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Chapter 1

Resumen en espanol

1 Introduccidén

Las Fcuaciones en Derivadas Parciales son una herramienta increible y
poderosa a través de la cual podemos estudiar el mundo y, si hay suerte,
poder entenderlo mejor.

Muchas ecuaciones modelan comportamientos fisicos que se suceden en
la naturaleza y poder estudiar ese tipo de ecuaciones es un trabajo emocio-
nante.

No todas las ecuaciones diferenciales estan intrinsecamente relacionadas
o modelan de manera directa comportamientos en nuestra naturaleza, pero
el progreso en el estudio de este area puede significar un pequeno paso para
conseguir futuros logros en este campo.

Es por ello que es importante continuar estudiando y entendiendo mejor
las herramientas y los argumentos que en un futuro podrian ser esenciales
para alcanzar algo més grande.

En esta memoria se estudian problemas y técnicas clasicas de Fcuaciones
en Derivadas Parciales. En particular, se estudian problemas elipticos y
parabdlicos y la relacion de éstos con el potencial de Hardy-Leray.

Durante los tltimos 20 anos la influencia del potencial de Hardy en el
comportamiento de las ecuaciones elipticas y parabdlicas ha sido estudiada
ampliamente, véanse las siguientes referencias [20], [34], [33], [4], [5], [6], [7],
(8], [9], [11].

Vamos a recordar la desigualdad de Hardy-Leray que utilizaremos asi-
duamente durante este trabajo.

Theorem 1. (Desigualdad de Hardy-Leray). Sea N > 3, entonces

2
AN/ ﬂdz g/ |Vo|?dzx, para todo ¢ € C(RY), (1.1)
RN |z RN

con Ay = (%)2 la constante dptima que no se alcanza en DV2(RY), la
clausura de C3°(R™N) respecto a la norma L%del gradiente.
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Si Q € RN es un dominio acotado tal que 0 € Q, obtenemos las mismas
conclusiones en el espacio DV2(Q).

Si 0 € 092, la constante dependera de 02 y el alcanzarla de la geometria
de la frontera en un entorno del 0. Véanse [55], [39], [59] y [60] para més
detalle.

Una generalizacién de esta desigualdad es el siguiente Teorema.

Theorem 2. (Desigualdad de Hardy-Leray generalizada).
Sea 1l <p< N yucDLPRN). Entonces, se tiene

|uf?

{s p —dlf < ;; Uj(ll
N -

P
con Ay, = <—p> la constante optima que no se alcanza.
p

La constante no se alcanza en DYP(Q) si Q € RN es un dominio acotado
tal que 0 € Q.

Véase [58] para algunas aplicaciones de esta desigualdad.

La ecuacién de Euler correspondiente en este caso tiene un operador
quasilineal, el p-Laplaciano, —Ayu = —div(|[Vu[P~2Vu), el cual atafie cierta
dificultad en el estudio de este modelo mas general.

Las desigualdades anteriores son un caso particular del siguiente Teo-
rema.

Theorem 3. (Desigualdad de Caffarelli-Khon-Nirenberg) Sea u € Wol’p(Q)
y 1 <p< N, entonces eziste una constante positiva C = C(N,p,~) tal que

. 1/p*(7) 1/p
< / fuf? <“0|x|“fdx> <cC ( / |vu|de> , (1.2)
Q Q

con p*(y) = 28D,

Véanse los detalles en [36].

p*(7) es el exponente critico en la inclusién de I/VO1 P(Q) en el espacio de
Lebesgue pesado correspondiente.

Consecuentemente, p*(0) = p* es el exponente critico de Sobolev y
p*(—p) = p corresponde con el exponente critico de Hardy-Sobolev.
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Los problemas

En este trabajo estudiaremos la solubilidad de algunos problemas supercriticos
relacionados con las desigualdades de Hardy introducidas anteriormente. En
particular, vamos a considerar los siguientes problemas elipticos y parabdlicos.

Problemas elipticos

Empezaremos considerando el siguiente problema

p

—Au:’?;?, u>0 en§,
(1.3)
u=20 en 01},

con p > 0, Q C RY un dominio acotado y N > 3.

Uno de los objetivos de esta memoria es enfatizar la importancia de la
posicién del origen respecto del dominio §2 y su influencia en la solubilidad
del problema.

Los resultados previos sobre existencia de solucién del problema (1.3) en
funcién del exponente p pueden resumirse de la siguiente forma:

e En el caso sub-lineal, 0 < p < 1, se puede probar la existencia de
soluciones de energia independientemente de la posicion del cero en el
dominio, véase [4].

e El caso lineal, p = 1, ha sido estudiado en [31], los autores estudian
la existencia de soluciones en funcién de un dato f en el lado derecho
de la ecuacion. La existencia de soluciéon en el caso lineal con una
perturbacién de orden cero puede verse en [34].

Si 0 € 99, el problema ha sido estudiado en [55]. Considerando

2
() = inf{/g[VqﬁF sewir@, [ Zo=1) o

"o |z
N2
los autores prueban que si p(Q) < p(RY) = R entonces p(§2) se

alcanza y el problema tiene solucién positiva. En caso contrario,
1(22) > u(RY), no hay solucién.

FEn esta memoria vamos a considerar principalmente el caso supercritico,
p>1.
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El problema semilineal,

p

—Au:u—, u>0 en§,
|2
(1.5)
u=20 on 052,

con€dNyl<p< % ha sido estudiado en [50]. Los autores utilizan
un argumento perturbativo que relaciona la existencia de soluciéon con la
geometria del dominio. En particular, usando un argumento basado en
una identidad de Pohozaev, se prueba que el problema no tiene solucién
de energia en dominios estrellados (respecto del cero). En este articulo
también se prueba la existencia de soluciones de energia si el dominio tiene
una geometria particular que detallaremos més adelante en este trabajo.

e En esta memoria vamos a considerar el caso 0 € 9f) en el siguiente
problema perturbado de (1.5),

up
—Au = W—F)\g(u), u>0 en,
(1.6)
u=20 en 00},

con A >0, p>1y g(u) un término sublineal.

e Con el objetivo de mostrar la influencia de la posiciéon del polo con
respecto al dominio en la existencia de soluciones, consideraremos
también el caso 0 € €2 en el problema (1.5), con Q C RY un dominio
acotado y p > 1.

Recordemos que si 0 € 2 y u es una solucion distribucional del pro-
blema

up
—Au=A—3, enf)
|z| (1.7)

u=0 en OS2,

necesariamente, u = 0 (véase [32] para mds detalles). Con el objetivo
de solventar esta obstruccion en la existencia de solucion si 0 € €,
en este trabajo consideraremos el problema (1.7) con un término de
absorcién en el lado izquierdo de la ecuacion,

p
—Au+ |Vul? :)\;?Jrf, u>0 enQ,
(1.8)

u=0 en 01,
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con 1 <p<2 fée LYQ) una funcién positiva y A > 0.

La existencia de solucién para el caso critico, p = 1, ha sido estudiada
en [9] para todo A > 0 y para todo f € L'(Q2) con f > 0.

e El siguiente problema que vamos a considerar en esta memoria es el
problema supercricito,

q
—Apu = —div(|VuP*Vu) = u—, u>0 en
’ [P 19)

u=0 en 01},

con0 € 9Ny q > p—1. El operador p-Laplaciano es una generalizacién
no standard del operador Laplaciano, este operador no es lineal y no se
puede integrar dos veces por partes y puede ser degenerado (si p > 2)
o singular (si p < 2) en el conjunto critico Z,, = {zx € Q : Vu(z) = 0}.

Hay muchas referencias relacionadas con la existencia de solucién en
problemas con el p-Laplaciano como operador principal y con coefi-
cientes singulares: (3], [5], [6], [13], [37], [38], [41], [57], [58], [61], [58],
[69], [80], [81], [83], [84], [92].

e En este trabajo nos centraremos también en el estudio de una pertur-
bacién del problema (1.9),

q
—Ayu = —div(|VuP~2Vu) = ‘Zj +2g(w),  u>0 enQ,
u=20 en 0f).

(1.10)

con 0 € 90, ¢ >p—1, A >0y g(u) una perturbacién subdifusiva en
el sentido siguiente
im 908) _
im

s—0 sP—1

e Como en el caso semilineal, si 0 € ) analizaremos también el problema
(1.10) con un término de absorcién,

uq

_ P _—
A+ |Vl =\

+ f, u>0 enQ,
(1.11)

u =0 en 052,

conl<p<N,qg>p—1, fc L' Q) una funcién positiva y A > 0.
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En este problema estudiaremos también la simetria de las soluciones
de (1.11).

Hay muchas referencias en la literatura en las que se obtienen resul-
tados de simetria para el operador p-Laplaciano, véanse por ejemplo:
[46], [47], [48], [49], [73].

La dificultad mayor en este caso estd en la no linearidad de la parte
principal de la ecuacién y la consecuente complicacién para obtener
un resultado fuerte de comparacion.

Problemas parabdlicos

La existencia de solucién de la ecuacién del calor con el potencial de Hardy-
Leray,

p
w — Au = A‘Zﬁ en Qr = Q x (0,7),
u > 0 en Qr, (1.12)
u(z,0) = wp(x)>0 enQ,
u = 0 en 002 x (0,7,

ha sido estudiada para el caso 0 € :

1. Sip = 1, Baras-Goldstein probaron en [20] que existe solucién de (1.12)
para un intervalo positivo del parametro A\, més precisamente:

N —2\2
e SiA< Ay = (T) , el problema (1.12) con p = 1 y dato f

en el lado derecho de la ecuacion, tiene una tnica solucién si

T
/ |z| " ug(x)de < ooy / / |z| = f dx dt < o0,
Q 0 Q

con a1 la raiz mas pequeiia del polinomio o — (N —2)a+ A = 0.

e Si A > Ay, el problema (1.12) con p = 1 no tiene solucién para
el dato inicial ug > 0.

2. Sip > 1, Brezis-Cabré en [32] probaron un resultado de no existencia
para soluciones distribucionales.

e En esta memoria vamos a considerar primero el problema parabdlico
cuando el polo estd en la frontera del dominio, 0 € 92. En concreto,
estudiaremos el problema de evolucién asociado a (1.5), es decir, el
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siguiente problema parabdlico

up
up —Au = B en Qr =Q x (0,7,
u > 0 en Qr, (1.13)
u(z,0) = wg(x) >0 enQ,
u = 0 en 00 x (0,T).

Consideraremos el caso critico, p = 1y supercritico, p > 1.

e En el dltimo capitulo de esta memoria, estudiaremos el problema (1.13)
con 0 € Q y con un término regularizante en el lado izquierdo de la
ecuacién, mas particularmente, analizaremos la existencia de solucion
del siguiente problema,

p
w— Autu|Vul2 = A+ f enQp=Qx(0,T),

|z
u > 0 en QOr, (1.14)
u(z,0) = wup(z) en €,
u = 0 en 082 x (0,7,

con0€Q,1<p<3,fec L' (Qr)una funcién positiva, ug € L'(Q) y
A> 0.

2 Organizacion del trabajo

En esta Seccién explicaremos mas especificamente la estructura y contenido
del trabajo.

Esta memoria estd dividida en las siguientes tres partes:

PARTE 1I: Problemas elipticos supercriticos con el polo en el interior del
dominio.

En esta primera parte estudiamos el efecto regularizante de algunas per-
turbaciones en el problema (1.3) con 0 € Q y p > 1. Consideraremos el
problema con el operador Laplaciano y el p-Laplaciano. Uno de los re-
sultados mas importantes de esta parte es el estudio de la simetria de las
soluciones en el caso quasilineal, para ello utilizaremos el método del Moving
Plane.
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PARTE II: Problemas elipticos supercriticos con el polo en la frontera
del dominio.

En esta segunda parte consideraremos el comportamiento del problema
(1.3) cuando 0 € 99Q. Al igual que en la primera parte, estudiaremos este
problema con el operador Laplaciano y con el p-Laplaciano. En esta parte
queremos enfatizar en la influencia de la posicién relativa del polo con res-
pecto al dominio para la existencia de solucién.

PARTE III: Problemas parabolicos criticos y supercriticos con respecto
al potencial de Hardy.

En esta ultima parte estudiamos el problema parabdlico asociado a (1.3).
En el primer Capitulo consideramos el caso 0 € 92 y en el segundo tratare-
mos de regularizar el problema si 0 €  con un término que depende del
gradiente, evitando asi la obstrucién en la existencia de solucién obtenida
en [32].

A continuacién detallaremos el contenido de cada capitulo de la memoria.

PARTE I: Problemas elipticos supercriticos con el polo en el interior
del dominio.

e En el Capitulo 3 estudiamos el problema supercritico con el operador
Laplaciano y 0 € €.

Ma3s concretamente, vamos a considerar el siguiente problema

P
—Au+!Vu\2:)\u—2+f, u>0 enQ,
|| (1.15)
u=20 en 0f),

con A\>0,p>1, feL}Q), f>0y N >3.

Lo mas destacable de este Capitulo es que en el caso 1 < p < 2, en
contraposicién al resultado de no existencia para el problema sin per-
turbar, probamos que el término gradiente regulariza el problema y es
posible hallar una solucién para todo A > 0. Notese que para el caso
p > 2 se puede obtener un resultado similar regularizando el problema
con el término |u|?~tu|Vu|? siendo 8 > p — 2.

Los resultados de este Capitulo pueden verse en la sequnda parte de

[74]-
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e En el Capitulo 4 consideramos el problema supercritico con el ope-
rador p-Laplaciano y 0 € Q.

En particular, estudiamos la existencia y las propiedades cualitativas
de las soluciones del problema

uq

—Apu+ |VulP =9 +f enQ)
g [P (1.16)

©u>0en, u=0 en 01,

donde € es un dominio acotado en R con N > 3 y tal que 0 € ,
9>0,p—1<qg<p, f>0, feL(Q)yl<p<N.

La Seccién 2 estd dedicada a encontrar solucién al problema (1.16).
La existencia de solucién enfatiza el hecho de que el término |VulP en
el lado izquierdo de (1.16) es suficiente para obtener un resultado de
rotura de resonancia.

La Seccién 3 se centra en las propiedades cualitativas de las solu-
ciones de (1.16), en particular probamos que, bajo ciertas condiciones
en el dominio y en el dato f, la soluciones de (1.16) son simétricas.
El argumento mas importante utilizado en esta parte es el método del
Moving Plane, que puede encontrarse en [87].

Los resultados de este Capitulo pueden verse en [72].

PARTE Il: Problemas elipticos supercriticos con el polo en la frontera
del dominio.

e En el Capitulo 5 consideraremos el siguiente problema supercritico
con el operador Laplaciano y con 0 € 082,

P
—Au:u—2+)\uq, u>0 enf),
|| (1.17)

u =20 en 0,

dondep>1,0<qg<1,QcCcRN con N >3y \> 0 suficientemente
pequeno.

En este Capitulo probaremos la existencia de solucién u en I/VO1 2(Q) N
L*>(§2) para un intervalo de A > 0 y sin ninguna restriccién por arriba
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en el valor de p ni en la geometria del dominio, en contraste con los
resultados obtenidos en [50].

La idea para la prueba del resultado de existencia es encontrar una
supersolucién de (1.17) para un intervalo positivo de A, y obtener una
subsolucion para todo A > 0. Probaremos que la supersolucion y la
subsolucion estan ordenadas y consideraremos los problemas iterados.
Utilizando un principio de comparacién obtendremos una sucesién aco-
tada y ordenada, de manera que podemos pasar al limite y hallar una
solucién en I/VO1 2(€2) al problema (1.17) para un intervalo de .

Los resultados de este Capitulo pueden verse en la primera parte de
[74].

En el Capitulo 6 generalizamos el resultado del Capitulo anterior
para el operador p-Laplaciano y también el resultado obtenido en [50],
considerando en este caso el problema con una funcién g(\, z,u) en el
lado derecho de la ecuacion, es decir,

q

—Apu = ;ﬁ + g\, z,u) enQ,
u >0 en ), (1.18)
u =0 en 0f),

conl<p<N,g>p—1y0¢€N.

Este Capitulo estd organizado de la siguiente manera:

— En la Seccién 2 estudiamos el caso g(A, z,u) = 0. En la primera
parte de la Seccién, utilizando una identidad de Pohozaev obte-
nemos un resultado de no existencia para soluciones de energia
en dominios estrellados con respecto al 0. En la segunda parte de
esta Seccién, probamos la existencia de soluciones de energia en
un tipo de dominios no estrellados utilizando un enfoque varia-
cional en una perturbacion del funcional de energia asociado al
problema (1.18).

— En la Seccién 3 consideramos el caso g(\,z,u) = Af(z)u” en
el problema (1.18). Probamos la existencia de solucién u en
WO1 P(Q) N L>®(Q) por el método de siper y subsolucién. En
este caso, la existencia de solucién no depende de la geometria
del dominio en contraste con el caso anterior, g(\, z,u) = 0.

Los resultados de este Capitulo pueden verse en [71].
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PARTE Ill: Problemas parabdlicos criticos y supercriticos con respecto
al potencial de Hardy.

e En el Capitulo 7 estudiamos la variacién del problema (1.3) en el
tiempo con 0 € Jf). En concreto, obtenemos un resultado de existencia
para el problema parabdlico siguiente

up
U — Au = A\— en Qr,
|z
u>0 en Qr, (1.19)
u(z,0) = ug(x) >0 en (2,
u=0 en 00 x (0,7,

donde p > 1y Q C RY es un dominio acotado con 0 € 9.

El principal objetivo de este Capitulo es mostrar la diferencia de com-
portamiento del problema (1.19) cuando 0 € 9Q y cuando 0 € .

Maés precisamente, el contenido de este Capitulo es el siguiente:

— En la Seccién 2 estudiamos el caso lineal, p = 1, encontrando
una tinica solucién distribucional para todo A > 0y ug € L*(Q).
Es decir, probamos que no hay un resultado del tipo Baras-
Goldstein si 0 € 09).

— En la Seccion 3 consideramos el caso supercritico, p > 1. Probamos
que existe una unica solucién bajo ciertas condiciones en el dato
inicial.

— En la Seccién 4 analizamos el caso supercritico anadiendo un
término de reaccién pu?, con 0 < ¢ < 1. Probaremos la existencia
de solucion para todo p < ppo.

Los resultados de este Capitulo pueden verse en [19].

e En el Capitulo 8 estudiamos la existencia de solucién del siguiente
problema supercritico con 0 € €,

p
uy — At + u|Vul? :)\‘Z?—Ff en Qr = Q x (0,7),
u>0 en Qr, (1.20)
u(z,0) = up(z) >0 en (2,
u=0 en 002 x (0,7,

donde © c RN con N > 3, es un dominio acotado que contiene al
origen, 1 < p < 3y f es una funcién medible no negativa.
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El principal objetivo de este Capitulo es tener una condicién en p
para obtener la existencia de solucién del problema (1.20) para todo
f e LYQr),up € L(Q) y para todo A > 0.

Probaremos por un argumento de aproximacién que si p < 3, el
término de absorcién u|Vu|? tiene un efecto regularizante en la ecuacion
y permite obtener un resultado de existencia.

Es importante notar que para p > 3 es suficiente incluir el término
|u|9~ u|Vu|? con ¢ > p — 2 para regularizar el problema.

Los resultados de este Capitulo pueden verse en [1].

! Esta memoria ha estado parcialmente subvencionada con los proyectos MTM2007-
65018 y MTM2010-18128
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Chapter 2

Introduction

1 The Hardy potential: Presentation

Partial Differential Fquations are a classic tool used to study models that
attempt to understand better the world. Many physical phenomena in the
nature are described by Partial Differential Equations and this study is
important in order to predict qualitative or quantitative behaviors and to
analyze observations. Nowadays, the application of this powerful tool has
been extended to study models in Biology, Finances and Technology.

In this work we will study elliptic and also parabolic problems involving
the Hardy-Leray potential. The Hardy-Leray potential is related to the
analytical expression, for instance, of the Heisenberg’s uncertainty principle
in Quantum Mechanics, see for instance [56] and [21] among other references.
It also appears as a borderline example for regularity, existence of eigenvalues
and in the linearization of some supercritical semilinear elliptic problems.

It is worthy to point out that during the last 20 years, the influence of
a Hardy potential in the behavior of Elliptic and Parabolic Equations has
been widely studied in the literature, see for instance [20], [34], [33], [4], [5],
[6], [7], 18], [9], [11].

More precisely, we recall the following Hardy’s inequality can be stated
as follows

Theorem 4. (Hardy’s inequality). Assume that N > 3, then

2
AN/ %dx < / |Vo|?dz, for all ¢ € C(RYN), (2.1)
RN |7 RN
where Ay = (%)2 is the optimal constant that is not reached in DV2(RY),
the closure of CSO(RN ) respect to the L?-norm of the gradient.

Moreover, if Q@ € RN is a bounded domain such that 0 € Q, the same
conclusion holds in DY2(Q).

When 0 € 09 the inequality is different, for instance, the constant de-
pends on I and its attainability on the geometry of the boundary 02 in
a neighborhood of 0. See, for instance [55] and [39] and also [59], [60] for
related problems.
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A natural extension of the previous result is the corresponding Hardy’s
inequality to the homogeneous Sobolev space complection of the test func-
tions with respect to the LP-norm of the gradient.

More precisely, we have the following Theorem.

Theorem 5. (Hardy’s inequality generalized). Suppose 1 < p < N and
u € DYP(RN). Then, we have

|uf?
AN —dz < |VulPdx,
" Jrw [l RN
N —

P
with An,, = (_p) the optimal constant which is not achieved.
p

If Q € RY is a bounded domain such that 0 € Q, the optimal constant is
the same and also is not attained on D'P(Q).

See [58] to find some applications for this inequality.

The fact that, in this case, the Euler equation is a quasilinear operator,
the so called p-Laplacian, —A,u = —div(|Vu[P~2Vu), introduces non trivial
difficulties in the study of this general model.

Notice that the previous inequalities are an extreme particular case of
the following Theorem.

Theorem 6. (Caffarelli-Khon-Nirenberg’s inequality). Assumeu € Wol’p(Q)
with 1 < p < N. Then, there exists a positive constant C = C(N,p,~) such

that
. 1/p*(v) 1/p
< / fuf? W)\xndx) gc( / \vuypdx> , (2.2)
Q Q

where p*(y) = —%Vj;).

See [36] for the details.

Here, p*(7) is the critical exponent in the embedding of VVO1 P(Q) in the
corresponding weighted Lebesgue space.

As a consequence, p*(0) = p* is the classical critical Sobolev exponent
and p*(—p) = p corresponds to the critical Hardy-Sobolev exponent.

The problems

In this memory we will study the solvability of some kind of supercritical
problems related to the Hardy’s inequalities above. More precisely, we study
the following elliptic and parabolic problems.
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Elliptic problems

We begin studying the problem

“Au= >0 in €,
T
(2.3)

u =0 on 052,

with p > 0, 2 € RV a bounded domain with smooth boundary and N > 3.

One of the goals of this work is to emphasize the role of the relative
position of the pole with respect to the domain.

The previous results concerning existence of solution to problem (2.3)
can be summarize as follows:

e In the sub-linear case, 0 < p < 1, it is easy to prove solvability in
the framework of the finite energy solutions with independence of the
location of the pole respect to the domain, see [4].

e The linear case, p = 1, is also well understood, the solvability results
are studied in [31] with respect to the summability of the data. The
solvability of the linear case with a zero-order perturbation can be
found in [34].

If 0 € 09, the problem has been studied in [55]. Setting
@=nt{ [1wor:ocwite), [ L=} @
g R |

N2
the authors show that if p(Q) < p(RY) = e then p(2) is attained

and the associated linear equation has a positive solution. In the op-
posite case, 1(£2) > pu(RY), there is no solution to the linear problem.
Moreover, the authors give a geometrical condition in order to have
that p(2) < NTQ and then the attainability of the best constant, u(€2).

In this work we are going to focus mainly in the supercritical case, p > 1.

The semilinear problem,

“Au= L u >0 in €,
x
(2.5)
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where 0 € 92 and p > 1, has been partially solved in [50] with a perturbative
argument involving the shape of the domain and under the hypothesis p <
%. Moreover, in [50], using a Pohozaev argument, it is proved that in
a starshaped domain (with respect to 0) the problem has no solution of
finite energy. However, using an involved perturbative method, the authors
proved in the same paper that, if the domain has a suitable shape, then,

there exists a solution of finite energy.

e In this work we are going to consider the following supercritical semi-
linear problem, which is a perturbation of (2.5),

up
—Au = W—F)\g(u), u>0 inQ,
T
(2.6)
u=20 on 0f),

with A > 0, p > 1, g(u) a sublinear term and 0 € 0f2.

e In order to show the influence of the position of the pole with respect
to the domain in the solvability of the problem, we also consider the
problem assuming 0 € , where Q C RY is a bounded domain and

p>1.
It is known that if 0 € Q and wu is a distributional solution to the
equation
P
—Au = )\u—2, in €,
|z| (2.7)
u=20 on 052,

it is necessary that w = 0. This result can be seen in [32]. The proof
by Brezis-Cabré shows that there is a local obstruction in the existence
of solution.

In order to avoid this obstruction, in this work we will consider the
problem

p
—Au+ |Vul? :A# Y f, w>0 inQ
(2.8)

u=0 on 0f),

with 0 € Q, 1 < p <2, f € LY(Q) a positive function and A > 0.

If p = 1 (the critical problem), an existence result has been obtained in
[9] for all A > 0 and for all f € L'(Q2). That is, some kind of breaking
of resonance is obtained for the critical case.
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e The next step in this work is to consider the following quasilinear
supercritical problem,

~Apu= —div([VaP ?Vu) = =0, w>0 inQ
(2.9)

u=20 on 0,

with 0 € 092 and p* — 1 > g > p — 1. The p-Laplacian operator is not
a standard generalization of the Laplacian case, this operator is non
linear and we can not integrate twice by parts. Moreover, it can be
degenerate or singular in the critical set Z, = {z € Q : Vu(x) = 0},
depending on if p > 2 or p < 2, respectively.

There is an extensive literature regarding existence of solutions for
problems involving the p-Laplacian operator with singular coefficients.
We refer for example to the (far from being complete) list of refer-
ences [3], [5], [6], [13], [37], [38], [41], [57], [58], [61], [58], [69], [80],
[81], [83], [84], [92] and to the bibliographies therein.

e In this work we are also going to focus in the study of a perturbation
of problem (2.9),

q
—Ayu = —div(|VuP2Vu) = rZW +Ag(u),  u>0 inQ,
u=0 on 0f),

(2.10)

with 0 € 09, ¢ > p—1, A > 0 and g(u) a sub-diffusive perturbation
in the following sense

lim 9(s) =

s—0 sP—1

e Asin the semilinear case, we will analyze the quasilinear problem with
some absorption term if 0 € €,

uq

_ P —
Apu+ [Vulp = Ao

+ f, u>0 in (),
(2.11)

u=20 on 0f2,

with 1 <p< N,qg>p—1, f € L'(Q) a positive function and A > 0.
The existence of solution to problem (2.11) with ¢ = p — 1 and the
exponent of the gradient term equal to ¢ has been studied in [75].
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Another issue studied in this memory is some symmetry properties of
the solution to the problem (2.11).

The precedents for this kind of results with the p-Laplacian opera-
tor can be found in the references [46], [47], [48], [49], [73] and the
references therein. The main difficulty lies in the nonlinearity of the
principal part and in the implication of it in the strong comparison
result.

Parabolic problems

The heat equation with the Hardy-Leray potential, i.e, the problem

up
Ut—Au = W in QT:QX(O,T),
u > 0 in Qr, (2.12)
u(z,0) = wo(x)>0 inQ,
u = 0 on 02 x (0,7,

has been studied in the case 0 € Q:

1. If p = 1, Baras-Goldstein in [20], proved that there exists a solution
to (2.12) for a positive interval of the parameter . More precisely, we
could summarize the results by Baras-Goldstein as follows

N —2\2
e If N Ay = (T) , problem (2.12), with p = 1 and a data

f in the right hand side, has a unique global solution if

T
/ |z| " up(x) dz < oo and / / |z| 7 f de dt < o0,
Q 0o Ja

with a; the smallest root of a? — (N — 2)a + A = 0.
e If A\ > Ay, problem (2.12) with p = 1 has no (even local distri-
butional) solution for ug > 0.

Such spectral-dependent type of results are deeply associated to prob-
lems with the same principal part. See, for instance, [10], [11].

2. If p> 1, a strong local nonexistence result for solutions in a distribu-

tional sense was proved by Brezis-Cabré in [32].

e In this work we will try to obtain existence results when the pole is
on the boundary of the domain, 0 € 92. We will study the evolution
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problem associated to (2.5), that is, the following parabolic problem

up
Ut—Au = W in QT:QX(O,T),
u > 0 in Qp, (2.13)
u(z,0) = wo(x)>0 inQ,
u = 0 on 092 x (0,7).

We consider the critical and supercritical parabolic problems with 0 €
09, that is, p = 1 and p > 1 respectively.

e The last topic of this memory we study problem (2.13) with 0 € Q and
with some regularization term in the left hand side of the equation.
That is, we analyze the existence of a solution for the following problem

p
up — Au + u|Vul? A#H in Qr = Q x (0,7T),

u > 0 in Qr, (2.14)
u(z,0) = wuo(x) in €,
u = 0 on 09 x (0,7),

with 0 € , 1 < p < 3, f € L' () a positive function, ug € L'(Q)
and A > 0.

The critical case p = 1 has been studied in [12].

2 Organization of the work

We have already described the different subjects studied in this work and
in this Section we are going to explain more specifically the organization of
the work.

This memory is divided in the following three parts:
PART I: Supercritical elliptic problems with the pole inside the domain.

In this part we study the regularizing effect of some perturbations in
problem (2.3) with 0 € Q and p > 1. We consider the problem with the
Laplace operator and also with the p-Laplace operator. One of the main
results is the study of symmetry properties of the solutions in the quasilinear
case. In this Part we use the Moving Plane Method which in the context of
the p-Laplacian operator is quite involved.

PART II: Supercritical elliptic problems with the pole at the boundary
of the domain.

In this part we focus on the behavior of (2.3) when 0 € 9€2. We study the
problem with the Laplace operator and with the p-Laplace operator. This
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Part emphasizes the influence of the relative position of the pole respect to
the domain in the existence of solution.

PART III: Critical and supercritical parabolic problems with respect to
the Hardy potential.

In this last Part we study some parabolic problems associated to (2.3).
In the first Chapter we consider the case 0 € 002 and in the second one
we try to regularize the problem with a term dependent on the gradient in
order to avoid the local obstruction obtained in [32] if 0 € Q.

We proceed to give some details of each Chapter of this work.

PART I: Supercritical elliptic problems with the pole inside the domain.

e In Chapter 3 we study a supercritical elliptic problem with the Laplace
operator as the main operator and 0 € €.

More precisely, we are going to consider the following problem

P
—Au—|—|Vu|2:/\|u?+f, uw>0 in ),
T

(2.15)
u=20 on 0f),

where A > 0,p>1, f € L}(Q), f >0 and N > 3.

The main feature in this Chapter is that if 1 < p < 2, despite the lo-
cal obstruction in the unperturbed problem, we prove that the square
of the gradient regularizes the problem and we are able to obtain a
solution for all A > 0. This absorption term breaks down the lack of
solvability killing the local obstruction in the existence when 0 € €.
Notice that for p > 2, we can obtain a similar result regularizing the
problem with the term |u|?~1u|Vu|?, being 8 > p — 2.

This result can be seen in the second part of [T4].

e In Chapter 4 we study the supercritical problem with the p-Laplace
operator and 0 € €.

In particular, we study the existence and qualitative properties of the
solutions to the problem

uq

—Apu+ |[VulP =9—— + f in Q,
? [P (2.16)

>0 1in, u=0 on 012,



2.2. Organization of the work 39

where € is a bounded domain in R with N > 3 and such that 0 € Q,
9>0,p—1<qg<p, f>0, feL'(Q) and1<p<N.

Section 2 is dedicated to find a solution to (2.16). The existence of
solution emphasizes the fact that the term |Vu|P on the left hand side
of (2.16) is enough to get a resonance breaking result.

