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(Soria), Gabino, Ernesto, Enrique, Eugenio, Carmen, Mari Jose, Jose Luis
(Torrea), Paloma y Antonio.

Quiero agradecer a mis hermanos mayores matemáticos, en especial a
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Esta etapa, la tesis y yo no habŕıamos sido lo mismo sin algunos perso-
nitos imprescindibles, algunos fueron apoyo profesional y otros personal:

Quiero agradecer en primer lugar el apoyo de Ireneo, porque yo no
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nos hemos entendido y hemos compartido muchas cosas (algunas no tan
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Juan?) y Pedro.

Gracias a los amigos de siempre y a los de hace no tanto; Miriam, que
aunque no entienda nada de lo que hago cree que puedo conseguirlo todo, a
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soy transparente





17

Chapter 1

Resumen en español

1 Introducción

Las Ecuaciones en Derivadas Parciales son una herramienta incréıble y
poderosa a través de la cual podemos estudiar el mundo y, si hay suerte,
poder entenderlo mejor.

Muchas ecuaciones modelan comportamientos f́ısicos que se suceden en
la naturaleza y poder estudiar ese tipo de ecuaciones es un trabajo emocio-
nante.

No todas las ecuaciones diferenciales están intŕınsecamente relacionadas
o modelan de manera directa comportamientos en nuestra naturaleza, pero
el progreso en el estudio de este área puede significar un pequeño paso para
conseguir futuros logros en este campo.

Es por ello que es importante continuar estudiando y entendiendo mejor
las herramientas y los argumentos que en un futuro podŕıan ser esenciales
para alcanzar algo más grande.

En esta memoria se estudian problemas y técnicas clásicas de Ecuaciones
en Derivadas Parciales. En particular, se estudian problemas eĺıpticos y
parabólicos y la relación de éstos con el potencial de Hardy-Leray.

Durante los últimos 20 años la influencia del potencial de Hardy en el
comportamiento de las ecuaciones eĺıpticas y parabólicas ha sido estudiada
ampliamente, véanse las siguientes referencias [20], [34], [33], [4], [5], [6], [7],
[8], [9], [11].

Vamos a recordar la desigualdad de Hardy-Leray que utilizaremos asi-
duamente durante este trabajo.

Theorem 1. (Desigualdad de Hardy-Leray). Sea N ≥ 3, entonces

ΛN

∫

IRN

|φ|2

|x|2
dx ≤

∫

IRN

|∇φ|2dx, para todo φ ∈ C∞
0 (RN ), (1.1)

con ΛN =
(

N−2
2

)2
la constante óptima que no se alcanza en D1,2(RN ), la

clausura de C∞
0 (RN ) respecto a la norma L2del gradiente.
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Si Ω ∈ RN es un dominio acotado tal que 0 ∈ Ω, obtenemos las mismas
conclusiones en el espacio D1,2(Ω).

Si 0 ∈ ∂Ω, la constante dependerá de ∂Ω y el alcanzarla de la geometŕıa
de la frontera en un entorno del 0. Véanse [55], [39], [59] y [60] para más
detalle.

Una generalización de esta desigualdad es el siguiente Teorema.

Theorem 2. (Desigualdad de Hardy-Leray generalizada).

Sea 1 < p < N y u ∈ D1,p(RN ). Entonces, se tiene

ΛN,p

∫

RN

|u|p

|x|p
dx ≤

∫

RN

|∇u|pdx,

con ΛN,p =
(N − p

p

)p
la constante óptima que no se alcanza.

La constante no se alcanza en D1,p(Ω) si Ω ∈ RN es un dominio acotado
tal que 0 ∈ Ω.

Véase [58] para algunas aplicaciones de esta desigualdad.

La ecuación de Euler correspondiente en este caso tiene un operador
quasilineal, el p-Laplaciano, −∆pu = −div(|∇u|p−2∇u), el cual atañe cierta
dificultad en el estudio de este modelo más general.

Las desigualdades anteriores son un caso particular del siguiente Teo-
rema.

Theorem 3. (Desigualdad de Caffarelli-Khon-Nirenberg) Sea u ∈W 1,p
0 (Ω)

y 1 < p < N , entonces existe una constante positiva C = C(N, p, γ) tal que

(
∫

Ω
|u|p

∗(γ)|x|γdx

)1/p∗(γ)

≤ C

(
∫

Ω
|∇u|pdx

)1/p

, (1.2)

con p∗(γ) = p(N+γ)
N−p .

Véanse los detalles en [36].

p∗(γ) es el exponente cŕıtico en la inclusión de W 1,p
0 (Ω) en el espacio de

Lebesgue pesado correspondiente.

Consecuentemente, p∗(0) = p∗ es el exponente cŕıtico de Sobolev y
p∗(−p) = p corresponde con el exponente cŕıtico de Hardy-Sobolev.
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Los problemas

En este trabajo estudiaremos la solubilidad de algunos problemas supercŕıticos
relacionados con las desigualdades de Hardy introducidas anteriormente. En
particular, vamos a considerar los siguientes problemas eĺıpticos y parabólicos.

Problemas eĺıpticos

Empezaremos considerando el siguiente problema



















−∆u =
up

|x|2
, u > 0 en Ω,

u = 0 en ∂Ω,

(1.3)

con p > 0, Ω ⊆ RN un dominio acotado y N ≥ 3.

Uno de los objetivos de esta memoria es enfatizar la importancia de la
posición del origen respecto del dominio Ω y su influencia en la solubilidad
del problema.

Los resultados previos sobre existencia de solución del problema (1.3) en
función del exponente p pueden resumirse de la siguiente forma:

• En el caso sub-lineal, 0 < p < 1, se puede probar la existencia de
soluciones de enerǵıa independientemente de la posición del cero en el
dominio, véase [4].

• El caso lineal, p = 1, ha sido estudiado en [31], los autores estudian
la existencia de soluciones en función de un dato f en el lado derecho
de la ecuación. La existencia de solución en el caso lineal con una
perturbación de orden cero puede verse en [34].

Si 0 ∈ ∂Ω, el problema ha sido estudiado en [55]. Considerando

µ(Ω) = inf
{

∫

Ω
|∇φ|2 : φ ∈W 1,2

0 (Ω),

∫

Ω

φ2

|x|2
= 1
}

, (1.4)

los autores prueban que si µ(Ω) < µ(RN
+ ) =

N2

4
, entonces µ(Ω) se

alcanza y el problema tiene solución positiva. En caso contrario,
µ(Ω) ≥ µ(RN

+ ), no hay solución.

En esta memoria vamos a considerar principalmente el caso supercŕıtico,
p > 1.
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El problema semilineal,


















−∆u =
up

|x|2
, u > 0 en Ω,

u = 0 on ∂Ω,

(1.5)

con 0 ∈ ∂Ω y 1 < p < N+2
N−2 ha sido estudiado en [50]. Los autores utilizan

un argumento perturbativo que relaciona la existencia de solución con la
geometŕıa del dominio. En particular, usando un argumento basado en
una identidad de Pohozaev, se prueba que el problema no tiene solución
de enerǵıa en dominios estrellados (respecto del cero). En este art́ıculo
también se prueba la existencia de soluciones de enerǵıa si el dominio tiene
una geometŕıa particular que detallaremos más adelante en este trabajo.

• En esta memoria vamos a considerar el caso 0 ∈ ∂Ω en el siguiente
problema perturbado de (1.5),



















−∆u =
up

|x|2
+ λg(u), u > 0 en Ω,

u = 0 en ∂Ω,

(1.6)

con λ > 0, p > 1 y g(u) un término sublineal.

• Con el objetivo de mostrar la influencia de la posición del polo con
respecto al dominio en la existencia de soluciones, consideraremos
también el caso 0 ∈ Ω en el problema (1.5), con Ω ⊂ RN un dominio
acotado y p > 1.

