a closed manifold
like a sphere, an orbifold or a noncommutative space—, and a QFT in d − 1 dimensions
without gravity defined on the conformal boundary of this space. If the dimension d is 4,
the conformal field theory (CFT) is N = 4 SYM with SU(Nc) gauge group and Yang-Mills
coupling gYM, and the dual string theory is type IIB string theory with string coupling gs

defined on an AdS5 × S5 background. The metric of this space is

ds2 = R2

z2
0

(dz2
0 + dx2) +R2dΩ2

5, z0 > 0, x = (x1, · · · , x4). (II.6)

The AdS/CFT conjecture says that the two theories are dual when

gs = g2
YM and R4 = l4sgsNc = α′2gsNc =⇒ α′

R2 = 1
λ
. (II.7)

As many dualities, AdS/CFT maps the weak coupling regime of gauge theory to the
strong coupling (tensionless, α′/R2 → ∞) regime in string theory and vice versa12.
String theory on a general curved background is hardly tractable (it is not even known
how to rigorously quantize it), but lots of tests of the AdS/CFT conjecture have been
performed up to now in certain limits where the theory is much simpler. The first one
is the aforementioned planar limit. The ’t Hooft coupling λ = g2

YMNc is the relevant
perturbative parameter in the planar limit, and if λ � 1, a perturbative treatment of
N = 4 SYM is possible, and we can compute with Feynman diagrams. The planar limit
leads on the other hand to a weakly coupled string theory since gs = λ/Nc. The type IIB
string theory reduces to classical string theory on AdS5×S5 and string loops can be neglected.

An even weaker version of the correspondence is reached by taking a second limit, where the
radius of AdS space goes to infinity R/ls → ∞, ls =

√
α′13, after having taken the planar

limit. This is the strong coupling limit on the N = 4 SYM side (λ = (R/ls)4 � 1), but
the curvature of the string background is small and the massive string excitations decouple

11For a very good introduction for pedestrians, see [Nas07].
12It is noteworthy that two different perturbative expansions occur in string theory. First there is the

loop expansion in the string coupling constant gs, which corresponds to the genus expansion summing over
worldsheet topologies. Second, for any given worldsheet topology, the computation of the path integral over
the (interacting) 2d field theory is done as a loop expansion in the 2d world, the α′ expansion.

13We omit a conventional 2π factor in the definition of α′. ls is the so-called string length.
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from the low energy ones (we can make an α′ expansion). The classical string theory can
then be approximated by classical type IIB supergravity in 10d.

The correspondence is equipped with a full matching of symmetries, fields, operators and
correlation functions in the two theories. The fact that it provides a connection between
the weak and strong coupling regimes makes of AdS/CFT a unique tool to explore many
systems, for instance the quark-gluon plasma, superconductivity or the structure of scattering
amplitudes at strong coupling. Some recent review material on some of these subjects is given
in [Pap11, CSLM+11, Har10, Ald08].

1.3 Connections Between QCD and N = 4 SYM and the Role of Con-
formal Invariance

We end this review of properties of MSYM by studying its connection with QCD. N = 4
SYM is not a realistic theory. That our world and the physical laws ruling its dynamics are
not scale invariant was already pointed out by Galileo [Fey85]. In particular, N = 4 SYM
cannot exhibit phenomena like confinement. Supersymmetry, if having to do something with
particle physics, must be a broken symmetry. Despite these important differences, N = 4
SYM is very similar to QCD in some respects. Both theories are equivalent (considering
QCD reduced to pure gluodynamics) at tree-level. Moreover, as we have seen, only gluons
do play a role in the construction of the LL BFKL ladder, and hence N = 4 SYM and
QCD are also equivalent in the ln s approximation to all loops. Indeed, the computa-
tion of n-gluon MHV amplitudes that we wrote about before has its own importance for
precision measurements at the LHC, where both signals and backgrounds are QCD processes.

Thus MSYM can be considered a theoretical laboratory to compare with observables
computed in QCD [BDK04]. Calculations in N = 4 SYM are much easier when done
the right way through generalized unitarity relations. As an example, the amplitude at
two loops for gg → gg in terms of loop integrals was finished in 1997 [BRY97], while
the same computation in QCD took four more years [AGOTY01]. Another important
issue is that the infrared behavior in both theories is very similar, paving the way to
find well-defined observables in MSYM [Ste08, BKVZ09]. The last amazing connection
is the so-called principle of maximal transcendentality [KL03, ES06, BES07, KL07]. The
principle roughly asserts that N = 4 SYM scattering amplitudes are pieces of the QCD
amplitudes characterized by being the simplest ones, in terms of which types of loop
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integrals appear, but the most complicated ones as they give the pieces with higher degree
of transcendentality, where ln(x) and π are factors with transcendentality 1, and Lin(x) and
ζ(n) = Lin(1) have associated transcendentality n.

So, despite some crucial differences between the two theories, one can expect to learn impor-
tant lessons for QCD —at least qualitatively— from computations with its supersymmetric
version. This has inspired a whole program to describe collider physics from AdS/CFT
[PS02, PS03, CCP07, HM08, HIM08]. The conclusions one can draw should help under-
stand gauge theories at strong coupling. It is important in this respect to identify different
types of observables and kinematic regions where QCD and MSYM can manifest similar
behaviors. As remarked before, the connection should be closer in a sense in the high energy
limit, where in the LLA both theories coincide and QCD inherits conformal invariance14.

1.4 Pomeron in N = 4 SYM

The NLL BFKL kernel for N = 4 SYM was found in [KL00, KL03]. In MS scheme it reads:

〈n, ν|KMSYM|ν ′, n〉 = λ
[
χ0

(
|n|, 1

2 + iν
)

+ λχMSYM
1

(
|n|, 1

2 + iν
)]
δn,n′δ(ν − ν ′);

χMSYM
1 (n, γ) = 1− ζ(2)

12 χ0(|n|, γ) + 3
2ζ(3) + Ω(|n|, γ), γ = 1

2 + iν.

(II.8)

The functions χ0(n, γ) and Ω(n, γ) are given in (I.152) and (I.163). λ is the ’t Hooft
coupling. Running coupling corrections are absent and, as compared to (I.161), the
non-analytic terms proportional to δ0

n and δ2
n have disappeared. In Fig. I.30, the n = 0

eigenvalue of the NLL N = 4 SYM kernel is plotted. One can see that the size of the NLL
corrections is much smaller than in the QCD case.

Recently, high energy scattering in N = 4 SYM has also been studied at strong coupling via
AdS/CFT. It turned out that the exchange would be dominated by the graviton state with
intercept j0 = 2 [JP00, BPST07] (j0 = αP in our notation in (I.156), giving the intercept at
weak coupling). It is remarkable that the same diffusion pattern was found for the amplitude
as in the weak coupling limit. This was interpreted as a diffusion in the radial coordinate
of AdS space, corresponding to diffusion in the transverse momenta along the ladder on the

14The origin of the conformal invariance of the BFKL Hamiltonian is not clear. Notice that we have not
taken any large-Nc during the derivation in Sec. I.3. Moreover, the SL(2,C) generators in (I.196) correspond
to a 2d field with conformal weights h = h̄ = 0. These quantum numbers correspond to a scalar field and are
different from transverse components of a physical gluon field. Therefore the SL(2,C) symmetry of HBFKL
does not follow directly from the conformal symmetry of the QCD Lagrangian [BKM03].
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gauge theory side. The only difference is in the value of the intercept and the diffusion
coefficient

j0 = 2− 2√
λ
, D = 1

2
√
λ
, λ = g2Nc � 1;

j0 = 1 + 4 ln 2ᾱs, D = 7ζ(3)ᾱs, λ� 1.
(II.9)

Recently [CGP12, KL13] higher order terms in the strong coupling expansion (II.9) have
become available, allowing a smooth interpolation between weak and strong coupling regimes.
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Figure II.1: (a) Weak and strong coupling expansions of the BFKL intercept [CGP12]; (b) Inter-
polation between both regimes showing the asymptotic behavior [KL13].

This analysis may shed light on the relation between the soft and hard pomeron [BPST07].
It can also be important to understand AdS/CFT correlation functions in the stringy regime
of finite string tension (or finite ’t Hooft coupling) beyond the supergravity approximation.

2 High Energy Dijets in N = 4 SYM [ACMS11]

In this section we study dijet production at large rapidity separation in QCD and N = 4
SYM. In the process of identifying and computing the relevant well-behaved observables we
will review many of the concepts introduced in Ch. I. Special attention will be paid to the
choice of renormalization scheme.

2.1 Mueller-Navelet Jets and Dijet Azimuthal Decorrelation

In 1987, Mueller and Navelet [MN87] proposed to study the energy dependence of the cross
section for the production of two jets with similar transverse momenta p2

1,2 at large rapid-
ity separation y (and angular separation φ) as a decisive test of BFKL dynamics. We will
now compute the cross-section for inclusive two-jet production in the configuration described
above (Fig. II.2), discuss the main obstacles to obtain a conclusive BFKL signature, and
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show how to extract this information in an optimal way through azimuthal angle decorrela-
tions15.

q22 > p22

q21 > p21

P1

P2

y ' ln x1x2s√
p21p

2
2

x2

x1
k0 ≡ q1

kn+1 ≡ q2

φ

ki, i = 1, · · ·n

Figure II.2: Kinematic configuration for Mueller-Navelet jets.

If x1,2 are the fractions of longitudinal momentum from the parent hadrons carried by the
partons generating the jets then y ' ln(x1x2s/

√
p2

1p
2
2). When x1,2 are big, collinear factor-

ization (I.60) applies, and we have in terms of the jet rapidities y1,2
16

dσ

d2q1d2q2dy1dy2
=
∑
ij

∫
dx1

∫
dx2 fi/1(x1, p

2)fj/2(x2, p
2) dσij

d2q1d2q2dy1dy2
, (II.10)

where the sum ∑
ij runs over parton species/flavors and we have identified the factorization

scale with p2 ' p2
1,2. x1 and x2 are obtained from momentum conservation (App. B)

x1 =
n+1∑
i=0

ki⊥√
s
eyi

MRK' |q1|√
s
ey1 ; x2 =

n+1∑
i=0

ki⊥√
s
e−yi

MRK' |q2|√
s
e−y2 . (II.11)

The partonic cross section is given by (A.25)

15Although the configuration in which the two jets are produced with nearly balancing transverse momenta
and a rapidity gap devoid of any other jets above a transverse momentum scale µ2 is interesting [MT92], we
will focus on the inclusive process, where distributions are affected by the hadronic activity in the rapidity
interval y between the tagged jets, whether or not these hadrons (the so-called minijets) pass the jet-selection
criteria (essentially having a transverse scale above some µ2).

16Mueller-Navelet jets lie at the interface of collinear and kT factorizations. Partons emitted from the
hadrons carry large longitudinal momentum fractions. After scattering off each other, they produce the
Mueller-Navelet jets. Because of the large transverse momentum of the jets, the partons are hard and obey
the collinear factorization. In particular, its scale dependence is given by DGLAP evolution. Between the
jets, on the other hand, we require a large rapidity gap which is described by BFKL dynamics. The hadronic
cross section therefore factorizes into two collinear parton distribution function convoluted with the partonic
cross section, described by BFKL. With respect to the cross section, the incoming partons are consequently
considered on-shell and collinear to the parent hadrons.
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dσij = 1
2ŝ
∑
n=0
|Aij→n+2|2dΠn+2, s = x1x2ŝ,

dΠn+2 =
∫ dy1d

2q1

4π(2π)2

∫ dy2d
2q2

4π(2π)2

n∏
i=1

∫ dyid
2ki

4π(2π)2 (2π)4δ4
(
P1 + P2 − q1 − q2 −

n∑
i=1
ki

)
.

(II.12)

Now, using that dxi
xi

= dyi and given that amplitudes at the partonic level are the same for
qq, qg or gg scattering apart from the color factors (Eq. (I.104)), we can rewrite (II.10) in
terms of an effective parton distribution feff(x, µ2) = g(x, µ2) +∑

f [qf (x, µ2) + q̄f (x, µ2)]:

dσ

dx1dx2d2q1d2q2
= feff(x1, p

2)feff(x2, p
2) dσgg

d2q1d2q2
. (II.13)

From (I.157) we have

dσgg

d2q1d2q2
=
(

2N2
c

N2
c − 1

)2
dσqq

d2q1d2q2
= 4N2

c

N2
c − 1

α2
s

q2
1q

2
2
f(ŝ, q1, q2), (II.14)

that shows that the jet-production rate at fixed x’s can be directly related to the partonic
cross section. Then, defining the K-factor as the quotient of the dijet cross-sections taking
into account the BFKL corrections and not taking them (the Born level approximation
(I.104), obtained replacing the BFKL Green function by a Dirac delta), the distribution
functions cancel, and we should see a power rise with ŝ of the K-factor. The problem
is that one usually does not dispose of a variable-energy collider in which a ramping run
experiment could be performed (varying ŝ at fixed x’s implies varying s)17. One has to
consider dijet production at fixed

√
s as a function of the jet rapidities, something like

(II.13). Since at fixed
√
s and rapidities the x’s grow linearly with the transverse momenta

(Eq. (II.11)) the integration over transverse momenta in the jet production rate will entail
a varying unavoidable contribution from the parton densities. This convolution turns out to
destroy the rising of the K-factor, that falls like (1−y) as y decreases [dDS94a, Sti94, dD95].

As pointed by Mueller himself, the Mueller-Navelet proposal can also be modified for
implementation in DIS, where the situation is milder [Mue90, Mue91]. Though the tagging
of the forward jet is not an easy task, this signature has been widely pursued at HERA,
both in H1 [H1 06, H1 08] and ZEUS experiments [ZEU99, ZEU06]. In general terms, it is
shown the inadequacy of fixed order (NLO or NNLO) QCD computations, which in some

17Such a possibility was considered at Tevatron [D0 00], though their analysis was not conclusive. There
are prospects for doing such a measurement using the runs with different energy at LHC.
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cases predict cross sections for very small x that are a factor 10 lower than measured.
DGLAP-based Monte Carlo simulations, like HERWIG [MWA+92], tend to fall below the
data especially when DGLAP evolution is further suppressed by the requirement of an
additional forward dijet [H1 08]. On the contrary, BFKL-like schemes seem to fit the data
rather well.

In any case, rather than from the inclusive cross section, more conclusive information can
be extracted from the study of the dijet azimuthal decorrelation. When no radiation takes
place between the two jets, at Born level, we should expect to tag the jets back-to-back
in azimuthal angle due to transverse momentum conservation. As first noted in [dDS94b],
because the BFKL evolution is associated with the emission of gluons with transverse mo-
menta of the same order (of the jet transverse momenta), it is to be expected that as we
increase the rapidity difference between the two jets —thus increasing the phase space for
gluon emission— a growing decorrelation in the directions of jets appears. A good measure
of the decorrelation is given by the moments of the azimuthal angle φ between the jets

〈cos(n(φ− π))〉 =
∫ 2π

0 dφ cos(n(φ− π))(dσ/dydφ)∫ 2π
0 dφ(dσ/dydφ)

. (II.15)

For a δ-function distribution at φ = π, as occurs at the Born level, all of the moments will
equal one, while for a flat distribution all of the moments will equal zero for n ≥ 1. The
decay of the moments from unity measures the decorrelation in φ.
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Figure II.3: Azimuthal decorrelation data from Tevatron at
√
s = 1.8 TeV: (a) distribution of

events per pseudorapidity interval ∆η; (b) distribution of events in the azimuthal angle difference
between jets φ for three different rapidities, where one can see the decorrelating effect of higher
rapidities; (c) fits to the data. Adapted from [D0 96].
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2.2 The Role of Higher Conformal Spins

The study of angular correlations gives us access to the information encoded by conformal
spins n > 0, usually subdominant for y → ∞ e.g. in total cross sections. Comparing the
LL and NLL BFKL kernels for different values of the conformal spins (Fig. II.4), it turns
out that in the region γ = 1/2 that gives the dominant contribution for asymptotically high
energies the LL and (scale invariant) NLL kernels are very similar for conformal spins n ≥ 1,
but they differ notably for n = 0. This suggests that observables insensitive to the n = 0
conformal spin present a very good perturbative convergence.
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Figure II.4: Eigenvalues of the scale invariant sector of the BFKL kernel ω(n, γ) = ᾱsχ0(|n|, γ)+
ᾱ2
sχ1(|n|, γ), for different values of the conformal spin n, as a function of γ.

In order to construct such an observable, we focus on the partonic cross section18, which is
given according to kT factorization (Sec. I.3.5) by the convolution of a differential partonic
cross section with jet vertices Φjet1,2 , playing the role of impact factors:

σ(αs, y, p2
1,2) =

∫
d2q1

∫
d2q2 Φjet1(q1, p

2
1) dσ

d2q1d2q2
Φjet2(q2, p

2
1), (II.16)

As the rapidity difference increases the azimuthal angle dependence is mainly driven by the
18This is an important point, so it deserves clarification. The observables we will define depend on ratios of

cross sections, and then the dependence on the PDFs cancels. This is so because we are effectively taking y as
a fixed parameter (something that is also useful to perform the analytical calculation of the necessary Mellin
transforms, see below), say y = ln(x1x2s/s0). The difference between considering s0 fixed or s0 =

√
q2

1q
2
2

can be understood as a NLL contribution to the vertices coupling the tagged jets to the external hadrons
[SS07], which we are not considering.
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kernel, so we will consider the jet vertices to leading order to avoid difficulties and keep the
treatment analytical (this strategy was also followed e.g. in [MR09]; for the full incorporation
of NLL jet vertices [BCV02, BCV03], see [CSSW10, CIM+12, CMSS13]):

Φjeti(q, p2
i ) ' Φ(0)

jeti(q, p
2
i ) = Θ(q2 − p2

i ). (II.17)

Essentially, to leading order we identify a jet with a parton with a transverse momentum
above some resolution scale p2

i . Using (II.14)

σ(αs, y, p2
1,2) = 4N2

c

N2
c − 1α

2
s

∫
d2q1

∫
d2q2

Φ(0)
jet1(q1, p

2
1)

q2
1

Φ(0)
jet2(q2, p

2
2)

q2
2

f(y, q1, q2). (II.18)

We will use the bra-ket notation (I.160) to find a suitable expression for the cross section.
We can express the BFKL equation (I.149) in operator notation as

(ω −K)f̂ω = 1 =⇒ f̂ω = (ω − ᾱsK0)−1 + ᾱ2
s(ω − ᾱsK0)−1K1(ω − ᾱsK0)−1 + NNLL terms, (II.19)

where we have defined the expansion of the kernel as K = ᾱsK0 + ᾱ2
sK1 + · · · . Now, we

project the jet vertices on the basis |n, ν〉, using (I.151)

∫
d2q

Φ(0)
jet1 (q, p2

1)
q2 〈q|ν, n〉 = 1√

2
1(

1
2 − iν

) (p2
1

)iν− 1
2 δn,0 ≡ c1 (ν) δn,0. (II.20)

The c2 (ν) projection of Φ(0)
jet2 on 〈n, ν| q〉 is the complex conjugate of (II.20) with p2

1 being
replaced by p2

2. The corresponding inverse relations, using (I.151), are

Φ(0)
jet1

(
q, p2

1
)

q2 =
∞∑

n=−∞

∫ ∞
−∞

dν c1 (ν) δn,0〈n, ν|q〉,
Φ(0)

jet2

(
q, p2

2
)

q2 =
∞∑

n=−∞

∫ ∞
−∞

dν c2 (ν) δn,0〈q|ν, n〉.

(II.21)
The cross section can then be rewritten introducing completeness relations as

σ
(
αs, y, p

2
1,2

)
= 4N2

c

N2
c − 1α

2
s

∞∑
n,n′=−∞

∫∫ ∞
−∞

dνdν ′c1 (ν) c2
(
ν ′
)
δn,0 δn′,0

∫
dω

2πi e
ωy〈n, ν|f̂ω|ν ′, n′〉.

(II.22)
Making use of (II.19), (I.161) and integration by parts, σ can be expressed as

σ
(
αs, y, p

2
1,2

)
= 4π2ᾱ2

s

N2
c − 1

∞∑
n=−∞

∫ ∞
−∞

dν eᾱsχ0(|n|,ν)yc1 (ν) c2 (ν) δn,0

×

1 + ᾱ2
s y

χ1 (|n| , ν) + β0

4Nc

 ln (µ2) + i

2
∂

∂ν
ln
(
c1 (ν)
c2 (ν)

)
+ i

2
∂

∂ν

χ0 (|n| , ν)
.

(II.23)
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For the LL jet vertices the logarithmic derivative in (II.23) explicitly reads

− i ∂
∂ν

ln
(
c1 (ν)
c2 (ν)

)
= ln

(
p2

1p
2
2

)
+ 1

1
4 + ν2 . (II.24)

Introducing the representation

c1(ν) c2(ν) δn,0 = 1
2
√
p2

1p
2
2

1(
1
4 + ν2

) (p2
1
p2

2

)iν ∫ π

−π

dφ

2πe
inφ, (II.25)

with φ = ϑ1 − ϑ2 − π. and focussing on the case where the two resolution momenta are
equal, p2

1 = p2
2 ≡ p2, the angular differential cross section can be expressed as

dσ
(
αs, y, p

2)
dφ

= 2π2

N2
c − 1

ᾱ2
s

p2

∞∑
n=−∞

1
2πe

inφ
∫ ∞
−∞

dν eᾱsχ0(|n|,ν)y 1(
1
4 + ν2

)
×
{

1 + ᾱ2
s y

[
χ1 (|n| , ν)− β0

8Nc
χ0 (|n| , ν)

2 ln
(
p2

µ2

)
+ 1(

1
4 + ν2

)
]}. (II.26)

The term proportional to ∂χ0
∂ν

in (II.23) gives no contribution after integration as it is an odd
function in ν. Within NLL accuracy there is freedom to exponentiate the integrand of this
result. In fact, due to the large and negative size of the NLL corrections it turns out that
the exponentiated form is mandatory in order to reach convergent results [Sab06]. Within
our accuracy we can also make the replacement ᾱs− ᾱ2

s
β0

4Nc ln
(
p2

µ2

)
→ ᾱs (p2) , getting finally

dσ (αs, y, p2)
dφ

= 4π3

N2
c − 1

ᾱ2
s

p2
1

2π

∞∑
n=−∞

einφCn (y) , (II.27)

with

Cn (y) =
∫ ∞
−∞

dν

2π
e
ᾱs(p2)y

(
χ0(|n|,ν)+ᾱs(p2)

(
χ1(|n|,ν)− β0

8Nc
χ0(|n|,ν)
( 1

4 +ν2)
))

(
1
4 + ν2

) . (II.28)

The Fourier coefficients Cn in (II.28) are remarkably connected in a straightforward fashion
with important observables. The first one is the total cross section:

σ(αs, Y, p2
1,2) = 4π3ᾱ2

s

(N2
c − 1)

√
p2

1p
2
2

C0(y); σ(y)
σ(0) = C0(y)

C0(0) . (II.29)

The effect of higher conformal spins n, can be projected using ratios of azimuthal angle
correlations [Sab06]
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Figure II.5: The ratio C2/C1 as a function of rapidity. The LL, NLL, and all-orders collinearly
resummed NLL predictions fall almost on top of each other. Adapted from [Sch07].

〈cos(mφ)〉 = Cm(y)
C0(y) , Rm,n ≡

〈cos(mφ)〉
〈cos(nφ)〉 = Cm(y)

Cn(y) . (II.30)

The ratios Rm,n are insensitive to the n = 0 component. In fact, they exhibit a remarkable
perturbative convergence (Fig. II.5). Being insensitive to parton distributions, they are
very well suited for a comparison between QCD and N = 4 SYM.

2.3 The BLM Procedure

As remarked in Sec. I.1.4, there is an essential ambiguity in perturbative computations
due to the choice of the renormalization prescription. We saw that at next-to-leading order
the prescription was essentially fixed by a choice of the renormalization scale19. A clever
choice of scale can in a sense resum higher order contributions. In fact, one can argue that,
given an observable R(Q), there is a scheme RS for which all coefficients ri, i ≥ 1 are zero,
and we simply have R(Q) = ā(Q) ≡ a(µFAC), where ā is the coupling in the RS scheme.
This is the idea behind the FAC (fastest apparent convergence) renormalization prescription
[Gru80, Gru84]. Another widely used strategy is the principle of minimal sensitivity (PMS)
[Ste81a, Ste81b], in which the scheme and scale are chosen so as to minimize the sensitivity
of the perturbative result R(n) under small variations of the parameters defining the scheme,
∂R(n)

∂(RS) = 0, replicating in this way the property ∂R
∂(RS) = 0 of the exact result. A good review

of these methods is provided in [IFL10], Sec. 1.11.

Both FAC and PMS approaches are designed, in the two-loop approximation, to absorb
as much as possible the correction r1 in (I.26) (r1 is zero in FAC, and small and process-

19In this discussion for simplicity we assume the observable of interest to depend on a unique scale Q.

97



II. Comparing QCD and N = 4 SYM in the Regge Limit

independent for PMS). As highlighted by Brodsky, Lepage and Mackenzie (BLM) [BLM83],
a large r1 can be a consequence of bad convergence of the perturbative expansion rather
than a bad choice of expansion parameter. The BLM formalism proposes to absorb in the
redefinition of the coupling only the piece of r1 related to charge renormalization.

The idea of the BLM procedure is best visualized in the case of QED. The only true UV
divergences in this theory are associated with vacuum polarization, because divergences in
the vertex and fermion self-energy corrections cancel by the Ward identity (or are absent
in Landau gauge). Moreover, being IR free, there is a natural initial condition for defining
the running coupling α(Q2) as Q2 → 0. The natural choice for the renormalization scale
is then set by the momentum q of the photon propagator: Q2 = −q2. Including the
running coupling before the loop integral in q is equivalent to resum all vacuum polarization
corrections dressing the propagator.