In Section 3 we focus in the qualitative properties of the weak solu-
tions to (2.16). In particular, we prove that, under some assumptions
in the domain and in the data f, the solutions to (2.16) are symmet-
ric. The main important tool of this part is the Moving Plane Method,
that can be found in [87].

These results can be seen in [72].

PART Il: Supercritical elliptic problems with the pole at the boundary
of the domain.

e In Chapter 5 we are going to consider the following supercritical
problem with the Laplacian operator and 0 € 0€2;

up
— tAul, uw>0 inQ,
|| (2.17)

u=20 on 0f,

—Au =

wherep >1,0<¢<1,Qc RN with N > 3 and A > 0 small enough.

We prove the existence of solution u in I/VO1 2(Q)NL>=(Q) for an interval
of A > 0 and without any restriction of the domain, in contrast with
the previous results in [50] and without any condition from above on
the value of p.

The main idea of this Chapter is to find a supersolution to (2.17) for
an interval of A and get a subsolution for all A > 0. We prove that
the supersolution and the subsolution are ordered and we consider the
iterative problems. Using a comparison argument we get that the se-
quence of solutions of the iterative problems is bounded and is also
ordered. Then, we are able to pass to the limit and to get a solution
in W01’2(Q) to (2.17) for a positive interval of A.

This result can be seen in the first part of [74].

e In Chapter 6 we generalize the result of the previous Chapter for
the p-Laplace operator and also the result in [50], being in this case
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the problem with a function g(A,z,u) in the right hand side of the
equation, that is
uq
AL
u >0 in €,
u=0 on 01,

+g()‘7$7u) in Q)
(2.18)

with 1l <p< N,qg>p—1and 0 € 90.

This Chapter is organized as follows:

— In Section 2 we study the case g(\,z,u) = 0. First, by a Po-
hozaev’s identity we deduce a nonexistence result of energy so-
lutions in starshaped domains. Subsequently, we prove the exis-
tence of an energy solution for a convenient non-starshaped do-
main using a variational approach to a functional which is a per-
turbation of the standard energy functional associated to (2.18).

— In Section 3 we deal with the term g(\,xz,u) = Af(x)u”. We
show the existence of a solution u in I/VO1 P(Q) N L>®(N2) by the
method of super- and subsolutions. In this case, the existence of
solution does not depend on the geometry of the domain in con-
trast with the case g(\, z,u) = 0. Moreover, we characterize the
minimality of the solution and some other comments are given.

This result can be seen in [71].

PART MI: Critical and supercritical parabolic problems with respect to
the Hardy potential.

e In Chapter 7 we study the variation of the problem (2.3) on time,

the parabolic case with 0 € 0€2. The aim of this Chapter is to discuss
the existence of solution to the following parabolic problem

up
U — Au = A\—5 in Qr,
||
u >0 in QT, (2.19)
u(z,0) = up(z) >0 in Q,
u:o on aQX(O,T),

where p > 1 and Q C RY is a bounded domain with N > 3 and
0 € 09.
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The main goal in this Chapter is to show that the behavior of problem
(2.19) when 0 € 09 is essentially different from the one obtained when
0 €.

More precisely, the main new features in this Chapter are the following:

— In Section 2 we study the linear case, p = 1, finding a unique
distributional solution for all A > 0 and ug € L'(Q2). That is, we
prove that there is no a Baras-Goldstein type result if 0 € 9.

— In Section 3 we study the supercritical case, p > 1. We prove
that there exists a unique solution under some condition on the
initial data.

— In Section 4 we analyze the supercritical parabolic problem
adding a concave reaction term pu?, with 0 < g < 1. We prove
the existence of a solution for all p < pyg.

This result can be seen in [19].

e In Chapter 8 we discuss the existence of solution to the following
supercritical parabolic problem

P
ug — Au + u|Vul? :)\u——l—f in Qr =Q x(0,7),

|=[?
u>0 in Qr, (2.20)
u(z,0) = ugp(z) >0 in Q
u=0 on 90 x (0,7T),

where Q ¢ RY, with N > 3, is a bounded domain that contains the
origin, 0 € 2, 1 < p < 3 and f is a measurable nonnegative function.

The main objective is to get a natural condition on p in order to obtain
the existence of a solution to problem (2.20) for all f € L*(Qr),up €
LY(Q) and for all A > 0.

We prove by an approximation argument that if p < 3, the absorption
term u|Vu|? has a “regularizing” effect on the equation and allows us
to get the existence of a solution for the largest possible class of data
f,up and for all A > 0.

It is worthy to point out that, for p > 3, it is sufficient to regularize
the problem with a quasilinear term of the form |u|?lu|Vu|? with
q>p—2.

This result can be seen in [1].

2This memory has been partially supported by the proyects MTM2007-65018 and
MTM2010-18128
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Chapter 3

Regularization of a first order term in the
semilinear model

1 Introduction

In this Chapter we are going to consider the solvability of the following
problem

up
—Au:W, u>0 in Q,

u =0 on 0f2,

with p > 1, Q € RV a bounded domain and N > 3.

The behavior of the problem depends deeply on the situation of the pole
with respect to €2:

— N +2
e It is clear that if 0 € RV \ Q and p < N+2 the problem has a

positive solution by the classical Mountain Pass Theorem introduced
by Ambrosetti and Rabinowitz in [16].

e In contrast, if 0 € Q and p > 1, problem (3.1) has no solution, even in
the weakest sense of distributional solution.

Actually, (3.1) has no weak supersolution even locally, for a detailed
proof see [32].

Notice that to prove a nonexistence result for (3.1) in the sense of
the energy solutions it is sufficient to argue by contradiction using the
following Picone’s inequality. In this way we get a contradiction with
the Hardy’s inequality.

Theorem 7. (Picone’s inequality) Assume u € Wol’Z(Q), u >0 and
v E Wol’z(Q), —Av > 0 is a bounded Radon measure, v|,, =0, v >0
and not identically zero, then

/Q \Vul*dx > /Q (%)(—Av)dm.
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See [5] for the details of this Theorem.

e The intermediate case, 0 € 02, has an extreme behavior and it will be
considered in the second Part of this work.

The main result of this Chapter is to study the effect of a first order absorp-
tion term in the solvability of the problem (3.1) in the case 0 € 2, that is,
we will study the following problem

p
—Au+|Vuf = A4 f, w>0 in @,
|| (3.2)
u=20 on 01,

if 1 <p<2 XA>0and f € L'(Q). To be precise, in Section 2 we are
going to prove the existence of a solution to problem (3.2) and, as in the

case p = 1 in [9], we will be able to obtain a solution to the problem for all
A>0.

The techniques used are: i) study the existence of solution to some
approximated problems; i) get a priori estimates and #i7) pass to the limit.

In order to make easier the calculations, we first consider the case f €
L™(Q), with m > % and then we pass to the limit.

In the last Sections of this Chapter we study some further results, for
instance, the case p = 2 and p > 2 and the problem with a general exponent
q for the gradient. In fact, in Chapter 8 of this memory, we will study
carefully the existence of solutions to the parabolic problem associated to
the case p > 2.

In this Chapter we are looking for solutions in the sense of the following
definition.

Definition 1. Let u € Wol’z(Q). We say that u is an energy solution to
problem (3.2) if

2 u—p 1’2Q ()
/Q<Vu,V<;5>+/Q\Vu]¢ A/Q|x|2¢+/ﬂf¢ Yo € WhA(Q)NL®(Q).

We recall also the well known definition of a truncated function and the
positive and negative part of a function.

Definition 2. For a measurable function u, consider the k-truncation of u
defined as

u if |ul <k

kL if Jul > k.
|ul

Tip(u) = (3.3)
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Definition 3. We denote f+ the positive part of the function f as fT =
max{f,0}. We denote f~ the negative part of the function f as f~ =

min{ f,0}.

All the results of this Chapter can be seen in the second part of the paper
[74].

2 Existence result with 1 < p <2

The main existence result of this Section is the following.

Theorem 8. Consider the problem

p
—AuF|Vu = A f, w0 inQ,
|| (3.4)
u=0 on 09,

with 1 < p < 2 and assume that f € LY(Q) is a positive function, then for
all X > 0 there exists a positive weak solution u € W01’2(Q).

To prove Theorem 8 we proceed step by step. First we prove the result
considering the data f € L™(Q) with m > > and then, the general case,
f € LY(), follows approximating the datum.

2.1 Existence result with f € L™ ()

We consider first the truncated problem and we are going to find solution
for this problem with a positive data f € L™(€2).

Theorem 9. Assume 1 <p <2 and f € L"™(Q2), m > %, then, there exists
a positive solution to the problem
p
—Auy, + \VukF = A Tk(uk) + f, in £,
2 + 4
u, = 0 on 01,
up € Wol’z(Q) NL>®(Q) and ug > 0.

Proof.
Since f > 0, ¢ =0 is a subsolution to problem (3.5).
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Consider the function 1 the solution to

{—Aw = A4 f 2€Q,

|22+

v = 0 z €,

therefore, 1) is a supersolution to (3.5).

To prove Theorem 9 we consider a sequence of approximated problems
that we solve by iteration and using a convenient comparison argument. We
take as starting point wg = 0 and we consider iteratively the problem,

2 T, D
A+ el T e g
L+ = |Vwy,|? lz|? + ¢ (3.6)
w, =0 on 0N, w,€ Wol’z(Q) N L>(£), ’
wy > 0.

Proposition 1. There exists wy, € Wol’z(Q) N L*>®(Q) solution to (3.6).

Moreover, 0 < w, <1 Vn €N,

Proof. Let us consider the problem:

—Awy, + g(z, wy, Vwy,) = 0, (3.7)
where
—ﬁ - f it wy, > 1,
g(x, wp, Vwy,) = 1+|§|“$fn‘p — A?;i;ui_%) —f if 0<w, <,

—f if w, <O0.
(3.8)
Using the Leray-Lions arguments, see it in [68], we can find solutions to the

approximated problem (3.7) for each n and by classical regularity results
such solution w, belongs to W01’2(Q) N L>(9).

We are going to show that w, > 0. Since ¢ = 0 is a subsolution of (3.7)
and w,, is a solution we have

—Awy, + g(x, wy, Vw,) + f > 0.

Using —(w,,) as a test function in the last expression, one has
—/ Vwy, - Vw, dz — / (g(a:,wn,an) + f) (w,, )dz > 0.
Q Q

We define the following set,

R={x:2¢€Q:w, <0},
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therefore,

—/Qan -Vw,, dx — /R (g(m,wn,an) — f> (w,, )dz > 0.

Taking into account (3.8), g(z,w,, Vwy,) = f in R, then,

—/ |Vw,, |?dz > 0.
Q
Hence, we conclude that w,, > 0.

We want to prove now w,, < 1.

Since ¢ and wy,, are respectively a supersolution and a solution of (3.7),
we have

Using Ty ([wy, —9]T) with M > 0 as a test function in the last expression
it follows

We define the following sets,
R={z:2€Q:9Y <w,},
RM={z:2€Q:0<w, —¢ <M}

Thus,
Ty([w, —¥]T) =0 ifz € Q- R or w, =0
and
VTy(w, —¢)7) =0 ifx e Q — RM or w,, = 0.
Therefore,

/ |V T (wy, — 1) T|?dx
RM
= [ (stevwn Fun) + s+ £ Tar(fwn — 01 <0
R )2+ ¢ B
By (3.8), we get
/ |V (w, — ) T|?de <0 VM e RT.
RI\/I

Therefore, w, < and we conclude. O
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2.2

i)

i)

Convergence of w, in W,*(Q)

Weak convergence of wy, to uy in Wol’z(Q)

‘anp
1+ 2 |Vw,|?
Taking w,, as a test function in the approximated problems (3.6), we
obtain

For simplicity of typing, we are going to call H,(Vw,,) =

T, D
/]an\zda:+/Hn(an)wnda::)\/ %wnda:—i-/fwnda:
Q Q o |z)>+ % Q

w, Y
§/\/ kridzn—l—/ fwndazg)\/ k7d$+/ fudx.
Q \x!2+% Q Q \xP—F% Q
That is,
/|vwn|2dx+/Hn(an)wndxgo(k,f,Q).
Q Q
Since

/ H,(Vwy)wpdz > 0, / \Vwy[2dz < C(k, f,9Q).
Q Q

Therefore, up to a subsequence, w, — u; weakly in VVO1 2(9)

Since [|wn||ge @) < C,

/wncpdw:/ukgpdx for ¢ e L'(Q)
Q Q

and then, w,, — uy, weakly-* in L>°(2), hence, uy, € Wol’2(Q) NL>(Q).

Strong convergence of wy, to uy in Wol’z(Q)

We want to prove that w, — u strongly in VVO1 2(2) to conclude that
uy, solves the truncated problem (3.5).

Consider the function ¢(s) = se1s” which verifies ¢'(s) — |o(s)| > 3.
Taking ¢(w, — ug) as a test function in (3.6) we get

/ Vw, ¢ (wn, — ug)V(w, — ug)dz + / H,(Vwy,)p(wy, — ug)dz
Q Q

- Tk(wZ—l) B B
_A/97|33|2+% (wn, uk)dzn+/ﬂf¢(wn ug)dx.
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Notice that
/Qan(b’(wn — ug)V(wy, — ug)dz — /QVuk(b/(wn — ug)V(wy, — ug)dzx
= /ng'(wn — up)|V(w, — uy)Pd,
then, the first term on the left hand side can be estimated as follows:
/Qan(b'(wn — ug)V(wy, — ug)dzx
= /ng'(wn —up)|V(w, — ug) Pz + /QVukgb'(wn — ug)V(wy, — ug)dz
= /Q(b/(wn — up) |V (wp, — ug) Pdx + /QVuk(b’(wn — ug)Vwpdz
— /QVukqﬁ’(wn — ug)Vugdz.

Since wy, — uy, weakly in W()1’2(Q),

/Qanqﬁ'(wn — ug)V(wy, — ug)dx

= /QQSI(wn —up) |V (w, — ug) Pdx + /Q |Vug[*¢' (w,, — up)da

- /Q \Vug|*¢' (w, — uy)dz.

Therefore,
/QanQS/(wn—uk)V(wn—uk)d:E = /Q |V (wy, —ug,) | ¢’ (wp—ug,)dz+o(1).

For the second term on the left hand side we have

/ Hyy (V)b — up)da < / V2|6 (wn — wp)|dz

Q Q

= / |Vw, — Vuklz\(b(wn — uy)|dx — / \Vuk\2\¢(wn — ug)|dx
Q Q

+ 2/ Vw, Vug|p(wy, — ug)|dz.
Q

Since w, — u in Wol’z(Q) and |p(w, — uk)| — 0 almost everywhere,
we obtain

/ |Vug|?|p(w, —ug)|de — 0 as n— oo
Q
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and also by the weak convergence,

/QanVukqﬁ(wn —ug)dr — 0 asn — 0.
Then, passing to the limit as n — oo, we have the following estimation,
/QH,L(an)qﬁ(wn — ug)dx < /Q |Vwy, — Vugl?|p(wn — ug)|dz + o(1).

Notice that

Tk( Wy, — 1)
A /Q Lo~ we + /Q F(uwn — up)da

|z[? +

go to zero as n — 00.

Hence,

/|V — )24 (wy, — uy, dx—/ |V (wy, — ug)|2d(wy — ug)dx 4 o(1)

< /Qvwngb/(wn_uk)v(wn_uk)d:n“‘/gHn(vwn)¢(wn_uk)d$ < 0(1)

and, since ¢(s) — |¢(s)| > 1 we conclude that
1 2
— [ |Vw, — Vu|*dx
2 Jo

< / (& (wn — k) — |$(wn — i) )| Vit — VP < o(1),
Q

whence, w,, — wuy in VVO1 2(Q) In particular, up to a subsequence,
H,(Vw,) = |Vug|* a.e. in Q and since w, — uy, in Wol’2(Q), the
equi-integrability follows, therefore, by Vitali’s Theorem,

H,(Vw,) — |Vug* in L'(Q).

Since —Aw, — —Awuy;, in the sense of distributions, we conclude that
uy, satisfies the problem

Tk(uk)
"2 1—|—f in Q,

up =0 on 01,
ug € Wol’z(Q) NL>®(Q) and ug > 0.

—Auy, + [Vug|* =
(3.9)
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2.3 Pass to the limit when £ —

In this Subsection we are going to study the convergence of the solutions to
the truncated problem, ug, to the solution w, in this way we will be able to
prove the following result.

Theorem 10. Consider 1 < p < 2 and assume that f € L"™(Q), m > %,
is a positive function, then, for all A > 0, there exists a positive solution
u € W01’2(Q) to problem (3.4).

Proof. We need to analyze the convergence of {uy}, the solutions to
problems (3.9).

i) Weak convergence of {ux} to u in Wol’z(Q).

Since {uy} € W01’2(Q) N L>®(Q2), we can use ui as a test function in
the truncated problem (3.9). It follows that

4 3 p+1
/\vuky2dx+—/ \Vu,gdegA/ qu dw—ir/ fupdz.  (3.10)
Q 9 Ja o || Q

Using Hélder’s and Hardy-Leray’s inequalities we obtain that

p+1 3 pt1 2-p
/ Uy, . dx < (/ u_k2dw> 3 (/ d_x2> 3
o |7l o |zl a |7l

p+1

_ptl 3 "
< OAYS (/ VugPaz) T
Q

Therefore, since p < 2, we obtain that for all € > 0 there exists C. =
C:(p, N) > 0 such that

3 ptl 3
(/Q|Vu,§|2d:n> g §5/Q|Vu,§|2d:n+05. (3.11)

1
On the other hand, setting m’ =1 — —,
m

| Fusde < 1l el

< o (( [ o o)

1
7

m/
Q|1‘T*)’” .

i
m
oF

Therefore, using Sobolev’s inequality, we get

1
2 1 1
[ s < 5( [ 1VurPde) 10077 H 1l
Q Q



o4

3. Regularization in the semilinear model

i)

Thus, for all £ > 0 there exists D. = D.(m, N,, f) such that

1
(/ ]Vuk\2da:>2 §€/ |Vug|[*dx + D.. (3.12)
Q Q

Hence, for a suitable small ¢, from (3.10), (3.11), (3.12) we find a
positive A such that,

3
/ |Vug|?de < A and / |Vu? [*dz < A.
Q Q

Then, up to a subsequence,

3 3
up — u and uj — u? weakly in W01’2(Q) and a.e.

In order to prove that u solves the problem (3.4) we proceed showing
that the truncated terms converge strongly in L(Q).

Strong convergence in L'(Q) of the Hardy truncated potential.
We deal with the truncation of the Hardy potential,

Tr(u}) / uf) / ui £ / 1 e
dr < —dx < —dx ——dx .
/Q 2+ + " " JolzPP T T < q |z]? ) < q lzf? )

Since p < 2 and thanks to the estimation of the gradient of uy,

T, p p
/ AC/ I 0(/ |Vuk|2> e
Q Q

I
> + %
Ty (u?
It follows that ’ I‘Z( :)1 is bounded in L'(Q)) and converges almost
"B —
k
P P
everywhere to ﬁ? In particular, by Fatou’s lemma, ﬁﬁ € LY(Q).

To complete the proof we need to check the equi-integrability of the
term.

Let E C Q be a measurable set, then, as above, we have

T p p 2 P 1 2-p
/ k2(uk)1dx§/u_k2dx§(/ u_gdw>2(/ —2dx> 3
Elz)? + % e || E |zl E |zl

1 5P
éo(/EWC@ ,

where C is a positive constant independent of k.

The term | E ﬁgdx is going smaller if |E| is small, hence, by the abso-
lutely continuity of the integral we can use Vitali’s Theorem to obtain

Ty (u? P
b() 2 in L),
ZP+i o
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iii) Strong convergence in L'(S) of the square of the gradient.
We need to prove also that |Vug|? — |[Vul? in L1(€).

To obtain this convergence we need some previous results concerning
the truncated gradient term.

Lemma 1. Let uy, be defined by (3.9). Then,

lim \Vug|?de = 0 (3.13)

uniformly on k.

Proof.  Consider the function G,(s) = s — Tp,(s) and ¥,_1(s) =
T1(Gpn_1(s)). Notice that, 1, _1(up)|Vug|?> > |Vug|? Mup>n}

Using 9,—1(ug) as a test function in (3.9), we obtain

/ \Vuy|*dx
{ur2n}

/ywn ()| dx+/wn () Vg 2
=/ATk(uk)1wn 1(ug d96+/1/1n 1(ug) fdz.

|2

Since {ug} is uniformly bounded in I/VO1 2((2), then, by Rellich Theo-
rem, up to a subsequence, {uy} strongly converges in LP(Q), Vp < 2*
and almost everywhere. As a consequence,

1 C
/ ukdazg—/uidazg—
{n—1<up<n} n—1Jq n—1

and 1 o
/ ukdxg—/ukd < —.
{ugp>n} n.Ja n
Therefore,
Hr e Q:n—1<ug(r) <n}l —0,
{z € Q:ug(x) > n}| — 0, uniformly on k as n — occ.
Thus,

/ |V 2 dz < ”tbp)\/ Y1 (ug)dx +/ Jn—1(ug)dz
{ugx>n} {ug>n—1}

{up>n—1}

N N-2
<C updx + N / u) 2dz) V.
fwzn-1} "fHLg(Q( {ugzn} )
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Then, we have

lim |Vug|*dz = 0 uniformly on k. (3.14)

700 J{up>n}

O

Lemma 2. Consider ui — u in W01’2(Q) as above. Then

T (ug) = To(u) in Wy2(Q).

Proof. Consider the functions G, (s) = s — T5,(s) and ¢(s) = set®
which verifies

¢'(s) = lo(s)| >
Take ¢(T(ug) — Tn(u)) as a test function in (3.9),

/QVuqu’(Tn(uk) — Tn(w))V(T, (ug) — Ty (u))dx

n /Q [Vauk[PS(T (ur,) — T () )d

= [ 0T 9ot a)  Tulwi

2 + ¢
To estimate the first term on the left hand side we proceed as follows,
/Q Vurd (T (u) — Tn(1))V (T (ug) — To (1)) dz
= [ T (1) = T VAT 1) = T )
+ [ VGulan)f (T ) = T ) VT ) = T ()
= [ IVTutus) = VTP (T, () ~ To(w)do
+ /Q VT ()¢ (T (ug) — Tn(u)) V(T (ug) — Ty (u))dx
—i—/QVGn(uk)qﬁl(Tn(uk) — Tn(uw))VT, (ug)dz

— /QVGn(’LLk)(ZS/(Tn(’LLk) — T (uw)) VT (u)dz.
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Since the supports of VG, (uy) and VT, (uy) are disjoint and the ones
of VG,,(uy) and VT, (u) are almost disjoint, we get

/QVGn(Uk)(Zﬁ’(Tn(uk) — T (u))VTy (ug)dz = 0
= /QVGn(Uk)(Zﬁ’(Tn(uk) — T (u))VTy, (u)dz.

On the other hand, since T}, (ug) — T, (u) weakly in Wol’Z(Q), VT, (ug) —
VT, (u) in L?(Q) and

| T (Ta) = To@) (T 1) = Tof))da
/ VT T () VT () d
- /Q [T ()26 (T () — T (1)
Thus,
/Q VT, (W) (T (ur) — T () V(T () — To(w))dz — 0, as k — oo,
Therefore,
/ Vurd (Ta(ur) — T (w)V (T (ug) — To(w))dz
= [ 19000 = T )P (T (1)  Tala))d + o).

Notice that we have ¢(T),(ux) — T (u)) =0 and

X{ug>n}

/ VurPoTh ) ~ Ta(w)do = | VP o(T,(w) - T, (w)ds
{ug<n}
T /{ [T )~ T
Therefore,
/ Vuur 20(T () — T () = / 9T, (10 P16 (T (ar) — T ()|t
Q Q
- /Q VT, (1) — VT (0)|2(To () — To(u0))]
- /Q VT, (1) 21 (T () — T ()|

42 /Q VT, () VT ()| (T (1) — T (1))
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Since VT, (w) (T (ug) —Tn(u)) — 0in L3(Q), and VT, (uy) — VT, (u)
in L2(Q) we obtain

[ 9T P IO(T, (1) = Tafu))ld = 0 s > o0
and
/Q VT () VT (1) (T () — To () ) — 0 as & — oo,
Then, passing to the limit as k — 0o, we have
[ 192 () = T )
= [ 1975w = VT @) PIO(T, () = T, ) da + o(0).

Notice that

/Q ()\ T (up) + f>¢(Tn(uk) — T (u))dz

T
lz2 + %

goes to zero as k — oo.

Hence, since ¢/(s) — |¢(s)| > & we conclude that

%/Q\VTn(uk) — VT, (u)*dz
S/Q(¢'(Tn(Uk) — T () = (T (u) =T (uw))) [V T () — VT, (u) [ de

with the last integral equal to o(1), whence, we conclude that T}, (uy) —
T, (u) strongly in Wol’Z(Q). O
To finish, we proceed to prove that

|Vug|? = |Vul? strongly in L*(Q).

Using Lemma 2, the sequence of the gradients converges a.e. In
order to apply Vitali’s Theorem again, we have to prove the equi-
integrability of the term |Vuyg|?.

Let E C Q be a measurable set. Then,

/|Vuk|2d:n§/ |VTn(uk)|2daz+/ Vg 2.
E E {up>n}NE
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By Lemma 2, for every n > 0, T),(u) — Tp(u) in W01’2(Q) therefore,
/ |VT,,(ug,)|*dz is uniformly small for |E| small enough.
E

Using Lemma 1, we obtain

/ |V |2de < / \Vug|2dz — 0
{ug>n}NE {ugp>n}

as n — oo uniformly on k. Then, by Vitali’s Theorem,
|Vug|* = |[Vu? in L1(Q).

Therefore, in particular, we conclude that w is a distributional solution
to the problem,

p
~Aut [VuP = A"+ f, w>0inQ,
|| (3.15)
u=~0 on Of2.

It is worthwhile to point out that the equation is verified even in a
stronger way, that is, testing with functions ¢ € VVO1 2(Q) N L=(Q).

O

2.4 Solving the problem with L'(Q) data.

Consider now the problem with the following approximation of the data
fr = Ti(f), that is fx T f in LY(Q). Consider uy the solution to

p
—Auy, + [Vug|? = Au—kz + fr, up >0 in Q,
2] (3.16)
up =0 on 09,

found in the Subsection 2.1.

We define the following function,

that explicitly is,

U, (s) = {

We also consider the following numerical estimate.

if s <mn,

1. (3.17)
+ (s —n)nz if s > n.
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Lemma 3. Fized p € [1,2), Ve > 0, Vk > 0, 3C. such that
sP Ty (s) <eW2(s)+C., s>0.
Proof.

e If s < n, the estimation would be
P < eCs® + C..
Since p € [1,2), p+ 1 < 3 and the estimation follows.

e If s > n, the estimation would be
sPn < e(Cn2 + (s —n)n2)2 + C. < Ce(Cnd + (s — n)?n) + C-.
Since p < 2, the inequality follows.

O

Taking T),(ux) as a test function in the truncated problem, it follows that
D
/ VT, () P+ / Vg 2T () = A / Y (ug)dat / [T () da
Q Q a |zl Q

Notice that, taking into account the definition (3.17),

1
/!V\I/n(uk)lzdx:/ \ui!z\Vudea:—k/ |V [*ndz.
Q {up<n} {up>n}
Thus,

/ IV, () 2 = / (Vg 2T () .
Q Q

Hence,

p
/ VT, (uy)|*da +/ IV, (uy)2de < )\/ u—szn(uk)dx +/ fTn(ug)dz.
Q Q a |zl Q
From Lemma 3 and by Poincaré’s and Young’s inequalities, we get
/ VT, (ug)|?dx +/ VU, (ug)|?dz
Q Q

A C
<e v, 2d —d .
<o [ VO Pdr+ [ de il
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A
Choosing 0 < e— < 1, we get
An

A C
/yvzrn(uk)y2dx+(1—s—)/ \V\I/n(uk)\2dw§/ Ce de 1 nllflley.
Q AN’ Jq a ||

Therefore, for every n > 0 it follows that

/ VT, (up)|?de < C(\,e,Q, f,n) uniformly on k € N,
Q

/ |V, (up)Pde < C(\ e,Q, f,n) uniformly on k € N.
Q
Hence,
/ Vg 2 < / VT, ()2 +/ Vg 2z
Q Q QN {uy>n}

< / VT (ug)|?d +/ |V, (ug)|*dx < C,
Q Q
where C is independent of k. Hence, up to a subsequence
up — u weakly in W()1’2(Q).

We prove now in a similar way to the previous Subsection that

u? uP
1. —k 5 = _in LYQ).
2 7 ap @

2. Ty (ug) — T (u) strongly in W01’2(Q), for all n > 0.

3. lim |Vug|?dz = 0 uniformly on k.
uP
As before, we deduce that ﬁ is bounded in L'(2) and converges a.e. to
up

FE In order to apply Vitali’s Theorem, we check the equi-integrability of
x

—%_ In this way we get 1.
|=[?

Notice that 2 and 3 are necessary to demonstrate the strong convergence
of the gradients.

To get 2 we consider the function G, (s) = s — T,,(s) and ¢(s) = sei®

which verifies ¢/(s) — [¢(s)| > £. Using ¢(T, (ux) — T, (u)) as a test function
in (3.16), we get
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/QVuqu’(Tn(uk)—Tn(u))V(Tn(uk) — T (u))dx —i—/Q\Vuk\Q(b(Tn(uk)—Tn(u))dx

- /Q (N + (T () — T ()

Estimating term by term as in Lemma 2, considering that up — u in
VVO1 2(2) and using the assumption on ¢(s) we conclude 2.

To get 3 we use the truncated function of G, (s), ¥r—1(s) = T1(Gr-1(s))
as a test function in (3.16), and proceed exactly as in the proof of Lemma
1.

Now we are able to prove that
|Vug|> = |Vul? strongly in L*(Q).

By 2, the sequence of the gradients converges a.e. In order to use Vitali’s
Theorem again, we need to prove the equi-integrability of |Vuy|2.

Let E C Q be a measurable set. Then

/]Vuk\zda:g/ ]VTn(uk)]2dx+/ Ve dz.
E E

{up>n}NE

By 2, for every n > 0, we get the strong convergence 1), (ug) — T, (u) in Wol’z(Q)
and therefore, |VT,, (ug)>dz is uniformly small for |E| small enough.

E
Thanks to 3, we obtain that

/ |V 2 dz < / |Vug|>dz — 0
{up>n}nE {ur>n}

as n — oo uniformly on k.

Then, by Vitali’s Theorem we obtain that
|Vug|* — [Vul?  strongly in L'(Q).
Therefore, in particular we conclude that u is a distributional solution to
the problem,
up
x

(3.18)
u=20 on Of).
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3 Existence with p > 2

In order to have the same homogeneity in the two sides of the equation, we
need to add some term in the left hand side. We multiply the square of the
gradient by a power of u.

P
—Au—l—u6|Vu|2:/\u—2+f, uw>0 in ),
|| (3.19)
u=20 on Of).

Notice that if we take u as a test function in equation (3.19), we obtain

p+1
/]Vu\2da:+/u5+1wu]2da::/)\u—zda:—l—/fudx.
Q Q o |7l Q

Thus, it follows

p+1
/]Vu\%lw—kC/ ]V(u)B;lH]de:/)\u—2dx+/fudx.
Q Q o |zl Q

In order to get an estimation for the square of the gradient we need to

establish that
p+1

A ”—ng;g/\vu’?lﬁda;.
a |zl Q

Therefore, % +1= p_erl and this identity is true if 3 is, at least, p — 2.

Hence, it is sufficient to have 8 > p — 2 for the existence of solution. In
particular, if p = 2, to have existence it is sufficient with 8 = 1, in fact, in
Chapter 8 we are going to study carefully the existence of solution to the
parabolic problem associated to the problem (3.19) with § =1 and p = 2.

Remark 1. We point out that we can find an interval of A where we can
find a solution with the same regularization term, even if p = 2.

Assume f € LY(Q) a positive function and 0 < \ < %AN. Then, there
exists a solution u € Wol’z(Q) to the problem

2

—Au+|Vuf = A4 f, w>0 inQ,
|| (3.20)
u=20 on Of).