Recordemos que si 0 ∈ Ω y u es una solución distribucional del pro-
blema







−∆u = λ
up

|x|2
, en Ω,

u = 0 en ∂Ω,

(1.7)

necesariamente, u ≡ 0 (véase [32] para más detalles). Con el objetivo
de solventar esta obstrucción en la existencia de solución si 0 ∈ Ω,
en este trabajo consideraremos el problema (1.7) con un término de
absorción en el lado izquierdo de la ecuación,



















−∆u+ |∇u|2 = λ
up

|x|2
+ f, u > 0 en Ω,

u = 0 en ∂Ω,

(1.8)
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con 1 < p < 2, f ∈ L1(Ω) una función positiva y λ > 0.

La existencia de solución para el caso cŕıtico, p = 1, ha sido estudiada
en [9] para todo λ > 0 y para todo f ∈ L1(Ω) con f > 0.

• El siguiente problema que vamos a considerar en esta memoria es el
problema supercŕıcito,



















−∆pu ≡ −div
(

|∇u|p−2∇u
)

=
uq

|x|p
, u > 0 en Ω,

u = 0 en ∂Ω,

(1.9)

con 0 ∈ ∂Ω y q > p−1. El operador p-Laplaciano es una generalización
no stándard del operador Laplaciano, este operador no es lineal y no se
puede integrar dos veces por partes y puede ser degenerado (si p > 2)
o singular (si p < 2) en el conjunto cŕıtico Zu = {x ∈ Ω : ∇u(x) = 0}.

Hay muchas referencias relacionadas con la existencia de solución en
problemas con el p-Laplaciano como operador principal y con coefi-
cientes singulares: [3], [5], [6], [13], [37], [38], [41], [57], [58], [61], [58],
[69], [80], [81], [83], [84], [92].

• En este trabajo nos centraremos también en el estudio de una pertur-
bación del problema (1.9),



















−∆pu ≡ −div
(

|∇u|p−2∇u
)

=
uq

|x|p
+ λg(u), u > 0 en Ω,

u = 0 en ∂Ω.

(1.10)

con 0 ∈ ∂Ω, q > p − 1, λ > 0 y g(u) una perturbación subdifusiva en
el sentido siguiente

lim
s→0

g(s)

sp−1
= ∞.

• Como en el caso semilineal, si 0 ∈ Ω analizaremos también el problema
(1.10) con un término de absorción,



















−∆pu+ |∇u|p = λ
uq

|x|p
+ f, u > 0 en Ω,

u = 0 en ∂Ω,

(1.11)

con 1 < p < N , q > p− 1, f ∈ L1(Ω) una función positiva y λ > 0.
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En este problema estudiaremos también la simetŕıa de las soluciones
de (1.11).

Hay muchas referencias en la literatura en las que se obtienen resul-
tados de simetŕıa para el operador p-Laplaciano, véanse por ejemplo:
[46], [47], [48], [49], [73].

La dificultad mayor en este caso está en la no linearidad de la parte
principal de la ecuación y la consecuente complicación para obtener
un resultado fuerte de comparación.

Problemas parabólicos

La existencia de solución de la ecuación del calor con el potencial de Hardy-
Leray,























ut −∆u = λ
up

|x|2
en ΩT = Ω× (0, T ),

u > 0 en ΩT ,
u(x, 0) = u0(x) ≥ 0 en Ω,

u = 0 en ∂Ω× (0, T ),

(1.12)

ha sido estudiada para el caso 0 ∈ Ω:

1. Si p = 1, Baras-Goldstein probaron en [20] que existe solución de (1.12)
para un intervalo positivo del parámetro λ, más precisamente:

• Si λ ≤ ΛN ≡
(N − 2

2

)2
, el problema (1.12) con p = 1 y dato f

en el lado derecho de la ecuación, tiene una única solución si

∫

Ω
|x|−α1u0(x) dx <∞ y

∫ T

0

∫

Ω
|x|−α1f dx dt <∞,

con α1 la ráız más pequeña del polinomio α2− (N − 2)α+λ = 0.

• Si λ > ΛN , el problema (1.12) con p = 1 no tiene solución para
el dato inicial u0 ≥ 0.

2. Si p > 1, Brezis-Cabré en [32] probaron un resultado de no existencia
para soluciones distribucionales.

• En esta memoria vamos a considerar primero el problema parabólico
cuando el polo está en la frontera del dominio, 0 ∈ ∂Ω. En concreto,
estudiaremos el problema de evolución asociado a (1.5), es decir, el
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siguiente problema parabólico























ut −∆u = λ
up

|x|2
en ΩT = Ω× (0, T ),

u > 0 en ΩT ,
u(x, 0) = u0(x) ≥ 0 en Ω,

u = 0 en ∂Ω× (0, T ).

(1.13)

Consideraremos el caso cŕıtico, p = 1 y supercŕıtico, p > 1.

• En el último caṕıtulo de esta memoria, estudiaremos el problema (1.13)
con 0 ∈ Ω y con un término regularizante en el lado izquierdo de la
ecuación, más particularmente, analizaremos la existencia de solución
del siguiente problema,























ut −∆u+ u|∇u|2 = λ
up

|x|2
+ f en ΩT = Ω× (0, T ),

u > 0 en ΩT ,
u(x, 0) = u0(x) en Ω,

u = 0 en ∂Ω× (0, T ),

(1.14)

con 0 ∈ Ω, 1 < p < 3, f ∈ L1(ΩT ) una función positiva, u0 ∈ L1(Ω) y
λ > 0.

2 Organización del trabajo

En esta Sección explicaremos más espećıficamente la estructura y contenido
del trabajo.

Esta memoria está dividida en las siguientes tres partes:

PARTE I: Problemas eĺıpticos supercŕıticos con el polo en el interior del
dominio.

En esta primera parte estudiamos el efecto regularizante de algunas per-
turbaciones en el problema (1.3) con 0 ∈ Ω y p ≥ 1. Consideraremos el
problema con el operador Laplaciano y el p-Laplaciano. Uno de los re-
sultados más importantes de esta parte es el estudio de la simetŕıa de las
soluciones en el caso quasilineal, para ello utilizaremos el método del Moving
Plane.
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PARTE II: Problemas eĺıpticos supercŕıticos con el polo en la frontera
del dominio.

En esta segunda parte consideraremos el comportamiento del problema
(1.3) cuando 0 ∈ ∂Ω. Al igual que en la primera parte, estudiaremos este
problema con el operador Laplaciano y con el p-Laplaciano. En esta parte
queremos enfatizar en la influencia de la posición relativa del polo con res-
pecto al dominio para la existencia de solución.

PARTE III: Problemas parabólicos cŕıticos y supercŕıticos con respecto
al potencial de Hardy.

En esta última parte estudiamos el problema parabólico asociado a (1.3).
En el primer Caṕıtulo consideramos el caso 0 ∈ ∂Ω y en el segundo tratare-
mos de regularizar el problema si 0 ∈ Ω con un término que depende del
gradiente, evitando aśı la obstrución en la existencia de solución obtenida
en [32].

A continuación detallaremos el contenido de cada caṕıtulo de la memoria.

PARTE I: Problemas eĺıpticos supercŕıticos con el polo en el interior

del dominio.

• En el Caṕıtulo 3 estudiamos el problema supercŕıtico con el operador
Laplaciano y 0 ∈ Ω.

Más concretamente, vamos a considerar el siguiente problema











−∆u+ |∇u|2 = λ
up

|x|2
+ f, u ≥ 0 en Ω,

u = 0 en ∂Ω,
(1.15)

con λ > 0, p ≥ 1, f ∈ L1(Ω), f ≥ 0 y N ≥ 3.

Lo más destacable de este Caṕıtulo es que en el caso 1 < p < 2, en
contraposición al resultado de no existencia para el problema sin per-
turbar, probamos que el término gradiente regulariza el problema y es
posible hallar una solución para todo λ > 0. Nótese que para el caso
p ≥ 2 se puede obtener un resultado similar regularizando el problema
con el término |u|β−1u|∇u|2 siendo β > p− 2.