No such natural criterion exist for QCD. The argument that in the limit Nc → 0 one should
recover the Abelian case leads us to the following prescription: determine the scale in such a
way that only corrections coming from charge renormalization are absorbed in the redefined
coupling. Therefore, the perturbative coefficients with the BLM prescription are identical
to those of the conformal theory with β0 = 0. The BLM prescription can be applied most
straightforwardly to second order for processes that do not have gluon-gluon interactions in
lowest order20. For such processes, the dependence of the coefficient r1 (Eq. (I.26)) on the
number of flavors Nf comes only from the quark vacuum polarization. Since polarization is
inseparably linked with charged renormalization, all terms proportional to Nf are absorbed
into the scale. If r1(1) = ANf +B, we rescale µ to µBLM changing a(µ) according to (I.31)

a(µ)→ a(µBLM) = a(µ)(1− 2β0a(µ) ln(µBLM/µ) + · · · ) (II.31)

and we get the observable R(2) in terms of a(µBLM) as

R(2) = a(µ)(1 + r1a(µ)) = a(µBLM)
[
1 +

[
ANf +B + 2β0 ln µBLM

µ

]
a(µBLM)

]

= a(µBLM)[1 + r∗1a(µBLM)], r∗1(Nf ) = ANf +B + 2
(

11− 2
3Nf

)
ln µBLM

µ
.

(II.32)

We now implement the BLM scheme by choosing µBLM such that r∗1 is independent of Nf :

20For these processes no one-to-one correspondence between corrections coming from charge renormaliza-
tion and terms proportional to Nf . This is precisely the case we will have in our BFKL calculation. One
has to trace back and see what factors of Nf in the NLL kernel come from β0 and which ones do not.
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A = 4
3 ln µBLM

µ
=⇒ µBLM = µ exp

(3A
4

)
. (II.33)

It is important to note that (II.32) now becomes

r∗1 = 33
2 A+B =⇒ r∗1(µBLM) = r1

(
µ,Nf = 33

2

)
= r1(µ, β0 = 0), (II.34)

as we had advanced. Summarizing, if we split the contributions to r1 into those coming from
the running of the coupling and those which we could call conformal (β0 = 0)

r1 = rconf
1 + rβ1 ; rconf

1 = 33
2 A+B, rβ1 = −3

2Aβ0, (II.35)

then we can express the BLM scale (II.33) as

µBLM = µ exp
(
−rβ1/2β0

)
. (II.36)

Obviously, the BLM criterion specifies the scale µBLM only with respect to some reference
RS, something that is not needed in the FAC or PMS approaches. However, the BLM
prediction turns out to be RS-independent (up to formally higher-order terms), as ensured
by commensurate scale relations [BL95], i.e. the specific value of the renormalization scale
is rescaled according to the choice of scheme so that the final result is scheme independent.
The implementation of the BLM to higher orders in QCD is much more involved, but it can
be pursued [BdG12, WBM13].

The BLM procedure was applied in [BFK+99] (see also the review [FKLP02]) taking as
a physical observable the NLO BFKL intercept in γ∗γ∗ interactions to fix the scale. In
order to enhance the effect of BLM in gluon dominated processes, it was argued that it is
appropriate to use a physical scheme suitable for non-abelian interactions, such as MOM21,
based on the 3-gluon vertex [CG79b, CG79a, PT80] or the Υ scheme based on Υ → ggg

decay. Though BLM setting does not completely solve the oscillatory behaviour of the
Green function, certainly a much more sensible result for the pomeron intercept is achieved.
Moreover, the NLL value for the pomeron intercept, improved by the BLM procedure, has
a very weak dependence on the hard scale of the process, which is in agreement with Regge
theory, guarantees a lower sensitivity to nonperturbative effects and leads to approximate
scale invariance22.

21In MOM (momentum) schemes, the renormalization conditions for Green functions are specified at some
off-shell values of momenta in the spacelike region.

22The procedure was criticized in [Tho99] for the fact that, as remarked before, due to the running we
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2.4 Azimuthal Angle Correlations in QCD and N = 4 SYM

Following the example of [BFK+99], we will test several renormalization schemes (MS, MOM
and MOM+BLM23) in the computation of azimuthal angle correlations in QCD and MSYM
[ACMS11]. Transition between MOM to MS schemes is given by [CG79a, CG79b]

αMOM = αMS

[
1 + TMOM

αMS
π

]
; TMOM = T conf

MOM + T βMOM,

T conf
MOM = Nc

8

[
17
2 I + ξ

3
2(I − 1) + ξ2(1− 1

3I)− ξ3 1
6

]
, T βMOM = −β0

2

[
1 + 2

3I
]
,

(II.37)

where I = −2
∫ 1

0 dx ln(x)/[x2 − x+ 1] ' 2.3439.

To implement the BLM prescription we start by writing the BFKL kernel in the form

ωMS(q2, n, ν) = Nc χ0(n, ν)αMS(q2)
π

1 + rMS(n, ν)αMS(q2)
π

, (II.38)

where, from (I.162), we have

rMS(n, ν) = rβMS(n, ν) + rconf
MS (n, ν) , rβMS(n, ν) = −β0

4

[
χ0(n, ν)

2 − 5
3

]
,

rconf
MS (n, ν) =− Nc

4χ0(n, ν)

[
π2 − 4

3 χ0(n, ν)− 6ζ(3)−
(
ψ′′
(
n+ 1

2 + iν

)
+ ψ′′

(
n+ 1

2 − iν
)

− 2Φ
(
n,

1
2 + iν

)
− 2Φ

(
n,

1
2 − iν

))
+ π2

2ν sech(πν) tanh(πν)

×
{[

3 +
(

1 + Nf

N3
c

)(3
4 −

1
16(1 + ν2)

)]
δn0 −

(
1 + Nf

N3
c

)(1
8 −

3
32(1 + ν2)

)
δn2

}]
.

(II.39)
Now the NLL BFKL intercept in the MOM-scheme, evaluated at the optimal BLM scale,
can be represented as follows:

ωMOM(q2 MOM
BLM , n, ν) = Ncχ0(n, ν)αMS(q2 MOM

BLM )
π

1 + rMOM(n, ν)αMS(q2 MOM
BLM )

π

, (II.40)

have a dependence on q2 of the intercept, which is not now a real eigenvalue and lacks a direct physical
interpretation.

23We pointed below that the BLM prescription is RS-independent up to formally subleading terms. In
[FKLP02] it is shown how, while BLM predictions for the NLL pomeron intercept are very similar within
physical renormalization schemes, BLM scale setting did not modify substantially MS results. In a sense
this is because MS scheme is less sensitive to gg interactions. In our computations in MOM scheme, we use
the usual Yennie gauge ξ = 3.
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with r
(β)
MOM(n, ν) = r

(β)
MS(n, ν) + TMOM, and the BLM scale given by (II.36)

q2 MOM
BLM (n, ν) = q2 exp

−4rβMOM(n, ν)
β0

 = q2 exp
1

2χ0(n, ν) + 1
3 + 4

3I
. (II.41)

With this proviso, we can go on to show the results for the observables defined in Sec. II.2.2,
which were computed numerically. In Fig. II.7 the intercept (II.40) for n = 0 computed in
MOM scheme with BLM scale is confronted with the MSYM intercept and the results at LL
and NLL with no BLM scale fixing. The coupling for MSYM is chosen in a range between
a = ᾱs(q2/4) [MSYM−] and ᾱs(4q2) [MSYM+], which corresponds to the light yellow band.
This intercept for the conformal invariant MSYM theory at NLO is very close to the LO one,
already hinting towards a better convergence than QCD. It is important to note that the
MOM-BLM scheme is the closest to MSYM theory of all renormalization schemes in QCD.
This is natural since the BLM scheme collects the conformal contributions to the observable.
In Fig. II.6 we have taken a typical scale q2 = 15 GeV2 to show the asymptotic intercepts
for the first conformal spins n in the MOM-BLM scheme, which can be read from the value
of the BFKL kernel at ν = 0. We observe the well-known fact that the dominant component
is n = 0 with all the other intercepts being negative. A similar behavior is found for other
schemes and in the MSYM case.

NLO BFKL Dijet Production Angular Coefficients and BLM Procedure Conclusions

Angular Coefficients and Ratios
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Figure II.6: Eigenvalues of the QCD BFKL kernel at NLL in MOM-BLM scheme, for different
conformal spins n.

The n = 0 coefficient drives the cross section. The rise of C0 (Eq. (II.29)) with y is shown
in Fig. II.7 (right). There is a faster growth of the MSYM cross section showing that
the NLO real emission in MSYM theory dominates over the virtual contributions in a
much stronger fashion than in QCD, for any renormalization scheme. This also indicates
that the effect of introducing the extra fields in the supersymmetric multiplet increases
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y

Figure II.7: (Left) Intercept vs jet resolution p2 for different renormalization schemes in QCD
and MSYM theory; (Right) Growth with dijet rapidity separation of the cross section in MSYM
theory and QCD.

yy

Figure II.8: Evolution of the average of cosφ (left) and cos(2φ) with jet rapidity separation in
MSYM theory and QCD for different renormalization schemes.

yy

Figure II.9: Evolution of R2,1 = 〈cos(2φ)〉
〈cos(φ)〉 (left) and R3,2 = 〈cos(3φ)〉

〈cos(3φ)〉 with jet rapidity separation in
MSYM theory and QCD for different renormalization schemes.
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the minijet multiplicity in the final state (see next section). For small y the QCD result
in the MS scheme is lower than in the MOM-BLM scheme, with the latter being closer to
the N = 4 SYM result. This is consistent with a renormalization scheme which resums
conformal contributions. However, from y ' 10 the calculation in MS is now closer to the
supersymmetric result. This hints at the collinear instability of the n = 0 component we
discussed in Sec. II.2.2. It is natural to predict a similar crossing behavior at some y for
any quantity sensitive to n = 0, like 〈cos(mφ)〉 (Fig. II.8). It is also interesting to note
that dijets are less correlated in the azimuthal angle in N = 4 SYM than in QCD, which
corresponds to a higher multiplicity of parton radiation in the supersymmetric case.

The results in Fig. II.9 are more interesting. Here we plot a sample of the ratios of higher
order correlations (II.30) as a function of rapidity. All low-order ratios show that QCD
and MSYM predictions are extremely similar. Moreover, the agreement is systematically
improved by the MOM-BLM scheme, independently of the separation in rapidity between
the two tagged jets. Having removed the n = 0 dependence, the crossover does not take
place any more.

These results are encouraging because they show that for well-chosen quantities, insensitive
to the IR (in this case through the dependence on the PDFs) and with a good perturbative
convergence, we can expect N = 4 SYM computations to agree quantitatively with QCD.
In the comparison, the selection of the renormalization prescription plays an important role.
At least in the multi-Regge regime, where QCD is approximately conformal invariant, the
choice of the BLM prescription seems to be the most natural choice.

3 The Diffusion Pattern in N = 4 SYM at
High Energies [CCM+13]

In this section we study in some detail the BFKL Green’s function in QCD and N = 4 SYM
at next-to-leading order, where the evolution equations in both theories start being different.
This is a topical subject in the context of studies of the pomeron at strong coupling (Sec.
II.1.4). We separate the contributions of gluons from those of scalars and gluinos using
a Monte Carlo implementation of the NLL BFKL equation, allowing us to give detailed
information on the collinear behavior, the diffusion pattern and the multiplicity distributions
of the Green’s function.
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3.1 The Gluon Green’s Function in N = 4 SYM

Consider the amplitude for off-shell reggeized gluons with transverse momenta ka,b, a relative
azimuthal angle θ and a separation in rapidity y. The BFKL Green’s function can be written,
according to (I.153), as

f (ka,kb, y) =
∞∑

n=−∞
fn (|ka|, |kb|, y) einθ;

fn (|ka|, |kb|, y) =
∫ 2π

0

dθ

2π f (ka,kb, y) cos (nθ) = 1
π|ka||kb|

∫ dγ

2πi

(
k2
a

k2
b

)γ− 1
2

eωn(a,γ)y.

(II.42)
The NLL BFKL eigenvalue ωn(a, γ) (where a stands for the ’t Hooft coupling in N = 4 SYM
and for ᾱs in QCD), can be given by an expression unifying (I.161) and (II.8):

ωn(a, γ) = ξΘ

(
2ψ(1)− ψ

(
γ + n

2

)
− ψ

(
1− γ + n

2

))
+ a2 3

2 ζ(3)

+ a2

4

[
ψ′′
(
γ + n

2

)
+ ψ′′

(
1− γ + n

2

)
− 2Φ(n, γ)− 2Φ(n, 1− γ)

]
− Θ a2 π2 cos (πγ)

4 sin2 (πγ) (1− 2γ)

{(
3 + 2 + 3γ (1− γ)

(3− 2γ) (1 + 2γ)

)
δ0
n −

γ (1− γ) δ2
n

2 (3− 2γ) (1 + 2γ)

}
.

(II.43)

The function of the coupling ξΘ = a + a2

4

(
1
3 −

π2

3 + Θ
)

has been introduced, where Θ = 1
corresponds to diagrams with only gluons and Θ = 0 to the full N = 4 SYM result (there
are cancellations due to the gluino and scalar contributions). We have not separated the
scalars from the gluinos for simplicity since the expressions for the kernel, especially in kT

space, are rather complicated and do not add much information to our results. For this first,
analytic, study we have not considered the contributions to the running of the coupling in
the gluonic kernel since we wanted to work with true eigenfunctions also at NLO and keep
all the terms in the kernel diagonal in γ space. But when working with a Monte Carlo code
(Sec. II.3.2) we have included these running coupling terms (note that there are running
contributions both in the gluon and gluino/scalars sectors independently, which cancel each
other in the complete N = 4 SYM kernel).

Let us first scan the (anti)-collinear regions where one of the virtualities of the external
reggeized gluons is much larger than the other. This is parameterized by the ratio
ka/kb being away from one in the Green function values plotted in Fig. II.10 (we have
fixed the coupling to 0.2, y = 10 and kb = 30 GeV, but the features here discussed are
generic). We have first focussed on the n = 0 component (azimuthal angle averaged
kernel), which corresponds to pomeron exchange and is the relevant one when going to
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Figure II.10: (a) Collinear behavior of the gluon Green function for n = 0; (b) Eigenvalue of the
BFKL kernel for different conformal spins, n.
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Figure II.11: Collinear behavior of the gluon Green function for different values of n.
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Figure II.12: Collinear behavior of the gluon Green function subtracting the n = 0 component.

the strong coupling limit [BPST07]. We observe that the LO Green function has good
collinear behavior while the NLO lines go rapidly to zero when ka is very different from
kb. This is a manifestation of the double maxima present in the eigenvalue of the kernel
(Fig. II.10), as discussed in Sec. I.3.4. Since the eigenvalue is smaller, even negative at
ν = 0, for the purely gluonic case, it is in this case that the collinear behavior is worse
(in the sense that the Green function hits negative values for values of ka/kb closer to
one). The effect of the scalar and gluino pieces is to greatly improve the convergence,
making the NLO corrections to the LO result not too large in a wide range of virtuality space.

In Fig. II.10 we also plot the n = 1, 2 eigenvalues and notice that the effect of the
gluino and scalar contributions is very small. It is then natural to observe that, at
the level of the gluon Green function, in Fig. II.11 the plots with Θ = 0, 1 are very
similar for all n > 0. We find it instructive to plot the full gluon Green function with
all n components but subtracting the n = 0 term while showing the collinear shape in
Fig. II.12. The perturbative convergence of the BFKL expansion for the n 6= 0 contri-
butions is very good since the NLO corrections are very small in a very wide range of the plot.

We collect the full angular information in a single plot in Fig. II.13 (left). We have
fixed ka = 20 GeV, kb = 30 GeV and y = 3, 5. The full NLO SUSY results are very
similar in shape to the LO lines. An intriguing feature is that the Green function for the
gluon contributions reaches a much smaller value at θ = π than when scalars and gluinos
are included in the analysis (∂f/∂θ is much more negative in the N = 4 SYM case for θ > 1).

To conclude this part of the analysis we can investigate the growth with energy of the gluon

106



3. The Diffusion Pattern in N = 4 SYM at High Energies [CCM+13]

0 0.5 1 1.5 2 2.5 3
0

0.0005

0.001

0.0015

0.002

θ

NLO y = 3 Θ = 0
NLO y = 3 Θ = 1
NLO y = 5 Θ = 0
NLO y = 5 Θ = 1
LO y = 3
LO y = 5

f
(|k

a
|=

20
G

eV
,
|k
b|

=
30

G
eV

,
y
,θ

)
(G

eV
−

2
)

1 2 3 4 5 6 7
1e-06

1e-05

0.0001

0.001

0.01

NLO n = 0 Θ = 0
NLO n = 1 Θ = 0
NLO n = 2 Θ = 0
NLO n = 0 Θ = 1
NLO n = 1 Θ = 1
NLO n = 2 Θ = 1
LO n = 0
LO n = 1
LO n = 2

y
f n

(|k
a
|=

20
G

eV
,
|k
b|

=
30

G
eV

,
y
,θ

)
(G

eV
−

2
)

(a) (b)

Figure II.13: (a) The gluon Green function versus θ; (b) Growth with energy of the gluon Green
function for different conformal spins n.

Green function for different conformal spins n. This is done in Fig. II.13 (right), where we
can see that the LO and the full NLO SUSY results are surprisingly similar for the range of
y we have chosen to plot (for n = 0). It is clear that the scalar and gluino contributions do
push the Green function to higher values. This implies that they generate a larger amount
of real emission and/or reduce the relative weight of the virtual diagrams, mainly via their
contribution to the gluon Regge trajectory. For the coefficients associated to n > 0 the
non-gluonic terms do not modify the gluonic ones, they give a very small contribution. As
in QCD, only the n = 0 component, associated to the hard pomeron, grows with energy.

Let us highlight a very interesting property of the NLO eigenvalue, already pointed out in
Ref. [Sab06] for the QCD case. When n = 1 the asymptotic intercept (at γ = 1/2) can be
written as

ωn=1

(
a, γ = 1

2

)
= a2

(3
2ζ(3) + 1

2ψ
′′(1)− Φ

(
1, 1

2

))
= 0. (II.44)

This result is independent of the scalar and gluino terms, i.e. it is an effect only associated to
the gluon sector. A similar feature was found in QCD, where the quark contributions to this
intercept were always multiplying the LO eigenvalue, which is also zero for (γ, n) = (1/2, 1).
The fact that this intercept is zero at LO and NLO seems to indicate that it is protected
by some symmetry not broken by radiative corrections. It would be instructive to find out
if it is present in the strong coupling limit and its connection to all-orders corrections to
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II. Comparing QCD and N = 4 SYM in the Regge Limit

odderon24 exchange in QCD and SUSY theories (see [Kov12] for a related discussion).

3.2 Monte Carlo Approach to the BFKL Equation

In order to proceed further and obtain more exclusive information from the different pieces
of the SUSY NLL BFKL kernel now we use a different, more numerical method, which
generalizes the original work in [Sch97, OS97] (see [AS03, AS04b, AS04a, CDSS11, CS12a,
CS12b] for related work). The starting point is the following representation for the BFKL
equation in momentum space [AS03]

(
ω − ω

(
k2
a, λ

2
))
fω (ka,kb) = δ(2) (ka − kb)

+
∫
d2k

(
ξΘ

πk2 Θ
(
k2 − λ2

)
+K (ka,ka + k)

)
fω (ka + k,kb) .

(II.45)

Here λ is a mass parameter used to regularize the infrared divergences. Results are λ-
independent for small values of λ [AS03]. K here is the ε-independent piece of the dimen-
sionally regulated emission kernel

K
(
q, q′

)
= a2

4π

{
− 1

(q − q′)2 ln2 q
2

q′2
+ 2(q2 − q′2)

(q − q′)2(q + q′)2

×

1
2 ln q

2

q′2
ln q

2q′2(q − q′)4

(q2 + q′2)4 +

∫ − q2

q′2

0
−
∫ − q′2

q2

0

 dt ln(1− t)
t


−
(

1− (q2 − q′2)2

(q − q′)2(q + q′)2

)((∫ 1

0
−
∫ ∞

1

)
dz

1
(q′ − zq)2 ln (zq)2

q′2

)}

+ Θ a2

4π

{(
3(q · q′)2 − 2q2q′2

)
16q2q′2

(
2
q2 + 2

q′2
+
( 1
q′2
− 1
q2

)
ln q

2

q′2

)

−
(

4− (q2 + q′2)2

8q2q′2
− (2q2q′2 − 3q4 − 3q′4)

16q4q′4
(q · q′)2

)∫ ∞
0

dx

q2 + x2q′2
ln
∣∣∣∣1 + x

1− x

∣∣∣∣
}
.

(II.46)

and the NLL Regge gluon trajectory reads in this mass regularization

ω
(
q2, λ2

)
= −ξΘ ln q

2

λ2 + a2 3
2ζ(3). (II.47)

24The odderon is the leading exchange in hadronic scattering processes at high energies in which negative
charge conjugation and parity quantum numbers are transferred in the t-channel. From the QCD perspective
it is a bound state of three reggeized gluons [Ewe03]. An interesting property of the Bartels-Lipatov-Vacca
odderon solution to the BKP equations [BLV00] is that its intercept is αO − 1 = ᾱsχ0(n = ±1, ν = 0) = 0.
This result seems to hold in the NLL approximation [Sab06, Kov12], possibly indicating that some underlying
symmetry protects the value of the odderon intercept from perturbative corrections.
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This mass regularization is much more convenient since it explicitly cancels the IR diver-
gences of the kernel and the trajectory. Now it is possible to solve this equation iteratively
and go back to rapidity space to obtain the following expression for the gluon Green function

f(ka,kb, y) = exp
(
ω
(
k2
a, λ

2
)
y
){

δ(2)(ka − kb) +
∞∑
n=1

n∏
i=1

∫
d2ki

[
Θ
(
k2
i − λ2)
πk2

i

ξΘ

+K
(
ka +

i−1∑
l=0
kl,ka +

i∑
l=1
kl

)]∫ yi−1

0
dyi exp

ω
(ka +

i∑
l=1
kl

)2

, λ2


−ω

(ka +
i−1∑
l=1
kl

)2

, λ2

 yi
 δ(2)

(
n∑
l=1
kl + ka − kb

) ,
(II.48)

where y0 ≡ y. We have obtained numerical results for this formula by performing a Monte
Carlo integration of each of the terms in the sum [CS], which implies to solve a large amount
of nested integrals in transverse momentum and rapidity space. This is a rather complicated
procedure where the correct sampling of the integrands plays a very important role, but
which allows for a complete handling of the exclusive information in the parton ladder since
we know the statistical weight of the different final state configuration.

3.3 Analysis of Diffusion and Multiplicities

With the help of the Monte Carlo code, we can check that the distribution in the number
of iterations of the kernel needed to construct the gluon Green function does not vary,
qualitatively, when scalars and gluinos are added to the gluon terms, which drive the
multiplicity distribution (see Fig. II.14, where the Green function corresponds to the area
under the plots.). This statement is independent from introducing a running of the coupling
in the gluon (QCD with no quarks) kernel (see last plot in Fig. II.14).

It is also possible to find out the typical transverse momentum scale running in the internal
propagators of the BFKL ladder. This is conveniently shown in the Bartels’ cigar plot25

[Bar93, BLV96] in Fig. II.15 where the variable τ = log 〈|κ|i〉/(GeV2) is calculated (together
with the lines of one standard deviation towards the IR and UV) as a function of the
normalized rapidities of the corresponding emitted particles. The main lesson to be taken
from these plots is that the region with diffusion in the IR is fully governed by the gluon

25The Bartels’ cigar measures the typical transverse momentum κ2 of a t-channel gluon in the BFKL
ladder. Consider picking up a specific rung, dividing the ladder in two sub-ladders with correspond-
ing Green’s functions f(k,κ, Y − y) and f(κ,k′, y), with Y the total rapidity difference in the original
ladder. The κ-distribution is then given, for k2 ∼ k′2 ∼ κ2, by dn

dκ2 = κ2f(k,κ, Y − y)f(κ,k′, y) ∼
exp

[
− 1

56ζ(3)ᾱs

(
ln2(|k|/|κ|)

Y−y − ln2(|κ|/|k′|)
y

)]
(cf. (I.155)), in the diffusion approximation.
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dynamics in the SUSY kernel (setting Θ = 0, 1 does not modify the lower lines) while in the
UV region the scalars and gluinos do squeeze the plot downwards, decreasing the diffusion
probability towards large scales.
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Figure II.14: Multiplicity distribution in the number of emissions contributing to the gluon Green
function.
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III
Lipatov Effective Action Approach to

High Energy QCD

Effective field theories are powerful tools to deal with problems involving a hierarchy of
characteristic scales. This is precisely the case in the high energy limit of gauge theories. As
we have seen, it seems natural to reformulate in this region QCD in terms of reggeized gluon
(reggeon)1 interactions. In particular, one should expect to make contact with Gribov’s
reggeon field theory (Sec. I.2.3).

Another motivation for writing a high-energy effective action for QCD comes from the re-
quest of unitarity (Sec. I.4.1). A hermitian Lagrangian automatically incorporates all the
requirements of unitarity in the simplest possible way. In particular it should include the
ingredients to describe nonlinear evolution (Sec. I.5). In this chapter, we will discuss Lipa-
tov’s proposal for such an effective action. First of all, we review in some detail its original
construction, which helps understand and interpret the subtleties of this action. Afterwards,
we present a program to make sense of Lipatov’s action beyond tree level, and illustrate the
underlying philosophy with several perturbative computations.

1In this chapter we will use the word reggeon in the sense of reggeized gluon state.
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1 Lipatov’s Effective Action

1.1 Virtual Modes in Multi-Regge Kinematics

Gluon production amplitudes in MRK are given by the remarkably simple factorized expres-
sion (I.130)

AMRK
2→2+n = Atree

2→2+n

n+1∏
i=1

s
ω(ti)
i , Atree

2→2+n = 2gsT c1A′AΓ1
1
t1
gT d1

c2c1Γ1
2,1

1
t2
· · · gT dncn+1cnΓnn+1,n

1
tn+1

gT
cn+1
B′B Γ2,

(III.1)
where A,B and A′, B′, dr(r = 1, · · · , n) are color indices for initial and final gluons corre-
spondingly. We also have included the gluon-gluon-reggeon (GGR) and reggeon-reggeon-
gluon (RRG) vertices

Γ1 = 1
2ε

λA
ν ε
∗λA′
ν′ Γνν′+; Γ2 = 1

2ε
λB
ν ε
∗λB′
ν′ Γνν′−; Γrr+1,r = −1

2Γµ+−(qr, qr+1)ε∗λrµ (kr);

Γνν′+(pA, pA′) = γνν
′+(pA, pA′)− t(n+)ν 1

p+
A

(n+)ν′ ;

γνν
′+(pA, pA′) = (p+

a + p+
A′)g

νν′ − 2pν′A (n+)ν − 2pνA′(n+)ν′ ;

Γµ+−(q1, q2) = −2Cµ(q1, q2) = γµ+− + ∆µ+−, ∆µ+−(q1, q2) = −2t1
(n−)µ

k−1
+ 2t2

(n+)µ

k+
1

.