Proof.  To simplify the calculations we first assume f in L™ () and m > %
as in the case with 1 < p < 2.
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The same arguments as in Section 2 allow us to conclude the existence
of a solution to the truncated problem

2

— Ay, + |V |? —ATk(’ ;

5)+f in @

up =0 on o9,
up € W01’2(Q) NL>®(Q) and wug > 0.

In order to get the weak convergence in W01’2(Q) of up, we use ug as a test
function in the last equation,

Vuk 2dx —|— Vu 2dx =\ Tk Jupdx + fukdzn
g W

<>\/

Then, applying Poincaré, Young, Hoélder and Sobolev inequalities, we get

d:n—l—/fukdzn

4 3 A 3
2 2 2
oz/Q|Vuk| d:E—I—g/Q|Vu,§| dx < AN/Q|VU§| da:+C’||f||L%(Q)
Therefore,

/]VukIQda:—i- oA /ykadmchHLNm

Then, follow the arguments in Section 2, we can prove that there exists a
4
solution if 0 < A < §AN. O

The optimality of this value of X\, as far as we know, is unknown.

4 Further results

In this Section we are going to study the existence of solution in relation
with the exponent p and a general exponent ¢ for the gradient.

Theorem 11. Consider Nf—év—l—p <qg<2,1<9p<2andf a positive
function such that f € LY(2). Then, for all X\ > 0, there exists a solution
u € W01’2(Q) obtained as limit of approximations to the problem

P
—Au—|—|Vu|q:)\|u?—|—f, u>0 inQ,
x

(3.21)
u=20 on 0f).
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Proof.

The same arguments of Section 2 allow us to conclude the existence of
a solution to the truncated problems

p
u .
—Auy + |V |? = m(ﬁ) +Th(f) in Q, u, € Wy2(Q). (3.22)

In order to analyze the convergence of {uy}, we take the function T}, (uy)
as a test function in the truncated problem, it follows that

p
/|VTnuk|2d$+/ |Vug T, updzx :/\/ Tk(u—]fz)TnukdaH-/ T (f)Thukdz.
Q Q o x| Q

We define, as in Section 2, the function W,(s) = [ Tn(t)%dt, that ex-
plicitly is,

q atl if
L5 a if s <n
Un(s) = q;rl a1 1 (3.23)
e + (s—n)ne if s >n.

Q

——=n

—

Then,

p
/ N Tyuy [2da + / Vg 7dz = A / T (ke ) Tudar + / To(f) Tyupdaz
Q Q Q || Q

and

u

P P
A / To( ke )T,y upd + / To(f) Tupda < n / e+ ]| |1 -
Q \x’ Q Q fﬂf\

Therefore,
»

/\VTnuk\2da:+/ \V\I/nuk]qda:gn)\/ u—'zdx—anfHLl(Q).
Q Q o |z|

To estimate the first term on the right hand side we are going to use
Holder’s inequality,

u;n 1 ON gN—p(N—q) qN p(N—q)
n)\/ —kde < n)\(/( 5 ) VP —q)da:> o (/ u,i\’*qda:> o
a |zl Q |zl Q

; ; Np .
Notice that since ¢ > Nrp=3:

qN N

2 < Ng—pN +pg & — < —.

gN —p(N —q) = 2
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Thus,

gN—p(N—q)

1 . aN
(/(| |2)‘1N*Z(N*Q> daj) o is integrable.
Q |T

Since g > 1, we can apply Young’s inequality and we also use Sobolev’s
inequality, then, we obtain

p
n)\/ u—kzdx §n)\EC/ |Vug|%dz + nAC(e).
Q || Q

Therefore,

/\VTnuk\zdw—i-/ \V\Pnuqudwgns)\C/\Vuk\qdw—i-)\nC(s)+anHL1(Q).
Q Q Q

Notice that

/|Vuk|qd3:§/ |VTnuk|2d:L"+n/ |Vug|?dz + Cy|Q].
Q Q {ugp>n}

Hence, for € > 0 suitable small,
(1=nxC) [ [Vunftds <l fllsgo) +Colel,

then, u, — u weakly in W, () and T}, (uz) — Tpu in W 2().

To get the strong convergence of T),(uy) to T, (u) in VVO1 2(Q) we argue
as in Section 2. Then, up to a subsequence the gradients converge a.e. and
we can prove for the Vitali Lemma that |[Vug|? — |[Vu|? in L1 (£2), therefore,
u is a weak solution to the problem,

p
—Au—i—\Vu]q:)\‘Z?—kf, w>0 inQ,

(3.24)
u=20 on 01,

Witth—]varp<q§2and1§p<2. O
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Chapter 4
Existence and qualitative properties for the

p-Laplacian case

1 Introduction

In this Chapter we are going to study a perturbation of the following quasi-
linear problem

q
—Apu = 2 Q,

|z
w>0 in Q, (4.1)
u=20 on 012,

where —Ayu := —div(|Vu|P~2Vu), 1 <p< N,¢>p—1and 0 € Q.

Notice that also in this quasilinear setting we are considering a super-
critical problem, therefore the results in this Chapter can be understood as
an extension of the ones obtained in Chapter 3 for the Laplacian operator.

If0e Qand g > p—1, it is possible to prove by a direct way the
nonexistence of solution in WO1 P(Q) to the problem (4.1). The argument
for this proof is by contradiction and it is based in a comparison result and
a generalization of the standard Picone’s inequality. We recall these two
classical results for the reader’s convenience.

Proposition 2. (Weak Comparison Principle). Let f,g belonging to L*(Q)
and u,v the unique entropy solutions to the problems

—Apu=f inQ —Apv=g inQ
u=0 on 0f, v=20 on 0S).

Moreover, let us suppose that f < g. Then,
u<w in Q. (4.2)

Theorem 12. (Picone inequality generalization)

Assume v € Wol’p(Q) verifying

—Ayv =v,
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a positive bounded Radon measure, v,, = 0 and v > 0. Then, for all
ue WyP(Q)
|VulPdz > w(—A v))dx
Q ~ Jo ot g '
A detailed proof can be found in [6, Theorem 3.1].

Now we are able to prove the following nonexistence result for solutions
ue WyP(Q).

Theorem 13. Assume 0 € Q, N >3, 1 <p < N andp—1 < q. Then,
problem (4.1) has no solution u € Wol’p(Q).

Proof. We argue by contradiction, let u be a solution to the problem

q
—Apu = 2 Q,
|z|P
u>0 in Q,
u=20 on 0.
uq
We have —Aj,u = W > 0, and by the Mazimum Strong Principle for
x

the p-Laplacian operator, it follows that u > 0 in 2. Therefore, there exists
c such that
c:=infu > 0,

Br
for some R small. Then,
ud c .
—Apu = W > W = —Ap'l) m BR. (43)

a
Since —— € LY(), thanks a uniqueness result in [6], the problem

|z|P
q
Apv = ’c‘ in Bp,
v >0 in Bp, (4.4)
v = on OBg,

has a unique radial solution.

We write the —A,(-) operator in radial coordinates in B \ {0} as

_,r,l—nar(rn—l |Ur|p_2vr)7
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with, as usual, r = |z|. Integrating (4.4), we get

"o P20, = — | Ar TPy = ————
n—p

Choosing C' = 0, v, has to be negative and we have

cAr"P 4+ C.

-5 (2)

Therefore, by (4.3) and Proposition 2 we get

u(z) > Clog <£> )

]

where C' > 0 is big enough and C = C'(c, n,p,q).

A generalization of the standard Picone’s inequality, see Theorem 12,

allows us to get

/ Vo|Pde
Br

v

v

5 D q—p+1
Cq—p+1/ ﬂ <log (ﬁ)) dz,
B [P |z

uq—p+1’¢‘p

V¢ € C§°(Br). This is a contradiction with the Hardy-Sobolev’s inequality

and it concludes the proof.

O

Indeed, there is no solution to problem (4.1) even in a more general sense,
entropy sense (see [22]). The proof of this result is a little more complicated

and it is written quite detailed in [5].

We define the kind of solutions that we are going to consider in this

Chapter.

Definition 4. Assume f € LY(Q). Let u be in Wol’p(Q). We say that u is

an energy solution to problem

uq

—Apu+ |VulP =d—+ f inQ,

[P

for all ¢ € WyP(Q) N L®(Q).

a
|

Lvuru o)+ [ vupo=o [ oo+ [ o
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The contents of this Chapter can be summarized as follows.

e As in the previous Chapter we will prove the regularizing effect due
to the presence of the gradient term |Vu|P on the left hand side of the
problem (4.1).

More precisely, we study the existence and qualitative properties of
weak positive solutions to the supercritical problem

uq

—Apu+ |VulP =9 +f inQ,
put |Vul [P (4.5)

>0 1in, u=0 on 012,

where € is a bounded domain in RY such that 0 € Q, 9 >0, p—1 <
q<p f>0,f€LYQ) and 1 < p < N. Notice that we prove the

existence of a weak solution u to problem (4.5) for any ¥ > 0 and for
each f € L'(Q), f > 0.

Taking into account that the data is a L'-function, the solution is
obtained as limit of approximation, to be short, SOLA, see [43], and
by using the results in [45] we know that also is an entropy solution
or renormalized solution. Notice that, since |Vul|P € L'(Q) we can
conclude also that u is a solution in the sense of the Definition 4.

Summarizing, the main existence result in this Chapter is the following

Theorem 14. Consider problem (4.5) with1 <p< N,p—1<qg<p
and assume that f € LY(Q) is a positive function. Then, for all 9 > 0
there exists a weak solution u € Wol’p(Q) to (4.5).

The proof of this result has the following steps.
(i) We first prove the existence of solution to the truncated problem

q
U
—Ayuy + |Vug P = zm(ﬁ) +Ti(f) in Q, w € WyP(Q).
This can be done solving the correspondent approximated prob-
lem and passing to the limit in W, ().

(ii) We show that the sequence of solutions to the truncated problem
converges weakly in VVO1 P(Q) to the solution of (4.5) and then we
deduce the a.e. convergence of the gradients. Finally, we exploit
it to deduce the strong convergence in VVO1 P(Q).

(iii) We pass to the limit in the truncated problem and we obtain the
existence of a solution to (4.5).
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Let us remark that, because of the presence of the gradient term (which
causes the existence of solutions), to pass to the limit in the truncated
problem it is necessary to deduce the convergence of uy (solutions of
the truncated problem) in I/VO1 P(Q). A convergence in VVO1 Q) (in the
spirit of [28]), would be not sufficient to pass to the limit and get a
weak formulation of the problem; because ¢ < p and VVO1 1(Q)) is not
enough, hence, we need to check the convergence in VVO1 P(Q).

e In Section 3 of this Chapter we deal with the study of the qualitative
properties of solutions to (4.5). The main result is the following

Theorem 15. Let u € CY(Q\ {0}) be a weak solution to (4.5). Con-
sider the domain § strictly convex w.r.t. the v—direction (v € SNV™1)
and symmetric w.r.t. Ty, where

T ={zeRY :2-v =0}

Moreover, assume f € CY(Q\ {0}) to be non-decreasing w.r.t. the
v—direction in the set

0={reQ:z-v<0}

and even w.r.t. Ty Then, u is symmetric w.r.t. Tj and non-decreasing
w.r.t. the v—direction in €.

Remark 2. Notice that the extra reqularity hypothesis on f is suffi-
cient to have the corresponding reqularity of the solution.

Remark 3. If ) is a ball and f is radial, then u is radially symmetric
with %(7‘) <0 forr #0.

We point out that Theorem 15 will be a consequence of a more general
result, see Proposition 5 in Section 3, which states a monotonicity
property of the solutions in general domains near strictly convex parts
of the boundary. This can be useful for example in blow-up analysis.
Also, it will be clear from the proof that the same technique could
be applied to study the case of more general nonlinearities. Recall
that we are only looking for positive solutions of (4.5), thus, we only
consider the interval [0,00) and since if w is near to zero, for some
values of ¢, the nonlinearity can be not Lipschitz anymore, we note
that the nonlinearity in problem (4.5) is in general locally Lipschitz
continuous only in (0, co).

The main ingredient in the proof of the symmetry result is the well
known Moving Plane Method ([87]), that it was used in a clever way in
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the celebrated paper [62] for the semilinear nondegenerate case. Actu-
ally, the proof showed in this memory is more similar to the one in [23]
and is based on the weak comparison principle in small domains. The
Moving Plane Method was extended to the case of p-Laplace equations
firstly in [47] for the case 1 < p < 2 and later in [49] for the case p > 2.

To study the qualitative properties of the solutions to (4.5), we first
need to include some summability results of the gradient and also a
weighted Poincaré’s inequality. These are, together with a weak com-
parison principle, the most important ingredients to prove the sym-
metry result using the Moving Plane Method.

The first crucial step is the proof of a weak comparison principle in
small domains that we carry out in Proposition 4. This is based on
some regularity results in the spirit of [49]. These results hold only
away from the origin due to the presence of the Hardy potential in
our problem. This will require more attention in the application of
the Mowving Plane procedure. Moreover, the presence of the gradient
term |Vu|P, leads to a proof of the weak comparison principle in small
domains which makes use of the right choice of test functions.

We recall the following classical inequality which will be very useful in
all the memory.

Lemma 4. Let n,n' € RN. There exists positive constants Cy,Cy depending
on p such that, Vi, ' € RN with |n| 4+ |n'| > 0 and Y € Q, it follows

[n|P~2n — 7' [P20'| < Cr(lnl + |0 ))P~2n — 1|, (4.6)

(I[P =20 — 10" [P~20/1ln — 0] = Cal|n| + [0 [)*~2n — o' |*. (4.7)

Since |n —n'| < |n| + || by (4.6) and by (4.7) it follows

and

P2 — [P0 | < Cilp =[P~ if 1<p<2 (4.8)

P20 — ' P20 ln — 0] = Coln—n/IP if p=>2. (4.9)

See the details, for example, in [46].

All the results of this Chapter can be seen in the paper [72].
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2 Existence of an energy solution

We use the same arguments as in the previous Chapter to find a solution to
the problem

uq

—Apu+ |VulP =9— + f in
? [P (4.10)

>0 1in, u=0 on 0.

We study the weak and the strong convergence of the approximated and
truncated solutions, and then, we pass to the limit.

2.1 Existence of solution to the truncated problem

First of all we are going to study the existence of solution to the following
truncated problem

q
Uy

E@+ﬂmhﬂlweme7 (4.11)

—Apuk + !Vuk]p = 19Tk(
where T} (s) = max{min{k, s}, —k} and k& > 0.

The idea is to find a solution first of the approximated problems and get
the convergence of the solutions of these problems to the solution of (4.11).

Theorem 16. There exists a positive solution to problem (4.11).

Notice that ¢ = 0 is a subsolution to problem (4.11). Consider ¢ the
solution to

{_%szk+nU)mﬂ (4.12)

»=0 on 9Q.

In fact, ¢ turns to be a supersolution to (4.11).

To prove Theorem 16 we will consider a sequence of approximated pro-
blems that we solve by iteration and using some convenient comparison
argument. We take as starting point wg = 0 and consider iteratively the
following problem,

|Vw, [P
1+ LV,
wy, =0 on 0f).

q
Wp_q

— Ay, + = ITh("25) + Th(f) in Q

(4.13)
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Notice that the subsolution ¢ = 0 and the supersolution ) to problem (4.11)
are subsolution and supersolution to the problem (4.13) as well.

The poof of the next proposition follows using a comparison argument
from [29].

Proposition 3. There exists wy, € Wol’p(Q) N L>®(Q) solution to (4.13).
Moreover, 0 < w, <1 Vn €N,
Proof. Let us consider the problem:
—Apwy, + g(x, Wy, Vwy,) =0, (4.14)

where the function g(x,w,, Vw,) is defined by

—vk — Tr(f) it w, >,

wl .
ey ~ VTR - Tlf) H0Swn <y, (419)
—T3(f) if w, <O0.

Using Leray-Lions arguments, see it in [68], we can find solutions to the
approximated problem (4.14) for each n and by classical regularity results,
such solution w,, belongs to Wol’p(Q) N L>(9).

As first step we are going to show that w, > 0.

Since w,, is a solution of (4.14) and 0 is a subsolution
—Apwy, + g(x, Wy, Vwy) + Ti(f) > 0.

Using —(wy,, ) as a test function in the last expression one has
—/ |Vw, [P~2Vw, - Vw,, —/ (g(m,wn,an) + Tk(f)> (w, ) > 0.
Q Q

We define the following set,
R={zx:2€Q:w, <0},

therefore,

—/ \Vw, [PV w, - Vw,, dr — / (g(a:,wn, Vwy,) + Tk(f)) (w,, )dxz > 0.
Q R

Taking into account (4.15), g(z,wy, Vwy,) = =Tk(f) in R, then,

—/ |[Vw, [Pdz < 0.
Q
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Hence, we can wconclude w,, > 0.

Now we want to prove w,, < 1.

Since 9 and w,, are respectively a supersolution and a solution of (4.14),
we have

—Apwn + Apt + g(x, wn, Vwy) — g(x, 1, Vip) <0

Using T ([wy, —9]T) with M € R as a test function in the last expres-
sion it follows

/ < [V P2V, — VP2V, Vo (wn — ) > da
Q
[ (90w, Tn) + 0k + ) Tar (s — 6] <0,
Q
We define the following sets,

R={z:2€Q:9Y <w,},

RM:{m:mGongwn—wSM}.

Thus,
Ty([wp, —¥)]T) =0 ifz€Q—R orw, =0
and
VTv(w, —¢]7) =0 ifz € Q— RM orw, =0.
Therefore,

[ <Vl — (V0296 VL (0 — )" > da

RM

+/ <g(x,wn, Vw,) + 9k + Tk(f))TM([wn —]T)dz < 0.
R

By (4.15) and taking into account that VT (w, — )" = V(w, — )", we
get

/ < |Vw, [P~ 2Vw, — VP2V, V(w, — )t >de <0 VM e RY.
RM

From Lemma 4, we have
C / ’V('wn - ¢)+’2
0> gy (Vwa +[Vy))2?
Cp/ |V (wy, — )T |Pdax if p>2,
RM

dr if 1<p<2,
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which imply in any case that w, < . O

Proof of Theorem 16: we proceed in two steps in order to study carefully
the convergence of w,.

Step 1: Weak convergence of wy, in Wol’p(Q).
By simplicity we set

|Vw, [P

HoVn) = T T9unp

(4.16)

Taking w,, as a test function in the approximated problems (4.13), we
obtain

q
/\an]pdx—k/Hn(an)wndxzvﬂ/Tk(w"_pl)wndw—i-/Tk(f)wndw
Q Q Q || Q

§75‘/ kwnda:—i-/ fwpdx.
Q Q

Since w, € Wy(Q) N L®(Q) and f € L'(),

/QIanI”der/QHn(an)wndm < Ok[|l] Lo ) + [ Lo @) 1121 (0)-
Therefore, there exists a positive constant C(k, f,1,9,Q) such that
[ v+ [ (Fun)wnde < Gk £.6.0.9),
Q Q

Moreover, since fQ H,(Vwy,)wydx > 0, we have

/ \Vw, [Pdz < C(k, f,1,9,Q). (4.17)
Q

Therefore, up to a subsequence, w, — up weakly in VVO1 P(Q) and, since
[[wnl[ Lo ) < C, wn — ug weakly-* in L>°(Q), thus,

/wngpdx:/ukgpdx; for e L'(Q).
Q Q

Hence,
u, € WyP(2) N L®(9Q).
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Step 2: Strong convergence of wy, in Wol’p(Q) and passing to the limait
in (4.11).

To get the strong convergence of w, in VVO1 P(Q) first of all we notice that
|[wn — uk“WOl’p(Q) < [[(wn — uk)+||wolvp(g) + |[(wn — uk)_HWOl»P(Q)- (4.18)

Thus, we proceed estimating each term on the right-hand side of (4.18).

Asymptotic behavior of ||(w, — Uk)+||W1,p(Q).
0

Chosing (w, — ug)" as a test function in (4.13) we obtain

/ \Vwn|P~2(Vwp, V(w, — up)T)de + / H, (Vwy) (wy, — ug,) T da
@ @ (4.19)

:ﬁ/g}Tk(wn_l)(wn—uk)+d3:+/QTk(f)(wn—uk)+d:13.

[P

Since w, — wuy in Wol’p(Q), one has w, — wui a.e. in Q and thus,
(wp, —ug)t — 0 a.e. in Q together with (w, —ug)™ — 0 in Wol’p(Q) as well.
Therefore, the right-hand side of (4.19) goes to zero when n goes to infinity.

Then, taking into account that [, Hy(Vwy,)(w, — u)Tdz > 0, the ex-
pression (4.19) becomes

/ |Vw, [P~2 (Vwn, V(w, — ug)¥) da
Q

< / |Vw, [P~2 (Vwy, V(w, — ug)™) dz —I—/ H,(Vwy,)(w, — ug,) " da
Q Q

< o(1),
(4.20)

as n — +00.

Since by weak convergence;
/ Vg P2 (Vug, V(w, —ug) ™) dz = o(1) as n — +oo,
Q

it follows

/ (IVw, P 2Vw, — |Vug P> Vug, V(w, — ug)t) dz < o(1). (4.21)
Q
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Then, from (4.21) and using Lemma 4, we have

V(wn — )2
C fl<p<?2,
1@)/9 AR

o(1) (4.22)

Cl(p)/ IV (wn — ug) P i p>2,
Q

with C1(p) a positive constant depending on p. In any case, since for 1 <
p < 2 using Holder’s inequality one has

/ |V (wy, — ug) T|Pda
Q
2y (4.23)

< (fmeatie) (foew ura) ”

we obtain

|| (wy, — uk)+HW01,p(Q) —0 asn— +oo. (4.24)

Asymptotic behavior of ||(w,, — uk)_le,p(Q).
0

Let us consider e [(w,, — u)~| as a test function in (4.13),

/ e |V, [P~2 (Vwy, V(wy, —ug)”) da
Q

V n p —
+/ e~ Wn <& — ‘an]p> (wy, — ug) " dx (4.25)

Q 1+ %’an‘p
q
= / e_w”Tk(wn_l
Q |z [P

Recalling that f = min(0, ), we want to point out that using this test
function it follows

p
/ o~ Wn <M _ |an|”) (wn, — ug) " dz > 0. (4.26)
Q

)(wp, — ug) " dx + /Q e T (f)(wy — ug)” dx.

1+%\an]f”

As above, since (w, —ug)~ — 0 a.e. in ), the right-hand side of (4.25) tends
to zero as n goes to infinity. Moreover, being w, < 1 (see Proposition 3),
there exists vy such that e=*» > ~ > 0 uniformly on n. Then, equation (4.25)
states as

’y/ |Vaw,, [P~2 (Vwn, V(w, — ug)”) dz < o(1). (4.27)
Q
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Arguing in the same way as we have done from equation (4.20) to (4.24),
we obtain
|| (wy, — uk)_HW&,p(Q) —0 asn— +oo. (4.28)

From equation (4.18), by (4.24) and (4.28) it follows

[|(wy, — uk)||WO1,p(Q) —0 asn— 400

and consequently, Vw, — Vuy a.e. in €. Then, by (4.16), H,(Vw,) —
|[Vug|P a.e. in © and the equi-integrability follows. By Vitali’s lemma,

H,(Vwy,) — |Vug [P in LY(Q).

Hence, uy € WO1 P(Q) N L>(Q) satisfies the problem in the following sense

/\Vuk\p_z(Vuk,V(b)dx—k/ |Vug|Ppdx
Q 0

o7 (4.29)
= 19/ Ti(—2)pdx + / Ty (f)pd,
o = |zfP Q
for all ¢ € VVO1 P(Q) N L>®(Q) and in this way we conclude the proof.
O

2.2 Passing to the limit and convergence to the solution

In this Subsection we are going to show that u; — wu strongly in T/VO1 P(Q) in
order to prove the existence of a solution u to problem (4.5) and to prove
Theorem 14.

Proof of Theorem 14: We perform the proof in different steps in order to be
clear.

Step 1: Weak convergence of uy, in Wol’p(Q).

We start taking 7}, (uy) as a test function in the truncated problem (4.11),
in this way we obtain

/ VT, () [P + / Vg P T () d
Q Q

= U—Z U T U i
=0 [ T Tt + [ Tl)T, )
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Define 5
1
U, (s) = / T, (t)rdt, (4.30)
0
that is, explicitly,
" if s <mn,
W(s) =4 PH7 o . (4.31)
san v +(s—nnr ifs>n.
Then,
/ VT () P + / V0, () Pda
Q Q
q
_y / T (YT, (ug)da + / To(F)T (ug)d (4.32)
o |zl Q

q

u
< kT, :
_19/Q 2lr (ug)dx + nl|f|lL1 (0

We establish the following inequality.
For fixed ¢ € [p — 1,p), Ve > 0 and Vn > 0, there exists C. such that

siT,(s) <elP(s)+C: s>0. (4.33)
By a straightforward calculation it is easy to check this expression;

o If s <n, (4.33) would be
st < cosPt 4 O

And, since g < p, the last inequality follows.

o If s >n, (4.33) would be
ns? < (CnPTYP 4 (s — n)n'/P)P + C. < O 4 (s — n)Pn + C..

And, since g < p, the last inequality follows.

Thanks to Hardy’s inequality (see Theorem 5) and (4.33), equation (4.32)
states as

/|VTn(uk)|pdx+/ VU, (ug)Pdx
Q Q

0 dz
< U, (ug,) [P a .
<epe [ IVEaPds 9C: [ S5l il
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Then, choosing € > 0 such that 0 < ¢ < 1, for some positive C' and

N,p
since p < N, we get

/]VTn(uk)]pdx—FC/ |V, (ug)|Pdx
Q Q

i (4.34)
< 1906 /Q W + n||f||L1(Q) < 0(19767 f7p7n79)‘

Fixed n > 1, by the definition (4.31) of ¥,, and equation (4.34), one has

/ |Vug [Pdz
Q

§/ ]VTn(uk)\pda:—F/ \Vuk\pda:
Q Qn{up>n}

§/ ]VTn(uk)\pdw+/ \Vuk\pdw+/ |Vug|Pdx
Q QN{ur>n} QN{ur<n}

(4.35)

1
< / VT () P + / V0, (w) Pz < C.,
Q nJq

uniformly on k.

Therefore, up to a subsequence it follows that up — u weakly in I/VO1 P(Q)
and a.e.

Step 2: Strong convergence in L'(Q) of the singular term.

Since p < g, using Holder’s inequality and by the previous estimation for
the gradient, we have

ul ul u? v 1 5
o= Lo (L o) (L)
o |zP o |zfP q |z o lzP

q

<c ( / |Vuk|de) e
Q

with C' a positive constant that does not depend on k. It follows that

(4.36)

4 q
u u
T(—£) is bounded in L'(2) and converges almost everywhere to ——. In
[P ki

uq
particular, Fatou’s Lemma implies that W € LY(Q).
T

Moreover, let E C 2 be a measurable set, by Fatou’s Lemma we obtain
q
U

q q q
/Tk(—)dxg/ Bk gy < lim ﬂdzﬁ/ Y4 < 5(E),
g |zP g |zlP n—+oo Jpp [P E lzfP
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uniformly on k, where lin% 0(s) = 0, wy, is as in the proof of Theorem 16 and
5—>

1 as in Proposition 3. Thus, from Vitali’s Theorem it follows that
iy,

1; — —
Hiw) ™ Tep

in L'(Q). (4.37)

Step 3: Strong convergence of |Vuy|P — |[VulP in L*(Q).

To show the strong convergence of the gradients we need some prelimi-
nary results as in the semilinear case, see Chapter 3.

We need first the following Lemma.

Lemma 5. Let uy be defined by (4.11). Then

lim |Vug|Pdx =0 (4.38)

700 J{ug>n}

uniformly on k.

Proof. Let us consider the truncated functions

Gn(s) =S5 Tn(8)7 and ¢n—1(8) = Tl(Gn—l(s))-

Notice that ¥, 1 (ug)|Vug|P > |Vuk|‘;{uk>n}. Using 1,1 (ug) as a test func-
tion in (4.11) we get
/ |Vug [Pdz
{ug=n}
< /Q \an_l(uk)\pdx + /Q ]Vuk\pwn_l(uk)dw (439)

uj
_ /Q I Yo () + /Q Tl f Y1 (i) < C.

Since {uyg} is uniformly bounded in I/VO1 P(€1), then up to a subsequence, {uy}
strongly converges in LP({2) for 1 <p < p* = NN—_’; and a.e. in . Thus, we
obtain that

1 C
/ ukda:g—/uzdajg—
{n—1<ui<n} n—1Jq n—1

1
/ updr < —/ uidm < 9
{up>n} n.Jo n

and

Therefore,
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HreQ:n—1<ug(x) <n}—-0 ifn—oo0 and

Hz € Q,:up(z) >n} — 0 if n — oo,
uniformly on k.

By (4.39),

/ |Vug[Pdzr < ky PYn—1(uy)dz + k‘/ VYn—1(ug)dz
{ug>n}

{ux>n—1} {ug>n—1}

<C Updx.
{ug>n—1}

Then, we have uniformly on &

lim |Vug[Pdz = 0. (4.40)

O

Next Lemma shows the strong convergence in I/VO1 P(Q) of the truncated
terms.

Lemma 6. Consider u; — u in Wol’p(Q) as above. Then, it holds uniformly
on m,

T (ug) = T (u) in Wol’p(Q) for k — +oc.
Proof. Notice that
T (ure) — Tm(u)HWOlvP(Q)
< (T () = Ton () My + 1T () = Ton () [y

We are going to estimate the convergence of each term on the right-hand
side of (4.41).

(4.41)

Asymptotic behavior of ||(T},(ux) — Tm(u))+||W1,p(Q).
0

We take (T, (ug) — Trn(u))™ as a test function in (4.11), obtaining
[ (902 V e, ¥ (@)~ T () )
Q
+/]Vuk]p(Tm(uk)—Tm(u))erx (4.42)
Q

= [ () 4 120 ) T~ Tty
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Since T, (ur) — Tin(u) in Wol’p(Q) and Ty, (ug) = Tr(u) ae. in Q, we
have (T, (ug) — T (u))t — 0 in Wy P(Q) and (T (ug) — T (u))t — 0 ace
in Q. Thus, the right-hand side of (4.42) can be written as

q

[ () + 1)) i) - Tt ] < [ 02+ oms

[P
[0+ niema
< — 4+ 2m)dz,
o |z
then, the right hand side is dominated by a function in L!(Q2) independent

on k, thus, by the dominated convergence and since (T, (ug) — T (u))t — 0
a.e., tends to zero as k goes to infinity.

From (4.42) we have
/Q (Ve 2V, V(T () — T (w))) dee < (1) (443)

Let us define Q1 = QN {|ug| < m} and Qo = QN {Jug| > m}.
We estimate the left hand side of (4.43) as

/Q (IVug P> Vug, V(T (ug) — T (w)) 1) dz =
LTl 29T )= VT2V T (0, (T ) =T (1))

+ / (|VTm(u)|p_2VTm(u), V(T (ug) — Tm(u))+) dx
Q1

+ / (lvuk’p_2VUk, V(Tm(uk) — Tm(u))+) dx.
Qo
(4.44)

Since (Th,(ug) — Thn(uw))™ — 0 weakly in Wol’p(Q), the second term on the
right hand side of (4.44) becomes

/Q (VT () P2V T (1), V (T (1) — Ton () ")z
< /(|VTm(u)|p_2VTm(u),V(Tm(uk) — Tm(u))+)d:n
Q

+

/Q (VT ()P~ 2V T (1), 9 (Tyn (1) — Ton (1)) )t

<o(1)+ ; (VT (w) [P~V (T (ug) — To ()T )dz.
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Since T, (ux) = m in the set QN {uy, > m}, it follows

/uvmmw*vnmmvmaWwJMMVMx

Q1

<o(1)+ VT (w) P~ Vudz.
Q2

By Holder’s inequality and denoting x,, the characteristic function of the
set {z € Q: |ug| > m},

/Q (VT (W) P2V Ty (), V(T (ug,) — T () ™) de

< o(1) + Clul5L  XmVTm()llo@y = 0 as b — o,

1p(Q

by Dominate Convergence Theorem, since

/ o[V T ()Pl < / VT (w)Pda
Q Q

and since uyp — u a.e., VI, (u) = 0 in xpm, thus, xm V7T, (u) — 0 strongly
n (LP(Q)N

As above, the last term in (4.44) can be estimated as

‘/ (|Vuk|p_2Vuk, Xm VT (u)) dx

< Clfugl 3,

(4.45)

1P(Q HvaTm(U)HLp(Q) — 07

as k — +oo.