Los resultados de este Caṕıtulo pueden verse en la segunda parte de
[74].
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• En el Caṕıtulo 4 consideramos el problema supercŕıtico con el ope-
rador p-Laplaciano y 0 ∈ Ω.

En particular, estudiamos la existencia y las propiedades cualitativas
de las soluciones del problema











−∆pu+ |∇u|p = ϑ
uq

|x|p
+ f en Ω

u ≥ 0 en Ω, u = 0 en ∂Ω,
(1.16)

donde Ω es un dominio acotado en RN con N ≥ 3 y tal que 0 ∈ Ω,
ϑ > 0, p− 1 < q < p, f ≥ 0, f ∈ L1(Ω) y 1 < p < N .

La Sección 2 está dedicada a encontrar solución al problema (1.16).
La existencia de solución enfatiza el hecho de que el término |∇u|p en
el lado izquierdo de (1.16) es suficiente para obtener un resultado de
rotura de resonancia.

La Sección 3 se centra en las propiedades cualitativas de las solu-
ciones de (1.16), en particular probamos que, bajo ciertas condiciones
en el dominio y en el dato f , la soluciones de (1.16) son simétricas.
El argumento más importante utilizado en esta parte es el método del
Moving Plane, que puede encontrarse en [87].

Los resultados de este Caṕıtulo pueden verse en [72].

PARTE II: Problemas eĺıpticos supercŕıticos con el polo en la frontera

del dominio.

• En el Caṕıtulo 5 consideraremos el siguiente problema supercŕıtico
con el operador Laplaciano y con 0 ∈ ∂Ω;







−∆u =
up

|x|2
+ λuq, u ≥ 0 en Ω,

u = 0 en ∂Ω,
(1.17)

donde p > 1 , 0 ≤ q < 1, Ω ⊂ RN con N ≥ 3 y λ > 0 suficientemente
pequeño.

En este Caṕıtulo probaremos la existencia de solución u en W 1,2
0 (Ω)∩

L∞(Ω) para un intervalo de λ > 0 y sin ninguna restricción por arriba
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en el valor de p ni en la geometŕıa del dominio, en contraste con los
resultados obtenidos en [50].

La idea para la prueba del resultado de existencia es encontrar una
supersolución de (1.17) para un intervalo positivo de λ, y obtener una
subsolución para todo λ > 0. Probaremos que la supersolución y la
subsolución están ordenadas y consideraremos los problemas iterados.
Utilizando un principio de comparación obtendremos una sucesión aco-
tada y ordenada, de manera que podemos pasar al ĺımite y hallar una
solución en W 1,2

0 (Ω) al problema (1.17) para un intervalo de λ.

Los resultados de este Caṕıtulo pueden verse en la primera parte de
[74].

• En el Caṕıtulo 6 generalizamos el resultado del Caṕıtulo anterior
para el operador p-Laplaciano y también el resultado obtenido en [50],
considerando en este caso el problema con una función g(λ, x, u) en el
lado derecho de la ecuación, es decir,



















−∆pu =
uq

|x|p
+ g(λ, x, u) en Ω,

u ≥ 0 en Ω,

u = 0 en ∂Ω,

(1.18)

con 1 < p < N , q > p− 1 y 0 ∈ ∂Ω.

Este Caṕıtulo está organizado de la siguiente manera:

– En la Sección 2 estudiamos el caso g(λ, x, u) ≡ 0. En la primera
parte de la Sección, utilizando una identidad de Pohozaev obte-
nemos un resultado de no existencia para soluciones de enerǵıa
en dominios estrellados con respecto al 0. En la segunda parte de
esta Sección, probamos la existencia de soluciones de enerǵıa en
un tipo de dominios no estrellados utilizando un enfoque varia-
cional en una perturbación del funcional de enerǵıa asociado al
problema (1.18).

– En la Sección 3 consideramos el caso g(λ, x, u) = λf(x)ur en
el problema (1.18). Probamos la existencia de solución u en
W 1,p

0 (Ω) ∩ L∞(Ω) por el método de súper y subsolución. En
este caso, la existencia de solución no depende de la geometŕıa
del dominio en contraste con el caso anterior, g(λ, x, u) ≡ 0.

Los resultados de este Caṕıtulo pueden verse en [71].
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PARTE III: Problemas parabólicos cŕıticos y supercŕıticos con respecto

al potencial de Hardy.

• En el Caṕıtulo 7 estudiamos la variación del problema (1.3) en el
tiempo con 0 ∈ ∂Ω. En concreto, obtenemos un resultado de existencia
para el problema parabólico siguiente























ut −∆u = λ
up

|x|2
en ΩT ,

u > 0 en ΩT ,
u(x, 0) = u0(x) > 0 en Ω,

u = 0 en ∂Ω× (0, T ),

(1.19)

donde p ≥ 1 y Ω ⊂ RN es un dominio acotado con 0 ∈ ∂Ω.

El principal objetivo de este Caṕıtulo es mostrar la diferencia de com-
portamiento del problema (1.19) cuando 0 ∈ ∂Ω y cuando 0 ∈ Ω.

Más precisamente, el contenido de este Caṕıtulo es el siguiente:

– En la Sección 2 estudiamos el caso lineal, p = 1, encontrando
una única solución distribucional para todo λ > 0 y u0 ∈ L1(Ω).
Es decir, probamos que no hay un resultado del tipo Baras-
Goldstein si 0 ∈ ∂Ω.

– En la Sección 3 consideramos el caso supercŕıtico, p > 1. Probamos
que existe una única solución bajo ciertas condiciones en el dato
inicial.

– En la Sección 4 analizamos el caso supercŕıtico añadiendo un
término de reacción µuq, con 0 < q < 1. Probaremos la existencia
de solución para todo µ < µ0.

Los resultados de este Caṕıtulo pueden verse en [19].

• En el Caṕıtulo 8 estudiamos la existencia de solución del siguiente
problema supercŕıtico con 0 ∈ Ω,























ut −∆u+ u|∇u|2 = λ
up

|x|2
+ f en ΩT = Ω× (0, T ),

u ≥ 0 en ΩT ,
u(x, 0) = u0(x) > 0 en Ω,

u = 0 en ∂Ω× (0, T ),

(1.20)

donde Ω ⊂ RN con N ≥ 3, es un dominio acotado que contiene al
origen, 1 < p < 3 y f es una función medible no negativa.
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El principal objetivo de este Caṕıtulo es tener una condición en p
para obtener la existencia de solución del problema (1.20) para todo
f ∈ L1(ΩT ), u0 ∈ L1(Ω) y para todo λ > 0.

Probaremos por un argumento de aproximación que si p < 3, el
término de absorción u|∇u|2 tiene un efecto regularizante en la ecuación
y permite obtener un resultado de existencia.

Es importante notar que para p > 3 es suficiente incluir el término
|u|q−1u|∇u|2 con q > p− 2 para regularizar el problema.

Los resultados de este Caṕıtulo pueden verse en [1].

1Esta memoria ha estado parcialmente subvencionada con los proyectos MTM2007-

65018 y MTM2010-18128
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Chapter 2

Introduction

1 The Hardy potential: Presentation

Partial Differential Equations are a classic tool used to study models that
attempt to understand better the world. Many physical phenomena in the
nature are described by Partial Differential Equations and this study is
important in order to predict qualitative or quantitative behaviors and to
analyze observations. Nowadays, the application of this powerful tool has
been extended to study models in Biology, Finances and Technology.

In this work we will study elliptic and also parabolic problems involving
the Hardy-Leray potential. The Hardy-Leray potential is related to the
analytical expression, for instance, of the Heisenberg’s uncertainty principle
in QuantumMechanics, see for instance [56] and [21] among other references.
It also appears as a borderline example for regularity, existence of eigenvalues
and in the linearization of some supercritical semilinear elliptic problems.

It is worthy to point out that during the last 20 years, the influence of
a Hardy potential in the behavior of Elliptic and Parabolic Equations has
been widely studied in the literature, see for instance [20], [34], [33], [4], [5],
[6], [7], [8], [9], [11].