(III.2)

We notice that both GGR and RRG vertices consist of the light-cone projection of the
3-gluon Yang-Mills vertex γµνρ and an additional induced term.

These effective vertices can be derived in the spirit of EFT directly from the QCD action
[Lip91, KLS94, Szy94, KLS95], integrating out heavy modes. To do this, the gauge has to be
fixed so that the identification of heavy modes is meaningful. Considering for the moment
pure Yang-Mills theory2, the action is simplified by choosing the light-cone gauge, A− = 0
say (σ = 1, 2; � ≡ 4(∂+∂− − ∂∂∗), ∂± = 1

2(∂0 ± ∂3), ∂ = 1
2(∂1 − i∂2), ∂∗ = (∂)∗):

SYM =
∫
d4x

[
1
2
(
Aaσ�A

aσ + (∂−Aa+ + ∂σA
aσ)2

)
−gfabc

(
(Aaσ∂−Abσ)Ac+ − AbσAc%∂σAa%)

)
− g2

4 f
abcfab

′c′AbσA
c
%A

b′σAc
′%

]
,

(III.3)

in such a way that A+ only appears quadratically and one can perform a Gaussian integration
in A

′a
+ = Aa+ + ∂−1

− ∂σA
aσ, leaving a Lagrangian with three terms L = L(2) + L(3) + L(4):

2Terms involving quark fields can be reconstructed from pure gluodynamics using the supersymmetry of
QCD action with a Majorana fermion in the adjoint representation (the N = 1 SYM action) [KLS94, KLS95].
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L(2) = −1
2A

a�Aa∗, L(4) = −g
2

8
[
(AT a

←→
∂ −A

∗)∂−2
− (AT a

←→
∂ −A

∗) + (AT aA∗)(AT aA∗)
]
,

L(3) = −ig2
[
(AT a

←→
∂ −A

∗)∂−1
− (∂Aa + ∂∗Aa∗)− (AT aA∗)(∂A− ∂∗A∗)

]
≡ L(3a) + L(3b),

(III.4)

where the notations ←→∂ = −→∂ −←−∂ and (A1T
aA2) = −ifabc Ab1Ac2 have been used.

One can now integrate over heavy modes, i.e. those not appearing in the initial or final
states, to get an effective action. Produced particles in the ladder will be close to their mass
shell, |k+k− − kk∗| � µ2 (scattering modes), where k = k1

⊥ + ik2
⊥ and k∗ = k1

⊥ − ik2
⊥; and

t-channel exchanges are essentially transverse, k+k− � kk∗ ∼ µ2 (exchange modes), so heavy
modes in MRK are to be identified with the strongly virtual contributions with k+k− � kk∗.
Then we split our fields in heavy and moderately virtual modes respectively, A% → AH% +AM% ,
and substitute in (III.4). By definition, mixing of modes in propagators is small, therefore
no interference appears in the kinetic Lagrangian: L(2) ' 2AHσ∂+∂−A

H∗
σ + 1

2A
M
σ �A

Mσ. For
the piece of the interaction Lagrangian involving heavy modes we only keep the dominant
components in MRK, i.e. those involving the operator ∂−1

− acting on the field with smaller
k− component. With this in mind we get

LHint ' 2AHa% ∂+∂−A
Ha% + ig

[
AMσ T

a∂−A
Hσ + AHσ T

a∂−A
Mσ
]
(∂−1
− ∂%A

Ma%). (III.5)

The path integral over heavy modes can now be performed (e.g. using the equations of
motion), giving a contribution

∆L = g2

4 A
M
% T

a∂−A
M%

(
1

∂+∂−
∂σA

Mσ

)
∂−1
− ∂ηA

Mη (III.6)

to the effective Lagrangian Leff = L(III.4)
A→AM + ∆L. One should remember that due to MRK

there is also a strong ordering in k− among the AM modes3. To make this manifest we split
AM in two contributions A and Ã indicating, respectively, scattering and exchange modes.
In terms of these new fields ∆L can be expressed as the product of more fundamental pieces:
the triple vertex from L(3) in (III.4)

Ltrv = −ig(∂−Aσ)T aAMσ∂−1
− (∂%Ãa%), (III.7)

3For instance, in (III.6), the k− component of the first two AM fields is much bigger than the one for the
last two fields.
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Figure III.1: The GGR (top) and RGG (bottom) vertices as a sum of induced and projection
contributions. Black, dashed purple and fat cyan lines denote respectively scattering, exchange and
heavy modes. The s-channel goes vertically and the t-channel horizontally. Lines going to the right
carry smaller k−. Each subdiagram represents a relevant contribution in MRK to L(3). Effective
vertices emerge from integrating out the heavy propagator, in the same way as the Fermi’s coupling
appears from collapsing a W propagator.

a transverse propagator 1
2Ã

a
%∂σ∂

σÃa%, and an induced vertex whose associated Feynman rule
can be identified to the induced contribution to the RGG vertex (Fig. III.1)

∆Lind = ig

4 ∂−∂%Ã
a%

(
1

∂+∂−
∂σA

Mσ

)
T a∂−1

− ∂ηA
Mη. (III.8)

The terms not included in this vertex turn out to cancel against the original contributions
coming from L(4), so that collecting pieces we can write the effective Lagrangian as Leff =
(L(2) + L(3b))A→AM + Ltrv + ∆Lind. Introducing the notation [Lip91, KLS94]4

A = i∂∗φ, A∗ = −i∂φ∗; A+ = − 1
∂−
∂σÃ

σ = − 2
∂−
∂Ã,

A− = −2∂−∂σ
∂%∂%

Ãσ = 1
2∂−(∂∂∗)−1(∂Ã+ ∂∗Ã∗).

(III.9)

The effective Lagrangian can be written compactly as a sum of three pieces5

Leff = Lkin + Ls + Lp, Lkin = 1
2(∂+∂φ

a)(∂−∂∗φ∗a) + 2(∂Aa+)(∂∗Aa−),

Ls = ja+A
a
− + ja−A

a
+, Lp = jaφ∗a + j∗aφa,

(III.10)

4A+ and A− are defined to match the original field components A+ and A−, which are found applying
the equations of motion to the QCD action. MRK imposes ∂∓A± = 0 (see below). A+ and A− can then
be considered as the fields creating and annihilating reggeized gluons. In what respects the complex scalar
field φ, it was introduced in [Lip91] as the field describing the gauge transformations of A.

5Using the constraint ∂∓A± = 0, derivatives can also act on the fields φ∗ through integration by parts.
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Figure III.2: (a) Quasi-Multi-Regge Kinematics; (b) Quasielastic scattering of quark B on gluon
A, where the gluon fragments into a cluster of gluons nearby in rapidity; (c) Central production.

where Ls and Lp describe, respectively, the physical gluon scattering caused by the emission
or absorption of a reggeized gluon (∼GGR vertex) and the gluon production in the collision
of two reggeized gluons (∼RRG vertex), in terms of the currents

ja+ = ig(∂∗φ∗)T a∂+∂φ, ja− = ig(∂φ∗)T a∂−∂∗φ,

ja = g(∂∗A−)T a∂A+, j∗a = g(∂∗A+)T a∂A−.
(III.11)

Notice that despite having integrated out heavy modes we still have two different kinds of
fields with different momentum ranges suitable for them. One should not allow A± to have
momenta with |k+k−| ≥ |k2|, because this would violate the conditions of MRK. In the
same way, one should not allow the field φ to have momenta with |k+k−| � |k2|, because
this would double a contribution already accounted for by the Coulomb fields. This reflects
the fact that usual effective theory techniques are difficult to apply when a whole hierarchy
of scales appear as in MRK (see [Don09, DW10] for a related discussion).

The Feynman rules obtained from the action (III.10) can be seen [KLS94] to generate the
effective vertices (III.2) on the mass-shell. However, for virtual gluons these vertices are
different, leading to inconsistencies in the theory. This drawback is absent in a more general
setup that we describe in the remainder of this section.

1.2 Quasielastic and Central Production Vertices in QMRK

In Sec. I.3.4 we pointed out that each time we allowed two gluons to be emitted close
in rapidity along the BFKL ladder, we lost one ln s factor, or alternatively, we went to
consider αs(αs ln s)n terms (NLL approximation). This situation can be generalized to
quasi-multi-Regge kinematics (QMRK), in which an arbitrary number of particles are
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Figure III.3: (a) GGR vertex; (b) RRG vertex; (c) Quasielastic two-gluon production. Effective
vertices consist of light-cone projections of usual QCD vertices and induced vertices (denoted by
blue points).

allowed to be produced close to each other in rapidity in clusters well separated in rapidity
among themselves (Fig. III.2). An effective action valid in this generalized kinematics
was built by Lipatov [Lip95, Lip97] exploiting the requirement of gauge invariance. In the
following we describe the main steps in the derivation, following closely [Lip95].

Consider first a quasielastic production process (Fig. III.2 (right)). With the notation
as in the figure we can write, omitting polarization vectors of outgoing gluons ε∗νi(ki), the
production amplitude as

Aν0ν1···νn
a0a1···anB′B = −φν0ν1···νn+

a0a1···anc (k0, k1, · · · , kn)1
t
gp−BT

c
B′BδλB′λB ,

n∑
i=0

k+
i = 0. (III.12)

For the simplest case in which one extra gluon is produced, one has at tree level [FL89]

φν0ν1ν2+
a0a1a2c = g2

{
Γν0ν1ν2+
a0a1a2c − T

a
a1a0T

c
a2a

γν1ν0σ(k1,−k0)Γν2σ+(k2, k2 + q)
(k0 + k1)2 − T aa2a0T

c
a1a

× γν2ν0σ(k2,−k0)Γν1σ+(k1, k1 + q)
(k0 + k2)2 − T aa2a1T

c
a0a

γν2ν1σ(k2,−k1)Γν0σ+(k0, k0 + q)
(k1 + k2)2

}
.

(III.13)

The last three terms in the brackets correspond to the last three diagrams in Fig. III.3
(c). The first term is Γν0ν1ν2+

a0a1a2c = γν0ν1ν2+
a0a1a2c + ∆ν0ν1ν2+

a0a1a2c , with γ the light-cone projection of the
4-gluon QCD vertex (2nd diagram) and ∆ a new induced contribution (1st diagram)

∆ν0ν1ν2+
a0a1a2c (k+

0 , k
+
1 , k

+
2 ) = −t(n+)ν0(n+)ν1(n+)ν2

(
T aa2a0T

c
a1a

k+
1 k

+
2

+
T aa2a1T

c
a0a

k+
0 k

+
2

)
. (III.14)

One can verify that the amplitude (III.12) is gauge invariant for n = 2: (ki)νiφν0ν1ν2 = 0, i =
0, 1, 2, where one has to use the Ward identities

(pA′)µγµνσ(pA, pA′) = (t− p2
A)gνσ + pνA′q

σ + pσa′p
ν
A; (pA′)µγµν+(pA, pA′) = −p2

A(n+)ν + p+
A(pA)ν .
(III.15)
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In order for φ to be gauge-invariant for n ≥ 3, one has to add a new induced ver-
tex Γν0ν1···νr−1+

a0a1···ar−1c (k+
0 , k

+
1 , · · · k+

r−1) = ∆ν0ν1···νr−1+
a0a1···ar−1c (k+

0 , k
+
1 , · · · k+

r−1) (no direct light-cone pro-
jection of a QCD vertex can appear now). Now one can consider the generaliza-
tion of the last three terms in (III.13), built from induced vertices of lower order,
gluon propagators and usual Yang-Mills vertices. Multiplying the corresponding sum
of terms by (kνnn ) and using the Ward identity (III.15), one gets the nonvanishing sum
−∑n−1

i=0 T
a
anai

∆ν0···νn−1+
a0a1···ai−1aai+1···an−1c(k

+
0 , · · · , k+

i−1, k
+
i + k+

n , · · · , k+
n−1). This is to be compen-

sated by the new nth-order induced vertex, defining the recurrence relation

∆ν0ν1···νr+
a0a1···anc (k

+
0 , k

+
1 , · · · , k

+
n ) = (n+)νn

k+
n

n−1∑
i=0

T aanai∆
ν0···νn−1+
a0a1···ai−1aai+1···an−1c(k

+
0 , · · · , k

+
i−1, k

+
i +k+

n , · · · , k+
n−1).

(III.16)
The same treatment given to quasielastic gluon production can be applied to multigluon
production at central rapidities (Fig. III.2 (c)). In this case the amplitude reads

Aν1ν2···νn+−
d1d2···dnA′AB′B = −gp+

AT
c1
A′AΓAA′+

1
t1
ψν1ν2···νn+−
d1d2···dnc2c1

1
t2
gp−BT

c2
B′BΓB′B−,

n∑
i=0

k+
i =

n∑
i=0

k−i = 0.

(III.17)
In the one-gluon production case we have Lipatov’s vertex, ψν1+−

d1c2c1 = gΓν1+−
d1c2c1 . At the follow-

ing order one has [FL89]

ψν1ν2+−
d1d2c2c1

= g2
{

Γν1ν2+−
d1d2c2c1

−
T dd2d1

γν2ν1σ(k2,−k1)Γσ+−
dc2c1

(q1, q2)
(k1 + k2)2

−
Γν1σ−
d1dc1

(k1, k1 − q1)Γν2σ+
d2dc2

(k2, k2 + q2)
(q1 − k1)2 −

Γν2σ−
d2dc1

(k2, k2 − q1)Γν1σ+
d1dc2

(k1, k1 + q2)
(q1 − k2)2

}
.

(III.18)

The first term Γν1ν2+−
d1d2c2c1 = γν1ν2+−

d1d2c2c1 + ∆ν1ν2+−
d1d2c2c1 is again the sum of the light-cone projection of

the 4-gluon vertex and a new induced term

∆ν1ν2+−
d1d2c2c1 =− 2t2(n+)ν1(n+)ν2

[
T dd2c1T

c2
d1d

k+
1 k

+
2
−

T dd2d1T
c2
c1d

(k+
1 + k+

2 )k+
2

]

− 2t1(n−)ν1(n−)ν2

[
T dd1c2T

c1
d2d

k−2 k
−
1
−

T dd1c2T
c1
c2d

(k−1 + k−2 )k−1

]
.

(III.19)

In this case as well, one should introduce induced vertices with an arbitrary number of
external legs in order to ensure gauge invariance of the production amplitude for n > 2.
Their form can be expressed in terms of light-cone projections of the quasielastic effective
vertices (III.16)

Γν1···νn+−
d1···dnc2c1 = ∆+ν1···νn−

c1d1···dnc2(k+
0 , k1‘+, · · · , k+

n ) + ∆+ν1···νn−
c2d1···dnc1(k−0 , k

−
1 , · · · , k

−
n ); k±0 = −

n∑
i=0

k−i .

(III.20)

117



III. Lipatov Effective Action Approach to High Energy QCD

1.3 Gauge Invariance and Lipatov’s Effective Action

In [Lip95], Lipatov was able to build an action reproducing all the effective vertices we saw
in last section. The key idea is the introduction of a reggeon field A± (which we tentatively
identified in Sec. III.1.1), in terms of which one can formulate the high-energy factorization
of QMRK. These reggeon fields are identified with light-cone components of the vector
potential vµ6 since, as we saw in (I.126), only the longitudinal part of the t-channel gluon
propagator gives a large contribution proportional to s.

The effective vertices of Sec. III.1.2 describe interactions in a small rapidity range (y0 −
η
2 , y0 + η

2), η � y ∼ ln s. η acts as a UV cutoff in the relative longitudinal momenta
of the particles inside each rapidity cluster. It also plays a complementary role as the
minimum rapidity separation between clusters connected through reggeon exchange. As
a factorization scale, any dependence on η must vanish in the computation of a physical
amplitude. Taking into account that in QMRK the reggeon momenta are transverse (App.
B) and in the effective vertices one can consider A± independent of the light-cone coordinate
x∓ (cf. (I.126)), up to power-suppressed (in s) contributions not relevant in QMRK

∂−A+ = ∂+A− = 0, (III.21)

then the reggeon field propagator is that of a 2d free field

〈Ay
′

+(x±,x)Ay−(0, 0)〉 ∼ Θ(y′ − y − η)δ(x+)δ(x−) ln |x|. (III.22)

The reggeon field A± is to be considered as a bare reggeon with fixed intercept equal to 1;
the Regge trajectory is built through loop corrections to the effective action. In order to get
an action local in rapidity reproducing the results of Sec. III.1.2, we naively decompose
the gluon field into components V y and Ay± describing respectively gluons in the direct and
crossing channels with rapidities inside of the interval η:

v =
∑

y∈(y0− η2 ,y0+ η
2 )
V y + Ay; {Vµ, A±, Gµν} = −i{V a

µ , A
a
±, G

a
µν}ta. (III.23)

Using the decomposition (III.23), the Yang-Mills action within a rapidity cluster can be
written as [Lip95]

6In this section we use the notation vµ for the gluon field, instead of Aµ, to avoid possible confusions.
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SYM =−
∫
d4xTr

{1
2G

2
µν(V )− [Dµ, Gµ−]A+ − [Dν , Gν+]A− + [Dµ, A+][Dµ, A−]

− 1
2[D−, A−][D+, A+] + g

2G+−[A−, A+]− 1
4[D+, A−]2 − 1

4[D−, A+]2

+ g

2[D+, A−][A−, A+] + g

2[D−, A+][A+, A−]− g2

4 [A+, A−]2
}
,

Dµ =∂µ + gVµ, Gµν(V ) = 1
g

[Dµ, Dν ] = ∂µVν − ∂νVµ + g[Vµ, Vν ].

(III.24)

As we discussed before, gauge invariance of local-in-rapidity amplitudes forces us to add new
induced terms. Consider the quasielastic production amplitudes, linear in the reggeon fields.
They correspond to a piece of the effective action of the form

S(1) = −
∫
d4xTr[j−A+ + j+A−]; j± = jYM

± + jind
± . (III.25)

The currents include the coefficients of the linear terms in A± in the action (III.24), jYM
± =

−[Dµ, Gµ±]. These terms vanish classically so they cannot give any contribution to tree-level
amplitudes. The current jind

± is built in order to reproduce the recurrence relations (III.16)
order by order:

jind
± (V±) = ∂2

⊥σ

{
V± − gV±

1
∂±
V± + g2V±

1
∂±
V±

1
∂±
V± − · · · }

}
= ∂2

⊥σ∂±
1
D±

V±. (III.26)

In the same way one has for central rapidity production an action bilinear in A±

S(2) = −
∫
d4xTr[LYM

2 +Lind
2 ], LYM

2 = [Dµ, A−+][Dµ, A−]−1
2[D−, A−][D+, A+]+g

2G+−[A−, A+].
(III.27)

In order to reproduce (III.20), the induced term reads7

Lind
2 = A−

∂

∂V−
Tr[jind

− (V−)− ∂2
⊥σV−]A+ + {+↔ −}, (III.28)

where it is implied that after differentiating j± with respect to V±, the fields A∓ substitute
the fields V∓ at the corresponding empty positions.

The current jind
± in (III.26) can be resummed in terms of a Wilson line

jind
± (V±) = −1

g
∂2
⊥σ∂±U(V±);

U [V±(x)] = P exp
{
−g2

∫ x∓

−∞
dz± V±(z)

}
= 1− g 1

∂±
V± + g2

( 1
∂±
V±

)2
− · · · = 1

D±
∂±,

(III.29)

7Notice that the kinetic terms for reggeons have been subtracted since they already appeared in LYM
2 .
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an expression from which can be checked that jind
± is gauge-invariant for gauge transforma-

tions vanishing as x± → ∞. This implies that the reggeon field must be gauge invariant in
order for the effective action to be invariant as well8. However, the current jYM

± transforms
in the adjoint under a gauge transformation χ, δjYM

± = g[jYM
± , χ]. One can still make S(1)

in (III.25) invariant by modifying the current using the Wilson lines (III.29) transforming in
the fundamental representation

jYM
± → jYM,m

± = U−1(V±)jYM
± U(V±), δjYM,m

± = 0. (III.30)

One has the freedom to perform such modification since both jYM and j,m vanish classically
and the modification does not alter tree-level production amplitudes. Actually, jYM,m would
have appeared directly multiplying the linear term in A± had we chosen, instead of (III.23),
the different decomposition for the gluon field

v⊥µ =
∑
y

V⊥µ, v± =
∑
y

[
V y
± + U(V∓)Ay±U−1(V∓)

]
. (III.31)

This is a much more natural decomposition for a gauge-invariant A±, since now both terms in
the sum transform in the same way under gauge transformations. It turns out that inserting
the redefinition A± → U(V∓)A±U−1(V∓) in (III.27) one can also render S(2) gauge-invariant,
and one can finally recast all terms in the following action for local-in-rapidity interactions

Seff =
∫
d4x(LQCD(vµ, ψ) + Lind(v±, A±));

Lind(v±, A±) = −Tr[(A−(v)− A−]∂2
σA+]− Tr[(A−(v)− A−)∂2

σA+],

A±(v) = −1
g
∂±U(v±) = v± − gv±(1/∂±)v± + g2v±(1/∂±)v±(1/∂±)v± − · · ·

(III.32)

Notice that V has been traded by v everywhere. The Yang-Mills Lagrangian −1
2TrG2

µν has
been completed to the total QCD Lagrangian, including quark and ghost fields9. (III.32) is
the final form of Lipatov’s effective action. It enjoys a number of important properties: it is
gauge invariant by construction, and hermitian (ensuring unitarity in all subchannels). It is
also consistent with the analytical structure of QMRK amplitudes as expressed in Steinmann
relations [Ste60]. The dependence on the regulator η can be formally seen to vanish [Lip97].

8The reggeon field transforms however under the adjoint for global SU(Nc) transformations.
9In fact, one can obtain also the high-energy effective action for N = 4 SYM by replacing LQCD in (III.32)

by LN=4 SYM.
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1.4 Connection with Reggeon Field Theory and Other Formalisms

In order to make contact with reggeon field theory, one has to integrate over the physical
degrees of freedom vµ. Because A±(v±) has a linear term in v± in the action (III.32), the
classical extremum of Seff takes place at a nonvanishing value v = ṽ given by the gauge
invariant Euler-Lagrange equations

jYM
⊥σ (ṽ) = 0, jYM

± (ṽ) = − ∂

∂v∓
TrA∓(v∓)∂2

⊥σA±
∣∣∣
v=ṽ

. (III.33)

The solution to these equations can be found perturbatively

ṽ± = A± + g∂−2
µ {[(∂2

⊥σA±), (∂−1
− A∓)]− 1

2 [A∓, ∂±A±]}+O(g2),

ṽ⊥σ = 1
2g∂

−2
µ {[A+, ∂⊥σA−] + [A−, ∂⊥σA+]}+O(g2).

(III.34)

Let us remark that A± can be interpreted as a classical field of v± for very small couplings.
The effective action calculated at the classical solution (III.34)

Seff |v = ṽ =−
∫
d4xTr

[
1
2(∂2
⊥σA−)(∂2

⊥σA+)− 1
2g
(
(∂2
⊥σA−)[(∂−1

+ A+), A+]

+ (∂2
⊥σA+)[(∂−1

− A−), A−]
)

+O(g2)
] (III.35)

describes all possible self-interactions of the reggeon fields A± in the tree level approxi-
mation. In particular, the trilinear term gives the transition A± → A∓A∓ (suppressed by
Gribov’s signature conservation [Gri03]); the quadrilinear term includes the 1 → 3 reggeon
transition and the BFKL kernel describing the scattering of two reggeons10. The six-linear
term includes the 2→ 4 transition [BW95, BLW96] and the simplest BKP kernel [BFLV13].
These terms are important to describe the screening corrections due to pomeron loops [LR90].

To calculate loop corrections to the reggeon Lagrangian one should perform a semiclassical
expansion, writing v = ṽ + ε and computing perturbatively the functional integral in ε. For
instance, one could in principle obtain the 2-loop gluon Regge trajectory (Sec. III.109) by
expanding Seff to order ε4 and taking into account bilinear terms in A±.

It is interesting to also explore the relation of Lipatov’s EFT with other formalisms describing
high-energy scattering. As noticed in [JMKMW97a], the effective action (III.32) is very
similar to the color glass condensate action (Sec. (I.5.2)) if one identifies the reggeon currents
∂2
⊥σA± with the static color charge density ρ(x)δ(x∓). The Wilson line term describing the
10For a derivation of the BFKL kernel in the effective action approach, see [Hen09b]
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interaction of reggeons and gluons is very similar in both approaches11. One is also tempted
to identify the reggeon propagator with the functional W [ρ] describing the statistical weight
with which a given charge density (reggeon) configuration is present in the hadronic wave
function. However, the physics of both terms turns out to be rather different [JMKMW97a].
Moreover, the dilute-dense asymmetry of the JIMWLK equation is not present in Lipatov’s
effective action, although certain approaches have been put forward to fix this problem (see,
e.g. [Hat07]). Yet another formalism to describe high-energy scattering is Balitsky’s high-
energy operator product expansion [Bal96, Bal01]. It is difficult to identify the reggeon in
these alternative formalisms. It is also to be checked whether they can reproduce the results
of Sec. (III.1.2).

2 Loop Computations and Lipatov’s Action
[CHMS12a]

Having introduced Lipatov’s high-energy effective action, in the remainder of the chapter we
will present a procedure to apply this action to perturbative computations beyond tree level
of amplitudes in QMRK. It is not easy to reconcile the two pillars of the effective action,
gauge invariance and the implicitly assumed locality in rapidity of interactions, when doing
loop computations. In this section we present the main problems that arise and the strategies
put forward to solve them.

2.1 Overcounting and Spurious Divergences

A striking feature of the action (III.32) is that new degrees of freedom are added to the
whole QCD action. This is in stark contrast with the Wilsonian paradigm of integrating
out heavy degrees of freedom described in Sec. I.1.2. Of course, the redundancy is due
to a description which is local in rapidity: the whole action (III.32) should not be used to
describe interactions between particles separated in rapidity by ∆y > η, which can only be
mediated through reggeon exchange according to high-energy factorization.