We study now the first term in the right hand side of (4.44),

/Q(|VTm(uk) P72V T (k) = |V T (w) P2V T (w), V(T (i) = T () ) da
- /£|VTm(uk)|p_2VTm(uk)—|VTm(u) P2V Ty (), ¥ (T () — T () )
— /Q(|VTm(uk)|p_2VTm(uk)—|VTm(u) P2V T (w), V(T (ug) = T () ) da

< /(|VTm(uk)|p_2VTm(uk) — |V T (w) P2V Ty (1), V(T (ur) —Tm(u))+)dx

—I—‘/Q|VT u) P2V T (ug,) — |VTm(u)|p_2VTm(u),V(Tm(uk)—Tm(u))+)d:n‘.
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Considering that, by the Dominated Convergence Theorem and since
VT (ug) =0 in Qg, we have

| (9T )=V )T 0, (0 00~ ) )

S/Xm!VTm(u)\pdw—)O as k — +oo0,
Q

equation (4.44) becomes
/Q(|vuk|z’ 2 g, V(T (1)~ T (1)) ) i =

/Q (19 T () [P~V To (1) — |V T ()29 Ty (1), V (T (1) — T (1)) )
+o(1).

Finally, by Lemma 4, we obtain
/ (IVug P2V g, V(T (ug) — T (w) 1) da (4.46)
Q

’V(Tm(uk) - Tm(u))+‘2 .
) | T T s O T L<p<2,

p) /Q IV (Ton(u) — T ()P +0(1) i p>2,

with Cy(p) a positive constant depending on p. Thanks to (4.43) it implies,
as the calculus done in (4.23), that

(T (ug) — Tm(u))+||wol,p(m —0 as k— +oo. (4.47)
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Asymptotic behavior of ||(T,,(ux) — Tm(u))_HW&,p(Q).

We use e—Tm(uk)(Tm(uk) —Tn(u))™ as a test function in (4.11), obtaining
/ e~ ) (1, P2 Vg, V(T (ug,) — Ton(u)) ) dz
Q
_ / e~ T () (T, (ug) — T (u)) ™ (| V[P~ Vg, VT (ug) ) d
Q
b [ 1D () ~ T
Q
_ / e~ T ) (1T ug P2 Vug, V(T (ur) — Trn(u) ™) da
a (4.48)

— /Qe_Tm(“k)(Tm(uk) — T (w) ™ (|Vug [P Vug, VT, (ug))da

+ \Vuk\pe_Tm(“k)(Tm(uk) — Tin(u))” dx

1951
A Vg [Pe=Tm () (T, (ug,) — T (u))~ da
= / <Q9Tk(u—z) + Tk(f)> e ) (T, (ug) — T ()~ d.
Q | [P

In this case as well, since (Tp,(ux) — Tm(u))™ — 0 weakly in Wol’p(Q) and
(T (ug) — Tip(u))™ — 0 a.e. in €, as in (4.44), the right hand side of (4.48)
tends to zero as k goes to infinity.

Since (VT (ug)) xm = 0, the second term in the left hand side of (4.48),
states as

_ / e~ T (T () — T (u)) ™ (IVurP Vg, VI (ug) ) da
0
=- / e T (T, (ug) = Ton ()™ (IVuglP Vg, Vo (u) ) e
1951
Therefore,

/ e~ Tmlu) (Vg P2 Vg, V(T (ug,) — Tin(u)) ™) dz
. (4.49)

+ [ | Vug|Pe D) (T, (ug) — T (w)) " dz = o(1).
Qo

We point out that

(Tm(uk) - Tm(u))_Xm =0 and e_Tm(uk) <e ™.
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Hence, (4.49) becomes
/Q (Vs P2V g, V(T (ug) — Ton(0))”) dit < oy 0(1) (4.50)

as k — +oo, with (), a positive constant depending on m.

The choice and use of e~ Tm() (T}, (uy) — T}, (u))~ as a test function
allows us to simplify conveniently the equation (4.48) in order to obtain the
desired result, the strong convergence. In fact, we proceed writing the left

hand side of (4.50) as

/Q (IVug P2 Vg, V(T (ug) — Trn(w)) ™) da

= [ (9T 00) P29 0~ [V o (025 1), (T 0) T 1) Yl
+ /Q 1 VT (w) P2 (VT (1), V(T (ug) — Tin(u)) ™) da

4 [ Va2V, V) — Tnla)) ) do < of0).
Qo
(4.51)
Since (T, (ug)— T (1))~ — 0 weakly in Wy ?(Q) and (T, (ug)— Ty (1))~ — 0

a.e. in ), the second term on the right hand side of (4.51) can be estimated
as follows

/ VT () P2 (VT (), ¥ (T (1) — Ton(w))”) d
951
- / VT ()72 (VT (1), V(T () — T (1))
{2 (4.52)
~ [ Tl (VT (0, ¥ (T (12) = Ton(1))”) o
Qo
<o(l) — / VT, (u)[P~2 (VI (w), V(T (ug) — T (w)) ) da.
Qo
By Hoélder’s inequality we obtain
| 9T (V00,9 (T (1) = To)))
1
-1
< 0(1) + Cllully g i VT @l o) > 0 a5 k= +oc,
since by weak convergence the first term on the right hand side of (4.52) goes

to zero, while the second one goes to zero using (4.35) and the fact that, for
dominated convergence, X, V1, (u) — 0 strongly in LP(€2). Moreover, we
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observe that the last term in (4.51) is zero since (Tp, (ug) — T (w))™ xm = 0.
Finally, as above, by Lemma 4, equation (4.51) becomes

o(1) > /Q (VP2 V(T () — Tn(w)™) de

IV (T ) — Ton ()2
0 | T 15 T 7

+o(l) f 1<p<2 (4.53)

>
Ci(p) /Q IV (T (ut) = Tm(w) P +0(1) i p>2,

with Ci(p) a positive constant depending on p. By (4.50) and (4.53) (using
(4.23) again), we get

(T (ug) — Tm(u))_HW&,p(Q) —0 as k— +oo. (4.54)
From (4.41), (4.47) and (4.54) we have the desired result, i.e.
(T (ug) — Tm(u))HW&,p(Q) —0 as k— +oo.

O

In order to be able to pass to the limit, we prove now that |Vug|P —
|Vu|P strongly in L'(Q2). By Lemma 6, the sequence of the gradients con-
verges a.e. In order to use again Vitali’s Theorem we need to prove the
equi-integrability of |Vug|P.

Let £ C Q be a measurable set, then

/ VuglPdz < / VT, ()Pl + / VugPdz.
E E {upg>m}nE

By Lemma 6, T, (ux) — Tpn(u) in Wol’p(Q) Vm > 0 and therefore,
/ |V Ty, (ug)|Pdz is uniformly small for |F| small enough.
E

Moreover, by Lemma 5 we obtain

/ |Vug[Pde < / |VugPdz — 0 as m — oo,
{ug>m}ink

{ug>m}

uniformly on k. Then, Vitali’s Theorem implies that
|Vug|P — [VulP strongly in L'(Q). (4.55)

Step 4: Passing to the limit in (4.11).
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Finally, since ||uy — Loy = 0 as k= 400, we conclude that u is a

ullyy.
distributional solution to the problem

—Apu+ |VulP = 19| |p +f inQ,
u >0 on 0f),
u=0 in €.

In particular, we point out that the equation is verified even in a stronger
way, that is

p—2 P — u_q
/Q|Vu| (Vu,ng)da:—l—/Q|Vu| odx 19/Q|x|p¢daj—|—/gf¢daj

for all ¢ € WyP(Q) N L=().

3 Qualitative properties: Symmetry of solutions

In this Section we are going to study a symmetry property of the solution
u to (4.5). To study this qualitative property, we will need a weighted
Poincare’s inequality. First, we are going to recall the following definition.

Definition 5. 4ssume Q cc Q\ {0} and let p € Ll(Q) and 1 < g < oco.
The space H;’q(Q) is defined as the completion of C1(Q) (or C*(£2)) with
the norm

ol gz = 10l ay + 1900 (4.56)

where

Vol = [ @) To(o)l"de

We also recall that H, ;’q(Q) may be equivalently defined as the space of
functions with distributional derivatives represented by a function for which
the norm defined in (4.56) is bounded. These two definitions are equivalent
if the domain has piecewise regular boundary.

The space H&’Z(Q) is consequently defined as the completion of C(Q) (or

C>(Q)), w.r.t. the norm (4.56).

A short, but quite complete, reference for weighted Sobolev spaces is in
[65] and the references therein.
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Theorem 17. (Weighted Poincare’s inequality). Letp > 2 andu € Che(Q\
{0}) be a solution of (4.5). Setting p = |VulP—2 and Q0 CC Q\ {0}, we have
that H01’2(Q,p) is continuously embedded in LI(Q) for 1 < q < 2* where

1 1 1 p-21

% 2 N p—1N"

Consequently, since 2* > 2, for w € H01’2(Q,p) we have

1
2
sy < Csll Vol =Cs ([ o1vul) s
with Cs = Cs(Q) — 0 if |Q| — 0.

See a detailed proof in [49].

Notice that Theorem 17 holds for p > 2. If 1 < p < 2 and |Vu] is

bounded, 71) = % > C and

c/p|Vu|2 Zé/ |Vu|? 2/u2,
Q Q Q

therefore, the weighted Poincaré’s inequality (4.57) follows at once by the
classic Poincaré’s inequality.

In order to prove the symmetry of the solution we need the analysis of the
regularity of the solution u that is summarized in the following Subsection.

3.1 Local regularity of solutions

Given any solution u € W,”(Q) to (4.5), the CL%(2\ {0}) regularity of
u follows by a classical regularity result, see [51, 93]. The arguments in
[51, 93] do not work up to the origin, because the singularity of the potential.
Moreover, if one assumes that the domain is smooth, the C1*(Q \ {0})
regularity up to the boundary follows by a result in [70].

The fact that the solutions to p-Laplace equations are not in general
C?(9), leads to the study of the summability properties of the second deriva-
tives of the solutions. This fact is important for the study of some qualitative
properties of these solutions. The results in [49] (and in [73] where appears
a more general equation with a gradient term as in (4.5)) hold outside the
singularity. In this direction we need some previous results.

To study the symmetry, one of the main ingredients is the Moving Plane
Method by Alexandroff and Serrin. To use this geometrical argument we
need the weighted Poincaré’s inequality in Theorem 17 and, in order to
obtain the weighted Poincaré’s inequality, we need the following summability
result for the gradient.
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Theorem 18. Assume 1 < p < N and consider u € C1*(Q\{0}) a solution
o (4.5), with f € C1(Q\ {0}). Denoting u; = g—x“i, we have

p—2—p 2
/|W| Vul® po<e wize1 N (4.58)

lz —y|7

for any Q cc Q\ {0} and uniformly for any y € Q, with

Ci=C(p. 7. B 1 a9 [l ey [Vl ey dist(2,{0}) )

foro<fB<landy<(N—-2)if N>3 (v=0if N=2).

If we also assume that f is nonnegative in ) then, it follows that, actually
u

ﬂw + f is strictly positive in the interior of Q and for any Q cC Q\ {0},
x

uniformly for any y € Q, we have that

1 1
———dxr < C*, .
/@\wt w g SC (4.59)

with max{(p —2),0} <t <p—1landy < (N—=2)if N >3 (v=0if
N =2). Moreover, C* depends on C.

See [49], [73] for a detailed proof.

Remark 4. Let Z,, = {z € Q: Vu(z) = 0}. It is clear that Z,, is a closed set
in Q and moreover, by (4.59) it follows implicitly that the Lebesgue measure

’Zu‘ =0,

provided that f is nonnegative.

Notice that if |Z,| # 0, hence, there exists x such that Vu(z) = 0.
Therefore, the integral in (4.59) would explode.

3.2 Previous statements and properties of the solutions

We precise some notations and statements to introduce the main arguments
to study the qualitative property of the solution wu.

Let v be a direction in RY with |v| = 1. For a real number \ we set the
hyperplane
T ={z RN :z-v =2} (4.60)

Notice that 0 € Tjy. Moreover, let us denote

F={zeQ:z-v<A} (4.61)
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5y =Ri(x) =x+2N—z-v)y, (4.62)
(which is the reflection trough the hyperplane TY),

uj(x) = u(zy), (4.63)
a(v) = ;Ielgx V. (4.64)

When A > a(v), since €2 is nonempty, we set
(25)" := RX() (4.65)
and finally, for A > a(r) we denote
A1 (v) = sup{\: (QX) C Q}. (4.66)
Here below we are going to prove some useful results.

Lemma 7. Assume ¥ >0 and f > 0. Consider u € Wol’p(Q) a nonnegative
weak solution to problem (4.5) founded by Theorem 14. Then,

lim u(x) = +oo.

|x|—0

Proof. We consider as a test function ¢ = e™"1, with ¢ € Wol’p(Q)ﬂLoo(Q),
thus, ¢ € Wol’p(Q)ﬁLOO(Q). Then, using ¢ as test function in (4.5) we obtain

/ —e 7| VuP~ ' Vudr + / Vipe | VulP " dr + / |VulPe™“pdr =
Q Q Q

=9 —e “1/1dx+/fe “pd.

Q
Hence,
ud
/V?/)e_“|Vu|p Ydx >19/ We_%ﬁda:
Therefore,
ud w \p—1
e P IVulP2(e” P1Vu Vip)dx > 9 e ) Wdx, (4.67
[l
Q

being f(-) nonnegative. Defining v =1 — e_ﬁ, it follows

ePl ‘p2

IVolP~2 = \ SV

From (4.67), we get

_ ufd _
CP/Q\WV’ 2(Vv, Vob)dx zﬁ/ﬂw(l—u)p Lpda. (4.68)
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Let us consider now ug the radial solution to the problem

—Apu+ [VulP = % in By (4.60)
©>0 in Bg, u=0 on 0Bg, '

constructed as limit of the solutions, say ug j, to the truncated problems, in
the same way as we did in Section 2 but setting here ¢ = 0, with C, R some
positive constants that we choose later. Moreover, for k fixed, since the
right hand side is not depending on wu, it is easy to check that the solution
uR,k is unique. In particular, the reflected function u' , , will be a solution
too and, since upgy is unique, ugy = Uk g x then, ug ) must be radial
for all k. Finally, the strong convergence in I/VO1 P(Q) (and thus, pointwise
ug(z) = limg_yoo up k(x)) implies that the limit of upj will be radial too,
then, up(z) = ug(|z|).

upR

Then, by setting ¢ = e "R, vp =1 —e »-1 (as in equations (4.67) and
(4.68)), we have

[ VRl 2(Von, Vib)de / C o lds. (4.70)
Br Bgr ‘x’p

We note that by the regularity of u, the function v (resp. wg) belongs to
W, P(Q)NL® () (to WyP(Br)NL®(Bg)). Using (4.68) with ¢ = (vg—v)™,
R small such that B CC Q and, since v > 0 in §2; in particular, u > 0
on 0Bgr and v > 0 as well. Otherwise, by definition ug = 0 on 0Bpg, thus,
vr = 0 on OBR, therefore, vg < v on OBR and ¥ € Wol’p(Q) N L*°(Q), thus

Cp |VoP~2(Vo, V(vg — v)T)dz
Bpr

> /B u—q(l — )P L (vg —v)Tdx (4.71)

x |2IP
C
> / —R(l — )P (v —v)Tdx
B P
with Cr = infp, u(z) > 0 by the strong mazimum principle and

Cp/ \Vog[P~%(Vug, V(vg —v)")dx
Br

:/ @(1 —wR)P (v — v)Tdz,
B

w |zl

(4.72)

where, in (4.69), we choose C' = Cg. Thus, subtracting (4.71) and (4.72) we
obtain

Cp (|Vop[P~2Vug — |Vo|P~2Vu, V(vg — v)T)dx
Br
(4.73)
= / Cr ((1 —wp)P -1 - v)p_1> (vg —v)Tda.
B

r |2IP
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On the set Bg N {vg > v}, the right hand side of (4.73) is nonpositive
and, therefore,

/ (IVop[P~2Vug — |Vo[P™2Vu, V(vg — v)T)dz <0,
Br

By Lemma 4, V(vg—v)T = 0, hence, (vg—v)* = C and, since (vg—v)" =0
on OBg, (vg —v)T =0 in Bpg, that is (using the definition of v and vg and
the monotonicity of s =1 —e »-1),

l—e 7T >1—¢ 7  them u>ug. (4.74)

We are going to study the qualitative behavior of ugr considering the test
function ¢ = e "R, with 1» = ¢(|z|) belonging to Wol’p(BR) N L*°(Bg).
Then, by (4.69) we have

R R
/ \Vup|P~2(Vug, ¥ )e "7V ~dx —/ \Vug|P~2(Vug,¥)|Vug|e “Rdx
0 0

R R c
—I—/ |VuR|pe_“R1[)d:E:/ —— e URyp|z| N L.
0 0

[P
Therefore,
R R
| el v g = [ e v,
0 0
with p = |z|. By Hopf’s Lemma, if |z| = p # 0, Vu(z) # 0, and by classical

regularity results for the Laplacian operator we have ugr € C?(Bg \ {0})
and thus, integrating by parts,

R R
J R e e P L)

Therefore,

R R
| ot sl 2l o~ [ e mpN v =0,
0 0
thus,
R
/0 le R g P2l pN 1 — Ce1mpN=1P)dp = 0.
Hence,
/
(e P2 i)V 1) = Cre= N7 Wpp0.  (@75)

Since ug(p) is positive and monotone decreasing w.r.t. p, we have the two
following cases:
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(i) either lim ugr(p) = C > 0;

p—0
(i) or lim ug(p) = +o0.
p—0

If we assume the case (i), from the expression (4.75), we have

/
(7 w2 ()" ) SN S O as p 0,

for some positive constant C'. Using L’Hopital,

(e P2l ) (VP 5O ms po0)

Since ur(p) is positive and by (i),

(—up)P~t = C/pP! as p— 0.

Therefore, —u’y, > C/p + o(1) for p — 0, getting a contradiction with
the case (). Then, the case (i) holds and together with (4.74) it concludes
the proof. O

From now on we shall assume the following hypotheses:

(#p.1) f(z) € CHQ\{0}) and f(z) > 0;

(8P. 2) Monotonicity of f() in the v—direction:

f(@) < f(2X), VA€ (a(v), M (v)).
Define ¢,(z) € C°(S2), ¢ > 0 such that

p=1 in Q\ B2,(0)
$»=0 in B,(0) (4.76)
Vol <5 in Bay(0) \ By(0),

where B,(0) denotes the open ball centered in 0 and with radius p > 0.

Lemma 8. Let u € CY(Q\ {0}) be a solution to (4.5) and let us define the
critical set

Zy ={z € Q: Vu(z) =0}.

Then, the set Q\ Z,, does not contain any connected component C such that
C C Q. Moreover, if we assume that 0 is a smooth bounded domain with
connected boundary, it follows that Q\ Z, is connected.
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Proof. To prove the Lemma we proceed by contradiction. Assume that
such component exists, namely

C Cc Q suchthat 9C C Z,.
Recall that, by Remark 4, we have that
|Zu| = 0.

Thus,

Apu+ |VulP = i + f(x) a.e. in Q. (4.77)

IIP

For all € > 0, we define J. : R U {0} — R in the following way

t ift > 2
Je(t) =q2t—2¢ ife<t<2 (4.78)
0 fo<t<e.
We shall use (V)
U= e, (r) 4.
e “pp(x) vl (4.79)

as a test function in (4.77), where ¢,(x) is as in (4.76). Notice that the
function ¥ does not have problems in the critical set Z, because ¥ = 0 if
Vu(z) = 0. We point out that ¥ is well defined in C and, since 9C C Z,,
¥ is 0 on OC. In particular, supp¥ C C, which implies that ¥ € I/VO1 P(0).
Integrating by parts we get

i B J.(|V
/Ce <\Vu]7’ 290, v <%>> é,d

- - Je(IVul)
+ [ e VulP2Vu, Ve,) L dx
Leava 0) o

_ J=(|Vul) / - Je(|Vul)
— “WWVulPp,————2dx + “WulPp,——2d
/Ce |VulPo, vl T Ce |VulPo, vl x

“ Vv v
P y(‘v T!d +/f_u¢p y(‘v ?‘L!)d%

¢ |zl
notice that we have used the fact that the boundary term in the integration
is zero since 0C C Z, and the definition of ¥. Remarkably, using the test
function ¥ defined in (4.79), we are able to integrate on the boundary 9C
which could be not regular. We estimate the first term on the left hand side

(4.80)
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Je(t
of (4.80), denoting h.(t) = Et( ) and since e ¥ < 1,

J:(|V
[ (rmurron v () ) e
<c / Cul AL (Vul)| [V (| Vul)|6,dz
C

< [ 19up=(|9ulti(Va) ) [D%ull gy
C

We show now the following claim

(4.81)

CLAIM.

(@) [VulP~?||D?ull¢, € L(C) Vp > 0;

(i7) |VulhL(]JVu]) — 0 a.e. in C as ¢ — 0 and |Vu|h.(|]Vu|) < C with C
not depending on €.

Let us prove (7).

By Holder’s inequality it follows that

/ Va2 D%l pde
C

1
2
<o) ( /C |Vu|2@—2>||02u||2¢§dw)

1
_c ( / |vu|p-2-ﬁ||D2u||2¢g|vu|p-2+ﬁdx> :
C

Notice that ¢, = 0 in B, and, taking into account that we are looking away
from the singularity, (b%]Vu\p_erﬁ is bounded since 8 can be any value with
0<p<1,

(4.82)

[ 19up-2iipulioyds
C

24-0)/2 _9_
< O\l </c\3 VP2 BHD?uH%) <c,
P

where we have used also Theorem 18 to conclude (7)

Let us prove (ii). Exploiting the definition (4.78), by straightforward
calculation we obtain

(NI

0 ift>2e

hL(t) 2 fe<t<2e

0 f0<t<e,
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and then, we have

0 if Vu > 2¢

|VulhL(|Vul|) = |é‘2| if e <Vu <2
0 if0<Vu<e.
Thus,
|Vulh.(|Vu|) = 0 a.e. for e — 0 in C. Notice also that in £ < Vu < 2¢,
o < c(IVul) < 2.

Then, by the Claim (using Dominated Convergence Theorem) and equa-
tion (4.81) we have

/e_“ (yvu\Hvu,v <M>> ¢ppdr — 0 ase—0, Vp>0.
C |Vul

Since h.(t) < J.(t), by the Dominated Convergence Theorem, exploiting
(4.78) and passing to the limit in (4.80), it follows

q
/e_“(|Vu|p_2Vu, Vo,)dx :19/ u—e_“¢pd:n+/fe_“¢pd:n Vp > 0.
C

c P

Then, using the definition of ¢,, we obtain

/ e (| VulP~2Vu, V,)dx :19/ _“¢pdaz+/fe Yopd.
Ba,\B, c |z
(4.83)

Letting p — 0 in (4.83), by Hélder’s inequality and since e ™ < C, we
estimate the left hand side as

/ e "(|VulP~2Vu, Ve, )dz
B2p\Bp

p—1

1
p p
C / Vuldz / Vo, Pda
B2, \By B2, \By

<0 <(2P - p)ﬂll(/Q \Vu!pdx)ﬁ>% (%)%

N C NN#
=C (P” ||U||W(}7P(Q)) - = <p_> — 0, as p—0,

IN

p pr

where we used also that |V¢,| < ¢ and p < N. On the other hand, for
P
p — 0, the right hand side of (4.83), by Dominated Convergence Theorem,

becomes
ﬂ/u—e “dx—i—/fe Ydx > 0,
clzP
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which is a contradiction.

If Q is smooth, since the right hand side of (4.77) is positive, by Hopf’s
Lemma (see [82]), a neighborhood of the boundary belongs to a component
C of Q\ Z,. By what we have just proved above, a second component

C' can not be contained compactly in Q. Thus, Q\ Z, is connected.
O

3.3 Comparison principles

In order to use the Moving Plane Method, we need to prove the following
proposition

Proposition 4 (Weak C’oznpam'son Principle). Let A\ < 0 and Q be a
bounded domain such that Q CC QY. Assume that u € CHQ\ {0}) is a
solution to (4.5) such that v < u§ on 02. Then, there exists a positive

constant § = § </\, dist(€, 89)) such that if we assume |Q| < 6, then it holds

u<uf in

Proof. We have (in the weak sense)

q
— Ayut |[Vulf = 0’% +f in Q, (4.84)
v\q
Apuy + |Vu [P = 19(‘53’)]7 +fY  inQ, (4.85)
A

where f{(z) = f(zX).

Let us set ¢} () = ¢p(x5), with ¢,(-) as in (4.76). By contradiction,
we assume the statement false and we consider

(1) e "(u—u{)"(d},)*xg € W,P(€2), as a test function in (4.84);
(ii) e "X (u — UK)+(¢Z,A)2XQ € Wol’p(ﬁ), as a test function in (4.85).

Notice that, by Lemma 7 we have that lim u(x) = +oo. This, together

|z|—0

with the fact that u € L>(Q), implies that (see expression (4.62))

05 = R5(0) & supp(u — uX)™, (4.86)
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because if 05 € supp(u —u¥)™, u > uf in R{(0) but when z is near the 0,
u¥ = oo thus, u > oo, which is a contradiction with the fact that u € L>°(2).

Therefore, R¥(0) ¢ supp(u — u¥)™ which implies that supp(u — uf)™ is
away from 0 and Vu is bounded in this support.

Then, if we subtract (in the weak formulation) (4.84) and (4.85), we get

/ (€™ — e 4 e )|V~ Vu, V(u — u§) ) (¢,) da
Q

4+ / Ce™"(|VulP~2Vu, (u —uf) )|Vl |6 yda

e (|Vul?, (u— u§) ) (gh0) da + /Q e (I Vul?, (u— u§) ) () da

e (| Vus [PV, V(u — uf) ") () 1) dx

e SO (VUK [PV, (u — uf) 1)V Ao yda

+ e (VURIP, (u = uf) ) (g 0)° — e_“K(IVUKlp, (u—uX) ") (¢ ) da

q
zﬁ/ﬁe—u’zﬁ(u ) ( da;—v&‘/ W " (= ) ()2
4 /Q e F () (1 — ) (62 da — /Q e~ () — ) (65 2de

Groping the terms, we obtain
[ e VUV [V P2V, T ) )
/ V(I Vul*Vu, V(u — uy) )(gb;)\)zdﬂj
+ [ Ol VUV = VAP, V) = o) o
u¥ V 2 —uX u)\ vNF (v \2
/Q )7 ( dzn—ﬁ/ A u—u)\) (Pp ) dx

T /Q e~ £ () (u — u§)* (#%,) 2 — /Qe-wxx)(u—ui)*@,ﬁ,ﬂzdx
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Since
[ e TPV [V P2V, = ) )
S KGR (i 8 (RO TEANGE
+ / C(e | VulP2Vu — e "X |Vu P2 V¥, Vi ) (u— uK)JrgbZ,)\dx
> | VU~ VU2V, V= u5) (0 0 e
/ ‘ e ") (|Vul?Vu, V(u — uy ) F)( Z’)\)2 dz
- /Q ‘C’(e_“|Vu|p_2Vu — TN | VUK [PV, Vi ) (u— uK)*’qbZ,)\ dx,
we can write
e T2 (92 V= ) )
< [l = (VY = ) (0 0Pl
+ C/Q |(e_“\Vu]p_2Vu — e_“K\VuK\p_2VuK, V(b;)\)‘ (u— uK)JrgbZ,)\dx
1+ /Q e_“%(u — )+ (o) — /Q e (‘“A’f (u — u)* () ?de

=
4 /Q e~ () (u — u§)* (80) 2 — /Q K P (%) u — ) (652
(4.87)

The term in the third line of (4.87) can be estimated using the definition of
10 A Holder’s inequality, the condition p < N and taking into account that
ifu > wf, u—uf < fjul| +[[ug]| < Cllul],

C’/Q ‘(e_“|Vu|p_2Vu — e |VuK|p_2VuK, qu;)\ﬂ (u— UK)+¢Z,>\d$

< Clllullz~ag) [ [I9uP= + 195" 9l

< Clulyqag [( [ 1VaPas) / Ve Pdz)?

L) mesr]

p
P
<C(HUHLO<>(Q;>)(/(\W!”Jr\wi\”)dx) (/ \V¢Z,A\pdw>
Q B2p\By

B =
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Since u, uy € W1P(Q) and by the definition of D\

C/ ‘(e_“|Vu|p_2Vu — e |Vu§\|p_2VuK, V¢Z7>\)| (u— uK)Jr(;S;)\d:E
Q

1/C\P
§C|B2P—Bp|11’<;) PVt 0 as p— 0.

Notice that We are considering the set QN {u > uy} and, therefore, || > [2¥]
and & <

] ISL‘A\
Recall also that since we are in this set, —e %X > —e™%. Using the last
estimation, equation (4.87) becomes

/ e (|VulP 2V — [V P2V, V(o — ) ) (6 Pde

/ (€7 — e ) (IVulP 2V, V(u — u§)*)| () 1) da

w0 [ e (” }dp”q) (1 =) (0P
/Q " (F@) — F@X)) (- ) (@0)%d + o(1).

By (hp.2), f(z) < f(«%), it follows that the last term in the previous
equation is negative.

Taking into account also that for A < 0, the distance to any point to 0
is positive, that is, [x| > C in QX for some positive constant C, one has

/ K (| VulP 2V — [V P2V, V(1 — ) ) (62
/ (7 — ") (| VP2V, V(u — uf) )] (64,0)2da (4.88)
e /Q [ — ) (8 0) 2+ o(1),

with O3 = C (w, [ul| oo (), st (€2, aQ)).

We note that, in the last inequality, we have used the fact that the term
u? — (uX)? is locally Liptschitz continuous in (0, +00), hence, u? — (u¥)? <
C(u — uf) and the fact that, by strong maximum principle (see [82]), the
solution wu is strictly positive in 2.

Thus, since the term (e™* — e7%X) is locally Lipschitz continuous and
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since -1 > C, from (4.88) and by Lemma 4, we get

e X
c /Q (V] + (Vg [~V (u — u§)* () 2da
<Co [ [Vl V - ) - ) e (459)
Q

e /Q (1 — ) H3(60)2dx + o(1),

with C1 = Ci(p, [|ul| L= (qy)) and Ca = Ca([|ul|L=(qy)) positive constants.
We are going to split the proof in two cases.

Case: p > 2. Let us evaluate the terms on the right hand side of the
inequality (4.89). Exploiting the weighted Young’s inequality and taking
into account that u € VVO1 P(Q), we get

C, /Q VulP UV (1 — u)* | (u — uk)* (#) e
— 1% 1% C 1% 14
<< /Q VP21 1 — ) (02 /Q IVul?[(u — )2 0)
<< / (V] + [V )P~V (u — ) * [ (8) 2
Q

L& /Q (0 — ) 2% 0) 2, -
4.90

with Cy = Cy(e, |[ul| Lo (1), [[Vul| Lo (0y)) @ positive constant. Since p > 2,
we also used |Vu[P~2 < (|Vu| 4 [Vu¥|)P~2.

Thus, choosing ¢ sufficiently small such that C; — eCy > C; > 0, using
(4.90), equation (4.89) becomes

/Q(IWI + VU )2V (w = uf) TP () 1) do

(4.91)
<c /Q [(u — ) (8 0)2da + o(1),

C'z :i-Cg

for some positive constant C = =
1

By weighted Poincaré’s inequality (see Theorem 17) and the definition
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of (b;)\, we get

c /Q [ — u) 2 (% ) ?de

< CCX(Q) / a2V (0 — up)* (60 0) 2
! ) (4.92)
+ C*([[ul| Lo 05), 1 Vull Lo (5)) Vol \[Pdz + o(1)

BQp\BP
< COU) [ (7l + 1917219 = ) Pl )P+ 0(1),
9)
as before, since N > p > 2, we have |Vul|P~2 < (|Vu| + |Vu[)P~2 and
/ \V(bz,)\\zda:—)O as p — 0.
BZp\BP

Concluding, collecting the estimates (4.91) and (4.92) we get

(9l 19607219 0= o) P )

o (4.93)
< CCH(QY) /Q(IWI + [Vul )PV (w = up) T2 () ) da + o(1).