More precisely, we recall the following Hardy’s inequality can be stated
as follows

Theorem 4. (Hardy’s inequality). Assume that N ≥ 3, then

ΛN

∫

IRN

|φ|2

|x|2
dx ≤

∫

IRN

|∇φ|2dx, for all φ ∈ C∞
0 (RN ), (2.1)

where ΛN =
(

N−2
2

)2
is the optimal constant that is not reached in D1,2(RN ),

the closure of C∞
0 (RN ) respect to the L2-norm of the gradient.

Moreover, if Ω ∈ RN is a bounded domain such that 0 ∈ Ω, the same
conclusion holds in D1,2(Ω).

When 0 ∈ ∂Ω the inequality is different, for instance, the constant de-
pends on ∂Ω and its attainability on the geometry of the boundary ∂Ω in
a neighborhood of 0. See, for instance [55] and [39] and also [59], [60] for
related problems.
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A natural extension of the previous result is the corresponding Hardy’s
inequality to the homogeneous Sobolev space complection of the test func-
tions with respect to the Lp-norm of the gradient.

More precisely, we have the following Theorem.

Theorem 5. (Hardy’s inequality generalized). Suppose 1 < p < N and
u ∈ D1,p(RN ). Then, we have

ΛN,p

∫

RN

|u|p

|x|p
dx ≤

∫

RN

|∇u|pdx,

with ΛN,p =
(N − p

p

)p
the optimal constant which is not achieved.

If Ω ∈ RN is a bounded domain such that 0 ∈ Ω, the optimal constant is
the same and also is not attained on D1,p(Ω).

See [58] to find some applications for this inequality.

The fact that, in this case, the Euler equation is a quasilinear operator,
the so called p-Laplacian, −∆pu = −div(|∇u|p−2∇u), introduces non trivial
difficulties in the study of this general model.

Notice that the previous inequalities are an extreme particular case of
the following Theorem.

Theorem 6. (Caffarelli-Khon-Nirenberg’s inequality). Assume u ∈W 1,p
0 (Ω)

with 1 < p < N . Then, there exists a positive constant C = C(N, p, γ) such
that

(
∫

Ω
|u|p

∗(γ)|x|γdx

)1/p∗(γ)

≤ C

(
∫

Ω
|∇u|pdx

)1/p

, (2.2)

where p∗(γ) = p(N+γ)
N−p .

See [36] for the details.

Here, p∗(γ) is the critical exponent in the embedding of W 1,p
0 (Ω) in the

corresponding weighted Lebesgue space.

As a consequence, p∗(0) = p∗ is the classical critical Sobolev exponent
and p∗(−p) = p corresponds to the critical Hardy-Sobolev exponent.

The problems

In this memory we will study the solvability of some kind of supercritical
problems related to the Hardy’s inequalities above. More precisely, we study
the following elliptic and parabolic problems.
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Elliptic problems

We begin studying the problem



















−∆u =
up

|x|2
, u > 0 in Ω,

u = 0 on ∂Ω,

(2.3)

with p > 0, Ω ⊆ RN a bounded domain with smooth boundary and N ≥ 3.

One of the goals of this work is to emphasize the role of the relative
position of the pole with respect to the domain.

The previous results concerning existence of solution to problem (2.3)
can be summarize as follows:

• In the sub-linear case, 0 < p < 1, it is easy to prove solvability in
the framework of the finite energy solutions with independence of the
location of the pole respect to the domain, see [4].

• The linear case, p = 1, is also well understood, the solvability results
are studied in [31] with respect to the summability of the data. The
solvability of the linear case with a zero-order perturbation can be
found in [34].

If 0 ∈ ∂Ω, the problem has been studied in [55]. Setting

µ(Ω) = inf
{

∫

Ω
|∇φ|2 : φ ∈W 1,2

0 (Ω),

∫

Ω

φ2

|x|2
= 1
}

, (2.4)

the authors show that if µ(Ω) < µ(RN
+ ) =

N2

4
, then µ(Ω) is attained

and the associated linear equation has a positive solution. In the op-
posite case, µ(Ω) ≥ µ(RN

+ ), there is no solution to the linear problem.
Moreover, the authors give a geometrical condition in order to have
that µ(Ω) < N2

4 and then the attainability of the best constant, µ(Ω).

In this work we are going to focus mainly in the supercritical case, p > 1.

The semilinear problem,



















−∆u =
up

|x|2
, u > 0 in Ω,

u = 0 on ∂Ω,

(2.5)
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where 0 ∈ ∂Ω and p > 1, has been partially solved in [50] with a perturbative
argument involving the shape of the domain and under the hypothesis p <
N+2
N−2 . Moreover, in [50], using a Pohozaev argument, it is proved that in
a starshaped domain (with respect to 0) the problem has no solution of
finite energy. However, using an involved perturbative method, the authors
proved in the same paper that, if the domain has a suitable shape, then,
there exists a solution of finite energy.

• In this work we are going to consider the following supercritical semi-
linear problem, which is a perturbation of (2.5),



















−∆u =
up

|x|2
+ λg(u), u > 0 in Ω,

u = 0 on ∂Ω,

(2.6)

with λ > 0, p > 1, g(u) a sublinear term and 0 ∈ ∂Ω.

• In order to show the influence of the position of the pole with respect
to the domain in the solvability of the problem, we also consider the
problem assuming 0 ∈ Ω, where Ω ⊂ RN is a bounded domain and
p > 1.

It is known that if 0 ∈ Ω and u is a distributional solution to the
equation







−∆u = λ
up

|x|2
, in Ω,

u = 0 on ∂Ω,

(2.7)

it is necessary that u ≡ 0. This result can be seen in [32]. The proof
by Brezis-Cabré shows that there is a local obstruction in the existence
of solution.

In order to avoid this obstruction, in this work we will consider the
problem



















−∆u+ |∇u|2 = λ
up

|x|2
+ f, u > 0 in Ω,

u = 0 on ∂Ω,

(2.8)

with 0 ∈ Ω, 1 < p < 2, f ∈ L1(Ω) a positive function and λ > 0.

If p = 1 (the critical problem), an existence result has been obtained in
[9] for all λ > 0 and for all f ∈ L1(Ω). That is, some kind of breaking
of resonance is obtained for the critical case.
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• The next step in this work is to consider the following quasilinear
supercritical problem,



















−∆pu ≡ −div
(

|∇u|p−2∇u
)

=
uq

|x|p
, u > 0 in Ω,

u = 0 on ∂Ω,

(2.9)

with 0 ∈ ∂Ω and p∗ − 1 > q > p− 1. The p-Laplacian operator is not
a standard generalization of the Laplacian case, this operator is non
linear and we can not integrate twice by parts. Moreover, it can be
degenerate or singular in the critical set Zu = {x ∈ Ω : ∇u(x) = 0},
depending on if p > 2 or p < 2, respectively.

There is an extensive literature regarding existence of solutions for
problems involving the p-Laplacian operator with singular coefficients.
We refer for example to the (far from being complete) list of refer-
ences [3], [5], [6], [13], [37], [38], [41], [57], [58], [61], [58], [69], [80],
[81], [83], [84], [92] and to the bibliographies therein.

• In this work we are also going to focus in the study of a perturbation
of problem (2.9),



















−∆pu ≡ −div
(

|∇u|p−2∇u
)

=
uq

|x|p
+ λg(u), u > 0 in Ω,

u = 0 on ∂Ω,

(2.10)

with 0 ∈ ∂Ω, q > p − 1, λ > 0 and g(u) a sub-diffusive perturbation
in the following sense

lim
s→0

g(s)

sp−1
= ∞.

• As in the semilinear case, we will analyze the quasilinear problem with
some absorption term if 0 ∈ Ω,



















−∆pu+ |∇u|p = λ
uq

|x|p
+ f, u > 0 in Ω,

u = 0 on ∂Ω,

(2.11)

with 1 < p < N , q > p − 1, f ∈ L1(Ω) a positive function and λ > 0.
The existence of solution to problem (2.11) with q = p − 1 and the
exponent of the gradient term equal to q has been studied in [75].
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Another issue studied in this memory is some symmetry properties of
the solution to the problem (2.11).