A further complication arising when going beyond tree level is the appearance of spurious
rapidity divergences due to the nonlocal operators 1

∂±
in the Wilson lines (III.29), which

11In fact, Wilson lines appear naturally in high-energy scattering [Bal01]. Performing the path integral
in A± for the terms in Seff responsible for quasielastic processes, one gets under certain approximations a
two-dimensional σ-model describing the interaction of two Wilson lines [Lip97], first obtained by Verlinde
and Verlinde under rather general assumptions [VV93].
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2. Loop Computations and Lipatov’s Action [CHMS12a]

in the Feynman rules in momentum space (App. A) give rise to light-cone denominators
1/k±. This is not a problem at tree level because kinematics of outgoing particles is fixed
by the mass-shell condition, but it is an issue for loop computations, where these poles lead
to divergences in the integrations over longitudinal momenta.

2.2 Light-Cone Regularization and Pole Prescription

A convenient way of regularizing rapidity divergences in a gauge invariant way is inspired in
the idea of tilting soft and collinear Wilson lines off the light-cone to avoid divergences due
to the possible interactions with gluons with infinite rapidity [CS81, CS82, KR87].

t

z

n− n+ρ

na = e−ρn+ + n− nb = n+ + e−ρn−

ρ = ln s

Figure III.4: Light-cone regularization.

We tilt the light-cone vectors to form a hyperbolic angle in Minkowski space ρ (Fig. III.4),
which must be evaluated in the limit ρ → ∞. As we will see this parameter is useful since
it can be identified with ln s factors directly. The regularized light-cone vectors read

n− → na = e−ρn+ + n−, n+ → nb = n+ + e−ρn−. (III.36)

It is important also to adopt a pole prescription respecting symmetries as much as pos-
sible in order to simplify calculations. The induced vertices in App. B obey Bose sym-
metry, i.e. symmetry under simultaneous exchange of color, polarization and momenta of
the external gluons, as can be verified making use of the light-cone momentum conserva-
tion constraint (∑n

i=0 k
±
i = 0 for an order gn vertex), coming from (III.21), and the Jacobi

identity (A.1). These symmetries are lost e.g., with a Cauchy principal value prescription
1

[k]PV
≡ 1

2

(
1

k+i0 + 1
k−i0

)
, mainly because the eikonal identity does not simply hold but an

additional term is generated [BNS91]

1
[k±1 ]PV[k±1 + k±2 ]PV

+ 1
[k±1 ]PV[k±1 + k±2 ]PV

= 1
[k±1 ]PV[k±2 ]PV

+ π2δ(k±1 )δ(k±2 ). (III.37)
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An alternative regularization respecting the symmetries of unregulated induced vertices was
proposed in [Hen12]. It is based on replacing the unregulated operator A±(v) in (III.32) by

Aε±[v] = 1
2

[
PA

(
v±

1
D± − ε

∂±

)
+ PA

(
v±

1
D± + ε

∂±

)]
, ε→ 0. (III.38)

The projector PA is needed since the color structure of the induced vertices is defined in
terms of only antisymmetric color structure, in terms of the SU(Nc) structure constants
fabc. While for non-zero values of the operators 1/∂± this happens automatically, a pole
prescription of the above kind leads to momentum space expressions which are proportional
to symmetric color tensors multiplied by a delta-function in one of the light-cone momenta.
We remove these subleading terms using a suitable projector, keeping in this way the same
color structure as in the unregulated case. The projector PA acts then order by order in g

on the SU(Nc) color structure of the gluonic fields v±(x) = −itava(x),

PA

(
v±

1
D± − ε

∂±

)
≡ −i

(
P

(1)
A (ta)va± − (−ig)va1

±
1

∂± − ε
va2
± P

(2)
A (ta1ta2)

+ (−ig)2va1
±

1
∂± − ε

va2
±

1
∂± − ε

va3
± P

(3)
A (ta1ta2ta3)− . . .

)
, (III.39)

where P (n)
A are the projectors of the color tensors with n adjoint indices on the maximal

antisymmetric subsector of order n. The latter can be defined by an iterative procedure,
outlined in [Hen12]. For the second order (RGG) vertex this prescription amounts to a
principal value. Regarding the reggeon–3-gluon vertex, it is needed to replace the unregulated
form appearing in App. B by12

= −ig2q2[f c3c2ef c1eag±2 (3, 2, 1) + f c3c1ef c2eag±2 (3, 2, 1)](n±)ν1(n±)ν2(n±)ν3 ,

g±2 (i, j,m) =
[
−1/3
k±i − i0

( 1
k±m + i0

+ 1/2
k±m − i0

)
+ −1/3
k±i + i0

( 1
k±m − i0

+ 1/2
k±m + i0

)]
.

(III.40)

12Let us recall that from now all in all the expressions where n+ and n− appear we should eventually
perform the substitutions (III.36).
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2. Loop Computations and Lipatov’s Action [CHMS12a]

2.3 Gauge Invariance and Subtraction

Consider elastic qq scattering in the tree level approximation. To determine the Born level
cross-section in the high energy limit we need to evaluate diagram Fig. C.15 (a). It contains
the coupling of a reggeized gluon to the on-shell quarks which reads

iA
(0)
qr∗→q = ± = ūλ′(p′)igta 6n±uλ(p) = igta2p±δλλ′ . (III.41)

(a)

+

−

p
a

p
b

p
1

p
2

−t
s < η −t

s > η

(b)

Figure III.5: Born-level qq scattering mediated by (a) reggeon exchange, and (b) gluon exchange.

Evaluating the differential cross-section

dσ
(0)
ab = h(0)

a (q)h(0)
b (q)dd−2q (III.42)

in d = 4 + 2ε dimensions with MS scheme coupling α̃s = g2µ2εΓ(1−ε)
(4π)1+ε and CF = N2

c−1
2Nc we find

|A(0)|2qr∗→q = 1
2Nc

∑
λλ′
|A(0)|2qr∗→q = 4g2CF (p+

a )2, (III.43)

and the leading order (LO) quark impact factor h(0)
a, quark(q) in (III.42) is given by [CC99]

h
(0)
a, quark(k) =

√
N2
c − 1

2Nc

g2

q2
1

(2π)1+ε = 21+εα̃sCF

µ2εΓ(1− ε)
√
N2
c − 1

1
q2 . (III.44)

The same result can be obtained by evaluating the diagram in Fig. C.15 (b) in the limit
|t|/s→ 0. As we saw, it is implicit in the formulation of Lipatov’s action the introduction of
a factorization parameter η to associate the high energy region |t|/s < η with the diagram
Fig. C.15 (a), and the low energy region |t|/s > η with Fig. C.15 (b).

The introduction of an explicit rapidity cutoff in loop integrals renders their evaluation,
though meaningful, quite unwieldy [Hen08, HBL08]. Moreover, manifest gauge invariance

125



III. Lipatov Effective Action Approach to High Energy QCD

is lost in intermediate steps. Alternatively, it is possible to subtract the high energy cross-
section from the diagram in Fig. C.15 (b). More precisely, if the QCD cross-section reads

(
dσ

(0)
ab

)
QCD

= 1
2s

1
4N2

c

∑
spin
color

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pa p1

pb p2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

dΠ2, (III.45)

we can define a low-energy coefficient in the form

dĈ(0)
ab =

(
dσ(0)

qaqb

)
QCD
− dσ(0)

qaqb
. (III.46)

The complete effective action result then consists of the sum of the high energy cross-section
in (III.42) and the low energy coefficient in (III.46), which by construction agrees with the
QCD result. The leading term of the high energy expansion of the QCD cross-section is
then formally obtained by dropping the low energy contribution in (III.46).

This procedure can be applied in general to any class of effective action matrix elements
stemming from (III.32). From those amplitudes with internal QCD propagators only, to
which the reggeized gluon couples as an external (classical) field, one subtracts the corre-
sponding high energy factorized amplitudes with reggeized gluon exchange. The subtracted
coefficient is then local in rapidity.

3 Two-Loop Gluon Regge Trajectory
[CHMS12c, CHMS13]

The 2-loop gluon Regge trajectory provides an essential ingredient in the formulation of
high-energy factorization and reggeization of QCD at next-to-leading order. In particular,
it yields a virtual contribution to the NLL BFKL kernel13. It has been originally derived
in [FFK95, FFK96a, FFQ96] using s-channel unitarity relations. The result was then sub-

13It is important to remark here that the cusp anomalous dimension (II.5), controlling e.g. IR singularities
of on-shell gluon scattering amplitudes, appears as an easily identifiable piece of the gluon trajectory [KK96]

ωQCD(−t) = 1
2

∫ µ2
IR

−t

dk2

k2 γK(ᾱs(k2) + ΓR(ᾱs(−t)) + poles in 1
εIR

;

ωMSYM(−t) = 1
2γK(a) ln µ

2
IR
−t

+ 1
2G(a) + 1

2εIR

∫ a

0

da′

a′
γK(a′) +O(εIR),

(III.47)
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3. Two-Loop Gluon Regge Trajectory [CHMS12c, CHMS13]

sequently confirmed in [BRvN98], clarifying an ambiguity due to a slightly deviating result
presented in [KK96]. The original result was further verified by explicitly evaluating the high-
energy limit of 2-loop partonic scattering amplitudes [dDG01]. While the explicit result for
the 2-loop trajectory is by now firmly established, our calculation provides an important
confirmation of its universality: unlike previous computations, the effective action defines
the Regge trajectory of the gluon without making any particular reference to a particular
QCD scattering process.

3.1 Subtraction and Renormalization

The procedure which allows the derivation of the gluon trajectory from the effective action
has been originally discussed in [CHMS12a]. It consists of two steps

• determination of the propagator of the reggeized gluon to the desired order in αs;

• renormalization of the rapidity divergencies of the reggeized gluon propagator where
the gluon Regge trajectory is identified as the coefficient of the ρ dependent term in
the renormalization factor.

To obtain the reggeized gluon propagators to order α2
s it is needed to determine the one- and

two-loop self-energies of the reggeized gluon. Following the subtraction procedure proposed
in [HS12] (Sec. III.2.3) these self-energies can be obtained through

• determination of the self-energy of the reggeized gluon from the effective action, with
the reggeized gluon treated as a background field;

• subtraction of all disconnected contributions containing internal reggeized gluon lines.

Using a symmetric pole prescription as given in Sec. III.2.2, all disconnected diagrams that
possibly contribute to the one loop self-energy can be shown to vanish and no subtraction is
necessary. The contributing diagrams are shown in Fig. III.6.

1 loop = + + + + +

Figure III.6: Diagrams contributing to the one-loop reggeized gluon self-energy.

with G(a) obtained from ΓR(ᾱs) using the principle of maximal transcendentality [KLOV04].
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III. Lipatov Effective Action Approach to High Energy QCD

Keeping the O(ρ, ρ2) terms, for ρ→∞, and using the notation

ḡ2 = g2NcΓ(1− ε)
(4π)2+ε , (III.48)

we have the following result14:

1 loop = Σ(1)
(
ρ; ε, q

2

µ2

)

= (−2iq2)ḡ2Γ2(1 + ε)
Γ(1 + 2ε)

(
q2

µ2

)ε {
iπ − 2ρ

ε
− 1

(1 + 2ε)ε

[
5 + 3ε
3 + 2ε −

Nf

Nc

(2 + 2ε
3 + 2ε

) ]}
. (III.49)

To determine the 2-loop self-energy it is needed to subtract disconnected diagrams, whereas
diagrams with multiple internal reggeized gluon can be shown to yield zero result, using the
symmetric pole prescription. Schematically one has

Σ(2)
(
ρ; ε, q

2

µ2

)
=

2 loop
=

2 loop
−

1 loop

1 loop

, (III.50)

where the black blob denotes the unsubtracted 2-loop reggeized gluon self-energy which is
obtained through the direct application of the Feynman rules of the effective action, with
the reggeized gluon itself treated as a background field. Its determination will be discussed
in detail in the forth-coming section. The (bare) two-loop reggeized gluon propagators then
reads

G
(
ρ; ε, q2, µ2

)
= i/2
q2

1 + i/2
q2 Σ

(
ρ; ε, q

2

µ2

)
+
[
i/2
q2 Σ

(
ρ; ε, q

2

µ2

)]2

+ . . .

 . (III.51)

with

Σ
(
ρ; ε, q

2

µ2

)
= Σ(1)

(
ρ; ε, q

2

µ2

)
+ Σ(2)

(
ρ; ε, q

2

µ2

)
+ . . . (III.52)

14In the original expression presented in [HS12] and reproduced in [CHMS12a] a finite result for the second
and third diagrams has been erroneously included. It turns out that these diagrams are actually zero within
our regularization. The correct expressions are presented here.
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3. Two-Loop Gluon Regge Trajectory [CHMS12c, CHMS13]

where the dots indicate higher order terms. As discussed in Sec. III.2.2 and as directly
apparent from (III.49), the reggeized gluon self-energies are divergent in the limit ρ → ∞.
In [HS12, CHMS12b] it has been demonstrated by explicit calculations that these divergences
cancel at one-loop level for both quark-quark and gluon-gluon scattering amplitudes against
divergences in the couplings of the reggeized gluon to external particles (see also Sec. III.4).
The entire one-loop amplitude is then found to be free of any high energy singularity in ρ.
High energy factorization then suggests that such a cancelation holds not only at one-loop
but to to all loop orders. Starting from this assumption, it is possible to define a renormalized
reggeized gluon propagator through

GR(M+,M−; ε, q2, µ2) = G(ρ; ε, q2, µ2)

Z+
(
M+√
q2
, ρ; ε, q2

µ2

)
Z−

(
M−√
q2
, ρ; ε, q2

µ2

) , (III.53)

where the (wavefunction) renormalization factors need to cancel against corresponding renor-
malization factors associated with the vertex to which the reggeized gluon couples with ‘plus’
(Z+) and ‘minus’ (Z−) parametrization. In their most general form these renormalization
factors are parametrized as

Z±
(
M±
√
q2 , ρ; ε, q

2

µ2

)
= exp

[(
ρ

2 − ln M±
√
q2

)
ω

(
ε,
q2

µ2

)
+ f

(
ε,
q2

µ2

)]
, (III.54)

with the coefficient of the ρ-divergent term given by the gluon Regge trajectory ω(ε, q2). It
is assumed to have the following perturbative expansion

ω

(
ε,
q2

µ2

)
= ω(1)

(
ε,
q2

µ2

)
+ ω(2)

(
ε,
q2

µ2

)
+ . . . , (III.55)

and it is determined through the requirement that the renormalized reggeized gluon propa-
gator is free at every loop order of any ρ divergence. At one loop we obtain from (III.49)

ω(1)
(
ε,
q2

µ2

)
= −2ḡ2Γ2(1 + ε)

Γ(1 + 2ε)ε

(
q2

µ2

)ε
. (III.56)

The function f(ε, q2) parametrizes finite contributions and is, in principle, arbitrary. While
the symmetry of scattering amplitude requires f+ = f− = f , Regge theory suggests fixing it
in such a way that terms which are not enhanced in ρ are entirely transferred from reggeized
gluon progators to the vertices to which the reggeized gluon couples. With the perturbative
expansion
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f

(
ε,
q2

µ2

)
= f (1)

(
ε,
q2

µ2

)
+ f (2)

(
ε,
q2

µ2

)
. . . (III.57)

we obtain from (III.49)

f (1)
(
ε,
q2

µ2

)
= ḡ2Γ2(1 + ε)

Γ(1 + 2ε)

(
q2

µ2

)ε (−1)
(1 + 2ε)2ε

[
5 + 3ε
3 + 2ε −

Nf

Nc

(2 + 2ε
3 + 2ε

) ]
. (III.58)

The renormalized reggeized gluon propagator is then at one loop accuracy given by

GR(M+,M−; ε, q2, µ2) = 1 + ω(1)
(
ε,
q2

µ2

)(
log M

+M−

q2 − iπ

2

)
+ . . . (III.59)

The scales M+ and M− are arbitrary; their role is analogous to the renormalization scale in
UV renormalization and the factorization scale in collinear factorization. They are naturally
chosen to coincide with the corresponding light-cone momenta of scattering particles to which
the reggeized gluon couples. To determine the gluon Regge trajectory at two loops we require
in addition the ρ enhanced terms of the two-loop reggeized gluon self-energy. From (III.59)
we obtain the following relation

ω(2)
(
ε,
q2

µ2

)
= lim

ρ→∞

1
ρ

[
Σ(2)

(−2iq2) +
(

Σ(1)

(−2iq2)

)2

−
(
ρω(1) + 2f (1)

) Σ(1)

(−2iq2)

+ ρ2

2
(
ω(1)

)2
+ 2ρf (1)ω(1)

]

= lim
ρ→∞

1
ρ

[
Σ(2)

(−2iq2) + ρ2

2
(
ω(1)

)2
+ 2ρf (1)ω(1)

]
(III.60)

where we omitted on the right hand side the dependences on ε and q2/µ2 and expressed
in the last line Σ(1) in terms of the functions ω(1) and f (1). We stress that this is a non-
trivial definition and that it is not clear a priori whether the right hand side even exisits.
Confirmation of this relation provides therefore an important non-trivial check on the validity
of our formalism.

3.2 Computation of the Reggeon Self-Energy

The necessary diagrams for the determination of the unsubtracted reggeized gluon self-energy
are shown in Fig. III.7. Diagrams (a1)-(d3), containing internal quark looks and leading to
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(a) (b) (c1) (c2)

(d1) (d2) (d3) (e)

(f) (g1) (g2)
(h1)

(h2) (h3) (i1) (i2)

(i3) (j1) (j2) (j3)

(k1) (k2) (k3)
(l1)

(l2) (l3) (m1)

(m2) (m3) (m4) (n1)

Figure III.7: Diagrams for the two-loop trajectory in the effective action formalism. Tadpole-like
contributions are zero in dimensional regularization and are omitted.
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an overall factor Nf , have been computed in [CHMS12c] and lead to the following result,

2 -loop

quark-contr.
= −ρ(−i2q2)ḡ4 4Nf

εNc

Γ2(2 + ε)
Γ(4 + 2ε) ·

3Γ(1− 2ε)Γ(1 + ε)Γ(1 + 2ε)
Γ2(1− ε)Γ(1 + 3ε)ε +O(ρ0) . (III.61)

Actually, all the ρ-enhanced contribution (III.61) comes from diagram (d2), as can be seen
from the following scaling argument15.

The scaling argument The number of diagrams, which can be potentially enhanced by
a factor ρk, k ≥ 1, is largely reduced by scaling arguments: only those diagrams where both
reggeized gluons couple to the internal gluon lines through induced reggeized gluon–n-gluon
vertices with n ≥ 2, have the potential to lead to an enhancement through a factor ρ. This
is immediately clear for diagrams where both reggeized gluons couple through the reggeized
gluon–1-gluon vertex16 to the internal QCD lines. Those diagrams constitute a simple
projection of the 2-loop QCD polarization tensor onto the kinematics of reggeized gluons
and no ρ-enhancement can be expected.

. . .µ1 µ2 µn

ν

Figure III.8: General non-enhanced diagram.

To address the case where only one of the reggeized gluons couples through an induced
reggeized gluon–n-gluon vertices with n ≥ 2 vertex to the internal QCD particles, we consider
the general diagram in Fig. III.8. The dependence on the light-cone vectors of the reggeon–
n-gluon vertex in Fig. III.8 is, up to permutations, of the form n

µ1
a n

µ2
a ···n

µd
a

na·k1na·k2···na·kn−1
. The

denominators na · ki, i = 1, . . . n − 1 appear in the integrals that give rise to an amplitude
15Diagram (d1) can be expressed in terms of the master integral B in Tab. III.1. In the following we will

offer only the derivation of the piece of the 2-loop trajectory not proportional to Nf . The quark loop piece
follows much more easily along the same lines [CHMS12c].

16We follow the formalism of [ALKC05], where instead of obtaining the Feynman rules making perturbation
theory around the classical value A± of the gluon field v±, a direct transition reggeon-gluon vertex was
introduced (App. B).
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Aµ1µ2···µnν . In a general diagram such as in Fig. III.8, the only vectors that are not integrated
over in the amplitude are q, the momentum transfer, and na, which enters through the
denominators of the induced vertex. The vector nb only contracts with the four-vector index
ν. The whole diagram can be therefore written as

nµ1
a n

µ2
a · · ·nµna Aµ1µ2···µnν(na, q)nνb . (III.62)

As a consequence, the tensor structure ofMµ1µ2···µnν(na, q) can only consist of combinations
of the the four vector nµa and the metric tensor gµν , since the external reggeized gluons imply
q · na = q · nb = 0. The only scalar combinations that can appear are therefore q2 and n2

a.
These factors must give the dimensions required by scale transformations. If s is the number
of metric tensors in the numerator for a given term and l the number of nµa numerators, then
n+ 1 = 2s+ l and the associated scalar function must scale as

1
nn−1+l
a

= 1
(n2

a)d−s
. (III.63)

Next we consider the contractions with the vertex currents. If nρb is contracted through a
metric tensor then we have a factor

(n2
a)l na · nb (n2

a)s−1 = (n2
a)n−sa · b; (III.64)

if on the other hand nρb is directly contracted with one of the na’s, we obtain a factor

na · nb (n2
a)s(n2

a)l−1 = (n2
a)n−sna · nb. (III.65)

In both cases the factors of n2
a cancel against the corresponding factors in the denominators

and no enhancement can occur. Thus in our case, apart from diagram (d1), only diagrams
(h1), (i1), (j1), (k1), (l1), (m1) and (n1) are potentially enhanced by (powers of) ρ.

A further class of diagrams that can be omitted are tadpole diagrams and diagrams with
internal reggeized gluon loops. Tadpole diagrams, such as Fig. III.9 (a), have been veri-
fied to vanish in dimensional regularization. Possible loop diagrams with internal reggeized
gluon lines, such as Fig. III.9 (b) vanish identically by symmetry if the pole prescription of
Sec. III.2.2 is employed for the induced vertices.

Calculation of the enhanced diagrams Direct computation reveals that diagram (l1)
is identically zero. Using the notation ξ = n2

a = n2
b = 4e−ρ, δ = na ·nb ∼ 2, and the following
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(a) (b)

Figure III.9: (a) Typical tadpole contribution to the 2-loop self-energy; (b) Disconnected diagrams
with internal reggeized gluon loops which would contribute to possible subtraction terms. Both
contributions can be shown to vanish.

shorthand notation for the master integral

[α1, α2, · · · , α9 ] = (µ2)4−d
∫∫ ddk

(2π)d
ddl

(2π)d
1

(−k2 − i0)α1 [−(k − q)2 − i0]α2(−l2 − i0)α3

· 1
[−(l − q)2 − i0]α4 [−(k − l)2 − i0]α5

· 1
(−na · k)α6(−nb · k)α7(−na · l)α8(−nb · l)α9

, (III.66)

with na · q = nb · q = 0 and the eikonal factors taken with the pole prescription defined in
Sec. III.2.2. Dropping all terms that cannot give terms enhanced as ρ → ∞, we have the
following contributions from each diagram:

[iAh1 ]enh = − 3ig4

4(3 + 2ε)Sh1

δ2q2N2
c [1, 0, 0, 1, 1, 0, 0, 1, 1]; Sh1 = 1.

[iAi1 ]enh = ig4

2Si1
(q2)2N2

c

[
δ2
{

2q2[1, 1, 1, 1, 1, 1, 0, 0, 1] + [1, 1, 1, 1, 0, 1, 0, 0, 1]

− 4[1, 1, 1, 0, 1, 1, 0, 0, 1]
}

+ 8ξ[1, 1, 1, 1, 1, 1,−2, 0, 1]
]
; Si1 = 2.

[iAj1 ]enh = −3ig4

2Sj1
q2N2

c δ
2 19 + 12ε

3 + 2ε [1, 0, 0, 1, 1, 0, 0, 1, 1]; Sj1 = 2.

[iAk1 ]enh = 3ig4

2Sk1

(q2)2N2
c δ

3[1, 0, 0, 1, 1, 1, 1, 1, 1]; Sk1 = 6.

[iAm1 ]enh = ig4

Sm1

(q2)2N2
c δ

[
− 6δ
q2 [1, 0, 0, 1, 1, 0, 0, 1, 1] + 2[1, 1, 1, 0, 1, 1, 0, 0, 1]

+ 2ξ[1, 1, 0, 1, 1, 1, 1,−1, 1]
]
; Sm1 = 1.

[iAn1 ]enh = 0.

(III.67)
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In some cases, we have used the FIRE implementation [Smi08] of the Laporta algorithm
[Lap00] to reduce the number and complexity of master integrals through integration-
by-parts identities [CT81]. We see that we can express the entire unsubtracted two-loop
self-energy in terms of 7 master integrals A − G with a certain coefficient associated with
each master integral, see Tab. III.1.

master integral coefficent

A ≡
[
1, 1, 1, 1, 0, 1, 0, 0, 1

]
cA = −q

2

2
B ≡

[
1, 0, 0, 1, 1, 0, 0, 1, 1

]
cB = 66 + 42ε

3 + 2ε

C ≡
[
1, 1, 1, 1, 1, 1, 0, 0, 1

]
cC = −(q2)2

D ≡ [1, 0, 0, 1, 1, 1, 1, 1, 1
]

cD = −q2

E ≡
[
1, 1, 0, 1, 1, 1, 1,−1, 1

]
cE = −2ξq2

F ≡
[
1, 1, 1, 1, 1, 1,−2, 0, 1

]
cF= − ξq2

G ≡
[
1, 1, 1, 0, 1, 1, 0, 0, 1

]
cG = 0

Table III.1: Coefficients of the master integrals. Each coefficient should be multiplied by the
common overall factor (−2iq2)g4N2

c .

The master integral A can be shown to vanish by symmetry if the symmetric pole prescrip-
tion is employed for the eikonal poles of the induced vertices. The ρ-enhanced pieces of the
remaining master integrals are computed up to terms of order O(ε) using the Mellin-Barnes
technique, for a review see e.g. [Smi06]. To this end, we first derive multi-contour integral
representations for the master integrals, where we refer for details to App. C. As a second
step we resolve the structure of singularities in ε, using the codes MB [Cza06] and MBresolve

[SS09]. In this way we obtain a set of Mellin-Barnes integrals that can be safely expanded
in ε at the level of the integrand.