Since (see Theorem 17) C,(€2) goes to zero provided the Lebesgue measure
of Q goes to 0, if [Q[ < §, with ¢ (depending on A) sufficiently small, we
assume Cp(€2) so small such that

CCHQ) < 1.
Notice that, since the definition of gbz’ Ao
/Q (V] + [V )P~V (u — )+ () 2
< [Vul+ 95149 (0 = )
Thus, letting p — 0 in (4.93), by the Dominated Convergence Theorem
we get the contradiction, showing that, actually, (u—u)™ = 0 and then the

thesis for p > 2. We point out that here (p > 2) we do not need to assume
that |Vu| is bounded.

Let us consider now the other interval of p.

Case: 1 < p < 2. From (4.86) we infer that [Vul, [Vuy| € L®(Qn{u >
u¥}) and, therefore we have that (u — u¥)™ € WH2(Q N {u > uf}). Then,
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the conclusion follows using the classical Poincaré inequality: in fact, since
p < 2, the term (|Vul + |Vu¥])P~2 is bounded below being |Vul, |[Vu¥]| €
LN {u > uf}). Then, equation (4.89) gives

Cy / (V] + [V )2V (1 — u§) 2 ) 2de
Qﬂ{uZuK} ’

<O [ V) )

Muzul} (4.94)

<0 / 19 ( — ) — )+ (62
QN{u>uX }

+ 03/ [(u —uX) (¢4 1) dz + o(1).
Qn{u>u}

By Dominated Convergence Theorem and by the definition of gbz’ »» the last
expression states as

o) / IV (u — u¥)* 2da
QN{u>u¥ }

< Oy /Q |V (u — u)F|(u —uX)de + Cs3 /~ [(u — u¥)T)%dz+o(1)

N{u>u¥ } QN{u>u¥ }

and by weighted Young’s inequality, arguing as above (see equation (4.90)),

Cy / V(1 — u§)* 2z < C / V(1 — uf)* Pda
Qn{u>uy} Onfu>uX}
c
ce2f ((u—u§)+)2dx+cg/ (1 — uX)*2dz + o(1).
€ Jan{u>uy} Qn{u>uy}

For fixed small € such that
Cp —eCy Zél >0,

we have

/ |V (u— uK)+]2dx <C [(u— uK)+]2da:, (4.95)
QN{u>uy }

Qﬂ{uZuK}

Coy +eChy

with C' = . The conclusion follows using the classical Poincaré’s

el
inequality in (4.95), i.e.

/ V(u— )t Pdo < CCHQ) | 1V — ),
Qﬂ{uZuK} O

Qn{u>uf}

choosing § = 6(\) > |Q| small such that CCI%(Q) < 1 and then, getting
(u—u)*t =0. O
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3.4 The moving plane method

In this last part of the Chapter, we complete the proof of Theorem 15. Now
we are able to use the Moving Plane Method.

We refer to the notations and definitions of preliminaries, (equations
(4.60) - (4.66)). To prove Theorem 15, we first need the following result

Proposition 5. Let u € C1*(Q\ {0}) be a solution to problem (4.5). Set
M(v) == minf0, M()},
where A1 (v) is defined in (4.66). Then, for any a(v) < X < \(v), we have
u(z) <ux(z), Vref. (4.96)
Moreover, for any X with a(v) < A < \Y(v), we have
uw(z) <uX(z), VYoeQS\Z,x, (4.97)
where Z, x = {x € Qf : Vu(z) = Vu{(z) = 0}. Finally,
%(z) >0, Vzely . (4.98)

Proof. Let a(v) < A < A)(v) with \ sufficiently close to a(v). By Hopf’s
Lemma, it follows that for a neighborhood of the boundary, Vu(z) > 0,
thus, v and u¥ are ordered on 0€2§. Therefore, by Proposition 4 (since ||
is small enough because A is sufficient close to a(v)),

u—uy <0 in QF.
We now define the set where the functions are ordered,
Ao={A>av) :u<u in QY for all t € (a(v), |} (4.99)

and
Ao = sup Ap. (4.100)

Notice that by continuity we obtain u < uf in QKO. We have to show that
Ao = A)(v). Assume by contradiction that \g < A{(v) < 0 and let Ay, C 5,
be an open set such that Z, y, N QKO C Ay, CC . Such set exists by Hopf’s
Lemma because by this Lemma there exists, at least, a neighborhood of 92
such that Vu(z) # 0 and then, x ¢ Z,, and Ay, CC Q.

Notice also that, since |Z, »,| = 0 as we remarked above, we can take A
with measure arbitrarily small. Since we are working in QKO which is away
from 0, we have that the weight 1/|z|? is not singular there. Moreover, in a
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neighborhood of the reflected point of the origin 0§, we know, by Lemma 7,
that u < uf . Since elsewhere 1/[25[P is not singular and u, Vu, uf, Vuy
are bounded, we can exploit the strong comparison principle, see e.g. [82,
Theorem 2.5.2], to get that

v — v
u < uy, or u = uy,

in any connected component of (2§ \ Zy. It follows that

e the case u = uKO in some connected component C of Qg \ Zuy, s
not possible, since if v = u¥ , when we are close to Z,, Vu = Vuy,
and, by symmetry, it would imply the existence of a local symmetry
phenomenon and consequently that Q\ Z, 5, would be not connected,
in spite of the result showed in Lemma 8.

Note also that, since the domain is strictly convex, by Hopf’s Lemma if
u is near to the hyperplane T}, there exists a neighborhood of 9  such
that Vu(z) > 0 and, then, there are monotony. If u is on 9Qf but far
from the hyperplane Ty , the Dirichlet condition (see e.g. [48]), implies that
u = 0 at the boundary, but uKO > 0 in the interior, then, we get that there
exists a neighborhood N}, of 9Q% N 9N where u < uf in N),.

We deduce that there exists a compact set K in Qf = such that

- 95\ ((K'\ Axy) UN), )| is sufficiently small so that Proposition 4 can
be used.

- uX, — u is positive in (K \ Ay,) UN),, because uf — u is positive in
2, \ Z, and K is a subset of QF, and we just proved also that there
exists a set NV, where uf — u is positive..

Therefore, since K \ Ay, is a compact set, by continuity (and redefining
Ay +e as small as we want and N 4., exploiting Hopf’s Lemma) we find
€ > 0 such that

- 95,4\ ((K\ Axg+e)UNyg1e) | is sufficiently small so that Proposition 4

applies.
- uX 4. —wis positive in (K \ Axj4e) UNyg e

Since uf . —u > 0in K\ Ay e, then uf . —u > 0 on 9(K \ Ay, 1)

because K is compact. Hence, uy ,. —u >0 on 8(([( \ Axgte) UN,\O+E).
Since (9, .\ (K Axg o) U3z ) = 8<K\AAO+E) UNygse ) UTY, . and,
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since u =wuf , in Ty ., u<uf on 8<QKO+€\ ((K \ A +e) UN,\O+E)).
By Proposition 4 it follows u < wf ,_in Qf |\ ((K\A)\(H_E) U./\/’)\()_l,_g) and

. v A .
since u < uy i (K\ Ay, 1e)UNygye, w < uf | in QF |, what contradicts

the assumption \g < A\J(v). Therefore, A\g = A{(v) and the thesis is proved.
We point out that we are exploiting Proposition 4 in the set QKO te \
<(K \ Axgte) UN >\0+5) which is bounded away from the boundary 902 and

then, the constant § in the statement is uniformly bounded.

The proof of (4.97) follows by the strong comparison theorem applied as
above; because since QY \ Z, » has one connected component, u < u¥ or
w = u¥ in all Q¥ \ Z, , but the case u = u¥ is not possible (as we saw
before), thus, u < u in QF \ Z,  for any A < A{(v).

Finally, (4.98) follows considering x; < x9 and taking the hyperplane which
is in the middle of u(x1) and u(x2). By (4.96), u(z) < u(z¥) in QF, with
A < A}, Thus, taking = z and 29 = 2%, u(z1) < u(z¥,) = u(zs2) and
then u(z1) < u(zy). Hence, the monotonicity follows. O

Proof of Theorem 15:

Since € is strictly convex w.r.t. the r—direction and symmetric w.r.t.
to (see equation (4.60))

T ={zcRY:2.v=0},

it follows by Proposition 5, being A1(v) = 0 = A{(v) in this case, that
u(z) < uf(z) for xz € Q.
In the same way, performing the Moving Plane Method in the opposite
direction, —v, we obtain
u(z) > uX(z) for x € Qf,

that is, u is symmetric and non decreasing w.r.t. the v—direction, since
monotonicity follows by (4.98).

Finally, if © is a ball, repeating this argument along any direction, it

0
follows that u is radially symmetric. The fact that 8_:"L(T) < 0 for r # 0,
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follows by the Hopf’s boundary Lemma which works in this case since the
level sets are balls and the Hopf’s boundary Lemma works in each level set
and therefore, fulfill the interior sphere condition.
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Chapter 5

Regularization by a concave term

1 Introduction and some preliminaries

The existence of solution to the supercritical problem

up
—Au=+—, u>0 in€Q
|z (5.1)

u =0 on 052,

with 0 € 9 and 1 < p < 2* — 1 has been studied in the paper [50]. The
existence of solution in this case depends on the geometry of the domain.
J. Déavila and I. Peral find solution to problem (5.1) for a specific type of
domain and they get also a nonexistence result for a starshaped domains.
In the next Chapter we will explain deeply this argument and we generalize
it for the p-Laplacian operator.

In this Chapter we perturb problem (5.1) in order to get solutions with-
out restriction on the domain. In this way, we avoid the lack of the existence
that it has been introduced in [50].

To get this result we add a regularizing zero order term in the right hand
side of problem (5.1). More precisely, we study the existence of solutions to

the model problem
up
—Au=—+ i u>0 inQQ,
||
u=0 on 0f,

(5.2)

with p > 1,0 < g < 1 and 0 € 992. We prove that for any smooth domain
Q) there exists a solution for a positive interval of A.

We use a Sattinger’s monotonicity argument (see [85]) to get the solution.
A nonexistence result for A large is also studied in this Chapter.

To obtain the solution we are going to use the following classical existence
and regularity results

Theorem 19. Letp > C, @ decreasing and consider Q0 a bounded domain,
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then, the problem

has a unique solution.

The existence is given by minimization and the proof of the uniqueness
can be seen in [35].

Theorem 20. Let Q be a bounded domain in R and consider the problem

—Au=f inQQ, (5.3)
u=0 on 01,

o (1) If f € LP(Q?) with 1 < p < 400, then, (5.3) has a unique weak
solution u € W01’2(Q) NW2P(Q) such that

l[ullw2r @) < Cllfllze@)
o (ii) If Q is of the class C** and f € C%*(Q), then, u € C**(Q).

See details in [15].

We recall also some Holder-regularity result for weak solutions.

Theorem 21. Let Q be a bounded open subset of R, with a C' boundary.
Assume u € WFP(Q).

o Ifk< %, then u € LY(Q2) where

k
-

1_

1
q p
We have in addition the estimate
[ullLa@) < Cllullwrr ),
with the constant C' depending only on k,p, N and Q.
N —
o Ifk > %, then u € C’k_[F]_l’a(Q). In addition we have,

el hidir0 gy < Cllullwen ),

with the constant C' depending only on k,p, N and Q.

We introduce the following Theorem that we will use to get the Lipschitz
regularity up to the boundary. See details in [42].
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Theorem 22. Let Q be a bounded subset of RN with N > 3, such that
o0 € CH(Q). Assume that f € LN1(Q), where LN'Y(D) denotes the cor-
responding Lorentz space. Recall that

LYD)  for g€ (1,%). G4
Lq2,02(D) if 1 > qeand 01,09 € (O,oo].

L%(D)
LQI,Ul (D)

H

Let u be a weak solution to

—Au = m )
u=f nqQ, (5.5)
u=0 on 0f).

Then, w is Lipschitz continuous on .

All the results in this Chapter can be seen in the first part of the paper
[74].

2 Existence result for an interval of )\

The main existence result in this Chapter is the following

Theorem 2.1. Let 0 < g < 1 and p > 1. Then, there exists Ag > 0, such
that

a) VX € (0,Ag), problem (5.2) admits a solution uy € Wol’z(Q) N L>(Q).

b) If A > Ay, problem (5.2) has no solution.
Moreover, if A; < Ay, i =1,2,

1. uy, € C2(Q).

2. IfO < )\1 < )\2 SA(), then UN, < U\, -

Proof. Consider I' C 012, a regular submanifold which is a neighborhood of
the pole of the potential. We can assume, for instance, that I' = 9Q N B,.(0)
for r > 0 small in order to have I' connected. We define the following

function for x € Q,
dr = dist(z,T).

We organize the proof in several steps in order to be clear.

STEP 1. We start looking for a supersolution w) to (5.2).
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Since 0 € I' C 9N and the boundary is a smooth manifold, we have that
d? N
L e LI < (p— 2)q>N<:>q>—

|2 2

In particular, it holds for some ¢ > N (see [50]). Then, since 0 < ¢ < 1, by
Theorem 20, there exists a unique solution w which verifies

dp
—Aw:ﬁ—kwq, w>0 in €,

w = dr on Of2.

(5.6)

By classical elliptic regularity theory, see Theorems 21 and 22, we have that
w € CHY(Q)NCY(Q). Notice that the regularity of w implies the existence
of a constant C' = C(£2,p, q) such that

w(@) —wly) _
lz—yl =

If x € Qand y € 09, w(y) = dr and
w(x) - dp < édf‘,

thus,

w(z) < Cdr, = €.

Let T be a positive parameter and define uy = T'w, thus

/4

dp
—Auy =T(-Aw) = TW + Tw?

wP gp U1
Tw!'=T—2— +T-—.
Cp‘ ’2 +Tw! TrCP|x ‘2 t T4
—p
In order to have a supersolution we need that —Awy > + )\

E |2
Notice that, to get this, it is sufficient that
1 1
T>)\1 7 and T < < )pil.
Cr
Therefore, putting together both inequalities we observe that it is possible

=
to find such supersolution @) for A € (0,A), where A = <@> e

Notice that we have found a supersolution only in the interval (0, A) and
this result is almost optimal as we will see in STEP 4 below.
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STEP 2. Next we have to find a subsolution u to (5.2), such that u, < ay.
We consider u, the solution to the problem

_Aﬂ)\ = )‘Q()]g Uy >0 in Qv
uy, =0 on 0N.

The existence (and also the uniqueness) of this function, since 0 < ¢ < 1,
is given by Theorem 19.

It is obvious that u, is a subsolution of (5.2) and,_by elliptic regularity
results, see Theorems 20 and 21, u, € C>7(2) NCHP(Q).

To prove that the supersolution and the subsolution are ordered we are

going to use the argument used in [35] to prove the uniqueness in Theorem
19.

Notice that u, and uy are subsolution and supersolution respectively to
the equation
—Auy = )\gg\, with 0<q¢g<1

and uy < uy on 0.
That is,

_AQ)\ < )‘y()l\7 Uy > 0 in Qu
uy =0 on Of.

and

—ATu\ > A\u}, uw\>0 inQ,
uy =0 on Of).

We divide each equation by u, and %) respectively and we subtract the
two expressions, it follows that

~Au, AT
/( ) da:</>\ 'Y da.
Q

Multiplying the last expression by (u3 —u3)™",

A An _ _
/ AUAUA—F—ZU%\%—%UA Auwxdx</ﬂk(g§ Feal ) (ud - u3) T

Integrating by parts and using Picone’s inequality in the left hand side,
see Theorem 7, we obtain

og/A(gi —ul” 1)(u§\—u YFda.
Q
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Since A > 0, ¢ < 1 and taking into account that we are in the set {u, > )},
0< /Q)\(gg\_l —ad (W} ~wd)Tde <0.

Thus, (yi — U§)+ = 0. Therefore, we can conclude that u, <.

STEP 3. We use an iteration argument as in [26]. Consider A € (0, A),
ug = uy and ug the solution to

up_y
||
up =0 on Of2.

—Auk =

+ )\ug_l, up >0 in £, (5.7)

Using the weak comparison principle as above, we prove by recurrence that

uy=ug <u <. .<up <. <.

Therefore, we get a sequence of functions {u}; which is bounded from
above and from below and it is ordered, thus, we can define uy(x) =
lim wug(x) with = € Q.

k—o0

uly uP —
Moreover, since ’ ‘_21 + i | < ﬁ + Auf, by the Dominated Con-
T T
D
u
vergence Theorem, the right hand side of (5.7) converges to ﬁ + )\ui in
T

LY(9Q). Therefore, uy is a solution to problem (5.2) in a distributional sense.
The right hand side of the equation (5.7) converges in W~12(Q) because,
p

u
since this side converges to ﬁ + A in LY(Q),
x
P P
Ug—1 U\
= 4+ Ml vdr — | (=5 + \ul)vdz,
J ot bt [ G
with v € W, (9).
Therefore, the continuity of the operator —A~! implies that

UL — W), in Wol’z(Q).

It is easy to check that this solution, uy, is a minimal solution for such .

Since if Ay < Ag, the solution u), for A2 is a supersolution to the problem
for A1 then, using the weak comparison argument as above, we conclude that
Uyp, < Uy,

The regularity is now easy to obtain. Since @y < Cdr, the right hand
side of (5.2) belongs to some L"(£2), with » > N. The solution to (5.2), uy,
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verifies uy € L*°(2) then, by elliptic regularity as above and a bootstrapping
argument, uy € C%1(Q) N C>¥(Q).

STEP 4.- We will prove the following claim.

Claim.- There exists Ao such that Y\ € [Ag,00), problem (5.2) has no
solution uy € W,2(%).

To prove the claim we closely follow the arguments used in [26].
We proceed by contradiction. Consider v such that

—Avy = Mvy, v € W01’2(Q) NL>®(Q) and wv; > 0.

Suppose that for all A there exists a solution to problem (5.2), uy €
VVO1 ’2(9), with uy > 0. Then, near the zero, by Hopf’s Lemma, there exists
space between the solution u) and the boundary, so we can put the eigen-
function vy under the solution uy, hence, there exists t > 0 verifying tv; < uy
in 2. We define ¢ = tv;. Pick € > 0 such that Ay + & < Ao, the second
eigenvalue of the Laplace operator. Consider now p € (A1, A1 + ¢) and

1 p=1
co = inf —. If A is such that A\; +¢ < bq/\zfq where b, satisfies

€ ‘.Z'P '
p—1 ’LLp
bgAr—uy < M + cquf < Muf + ﬁ
then,
p—1 up
—AY = Mtp < pap < puy < (A +e)uy < bgArauy < Auf + ﬁ = —Auy.

That is, v < u) are subsolution and supersolution respectively to the prob-
lem

{—Au = uu in Q, (5.8)

u = 0 on o9,

with g € (A1, A\ +¢). A standard iteration argument shows that problem
(5.8) has positive solution, that is a contradiction with the isolation of the
first eigenvalue of the Laplacian, A\1. Then, there exists Ay such that VA €
[Ao, 00) the problem (5.2) has no solution.

FINAL STEP. Define Ag = sup{\| problem (5.2) has a solution}. Ac-
cording to the previous step, Ay < oco. Moreover, if A € (0,A) we can find
A* such that A < A\* and problem (5.2) has a solution for A*. Such solution
is a supersolution to problem (5.2) for A\. Then, we proceed as in Step 3 to
find a solution for A € (0, Ag).

In others words, we conclude that the set of A > 0 for which there exists
a solution to problem (5.2) is a bounded interval in the positive real line.
O
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Remark 5. [t is worthy to point out that if 1 < p < % a perturbative
argument as in [50] allows us to find a second solution to problem (5.2) in
a conveniently thin dumbbell domains. We skip the details because can be

found in [50].
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Chapter 6

Supercritical problem for the p-Laplacian:
Solvability and regularization

1 Introduction

In this Chapter we are going to study the following problem with 0 € 92

uq
—Apu = o +g(\,z,u) in Q,
w>0 in Q, (6.1)

u =0 on 052,

where ¢ >p—1,1 < p < N and Q € RY is a bounded domain with smooth
boundary and g(\, z,u) as in one of the two cases:

(1) g\, z,u) =0 and ¢ < p* —1;

(7)) g\, z,u) = Af(x)u”, with A > 0, f(x) > 0 belonging to L>*(Q),
0 <r <p-—1 and any positive exponent ¢ > p — 1.

We are going to study the existence of solutions to (6.1) in the cases (i) and
(74) with different approach. We notice that since ¢ > p—1, the problem to be
considered is supercritical. We would like to point out that the regularization
that produces the sub-diffusive term eliminates any condition on the size of
q.

It is classical that if 0 < ¢ < p—1, problem (6.1) has a solution that does
not depend on the location of the origin. If g(\, z,u) = A" with r < p* —1,
a variational solution can be found as a critical point of the functional

1 1 g+l A
J(u) = —/ |VulPdx — / Y iz — / fu"ttdz,
pJa q+1Jo |xfP r+1Jg

which is well defined in u € W,?(9).

As a consequence, we will focus only in the case ¢ > p — 1.

We want to point out also that the case (i), g(A, z,u) = 0, exhibits a
different behavior from the other one, the existence of solutions turns to be,
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as in the semilinear case, depending on the geometry of the domain and on
the exponent ¢, while in the case (i7), g(\, z,u) = Af(z)u” > 0, the existence
does not depend neither on the geometry of {2 or on the exponent q.

In the case (i), g(\,z,u) = 0, we get the existence result following the
idea used in [50], but taking into account the intrinsic differences due to the
p-Laplacian operator.

If g(A\,z,u) = 0, the problem in general has no solution. For instance,
if the domain is starshaped with respect to the pole, a suitable application
of the Pohozaev’s identity provides a non existence result in VVO1 P(Q). This
result motivates, as in the semilinear case, see [50], to look for dumbbell type
domains in which such obstruction does not exists.

To motivate the analysis and the existence result for the dumbbell type
domains we first consider the problem in the following sets

Q= By(1,0,...,0) U B1(3,0,...,0) and let v be a solution to

u? )
—Apu = W, in B1(3,0,...,0),
u > 0, in Q,
u =0, on 9B1(3,0,...,0).

This solution is obtained, for instance, using the classical Mountain Pass
Theorem, see Theorem 25 below, since in this domain the weight is bounded
and hence, the problem is subcritical. Then, we can extend this solution to
0 for the set Bi(1,0,...,0), in this way,

0 if z€ Bi(1,0,...,0)
u(z) = .
v(z) if x € B1(3,0,...,0)

is a solution to

q

—Apu = i in Q,
|z|P

u >0 in €,

u=20 on 012,

where Q = B;(1,0,...,0) U B;(3,0,...,0).

The idea is to have connected domains but being not too far from the
above case, this is why we join the sets Bi(1,0,...,0) and B;(3,0,...,0)
with a tiny tubular neighborhood C.. This perturbation of the domain
allows us to obtain some type of connected domains, dumbbell domains, for
which the problem has solution.
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We can conjecture, then, that the result of existence could be obtained
if the domain lies in the conditions of the following definition.

Definition 6. We call Q). a dumbbell domain if it is a domain with a smooth
boundary of the form Q. = QLUCUQs, where 1 and Qo are smooth bounded
domains such that Q1 N Qs = O and C. is a region contained in a tubular
neighborhood of radius less than € > 0 around a curve joining 1 and Qo.

Even assuming a domain as in Definition 6, the proof is quite involved
and perturbative in nature. A direct variational approach is not possible.
Notice that if we consider the energy functional associated to (6.1) in a naif

way,
1 1 q+1
J(u) := —/ |\VulPde — —— u—d:n,
pJa q+1Jg [zfP

it is not well defined in VVO1 P(Q), just by the supercritical value of the power
q.

Therefore, to handle the problem we will proceed as follows.

i) Truncating the functional in a convenient way:

1 1 (u—l—)Q—l—l
E, = - VulPdr — dx.
se0(t) p /5’ ultdz q+1 /QE BT

i1) Penalizing such truncated functional in order to avoid that the moun-
tain pass level goes to zero:

(576,6 . 1 . | |p ”76 d

i41) Considering a convenient supersolution in order to have control from
above near the zero.

The main result for the case (i), g(\,z,u) = 0, is the following

Theorem 23. Assume that 1 < p < N and assume also

() Qe is a dumbbell domain;
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(t) 0 € 90 NON;
@) p—1<qg<p—1.

Then, there exists £g such that if 0 < € < gy, the problem

—Ayu o in Q.
u >0 n Q.
u = on 0f).,

has a solution u € Wy ().

In the case (i7), g(A\, z,u) = Af(x)u", we prove the existence of a solution
using the method of super- and subsolutions, see [26], [85].

The presence of the concave term Af(z)u” in the equation gives the ex-
istence of a solution that does not depend neither on the geometry of the
domain or on the coefficient q. We generalize the result of Chapter 5 for
the p-Laplace operator. The idea is to construct an appropriate super- and
subsolution and then generate a monotone (and bounded) non decreasing
sequence. Finally, we pass to the limit to conclude the existence. We sum-
marize this result in the following Theorem

Theorem 24. Let 0 € 092, g >p—1, 1 <p < N,0<r <p-—1 and
consider the problem

q
—Apu = ’Z? + Af(x)u"  inQ,

u>0 n 2, (6.2)
u = on 0,

with f € L®(Q), f(z) > 0 and Q € RY a smooth bounded domain with
N > 3. Then, there exists a positive constant Amax Such that

(a) VX € (0, Amax), problem (6.2) has a solution uy € Wol’p(Q) N L>(9Q).
(b) If X > Amax, problem (6.2) has no solution.

Moreover, if 0 < A1 < Ay < Amax then, uy, < uy,.

For the reader’s convenience we are going to recall the Definition of a
Palais-Smale sequence and Palais-Smale condition, in order to recall also
the classical Ambrosetti-Rabinowitz Mountain Pass Theorem, introduced in
[16] which is an important tool in the proof of the existence of solution in
the case (i), g(\, z,u) = 0.
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Definition 7. (Palais Smale sequence) Let X be a Banach space and let
J : X — R be a differentiable functional. A sequence {ui}r C X such that
{J(ug)}r is bounded in R and J'(ur) — 0 in X' as k — oo, is called a

Palais-Smale sequence for J .

Definition 8. (Palais Smale condition) Let X be a Banach space and let
J : X — R be a differentiable functional. We say that J satisfies the Palais-
Smale condition (shortly: J satisfies (PS)) if every Palais-Smale sequence
for J has a converging subsequence (in X ).

Theorem 25. (Mountain Pass Theorem) Let H be a Hilbert space, and let
J € CYY(H) satisfying J(0) = 0. Assume that there exist positive numbers
p and o such that

o J(u) > a if [|ul| = p;

o There exists v € H such that ||v|| > p and J(v) < 0.
Then, there exists a Palais-Smale sequence (see Definition 7) for J at a level

¢ > 0. If J satisfies (PS) (see Definition 8), then, there exists a critical point
at level c.

All the results in this Chapter can be seen in the paper [71].

2  The problem with g(\, z,u) =0

In this Section we are interested in find some sufficient conditions for which
the existence or nonexistence of solutions holds. In particular, we refer to
energy solutions of (6.1) with g(\, z,u) = 0, namely

q
—Apu Y in Q,
[P
u>0 in Q, (63)
U= on 0f,

with u € Wol’p(Q) and

/ VulP2(Vu, V) — / Y Y e WP Q).
Q Q

[P

We shall see below in Proposition 6, that if the domain is starshaped
with respect to the origin there are no energy solutions.
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However, despite this negative result we show also in this Section that
for a convenient non-starshaped domain there exists a solution to problem
(6.3).

We introduce first the non-exisistence result of energy solutions to (6.3).

2.1 Nonexistence result of energy solutions in starshaped do-
mains

First of all we are going to recall the Definition of starshaped domain.

Definition 9. An open set Q is called starshaped with respect to 0 provided
for each x € Q, the line segment

{Az]0< A< 1}
lies in .

Notice that if 9 is sufficiently regular then, denoting v the outer unit
normal, x -v >0, Vzx € .

To use conveniently the Pohozaev’s identity and to obtain the nonexis-
tence result of energy solutions to (6.3), we need a-priori estimates for the
gradient Vu of these solutions.

Lemma 9. Assume N > 2 and 1 < qg<p*—1 (¢q>1if N=p). Ifuis
an energy solution to (6.3), then u € L*(2). Moreover, there exists some
C > 0 such that

|Vu(z)| < % vz € Q.

Proof.

By a classical regularity result it is well known that, away from the
origin, the solutions of p-Laplace equations are locally bounded, since the
problem is subcritical, see [86]. Actually, by a classical regularity result of
[70], the solutions are Cllo’f and the equation (6.3) has to be understood in
the weak sense.

Suppose now zg €  and xg # 0. Consider r = |g—°' and define v(y) =

0O—
u(zo +ry) for y € w. Then, v satisfies
r
Py d p 0—
Ay =" @otry) ™ . 5 822 gy
jzo +rylP fwo +ryl? r

Considering (6.4) in D := B1(0) N Q_rmo’

i) 3
frol = rlyl < [0 + o] < fao] + rly] = o] + 22 = 2.
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Since y € B1(0),|y| <1 and

|0 3
20| — S < lxo| = rly| < |zo + 1yl < 5\950’,

therefore,
EN 3 2 1 2
0 < ag + 79 < Zfool  thus, o) < —— < ——
2 2 3 lxo +7ry| — |xo]
Then,
lzol\p
G Wi 1,
|zo + 1y

hence, the weight is uniformly bounded and it is smooth in this region.
Using the results in [88] and in [95] we know that there exists a univer-
sal constant C' > 0 such that v(0) < C and then, u € L*(f2). Using a
regularity result in [70] we deduce that v € C1%(D). Namely, there exists
some universal constant C' (not depending on v) such that |[Vu(0)] < C.
Since |Vov| = r|Vu|, we get |Vu(z)| < C/|z|, Vz € §, being x( arbitrary.
U

Proposition 6. Assume 1l <p < N andp—1< q < p*—1. Then, problem
(6.3) has no energy solutions if 0 € 9 and ) is starshaped with respect to
the origin.

Proof. 1In this proof we are going to use a Pohozaev’s identity.

uq

We multiply (using a density argument) —A,u = W by < x,Vu > and
integrate in Q\ B,(0), with p > 0. One has
/ (—Apu) < z,Vu > dr = / —div(|VulP2Vu) < z,Vu > dz
Q\BP(O) Q\BP(O)

N
= / |Vu|Pdz + Z/ |Vu|P~2 < VU,V% > x;dx
O\B,y(0) — Jo\B Ox;

p(0)

—/ Vu|VulP~2 < z,Vu > @dzn.
AO\B,)) ov
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Therefore,

/ (=Apu) < z,Vu > dz
N\Bp(0)

1 0
= / |VulPdx + = E / < \Vu]p> xidx
Q\B,(0) P33 JO\B,( O

—/ Vu|VulP™? < 2, Vu > @da:
ANB, (o)) v

= / |Vu|pd3:—ﬂ / |VulPdz —/ Vu|VulP~% 2, Vu >@d:p
Q (B, (0)

\B,(0) P JO\By) ) v
/ |VulP
+ <zx,v>dr
A(Q\B,@y) P

_N 1

=2 |VulPdx + - P |VulP < z,v > dx
p Q\Bp(o) p 8(Q\Bp(o))

and
q 1
0\B, |21° ¢+ 1 Ja\s,q [P

1 udtt
+ — / <z,v>dz.
¢+ 1 Ja@\B, )7l

Notice that

udtl x wdtl div(z) 1
S iy = () i (——
1) = T 1 NF
witlt N x witlt N 1

RN T e R N F T

Therefore,

/ (—Apu) < z,Vu > dx
N\By (o)

N — P uq+1 1 uq+1
:——/ dx + / — < z,v>dx.
a+1 Ja\B,q 7P q+1 Jo@\B, ) |2l

Combining the last calculations, we get

N-—p udtt 1 udtt
— / —dw—i——/ — < z,v>dx
a+1 Ja\,q, 7P a+1 Jo\B,0) 7P
1-— — N
S [VulP < z,v > dx + b / |VulPdx.
p A(Q\B (o)) p B, (o)
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Multiplying equation (6.1) by v and integrating in Q\ B,(0) we have

uq
—uApudr = —pudm.
By (o) Q\By(0) |33|

Integrating this last expression by parts,

—/ u\Vu]p_Q@da:—i-/ ]Vu\pda::/ - da.
D(N\B,(0)) ov O\B,) AN\B, @ |7l

Therefore, substituting,

q+1 _
0= (N—p (o L )/ v (Y p)/ V=2 2% 4y
p q+ 1 Q\Bp(o) "T‘p p (Q\Bp(o)) v
1 q+1 -1
+—/ u p<x,1/>d:17—|—(p—)/ |[VulP < z,v > dz.