The precedents for this kind of results with the p-Laplacian opera-
tor can be found in the references [46], [47], [48], [49], [73] and the
references therein. The main difficulty lies in the nonlinearity of the
principal part and in the implication of it in the strong comparison
result.

Parabolic problems

The heat equation with the Hardy-Leray potential, i.e, the problem























ut −∆u = λ
up

|x|2
in ΩT = Ω× (0, T ),

u > 0 in ΩT ,
u(x, 0) = u0(x) ≥ 0 in Ω,

u = 0 on ∂Ω× (0, T ),

(2.12)

has been studied in the case 0 ∈ Ω:

1. If p = 1, Baras-Goldstein in [20], proved that there exists a solution
to (2.12) for a positive interval of the parameter λ. More precisely, we
could summarize the results by Baras-Goldstein as follows

• If λ ≤ ΛN ≡
(N − 2

2

)2
, problem (2.12), with p = 1 and a data

f in the right hand side, has a unique global solution if

∫

Ω
|x|−α1u0(x) dx <∞ and

∫ T

0

∫

Ω
|x|−α1f dx dt <∞,

with α1 the smallest root of α2 − (N − 2)α+ λ = 0.

• If λ > ΛN , problem (2.12) with p = 1 has no (even local distri-
butional) solution for u0 ≥ 0.

Such spectral-dependent type of results are deeply associated to prob-
lems with the same principal part. See, for instance, [10], [11].

2. If p > 1, a strong local nonexistence result for solutions in a distribu-
tional sense was proved by Brezis-Cabré in [32].

• In this work we will try to obtain existence results when the pole is
on the boundary of the domain, 0 ∈ ∂Ω. We will study the evolution
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problem associated to (2.5), that is, the following parabolic problem























ut −∆u = λ
up

|x|2
in ΩT = Ω× (0, T ),

u > 0 in ΩT ,
u(x, 0) = u0(x) ≥ 0 in Ω,

u = 0 on ∂Ω× (0, T ).

(2.13)

We consider the critical and supercritical parabolic problems with 0 ∈
∂Ω, that is, p = 1 and p > 1 respectively.

• The last topic of this memory we study problem (2.13) with 0 ∈ Ω and
with some regularization term in the left hand side of the equation.
That is, we analyze the existence of a solution for the following problem






















ut −∆u+ u|∇u|2 = λ
up

|x|2
+ f in ΩT = Ω× (0, T ),

u > 0 in ΩT ,
u(x, 0) = u0(x) in Ω,

u = 0 on ∂Ω× (0, T ),

(2.14)

with 0 ∈ Ω, 1 < p < 3, f ∈ L1(ΩT ) a positive function, u0 ∈ L1(Ω)
and λ > 0.

The critical case p = 1 has been studied in [12].

2 Organization of the work

We have already described the different subjects studied in this work and
in this Section we are going to explain more specifically the organization of
the work.

This memory is divided in the following three parts:

PART I: Supercritical elliptic problems with the pole inside the domain.

In this part we study the regularizing effect of some perturbations in
problem (2.3) with 0 ∈ Ω and p ≥ 1. We consider the problem with the
Laplace operator and also with the p-Laplace operator. One of the main
results is the study of symmetry properties of the solutions in the quasilinear
case. In this Part we use the Moving Plane Method which in the context of
the p-Laplacian operator is quite involved.

PART II: Supercritical elliptic problems with the pole at the boundary
of the domain.

In this part we focus on the behavior of (2.3) when 0 ∈ ∂Ω. We study the
problem with the Laplace operator and with the p-Laplace operator. This
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Part emphasizes the influence of the relative position of the pole respect to
the domain in the existence of solution.

PART III: Critical and supercritical parabolic problems with respect to
the Hardy potential.

In this last Part we study some parabolic problems associated to (2.3).
In the first Chapter we consider the case 0 ∈ ∂Ω and in the second one
we try to regularize the problem with a term dependent on the gradient in
order to avoid the local obstruction obtained in [32] if 0 ∈ Ω.

We proceed to give some details of each Chapter of this work.

PART I: Supercritical elliptic problems with the pole inside the domain.

• InChapter 3 we study a supercritical elliptic problem with the Laplace
operator as the main operator and 0 ∈ Ω.

More precisely, we are going to consider the following problem










−∆u+ |∇u|2 = λ
up

|x|2
+ f, u ≥ 0 in Ω,

u = 0 on ∂Ω,
(2.15)

where λ > 0, p ≥ 1, f ∈ L1(Ω), f ≥ 0 and N ≥ 3.

The main feature in this Chapter is that if 1 < p < 2, despite the lo-
cal obstruction in the unperturbed problem, we prove that the square
of the gradient regularizes the problem and we are able to obtain a
solution for all λ > 0. This absorption term breaks down the lack of
solvability killing the local obstruction in the existence when 0 ∈ Ω.
Notice that for p ≥ 2, we can obtain a similar result regularizing the
problem with the term |u|β−1u|∇u|2, being β > p− 2.

This result can be seen in the second part of [74].

• In Chapter 4 we study the supercritical problem with the p-Laplace
operator and 0 ∈ Ω.

In particular, we study the existence and qualitative properties of the
solutions to the problem











−∆pu+ |∇u|p = ϑ
uq

|x|p
+ f in Ω,

u ≥ 0 in Ω, u = 0 on ∂Ω,
(2.16)
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where Ω is a bounded domain in RN with N ≥ 3 and such that 0 ∈ Ω,
ϑ > 0, p− 1 < q < p, f ≥ 0, f ∈ L1(Ω) and 1 < p < N .

Section 2 is dedicated to find a solution to (2.16). The existence of
solution emphasizes the fact that the term |∇u|p on the left hand side
of (2.16) is enough to get a resonance breaking result.

In Section 3 we focus in the qualitative properties of the weak solu-
tions to (2.16). In particular, we prove that, under some assumptions
in the domain and in the data f , the solutions to (2.16) are symmet-
ric. The main important tool of this part is the Moving Plane Method,
that can be found in [87].

These results can be seen in [72].

PART II: Supercritical elliptic problems with the pole at the boundary

of the domain.

• In Chapter 5 we are going to consider the following supercritical
problem with the Laplacian operator and 0 ∈ ∂Ω;







−∆u =
up

|x|2
+ λuq, u ≥ 0 in Ω,

u = 0 on ∂Ω,
(2.17)

where p > 1 , 0 ≤ q < 1, Ω ⊂ RN with N ≥ 3 and λ > 0 small enough.

We prove the existence of solution u inW 1,2
0 (Ω)∩L∞(Ω) for an interval

of λ > 0 and without any restriction of the domain, in contrast with
the previous results in [50] and without any condition from above on
the value of p.

The main idea of this Chapter is to find a supersolution to (2.17) for
an interval of λ and get a subsolution for all λ > 0. We prove that
the supersolution and the subsolution are ordered and we consider the
iterative problems. Using a comparison argument we get that the se-
quence of solutions of the iterative problems is bounded and is also
ordered. Then, we are able to pass to the limit and to get a solution
in W 1,2

0 (Ω) to (2.17) for a positive interval of λ.

This result can be seen in the first part of [74].

• In Chapter 6 we generalize the result of the previous Chapter for
the p-Laplace operator and also the result in [50], being in this case
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the problem with a function g(λ, x, u) in the right hand side of the
equation, that is



















−∆pu =
uq

|x|p
+ g(λ, x, u) in Ω,

u ≥ 0 in Ω,

u = 0 on ∂Ω,

(2.18)

with 1 < p < N , q > p− 1 and 0 ∈ ∂Ω.

This Chapter is organized as follows:

– In Section 2 we study the case g(λ, x, u) ≡ 0. First, by a Po-
hozaev’s identity we deduce a nonexistence result of energy so-
lutions in starshaped domains. Subsequently, we prove the exis-
tence of an energy solution for a convenient non-starshaped do-
main using a variational approach to a functional which is a per-
turbation of the standard energy functional associated to (2.18).