Here we point out the following important observation: it is possible to simplify the
expressions by expanding in ε, using the routine MBexpand, and capturing the leading
behavior in ρ using MBasymptotics [Cza, Cza06]17. In principle, both procedures commute
and the ordering in which they are applied is irrelevant, which we have verified to be the

17Eventually some of the remaining integrals can be further simplified using Barnes’ lemmas implemented
in barnesroutines [Kos], and performing straightforward changes of variables.
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case. However, after applying these two procedures, unphysical divergences in the light-cone
regulator appear (e.g. terms of order O(ρ3)) which would invalidate the general procedure
formulated in Sec. III.3.1. It is therefore important to note that such terms are an artifact
of the combination of our two regularizations, which leads to ambiguous terms of the form
e−kρε, k ∈ Z. Indeed there exists a wide class of such examples in the literature, for instance
massive integrals with a mass scale m. In the latter case, the limit m→ 0 cannot be taken
in a sensible way after the integration has been carried out in dimensional regularization.
Indeed, such an attempt would lead to spurious divergences. Instead, the massless result
can be successfully recovered by expanding in the small parameter m before performing the
expansion in ε and removing those terms of the form mkε, k ∈ Z. Since we remove pieces of
the integrand, the limits do no longer commute and the ordering is important. In our present
case, we stick to the following prescription: we first use the code MBasymptotics to ex-
pand in ρ; then we delete the terms proportional to e−kρε, k ∈ Z, and eventually expand in ε.

Following this procedure we obtain for the master integrals the following result:18

cB · B = 1
(4π)4

[
11
ε2
− 1 + 66Ξ

3ε + 400 + 12Ξ + 396Ξ2 − 33π2

18

]
ρ,

cC · C = 1
(4π)4

([
− 4
ε3
− 8(1− Ξ)

ε2
− π2 + 8(1− Ξ)2

ε
− 2π2(1− Ξ)

− 16(1− Ξ)3

3 − 50
3 ζ(3)

]
ρ+

[
2
ε2

+ 4(1− Ξ)
ε

+ 1
3(12(1− Ξ)2 − π2)

]
ρ2
)
,

cD · D = 1
(4π)4

[
4
ε3

+ 8(1− Ξ)
ε2

+ 4(π2 + 6(1− Ξ)2)
3ε + 8π2(1− Ξ)

3

+ 16(1− Ξ)3

3 + 44ζ(3)
3

]
,

cE · E = 0,

cF · F = 1
(4π)4

[
− 4
ε2

+ 8Ξ
ε

+ 2π2

3 − 8(1 + Ξ2)
]
, (III.68)

where we introduced the notation

Ξ = 1− γE − ln q2

4πµ2 . (III.69)

Using these results, the (unsubtracted) contribution to the reggeon self-energy (with Nf = 0)
is obtained as follows:

18We have not considered imaginary pieces in (III.68). Their contribution, computed at the end of this
section, is shown in (III.70).
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2-loop
gluon cont. =

(−2iq2)g
4N2

c

(4π)4

({ 2
ε2

+ 4(1− Ξ)
ε

+ 4(1− Ξ)2 − π2

3

}
ρ2 +

{ 7
ε2
− 14Ξ

ε
− 1− π2

3ε

−2Ξ(π2 − 1)
3 + 14(1 + Ξ2) + 2

9 −
π2

2 + 2ζ(3)− iπ
[ 1
ε2

+ 2Ξ− 1
ε

+ (Ξ− 1)2
]}

ρ .

(III.70)

Expanding (III.50) in ε, we find for the subtracted reggeized gluon self-energy with Nf = 0

Σ(2)
Nf=0

(
ρ,
q2

µ2

)
= 2 loop = 2 loop −

1 loop

1 loop

= −(−i2q2)g
4N2

c

(4π)4

{[
2
ε2

+ 4(1− Ξ)
ε

+ 4(1− Ξ)2 − π2

3

]
ρ2 +

[
1

3ε2 + 1
9ε + π2

3ε −
2Ξ
3ε + π2(11− 12Ξ)

18

+ 16
27 −

2
9Ξ + 2

3Ξ2 − 1
2ζ(3))

)]
ρ

}
+O(ε) +O(ρ0). (III.71)

The next step is to confront our result for the 2-loop self-energy with the definition of the
2-loop gluon Regge trajectory (III.60). At first we realize that all divergent terms ∼ ρ

cancel against each other since the terms quadratic in ρ in (III.71) cancel precisely the term
[ρω(1)]2/2 in (III.60), i.e.

(ω(1))2ρ
2

2 +
Σ(2)
ρ2

(−2iq2) = 0, (III.72)

if the first term is expanded up to O(ε). Taking the function f (1) in the limit Nf = 0, the
remaining terms then yield the 2-loop Regge gluon trajectory for zero flavors,

ω(2)(q2)|Nf=0 = (ω(1)(q2))2

4

[
11
3 +

(
π2

3 −
67
9

)
ε+

(404
27 − 2ζ(3)

)
ε2
]
, (III.73)

which is in complete agreement with the results in the literature [FFK96a]. For the quark
loop terms, one gets from (III.61) the-ρ enhanced terms of the subtracted 2-loop self-energy

Σ(2)
Nf

(
ρ; ε, q

2

µ2

)
= ρ(−2iq2)ḡ44Nf

εNc

Γ2(2 + ε)
Γ(4 + 2ε)

(
q2

µ2

)2ε (Γ2(1 + ε)
Γ(1 + 2ε)

4
ε

− 3Γ(1− 2ε)Γ(1 + ε)Γ(1 + 2ε)
Γ2(1− ε)Γ(1 + 3ε)ε

)
. (III.74)
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The whole result for the 2-loop gluon Regge trajectory with Nf flavors reads

ω(2)(q2) = (ω(1)(q2))2

4

[
11
3 −

2Nf

3Nc

+
(
π2

3 −
67
9

)
ε+

(404
27 − 2ζ(3)

)
ε2
]
. (III.75)

Imaginary Parts We want to check explicitly here that the expression of ω(2) (and there-
fore of Σ(2)) is real and imaginary parts cancel among the unsubtracted two-loop self-energy
and the subtractions. Let us first consider the 1-loop self-energy19

ω(1) ∝
∫

[dk] 1
(−k2 − i0)(−(k − q)2 − i0)(−na · k)PV(−nb · k)PV

= 1
2(C++ − C+−);

C±± =
∫

[dk] 1
(−k2 − i0)(−(k − q)2 − i0)(−na · k ± i0)(−nb · k ± i0) , na · q = nb · q = 0.

(III.76)
We have used that C++ = C−− and C+− = C−+, as it can be seen making the shift k → −k+q
in the loop integral. Using standard techniques for Feynman integrals like those presented
in App. C, we have

C++ = iρ

(4π)2+ε (q
2)ε−1 Γ(1− ε)Γ2(ε)

Γ(2ε) +O(e−ρ). (III.77)

Now one can extract the relevant piece of the result for C+− from that of C++ without
computing from scratch. To this end we rescale the light-cone vectors na,b → a, b = eρ/2

2 na,b,
in such a way that a2 = b2 = 1 and a · b = cosh ρ. The rescaled integral, C̃±± = eρ

4 C±± can
only depend on a and b through the combination a · b. Making use of

1
−a · k + i0 = − 1

−(−a) · k − i0 , (III.78)

we see that evaluating the integral with the +i0 pole prescription corresponds to evaluate
the integral with the −i0 prescription making a → −a. Due to the linearity of the scalar
product this is equivalent to ρ → ρ − iπ20. This accounts for the imaginary part in
(III.49). An enhanced imaginary part appears in the subtraction, proportional to the 1-loop
self-energy squared, since (ρ− iπ/2)2 = ρ2 − iπρ+O(ρ0).

Expanding this enhanced imaginary contribution in ε, one can see that it exactly cancels in
the expression for Σ(2) with the imaginary part appearing in master integral C (Eq. (III.70)).
This imaginary part is obtained exactly in the same way outlined before, performing the sub-

19Let us remind that our pole prescription coincides with the principal value for the RGG vertex.
20In principle one has two possibilities ρ → ρ ± iπ, since cosh(ρ ± iπ) = cosh ρ. The selection of −iπ is

due to the initial imaginary part +i0 in the eikonal propagator.

138
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stitution ρ→ ρ−iπ on the expression for the master integral computed with −i0 prescription
in all propagators to obtain the other pieces of the principal value. It is also interesting to
review the computation of diagram (k1) in detail, since we have to use here the vertex (III.40)
and we can check that the symmetry properties of our pole prescription respect hermiticity
of the Lagrangian and do not give rise to spurious imaginary parts. This is done in App. D.

4 Forward Jet Production [CHMS12b]

In this section we present the computation within Lipatov’s action framework of the vertex
describing the production of a jet in a forward direction very close in the detector to one
of the hadrons in hadron-hadron interactions at very high energies, in the next-to-leading
approximation. This is done in the kinematic approximation where the jet is well separated
in rapidity from other jets also produced in the scattering process. The convolution of this
jet vertex with the NLL BFKL gluon Green’s function plays a very important role in the
description of jet production at the LHC physics program [Sch07, MR09, MR09, DHJK09,
CSSW10, CIM+12].

4.1 Real Corrections

High-Energy gg → gg Scattering in the Born Approximation Consider the gluon
counterpart of the scattering process described in Sec. III.2.3. External gluons are on-shell:
p2
a = (pa − q)2 = p2

b = (pb + q)2 = 0. In the high-energy limit the corresponding scattering
amplitude factorizes into a reggeized gluon exchange in the t-channel and its couplings to
the external particles, the impact factors. At tree level this is shown in Fig. III.10.

= +

Figure III.10: Tree-level contribution to the gluon-gluon scattering amplitude in terms of effective
vertices.

The polarization vectors must be physical, satisfying for the upper vertex ε · pa = 0 and
ε∗ · (pa − q) = 0. The last relation implies that ε∗ · pa = ε∗ · q. Gauge invariance of the
effective action enables us to choose different gauges for the upper and lower gluon-gluon-
reggeized gluon couplings. We therefore impose the condition ε(pa) ·n+ = ε∗(p1) ·n+ = 0 for
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the upper vertex and the condition ε(pb) · n− = ε∗(p2) · n− = 0 for the lower vertex, which
implies that (I.5) applies, with p being the gluon momentum and n = n±.

To define the impact factors we start from the general definitions (A.25) and (A.26). In the
special case where all final state particles are produced either in the fragmentation region
of particle a or particle b we rewrite, with m = ma + mb, the overall delta function (which
exhibits overall momentum conservation) as follows21

(2π)dδd
(
pa + pb −

m∑
j=1

pj

)
=
∫

ddq

(2π)d (2π)2dδd
(
pa + q −

ma∑
j=1

pj

)
× δd

(
pb − q −

mb∑
l=1

pj

)
. (III.80)

The effective action naturally factorizes the amplitude iAgr∗→g1 into two products of iAgr∗→g1

times the square-root of the reggeized gluon propagator i/2q2. Squaring, averaging over color
and polarization of the initial gluon and summing over color and polarization of the final
state and reggeized gluon (at the level of the gr∗ → g amplitudes), the 2 → 2 tree-level
amplitude takes the following factorized form

|A(0)
gagb→g1g2|2 =

|A(0)
gar∗→g1|2

2q2
√
N2
c − 1

×
|A(0)

gbr∗→g2 |2

2q2
√
N2
c − 1

. (III.81)

The amplitude iAgr∗→g1 itself receives at tree-level two contributions (Fig. III.10): one from
the GGR vertex

(
gfabc

q2

p+
a

(n+)µ1(n+)µ2εµ1ε
∗
µ2

)
and the other from the projection of the 3-gluon

vertex
(
gfabc [2gµ1µ2p+

a − (n+)µ1(pa − q)µ2 − (n+)µ2(2q + pa)µ1 ] εµ1ε
∗
µ2

)
. We have, averaging

over colors and polarizations of the initial gluon22

|Agr∗→g|2 = Nc(N2
c − 1)

2(N2
c − 1) g

2(2p+
a )2gµνgµ

′ν′
[
−gµµ′ +

(pa)µ(n+)µ′ + (pa)µ′(n+)µ
p+
a

]

×
[
−gνν′ +

(pa)ν(n+)ν′ + (pa)ν′(n+)ν
p+
a

]
= 4Ncg

2(p+
a )2.

(III.82)

The phase space reads

21The generalization to the additional production of n particle clusters at central rapidities, with m =
ma +mb +

∑n
i mi, reads

(2π)dδd
(
p1 + p2 −

m∑
j=1

pj

)
=

n∏
i=0

∫
ddki
(2π)d (2π)(2+n)dδd

(
pa + k0 −

ma∑
l0=1

pl0

)
×

δd
(
pb − kn −

mb∑
ln=1

pj

)
× (2π)ndδd

(
k0 − k1 −

m1∑
l1=1

pl1

)
× . . . δd

(
kn − kn+1 −

mn∑
ln=1

pln

)
. (III.79)

22A multiplicative factor (1 + ε) appears if one computes the tree level amplitude in 4 + 2ε dimensions.
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∫
dΠ2 =

∫∫
ddp1

(2π)d−1
ddp2

(2π)d−1 δ(p
2
1)δ(p2

2)(2π)dδd(p1 + p2 − pa − pb) =
∫

ddp1
(2π)2+2ε δ(p

2
1)δ((pa + pb − p1)2)

= 1
(2π)2+2ε

∫
ddk δ((pa + q)2)δ((pb − q)2) = 1

(2π)2+2ε
1

2p+
a p
−
b

∫
d2+2εq,

(III.83)
where we have performed a shift in the momentum variable and used that (pa + q)2 =
p+
a q
−, (pb − q)2 = −p−b q+ and ddq = 1

2dq
+dq−dd−2q. The flux factor appearing in (A.25) is

Φ = 1
2s = 1

2p+
a p
−
b

, so that putting everything together we get

h
(0)
a,gluon(q) = Nc√

N2
c − 1

g2

q2
1

(2π)1+ε = 21+εα̃sCA

µ2εΓ(1− ε)
√
N2
c − 1

1
q2 . (III.84)

Real Corrections: Gluon Initiated Vertex We have two types of corrections at
next-to-leading order. On one hand we have the 1-loop corrections to the GGR vertex;
on the other, the production of an extra particle in the final state (real corrections). The
real corrections to the Born-level process can be organized into three contributions to the
five-point amplitude with central and quasielastic gluon production (Fig. III.11). In the
same way as the effective action gives rise to divergences near the lightcone when computing
virtual corrections, a cutoff in rapidity must be enforced in the longitudinal integrations
that will appear in the phase space.

Figure III.11: Central (left) and quasi-elastic (middle and right) gluon production.

The central production amplitude yields the unintegrated real part of the forward leading
order BFKL kernel (the Lipatov vertex) and is obtained from the sum of the following three
effective diagrams:

. (III.85)

The squared amplitude for (III.85), averaged over color of the incoming reggeons and summed
over final state colors and helicities reads [HS12]
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|A|2r∗r∗→g = 16g2Nc

N2
c − 1

(q − k)2k2

q2 . (III.86)

The contribution of central production to the exclusive differential cross section

dσ
(c)
ab = h(0)

a (k′)h(0)
b (k)V(k,k′; ya, yb)d2+2εk′ d2+2εk dy, (III.87)

is written in terms of the regularized production vertex V(k,k′; ya, yb) ≡ V (k,k′)Θ(ya −
y)Θ(y − yb), which is given by [HS12]

V(k,k′) = N2
c − 1

8(2π)3+2εk′2k2 |A|
2
r∗r∗→g = α̃sNc

πεπ(k + k′)2 ; πε ≡ π1+εΓ(1− ε)µ2ε. (III.88)

On the other hand, the quasielastic contribution g(pa)r∗(k) → g(p)g(q) (see the notation
in Fig. III.12) is given by the sum of effective diagrams in Fig. III.13. The details of the
computation of the diagrams are given in App. D.

pa

p

k

q

µ ν

ρ

a b

c

d
+

Figure III.12: Notation for external momenta and colour indices in the quasi-elastic contribution.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (k) (l)(j)

Figure III.13: Diagrams involved in the computation of the real corrections. In the case of a final
qq̄ state, the external quark has momentum p and the external antiquark momentum q.

Let us note that we have two different final states: gg and qq̄. In the first case, we perform
the sum over polarization vectors using (I.5). Then one gets, summing the amplitudes for
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diagrams (e), (f) and (g), given in App. D, squaring and averaging over initial colors and
polarizations

|A2|gg→ggg = 8g4N2
c

stu
(p+
a )2 (1 + ε)[1− z(1− z)]2

z(1− z) k2(s− zt− (1− z)u)

= −8g4Nc

t
(p+
a )2z(1 + ε)Pgg(z)k2

[
z2(k − q)2 + (1− z)2q2 − z(1− z)q · (k − q)

q2(q − zk)2

]
.

(III.89)
where Pgg(z) = Nc

1+z4+(1−z)4

z(1−z) is the gluon-gluon Altarelli-Parisi function. In the same way,
joining the contributions of diagrams (j), (k) and (l) we get for the qq̄ final state

|A2|gg→qq̄ = −2g4

sut
Nf (p+

a )2k2[1 + ε− 2z(1− z)]
[
s

Nc

+Nc(zt+ (1− z)u)
]

= 8g4

ut
NfNc(p+

a )2(1 + ε)Pqg(z, ε)k2
[
CF
CA

+ z(1− z)q · (k − q)
(q − zk)2

]
,

(III.90)

with Pqg(z, ε) = 1
2

[
1− 2z(1−z)

1+ε

]
the quark-gluon splitting function.

The only remaining ingredient is the phase space for the 3-particle final state. It reads

∫
dΠ3 =

∫∫∫ ddp

(2π)d−1
ddq

(2π)d−1
ddp2

(2π)d−1 δ(p
2)δ(q2)δ(p2

2)(2π)dδd(pa + pb − p− q − p2). (III.91)

Using that the squared amplitude does not depend explicitly on the momenta of the fi-
nal particles we can perform a shift in the integration momenta and use the momentum
conservation Dirac delta to write

∫
dΠ3 = 1

(2π)5+4ε

∫∫
ddkddq δ((pa + k − q)2)δ(q2)δ((pb − k)2). (III.92)

Now we use the decomposition ddk = 1
2dk

+dk−dd−2k, we write q+ = zp+
a and evaluate the

Dirac deltas

δ((pb − k)2) = 1
p−b
δ

(
k+ − k

2

p−b

)
; δ(q2) = 1

zp+
a

δ

(
q− − q2

zp+
a

)
;

δ((pa + k − q)2) = 1
p+
a (1− z)δ

[
k− −

(
k2 + q2

z

)]
,

(III.93)

to write ∫
dΠ3 = 1

4(2π)5+4εp+
a p
−
b

∫
dkdq

dz

z(1− z) , (III.94)

so that the cross-section (for, e.g. the gluon-gluon final state) is
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σqg→qgg = 1
(2p+

a p
−
b )2

1
2(2π)5+4ε

∫∫
dkdq

dz

z(1− z)
1

4(N2
c − 1)(k2)2 |A

(0)|2gar∗→gg|A
(0)|2qbr∗→q2 .

(III.95)
Extracting the quasielastic correction for each of the final states is easier if we consider the
process qg → {qgg, qqq̄}. We then define, following [BCV03]23

dσqg→fin = h
(0)
quark(k)Ffin(k,k′, z)h(0)

gluon(k′)dkdk′dz
(
z > zcut ≡ e−yb

√
q2

p+
a

)
, (III.97)

where h(0)
quark and h

(0)
gluon are given in (III.44) and (III.84) respectively. Using all the above

information, we get

Fggg(k,k′, z) = 1
2
αs

2ππε
Pgg(z)

[
z2k′2 + (1− z)2q2 − z(1− z)q · k′

q2∆2

]
, (III.98)

where ∆ ≡ q − zk, and

Fgqq̄(k,k′, z) = αs
2ππε

NfPqg(z, ε)
1
q2

[
Cf
Ca

+ z(1− z)q ·∆
∆2

]
. (III.99)

The overall factor 1/2 for the gg final state stems from the indistinguishability of identical
bosons in the final state. The results (III.98) and (III.99) are in complete agreement with
those previously found in the literature [BCV02, BCV03].

Parameterizing the momentum fraction z in terms of the rapidity difference ∆y ≡ yp− yq of
the final state gluons,

z = e∆y

(k′2/q2) + e∆y , (III.100)

it is straightforward to see that Fggg reduces in the limits ∆y → ±∞ (including a correspond-
ing Jacobian factor) to half the central production vertex (III.88). To regularize the resulting
divergence of the rapidity integral we introduce a lower bound |∆y| > −ηb, where ηb is again
taken in the limit ηb → −∞, and define Fggg(k,k′, z, ηb) = Fggg(k,k′, z)Θ(|∆y| + ηb). Ac-
cording to our general procedure, we have to subtract the contribution from gluon production

23One can also define one-loop impact factors through the formula [CHMS12b]

h
(1)
{gg,qq̄}(k) =

∫
dz d2+2εk′ F{ggg,gqq̄}(k,k′, z)h

(0)
gluon(k′). (III.96)
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at central rapidities to construct the complete differential cross section, schematically:

= − (III.101)

This leads to the definition of the coefficient

G(a)
ggg(k,k′, z, ηb) = Fggg(k,k′, z, ηb)−

1
2

[1
z
V(k,k′; q; ηa, ηb) + 1

1− zV(k, q;k′; ηa, ηb)
]
. (III.102)

Finally, defining the cross-section for quasi-elastic production as

dσ
(qea)
ab = h

(0)
a,gluon(k′)G(a)

ggg(k,k′, z, ηb)h
(0)
b,gluon dz d

2+2εk d2+2εk′, (III.103)

the sum of of central and quasi-elastic contributions,

dσab = dσ̂
(c)
ab + dσ

(qea)
ab + dσ

(qeb)
ab , (III.104)

turns out to be finite when integrated over the gluon rapidity, with a well-defined limit
ηa,b → ±∞. The computation of the forward jet vertex in the quark-initiated case is carried
out exactly in the same way, see [HS12] for details.

4.2 One-Loop Gluon-Gluon-Reggeon Vertex

The one-loop corrections to this gluon-gluon-reggeized gluon vertex are shown in Fig. III.14.
All diagrams are evaluated in the limit ρ→∞, while we only keep track of divergent (O(ρ))

(A) (B) (C) (D) (E)

(F) (G) (H) (I) (J)

= + + + +

+++++

µ ν

−

a b

c

p
a

p
a
−k

k

Figure III.14: One-loop virtual corrections to the gluon-initiated jet vertex.
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and finite (O(ρ0)) terms; ε is on the other hand kept finite. Details about the calculation
of individual diagrams can be found in App. D. The final result for the 1-loop gr∗ → g

amplitude reads

iA
(1)
gar∗→g1 = −g

3µ2εp+
a

(4π)2+ε fabc

(
q2

µ2

)εNc ε · ε∗
Γ(1− ε)Γ2(ε)

Γ(2ε)

[
2 ln

(
p+
a

|q|

)
+ ρ+ ψ(1)

− 2ψ(ε) + ψ(1− ε)
]

+ 8[Nc(1 + ε)−Nf ]
[
− 1

2ε · ε
∗Γ2(1 + ε)Γ(−ε)

Γ(4 + 2ε)

+ ε · q ε∗ · q
q2

Γ(ε)Γ(1− ε)
Γ(4 + 2ε) (2Γ(1 + ε) + Γ(2 + ε))

]

+ 8[Nc(1 + ε)−Nf ]
ε · q ε∗ · q
q2

Γ(−ε)Γ2(1 + ε)
(2 + 2ε)Γ(2 + 2ε) + ε · ε∗(4Nc −Nf )

Γ(−ε)Γ2(1 + ε)
εΓ(2 + 2ε)

− ε · ε∗(4Nc −Nf )
1 + 2ε
ε

Γ(−ε)Γ2(1 + ε)
Γ(2 + 2ε) + 2Nc ε · ε∗

Γ(−ε)Γ2(1 + ε)
Γ(2 + 2ε)

+ 2 ε · ε∗[(1 + ε)Nc −Nf ]
Γ(−ε)Γ2(1 + ε)

(3 + 2ε)Γ(2 + 2ε) − 2ε · ε∗[4Nc −Nf ]
Γ(−ε)Γ2(1 + ε)

Γ(2 + 2ε)

.
(III.105)

Our result contains two types of tensor structures involving the initial and final polarization
tensors, namely, ε · ε∗ and ε · q ε∗ · q/q2. These are related to the helicity conserving and
helicity violating terms [FFKP00]

ε · ε∗ = δλa,λ1 ; ε · ε∗ + 2
q2 ε · q ε

∗ · q = −δλa,−λ1 . (III.106)

To avoid double counting we have to subtract (Sec III.2.3) all effective diagrams containing
internal reggeized gluon propagators in the t-channel from the above result. With

1 loop

= iA
(1)
gar∗→g1 , (III.107)

the subtraction procedure results into the following coefficient

Cgr∗→g
(
p+
a√
q2 , ρ; εq

2

µ2

)
=

1 loop

=
1 loop

− 1 loop . (III.108)
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4. Forward Jet Production [CHMS12b]

The high energy limit of the gluon-gluon scattering amplitude at one-loop is then obtained
as the following sum of diagrams

= + + (III.109)

While each diagram on the right side is divergent in the limit ρ → ∞, the divergence
cancels in their sum, resulting into a finite one-loop amplitude, as explicitly checked in
[HS12, CHMS12a]. We can therefore define renormalized gluon-gluon-reggeized gluon cou-
pling coefficients,

CR
gr∗→g

(
p+
a

M+ ; ε, q
2

µ2

)
= Z+

(
M+
√
q2 , ρ; ε, q

2

µ2

)
Cgr∗→g

(
p+
a√
q2 , ρ; εq

2

µ2

)
, (III.110)

CR
gr∗→g

(
p−b
M− ; ε, q

2

µ2

)
= Z−

(
M−
√
q2 , ρ; ε, q

2

µ2

)
Cgr∗→g

(
p−b√
q2 , ρ; εq

2

µ2

)
, (III.111)

where the renormalization factors are those in (III.54), so that they cancel in the complete
scattering amplitude. The renormalized GGR couplings allows then to extract the NLO
corrections to the gluon impact factor. Extracting the Born contribution and decomposing
into helicity conserving and non-conserving parts

CR
gr∗→g

(
1; ε, q

2

µ2

)
= 2gfabc ·

[
Γ(+)
a δλa,λ1 + Γ(−)

a δλa,−λ1

]
, (III.112)

where the helicity tensors are for finite ε defined through (III.106), we have

Γ(+)
a = −1

2ω
(1)
[
−ψ(1) + 2ψ(2ε)− ψ(1− ε) + 1

4(1 + 2ε)(3 + 2ε) + 7
4(1 + 2ε) −

nf
Nc

1 + ε

(1 + 2ε)(3 + 2ε)

]
= αsNc

4π

(
q2

µ2

)ε [
− 1
ε2

+ β0
2ε −

(67− π2)Nc − 10Nf

18

]
+O(ε), β0 = 11

3 Nc −
2
3Nf ;

Γ(−)
a = −1

2ω
(1)
[

ε

(1 + ε)(1 + 2ε)(3 + 2ε)

(
1 + ε− Nf

Nc

)]
= αs

12π (Nc −Nf ) +O(ε).