Since u = 0 on 092, 0(2\ B,(0)) = 0B,(0) N €2, then,

e udtt
/ p<x,1/>d:17:/ p<$,u>dx.
B(Q\B () 7] 0B, |T]

Since p < N and by Lemma 9,

/ u|Vu|p_2@dx < / C(— ¢ P lda
D(O\B (o)) v A\B,o) |7l

:/ C(g)p_le_2da;:O(pN_p) —0 as p—0.
(DB 1Pl

Since |v| =1 and by Lemma 9, u € L*>(2),

udtl
/ <z,v>dr< / <C /
A(\B,(0)) ol O(\B,(0)) |"E| (N\By (o)) |$|

Since p < N and being pV~2 the jacobian term in the boundary,

/ <z, v>dr
OBy |71

<C /
(0B o))

In this way we get

(PNP) =0 as p—0.

1 1 wdtl p—1
0=(N—p)(—+ / dr + / VulP < x,v > dx.
( )(p Q+1) o |z ( p ) 89’ |
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Therefore,

1 1 udtt p—1
N — ——I——/ d:nz——/ VulpP < x,v > dx.
( m% Q+NQLW (p )mll

Being Q a starshaped domain w.r.t. the origin (i.e < z,v > > 0 on 0Q)
and 1 < p < N, then,

q+1
(N—M@ . ur

+ — ——dx = 0.
p q+1" Jo |zP

Therefore, u = 0 in €. O

2.2 Existence of energy solutions in dumbbell domains

In this Subsection we prove Theorem 23. We follow [50] to prove the exis-
tence result, taking into account the differences due to the nonlinearity and
the change of regularity of solutions introduced by the p-Laplacian operator.
We consider the truncated weight m and we proceed in several steps in
order to be clear in the proof.

We recall first some regularity results that we are going to use along this
Section. A Stampacchia’s type argument gives

Lemma 10. Let u € Wol’p(Q) an energy solution to

—Apu=f inQ
u=0 on 01,

with f € L™(2), and r > %. Then, u € L*>(Q).

We also need some regularity up to the boundary, see [70] for the details.
It is important to point out that the result for the regularity without reach
the boundary has been studied in [93] and [51].

2.2.1 The truncated-penalized functional.

We first define the function n € C1(R),

0<n(s) <2 and 7'(s) >0 sell,2], (6.6)
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Given 6 > 0, we define the function ny(t) = n(t/6), t > 0 and we fix h such
that

mm< ,(q—(p—l))%) <h<q+l.

Since in the hypothesis we are considering ¢ > p — 1, we only need to
check that (¢ — (p — 1))% < g+ 1. To do that we argue by contradiction.
Suppose that

@—@—1»g2q+L

hence,
N N
q(——-1)>1+—(p—1).
(p ) p( )
Then,
qZJWp—D+p7
N-—p

which is a contradiction with (f) in the hypotheses.
Let g € CY(R) be the function

g(s) =0, s<0
0<g(s) <1 and 0<g'(s) < hsl(P=D)T -1 o o [0,1], (6.7)
g(s) = s(q—(iv—l))% s> 1.

Given § > 0, we define
—(p—1Y T
g5(t) = gla=(p=1)) pg(g).

For €,6,0 > 0 we define the penalized energy functional Fs. g : VVO1 P(Q.) —
R as follows

O | ™ (5 (w)
u) = — ulPdx — x u)),
(57576 p a. q+ 1 a. |$|p + 5 779 1

where vt = max(u,0) and ny(I5(u)) is the penalization of the energy
functional. This term will be crucial to prove that the solution that we are
looking for is not the trivial one. It is called penalization because we try to
find a infimum and this term rises a little the functional.

Notice that the penalization is only defined in €2 because is where the
zero is located. The term I5(u) is given by the following expression

Lmoz/ 9wt 4 (6.8)
o (jalr +0)5
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It is easy to verify the C! regularity of Ejs. g since the C! regularity of
n(-) and g(-) holds. Then, if u is a critical point of Es g it satisfies

uwt)e .
—Apu+ a(z,u)gs(u+6) = _|(m|m)r'5 in € (6.9)
w=0 on 09,

where a(z,u)gs(u+0) = np(Is(u))I§(u) and by the definition of I5(u),

I4(u) = gh(u + §) @) _
(el + )
In this way,
alw,u) = (L5 (u) XD
(el + 6)>

with xq, (x) the characteristic function of €.
Multiplying (6.9) by the test function (u + )™, we get

/—dz‘v(\Vu!p_2Vu)(u+5)_da:+/ a(x,u)gs(u+ 8)(u+ ) dx
e ‘ (6.10)

+q -
:/ (u™)9(u +9) .
Q [P + 6
Integrating (6.10) by parts we have

/|Vu|p_1V(u+5)_daz+/ a(z,u)gs(u+ ) (u+ ) dx
Q. .

[ e
_z# ey

Notice that if u 4§ <0, gs(u+ 6) = 0, as a consequence,

/Sa(x7u)gg(u+5)(u+5)_dw:O and /QE %dwﬁﬁ
Therefore,
/Q V[P~V (u 4 6)"dx < 0.
Thus, )
A|V@+®1mmgo (6.11)

Then, we have that (u + §)” = 0, that is, a solution u € Wol’p(QE) to (6.9)
is not necessarily positive but satisfies u > —¢ in €)..
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2.2.2  Study of the functional Es. 9 and the mountain pass geom-
etry condition.

We study the functional for each §, ¢, 8 fixed in order to obtain the conditions
for the Mountain Pass Theorem (see Theorem 25).

Lemma 11. Fize, 0,0 > 0. Then, Es. ¢ : Wol’p(Qa) — R is C! and satisfies
the Palais-Smale condition (see Definition 8).

Proof. Let u, be a Palais-Smale sequence (see Definition 7) in I/VO1 P(Q,)
such that Fs. g < C and E(/S,E,G — 0 in W‘l’p/(Qg). Therefore,

1
C+ O(l)HunHWOl’P(QE) > E&eﬂ(un) - mE(/s@g(un)un
1 (u—l—)Q—l—l L
- = n p - n I n n P
p QJVU [Pdz _|_1/ngg;‘p+5dx+n9( s(un))— /|Vu [P~ Vu,dz
1 / (u+)q+1d 1 b (I ))/ g(;(un4—6)undﬂj
N
q+1 Ja. |x|P + —1—1 (|lzlp +6)»
1
=2 | 1V ts)) - = [Pl
Qe
1 g un+5 n
- st [ %dz
¢+t v (lzlP+0)7
1 1 1 g5 (un + )uy,
) / Vun P+ ma(Ts(u0)) = — )| 22
p g+l g+17 & (|zfp +8) %

1 1 95 (un + 8)un
= n —|—779 Is(uy)) — 77, Is(up, /7d$
(p qul)|| || (Zs(un)) | o (Ls( ))Ql(’w‘ué)%

We are going to prove the following claim
g5 (un + 8)up, < hgs(un, +9), Yu, € R. (6.12)

We consider the following three cases:

— If u, > 0, by definition, gs(u, + d) = (u, + 5)(‘1_@_1))% and

=

95(un +0) = (¢~ (p - 1))5(U"+5)( —(p—1) %1

Therefore,

N EEEINY.\'S
G5(tn +0)(un + ) = (g = (p = 1)) - +0) T < gy, + 0).
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— If —§ < u, <0, we obtain
g5 (upn + 8)u, <0 < hgs(up, + 9).
— If u, < —0, (6.12) is satisfied because

g5 (un + )y = 0 = hgs(uy, + 0).

By the previous claim we have

/
| gy < [ 8t chry). (63
Q1 (|gj|7’—|—5)p Ul (|$|p+5)p

We consider now

(1) Assume Is5(un) > 20, then ny(Is(un)) = 1 and by the definition of
ne(Is(uy,)), it follows

W) 1, " gg(un—i-é)ungj
mlls(u)) ~ —gblTs(m) | S

1 1 Ly + 0)uy,
f a1 (e +0)»

and by (6.13) and since h < ¢ + 1, we get

Therefore,

1 1
C+ 0(1)HUHHWOLP(QE) > (= —

and for all n,

HUnHWOLP(Qs) S C,

with C independent on n.
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(i) If I5(up) < 0, then ny(I5(un)) = 0 = nj(Is(uy,)) and

1 " gg(un—i-é)unx:
lts(un) = st [ B2 o

hence, as in the case (i),

[l 7,y < C V.

(131) If 0 < I5(u,) < 26, by (6.13),

mlTs(un)) = — (T [ Bt D,

> —%Ig(un) > (.

Therefore,

So, we can conclude

U, — u in Wol’p(Qe),

u, — w in LP(Q.) for 1 <p<p"

Taking a subsequence, u,, converges weakly to u in VVO1 P(Qe).

(a—(-1)) %

Then, u2™ and u, converge strongly in L'(€).), namely

(ut)e
|z|P 4 &

— a(w,u)gs(u+08) C W (Q)

because

(uy
/ (\x!p+5 ‘pd”H/ !p+5 oo
with ¢ € Wy*(Q.), and

/ a(z,un)gs(un + 8)pdr — [ a(z,u)gs(u+ 8)pdr
£ Qg

with @ € Wy P ().

In the first case, since |z|P + § > §, we only need to check that the
following term is going to zero

(uz)? — (uh)? (uy)? — (uF)?
/QE chda: < /5 fgpdx.
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Using Holder’s inequality and since qpfil < p* (recall that ¢ < p*—1
and u, — u in LP(€.) for 1 < p < p*) and using also that ¢ €

WP (Q2),

ut)e — (y+)e e L AN i}
[ [ an ([t - o)

p* pr-1

< ([ @) ow)( | T - @ E ) T < o).

£

For the second convergence, in order to be able to pass to the limit,
we only need to prove that

—(p—1) N —
un =% 1<,0€L1(QE).

Using Holder’s inequality, we get

*

-1 - . LoD Ey e
/ u 1cpda:§(/ o da:)pl*(/ A S

and since, by the hypothesis of h, we know that ¢ — (p — 1)% —-1<ygq,

thus, (¢ — (p — 1)% - 1)(pf’i1) < p*, hence, as before, since u, —

u in LP(Q) for 1 <p<p* and ¢ € WyP(Q.),

—(p—1) N —
Un =% 1<,0€L1(QE).

Since uy, is a Palais-Smale sequence, and by the continuity of —A; L,
one has

+\q
_a-ny ()T : ntog

ut)d
O

The mountain pass geometry condition is a consequence of the following
observation: if [lufl;, 1., (@) 18 small enough by definitions (6.6) and (6.7) one
0 €

has Ej.(u) = Ej.(u) where

~ 1 1 +)q+1
Bs.(u) ==~ [ |VulPdz — / W),
P Ja. q+1Jq, [P +6
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is the functional without penalization.

Let v > 0 be a solution to —Aju = in Q9 with v = 0 on 9,

uq
[P
obtained for example by the Mountain Pass Theorem, since the weight is
bounded because 0 is away from {22 and the problem is subcritical. Fix

s > 0 large enough such that

1 1 q+1
Bpcolsv) = o0 [ [9opds - —srtt [
P Ja g+1 Q, [zlP + 6

Consider ¢s5. 9 = inf, max;e 1 Es.9(7(t)), where the infimum ranges over
all continuous paths v : [0,1] — Wol’p(Qe) such that v(0) = 0 and (1) = sw.

dx < 0.

Lemma 12. Since the functional Es. g satisfies the assumptions of the
Mountain Pass Lemma, there exists a critical point u of Es. g with criti-
cal value c5c 9. Moreover, there exists a constant C' independent of €,0,0
such that

csen < C.

Proof. Since the weight

P is bounded, there exists p > 0 such that
x

inf {Es(u) : Ilullypri,) =P} >

) 1 1 (u-i-)tH-l
f{—pP — >0
m {ppp q+1/gs |:1:|P+5}

and also since ng(Is(u)) > 0,
inf {Escp(u) : HUHWOLP(QE) =p}

) 1 1 (u+)Q+1
Sinf (= | s s} >0

Consider (t) = t(sv) and notice that max,¢(g 1) Es¢ 0(t(sv)) is bounded
uniformly on d,e,0 because v is a solution in 9 and the penalization is
only in €}y, so the maximum does not depend on 4, ¢, 6. Thus, since c5. 9 =

infs maxse(o,1) Ese,0(v(t)), cse0 < maxeeio 1) Eseo(y(t) < C.

Hence, we get the upper bound for c;. g.

Next lemma proves that the mountain pass level c;5 .o admits a uniform
bound from below away from zero. This will be important in the limit
process in order to find a positive (u Z 0) solution.
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Lemma 13. There exists 89 > 0 and cg > 0 independent of €,0,9 such that
Cs,,0 = €05

for 0 < 8 < 6y.

Proof. Since 0 € 09, in €. \ 1 the weight ‘x‘“& is uniformly bounded

on ¢, and we can fix p > 0 independently on &,§ such that, by Holder’s
inequality,

1 1 +)g+1
—/ |Vu|pd:13——/ (u) dx
p . q—+ 1 Q\Q ‘Z”p +4

* q+1
[ Ivupds - —+1C</ (")) d) 7 0.\ | 5
E\Q
_ - p q+1
HUH 1p(Q ) q+ 1CQHuHLp*(QE\Ql)'

Using Sobolev’s inequality,

1 +)a+1
|VulPdx — —/ &da:

D Jo. Q+1 Q\Y |5’3|p+5
1
> — p - q
. . . p q
Since g+1 > p, 1f||u||W01,p(QS) is small enough, ||u||W01,p(Q > ||ul] 1,, AL

Therefore,

1 1 )¢
L[ vupdr-— [ @O e > Cylul?

M , < p.
P Ja. o QTP +0 Wy P (Qe) | ”Wolp(ﬂs) =P

If we focus now only in €1, by Holder’s inequality

N— N &
+yq+1 . =* +\(a—=(p—1) 5 N
/ W™ e < </ (uh)P d:n) ’ / WO T ) 6
o lz[P+6 o o (|zp+6)7

Using Sobolev’s inequality we obtain

(u*)‘”l »
I
/Ql 2 7000 < Cllullyog o)™,

where C depends on §21,p, N. By this expression and the calculation in
O\ 4, it follows that

E@) 2 Cyllullfyip g, = CO L) ¥ +np(Is(w), Vullyiog,) < p:
(6.15)
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Consider now the function h(t) = ng(t) — CpPt~. If t > 20,

<tNTTp — C’pp> >N <2¥0_% - C’pp) .

zfs

h(t) =t

Fixing p > 0, we take 6y > 0 small, thus
N-p _»p
27N 0N —CpP>1 for0< <6 (6.16)
Therefore,
h(t) > t~, fort > 20. (6.17)
For 0 <t < 26 we obtain
h(t) > —CpPtx > —CpP(20) 7. (6.18)

Let v : [0,1] — Wol’p(Qe) be continuous such that y(0) = 0 and (1) =
sv. We take p > 0 small so that S”?}”Wol,p(gs) > p. Let t* be defined by

t*=min{ t € 0,1] : [v(®)llyrrq,) = por I(v(t) =1 }.

t* is well defined and satisfies the properties ||7(t)||W01,p(QE) <p Is(y(t) <1
for 0 <t < t* because of the definition of t* and one of the following cases:
either Hy(t*)”wol,p(ﬂs) =por Is(y(t")) = 1.

Assume first that [|v(¢*) = p. Then, using (6.15), (6.17) and

(6.18) we get

E(/(t)) 2 Colv(t) 10 g, = CPPON = Cop” — CpP (20) .

e @)

Choosing 6y smaller it follows
Cpp? — CpP(20)N > CppP,  for 0 < 6 < 6y, (6.19)
for some positive constant é’p independent of €, 6,§. Thus,
E(4(t") = Cpp”.

Suppose now that I5(~(t*)) = 1. Since Is(~y(t*)) > 20, we may also assume
that 6y < 4. Then, by (6.15) it follows

E((t)) 2 Gpln ()10, ~ CoPTs(V(E)N +mo(Is(3 (1)),

for all ||v(t*) < p.

HWOLP(Qs) -
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By (6.17),

* *\ || P *\\ 2 *\ || P
EOE) 2 Gl s, + BOEDF 2 Gty +121
It follows that the mountain pass level c;. g satisfies

csc0 = min (Cpp?,1) (6.20)

provided 0 < § < 6y and 0 < fy < 3 is such that (6.16) and (6.19) hold.
O

Remark 6. The inequality (6.14) motivates the importance of the penal-
ization term. We need this term to obtain the uniform bound from below
(6.20) away from zero. In Subsection 2.2.6 we shall see that this control will
be necessary to pass to the limit and then to reach a nontrivial solution to
(6.3).

2.2.3 Uniform estimates for the mountain pass critical points.
In order to prove that the penalization is small enough when we pass to the
limit, we need to check some uniform estimates of the critical points.

We claim that there exists C' independent on 6,6, such that for all
6>0,0>0ande>0,ifuc Wol’p(Qg) is a mountain pass critical point of
the energy functional s, g(u), then

”uHngP(QE) <C (6.21)
and

Is(u) < C6. (6.22)

The argument is the same as in the proof of Lemma 11. Indeed, since
Escp(u) < C we have

1
C>FE — ——Fj
> By ol0) = — B gl

= (5 ) Wl + 0 — T T

q+1
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and we deduce (6.21) as in Lemma 11.

Notice also that

0

1 h
€2 Cpallulfyyog, + 5 (1= 747 ) (0
1 h 1~
>—-|1-——]1 > (1 .
> 5 (1- 25 ) 1) = 5010

Therefore, I5(u) < CH and (6.22) holds with C' independent on 4,0, €.

(79) If I5(u) < 0 we obtain the same conclusion because

) — Iy () = 0.
(iii) If 0 < Ij(u) < 26,
mw)) — Ty ()

- p+1

h(I5() () 2 ~ 5 Ts(u) = ~C,

then,

¢ > Cp,qHUHIv)VOLp(Q -G,

c)
proving (6.21) and concluding the proof.

2.2.4 A local supersolution.

In order to control the mountain pass solutions close to the singularity and
to be able to pass to the limit, we are going to construct an appropriate
supersolution to be above the solution u and to control this function.

Fix rg > 0 small and define a set near the singularity,
D={zeQ: :|zx|<ro}, I'1 =00 N{|lz| <ro} and 'y = Q. N {|z| = ro}.

Since we assume that the curve that joins €27 and 2 along which runs C;
is fixed and 0 € 0921 N ON2,, if we take ry > 0 small, D is independent of &.
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Consider dr, (x) = dist(z,T';) with I'; defined as above and p —1 < ¢ <
p* — 1. Let ¢ be defined as the solution to

q
dFl

_APC:W in D
(=0 onIy, (=dr, onlsy.

(6.23)

We want to check the regularity of the term in the right hand side of
(6.23),

The function df. /|z[P belongs to L"(D) for any 1 < r < p—]Xq itg<p
and for any » > 1 if ¢ > p. In both cases there exists r > N > % such
that df, /|z[P € L"(D). The solution ¢ to (6.23) is bounded by Lemma 10
and by classical regularity results, see [93] and [51], belongs to C1%(D).
To construct the desired supersolution, we need a control from above of (,
up to the boundary, by the distance function dr,(z). Obviously, since in
the case ¢ > p the weight is bounded, ( € CY*(D) by a regularity result
in [70] and, moreover, % < 0 by [94], v denoting the outer unit normal.
If ¢ < p, we need to be away from the origin, and the regularity will be
Ch(D \ B,(0)). For our purposes we need the boundedness of the gradient
of the solution to (6.23) up to the boundary, that is, the global Lipschitz
continuity of the solution. In the paper [42], the authors established the
minimal assumptions on the integrability of the data and on the regularity
of the boundary to get the boundedness of the gradient of some class of
quasilinear elliptic equations.

In particular ¢ turns to be Lipschitz continuous on D when dp, /|zlP €
LNY(D) (see in [42] a quasilinear version of the Theorem 22), where L™Y'!1(D)

denotes the corresponding Lorentz space. We recall the following embed-
ding,
LY(D) = LY(D) for ¢ € (1,00), (6.24)
L™y (D) & L%*92(D) if ¢1 > geand 01,09 € (0, 00].
Then, for every ¢ > p—1, there exists 7 > N such that df. /|z[? € L"(D) and,
since r > N, by the embedding (6.24) it follows that df. /|z[P € LNY(D).
Thus, ¢ € C%YD) N CY*(D\ B,(0)).

Hence, there exists some constant C' > 0 such that ( < Cdr,. Setting
__qa
A =C @D > (0 and defining w = A(, such that

—Ap(w) = =8,(A¢) = ¥ H=4(C)) = Al\d%
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Since (7 < Cdf. , —Ap(A() > ST and w satisfies

=[P

—Apw > % in D
w>0 in D (6.25)
w=0 only, w>Adr, only,

for any 0 < A < Ag and, furthermore, w(z) < Cdr, (z) for some constant C.

In the sequel we fix A = A\g and w = A\o(.

2.2.5 Comparison and control of the penalization.

We are going to show that, when 6 goes to zero, any mountain pass critical
point u of Ej. g satisfies
u<w in D.

Indeed, as I5(u) < C#6, see (6.22), by the energy estimate (6.21), the
classical L™ and CP-estimates give us that for any K compact, K C (€1 U

Fl) \ {0}7

|ul|Loo(xy — 0 as @ — 0 uniformly on ¢, 0.

Then, by bootstrapping, |[ull¢1.sxy < C uniformly on €,4. Thus, there
is #1 > 0 independent of ¢, d, such that for 0 < 8 < 6; we obtain

u < Adr, on I's.

From (6.9) we have

u
—Apu < P in D,
and therefore w1
—Apu — (—pr) S W in D

Multiplying the equation by (u — w)" and integrating on D we obtain
/ < |VulP~2Vu — |[Vw|P2Vw, V(u — w)™ > dz
D

< _ — + .
_/D |$|p+5(u w) " dx

(6.26)

e If p > 2, thanks to Lemma 4, the left hand side of (6.26) becomes

op/ V(- w)* Pdz
D

(6.27)
< / < |[VulP2Vu — |[Vw[P~2Vw, V(u — w)* > dx,
D
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for some positive constant C}, depending on p. Using Lagrange’s The-
orem, the right hand side of (6.26) satisfies

] q—1
u(u—w)er:E < C’/ [(u — w)™]? al x
p |z[P+0 D [P+ (6.28)
N 2u[q—(p—1)]+(:n—2) J '
= [ =P,

since ¢ > 1 in this case.

Being W + &+ 2]\][\,;1) = 1, by Holder’s inequality we obtain

lg—(p—1)]+(»—2)
/ [(u— w)+]2u dx
D

P + 6
oy NP - NN e
g(/ [ — w) ] da:) Y T U g dx)
D D(|zlP + 8)7 D
(6.29)

By Sobolev’s inequality and by the definition of I5(u), we get
la—(p—D]+(p—2)
_ )2l
[ =y P
< CIV(u—w) |35y L5 () ¥ S Jul [P

Wy P (D)’

Therefore, by (6.27), (6.28), (6.29) and taking into account the esti-
mation in (6.21), one has

[ 19— w)*Pde < ClI (= w) e Ts(w) ¥,

that is ,
19 (= ) oy < CIs(w) 757 (6.30)

If p < 2, by classical estimates which characterize the p-Laplacian
operator (see Lemma 4), we get

IV (u— w)*P?
d
Cr / rwww)? T

(6.31)
< / < |VulP~2Vu — |[Vw|P2Vw, V(u — w)™ > dz,
D

with C), = Cp(p) a positive constant.
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Being
— +|p _
/\V !”dx—/ Vw0 P (vl + (V) S de,
D (

(2-p)p *p)p

[Vu| + |[Vw]) 2
by Holder’s inequality it follows

[V (u—w)*?
o[Vl + [Vuw]) =)

[ IV-w)tpaes( o) [(Vul+/Vulda) 5.
D

Hence,

V(w—w) [p IV (u = w)*[P N
/D“W’*‘Vw‘)@‘p’d 2<<ID<\vur+\w\>p>2fd) - (632)

We estimate the right hand side of (6.26) as

u[q—(p—l)H(p—l)
<C =C u— dx.
/ IZEIP i / [P + 0
(6.33)
Since M + &+ N p = 1, by Holder’s inequality we get in this
case
lg—(p—1)]+(p—1)
—w)tY
/D(u w) P dx

s NN/ -0\ W-p)p-1)
SU[(U - w)ﬂNN—pdx> . (/ %da (/u%dx) w
b D(|z|p +6)» D

and then, using (6.31), (6.32), (6.33) and the estimation for the norm
of u, we have

( S IV (u = w)* P
(fp(IVu| + [Vuwl)) ="

dz)" < CI[(u = w)* |l (o) (I5(w) ¥
(6.34)

If ||V (u—w)*||1p(q) = 0 we are done. Suppose that ||V (u—w)™|[Lrq) >
0. From (6.34) we have

1V (1 = w) || ooy < CI5(w)) ¥ (6.35)
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By (6.30) and (6.35) we get the contradiction since I5(u) — 0 as 6 — 0,
because the left hand side of (6.30) and (6.35) is strictly positive and the
right hand side is going to zero.

The following lemma shows that for € small enough, the contribution
due to the penalization is actually zero. This is a necessary result to pass
to the limit and to have a solution of our problem.

Lemma 14. There exists ¢g > 0 such that

Is(us5) <6 forall0<e<egand all 0 < § < .

If we prove that, we would have

1 1 (u+)q+1
5 v _ VU pdﬂi‘ _ / dﬂi‘
5.6,0(Ue,5) » m' | q+1 Jo |zlP+6

Proof. We argue by contradiction. Assume that there are sequences of
positive numbers ¢, — 0, §,, — 0 such that Ij, (u,s,) > 6. Let us write
Up = Ue, 5,- By (6.21), for some subsequence, u, — u in W1P(Q;) weakly
and, by Rellich’s Theorem, it converges strongly in L"(€;) with » < p*; in
particular, since ¢ < p* — 1 by hypothesis, u,, — u strongly in LIt1(€).
Moreover, u < w in D as we saw before.

Let us show that

Is, (up) — In(u) as n— oo, (6.36)
where
N (—p-1)&
[5n(un) — / wdw and Iy = / (U)—dim
o (|zP 4 8,) 7 o |z|

(|zlP + 6,) 7 || N

M—i_g is uniformly bounded in €; \ D. Since

(P + 6) 7
u < w in D and by the definition of gs, (un, + J,), the following inequalities
hold

Notice that pointwise in 7 and since

we are far from zero,

N
p

(w+ 5n)(q—(p—1))
(J2f +6,) >

g5, (W + 6y,)
N
(‘x’p +0n) P

gén(un +5n)
(I[P +60) 7
Since w < C|x|,

<C

(|| _|_5n)(q—(:0—1))%
(2P + 8,) 7

95, (un + 5n)
([P + 6,) >

<C
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For §,, small,

s |2

1
9o, (un +0n) _ (2l +o0) Y b E N

N —= 1
(2P + 6n) » (|&] + 62)N

If (¢—(p— 1))% — N > 0 this quantity is uniformly bounded and if (¢ —

(p— 1))% — N <0, one has

gmxun4—&Q < ¢ < CJg|@- - 5N
(2P +6n) 7

)

(2] + 65) N~ (==

which is integrable because since ¢ >p—1, —(¢ — (p — 1))% + N < N. By

N
the Dominated Convergence Theorem (since ]az\(q_(‘”_l))?_N is independent

on n), we deduce the validity of (6.36). As a consequence of (6.36) and
(6.22), we have

In(u) < CO. (6.37)

We claim that v satisfies

{_AP“ Hame 1))%775(10@)))(&5\?} W@ < )

u=0 on 0€.
(6.38)

Consider ¢ € CY(Q1), ¢ > 0 with ¢ = 0 on 9Q; N IN.. Multiplying (6.9)
by ¢ and integrating by parts in {2; it yields

- ‘90|Vun|p_2Vun

+/ < |V, P2V, Vo > da
o0 N

5. (tn + 0y +)a

— 7 pdx.
o, 2P + 0,7

+%uawwy/

N
(2P +6,) 7

Since u = 0 in 01, we only need to evaluate the first term of the last
expression in the intersection of the boundary of C. and the boundary of
1, where the measure is eV ~1. Since we are away from zero, u,, € C' and
then, Vu,, = C, thus,

/
B _ g5 (U + 0
/ < |V, [P2Vu,, Vo > de — CeVN 71+ ng(L;n(un))/ Mgpdw
951

o (|2fp +6,) 7

/ ()

= ———d.
o} ‘Z”p + 571
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We remark that the term CeV~! comes from the integration by parts and
C is a constant that does not depend on €. In fact, away from the origin,
problem (6.9) has C solutions. As before,

loc

/ Mg@dz — (u+)qcpda: as n — oo.
Q1 |:1;|;l7 + 5” Q1 |:E|p

Using Fatou’s lemma we conclude (6.38),

(a—(p-1) 5 -1

Y

N X[u>0]U
(- (=17 [e>0)

/
god:ES/Q %(pd:&
1

1951 ‘x’p—kén)F

Multiplying (6.38) by u™, integrating on Q; and using Holder’s and
Sobolev’s inequalities, we obtain

/ |Vut|Pdx
Q1

N—p N
+\q+1 . e +\(g—(—-1)) =
S/ (W) dx §C</ (ut)y? d:n> " / (U)—dizn +CeV 1
o lzfP o O ||

<C | |VutPIy(u)¥de+ CeN 7!
971

and by (6.37) we have

2fs

/ VutPde < CO% / VutPde + CeN
Q1

Q1

For a fixed 6 > 0 sufficiently small we conclude that u™ = 0 in Q;, since we
can choose € small as we like. Therefore, Ip(u) = 0, which is a contradiction
with Ip(u) = im0 Is, (un) > 6.

2.2.6 The end of the proof.

To conclude the proof we pass to the limit. In this way we are able to get a
solution to (6.3) for € small enough.

If0 <e <egpand 0 < 0 < gg the mountain pass solution u. s of Lemma 12
satisfies

2P +3

ut)ye .
—Apu = LCADLIN Q. (6.39)
u=0 on 0f),.

Then, u. 5 > 0.

Since by definition, F(0) = 0 and recalling that, by Lemma 13,

Es.o(ucs) > co > 0,
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thus, u. s # 0 and by the strong maximum principle [94], uc s > 0 in ..

Now, for fixed 0 < e < gy we let 6 — 0. Since u. s, < w we can apply
the Dominated Convergence Theorem to show that

q

/ﬂ@dﬂi—)/ u—gsﬁdaj as 0, — 0 foranygpecl(ﬁ)
Qe |$|p+5n Qe |$|p ! .