– In Section 3 we deal with the term g(λ, x, u) = λf(x)ur. We
show the existence of a solution u in W 1,p

0 (Ω) ∩ L∞(Ω) by the
method of super- and subsolutions. In this case, the existence of
solution does not depend on the geometry of the domain in con-
trast with the case g(λ, x, u) ≡ 0. Moreover, we characterize the
minimality of the solution and some other comments are given.

This result can be seen in [71].

PART III: Critical and supercritical parabolic problems with respect to

the Hardy potential.

• In Chapter 7 we study the variation of the problem (2.3) on time,
the parabolic case with 0 ∈ ∂Ω. The aim of this Chapter is to discuss
the existence of solution to the following parabolic problem























ut −∆u = λ
up

|x|2
in ΩT ,

u > 0 in ΩT ,
u(x, 0) = u0(x) > 0 in Ω,

u = 0 on ∂Ω× (0, T ),

(2.19)

where p ≥ 1 and Ω ⊂ RN is a bounded domain with N ≥ 3 and
0 ∈ ∂Ω.
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The main goal in this Chapter is to show that the behavior of problem
(2.19) when 0 ∈ ∂Ω is essentially different from the one obtained when
0 ∈ Ω.

More precisely, the main new features in this Chapter are the following:

– In Section 2 we study the linear case, p = 1, finding a unique
distributional solution for all λ > 0 and u0 ∈ L1(Ω). That is, we
prove that there is no a Baras-Goldstein type result if 0 ∈ ∂Ω.

– In Section 3 we study the supercritical case, p > 1. We prove
that there exists a unique solution under some condition on the
initial data.

– In Section 4 we analyze the supercritical parabolic problem
adding a concave reaction term µuq, with 0 < q < 1. We prove
the existence of a solution for all µ < µ0.

This result can be seen in [19].

• In Chapter 8 we discuss the existence of solution to the following
supercritical parabolic problem























ut −∆u+ u|∇u|2 = λ
up

|x|2
+ f in ΩT = Ω× (0, T ),

u ≥ 0 in ΩT ,
u(x, 0) = u0(x) > 0 in Ω

u = 0 on ∂Ω× (0, T ),

(2.20)

where Ω ⊂ RN , with N ≥ 3, is a bounded domain that contains the
origin, 0 ∈ Ω, 1 < p < 3 and f is a measurable nonnegative function.

The main objective is to get a natural condition on p in order to obtain
the existence of a solution to problem (2.20) for all f ∈ L1(ΩT ), u0 ∈
L1(Ω) and for all λ > 0.

We prove by an approximation argument that if p < 3, the absorption
term u|∇u|2 has a “regularizing” effect on the equation and allows us
to get the existence of a solution for the largest possible class of data
f, u0 and for all λ > 0.

It is worthy to point out that, for p > 3, it is sufficient to regularize
the problem with a quasilinear term of the form |u|q−1u|∇u|2 with
q > p− 2.

This result can be seen in [1].

2This memory has been partially supported by the proyects MTM2007-65018 and

MTM2010-18128
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Chapter 3

Regularization of a first order term in the

semilinear model

1 Introduction

In this Chapter we are going to consider the solvability of the following
problem



















−∆u =
up

|x|2
, u > 0 in Ω,

u = 0 on ∂Ω,

(3.1)

with p ≥ 1, Ω ∈ RN a bounded domain and N ≥ 3.

The behavior of the problem depends deeply on the situation of the pole
with respect to Ω:

• It is clear that if 0 ∈ RN \ Ω and p <
N + 2

N − 2
the problem has a

positive solution by the classical Mountain Pass Theorem introduced
by Ambrosetti and Rabinowitz in [16].

• In contrast, if 0 ∈ Ω and p > 1, problem (3.1) has no solution, even in
the weakest sense of distributional solution.

Actually, (3.1) has no weak supersolution even locally, for a detailed
proof see [32].

Notice that to prove a nonexistence result for (3.1) in the sense of
the energy solutions it is sufficient to argue by contradiction using the
following Picone’s inequality. In this way we get a contradiction with
the Hardy’s inequality.

Theorem 7. (Picone’s inequality) Assume u ∈ W 1,2
0 (Ω), u ≥ 0 and

v ∈ W 1,2
0 (Ω), −∆v ≥ 0 is a bounded Radon measure, v|∂Ω = 0, v ≥ 0

and not identically zero, then

∫

Ω
|∇u|2dx ≥

∫

Ω

( |u|2

v

)

(−∆v)dx.
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See [5] for the details of this Theorem.

• The intermediate case, 0 ∈ ∂Ω, has an extreme behavior and it will be
considered in the second Part of this work.

The main result of this Chapter is to study the effect of a first order absorp-
tion term in the solvability of the problem (3.1) in the case 0 ∈ Ω, that is,
we will study the following problem











−∆u+ |∇u|2 = λ
up

|x|2
+ f, u ≥ 0 in Ω,

u = 0 on ∂Ω,
(3.2)

if 1 ≤ p < 2, λ > 0 and f ∈ L1(Ω). To be precise, in Section 2 we are
going to prove the existence of a solution to problem (3.2) and, as in the
case p = 1 in [9], we will be able to obtain a solution to the problem for all
λ > 0.

The techniques used are: i) study the existence of solution to some
approximated problems; ii) get a priori estimates and iii) pass to the limit.

In order to make easier the calculations, we first consider the case f ∈
Lm(Ω), with m > N

2 and then we pass to the limit.

In the last Sections of this Chapter we study some further results, for
instance, the case p = 2 and p ≥ 2 and the problem with a general exponent
q for the gradient. In fact, in Chapter 8 of this memory, we will study
carefully the existence of solutions to the parabolic problem associated to
the case p ≥ 2.

In this Chapter we are looking for solutions in the sense of the following
definition.

Definition 1. Let u ∈ W 1,2
0 (Ω). We say that u is an energy solution to

problem (3.2) if

∫

Ω
< ∇u,∇φ > +

∫

Ω
|∇u|2φ = λ

∫

Ω

up

|x|2
φ+

∫

Ω
fφ ∀φ ∈W 1,2

0 (Ω)∩L∞(Ω).

We recall also the well known definition of a truncated function and the
positive and negative part of a function.

Definition 2. For a measurable function u, consider the k-truncation of u
defined as

Tk(u) =







u if |u| < k;

k
u

|u|
if |u| ≥ k.

(3.3)
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Definition 3. We denote f+ the positive part of the function f as f+ =
max{f, 0}. We denote f− the negative part of the function f as f− =
min{f, 0}.

All the results of this Chapter can be seen in the second part of the paper
[74].

2 Existence result with 1 ≤ p < 2

The main existence result of this Section is the following.

Theorem 8. Consider the problem











−∆u+ |∇u|2 = λ
up

|x|2
+ f, u ≥ 0 in Ω,

u = 0 on ∂Ω,
(3.4)

with 1 ≤ p < 2 and assume that f ∈ L1(Ω) is a positive function, then for
all λ > 0 there exists a positive weak solution u ∈W 1,2

0 (Ω).

To prove Theorem 8 we proceed step by step. First we prove the result

considering the data f ∈ Lm(Ω) with m >
N

2
and then, the general case,

f ∈ L1(Ω), follows approximating the datum.

2.1 Existence result with f ∈ Lm(Ω)

We consider first the truncated problem and we are going to find solution
for this problem with a positive data f ∈ Lm(Ω).

Theorem 9. Assume 1 ≤ p < 2 and f ∈ Lm(Ω), m > N
2 , then, there exists

a positive solution to the problem















−∆uk + |∇uk|
2 = λ

Tk(u
p
k)

|x|2 + 1
k

+ f, in Ω,

uk = 0 on ∂Ω,

uk ∈ W 1,2
0 (Ω) ∩ L∞(Ω) and uk > 0.

(3.5)

Proof.