(III.113)
which is in precise agreement with the literature24 [FL93, FF92, Lip97, dDS98, FFKP00].

24As noted in [dDS98], the original result [FL93] contains several misprints. The correct expression can
be found e.g. in [Lip97, dDS98, FFKP00].
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IV
Conclusions and Outlook

Current applications of high-energy QCD phenomenology range from the study of per-
turbative observables, such as cross-sections for forward jet or diffractive vector meson
production, over transverse momentum dependent parton distribution functions in the
low-x region, up to the study of phenomena in heavy ion collisions. Their common base is
the factorization of QCD scattering amplitudes in the multi-Regge limit of parametrically
large center of mass energies and small dispersion angles, combined with a resummation of
large perturbative logarithmically enhanced corrections. While it is important to keep in
mind that specific physical environments —which can be characterized e.g. by the presence
of high parton densities or the appearance of large collinear and soft logarithms— require
suitable modifications and extensions, the perturbative basis for the resummation of high
energy logarithms is always given by the BFKL equation, based on the reggeization ansatz
and bootstrap consistency. This is the main idea we wanted to emphasize in our extensive
description of high-energy QCD in Ch. I.

Despite the apparent simplicity of the QCD action, the computation of its S-matrix —at
least to date— seems completely out of reach. This dynamical complexity is mostly due to
the running of its coupling. On one hand, it renders many apparently simple phenomena,
like the description of its simplest bound states, non-perturbative. On the other hand, the
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breaking of the classical conformal invariance of the QCD Lagrangian also complicates a
lot the perturbative structure of scattering amplitudes. This has led in the last years to
consider N = 4 Super Yang-Mills theory, a supersymmetric and conformal invariant relative
of QCD, as a suitable toy model to learn important aspects of strong interactions. Indeed,
most of the simplicity of the Regge limit seems to be linked to the similarity between
QCD and N = 4 SYM in this kinematic region. The purpose of Ch. II is to analyze
quantitatively this similarity for specific well-behaved observables.

The first proposed observable is the azimuthal decorrelation of Mueller-Navelet jets (Sec.
II.2), conveniently expressed in terms of the ratios (II.30), which do not depend on
the non-perturbative details of parton densities and are rather insensitive to collinear
contamination, thus allowing for a sensible comparison of QCD and N = 4 SYM predic-
tions. The results (Figs. II.8 and II.9) show that ratios of azimuthal correlations are
strikingly similar in both theories, especially using a renormalization scheme like BLM
that captures the bulk of conformal contributions (which are expected to be important for
these observables exploring the SL(2,C) symmetry of the transverse plane to the collision
axis). This is not the case for other usually analyzed observables like the evolution in
rapidity of the total dijet cross section or its moments in the azimuthal angle, which
have a worse perturbative convergence. The important conclusion is that one can expect
N = 4 SYM computations to reproduce closely the QCD behavior in the multi-Regge limit
for well-chosen observables. Another possible observables to which one can extend this
comparative analysis are suitably defined energy-momentum tensor correlations [HM08],
or the cross-section for γ∗γ∗ scattering, where photons can be simulated in N = 4 SYM
by R-currents belonging to its global SUR(4) symmetry [CHKM+06, BMS08, CCP10, BC10].

A second study on the relation of QCD and N = 4 SYM in the Regge limit has been
presented in Sec. II.3. Using a Monte Carlo method, we have been able to analyze the
different contributions to the NLO BFKL Green’s function for the scattering of two off-shell
reggeized gluons in N = 4 SYM. We have shown the better collinear behavior of N = 4
SYM with respect to QCD (Figs. II.10 and II.11): while the effect of the scalar and gluino
sectors is minimal for conformal spins n > 0, it is very important for n = 0, making also the
growth with energy of the forward amplitude to be much faster than for the purely gluonic
contributions (Fig. II.13). This is related to a larger final state multiplicity, which is also
the source of the larger azimuthal decorrelation for N = 4 SYM dijets appearing in Fig.
II.8. We have also seen (Fig. II.15) that scalars and gluinos do not appreciably affect the
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diffusion pattern into the IR. It would be desirable to extend these results to the strong
coupling regime, but the corresponding BFKL kernel is not known as of today.

In Ch. III we have considered a rather different approach to the study of high-energy QCD,
based on Lipatov’s effective action [Lip95]. This is a remarkable construction which allows to
extract the all-orders production vertices in quasi-multi-Regge kinematics just using gauge
invariance and high-energy factorization. Unlike in the usual Wilsonian setup, heavy modes
are not directly integrated out, but rather an explicit rapidity cutoff is used to determine the
region where the effective action applies. Beyond tree level it is necessary to enforce such
a cutoff in loop integrals. This is an ambiguous procedure which moreover breaks gauge
invariance explicitly and heavily undermines the computational power of the effective action.

We have alternatively proposed a gauge invariant subtraction method based on the locality
in rapidity of the effective action which by construction avoids any double counting. Spuri-
ous rapidity divergences have been also regularized in a way that respects gauge invariance,
confirming that the dependence on the regulator vanishes in concrete examples as expected.
This method allows to employ the standard techniques of computation of loop integrals,
since Lorentz covariance is kept untouched during the calculation. In our approach, the
reggeon field essentially enters as a background field, i.e. it does not propagate inside loops.
We have put forward a renormalization interpretation of the perturbative corrections to
the effective vertices, which can be seen as defining order by order the Lagrangian of the
underlying reggeon field theory. This can be seen as a matching procedure [Geo93], which
should be formalized in the future.

In general, the whole procedure proposed here should be considered as a first step
in the direction of making an efficient and motivated use of Lipatov’s action. Apart
from the necessity of giving a more rigorous justification of some of our assumptions,
it remains to be understood the connection of Lipatov’s action with other formalisms
like the color glass condensate or Balitsky’s OPE (Sec. III.1.4). This can also help
fix the range of applicability of these other effective theories; let us remind the reader
that it is not clear that they can reproduce the perturbative results for amplitudes in QMRK.

We have been able to exactly reproduce several highly non-trivial results: the one-loop quark-
and gluon-initiated jet vertices and the two-loop gluon Regge trajectory. This shows the
consistency of Lipatov’s approach at loop level. Having checked the procedure by reproducing
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known results in the literature, the effective action is now ready to easy the calculation of
other phenomenologically important effective vertices whose result is not known, like the
NLO Mueller-Tang impact factor [HM12], which is the only missing element for a complete
NLO BFKL description of dijet events with a rapidity gap.
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V
Conclusiones

Las aplicaciones de la fenomenoloǵıa de QCD a altas enerǵıas engloban un amplio espectro:
desde el estudio de observables perturbativos, como las secciones eficaces para chorros (jets)
ampliamente separados en rapidez o la producción difractiva de mesones vectoriales, pasando
por el análisis de las distribuciones partónicas con dependencia en el momento transverso a
bajos valores de x, hasta el complicado estudio de fenómenos en colisiones de iones pesados.
La base común de todas estas aplicaciones es la factorización de las amplitudes de dispersión
que ocurre en QCD en el ĺımite de Regge, caracterizado por enerǵıas de centro de masas
asintóticamente grandes y ángulos de dispersión pequeños, combinada con una resumación
perturbativa de correcciones logaŕıtmicas dominantes. Si bien se debe tener en cuenta que
ciertos entornos f́ısicos espećıficos —que pueden venir caracterizados e.g. por la presencia
de elevadas densidades partónicas o por la aparición de logaritmos colineales— requieren
apropiadas modificaciones y extensiones de este marco general, la base perturbativa para
la resumación de los logaritmos dominantes en enerǵıa viene siempre dada por la ecuación
BFKL, basada en la propiedad de reggeización y consistente con bootstrap. Esta es la idea
principal que queŕıamos enfatizar en nuestra discusión exhaustiva de QCD a altas enerǵıas
en el Cap. I.

A pesar de la aparente simplicidad del Lagrangiano de QCD, el cálculo exacto de su matriz
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S parece —al menos a d́ıa de hoy— una labor imposible. Esta complejidad dinámica se
debe en buena medida a la variación del acoplo con el grupo de renormalización. Por una
parte, éste hace que numerosos fenómenos a priori sencillos, como la descripción de los
estados ligados más simples, sea no perturbativa. Por otra parte, la ruptura de la invariancia
conforme que posee clásicamente la acción de QCD también complica notablemente la
estructura perturbativa de las amplitudes de dispersión. Esta observación ha llevado en los
últimos años a considerar la teoŕıa N = 4 Super Yang-Mills, una versión supersimétrica
e invariante conforme de QCD, como un apropiado modelo simplificado del que podemos
extraer importantes lecciones sobre la f́ısica de las interacciones fuertes. De hecho, se
cree que la simplicidad del ĺımite de Regge se debe a la similitud que presentan QCD y
N = 4 SYM en esta región cinemática. El propósito del Cap. II es analizar cuantitativa-
mente esta semejanza para observables concretos con un buen comportamiento perturbativo.

El primer observable que proponemos es la decorrelación azimutal de jets de Mueller-
Navelet (Sec. II.2), convenientemente expresada en términos de los cocientes (II.30),
que no dependen de los detalles no perturbativos de las distribuciones partónicas y son
altamente insensibles a la contaminación colineal, permitiendo una comparación coherente
de predicciones en QCD y N = 4 SYM. Los resultados (Figs. II.8 y II.9) muestran que los
cocientes de correlaciones azimutales exhiben un comportamiento sorprendentemente similar
en ambas teoŕıas, especialmente cuando usamos un esquema de renormalización como BLM
que captura el grueso de las contribuciones conformes (que se espera sean importantes para
estos observables, que exploran la simetŕıa SL(2,C) del plano transverso al eje de colisión).
Esto no ocurre para otros observables t́ıpicamente estudiados como la evolución en rapidez
de la sección eficaz total de producción de dos chorros (dijets) o sus momentos en el ángulo
azimutal, que tienen una peor convergencia perturbativa. La conclusión importante de este
análisis es que cabe esperar que las predicciones de N = 4 SYM reproduzcan prácticamente
los cálculos de QCD para observables convenientemente escogidos en el ĺımite de Regge.
Otros posibles observables a los que se puede extender este análisis comparativo son ciertas
correlaciones del tensor de enerǵıa-momento [HM08], o la sección eficaz para dispersión
γ∗γ∗, donde los fotones pueden ser simulados en N = 4 SYM mediante corrientes asociadas
a su simetŕıa global SUR(4) [CHKM+06, BMS08, CCP10, BC11].

En la Sec. II.3 hemos presentado un segundo estudio sobre la relación entre QCD y
N = 4 SYM en el ĺımite de Regge. Utilizando un método de Monte Carlo, hemos
sido capaces de analizar las diferentes contribuciones a la función de Green de BFKL,
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que describe la dispersión de dos reggeones fuera de la capa de masas, a orden NLO
en N = 4 SYM. Hemos mostrado el mejor comportamiento colineal de N = 4 SYM
con respecto a QCD (Figs. II.10 y II.11): mientras que el efecto de los escalares y
glúınos es mı́nimo para espines conformes n > 0, éste śı que resulta muy importante para
n = 0, haciendo que la función de Green crezca mucho más deprisa en rapidez que al
considerar únicamente contribuciones gluónicas (Fig. II.13). Esto se refleja en una mayor
multiplicidad en el estado final, que es también el origen de las mayores decorrelaciones
azimutales entre dijets que se obtienen en N = 4 SYM (Fig. II.8). También hemos
podido comprobar (fig. II.15) que los escalares y glúınos no afectan de modo apreciable el
patrón de difusión hacia el infrarrojo. Seŕıa muy interesante extender estos resultados al
régimen de acoplo fuerte, pero no conocemos actualmente la ecuación BFKL en este régimen.

En el Cap. III hemos considerado un enfoque muy diferente para estudiar QCD a altas
enerǵıas, basado en la acción efectiva de Lipatov [Lip95]. Esta formulación es muy
interesante, ya que permite obtener los vértices efectivos en la cinemática de quasi-multi-
Regge a todos los órdenes usando únicamente invariancia gauge y la factorización a altas
enerǵıas. En contraste con la habitual imagen de Wilson, los modos pesados no son
directamente integrados, sino que existe un ĺımite expĺıcito de rapidez que determina la
región en la que la acción efectiva (III.32) es válida. Más allá del nivel árbol es necesario
introducir este ĺımite en las integrales a varios lazos. Este procedimiento es ambiguo y
rompe manifiestamente la invariancia gauge, además de complicar enormemente los cálculos.

Alternativamente, proponemos un método de sustracción que mantiene la invariancia gauge
en los estadios intermedios del cálculo, basado en la localidad en rapidez de la acción, y que
por construcción evita cualquier doble contaje. En nuestro enfoque, el campo del reggeón
aparece como un campo no dinámico, que no se propaga en el interior de los lazos. Hemos
ofrecido una interpretación en el contexto del grupo de renormalización de las correcciones
perturbativas a los vértices efectivos; se puede considerar que de este modo se define orden
a orden el Lagrangiano de la teoŕıa de campos reggeizados subyacente. Dicho procedimiento
puede verse como un ejemplo de matching [Geo93], que debe ser mejor entendido en un
futuro.

En general, nuestra propuesta debe ser considerada como un primer paso para conseguir
una aplicación eficiente y motivada del uso de la acción de Lipatov. Aparte de la necesidad
de formalizar de forma rigurosa nuestro enfoque, otro problema importante es intentar
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entender la conexión de la acción de Lipatov con otros formalismos como el color glass
condensate o la expansión en producto de operadores de Balitsky (Sec. III.1.4). Entender
esta conexión puede ayudar también a determinar el rango de validez de estas otras teoŕıas
efectivas; recordemos que no está en absoluto claro que sean capaces de reproducir los
resultados perturbativos para amplitudes en cinemática de quasi-multi-Regge.

En cualquier caso, hemos sido capaces de reproducir de forma exacta varios resultados al-
tamente no triviales: los vértices de jet producidos por quarks y gluones a un lazo, y la
trayectoria de Regge del gluón a dos lazos. Esto muestra la consistencia de la acción efectiva
para correcciones virtuales. Habiendo comprobado que nuestro procedimiento reproduce
importantes resultados conocidos en la literatura, la acción efectiva está ahora lista para
calcular otros vértices efectivos con importancia fenomenológica, como el factor de impacto
para jets de Mueller-Tang con precisión NLO [HM12], que es el único elemento que falta para
una descripción completa a orden NLO de la producción difractiva de dijets en el marco de
BFKL.
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A
Miscellaneous Formulæ

SU(3) Matrices, Color Algebra and Color Projectors

The generators T̂ a of the color group SU(Nc) obey the commutation relations

[T̂ a, T̂ b] = ifabc T̂ c, fabefecd + fcbefaed + fdbeface = 0, (A.1)

where fabc are the fully antisymmetric group structure constants. Generators in the adjoint
representation are usually denoted by T a, so that (T a)bc = −ifabc. In the fundamental
representation generators are denoted ta and have the following properties

Tr ta = 0, ta = ta†, Tr (tatb) = TRδ
ab, TR = 1

2 . (A.2)

Together with the identity matrix they create a complete set of Nc × Nc matrices. The
completeness condition, sometimes called Fierz identity, can be written as1

taijt
a
kl = 1

2

[
δilδjk −

1
Nc

δijδkl

]
. (A.4)

1A Nc × Nc matrix can be expressed as M = n01 + nata. The coefficients n0 and na are found taking
traces: Tr M = n0Nc; Tr (Mtb) = na 1

2δ
ab, hence M = 1

Nc
TrM 1+ 2Tr(Mta) ta. For the case M i

k = δi(j)δ
(l)
k

(fixed j and l) one finds the Fierz identity. A graphical representation of this relation is
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From (A.4) one can obtain the following results

tata = CF1 (taijtajk = CF δik); tatbta =
(
CF −

CA
2

)
tb; tatbtcta = 1

4δ
bc
1+

(
CF −

CA
2

)
tbtc,

(A.5)
with CF and CA the values of the Casimir in the fundamental and adjoint representations:

CF = N2
c − 1
2Nc

, CA = Nc (Tr (T aT b) = facdf bcd = CAδ
ab). (A.6)

One can also introduce the completely symmetric symbols dabc2 through the relation

{ta, tb} = 1
Nc

δab1+ dabctc. (A.7)

They satisfy the following identities

dabb = 0, dacddbcd = N2
c − 4
Nc

δab, fabedecd + fcbedaed + fdbedace = 0, (A.8)

and the trace of three t matrices can be expressed in terms of them as

Tr (tatbtc) = 1
4(dabc + ifabc). (A.9)

Further useful relations can be found in [Dok97, IFL10]. Its derivation can be simplified
a lot by the use of diagrammatic techniques introduced by Cvitanović [Cvi76, Cvi08].
Implementation of these relations and many more in FeynCalc [MBD91] is very useful.

We now illustrate the use of these techniques to obtain the projection operators that allow
us to extract the contribution of an irreducible representation from the Clebsch-Gordan
series for the product of two irreducible representations. Consider a 2 → 2 process with
amplitude Γl1l2l′2l

′
1
≡ 〈L′1l′1L′2l′2|Γ|L1l1L2l2〉 (we explicit color indices, while omitting spin and

flavor ones), where |Lili〉, li = 1, 2, · · · , nLi is the basis of the irreducible representation Li

i

k

j

l
= 1

Nc

j i

kl
+ 2

j

l

i

kP1 P8

. (A.3)

2For SU(2) one has fabc = εabc and dabc = 0. In the case of interest, SU(3), things are more complicated.
The non-vanishing structure constants (up to trivial permutations) are f123 = 1, f458 = f678 =

√
3

2 , f147 =
f165 = f246 = f345 = f376 = f257 = 1

2 , and the non-zero dabc, d118 = d228 = d338 = −d888 = 1√
3 , d146 =

d157 = d256 = d344 = d355 = −d247 = −d366 = −d377 = 1
2 , d448 = d558 = d668 = d778 = − 1

2
√

3 .
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to which the incoming parton i belongs, nLi being its dimension. The representations of in-
terest for us will be Li = 3, 3̄,8, corresponding respectively to quarks, antiquarks and gluons.

In the study of addition of angular momenta, basis vectors for the composite system can be
formed from the tensor products of eigenstates of each of the components: |j1m1j2m2〉 =
|j1m1〉⊗|j2m2〉. On the other hand, another basis of states for the composite system is given
by its eigenstates |jm〉 (eigenstates of J2 = (J1 + J2)2 and Jz = Jz1 + Jz2), which can be
expressed in terms of the former tensor products through the Clebsch-Gordan coefficients.
In our case, considering color rather than spin, we have the same situation:

|Ll〉 =
∑
l1,l2

〈L1l1L2l2|Ll〉|L1l1〉|L2l2〉. (A.10)

The most general form of the operator Γ in the new basis of eigenstates reads Γ =∑
L,L′

∑nL,n
′
L

l,l′ ΓL′l′Ll|L′l′〉〈Ll|, but, since color is conserved, Γ commutes with all SU(3) gener-
ators and then according to Schur’s lemma it is proportional to the identity in color indices
within each irreducible basis, i.e. ΓL′l′Ll = ΓLδL′Lδl′l, so that we get

Γ =
∑
L

ΓL
∑
l

|Ll〉〈Ll| =
∑
L

ΓLPL, PL ≡
∑
l

|Ll〉〈Ll|. (A.11)

PL is the projector on the representation L. Defining 〈l′1l′2|P|l1l2〉 ≡ P l1l2l′2l
′
1
, we have

P m1m2
L′l2l1

Γl1l2m1m2 =
∑
L

ΓLP m2m1
L′l2l1

P l1l2
Lm2m1 = ΓL′ P m1m2

L′m2m1︸ ︷︷ ︸
=TrPL′=nL′

, (A.12)

that determines the coefficients ΓL in (A.11): ΓL = TrPLΓ
TrPL . One cannot choose to normalize

the projectors with unit trace if the identity (I.108) is to be satisfied.

We begin with the 3× 3̄ = 1 + 8 case. Here we can readily read the projectors from (A.3):
considering i of M i

k as the color index of a quark and k as the color index of an antiquark,
the interpretation of the diagram in (A.3) is clear: it is the decomposition of N2

c color states
of a qq̄ system into the color singlet and octet parts: ψiχ̄k = 1

Nc
δik(χ̄ψ) + Ri

k, R
i
i = 03. In

(A.3) we have already defined the singlet and octet projectors, conveniently normalized.

Now we turn to the important 8× 8, which we also use in the present work. Four color
3Such a decomposition is analogous to the decomposition of a product of vector representations into

traceless symmetric, antisymmetric, and trace parts for orthogonal groups. Under a SU(Nc) transformation
both parts Rik and δik do not mix among them.
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indices of SU(3) can be contracted in the following ways: δaa′δbb′ ; δabδa′b′ ; δab′δa′b; daa′cdbb′c;
dabcda′b′c; dab′cda′bc; faa′cfbb′c; fabcfa′b′c and fab′cfa′bc. Not all of these combinations are inde-
pendent [LRS92]. One can readily identify among them the simplest projectors, correspond-
ing to the singlet and octet,

P1 = 1
N2
c − 1

(
= 1
N2
c − 1δ

abδb′a′

)
; P8s = Nc

N2
c − 4

(
= Nc

N2
c − 4d

abcdb′a′c

)
;

P8a = 1
Nc

(
= 1
Nc

ifabcifcb′a′ = 1
Nc

T abc T
c
b′a′

)
.

(A.13)
Indeed, the index c in fabc (represented by a dot) and dabc (represented by a star) transforms
in the adjoint, and while fabc is completely antisymmetric, dabc is completely symmetric. By
direct calculation one can check that the projector identities (I.108) are satisfied. To obtain
the remaining projectors one begins with the identity in color space and splits it in different
contributions [DM06]. We draw the pictorial identity

1
ab
b′a′ = δaa′δ

b
b′ = = 4 (A.14)

where a, b (a′, b′) are color indices of incoming (outgoing) gluons. We have used that

= Tr (tata′) = 1
2δaa

′ . (A.15)

Applying the Fierz identity (A.3) to two of the intermediate quark (antiquark) lines in this
expression one can recover terms equal to the projectors (A.13). By interchanging quark
and antiquark lines we can also construct four tensors with a given symmetry with respect
to quark and, separately, antiquark color indices:

1 = Π+
++Π+

−+Π−++Π−−; Πu
d = 1

4

︸ ︷︷ ︸
≡1

+ud ︸ ︷︷ ︸
≡X(=δa

b′δ
a′
b

)

+u ︸ ︷︷ ︸
≡W+(=Tr (tbta′ tatb′ ))

+d ︸ ︷︷ ︸
≡W−

,

(A.16)
where u, d = ± label the symmetry with respect to the two ‘internal’ quarks and antiquarks,
respectively. For example, Π+

+ is symmetric under interchanging quarks and antiquarks,
and Π+

− is symmetric with respect to quarks and antisymmetric with respect to antiquarks.
Exchanging gluons a ↔ b we have 1 ↔ X and W+ ↔ W−, so that Π+

+ and Π−− are sym-
metric with respect to exchanging gluon indices a and b, while Π+

− and Π−+ are antisymmetric.
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Introducing the notation4 (A ·B)abb′a′ = Acdb′a′B
ab
cd (sum over c, d understood), one has now

W± · P1 = − 1
4Nc

P1, W± · P8a = 0, W± · P8s = − 1
2Nc

P8s . (A.17)

These relations help us construct the remaining irreducible representations. To this end we
subtract from the tensors Πu

d (A.16) their projections onto the singlet and two octets (A.17),
and derive the four higher projectors [DM06]:

P27 = Π+
+ −

Nc − 2
2Nc

P8s −
Nc − 1

2Nc

P1 = 1
4(1+X)− Nc − 2

2Nc

P8s −
Nc − 1

2Nc

P1 + (W+ +W−);

P10 = Π+
− −

1
2P8a , P10 = Π−+ −

1
2P8a =⇒ P10 + P10 = 1

2(1−X)− P8a ;

P0 = Π−− −
Nc + 2

2Nc

P8s −
Nc + 1

2Nc

P1 = 1
4(1+X)− Nc + 2

2Nc

P8s −
Nc + 1

2Nc

P1 − (W+ +W−).
(A.18)

The projector P0 is relevant for Nc > 3, in which case a new representation with dimension
nNc>3 = (Nc+1)N2

c (Nc−3)
4 appears. Making use of (A.17) and the relations

16W± ·W±(∓) = 1(X)− N2
c − 1
N2
c

P1 −
N2
c − 4
N2
c

P8s − (+)P8a , (A.19)

one can verify that the operators (A.18) are indeed projectors (Pα · Pβ = Pαδαβ)5.

4In bra-ket notation 〈a′b′|AB|ab〉 = 〈a′b′|A|cd〉〈cd|B|ab〉.
5For completeness we list here all relevant normalized projectors for Nc = 3 [Mek85, Cvi08].

qq : 3× 3 = 3̄ + 6 〈i′j′|P3̄(3)|ij〉 = 1
2(δii′δjj′ − δij′δji′)

[q̄q̄ : 3̄× 3̄ = 3 + 6̄]; 〈i′j′|P6̄(6)|ij〉 = 1
2(δii′δjj′ + δij′δji′);

qq̄; 3× 3̄ = 1 + 8; 〈i′j′|P1|ij〉 = 1
3δijδi

′j′ , 〈i′j′|P8|ij〉 = δii′δjj′ −
1
3δijδi

′j′ = 2taijtai′j′ ;

qg : 3× 8 = 3 + 6 + 15 〈i′a′|P3(3̄)|ia〉 = 3
4(ta

′
ta)i′i, 〈i′a′|P6(6̄)|ia〉 = 1

2δi
′iδa′a − (tata

′
)i′i

[q̄g : 3̄× 8 = 3̄ + 6̄ + 15]; − 1
2(ta

′
ta)i′i, 〈i′a′|P15(15)|ia〉 = 1

2δi
′iδa′a + (tata

′
)i′i −

1
4(ta

′
ta)i′i;

gg : 8× 8 = 1 + 8sym 〈a′b′|P1|ab〉 = 1
8δabδa

′b′ , 〈a′b′|P8s |ab〉 = 3
5dabeda

′b′e, 〈a′b′|P8a |ab〉 = 1
3fabefa

′b′e,

+ 8ant + 10 + 10 + 27; 〈a′b′|P(10
10)|ab〉 = 1

4

(
δaa′δbb′ − δab′δba′ −

2
3fabefa

′b′e

)
(±) i4(da′aefb′be + db′befa′ae),

〈a′b′|P27|ab〉 = 1
2

(
δaa′δbb′ + δab′δba′ −

1
4δabδa

′b′ −
6
5dabeda

′b′e

)
.