Thus, by the continuity of —A_1(-), u. satisfies

—Apu = % in Q.
u >0 in Q.
u=0 on 0f)..
Multiplying (6.39) by wu. 5, we find that,
(u:(; )?
—-A dr = — .
/5( pu575n)u575n T /Qs u575n ‘x’p +5n &

Then,

+ g+l
u
Vues [Pde = %dm
Ve,
Qe Q. |z|P +dn

By definition we know that Ejs, . g¢(ucs,) satisfies

1 1 (U+5 )qH
E U, == Vu.s [Pdz — / £ dz.
577,7570( 57611) p/ ‘ 57577,’ q+ 1 Qs |$|p +5n

£

Therefore,
q+1

1 1 Ug s
B u —(z__- —" dx
52,0(Ue,5,) <p P 1> /Q [P + 4y,

and, by Dominated Convergence Theorem, using the fact that w5, < w in
D, we see that

1 1 ud™
Eén,&,ﬁ(uaﬁn) B / dr asn — oo.
p qg+1 Q. ‘Z”p

Since Es, - g(us5,) > co > 0 by Lemma 13 we deduce that w. > 0. This
concludes the proof of Theorem 23.

O

Remark 7. For the same reasons as in subsection 2.2.4, since ue,(;n_g w
uniformly on € and §, the energy solution u to (6.3) belongs to C%1(Q.) N
Ch(Q.).
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3 The problem with g(\, z,u) = A\f(x)u"

In this Section we are goint to prove Theorem 24, the aim is to study the
existence of solution to the problem

uq
—Apu = P + Af(z)u” in
w>0 inQ (6.40)
U= on 012,

where 1 <p < N,q>p—1, f > 0belongs to L*(Q),0<r <p—1and Qis
a bounded smooth domain in RY. The aim is to find a solution that does not
depend on the geometry of the domain. The idea is to construct a super- and
subsolution ordered and then, by iteration, to get a non decreasing sequence
of solutions {ug}r>1 uniformly bounded by the supersolution. Notice that
we do not assume any bound (from above) for the exponent q.

This result can be considered as a generalization of the one in Chapter
5. In the same way, we include the concave term in the equation in order to
avoid the geometry restriction for the existence of solution.

To prove Theorem 24, we proceed step by step in order to be clear.

Step 1: Construction of a supersolution @ to (6.40). Consider
dr = dist(z,T), with x € Q, 0 € I' C 9Q and I a regular submanifold of the
boundary. Let w; be the solution to

dq
—Apw = @ + f(z)w” inQ
w >0 in Q
w = dp on 052,

(6.41)

Since f € L*(Q), g > p—1and 0 < r < p—1, by standard regularity theory
[42], [51],[93], we have wy € C%1(Q) N CH*(Q) and thus, w; < Cdr, where
C=C(Q,p,q,r [) is a positive constant.

Let wy = T'wy, with T a positive parameter. Then,

dq wq
ATy = P11 T p—1 T p—1 1 p—1 r
Aty =T P + TP f(z)w] > T Calulp + flz)w]
74 p—1
_ mp—1 u)\ T =
=T TaCa[z]p + T f(z)ul
ﬂq
In order to get a supersolution we want that —A,my > —> + \f(z)a}.
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Therefore, 3T = T'(A) such that if

1 1 qf(zl)fl)
T > \p—1—r and T< <—> )

u) is a supersolution to (6.40).

Hence, there exists A > 0 such that YA € (0, A] we have a supersolution
— —a(p—1-7)
uy € COH Q)N CHQ), with A = C +G-1 . Let us denote 7 = UWy.

Step 2: Construction of a subsolution u to (6.40).

To construct the subsolution of (6.40) we are going to use the following
Theorem

Theorem 26. Let p a non-negative bounded function such that p(z) # 0,
f(t)

tp—1

the function decreasing and consider Q) a bounded domain. Then, the

problem
—Apu = p(@)f(u) inQ
u=20 on 0%),

has a unique solution.

The existence result is given by minimization and the proof of the unique-
ness can be seen in [5].

Therefore, we can consider v be the (unique) solution to

—Apv = Af(z)v" inQ
v>0 in Q (6.42)
v=0 on 0f.

Actually, it is easy to see that v is, in fact, a subsolution of (6.40) and, by
regularity results, see [70], belongs to C*#(Q). Let us recall v = w.

Step 3: Comparison and iteration argument. To prove that © > u
in Q, we note that —A,u > Af(z)@", being u a supersolution to (6.40). We
argue as in the comparison proof in [5]. Thanks to the definition of u, one

can write
-Ayu Apu u"

u”
7T Tp1s Af(x) (F - F) :

Multiplying the last expression by (u? —uP)™ we get that
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-Ayu Ay u" u”
/Q < ﬂp_Pl + upp_—1> (v — )t da > Af(ac)/ﬂ(ﬂp_l — u;—1> (u? —aP)Tdx

u" u”
=A = P _ 7PVt da.
f(fl:) /Qﬂ{uZE} <ﬂp—l Ep—l) (ﬂ U ) €L

(6.43)
Integrating by parts, the left hand side of (6.43) becomes
A Ayu _

/Q<ﬂp_p1 +ypli_1>(gp—up)+dx
[ bV v vy - - D5 v - (V) do

onfu>ay \ W (T

@ (Y, Va D) Tul — [Vul?) d
+/m{u2u} <p£p_1| ulP~*(Vu, Va) — (p — )@I ul? — | @I) .

Since @ > 0 and u > 0, by a generalized Picone’s inequality (see Theorem

12), we have

-Ay,u A

0> / < ﬂp_plu + uﬁ) (uP —aP)*d. (6.44)
Q u

We point out that g(t) = ﬂf—if J since r < p — 1. Then, as a consequence of
f =0, the following term turns to be non-negative in the set QN {u > u}

u’ u”
)\/ x (_ - = > uP —aP)Tdx > 0. 6.45
o T (7T~ ) ¢ ) (6.45)

Equations (6.44) and (6.45) imply that (u—u)" = 0 in Q. Therefore, u < 7.

We are going to define now the iterative problems in order to pass to the
limit and to get the desired solution.

Let u; be the solution to

—Apuy = % + Af(z)u” inQ
up >0 in O (6.46)
up =0 on 0.

Since u is a subsolution, one has

, ~
A < S M) = —Ayuy < ——

P PR + Af(x)u" < —Apu.
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By the weak comparison principle, as we saw before, we get u < uy < w.
Therefore, using the Sattinger method (see in [85]), we construct a sequence
{ug}r>1 in W P(2) N L®(2) such that

q
—Apup1 = k“ﬁ + Af(x)u), inQ
U1 20 in (6.47)
Up+1 =0 on 012,
with u < up < ug < ... <y, < ... <w Vk > 1. In particular, Vz € €,
{ug(x)}x>1 is a non decreasing sequence which is bounded and therefore, it

converges. Thus, we are able to define the limit uy () = limg_, o0 up(z), Vz €
Q. By Dominated Convergence Theorem, the right hand side of (6.47) con-

verges to % + Af(x)u” in LY(Q), Vg > 0. Finally, we pass to the limit in
(6.47) using the continuity of —A 1(-).

The solution u) is a minimal solution in the sense that any other solution
@ to (6.40) verifies uy < @. To prove that, it is needed to repeat the above
argument using @ as a supersolution.

Step 4: Nonexistence for )\ large. We show the following claim:

There exists X such that, YA € [\, 00), problem (6.40) has no solution
u e WyP(9Q).

Consider the following eigenvalue problem

(6.48)

g—(p—1)
—Apu=Af(z) ¢ |uff7! inQ
u=20 on Jf2.

We are going to proceed by contradiction. Let us suppose that uy €
VVO1 P(Q) is a solution to problem (6.40). Let us see that in weak sense the
following inequality holds,

q
u
— Apuy = ﬁ + Af(z)ul > Cuf + M f(z)ul

q—(p—1
>M+e)f(@) T & i

(6.49)

1
where C' = ing2 ER and A; is the first eigenvalue of problem (6.48). Notice
S

that in the points where f(-) is equal to zero, (6.49) is true for every A since
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g > p — 1. On the other hand, by straightforward calculations in the set
{z € Q: f(x) > 0}, it is possible to show that there exists A such that
a—(p—1)

min & (t) = Cti= =D L Af (@)t P > (N o) fla) o

We now fix ¢ > 0 small such that Ay + ¢ < Ay, the second eigenvalue
of (6.48) and consider p € (A, \; +¢€). Moreover, by Hopf’s Lemma, near
the zero there exist space between the solution u) and the boundary, so we
can put the eigenfunction 1 under the solution uy, hence, there exists § > 0
small enough such that v; = 6/(P~Yy; < uy, where ¢; be the first positive
eigenfunction to (6.48) associated with the eigenvalue A;. Thus, using (6.49)
we have

a—(p=1) g=(p=1)
Aoy =Mf(x) 0 T <pf(e) 0 o<
g—(p—1) a—(p—1)

pf(z) o bt < (A +e)f(a) WP < ALy,

that is, by weak comparison principle, v1 < wu) and moreover uy,v; are
super- and subsolution to

(6.50)

q—(p—1)
—Apu=pf(xr) ¢ wP~t inQ
u=20 on €,

with g € (A, A\ + ).

A standard iteration argument proves that problem (6.50) has a positive
solution, which is a contradiction with the isolation of A1 (see [17]) being e
arbitrary.

Step 5: The maximal interval of existence.

We define
Amax = sup{A € R™ : (6.40) has a non trivial solution}.

Obviously, previous steps imply Apax > 0 and Apax < 00. Moreover if A €
(0, Amax), we can find A* such that A < A\* and problem (6.40) has a solution
for A*, which is a supersolution to (6.40) for A. As in Step 3 we find a
solution for such A.

At the end, notice that for 0 < A; < Ay < A we have that the solution
uy, is a supersolution to problem (6.40) for A;. Hence, —A,uy, < —Apuy,
and by the weak comparison principle we have uy, < uy,.
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Remark 8. Since uw < Cdr, the right hand side of (6.40) belongs to some
L™(Q) with r > N. Then, by Lemma 10, the solution uy of (6.40) belongs
to L>=(Q) and hence u € C%1(Q) N CH2(Q).

In the next proposition we show that the minimal solution u) is, in fact, the
minimizer of the functional

1 u

1 A
== Pe — —— | —dx — — r+1
J(u) p/Q’Vu\ dx 1/ mpdz — /Qf(a:)u dz, (6.51)

defined on

K={ve Wol’p(Q) tu < v < upt. (6.52)
Thanks to the supersolution @ (as in Step 1 above), the functional (6.51) is
well defined in the closed and convex set K. Then, there exists u € K such

that

J(u) = gél]l{l J(v).

Proposition 7. The minimal solution uy is the minimizer of J(v).

Proof. By the definition of K, it is sufficient to prove that uy < u.

Let u; be the solution to (6.47) corresponding to k = 1. Let us define
v =u+ (u; —u)* which belongs to K. Then, by definition of minimizer u
we have
ul
/ < |VulP~2Vu,V(uy —u)™ >dx > / (—
Q Q

o + )\f(x)ur> (ug —u)Tdx

and since u; verifies (6.46),

/ < |Vur[P72Vuy, V(ug —u)t > da :/ <
Q Q

yq
Jzf?

+ )\f(:n)gr) (uy —u)"dz.

Therefore, subtracting the last two expressions, we obtain

/ < |Vup P72V — |[VulP2Vu, V(uy —u)™ > dz
Q

< [ (5 - ppu-w)td

o lzfP [l

(6.53)

Since,

ud ud n
— — —HY(u—u)"dr <0
LG~ e

and by in Lemma 4, (u —u)*t = 0.

An induction argument allows us to prove that up < u, Vk € N. Since
u(x) = limg_,o ux(x) (see Step 3 above), we conclude uy = u. O
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Chapter 7

Critical and supercritial parabolic problems
with 0 € 0}

1 Introduction

In this Chapter we are going to study the following parabolic problem

up

up—Au = )\W in Qr =Q x (0,7),
x
u > 0 in QT, (71)
u(z,0) = wo(xr) >0 in
u = 0 on 09 x (0,7),

where p > 1 and €2 C RY is a bounded domain such that N > 3 and 0 € 9.

One of the main goals in this Chapter will be to emphasize the contrast
with the case 0 € 2, which behaves in a deep different way.

If 0 € Q, Baras and Goldstein proved in [20] that if p =1 and A > Ay,
the problem does not have distributional solution. More precisely, they
established the following result

Theorem 27. (Baras—Goldstein’s Theorem)

Consider the initial value problem with Dirichlet boundary data,
ut—Au:)\#—kg if 1€QC RV, N>3,t>0,\¢c R,
(P) u(z,0) = f(x) if T, felL¥Q),
u(x,t) =0 if xed, t>0,

where Q is a domain such that 0 € Q). Then,

(i) If A < Ap, the problem (P) has a unique global solution if

T
/ |z| " u(z,0)dx < oo and / / |x| " g dx dt < oo,
Q 0o Jo

with o the smallest root of a®> — (N —2)a + A = 0.
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(ii) If A > An, the problem (P) has no local solution if f > 0.

Indeed, if vy, is the solution of the truncated problem for n € IN and
AER,

ut—Au:min{n,)\i} if teQCc RN, N>3,t>0,
7|2

u(z,0) = f(z) if ©€Q, feL?Q),
u(z,t) =0 if xed, t>0,

then, lim v,(x,t) = oo, for every (z,t) € Q x (0,00).

n—o0

Moreover, in the supercritical problem, p > 1, independently of the value
of A > 0, a nonexistence result in distributional sense is obtained in [32],
where it is also proved an instantaneous and complete blow-up result.

We prove in this Chapter that if 0 € 92 and p = 1 there is no such
Baras-Goldstein type result. Indeed, we find a unique global solution to
(7.1) without restriction in the parameter A and for all initial data in L().

We also prove in Section 3 that if 0 € 92 and p > 1, the problem

up
u—Au = — inQpr=0Qx(0,7),
|| (7.2)
u = 0 on 082 x (0,7), :

u(z,0) = wo(x) inQ,

has a bounded solution provided that u € L>°(2) is a suitable supersolution
to the stationary problem (5.1) and 0 < ug < @. Moreover, this solution is
unique in L*(Q27). Notice that, in the parabolic problem we do not have
any restriction on the shape of the domain in contrast with the Elliptic case
(see the previous Part of this work and [50]).

We recall the wellknown Gronwall’s inequality and some preliminary
results that we are going to use in this Chapter.

Lemma 15. (Gronwall’s inequality) Let n(.) be a nonnegative, absolutely
continuous function on [0,T], which satisfies a.e. the differential inequality

' (t) < o(t)n(t) + ¥ (t). (7.3)

Where ¢(t) and 1(t) are nonnegative summable functions on [0, T}, then
t
n(t) < oJo 9(s)ds [77(0) + / w(s)ds} forall 0 <t<T. (7.4)
0

See, for instance, [53].
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Lemma 16. Let Q be a bounded domain such that 0 € 00 and assume that
0 < g < 1. Then, the problem
q

—Aw = ’Z)? in €,

w=20 on 01,

(7.5)

has a unique positive solution w such that w € Wol’z(Q) N L>(9Q).

See [4] (even if 0 € Q) for a proof of existence of solution in the energy
space. Notice that the uniqueness is a consequence of Brezis-Kamin com-
parison argument in [35]. The boundedness can be obtained considering a
suitable p > 0 for which we have a solution u to the problem

—Au:%—l—uur in €,
u =0 on O0f),

With1<7‘<%.

In a similar way to [50] (see Lemma 2.2 in such reference), we define

v(y) = u(|zo| + ry) with r = |m2—0| and y € M such that the problem
2,9
%0
—Av = —————— v’
(Jwo| 4 ry)?

Using the Gidas-Spruck estimates (see Theorem 1.1 in [63]), there exists a
universal constant C' > 0 such that, in particular, v(0) < C. Since u is a
supersolution to problem (7.5), using the comparison argument by Brezis-
Kamin in [35] we get that w(z) < u(z) and then, w € L>®(Q).

The following Theorem is proved in [24], see also [79].
Theorem 28. Suppose that F € L'(Qr) and ug € L' (Q), then, the problem

ur — Au = F in Qrp,
u=0 on 902 x (0,7), (7.6)
u(z,0) = ug(z) in Q,

has one and only one entropy solution u € C([0,T], L*(R)), moreover,
ue L*(0,T; Wy* (Q)) for all s < {42,

We point out that in this case the solution called entropy solution is
equivalent to solution obtained as limit of approximations and to distribu-
tional solution. Thus, we will consider distributional solution obtained as
limit of approximated problems that also provides this regularity.

All the results in this Chapter can be seen in the paper [19].
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2 The critical problem: p =1
2.1 Existence result

The main existence result of this Section is the following.

Theorem 29. Let Q ¢ RY be a bounded domain and 0 € Q. Assume that
ug € L' () is a nonnegative function. Then, for all X > 0, the problem

u — Au = p in Q,
|z
u(z,0) = up(z) in €, (7.7)
u=0 on 92 x (0,7T),

has a unique solution u such that % € LY(Qr) and u € L°(0, T} Wola(Q))
x

for all o < %—ﬁ

Proof.  Fixed ug € L'(f2), consider a sequence of nonnegative functions
{ugn }n € L*®(Q) such that wug, is increasing in n and ug, 1T ug as n — oo in
L'(9).

Consider u; = 0, and define by recurrence, u, € L%(0,T; W012(Q)) N
L>(Qr), with n > 1, as the unique positive solution to the approximated

problem
Unp—1

(un)t — Aun = )\m in QT,
Uup >0 in Qp, (7.8)
u(z,0) = ugn(x) in Q,
Uy =0 on 09 x (0,7T).

The existence and the uniqueness of u,, and the fact that {u,}, is an in-
creasing sequence, are a consequence of the elementary results for the heat
equation, see Theorem 28.

Thanks to Theorem 16, we can set 0 < ¢ < % and consider w the unique
positive solution to

wl
—Aw=— inQ
TR T (7.9)
w=0 on Of).
Fixed A > 0, for all € > 0 there exists C' > 0 such that,
A < Clz)? + ewt™(z) for all z € Q. (7.10)

Indeed, in a neighborhood of 0 at the boundary w = 0 and VK CC
compact, |z|?> > C1, then it is sufficient to choose C' large enough.
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Using w as a test function in (7.8) and taking into account the expression
(7.10), we get

Qun

/(u”)ﬂ"dm"’/“n(—ﬁw)dlﬂSc/unwdaz—i—z—:/ w—zd:p.
@ Q ® a lzl

By the definition of w and choosing € << 1, it follows that

/(un)twdaz +(1- 6)/ 2d:n < C’/ Upwdz.
Q " |

Since uy, w > 0,

d

unwdw < C/ Uy wdax.
dt

Applying Gronwall’s inequality again(see Lemma 15),

/ upwdr < eCT[/ uowdz].
Q Q

/Q (un)swdz + (1 —¢) / |w|2da: < CT] / wowda].

Q

Thus,

Integrating the last expression on time,
T w? _ -
/ un(a:,T)wdx+(1—a)/ / Uy —mdrdt < (T+C)e® / wowdz. (7.11)
Q o Ja |7l Q
Therefore, taking into account that uy € L'(Q) and w € L>(Q),

T q
/ / unw—2dazdt < Cy(T) and / un (2, T)wdzdt < Co(T).
o Ja |zl Q

Since {uy }y is increasing in n, using the Monotone Convergence Theorem,
Upw? uw?

_) JRE—
|22 2

we get the existence of a measurable function u such that
strongly in L'(Q7), and then, u, 1 u strongly in L} (Qr).

We claim that {—|n2}n is bounded in L'(Qr). Indeed, we consider ¢ €

|z

VVO1 2(Q) as the unique positive bounded solution to the problem
1 .
—A'IJZ) = m 1m Q, ¢ =0on aQ (712)
We define ¢ = wﬁ, and by a direct computation we obtain

N e L e e i

|z]2 + &
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Therefore,
1 q
“Ap < <_> Ry
1—q/ |zf?
wq
ER
the proof of the uniqueness to Theorem 19 (that we used also in Chapter 5).

Hence, since —Aw = and ¢ < 1, we can use the same arguments as in

Therefore, get that ¢ < Cw and then
Y < Cw'™. (7.13)

Using v as a test function in (7.8) we deduce that

%Q/un¢daz—|—ﬂ/un(—A¢)d:E

un—ﬂ/} Unp,

7.14)
wl—a (
=\ de < CA dx.
2 + 1 - / T 2

J Tl J "lal

Therefore,

d Un, upwl—a
L wd dz < CA dz.
dt/g““*/m:due””— /Q EE

Taking into account that ¢ < % and using the fact that w is bounded, we
obtain that w!=7 < Cw? because

q

1< & 1< Cw !,

wl=q
Since ¢ < 1,1 < £ with a > 0, then, w < C.
2 w

Thus, thanks to (7.14),

d Un, un—ﬂ/}
— abd — " dr =\ d
dt/Q“"‘“”/Q\xrus“ /Qra:\u%””

(7.15)

Integrating on time, we get

T
U
Uy (x, T dx+/ /*ndxdthT.
/Q @1y o Jaolz[*+e @)

Hence, using Fatou’s Lemma we can pass to the limit in € and the claim

U

follows. Therefore, we obtain that ﬁ € L'(Qr). The equation holds in a
T

distributional sense and also as a limit of approrimations. By Theorem 28 we

N +2
get that v € C((0,T),L'(Q)) and v € L°(0,T; WOIU(Q)) for all o < Ni T
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Notice that estimate (7.11) ensures that u is globally defined on time.

It is clear that w is the minimal solution to problem (7.7), this follows
considering another solution v, in particular, v is a supersolution and, using
the classical comparison result as before, one can get that u < wv.

Let us prove now the uniqueness result.

We argue by contradiction. Suppose v is another solution. Since u is
a mlmmal solution, v > u. Let us define the function z = v — u, then

W € LY(Qr) and z satisfies

A= Z|2 in Qr,
x
z(:n, 0)=0 in €, (7.16)
z2=0 on 09 x (0,7).

Using w, the solution of (7.5), as a test function in (7.16) and following the
same computation as in the proof of the existence result, we get

/ztwdx+(1—a)/ 2da:<C/zwdx
Q |z

where € << 1. Since z,w > 0,

i/ zwdx SC’/ zwdz.

Using Gronwall’s inequality as before, we obtain that z(z,t)w(z)dz < 0 for
all t > 0. Therefore, z = 0 and the uniqueness follows. O

Concerning the regularity of u we want to point out the following re-
marks. We consider p(f2) as the Hardy constant for Q defined in as

1) = inf{/g[VqﬁF Lo e WHQ), # _ 1}.

Q |33|2

o If A < u(Q) and uy € L3(Q),

/ /umundazdt—l—/ /un —Auy)dzdt = /\/ /|x7|’2dazdt.
0

Thus,
1
2/ 2 (x, T)da:—i—/ /\Vun\ dxdt
/ /\Vun\ dxdt + = /uodx,
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then,

%/ 2(x,T)dx + (1 / / |V, |2dzdt < C.
Q

Since A < u(2), (1— ﬁ)

Notice that if ug € L*>(£2), we can find a supersolution @ € L (Qr)
such that uyp < w and we can prove that u € L>(Qr).

>0 and u € L?(0,T; W012(Q))

T
o If A > p(92), we claim / / |Vu|?wdzdt < co. To see that we use
Q

0
u,w as a test function in (7.8), obtaining

1d

2., 2
[ wda:—i—/ IV Pwdz + 3/ dedtSA/ Un® 1.
24dt Q |z? Q

2 |2
By (7.10), we have that

wu? 9 wiu?
|22 " e

thus,

1d 9 9 3 [ udwd
Ea/unwdaz—l—/ |V, wal:z:+§/Q e dxdt

q,,2
<)\/C’wu dx+/ wu"dx
|22

and choosing ¢ < %, it yields

1d [ , ) 3 / w2 w

Gronwall’s inequality allows us to conclude that

/ui(x,t)wda: < </ uOnwd:L"> ot t>0.
Q Q
T
/ / |V, |Pwdzdt < C(T).
0o Jo

Hence, the claim follows. Notice that, an iteration argument allows us
to prove that, if ug € L>®(Q2), u € L>®(D) for any compact set D in
Qr.

Therefore,

In the next Subsection we are going to analyze the asymptotic behavior
of the solution to problem (7.7) obtained in Theorem 29.



7.2. The critical problem: p =1 167

2.2 Asymptotic behavior

Theorem 30. Let u be the solution to problem (7.7) found in Theorem 29,
then

1 If A < u(Q), u(z,t) = 0 in LY(Q) ast — oo

2. If X > u(Q), u(z,t) = oo in L'(6(z)dz,Q) as t — oo,

where (1(§2) is, as above, the Hardy constant for Q0 defined in as

e =it { [ 1vop: o ewita, [ =1},

"o |z]?
nd 6 = min — .
a (z) yeég{’w y|}

Proof. Let u be the very weak solution to problem (7.7), then # c LY(Qr)

for all T' < oo. We split the proof in the two cases:
Case 1: A < p(f2). We use u as a test function in (7.7),

1d 9 / 9 / u? A / 9
—— [ uw*dx + Vulfde =\ | —de < —— Vul“dx.
2dt Jo Q Vel a |z]? w(€2) Jo Vel

Since A < p(€2) and by Poincaré’s inequality, we get

1d [ A )
—— ud:E+C’1——/ud:E§0,
2dt Jg ( M(Q)) 0
therefore, we reach that setting v := C(1 — L)
’ ' p()”

/ u?dr < e_'yt/ uddx and then lim [ wu(x,t)dz =0.
Q Q

t—o0 Q

Case 2: A > u(Q2). Let p, be the positive eigenfunction of the eigenvalue

problem
Pn .
—Apn = pn—>—7 in4,
2 + 2 (7.17)
pn =0, on 0f).

We assume p,, normalized, ||pn||cc = 1. In the limit, p verifies

EE (7.18)

—Ap = DL i Q,
p=0, on 0f).
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Multiplying this equation by p, we get

2

Vol2de =D | L—dx
IVl 5
Q Q |33|

and since p is an eigenfunction, we know that D = p(£2). Therefore, p, }
w(Q) as n — oo. Since A\ > u(Q2), there exists ng € IN such that for all
n > ng, pn < A. For ng fixed, we denote py,, by p and p,o by p. Using p as
a test function in (7.7), we get

d / up up
— upda:+u/7d:n:/\/—d:n.
dt Jo o lz]? + nio o lz|?

1
Taking into account that TE 2T T 2 C in Q, it follows
|| z|* + 75

d
— [ updx > C(\ — u)/ updzx.

Integrating in both sides of the last expression and considering p < A, we
obtain that, for some ¢ > 0,

Y (t) > YoeA—met where Y(t) = / u(z,t)pdz.
Q
Thus, Y (t) — oo as t — oo and by Hopf’s lemma, we know that the distance
from any point x to a point y in the boundary is strictly positive, so there is

space between the function p(x) and this distance, i.e., p(x) > ¢d(x). Then,
we conclude. 0

3  The supercritical problem: p > 1

In this Section we are interested in the super-linear case, p > 1, that corre-
sponds to the supercritical case with respect to the Sobolev embedding with
the Hardy weight, see Theorem 6. Without loss of generality we can assume
A=1.

3.1 Existence result

The main result in this Section is the following.
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Theorem 31. Assume that 2 is a smooth bounded domain such that 0 € 0)
and let p > 1. Then, there exists u € L () such that if 0 < ug < u, the
problem

up
u — Au = W mn Qp,
x
u = 0 on 02 x (0,T), (7.19)
u(xz,0) = wug(x) inQ,

has a unique positive solution v € L?(0, T} W01’2(Q))OL°°(QT), forallT > 0.

Proof. ~ We start the proof finding a supersolution to (7.19). Consider
dr, (z) = dist(x,T1), with = € Q, where I'; is a regular submanifold of the
boundary and 0 € I'y CC 9. Let ¢ be defined as the solution to

dp
N=pp RO (7.20)
¢ =dr, on0Q

The function dl‘ﬁ’il/|3:|2 belongs to L"(2) for any 1 < r < % if p <2
and for any r > 1 if p > 2. In both cases there exists r > N such that
d’l'il /|z|> € L™(Q). Thus, using the classical regularity theory, as in Chapter
5, we conclude that ¢, the solution of (7.20), is bounded and, moreover,
¢ € CY*(Q). Then, by Hopf’s Lemma we conclude that, there exists some

constant C' > 0 such that ¢ < Cdr,.

Setting T = C™7T >0 and defining @ = T'¢, by a direct calculation we
find that

NG TPT1=PCP uP

Td

2> T JxPCr T JzPCP o
Therefore,
TP
—Au > L in €,
|2
u >0 in €, (7.21)

Hence, @ is a supersolution to (7.19) if up <.

To find a subsolution to problem (7.19) it is sufficient to consider u the
solution to the linear problem,

Et — Ag — 0 iH QT,
u(x,0) =up(x) <u in Q, (7.22)
u=0 on 092 x (0,7).
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Furthermore, by the weak comparison principle, see Lemma 18, we get easily
that u(x) > u(x,t), V(x,t) € Qp.

Consider now the following iterative approximation: We set u° = u and
for k > 1 and define u* as the unique solution to the problem,

k—1\p
uf — AuF = ’(UJPT)I in Qp,
" TR . (7.23)
u®(x,0) =up(z) <u in Q,
uf =0 on 09 x (0,7).

The existence and the uniqueness of this solution follows by Theorem 28.
By recurrence and using Lemma 18, we get

u<ul <u?< . <dJF <At < <m

Therefore, {u*}ren is an ordered increasing sequence. This fact allows
k—1 —
us to define u by klim uF(x,t) = u(x,t). Since (‘IJC‘Q—JF)lp < %@7 by Dominated
—00 T

Convergence Theorem, u is a solution to (7.19) in the distributional sense.
Moreover
uP 1
W €L (QT)

As in the previous Subsection, to prove the uniqueness we argue by contra-
diction. Consider v € L?(0, T} Wol’2(Q))ﬂL°°(QT) a second positive solution
to problem (7.19). By the construction of u, we have that u < v. Defining
U = v — u, it follows

u e L*(0,T; Wy (Q)) N L= (),

P _ P ol
v AT =S <l oy i O,
v(z,0) =0 in Q, :
=0 on 99 x (0,7).

We conclude using the same argument as in the proof of the uniqueness
in the linear case. That is, taking w defined by (7.5) as a test function in
(7.24) and using Gronwall’s inequality, we obtain that 7 = 0, hence v = w.

O

Remark 9. Notice that in contrast with the elliptic case, see [50] and Chap-
ter 6, in Theorem 31 we do not need any restriction on the shape of the
domain €.
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4 Further results

Consider the following parabolic problem

p
up — Au = u_2 +pu?  in Q x (0,7 (w)),
21 (7.25)
u(z,0) = up(z) in Q, :
u=0 on 9Q x (0,T(w)),

with Q a smooth bounded domain, 0 € 02 and 0 < ¢ < 1 < p.

A similar problem without the Hardy potential was studied in [40]. In
Chapter 5 we show that the associated stationary problem has a nontrivial
solution independently of the shape of the domain . More precisely, we
prove the existence of pg > 0 such that the problem

Zp
—Az=— 7 in Q
z ]2 + uz in €, (7.26)
z=0 on 0f).

has at least a positive solution for p < g and it has not a positive solution
for p > pyp.

As a consequence we can formulate the following result.

Proposition 8. Assume that 0 € 9Q, 0 < g <1< p and pg > p > 0, then
the following problem

p

ut—Au:%—l—,uuq in Qr,
e _ . (7.27)
u(x,0) = up(z) <o in Q,
u=0 on 02 x (0,T),

admits a solution u € L*(0,T; W012(Q)) N L*°(Qr), where v is a positive
solution to (7.26).
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Chapter 8

Regularization of a first order term

1 Introduction and some preliminaries

In this last Chapter we are going to consider 0 € Q. In [32] has been proved
that if u satisfies the following inequality

u2

up — Au > )\W in D'(Q\ {0}) x (0,7T), (8.1)
there is no solution but the trivial one, u = 0. Moreover, the authors proved
that a instantaneous and complete blow-up happens for related equations.

The main goal of this Chapter is to analyze how a first order absorption
term regularizes the supercritical term with respect to the Hardy potential
avoiding the restriction on the existence of solution obtained in [32]. We
will prove also the existence of a solution for the largest class of initial and
source data. More precisely, we will study the following parabolic problem,

p
ut—Au—ku]VuF:)\’Z?—i—f in Qp =Q x(0,7),

u=00n002x (0,7) and u>0 in Qrp,
u(x,0) = ug(z) in Q,

(8.2)

where Q C IRY is a bounded domain with 0 € Q, A > 0, f € L'(Q7) a
positive function, the initial data ug € L'(2) and 1 < p < 3.