Since f ≥ 0, φ ≡ 0 is a subsolution to problem (3.5).
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Consider the function ψ the solution to
{

−∆ψ = λk
|x|2+ 1

k

+ f x ∈ Ω,

ψ = 0 x ∈ ∂Ω,

therefore, ψ is a supersolution to (3.5).

To prove Theorem 9 we consider a sequence of approximated problems
that we solve by iteration and using a convenient comparison argument. We
take as starting point w0 = 0 and we consider iteratively the problem,



















−∆wn +
|∇wn|

2

1 + 1
n |∇wn|2

= λ
Tk(w

p
n−1)

|x|2 + 1
k

+ f in Ω,

wn = 0 on ∂Ω, wn ∈W 1,2
0 (Ω) ∩ L∞(Ω),

wn > 0.

(3.6)

Proposition 1. There exists wn ∈W 1,2
0 (Ω) ∩ L∞(Ω) solution to (3.6).

Moreover, 0 ≤ wn ≤ ψ ∀n ∈ N.

Proof. Let us consider the problem:

−∆wn + g(x,wn,∇wn) = 0, (3.7)

where

g(x,wn,∇wn) =























− λk
|x|2+ 1

k

− f if wn ≥ ψ,

|∇wn|p

1+ 1
n
|∇wn|p

− λ
Tk(w

p
n−1)

|x|2 + 1
k

− f if 0 ≤ wn < ψ,

−f if wn ≤ 0.

(3.8)
Using the Leray-Lions arguments, see it in [68], we can find solutions to the
approximated problem (3.7) for each n and by classical regularity results
such solution wn belongs to W 1,2

0 (Ω) ∩ L∞(Ω).

We are going to show that wn ≥ 0. Since φ ≡ 0 is a subsolution of (3.7)
and wn is a solution we have

−∆wn + g(x,wn,∇wn) + f ≥ 0.

Using −(w−
n ) as a test function in the last expression, one has

−

∫

Ω
∇wn · ∇w−

n dx−

∫

Ω

(

g(x,wn,∇wn) + f
)

(w−
n )dx ≥ 0.

We define the following set,

R = {x : x ∈ Ω : wn ≤ 0},
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therefore,

−

∫

Ω
∇wn · ∇w−

n dx−

∫

R

(

g(x,wn,∇wn)− f
)

(w−
n )dx ≥ 0.

Taking into account (3.8), g(x,wn,∇wn) = f in R, then,

−

∫

Ω
|∇w−

n |
2dx ≥ 0.

Hence, we conclude that wn ≥ 0.

We want to prove now wn ≤ ψ.

Since ψ and wn are respectively a supersolution and a solution of (3.7),
we have

−∆wn +∆ψ + g(x,wn,∇wn)− g(x, ψ,∇ψ) ≤ 0.

Using TM ([wn−ψ]
+) withM > 0 as a test function in the last expression

it follows
∫

Ω
|∇TM (wn − ψ)+|2dx

+

∫

Ω

(

g(x,wn,∇wn) +
λk

|x|2 + 1
k

+ f
)

TM ([wn − ψ]+)dx ≤ 0.

We define the following sets,

R = {x : x ∈ Ω : ψ ≤ wn},

RM = {x : x ∈ Ω : 0 ≤ wn − ψ ≤M}.

Thus,
TM ([wn − ψ]+) = 0 if x ∈ Ω−R or w−

n = 0

and
∇TM([wn − ψ]+) = 0 if x ∈ Ω−RM or w−

n = 0.

Therefore,

∫

RM

|∇TM (wn − ψ)+|2dx

−

∫

R

(

g(x,wn,∇wn) +
λk

|x|2 + 1
k

+ f
)

TM ([wn − ψ]+)dx ≤ 0.

By (3.8), we get
∫

RM

|∇(wn − ψ)+|2dx ≤ 0 ∀M ∈ R+.

Therefore, wn ≤ ψ and we conclude. �
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2.2 Convergence of wn in W
1,2
0 (Ω)

i) Weak convergence of wn to uk in W 1,2
0 (Ω)

For simplicity of typing, we are going to call Hn(∇wn) =
|∇wn|

2

1 + 1
n |∇wn|2

.

Taking wn as a test function in the approximated problems (3.6), we
obtain

∫

Ω
|∇wn|

2dx+

∫

Ω
Hn(∇wn)wndx = λ

∫

Ω

Tk(w
p
n−1)

|x|2 + 1
k

wndx+

∫

Ω
fwndx

≤ λ

∫

Ω
k

wn

|x|2 + 1
k

dx+

∫

Ω
fwndx ≤ λ

∫

Ω
k

ψ

|x|2 + 1
k

dx+

∫

Ω
fψdx.

That is,

∫

Ω
|∇wn|

2dx+

∫

Ω
Hn(∇wn)wndx ≤ C(k, f,Ω).

Since
∫

Ω
Hn(∇wn)wndx ≥ 0,

∫

Ω
|∇wn|

2dx ≤ C(k, f,Ω).

Therefore, up to a subsequence, wn ⇀ uk weakly in W 1,2
0 (Ω).

Since ||wn||L∞(Ω) ≤ C,

∫

Ω
wnϕdx =

∫

Ω
ukϕdx for ϕ ∈ L1(Ω)

and then, wn ⇀ uk weakly-* in L∞(Ω), hence, uk ∈W 1,2
0 (Ω)∩L∞(Ω).

ii) Strong convergence of wn to uk in W 1,2
0 (Ω)

We want to prove that wn → uk strongly in W 1,2
0 (Ω) to conclude that

uk solves the truncated problem (3.5).

Consider the function φ(s) = se
1
4
s2 which verifies φ′(s) − |φ(s)| ≥ 1

2 .
Taking φ(wn − uk) as a test function in (3.6) we get

∫

Ω
∇wnφ

′(wn − uk)∇(wn − uk)dx+

∫

Ω
Hn(∇wn)φ(wn − uk)dx

= λ

∫

Ω

Tk(w
p
n−1)

|x|2 + 1
k

φ(wn − uk)dx+

∫

Ω
fφ(wn − uk)dx.
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Notice that
∫

Ω
∇wnφ

′(wn − uk)∇(wn − uk)dx−

∫

Ω
∇ukφ

′(wn − uk)∇(wn − uk)dx

=

∫

Ω
φ′(wn − uk)|∇(wn − uk)|

2dx,

then, the first term on the left hand side can be estimated as follows:

∫

Ω
∇wnφ

′(wn − uk)∇(wn − uk)dx

=

∫

Ω
φ′(wn − uk)|∇(wn − uk)|

2dx+

∫

Ω
∇ukφ

′(wn − uk)∇(wn − uk)dx

=

∫

Ω
φ′(wn − uk)|∇(wn − uk)|

2dx+

∫

Ω
∇ukφ

′(wn − uk)∇wndx

−

∫

Ω
∇ukφ

′(wn − uk)∇ukdx.

Since wn ⇀ uk weakly in W 1,2
0 (Ω),

∫

Ω
∇wnφ

′(wn − uk)∇(wn − uk)dx

=

∫

Ω
φ′(wn − uk)|∇(wn − uk)|

2dx+

∫

Ω
|∇uk|

2φ′(wn − uk)dx

−

∫

Ω
|∇uk|

2φ′(wn − uk)dx.

Therefore,

∫

Ω
∇wnφ

′(wn−uk)∇(wn−uk)dx =

∫

Ω
|∇(wn−uk)|

2φ′(wn−uk)dx+o(1).

For the second term on the left hand side we have

∫

Ω
Hn(∇wn)φ(wn − uk)dx ≤

∫

Ω
|∇wn|

2|φ(wn − uk)|dx

=

∫

Ω
|∇wn −∇uk|

2|φ(wn − uk)|dx−

∫

Ω
|∇uk|

2|φ(wn − uk)|dx

+ 2

∫

Ω
∇wn∇uk|φ(wn − uk)|dx.

Since wn ⇀ uk in W 1,2
0 (Ω) and |φ(wn − uk)| → 0 almost everywhere,

we obtain
∫

Ω
|∇uk|

2|φ(wn − uk)|dx→ 0 as n→ ∞
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and also by the weak convergence,
∫

Ω
∇wn∇ukφ(wn − uk)dx→ 0 as n→ ∞.