(A.20)
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Feynman Rules for QCD and the High-Energy Effective Action

We compile in this section the Feynman rules for QCD [PS95] and the lowest order (unreg-
ularized) couplings in Lipatov’s effective action [ALKC05]6. Reggeons are denoted by wavy
lines

b, νa, µ

k

i

k2 + iǫ

(
−gµν + (1− ξ)

kµkν
k2

) −igµν
k2 + i0 gluon propagator

k αβ

ij
iδij

(/k +m)αβ
k2 −m2 + i0 quark propagator

ab k

−iδab

k2 + i0 ghost propagator

a3, µ3

a1, µ1

k2 k1

k3

a2, µ2

− − −−gfa1a2a3 [gµ2µ3(k2 − k3)µ1

+gµ3µ1(k3 − k1)µ2 + gµ1µ2(k1 − k2)µ3 ]
3-gluon vertex

a4, µ4
k4

a1, µ1a2, µ2

a3, µ3

k3

k1

k2

−ig2 [fa1a2bfa3a4b(gµ1µ3gµ2µ4 − gµ1µ4gµ2µ3)

+ fa1a3bfa2a1b(g
µ1µ2gµ3µ4 − gµ1µ4gµ2µ3)

+ fa1a4bfa2a3b(g
µ1µ2gµ3µ4 − gµ1µ3gµ2µ4)]

−ig2[fa1a2bfa3a4b(gµ1µ3gµ2µ4 − gµ1µ4gµ2µ3)

+fa1a3bfa2a4b(gµ1µ2gµ3µ4 − gµ1µ4gµ2µ3)

+fa1a4bfa2a3b(gµ1µ2gµ3µ4 − gµ1µ3gµ2µ4)]

4-gluon vertex

a, µ

i j
α β

ig(ta)ij(γµ)αβ qqg vertex

b, µ

a c
k

gfabckµ gGG vertex

−

+

1
(−2iq2) reggeon propagator

(A.21)

6In [ALKC05] there is a mismatch in the conventions used for the QCD and induced pieces of Lipatov’s
action. We stick to the conventions in [Hen09b]. The procedure to extract the Feynman rules from a general
Lagrangian is reviewed in [CL82]. Feynman rules in N = 4 SYM theory are derived in great detail in [Gro12].
Feynman gauge is used for the gluon propagator.
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−
c, q

a0, k

∆ν0−
a0c = −iq2δa0c(n−)ν0 [k−0 = 0] Rg transition

−
c, q

a1, k1a0, k0

∆ν0ν1−
a0a1c = gq2fa0a1c

1
k−0

(n−)ν0(n−)ν1 [k−0 + k−1 ] = 0 Rgg vertex

−
c, q

a2, k2a0, k0

a1, k1

∆ν0ν1ν2−
a0a1a2c = ig2q2

(
fa2a1afa0ac

k−2 k
−
0

+ fa2a0afa1ac

k−2 k
−
1

)

× (n−)ν0(n−)ν1(n−)ν2 [k−0 + k−1 + k−2 ] = 0
Rggg vertex

(A.22)

S-Matrix Elements, Cross Sections and the Optical Theorem

The S-matrix is the linear operator transforming the initial state |i〉 of a scattering process
into the final state |f〉, S|i〉 = |f〉. In |i〉 and out |f〉 states are defined at times −∞ and
+∞ respectively, represent free particles and form complete sets of states [Wei95, Dun12].
The S-matrix is given by the unitary time evolution operator U :

S ≡ U(−∞,+∞) = 1+
∞∑
n=1

in

n!

∫
d4x1 · · · d4xnT (H ′int(x1) · · ·H ′int(xn)), (A.23)

where H ′int is the interaction Hamiltonian (in interaction picture) and T denotes the time-
ordered product. From S-matrix elements we define the scattering amplitude A(i→ f),

Sif ≡ 〈f |S|i〉 ≡ δif + iTif = δif + i(2π)4δ4(pf − pi)A(i→ f), (A.24)

in terms of which the differential cross section for a 1 + 2→ n particles process reads

dσ = 1
Φ |A(i→ fn)|2dΠn, σtot = 1

Φ
∑
n

∫
dΠn|A(i→ fn)|2. (A.25)

with the phase space for n particles in the final state being

dΠn =
n∏
j=1

d4p′j
(2π)3 δ(p

′2
j −m2

j)(2π)4δ4

p1 + p2 −
n∑
j=1

p′j

 =
n∏
j=1

d3p′j
(2π)32E ′j

(2π)4δ4

p1 + p2 −
n∑
j=1

p′j

 ,
(A.26)
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and the incident flux being given by

Φ = 2E12E2|v1 − v2| = 2λ1/2(s,m2
1,m

2
2), Φ s→∞' 2s. (A.27)

Ei and vi = pi/Ei, i = 1, 2, are the energies and velocities of colliding particles in the LAB
system7. Unitarity of the S-matrix, SS† = S†S = 1, follows from conservation of probability:

∑
k

Prob(i→ k) =
∑
k

|〈k|S|i〉|2 =
∑
k

〈i|S†|k〉〈k|S|i〉 = 〈i|S†S|i〉 = 1 =⇒ S†S = 1. (A.28)

In terms of the transition matrix Tif defined in (A.24) (S = 1+ iT ), this reads8

i〈f |T † − T |i〉 =
∑
{n}
〈f |T †|n〉〈n|T |i〉 =⇒ 2=m Tif =

∑
{n}

T ∗fnTin. (A.29)

Extracting from T the 4-momentum conservation δs, we have in terms of amplitudes

2=m A(i→ f) =
∑
n

∫
dΠnA

∗(f → n)A(i→ n). (A.30)

(A.30) tells us that, in order to compute the imaginary part of the scattering amplitude of
some process at the n-th perturbative order, we just need to compute the amplitudes up to
the (n − 1)-th order. While it is not possible to deal in full generality with the set (A.30)
of nonlinear coupled integral equations, some important results can be derived from them.
The easiest one is the special case |i〉 = |f〉 (in the sense also that individual momenta of
particles remain the same after the collision). For a 2→ 2 process, this is the case of forward
elastic scattering (t = 0). In this case one gets from (A.30), using (A.25) and (A.27)

2 =m Ael (t=0) =
∑
n

∫
dΠn|A(i→ n)|2 =⇒ σtot = 2

Φ=m Ael (t=0) '
s→∞

1
s
=m Ael (t=0). (A.31)

(A.31) is called the optical theorem9. Its importance is difficult to overemphasize. It states
that the total cross section (the cross section for 1 + 2 → anything) is given by only one
S-matrix element.

7The second equality in (A.27), expressing Φ in terms of Källén’s λ (B.9), is only valid for systems boosted
in the beam direction with respect to the LAB one, so the flux is not totally Lorentz invariant.

8In (A.29),
∑
{n} contains integration over all continuous variables and sum over all discrete quantum

numbers. For a system of n spinless particles this is given by
∑
{n} =

∑
n

∫ ∏n
j=1

d3qj
(2π)32Ej .

9There is a deep analogy between optical diffraction and high energy scattering, see [BP02].
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B
Kinematics of Scattering Processes

Mandelstam Variables

Consider a generic scattering process of the form

1 + 2→ 3 + 4 + · · ·+N. (B.1)

Conservation of 4-momentum, p1 + p2 = ∑N
j=3 pj gives 4 constraints. N further kinematical

constraints come from mass-shell conditions p2
i = m2

i , i = 1, · · · , N . Finally, the arbitrariness
in fixing a 4-dimensional reference frame (which could be rotated or boosted) supplies 6
more constraints. All in all, from the a priori 4N variables describing process (B.1) —the
components of the 4-momenta—, the number of independent Lorentz-invariant variables for
the reaction is 4N − 4 − N − 6 = 3N − 10. In practice, one of these variables, say the
center-of-mass energy of the colliding particles, is fixed when preparing the initial state.
In particular, for N = 2, we have two independent variables, usually taken among the
Mandelstam invariants

s = (p1 +p2)2 = (p3 +p4)2, t = (p1−p3)2 = (p2−p4)2, u = (p1−p4)2 = (p2−p3)2. (B.2)
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The Mandelstam variables satisfy the identity s+ t+u = ∑4
i=1m

2
i . In general, we take s and

t as independent variables.1 In the reaction (B.1), s is the square of the total c.m. energy
and t is the squared momentum transfer. We refer to (B.1), or its time-reversed, as to the
s-channel process. Analogously, t-channel (u-channel) means that t (u, respectively), is the
square of the total c.m. energy. The t-channel and u-channel reactions are then

1 + 3̄→ 2̄ + 4, (t− channel), 1 + 4̄→ 2̄ + 3, (u− channel), (B.3)

together with their time reversed processes. Here 3̄, for instance, means that the momentum
of particle 3 as been reversed and all additive quantum numbers have changed sign, that is
3̄ is the antiparticle of 3 with opposed momentum.

Elastic Scattering in the Center-of-Mass System

Consider the s-channel reaction (B.1) in the center-of-mass (CM) system where p1 + p2 = 0
(Figure B.1). Assuming particles 1 and 2 to travel along z axis, we have

p1 = (E1,p) = (E1, 0, 0, pz); p2 = (E2,−p) = (E2, 0, 0,−pz);

p3 = (E3,p
′) = (E3,p⊥, p

′
z); p4 = (E4,−p′) = (E4,−p⊥,−p′z).

(B.4)

Only two of the variables appearing in (B.4) are independent. We choose them to be the

ϑ

p3

p2

p4

p1

Figure B.1: 2→ 2 scattering in the center-of-mass system.

CM momentum |p| = pz and the scattering angle ϑ, defined by

p′z = |p′| cosϑ; |p⊥| = |p′| sinϑ. (B.5)

Energies are given in terms of s by

1In some cases it may be convenient to use a different pair of variables. For instance, if we look at
backward scattering, s and u are a more practical choice, since the backward direction corresponds to u = 0
for equal-mass particles, whereas the forward direction corresponds to t = 0 (B.14).
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E1,2 = 1
2
√
s

(s±m2
1 ∓m2

2), E3,4 = 1
2
√
s

(s±m2
3 ∓m2

4). (B.6)

Using the mass-shell conditions, one also gets the relations

p2 = p2
z = E2

1 −m2
1 = 1

4s [s− (m1 +m2)2][s− (m1 −m2)2] = 1
4sλ(s,m2

1,m
2
2), (B.7)

p′2 = p2
⊥ + p2

z = E2
3 −m2

3 = 1
4s [s− (m3 +m4)2][s− (m3 −m4)2] = 1

4sλ(s,m2
3,m

2
4), (B.8)

where the Källén function is given by

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2xz. (B.9)

In the high-energy limit (s→∞) masses can be neglected and one has

E1, E2, E3, E4 '
s→∞

√
s

2 ; |p|, |p′| '
s→∞

√
s

2 . (B.10)

Relations between the CM variables |p|, ϑ and the Mandelstam invariants s, t can be obtained
from the previous expressions

t = (p1 − p3)2 = m2
1 +m2

3 − 2E1E3 + 2|p||p′| cosϑ, (B.11)

cosϑ = s2 + s(2t−∑im
2
i ) + (m2

1 −m2
2)(m2

3 −m2
4)

λ1/2(s,m2
1,m

2
2)λ1/2(s,m2

3,m
2
4) (B.12)

and are much simpler in the case of equal masses m1 = m2 = m3 = m4 ≡ m:

|p| = 1
2
√
s− 4m2, cosϑ = 1 + 2t

s− 4m2 . (B.13)

Inverting, we get Mandelstam variables in terms of CM momentum and scattering angle

s = 4(p2 +m2), t = −2p2(1 + cosϑ), u = −2p2(1 + cosϑ). (B.14)

For massless particles or in the limit when masses can be neglected (s→∞)

cosϑ = 1 + 2t
s
, t ' −p2

⊥. (B.15)
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The kinematical limits p ≥ 0 and −1 ≤ cosϑ ≤ 1 translate, using (B.14), in the physical
region of the s-channel in the Mandelstam plane

s ≥ 4m2, t ≤ 0, u ≤ 0. (B.16)

Similar reasoning [BP02] gives the physical domain of the t and u-channels

t ≥ 4m2, s ≤ 0, u ≤ 0 (t-channel), u ≥ 4m2, s ≤ 0, t ≤ 0 (u-channel). (B.17)

So the physical domains of the s, t and u channels are different and non-overlapping (Fig.
B.2). Nevertheless, crossing symmetry of the S-matrix tells us that s, t, u-channel processes
are described by the same amplitude (or appropriate combinations of the same amplitudes).

u = 4m2 u = 0 t = 0 t = 4m2

s = 4m2

s = 0

s

t u

1

1

1

4̄

3̄

3

2 4

2̄

4

3

2̄

s

t

u

Figure B.2: The Mandelstam plot showing the physical regions of the s, t and u channels (in blue).

Light-Cone Components, Sudakov Parametrization and Rapidity

Light-cone (LC) components of a 4-vector Aµ are defined as

A± = A∓ = A0 ± A3. (B.18)

In these components we write Aµ = (A+, A−,A⊥), and scalar products are given by

A ·B = A0B0 −A ·B = 1
2
[
A+B− + A−B+

]
−A⊥ ·B⊥, A2 = A+A− −A2

⊥, (B.19)

i.e. we have a metric with non-null entries 2g+− = 2g−+ = −gxx = −gyy = 1. Now we
take a basis of light-cone vectors n− = (Λ, 0, 0,Λ) (in LC components (2Λ, 0, 0, 0) and n+ =

170



(Λ−1, 0, 0,−Λ−1) (in LC components (0, 2Λ−1, 0, 0)), which have the usual2 normalization
n+ · n− = 2. The Sudakov decomposition of an arbitrary 4-vector Aµ is

Aµ = α(n−)µ+β(n+)µ+Aµ⊥ = 1
2

[
(A · n+)︸ ︷︷ ︸

Λ−1A+

(n−)µ+(A · n−)︸ ︷︷ ︸
ΛA−

(n+)µ
]

+Aµ⊥ = (2αΛ, 2βΛ−1,A⊥).

(B.20)
One has then in terms of Sudakov components

A2 = A+A− −A2
⊥ = 4αβ −A2

⊥. (B.21)

In the following we take Λ = 1 so that

Aµ = A+ (n−)µ
2 + A−

(n+)µ
2 + Aµ⊥. (B.22)

The non-transverse part of the metric can be expressed in terms of the Sudakov vectors:

gµν = gµν⊥ + 1
2[(n−)µ(n+)ν + (n+)µ(n−)ν ], (B.23)

where gµν⊥ projects on the plane perpendicular to n− and n+

gµν⊥ Aµ = Aν − 1
2(A · n−)(n+)ν − 1

2(A · n+)(n−)ν = Aν⊥. (B.24)

In terms of its LC components, rapidity is defined for a particle of momentum p as

y = 1
2 ln p

+

p−
; tanh y = pz

E
≡ p3

p0 . (B.25)

Defining the transverse mass m⊥ =
√
m2 + p2

⊥, so that the mass-shell condition reads E2 =
p2
z +m2

⊥, we have
pz = m⊥ sinh y; E = m⊥ cosh y. (B.26)

In this way we have the following parametrization for p

p = (m⊥ey,m⊥e−y;p⊥), p⊥ = (p⊥ cosφ, p⊥ sinφ) (B.27)

being φ the azimuthal angle between the vector p⊥ and an arbitrary vector in the transverse
plane. For massless particles, (B.5) and (B.25) give tanh y = cosϑ, from which one gets the

2Note, however, that there is a factor 2 difference with the conventions of [BP02], for instance. The
following properties of Sudakov vectors are evident: (n+)2 = (n−)2 = 0, (n+ ·A⊥) = (n− ·A⊥) = 0, (n−)− =
(n+)+ = 0.
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definition of pseudorapidity η

η = y (m = 0) = 1
2 ln 1 + cosϑ

1− cosϑ = − ln tan ϑ2 , (B.28)

that is, rather than y, the variable used in high-energy experiments, since its determina-
tion requires just tracking the particle direction. When p⊥ � m both definitions coincide.
However, one should keep in mind that it is y, and not η, that has the great property of
transforming additively under boosts in the beam direction and gives the correct measure
for phase space

d3p

2E(2π)3 = dy

4π
d2p⊥
(2π)2 . (B.29)

Multi-Regge Kinematics

Now we move to parton scattering in which n + 2 partons are produced (Figure B.3). 4-
momenta of incoming and outgoing partons are assumed to fulfill p2

A = p2
B = k2

i = 0, i =
0, · · · , n+ 13. According to parametrization (B.27) we have, in CM system,

pA = (
√
s, 0; 0); pB = (0,

√
s; 0); ki = (ki⊥eyi , ki⊥e−yi ;ki⊥), i = 0, · · · , n+ 1.

(B.30)
Momentum conservation gives for each of the light-cone components

0 =
n+1∑
i=0
ki⊥,

√
s =

n+1∑
i=0

ki⊥e
yi =

n+1∑
i=0

ki⊥e
−yi . (B.31)

Using (B.31), generalized Mandelstam invariants can be written as4

s = 2pA · pB =
n+1∑
i,j=0

ki⊥kj⊥e
yi−yj , (B.32)

sij = 2ki · kj = 2ki⊥kj⊥[cosh(yi − yj)− cos(φi − φj)] (B.33)

It is convenient to introduce for the present analysis a Sudakov parametrization taking as
Sudakov vectors pA and pB, which satisfy a different normalization

(
pA · pB = s

2

)
:

Aµ = αpµA + βpµB + Aµ⊥. (B.34)

3The following analysis can be easily generalized to the case of slightly off-shell incoming and outgoing
momenta, see for instance the discussion in [IFL10].

4Note that Mandelstam invariants only depend on rapidity differences, which are boost-invariant.

172



In this case, formulas (B.21), (B.22) and (B.23) should be substituted by5

pA
k0 ≡ p′

A

kn+1 ≡ p′
BpB

q1

q2

qi

qi+1

qn+1

qn

k1

k2

ki

kn

Figure B.3: Notation for 2→ n+ 2 scattering processes.

A2 = sαβ −A2
⊥; A = 1√

s

[
A+pA + A−pB

]
+ A⊥; gµν = gµν⊥ + 2

s
[pµApνB + pµBp

ν
A] . (B.35)

s-channel and t-channel momenta in Figure B.3 are then parametrized as

ki = αipA +βipB + ki⊥, i = 0, · · · , n+ 1; qi = ᾱipA + β̄ipB + qi⊥, i = 1, · · · , n+ 1. (B.36)

We define multi-Regge kinematics (MRK) as the kinematic region where the outgoing partons
are strongly ordered in rapidity and have comparable transverse momentum, of size k⊥,

y0 � y1 � · · · � yn+1; ki⊥ ' k⊥. (B.37)

From (B.30) and (B.36), one can see that (B.37) is equivalent to a strong ordering for the
Sudakov components of the outgoing partons6

1 & α0 � α1 � · · · � αn+1 & (k⊥/s)2 ; (k⊥/s)2 . β0 � β1 � · · · � βn+1 . 1. (B.38)

In the MRK regime (B.37), (B.32) can be approximated by

s ' k0⊥kn+1⊥e
y0−yn+1 , sij ' ki⊥kj⊥e

|yi−yj |, (B.39)

giving us an equivalent characterization of the multi-Regge regime:
5For an arbitrary normalization of Sudakov vectors (B.23) is to be substituted by gµν = gµν⊥ + pµap

ν
B+pνBp

ν
A

pA·pB .
6Relations α0 . 1, αn+1 &

(
k⊥
s

)2, and the analogous equations for β0 and βn+1, follow from (B.31) in
MRK:

√
s ' k⊥ey0 ' k⊥e−yn+1 .
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B. Kinematics of Scattering Processes

s� sij � k2
i⊥,

n∏
i=0

si ' s
n∏
i=1
k2
i⊥, (B.40)

where we have defined si ≡ si,i+1. This can be also seen using (B.30) and (B.35)

si = s(βi−1 + βi)(αi−1 + αi)− (ki−1,⊥ + ki⊥)2 ' sβiαi−1 = αi−1

αi
k2
i⊥ � k2

i⊥, (B.41)

Now consider the first t-channel momentum exchange, q1 = pA − k0. We have

q1 = (
√
s, 0; 0)− (k0⊥e

y0 , k0⊥e
−y0 ;k0⊥) ' (k1⊥e

y1 ,−k0⊥e
−y0 ,−k0⊥). (B.42)

Squaring and retaining only the leading term (y1 � y0)

q2
1 = −k0⊥k1⊥e

y1−y0 − k2
0⊥ ' −k2

0⊥ = −q2
1⊥, (B.43)

i.e. only transverse degrees of freedom are relevant in the momentum transfer q1. This
analysis can be now repeated for the second momentum exchanged in the t channel,

q2 = q1 − k1 ' (k2⊥e
y2 ,−k1⊥e

−y1 ,−k0⊥ − k1⊥),

q2
2 = −k1⊥k2⊥e

y2−y1 − (k0⊥ + k1⊥)2 ' −(k0⊥ + k1⊥)2 = −q2
2⊥.

(B.44)

Generalization to successive momenta in the t-channel is obvious: only transverse compo-
nents are relevant to parametrize the propagators of partons exchanged in the t channel

ti ≡ q2
i ' −q2

i⊥; qi '

ki⊥eyi ,−ki−1,⊥e
−yi−1 ,−

i∑
j=0
kj⊥

 . (B.45)

Moreover, q2
i⊥ ∼ k2

i⊥
7, so that we can rephrase (B.40) as

si � −ti, (B.46)

that is, multi-Regge kinematics is the direct generalization of the Regge or high-energy limit
s � −t. To end up, we notice that (B.45) gives us yet another equivalent characterization
of MRK, based on the strong ordering of Sudakov components of t-channel exchanges:

1� ᾱ1 � ᾱ2 � · · · � ᾱn+1 �
k2
⊥
s

; 1� |β̄n+1| � · · · � |β̄2| � |β̄1| �
k2
⊥
s
. (B.47)

7One can see this relation as obtained from averaging in the azimuthal angles φi in the expression
q2
i⊥ =

∑i
j=0 k

2
j⊥. To make things more rigorous, one should also enforce the constraint (B.31).
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C
Feynman Integrals and Mellin-Barnes

Representation

The Mellin Transform

The Mellin transform f̃(ω) of a function f(s) is defined as

f̃(ω) =
∫ ∞

1
d
(
s

s0

)(
s

s0

)−ω−1
f(s), (C.1)

where we introduce the scale s0 for dimensional reasons. Notice the similarity with the
usually more familiar Laplace transform. The inverse Mellin transform is

f(s) = 1
2πi

∫
C
dω

(
s

s0

)ω
f̃(ω), (C.2)

where the integration contour C lies to the right of all singularities of f̃(ω) in the complex
ω plane. A useful example for this work is

f(s) = sα lnp s, f̃(ω) = sα0
Γ(p+ 1)

(ω − α)p+1 . (C.3)
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C. Feynman Integrals and Mellin-Barnes Representation

We see that the Mellin transform of a pure power of s gives rise to a simple pole, while if
the power is accompanied by a logarithmic factor, a cut results in the Mellin transform.

The great property of Mellin transforms is the transformation of convolutions into products.
Consider a convolution of n functions gi, 1 ≤ i ≤ n

f(s) =
n∏
i=1

∫ 1

αi+1

dαi
αi
gi

(
αi−1

αi

)
s0 δ(αns− s0), (C.4)

with α0 = 1 and αn+1 = 0. Doing the integration over s using that δ(αns − s0) =
1

s0αn
δ
(
s
s0
− 1

αn

)
and αn < 1 gives

f̃(ω) = s0

∫ ∞
1

d
(
s

s0

)(
s

s0

)−ω−1 n∏
i=1

∫ 1

αi+1

dαi
αi
gi

(
αi−1

αi

)
δ(αns−s0) =

n∏
i=1

∫ 1

αi+1

dαi
αi
gi

(
αi−1

αi

)
αωn .

(C.5)
Now we change variables to ρi = αi

αi−1
, so that αn = ∏n

i=1 ρi. The Jacobian matrix ∂ρi
∂αj

=
δij

1
αi−1
−δi−1,j

αi
α2
i−1

is triangular and hence the determinant is given by the product of diagonal
elements, ∏n−1

i=1 α
−1
i . The final result for f̃(ω) is

f̃(ω) =
n∏
i=1

∫ 1

0
dρi ρ

ω−1
i gi

(
1
ρi

)
=

n∏
i=1

g̃i(ω). (C.6)

Mellin-Barnes Representation and Evaluation of Master Integrals for the
Two-Loop Gluon Trajectory

In this section we present in detail the derivation of Mellin-Barnes representations for the
general two-loop master integral considered in this work with arbitrary powers of the prop-
agators. The principal tool in this analysis is the Mellin-Barnes representation

1
(X1 + · · ·+Xn)λ = 1

Γ(λ)
1

(2πi)n−1

∫
· · ·

∫ +i∞

−i∞
dz2 · · · dzn

n∏
i=2

Xzi
i X

−λ−z2−···−zn
1

× Γ(λ+ z2 + · · ·+ zn)
n∏
i=2

Γ(−zi),
(C.7)

where the contours of integration are such that poles with a Γ(· · · + zi) dependence are to
the left of the zi contour and poles with a Γ(· · · − zi) dependences lie to the right of the zi
contour. Consider the integral (a · q = b · q = 0)

S1 =
∫

[dk] 1
(−k2 − i0)C [−(k − q)2 − i0]D[−(k − l)2 − i0]E(−a · k − i0)µ1(−b · k − i0)µ2

. (C.8)
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Using Schwinger parameters, we can write

S1 = iC+D+E+µ1+µ2

Γ(C)Γ(D)Γ(E)Γ(µ1)Γ(µ2)

∫ ∞
0
· · ·
∫ ∞

0
dαdβdγdδ̃dσ̃ αC−1βD−1γE−1δ̃µ1−1σ̃µ2−1

∫
[dk]eiD,

D = αk2 + β(k − q)2 + γ(k − l)2 + δ̃a · k + σ̃b · k = (α+ β + γ)k2 + βq2 + γl2 − 2k ·
(
βq + γl −

[
δ̃
a

2 + σ̃
b

2

])
.