This Chapter is organized as follows:

e In Section 2 we prove the main existence result. We begin considering
the regular case, namely f € L>®(Qr) and ug € L*°(2). Truncating
P

the gradient term and the reaction term —, we are able to get the

x|?’
existence of a minimal solution. The main difficulty to reach the gen-
eral case, f € L'(Qr) and ug € L'(Q), is to pass to the limit in the
gradient term, to face this difficulty we use a particular ”exponential”
function term introduced in [30], in this way we get the existence of a
solution to (8.2). Taking into account that the data is a L'-function,
the solution is obtained as limit of solution to approximated problems,
see [43].
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e A partial result on the asymptotic behavior of the solution is given in
Section 3. More precisely, we are able to prove that if f = 0, there
exists a suitable positive constant C, such that if A < C, u(z,t) — 0
as t — oo, a.e. in .

In this Chapter we are looking for distributional solutions and we will
give some regularity information in each case. In the case of the heat equa-
tion with integrable data, all the usual concepts of solution that appear in
the literature coincide. See, for instance [2] for the proof of the correspond-
ing uniqueness result, even in a more general framework.

We recall some classical results that we are going to use along this Chap-
ter.

Theorem 32. (Compactness result) Consider the sequences {Fy}n, {tno}n
be such that F,, € L®(Qr) and uno € L'(). Assume that ||Fy||p1 ) +
||un0||L1(Q) <C.

Let uy,, be the unique solution to the problem

Unt — Auy, = F, in Qr,
Up, =0 on 90 x (0,T), (8.3)
U (z,0) = upo(x) in €.

Then, there exists a measurable function u such that u, — u weakly in
L*(0,T; W(}’S(Q)),Vs < %—ﬁ and Ty (up,) — Ty (w) weakly in L?(0,T; W01’2(Q)),
moveover, up to a subsequence, Vu, — Vu a.e. in Qp. If, in addi-
tion, F,, — F strongly in L*(Qr) and ung — ug strongly in L' (), then
Ty (un) — Ty (u) strongly in L%(0, T W()12(Q)) and u is an entropy solution
to (8.3) with data (F,ug).

See, for instance [76].

Definition 10. Since F,, — F strongly in L' (1) and uno — ug strongly in
LY(), the solution obtained in the previous result is called solution obtained
as limit of approximation.

The following compactness result in L' can be found in [89], Corollary
4.

Theorem 33. (Compactness result in L') Let u,, be a sequence bounded in
LI(0, T; WHe(Q)) such that uy; is bounded in LY(Qp)+ L (0,T; W15 (Q))
with q,s > 1, then u, is relatively strongly compact in L*(Qr), that is, up to
subsequences, u, strongly converges in L'(Qr) to some functionu € L*(Qr).

We recall also the following maximum principle, proved in [11].
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Lemma 17. (Mazimum principle)

Assume that Q is a bounded regular domain, and let h(x,t) be a mea-

surable function such that |h| € L?°(]0,T]; L?° () where pg, 7o > 1 and

N 1
— 4+ — < 1. Assume that w(z,t) > 0 verifies,

2pg 710

i) we C((O,T);Ll(Q))ﬂL”([O,T];Wol’pl(Q)), where r1,p1 > 1 such that

N 4 1 S N+l
2p1 + r1 > 2 7

1) w is a subsolution to problem

wy —Aw < |h||Vuw in  Qr,
w(z,t) = 0 on 092 x(0,7), (8.4)
w(z,0) = 0 in Q.

Then, w = 0.

We will apply the previous Lemma to get the following Comparison
Principle.

Lemma 18. (Comparison Principle) Consider H(x,t,s) a Caratheodory
function with (x,t,s) € Q x (0,T) x IR such that H(x,t,-) € C'(IRY) for all
(z,t) € Qp and

|H(3§‘,t,81) - H(l’,t,82)| < h(:L',t)|81 - 82|7

where h be a measurable function such that |h| € L?™([0,T]; L*P°(Q)) where

N 1
po, o > 1 and om0 7o < 1. Letu, v € C((0,T); L*())NLP((0,T); Wy P (2)),
0o 7o
for some p > 1, be such that |u; — Au| € L*(Qr), |vy — Av| € LY(Qr) and

up — Au> H(xz, t,Vu)+ f in Qp,
u(z,0) = up(x) in Q,

vy —Av < H(x,t,Vv)+ f in Qp,
v(z,0) = vo(x) in Q,

where f € LY(Q7), uo,vo € LY(Q) and vo(z) < up(z) in Q.

Then, v <u in Qrp.

See [11] for a proof of this Lemma.

All the results in this Chapter can be seen in the paper [1].
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2 Existence result

The main existence result of this Section is the following.

Theorem 34. Let Q C RN be a bounded domain with 0 € Q. Consider
f € LY Q) and ug € LY (Q) be such that f,ug > 0 and (f,uo) # (0,0).
Assume that p < 3, then, for all A > 0, the problem

P
uy — Au + u|Vul? = /\# + f(x,t) in Qr,
u(z,0) = ug(z) in Q, (8.6)
u=20 on 02 x (0,T).

has a nonnegative entropy solution u with u%(x,t) € L(0,T, W012(Q))

The proof of Theorem 34 will be given in several steps in order to be
clear. The main idea is to show the existence for "regular data” and then
get the general existence result using some compactness arguments.

Theorem 35. Assume that f € L*(Qr) and ug € L>®(2), with f,ug > 0.
Then, for all n,m € IN \ {0}, the problem

Vo2 Ta(v)?

vy — Av + Ty, (v = + m Qp,
| O IweE ks e
v=0 on 0Q x (0,T), '

v(z,0) = up(z) in €,

has a minimal nonnegative bounded solution vy, € L*(0,T; WOM(Q))

Proof.

We follow by approximation. Fixed n > 1, for ¢ > 0 we define the
sequence {v;}; with vg = 0 and v; defined as the solution of the problem

Vi | (Ta(vi-)*)P :
it — Av; + T (v = Qr,
Vit v; + (U)l—k%wvi]? 2P+ 1 +f inQp
v; =0 on 0 x (0,7T),
vi(2,0) = up(z) in Q.

(8.8)

Notice that the existence of v; follows using the classical existence result in
[68]. Notice also that since f > 0, 0 is a subsolution to (8.8).

Using —(v;)~ as a test function in (8.8) (recall that (v;)~ < 0) and in
the equation verified by 0 and subtracting the two expressions, we obtain
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//v v;) dxdt //|Vv ~2dxdt // Vil (v;) dxdt
it\ Vs 7 1+ 1 ’V 2‘2 (%
>/\// (Vi 1) L

!ﬂf\z

Therefore, multiplying the last expression by (—1),

i t i t
2dt//v da:d—l—//|Vv ~2dxd

2
/ / (v3) vazl |v;|dzdt < 0.
| Vil

Since —T,,(v;) > —v; and being in the set v; <0, —v; = —(—|v;|), then, the
second term in the last expression is positive too. Thus,

<
2dt//v, dxdt—k//]sz ~[2dzdt < 0.

Hence, since the derivative is negative, the function is decreasing, but,
since the starting point v;(x,0) is nonegative, (v; )? = 0 and also

T
/ / |V (v;)~|*dadt < 0.
0o Jo

Therefore, (v; )? = 0 and then, we conclude that v; > 0.

(2

Consider V,, the unique bounded positive solution to the problem

P
Vit = AV = At + f in Qr,
Vi =0 on 9Q x (0,7), '
Vn(z,0) = up(x) in Q.

Considering (v; — V,)" as a test function in (8.8) and in (8.9) and sub-
tracting the both expressions, we get

T T
/ / (vt — Vir) (05 — Vi) dadt + / / IV (0; — Vo)t [2dadt
0 Q
|V ;|2 n
YV dedt
/ / 1+1\VUZ]2( Jhde

(V- 1 nP
- / / Ca \x12+l><%—"">*d$dt'
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Since
(Ta(vi-)*)P n?
o>+ 5 T P+

the last term in the previous expression in negative, then

t V) T 2dxdt
2dt// da:d—l—//|V Vo) |“dad

V|2
o fme 1+’1\$UP( TVt <0

Since v; > 0, Ty, (v;) > 0 and v;(x, 0)

= Vu(x,0), hence,
1

5/9((( — V) (z,T))* de—i—//\v ) Pdadt < 0.

Arguing as before, (v; —V,)T = 0 and, then, v; < V),.

We claim that v; < v;41 for all ¢ > 0. Since v; > 0 and vg = 0, then

v1 > vg. Let us prove that v > v;. Using (8.8) and the monotony of T),(s)
it follows that

‘VUQP ‘V01‘2
— Avs + T, > vy — Avy + T, .
var = Az Ton(v2) 77 Ligg,e =10 o1y Lo, [2
Now we set
82
H,,
() 1+
then
(v1 —v2)t — A(v1 — v2) + T (v1) (Hin (|VV1]) — Hp(|V02]))

+(Tm(v1) = Tin(v2)) Hi (| Vva|) <0

Since (Tp,(v1) — T (v2))Hym(|Vue|) > 0 in the set {v;

comparison principle in Lemma 18, there results that v
claim follows using an induction argument.

va}, using the
v9. Hence, the

AVAY,

Thus, 0 < v <v; <V,

Taking the function v; as a test function in (8.8)

2
/ /vltvldzndt—l—/ /|Vvl| d:ndt+/ /UZ (v) ‘vlé Pd:ndt
—A/ / ”“”2 ) da:dt+/ /vzfd:ndt
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Since v; <V, and f € L>®(Qy),

Vv, |?
/ /vltv2d$dt+/ /|Vvl| d:ndt+/ /vZ m(vi) TP 1|VUZ|2d xdt < C.

Therefore, {v;}; is bounded in the space L?(0,T}; WOM(Q)) N L (Qp).

Hence, we get the existence of v € L?(0,T; WOM(Q)) N L>(Qr) such
that v; — v weakly in L2(0,T; W012(Q)) and v; T v strongly in L*(Qr) for
all s > 1. To show that v solves (8.7) we have just to prove that

H,,(IVvs]) = Hyn(|Vol]) strongly in LY(Q7).
We define the following function,

[V |? (T (vi—1))?
14 V|2 2|2+ 2

Fz:Tm('Uz) +f7

since Fj is bounded in L*(f2), using Theorem 32, if follows that Vv; —
VU, ae. in Qp. Thus, since Hy,(|Vv;]) < [Vu;|, the dominated conver-
gence theorem allows us to conclude. O

Under the same hypotheses on f and wug, we want to pass to the limit as
m — oo for n fixed.

More precisely, we are going to prove the following result

Theorem 36. Assume A > 0 and let vy, be the minimal solution to the
problem

|Vol? T, (v)P .
—Av+T, = + Qr,
v TG T e T Y e
v=>0 on 02 x (0,7T),
v(z,0) = up(x) in Q.

(8.10)
Then, Vm.n — Vn, as m — oo, strongly in L*(0,T; W()1’2(Q)), where vy, solves
the truncated problem

Ty (vn)P

Vnt — Avy + v, | Vo, |2 = )\’1"2 n % + f in Qr, o)
vy, =0 on 092 x (0,7T), )
Un(2,0) = up(z) in Q

and v, € L*(0,T; Wy*()) N L®(Q7).

Proof.

The existence of vy, follows using Theorem 35, furthermore, we know
that vy, <V, for all m > 1. Using vy, as a test function in (8.10), we
obtain
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2
|van|2

v
</\// d dt—|—||f||L1 (Qr) ||Umn||L°° Q)"

(8.12)

Therefore, integrating the first term on time and taking into account that
Um,n < Vny

Umn)|vvmn|2
‘/ mn"’“"Td:”Jr//'Wm"' dde// T L Vo2 et

gAC+—/u§dx.
2 Ja

(8.13)

Thus, since up(z) € L>(Q) and T, (vmn) — Umn as m — 00, there exists
constant A such that,

T
/vfnm(a;,T)da: <A and / (Vv |?dedt < A. (8.14)
Q Q

Then, up to a subsequence,
U — v, weakly in L2(0,T; W012(Q))
Therefore, the sequence {vy, 5, }m is bounded in L?(0, T} W012(Q)) NL>®(Qr).
Hence, we get the existence of v, € L?(0, T} W012(Q)) N L>®(Qr) such that
3
Umn — Un, a8 m — 0o, weakly in L?(0,T; W01’2(Q)), in particular vg,, €
L2(0,T; W, ().

‘VUM,nF Tn(vm n)?

Since Avm,n — T (Vinn +A + LYQ
ince Avy,, (v ’)1+%’V1}m,n’2 a1l fisin L' (Qp)+

L%(0,T; W~2(Q)), by Theorem 33, v — vy, strongly in L'(Qr). Then,
since the strong convergence in L'(Qr) and since the both functions are in
L>(Q7r), we obtain that the term

T
/ /(vmn — v, drxdt = / / Um,n — Un) (Umn — Un)*" Ldadt
0o Jo

is going to zero as m — oo for all s > 1. Therefore, vy, , — v, strongly in
L*(Qr), for all s > 1.
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We need to check now the strong convergence of the truncated terms.
We study first the Hardy potential truncation,

vmn
d dt < d dt.
// |z)2 + // |33|2

Using Holder’s inequality and since p < 3,

// n(Vmn)? //m"ddtg// d:ndt%p
|z]? + l o |zf? q |z2 '

n

By Hardy’s inequality, see Theorem 4, we get

/ /A ’ ‘;’m" da dtg)\—C’/ /|wmn| dadt.
xT N

3
Since v3,, € L?(0,T; Wol’2(Q)), we have the term bounded in L'(Qr).
The strong convergence in L!(Qr) follows by Vitali’s Theorem. Thus,

Tn(vm n)p 'Ug 1
—— — —— in L (Qp).
aP+ I e ™)

To conclude, we have to prove also that Ty, (Vi) VUmn|* = vn| Vg |?
strongly in L'(Qr).

Let us consider the Landes regularizer defined by the following expression
t
et = [ vl xom(s)e s,
—00

where

_ | vp(x,s) ifte]0,T],
”"(””’3)_{ 0 ift¢[0,T). (8.15)

then, v, ,(x,0) = 0 and v, , converges to v, strongly in L?(0,T; W()l2(Q))
as v tends to infinity. Moreover, we have

T
(W) = v(v—1,), ie, < (W) ,w>=uv / / (v — v, wdadt,
0 Q

for all w € L?(0, T} W012(Q))

Since v, € L™®(Q7), ||tnulloo < [|vnlleo = Cpn and vy, — vy, strongly in
L*(Qr) for all s > 1.

Let us define ¢(s) = se®’ where a > C2, this function verifies that

¢'(s) — Culo(s)| = 3.
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Using ¢(vm,n — Un,) as a test function in (8.10), we obtain
T
< (Um,n)ta (b(vm,n - Un,l/) >+/ /va,n¢,(vm,n - Un,u)v(vm,n - Un,u)dxdt

2
/ / \va nl —————— (U — Up)dxdt

|va nl?

/ / Um" +f) (U — Unp)dzdt.
2P+l ’ ’

Notice that

< (Um,n)ta ¢(Um,n - Un,l/) >=
< ('Um,n - 'Un,u)ty gb(’”m,n - Un,u) >4+ < ('Un,u)ty gb(’”m,n - Un,u) >

It is clear that

T d Um,n —Un,v
< ('Um,n - 'Un,u)t7 ¢(Um,n - Un,u) >= /Q/O a </0 gb(s)ds) dtdzx.

Therefore,

Um,n —Un,v T
< W = vl 0l = vn) >= [ | [T oty o
Q'Jo

= / [&(Vmyn — Un,u)]gd$ > o(v,m),
Q

where ¢(s fo
By the definition of (U,W)t, we have

< 'Unu ty 'U n Unz/ —V/ / Un — Unu)¢(vmn Unu)dxdt

—1// /vnqﬁvmn fun,,dxdt—u/ /vn,,(bvmn Up,p)dadt.

Since v, € L*>(Qr) and by the strong convergence of v, to v, in
L?(0,T; W01’2(Q)), we have

< ('Un,u)t, ¢(Um,n - ’UnJ/) >= O(V, m)

Therefore,
< ('Um,n)ta ¢(Um,n - 'Un,u) >= O(I/, m)

Using the fact that v, , <V,, we get easily that

/ / mgm Pl 4+ £)P(Vimn — Vnp)dxdt = o(v,m).
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Thus, we only need to study these two terms

T
I, = / / VUmn® (Vmn — Vnp)V (Umn — Un,)dxdt
0o Jao

12 / / |va TL| QS(’Um’n _ ,Un’y)dxdt‘

1+ LV, .2 e AL

and

We can write 7 as

T
I, = / / VUmn® (Vmn — Vnp)V (Umpn — Un,p)dxdt
0 Q

T
—/ / an,yqﬁl(vmm — Uny) V(U — Up,y)dxdt
0 Ja

T
+/ / Vfun,,,(b'(fumm — U )V (U — Upp)dadt.
0 Q
The weak convergence of vy, ,, and the definition of v, , imply that
T
L = / / |V (Vmn — vn7,,)|2¢/(vm7n — Upp)dzdt + o(v,m).
0 JQ
On the other hand, we have
Ll < C, / / IV 0mnl2 (0 — )| devdt

< C, / / |V (v n — Un ,,)\ |V — Vn,p)|dadt

-~ ¢, / / V0 P16 (Umm — O dadt

+ 2C / / ‘va nvvn I/’ ‘(b(vm n Un V)‘df]}'dt

Since the last two terms in the last expression are going to zero as m — oo,
we obtain

T
|I2| < On/ / |V('Um,n - Un,u)|2|¢(vm,n - Un,u)|d$dta
0 Q

where C), = ||V]]oo. Combining the above estimates, it follows that

T
/ / (& (Vi — Vnw) — Cnld(Wm.n — Vr) )V (Vmn — vn,,,)|2dxdt < o(v,m).
0 Q

T
Since ¢/(s) — Calé(s)] > 1, /0 /Q IV (W — v 2dzdt = o(v, m).
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As a consequence, we conclude that |[Vu,,|> — |[Vou,|? strongly in
LY(Qr) and then the result follows because, since vy, , is bounded we can
use the Dominated Convergence Theorem knowing that T, (v ) — vp in
L5(Qq), for all s > 1, thus, T (vmn)|Vomal?> = val|Vou|? in LY(Qr).

O

We are now able to prove Theorem 34

Proof of Theorem 34. Let f, = T,,(f) and u,o = Ty, (ug). Define u,
as a nonnegative solution to the following approximated problem

Tn n p .
(tn)t — Aty + up |V, |? = A gu )1 + fn in Qp,
o+ 5 (8.16)
U, =0 on 02 x (0,7T),
Un(2,0) = up(x) in Q.

The existence of u,, follows using Theorems 35 and 36.

Using T (uy) as a test function in (8.16), it follows that

/ /un Ty (uy, da:dt—l—/ /|VTk U, | dxdt
/ /Tk Up,) U | Vg | da:dt<k)\/ /| drdt + k[ fl| L1 q)-

(8.17)
Notice that

/OT/Q(un)tTk(un)d:Edt :Q/@k(u")("EvT)d"E—Q/@k(uno)(lv)d:v,

where O(s) = / T (1) dr and verifies that O(s) < ks. In the same way
0

we have
T T
/ / T (1t )it | Vit |2l — / / V0 () 2t
0 Q 0 Q

where, for s > 0,

Uy(s) = / (0T (0)) 2 dor (8.18)
0
Notice that, in particular,
52 ifs <k
), — : : - 8.19
k() { K2+ 2k2(s? —k2)  if s>k (8.19)

1
2
1
2
For s < 0, we set that Wi (s) = Wi(—s). It is clear that, for s > 0,

s3 —C(k). (8.20)
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Hence, we can conclude that

T T
/@k up,)(z T)dx+/ /]VTk(un)lzdxdt—k/ /]V\I’k(un)lzdxdtg
Q 0o Ja
m/ [ dadt+ k(s + )

Using Hardy Sobolev’s inequality and by the inequality (8.20), we reach that

/ / VU (uy, | dxdt >AN/ / 2 d dt > AN/ / —2dﬂjdt Oy,
|| a |zl

where Cs > 0 independent on n.

Using the fact that p < 3, we get

b 3—p
<k n t 3 3
kA/ /|$|2d:ndt /\ / /|x|2d$d / /|$|2d:ndt

<gm/ / ’ Tzd wdt + C(e)kA
Q

Hence,

/ O (1) (@, T)da + /0 ' /Q IV T ()| 2dadt + /0 ! /Q V0 () Pt

C’k:)\e
< / / VU () Pt + ()| f gy + ol ey)-

Therefore,

T T
/@k(un)(x,T)dx—i—/ /\VTk(un)\2da:dt+é/ /\V\I/k(un)\2da:dt
0 Q 0 Q
Q

< Ok, £l L (s |uol L1 )

Combining the above estimates, we conclude that the sequence {uy}, is
bounded in L?(0, T, Wol’2(Q)), hence, up to a subsequence,

U, —=u and  Wy(u,) — ¥h(u) weakly in L*(0,T; W012(Q))

Arguing as in the proof of Theorem 36 and since p < 3, using Vitali’s
Lemma we prove that

Ty (un)P
oyl + T (f) = A iz ‘2 + f strongly in L*(Qr). (8.21)
T 1
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In order to conclude we have to show that w,|Vu,|*> — u|Vu|? strongly
in L'(Qr). To prove that we need some previous results.

We claim that

lim

T
/ / U | Vtip|*dzdt = 0 uniformly on n. (8.22)
k—oo J {un>k}

To prove the claim we take ¥;_1(u,) as a test function in (8.16), where
Yr—1(s) = Th(Gr-1(s)) and Gi(s) = s — Ti(s),

/OT!Qumwk_l(UN)dxdt—i_/oT/Q‘V¢k—1(u")’2dxdt
+/0 /Qm—l(”n)unIVunlzd:ndtg

T uP T
/ / )\—gdwdt + / / fdxdt.
0 J{up>k—1} 2] 0 J{up>k—1}

Since u, € L?(Q7),
H(z,t) € Qr:k—1 < up(z,t) <k} —0,

{(2,t) € Qr < up(a,t) > k}| - 0, uniformly on n as k — o0, 2
Thus, using (8.21), we get

T up T
lim ( / / )\—gdajdt—i— / / fdxdt) = 0 uniformly on n.
koo \Jo  Jiunzk—13 |7 0 J{un>k—1}

On the other hand, we have

/OT/Qumwk_l(u")dxdt:Q/Ek(un(iEaT))dx—/Qak(%n(:n))daz,

where ¥y, (s) = [; ¢x(o)do. In particular,

0 if s<k-—1,
Yi(s) = %(s—(k‘—l))Q if k—1<s<k,
5+ (s—k) if s>k

Notice that,

T T
/ /Untlbk—l(un)d$dt+/ / U |V, |?drdt
0o Ja 0 J{un>k}

g/OT/Quntwk_l(un)da:dt—i—/oT/Q\Vwk_l(un)\2da:dt

T
+/ /¢k—1(un)un|Vun|2d:ndt.
0o Jo
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Combining the above estimates and the definition of ¥ (s), we conclude that

T
/ / Up |V, |?drdt
0 {unZk}
— T uP T
S/wk(uon(aj))dx+)\/ / —nzdxdt—i—/ / fdzdt.
4 0 J{up>k—1} |z| 0 J{up>k—-1}

Hence, by (8.23) and since ug € L*(Q),

T
lim / / Uy | Vup |*dzdt = 0 uniformly on n
0 {un>k}

k—00

and the claim follows.
We are going to prove now the following claim.

Let u,, be as above, then,
Ty (un) — Ti(u) strongly in L2(0, T; W, (), for all k > 0.  (8.24)

As in the proof of Theorem 36 we consider the Landes regularization of
Ti(u), (Tx(u)),, defined as

d(Ty(u))v

= VTe(w) = (Tk()),

then,
(Tr (1)), — Ti(u) strongly in L2(0,T; Wol’z(Q)) and a.e. in Qp

and
Tk (w)ollLoe () < Ky V> 0.

We define again the function ¢(s) = se®” for some o > k2, verifying ¢/(s) —
klo(s)] > 5.
Using ¢(T5, (ug) — (T (w)),) as a test function in (8.16), it follows that
< (un)t, ¢(Th(un) — (Th(u))) >

T
+ / Vg (Ti(un) = (Ti(w))y)V (Thi(un) — (Ti(w))y ) dzdt
0 Q

T
+/0 /Qun!Vun,%(Tk(un) — (T (w)), )dxdt
= /()T/Q(/\Tk(un)p —I—fn)qb(Tk(un) — (Tk(u))y)dl’dt

T
22 + -
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Notice that, by the definition of G(s),

< (un)ts ¢(Ti(un) — (Ti(w))y) >=
< (Te(un) = (T (w)o)e, o(Th(un) — (Tie(u))y) >
< (Te(u))e, ¢(Tho(ur) — (T (w))w) >

< (Gr(un))t, (Th(un) — (Ti(uw))) > .
It is clear that

< (Tetn) = (Te(w)))os (T () — (Tk(w)),) >
- /Q [B(Te(un) — (Ty(w),)]Fdz > 0,

where ¢(s fo
Notice that, takmg into account the support of the function G/(s),

< (Gr(un))i, ¢(Th(un) — (Ti(w))r) >=<(Gr(un))s, d(k = (Tr(u))w) >,

then, using a variation of Lemma 3.1. in [25], it follows that

< (Gr(un))t, (T (un) — (Ti(w)y) >= o(v, n).

In the same way, using the definition of (Tj(u)),, we reach that
< (Tr(w))v)es O(Ti(ug) — (Ti(w))y) >= o(v,n).
We set
T

Ji= /0 /Q Vaund (Th(ta) — (T (w))0)V (T () — (Th(w))y )davdt,
then, we can write this term as follows
5= / / VT () (T () — (T (1)) (T (1) — (T (1)) )t

+ / / VG (un)d (Tr(un) — (T (w),)V (Tx (un) — (T (u)), )dxdt

: / [ 19T (0) = B0 P Th) = (T, o

+ / / V(T (u)u ¢ (Ti (ur) = (Th(w)o)V (Ti (un) — (Ti(u)), ) dzdt

+ / /VGk un Tk un (Tk( )) )VTk(un)dﬂjdt

- / / VG (1) (Ti (1) — (T (1)) (T 11))
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Since the supports of VG (u,,) and VT (uy,) are disjoint and using the weak
convergence of {Gj(up)}n, and the strong convergence of {(Tj(un))y}tn,v, it
follows that
| / / V(T4 ()6 (T () — (Ti(0)),) ¥ (L) — (Ti(u)) )l
/ / VG (un)d (T (un) — (Ti(w))y) VT (uy)dzdt

/ / VG (tn)¢! (Th(tn) — (Ti(10)),)V (Te(u) drdt
= o(v,n).

Thus,

T
J1= / / VT (un) — V(T (w))|*¢ (Ti (un) — (Ti(w)),)dadt + o(v,n).
0 Jo

We deal now with the term
T
ng/ /un\Vun\2¢(Tk(un)—Tk(u),,)da;dt.
0o Jo
Notice that ¢(Ty(un) — T(w)v )y, 5y = 0s then we have
T
Jy = / / |Vt 26 (T (1) — T (10)y )t
OT {un<k}
+ / / Un | Vtn | O(Th (un) — Ti (), )dzdt
{un>k}
/ / Ty () IV T (1) 21 (T (1) — T (), )|t
> k;/ /\VTk ) — VT () [216(Th () — T ()| dadt — ofv, n).

Y

Combining the above estimates, we get

// (T (un) = Tio(w)) Kl & (T (wn) = T (w)y) DIV Tk (wn) = Vi (w)y [*dadt
<o(v,n).

Recall that ¢/(s) — k|¢(s)| > %, hence,

T
%/ / VT (un) — VT (w), 2dzdt < o(v,n).
0 Q

And since

/OT/Q VT (un) — VT (uw)|?dzdt
< /0 ' /Q VT (1) — VT (), Pdvdt + /0 ! /Q IV Tk(u), — Vi) dadt)
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we conclude that Ty (u,) — T (u) strongly in L?(0, T W012(Q))
To finish we are going to prove that
U | Vn|? — u|Vul? strongly in L' (Q7).

It is clear that u,|Vu,|? — u|Vu|? a.e. in Q7. We are going to use Vitali’s
Lemma in order to prove the strong convergence of this term in L'(Qr). Let
E C Qp be a measurable set, then

T
/ /un|Vun|2d:Edt
o JE
T T
:// un]Vun]2dxdt+// Uy, | Vi, |2 dadt
0 JEN{un<k} 0 JEN{un>k}

T T
< / / T ()Y T () Pt + / / |Vt 2.
o JE 0 J{un>k}

From (8.22) we get the existence of kg, independent of n such that for & > ko,

T €
/ / un]Vun]2da:dt < .
0 {un>k2} 2

Using the strong convergence of {T}(up)}n, we get the existence of § > 0
T
such that if |E| < 0, then, / / T ()| V Tk ()| drdt < % for n > nyg.
o JE
T
Hence, we conclude that / / U | Vi |Pdadt < e.
o JE
Therefore, by Vitali’s Lemma, u,|Vu,|> — u|Vul|? strongly in L!(Q7)

and u solves (8.6).

Taking into account that
up
[[2

u is an entropy solution to (8.6).

u|Vul?> + \—5 + f(z,t) € L' (Q7) and up € L*(Q),

Remark 10. [t is worthy to point out that for p > 3 it is sufficient to regu-
larize with a quasilinear term of the form |u|?'u|Vu|? ¢ > p—2. The proof
of this general result is an straightforward change on the proof of existence
for problem (8.6). We omit it to be short.

3 Asymptotic behavior

In this Section we are going to analyze the asymptotic behavior of the so-
lution to problem (8.6), obtained in Theorem 34, under certain hypotheses
on the data.
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Theorem 37. Assume that f =0 and ug € L'(Q) is such that ug = 0. Let
u be the solution to

P
ug — Au+ u|Vul? = AL in Qp,
21 (8.25
u(x,0) = up(z) in -25)
u=0 on 9 x (0,T).

Then, there exists X > 0 such that if X < X, u(x,t) — 0 ast — oo a.e. in
Q.

Proof.

Let us define H(s) = [ e=2%"do and we also set vy = Dy (u), where
Dy(s) = H(s)H'(T)(s)), it is clear that v, € L?(0,T; WOM(Q)) N L>(Q).
Using vy, as a test function in problem (8.25), it follows that

D p
%/Dk(u)dz+/D;f(u)lvu\zdx"‘/Dk(u)u\Vude:)\/%”fgu)dx’
Q Q o J

where Dy (s) = [; Di(0)do. Notice that

/D;(u)\Vulzdx:/ H'(u)H/(u)\Vulzdw—F/ H(u)H" (u)|Vu|>dx
A {u<k} {u<k}

! ! 2
+ /{ qu}(H(u)H (k)| Vu|2dz.

Therefore,

/D;(u)]Vu\zdw = /H'(u)H'(Tk(u))Wu\zdz—k/ H(u)H" (u)|Vu|*dz.
o o {u<k}

Thus,

/D;(u)]Vu\zdx—i—/Dk(u)u\Vu]2dw:
Q Q

/ H () H' (T (w))| V2 + / H (k) H (w)u| Va2 da.
J fuzk)

On the other hand, we have

sPDy(s) = sPH(s)H'(s) < CH?(s).
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up
Since u|Vul?, T € L' (Q7), letting k — oo, combining the above estimates

and using Hardy’s inequality, it follows

/V ) da:+/|VH( )2dz < CA/ W g < CA /IVH(U)|2d33-
|| An
Q Q

where V = %Hz(u) If % < 1, there results that

/Va:td:n—l— 1—— /|VH )[2dz < 0.
Q

Thus, using Poincaré inequality

4 /V(ac,t)dx +20 (1 — Q) /V(x,t)dw <0.
dt AN
Q Q
Hence

_ _Cx _ _Cx
/V(:E,t)daz < ¢ MO-ED) /V(x,o)d:c < e UmRt
Q Q

Therefore, V(x,t) — 0 strongly in L'(Q2) as t — 0o and then, the result
follows.

O
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