(C.9)
Now, performing the usual shift in momentum and performing the changes of variable λ =
α + β + γ, ξ = β

α+β , η = γ
α+β+γ ; δ̃ = 2λδ, σ̃ = 2λσ, and x = 2(δ + σ), y = δ

δ+σ , we arrive to

S1 = iC+D+E+µ1+µ2

Γ(C)Γ(D)Γ(E)Γ(µ1)Γ(µ2)

∫ ∞
0

dλ

∫ 1

0
dξ

∫ 1

0
dη

∫ ∞
0

dx

∫ 1

0
dy λC+D+E+µ1+µ2−1ξD−1(1− ξ)C−1ηE−1

× (1− η)C+D−1xµ1+µ2−1yµ1−1(1− y)µ2−1
∫

[dk] exp
[
iλ
(
k2 − (1− η)2ξ(1− ξ)q2 − η(1− η)(1− ξ)(−l2)

− η(1− η)ξ[−(l − q)2]− ηx[y(−a · l) + (1− y)(−b · l)− x2(Ψy(1− y) + e−ρ)
)]
,

(C.10)
where Ψ ≡ 1

2(a · b−4e−ρ) is equal to one up to exponentially suppressed corrections. Making
the integrating over momentum and the parameter λ, and using (C.7), results in

S1 = i

(4π)d/2Γ(C)Γ(D)Γ(E)Γ(µ1)Γ(µ2)

∫ 1

0
dξ

∫ 1

0
dη

∫ ∞
0

dx

∫ 1

0
dy ξD−1(1− ξ)C−1ηE−1(1− η)C+D−1

× xµ1+µ2−1yµ1−1(1− y)µ2−1Λ,

Λ =
∫
· · ·
∫ +i∞

−i∞

dz2

2πi · · ·
dz7

2πiΓ(−z2) · · ·Γ(−z7)Γ(z2 + z3 + z4 + z5 + z6 + z7 + C +D + E + µ1 + µ2 − d/2)

× [(1− η)2ξ(1− ξ)q2]z2 [η(1− η)(1− ξ)(−l2)]z3 [η(1− η)ξ(−(l − q)2)]z4 [ηxy(−a · l)]z5 [ηx(1− y)(−b · l)]z6

[x2y(1− y)]z2+z3+z4+z5+z6+z7+C+D+E+µ1+µ2−d/2[x2(e−ρ)]−z7
.

(C.11)

The integrations over parameters can now be performed. In some cases integrals of the form
∫ 1

0
dy yα−1(1− y)−α−1 =

∫ ∞
0

dt t−α−1 = 2πiδ (α) (C.12)

appear. The Dirac-δ in (C.12) arises as follows. We have to consider that the integral takes
place inside a contour integral over a variable ω, as it is the case in our application. Then
we break up the integration over t in two intervals [0, a] and [a,∞). One can then move the
contours (of the ω integral) such that both integrals are convergent and yield as a result

∫ dω

2πif(ω)
∫ ∞

0

dt

t
tω−ω0 =

∫ dω

2πif(ω)
∫ a

0

dt

t
tω−ω0 +

∫ dω

2πif(ω)
∫ ∞
a

dt

t
tω−ω0

= −
∫ dω

2πif(ω)Θ(ω0 − Re(ω)) a
ω−ω0

ω − ω0
+
∫ dω

2πif(ω)Θ(Re(ω)− ω0) a
ω−ω0

ω − ω0
.

(C.13)

Both expressions cancel each other up to the Θ-function, i.e. the fact that for the first
integral the ω contour is to the left of the pole at ω0 and for the second one it is to the right.
We therefore move the pole of e.g. the first integral to the right of the pole, picking up a
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factor −2πi times the residue at ω0, and we are left with
∫ dω

2πif(ω)
∫ ∞

0

dt

t
tω−ω0 = f(ω0). (C.14)

The δ-functions allows for the reduction of contour integrals. Eventually, we arrive at

S1 = i

(4π)d/2Γ(C)Γ(D)Γ(E)Γ(µ1)Γ(µ2)

∫
· · ·
∫
dz2

2πi
dz3

2πi
dz4

2πi
dz5

2πi
dz7

2πi
Γ(−z2)Γ(−z3)Γ(−z4)Γ(−z5)Γ(−z7)

Γ(−2z7)

× Γ(2z2 + 2z3 + 2z4 + z − 5 + 2C + 2D + 2E + µ1 + µ2 − d)Γ(−z2 − z3 − z4 + z7 − C −D − E + d/2)

× Γ(z2 + z3 + z4 + z5 − z7 + C +D + E + µ1 − d/2)Γ(−z2 − z3 − z4 − z5 − z7 − C −D − E − µ1 + d/2)

× Γ(−2z2− z3− z4− 2C − 2D − E − µ1 − µ2 + d)Γ(z2 + z3 + C)Γ(z2 + z4 +D)
Γ(−C −D − E − µ1 − µ2 + d) Ψz2+z3+z4−z7+C+D+E−d/2

× (q2)z2(−l2)z3(−(l − q)2)z4(−a · l)z5(−b · l)−2z2−2z3−2z4−z5−2C−2D−2E−µ1−µ2+d(e−ρ)z7 .

(C.15)
In a similar way, we can obtain the following MB representation

S2 =
∫

[dk] 1
(−k2 − i0)A[−(k − q)2 − i0]B(−Ψa · k − i0)λ1(−b · k − i0)λ2

(Ψ = ±1, a · q = b · q = 0)

=
iΓ
(
A+B + λ1+λ2

2 − d
2
)

2(4π)d/2Γ(A)Γ(B)Γ(λ1)Γ(λ2)
Γ
(
d
2 −A−

λ1+λ2
2
)

Γ
(
d
2 −B −

λ1+λ2
2
)

Γ(d−A−B − λ1 − λ2)(q2)A+B+λ1+λ2
2 − d2 Ψ

λ1+λ2
2

×
∫

dz

2πi
Γ(−z)
Γ(−2z)Γ

(
z + λ1 + λ2

2

)
Γ
(
−z + λ1 − λ2

2

)
Γ
(
−z − λ1 − λ2

2

)(
e−ρ

Ψ

)z
.

(C.16)
Iterating the results (C.15) and (C.16), we get the MB representation for the general two-loop
master integral

S=
∫∫

[dk][dl] 1
(−k2 − i0)A[−(k − q)2 − i0]B(−l2 − i0)C [−(l − q)2 − i0]D[−(k − l)2 − i0]E

× 1
(−σ1a · k − i0)λ1(−σ2b · k − i0)λ2(−τ1a · l − i0)µ1(−τ2b · l − i0)µ2

(σi = ±1, τj = ±1, a · q = b · q = 0)

= −1
2(4π)dΓ(C)Γ(D)Γ(E)Γ(µ1)Γ(µ2)(q2)A+B+C+D+E+λ1+λ2+µ1+µ2

2 −d

×
∫
···
∫ dz1

2πi ···
dz6
2πi

Γ(−z1)Γ(−z2)Γ(−z3)Γ(−z4)Γ(−z5)Γ(−z6)
Γ(−2z1)Γ(−2z6) Γ

(
z1+z2+z3+z4+C+D+E+λ1+λ2+µ1+µ2

2 −d2

)
×Γ
(
−z1−z2−z3−z4−z5−C−D−E+λ1−λ2−µ1−µ2

2 +d
2

)
Γ
(
−z1+z2+z3+z4+z5+C+D+E−λ1−λ2−µ1−µ2

2 −d2

)
×

Γ
(
−z2−z3−B−C−D−E−

λ1+λ2+µ1+µ2
2 +d

)
Γ
(
−z2−z4−A−C−D−E−

λ1+λ2+µ1+µ2
2 +d

)
Γ(−2z2−z3−z4−A−B−2C−2D−2E−λ1−λ2−µ1−µ2+2d)Γ(2z2+2z3+2z4+z5+2C+2D+2E+λ2+µ1+µ2−d)

×Γ(2z2+2z3+2z4+z5+2C+2D+2E+µ1+µ2−d)Γ(−z2−z3−z4+z6−C−D−E+d/2)Γ
(
z2+A+B+C+D+E+λ1+λ2+µ1+µ2

2 −d
)

×Γ(z2+z3+z4+z5−z6+C+D+E+µ1−d/2)Γ(−z2−z3−z4−z5−z6−C−D−E−µ1+d/2)

×Γ(−2z2−z3−z4−2C−2D−E−µ1−µ2+d)Γ(z2+z3+C)Γ(z2+z4+D)
Γ(−z3+A)Γ(−z4+B)Γ(−z5+λ1)Γ(−C−D−E−µ1−µ2+d) (e−ρ)z1+z6 (σ1σ2)−z1−z2−z3−z4−C−D−E−

λ1+λ2+µ1+µ2
2 + d

2

× σ−z5
1 σ2z2+2z3+2z4+z5+2C+2D+2E+µ1+µ2−d

2 (τ1τ2)z2+z3+z4−z6+C+D+E−d/2.

(C.17)

The inclusion of the parameters σi and τj in (C.17) is very useful when computing principal
values.
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D
Details of Some Computations

Cancellation of Imaginary Parts for Diagram (d1), Fig. III.7

Defining the measure
∫
dΦ ≡

∫
ddk1

∫
ddk2

∫
ddk3δ

(d)(q − k1 − k2 − k3) 1
k2

1k
2
2k

2
3

(D.1)

where ki, i = 1, 2, 3 denote the momenta of the three t-channel propagators, diagram (d1)
reads up to overall factors

(k1) =
∫
dΦ[2g+

2 (3, 2, 1) + g+
2 (3, 1, 2)]g−2 (3, 2, 1) =

∫
dΦ[g+

2 (3, 2, 1)− g+
2 (1, 3, 2)]g−2 (3, 2, 1), (D.2)

where we have used that g2(3, 2, 1) + g(3, 1, 2) = −g(1, 3, 2) . g2 can be written as

g(3, 2, 1) = − 1
3!

[
2

(k1 − i0)(k3 + i0) + 2
(k1 + i0)(k3 − i0) −

1
(k1 − i0)(k2 + i0)

− 1
(k1 + i0)(k2 − i0) −

1
(k3 − i0)(k2 + i0) −

1
(k3 + i0)(k2 − i0)

]
, (D.3)
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and therefore

g(3, 2, 1)− g(1, 3, 2) = −1
2

[
1

(k1 − i0)(k3 + i0) + 1
(k1 + i0)(k3 − i0)

− 1
(k1 − i0)(k2 + i0) −

1
(k1 + i0)(k2 − i0)

]
. (D.4)

We make now the following observation: the combinations of terms

1
(na · k1 − i0)(na · k3 + i0)

1
(nb · k1 − i0)(nb · k−3 + i0) (D.5)

lead, with k1 = k, k2 = k− l and k3 = q− l, to the master integral D (Tab. III.1), for which
the result is known. Combinations such as

1
(na · k1 + i0)(na · k3 − i0)

1
(nb · k1 − i0)(nb · k3 + i0) (D.6)

can be treated with the na → −na trick explained in Sec. III.3.2. Note that the same
is true of we exchange k3 ↔ k2 as we simply reparametrize momenta. Since integral D is
proportional to ρ, making ρ→ ρ− iπ we do not get any enhanced imaginary parts. We are
therefore left with terms of the form

∫
dΦ
[

1
(na · k1 − i0)(na · k3 + i0) + 1

(na · k1 + i0)(na · k3 − i0)

]

×
[

1
(nb · k1 + i0)(nb · k2 − i0) + 1

(nb · k1 + i0)(nb · k2 − i0)

]
. (D.7)

To demonstrate that such diagrams have no enhanced imaginary part, we note that

1
(nb · k1 − i0)(nb · k2 + i0) = − 1

(nb · k1 − i0)(nb · k1 + nb · k3 − i0)

= − 1
(nb · k1 − i0)(nb · k3 − i0) −

1
(nb · k3 − i0)(nb · k2 + i0) (D.8)

and

1
(nb · k1 − i0)(nb · k2 + i0)

= 1
2

[ 1
(nb · k1 − i0)(nb · k2 + i0) −

1
(nb · k1 − i0)(nb · k3 − i0) −

1
(nb · k3 − i0)(nb · k2 + i0)

]
. (D.9)

Since the first line of (D.7) is symmetric under k3 ↔ k1, the first and the last terms in (D.9)
cancel and we are left with
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−
∫
dΦ
[

1
(na · k1 − i0)(na · k3 + i0) + 1

(na · k1 + i0)(na · k3 − i0)

]
[

1
(nb · k1 − i0)(nb · k3 − i0) + 1

(nb · k1 + i0)(nb · k3 + i0)

]
. (D.10)

Now

1
(nb · k1 ∓ i0)(nb · k3 ∓ i0) = 1

(nb · k1 ± i0)(nb · k3 ∓ i0) ± 2iπδ(nb · k1) 1
(nb · k3 ∓ i0) ,

(D.11)

and

1
(nb · k1 + i0)(nb · k3 + i0) + 1

(nb · k1 − i0)(nb · k3 − i0)

= 1
(nb · k1 − i0)(nb · k3 + i0) + 1

(nb · k1 + i0)(nb · k3 − i0) − 4π2δ(nb · k1)δ(nb · k3). (D.12)

Inserting (D.12) into (D.10) we find again terms which can (up to na → −na etc.) be written
as the master integral D. We therefore only need to address the term

∫
dΦ
[ 1

(na · k1 − i0)(na · k3 + i0) + 1
(na · k1 + i0)(na · k3 − i0)

]
4π2δ(nb · k1)δ(nb · k3). (D.13)

Using that nb · k = k− + k+e−ρ we have, up to overall numerical factors and omitting the
Jacobian factor ∼ 1/(1 + eρ),

∫ 3∏
i=1

dk+
i d

d−2ki
1

(k+
i )2e−ρ − k2

i

[ 1
(k+

1 − i0)(k+
3 + i0)

+ 1
k+

1 + i0)(k+
3 − i0)

]
δ(

3∑
j=1

k+
j )δ(d−2)(

3∑
j=1
kj).

(D.14)

With the help of (D.9), and after relabeling momenta (e.g. k1 → k2) for the last term we
end up with the second term of the above expression and find altogether

∫ 3∏
i=1

dk+
i d

d−2ki
1

(k+
i )2e−ρ − k2

i

[
− 1

(k1 − i0)(k2 − i0) + 1
k+

1 + i0)(k+
3 − i0)

]
δ(

3∑
j=1

k+
j )δ(d−2)(

3∑
j=1
kj)

=
∫ 3∏

i=1
dk+

i d
d−2ki

1
(k+
i )2e−ρ − k2

i

[
− 2iπδ(k+

1 ) 1
(k+

3 − i0)

]
δ(

3∑
j=1

k+
j )δ(d−2)(

3∑
j=1
kj),

(D.15)

where we relabeled again the momenta for the first term. Evaluating the delta functions in
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the plus momenta we obtain k+
1 = 0 and k+

2 = −k+
3 and

−2iπ
∫
dk+

3

3∏
i=1

dd−2ki
1
−k2

1

1
(k+

3 )2e−ρ − k2
2

1
(k+

3 )2e−ρ − k2
3

[ 1
[k+

3 ]PV
+ iπδ(k+

3 )
]
δd−2(

3∑
j=1
kj). (D.16)

The integral over the first term is now convergent at infinity and antisymmetric under k+
3 →

−k+
3 and therefore vanishes. The second term is trivially evaluated. We conclude that

diagram (k1) has no enhanced imaginary parts.

Details on the Virtual Corrections to the Gluon-Induced Forward Jet Vertex

We refer for the notation to Fig. III.14. Tadpole contributions vanish in dimensional reg-
ularization. The contribution for each of these diagrams can be written in terms of master
integrals labeled with the following notation: M, S, P, and Q denote, respectively, the ex-
istence of a propagator of the form k+(→ nb · k), k2, (k − pa)2 or (k − q)2. The number at
the end (0, 1, 2, or 3) indicates how many tensor indices are present in the numerator (e.g.
2 stands for a factor kµkν). ξ = n2

a = n2
b = 4e−ρ are chosen to indicate the squares of the

new light-cone vectors. For diagrams (E), (F), (I) and (J) in Fig. III.14 the contribution
with reversed arrows is included. Diagrams (G) and (H) turn out to vanish completely. The
symmetry factors for the diagrams, which are included, are equal to one apart from diagrams
(C) and (D), for which it is two. In more detail, these are all the contributing expressions:

iA(A) = − ig
3

2 q
2fabcNc

∫
ddk

(2π)d
(k+ − 2p+

a )2 ε · ε∗ + 4 ξ ε · k ε∗ · (k − q)
k+k2(k − pa)2(k − q)2

= − ig
3

2 q
2fabcNc {16e−ρεµε∗ν [MSPQ2]− 16e−ρε∗ · q εµ[MSPQ1]− 4p+

a ε · ε∗[SPQ0]

+ 4(p+
a )2ε · ε∗[MSPQ0] + (n+)µε · ε∗[SPQ1]};

iA(B) = − ig
3

2 fabcNc

∫
ddk

(2π)d
1

k2(k − pa)2(k − q)2 [4p+
a {ε · ε∗((k − pa)2 − q2)

+ 4(ε · k ε∗ · q − ε · q ε∗ · k)}+ k+{7q2ε · ε∗ + (18 + 16ε)ε · k ε∗ · (k − q) + 16 ε · q ε∗ · q}]

= − ig
3

2 fabcNc{(18 + 16ε)(n+)µενε∗ρ[SPQ3]− (18 + 16ε)(n+)µεν ε∗ · q[SPQ2]

+ [(n+)µ(16ε · q ε∗ · q + 7q2ε · ε∗)− 16p+
a (ε · q ε∗µ − ε∗ · q εµ)][SPQ1]

− 4p+
a q

2ε · ε∗[SPQ0] + 4p+
a ε · ε∗[SQ0]};

iA(C) = − ig
3

2 fabcNc

∫
ddk

(2π)d
1

k+k2(k − q)2 [4ξ(ε · k ε∗ · q − ε · q ε∗ · k)

+ ε · ε∗(4k+p+
a + ξ(2(k − pa)2 − q2)]

= − ig
3

2 fabcNc{−16e−ρ(ε · ε∗paµ + ε · q ε∗µ − ε∗ · q εµ)[MSQ1]

− 4e−ρq2ε · ε∗[MSQ0] + 4p+
a ε · ε∗[SQ0]};
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iA(D) = ig3

2q2 fabcNc

∫
ddk

(2π)d
1

k2(k − q)2 [−8p+
a q

2ε · ε∗ + (5 + 4ε)k+{ε · ε∗(q2

− 2(k − pa)2) + 4 ε · q ε∗ · k − 4 ε · k ε∗ · q}]

= ig3

2q2 fabcNc{(20 + 16ε)(n+)µ(ε · q ε∗ν − ε∗ · q εν + ε · ε∗paν)[SQ2]

+ (5 + 4ε)q2ε · ε∗(n+)µ[SQ1]− 8p+
a q

2ε · ε∗[SQ0]};

iA(E) = 2ig3

q2 fabcNf

∫
ddk

(2π)d
1

k2(k − q)2 [p+
a q

2ε · ε∗ + k+[ε · ε∗(2(k − pa)2 − q2)

+ 4(ε · k ε∗ · q − ε · q ε∗ · k)]]

= −2ig3

q2 fabcNf{4(n+)µ(ε · q ε∗ν − ε∗ · q εν + ε · ε∗paν)[SQ2]

+ ε · ε∗q2(n+)µ[SQ1]− p+
a q

2ε · ε∗[SQ0]};

iA(F) = ig3

2q2 fabcNc

∫
ddk

(2π)d
k+

k2(k − q)2 [ε · ε∗(2(k − pa)2 − q2) + 4(ε · k ε∗ · q − ε · q ε∗ · k)]

= − ig
3

2q2 fabcNc{4(n+)µ(ε · ε∗paν + ε · q ε∗ν − ε∗ · q εν)[SQ2]

+ q2ε · ε∗(n+)µ[SQ1]};

iA(I) = ig3fabcNf

∫
ddk

(2π)d
1

k2(k − pa)2(k − q)2 [p+
a (−q2ε · ε∗

+ 2(ε · k ε∗ · q − ε · q ε∗ · k)) + k+(ε · ε∗(q2 − 2(k − pa)2)

+ 8 ε · k ε∗ · (k − q) + 2ε · q ε∗ · q)]

= ig3fabcNf {8(n+)µεν ε∗ρ[SPQ3]− 8ε∗ · q(n+)µεν [SPQ2]

+ [(q2ε · ε∗ + 2ε · q ε∗ · q)(n+)µ + 2p+
a ε
∗ · q εµ − 2p+

a ε · q ε∗µ][SPQ1]− q2p+
a ε · ε∗[SPQ0]};

iA(J) = ig3fabcNc

∫
ddk

(2π)d
k+

k2(k − pa)2(k − q)2 ε · k ε
∗ · (k − q)

= ig3fabcNc(n+)µ{ενε∗ρ[SPQ3]− ε∗ · q εν [SPQ2]}.

Those integrals which are not suppressed in the ρ→∞ limit are:

[SQ0] = i

(4π)2+ε (q
2)εΓ(−ε)Γ2(1 + ε)

Γ(2 + 2ε) ; [SQ2] = (gµνq2 + qµqν(4 + 2ε)) 1
4(3 + 2ε) [SQ0] ;

[SPQ0] = 1 + 2ε
εq2 [SQ0] ; [SPQ1] =

(
qµ + 1

ε
pµa

)
[SQ0] ;

[SPQ2] =
{ 1

2 + 2ε

[1
2g

µν +
(
qµpνa + pµaq

ν

q2

)
+ 2
ε

pµap
ν
a

q2

]
+ 1
q2 q

µqν
}

[SQ0] ;

[SPQ3] = 1
ε(1 + ε)(3 + 2ε)

{ 1
q2

[
pµap

ν
ap
ρ
a + εqµpνpρ + 1

2ε(1 + ε)qµqνpρ

− 1
6(1− ε)(2 + ε)2qµqνqρ

]
+ ε

4 [pµgνρ + (1 + ε)qµgνρ]

+ cyclic permutations of µ, ν and ρ

}
[SQ0] ;
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[MSQ1] = bµ

ξ
[SQ0] + 1

2q
µ

 −i
(4π)2+ε

Γ2
(

1
2 + ε

)
Γ
(

1
2 − ε

)
Γ
(

1
2

)
Γ(1 + 2ε)(q2)

1
2−εξ

1
2

 ;

[MSPQ0] = − i

(4π)2+ε
(q2)ε−1

p+
a

Γ(1− ε)Γ2(ε)
Γ(2ε)

(
ln
[
p+
a

|q|

]
+ ρ

2 + ψ(1)− 2ψ(ε) + ψ(1− ε)
2

)
.

Details on the Real Correction to Gluon-Induced Forward Jet Vertex

We refer for the notation to Figs. III.12, III.13. We use the following choice of polarization vectors:
εa · pa = εb · p = εc · q = εa · n+ = εb · n+ = εc · n+ = 0; together with the Sudakov decomposition

pa = p+
a

n−

2 , pb = p−b
n+

2 , p = (p+
a − q+)n

−

2 + p−
n+

2 + k⊥ − q⊥,

k = k−
n+

2 + k⊥, q = q+n
−

2 + (k− − p−)n
+

2 + q⊥.

(D.17)

The kinematic constraint k+ = 0 makes it possible the parametrization q+ = zp+
a , p

+
a = (1− z)p+

a .
We will use the notation (v⊥)2 = −v2. With our choice of polarization vectors, diagrams (a), (b),
(c), (d) and (i) are automatically zero. Diagram (h) turns out to vanish as well. One should also
recall that the on-shell constraints imply p2

a = p2 = q2 = 0. Therefore

p2 = 0→ p− = (k − q)2

(1− z)p+
a

; q2 = 0→ k− = z(k − q)2 + (1− z)q2

z(1− z)p+
a

= (q − zk)2 + z(1− z)k2

z(1− z)p+
a

.

(D.18)
We can introduce the Mandelstam invariants s = (pa + k)2 = (p + q)2, t = (pa − p)2 =
(q − k)2, u = (pa − q)2 = (p− k)2. Then all possible scalar products are

pa · p = − t2 ; pa · q = −u2 = s+ t+ k2

2 ; pa · k = s+ k2

2 ; p · q = s

2 ; k · q = − t+ k2

2 ; k · p = −u+ k2

2 = s+ t

2 ;

k · q = 1
2(zs+ t+ (1 + z)k2), q2 = −zu = z(s+ t+ k2); s = (q − zk)2

z(1− z) , t = − (k − q)2

1− z .

(D.19)
The amplitudes for the non-vanishing diagrams can be finally written in the following form

iA(e) = εaµε
∗
bνε
∗
cρ2ig2 fadefbce

s
p+
a

{
gνρ[kµ(1− 2z)− pµ + qµ] + gµν(2pρ + qρ)− gµρ(2qν + pν)

}
;

iA(f) = εaµε
∗
bνε
∗
cρ(−ig2)fabefcde

t
p+
a

{
− 4z(gνρpµ + gµρpνa) + gµν [kρ(2− z) + pρ(2 + z) + pρa(−2 + 3z)]

}
;

iA(g) = εaµε
∗
bνε
∗
cρ(−ig2)facefbde

u
p+
a

{
− 4(1− z)[gµνpρa + gνρqµ] + gµρ[kν(1 + z) + pνa(1− 3z) + qν(3− z)]

}
;

iA(j) = −2g2facd t
c

s
εaµ[kµ(n+)σ − p+

a g
µσ]ū(p)γσv(q);

iA(k) = − ig
2 tdta

u
εaµū(p)/n+(/pa − /q)γ

µv(q);

iA(l) = ig2 tatd

t
εaµū(p)γµ(/pa − /p)/n

+v(q).
(D.20)
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