Then, passing to the limit as n→ ∞, we have the following estimation,
∫

Ω
Hn(∇wn)φ(wn − uk)dx ≤

∫

Ω
|∇wn −∇uk|

2|φ(wn − uk)|dx+ o(1).

Notice that

λ

∫

Ω

Tk(w
p
n−1)

|x|2 + 1
n

φ(wn − uk)dx+

∫

Ω
fφ(wn − uk)dx

go to zero as n→ ∞.

Hence,
∫

Ω
|∇(wn−uk)|

2φ′(wn−uk)dx−

∫

Ω
|∇(wn−uk)|

2φ(wn−uk)dx+ o(1)

≤

∫

Ω
∇wnφ

′(wn−uk)∇(wn−uk)dx+

∫

Ω
Hn(∇wn)φ(wn−uk)dx ≤ o(1)

and, since φ′(s)− |φ(s)| > 1
2 we conclude that

1

2

∫

Ω
|∇wn −∇uk|

2dx

≤

∫

Ω
(φ′(wn − uk)− |φ(wn − uk)|)|∇wn −∇uk|

2dx ≤ o(1),

whence, wn → uk in W 1,2
0 (Ω). In particular, up to a subsequence,

Hn(∇wn) → |∇uk|
2 a.e. in Ω and since wn → uk in W 1,2

0 (Ω), the
equi-integrability follows, therefore, by Vitali’s Theorem,

Hn(∇wn) → |∇uk|
2 in L1(Ω).

Since −∆wn → −∆uk in the sense of distributions, we conclude that
uk satisfies the problem



















−∆uk + |∇uk|
2 = λ

Tk(u
p
k)

|x|2 + 1
k

+ f in Ω,

uk = 0 on ∂Ω,

uk ∈W 1,2
0 (Ω) ∩ L∞(Ω) and uk > 0.

(3.9)

�
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2.3 Pass to the limit when k → ∞

In this Subsection we are going to study the convergence of the solutions to
the truncated problem, uk, to the solution u, in this way we will be able to
prove the following result.

Theorem 10. Consider 1 ≤ p < 2 and assume that f ∈ Lm(Ω), m > N
2 ,

is a positive function, then, for all λ > 0, there exists a positive solution
u ∈W 1,2

0 (Ω) to problem (3.4).

Proof. We need to analyze the convergence of {uk}, the solutions to
problems (3.9).

i) Weak convergence of {uk} to u in W 1,2
0 (Ω).

Since {uk} ∈ W 1,2
0 (Ω) ∩ L∞(Ω), we can use uk as a test function in

the truncated problem (3.9). It follows that

∫

Ω
|∇uk|

2dx+
4

9

∫

Ω
|∇u

3
2
k |

2dx ≤ λ

∫

Ω

up+1
k

|x|2
dx+

∫

Ω
fukdx. (3.10)

Using Hölder’s and Hardy-Leray’s inequalities we obtain that

∫

Ω

up+1
k

|x|2
dx ≤

(

∫

Ω

u3k
|x|2

dx
)

p+1
3
(

∫

Ω

dx

|x|2

)
2−p
3

≤ CΛ
− p+1

3
N

(

∫

Ω
|∇u

3
2
k |

2dx
)

p+1
3
.

Therefore, since p < 2, we obtain that for all ε > 0 there exists Cε =
Cε(p,N) > 0 such that

(

∫

Ω
|∇u

3
2
k |

2dx
)

p+1
3

≤ ε

∫

Ω
|∇u

3
2
k |

2dx+ Cε. (3.11)

On the other hand, setting m′ = 1−
1

m
,

∫

Ω
fukdx ≤ ||f ||Lm(Ω)||uk||Lm′ (Ω)

≤ ||f ||Lm(Ω)

(

(

∫

Ω
u2

∗

k dx
)

m′

2∗ |Ω|1−
m′

2∗

)
1
m′
.

Therefore, using Sobolev’s inequality, we get

∫

Ω
fukdx ≤ S

(

∫

Ω
|∇uk|

2dx
)

1
2
|Ω|

1
m′ −

1
2∗ ||f ||Lm(Ω).
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Thus, for all ε > 0 there exists Dε = Dε(m,N,Ω, f) such that

(

∫

Ω
|∇uk|

2dx
)

1
2
≤ ε

∫

Ω
|∇uk|

2dx+Dε. (3.12)

Hence, for a suitable small ε, from (3.10), (3.11), (3.12) we find a
positive A such that,

∫

Ω
|∇uk|

2dx ≤ A and

∫

Ω
|∇u

3
2
k |

2dx ≤ A.

Then, up to a subsequence,

uk ⇀ u and u
3
2
k ⇀ u

3
2 weakly in W 1,2

0 (Ω) and a.e.

In order to prove that u solves the problem (3.4) we proceed showing
that the truncated terms converge strongly in L1(Ω).

ii) Strong convergence in L1(Ω) of the Hardy truncated potential.

We deal with the truncation of the Hardy potential,
∫

Ω

Tk(u
p
k)

|x|2 + 1
k

dx ≤

∫

Ω

upk
|x|2

dx ≤
(

∫

Ω

u2k
|x|2

dx
)

p
2
(

∫

Ω

1

|x|2
dx
)

2−p
2
.

Since p < 2 and thanks to the estimation of the gradient of uk,

∫

Ω

Tk(u
p
k)

|x|2 + 1
k

dx ≤ C
(

∫

Ω
|∇uk|

2
)

p
2
dx ≤ C.

It follows that
Tk(u

p
k)

|x|2 + 1
k

is bounded in L1(Ω) and converges almost

everywhere to
up

|x|2
. In particular, by Fatou’s lemma,

up

|x|2
∈ L1(Ω).

To complete the proof we need to check the equi-integrability of the
term.

Let E ⊂ Ω be a measurable set, then, as above, we have
∫

E

Tk(u
p
k)

|x|2 + 1
k

dx ≤

∫

E

upk
|x|2

dx ≤
(

∫

E

u2k
|x|2

dx
)

p
2
(

∫

E

1

|x|2
dx
)

2−p
2

≤ C
(

∫

E

1

|x|2
dx
)

2−p
2
,

where C is a positive constant independent of k.

The term
∫

E
1

|x|2
dx is going smaller if |E| is small, hence, by the abso-

lutely continuity of the integral we can use Vitali’s Theorem to obtain

Tk(u
p
k)

|x|2 + 1
k

→
up

|x|2
in L1(Ω).
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iii) Strong convergence in L1(Ω) of the square of the gradient.

We need to prove also that |∇uk|
2 → |∇u|2 in L1(Ω).

To obtain this convergence we need some previous results concerning
the truncated gradient term.

Lemma 1. Let uk be defined by (3.9). Then,

lim
n→∞

∫

{uk≥n}
|∇uk|

2dx = 0 (3.13)

uniformly on k.

Proof. Consider the function Gn(s) = s − Tn(s) and ψn−1(s) =
T1(Gn−1(s)). Notice that, ψn−1(uk)|∇uk|

2 ≥ |∇uk|
2
χ{uk≥n}.

Using ψn−1(uk) as a test function in (3.9), we obtain
∫

{uk≥n}
|∇uk|

2dx

≤

∫

Ω
|∇ψn−1(uk)|

2dx+

∫

Ω
ψn−1(uk)|∇uk|

2dx

=

∫

Ω
λ
Tk(u

p
k)

|x|2 + 1
k

ψn−1(uk)dx+

∫

Ω
ψn−1(uk)fdx.

Since {uk} is uniformly bounded in W 1,2
0 (Ω), then, by Rellich Theo-

rem, up to a subsequence, {uk} strongly converges in Lp(Ω), ∀p < 2∗

and almost everywhere. As a consequence,

∫

{n−1<uk<n}
ukdx ≤

1

n− 1

∫

Ω
u2kdx ≤

C

n− 1

and
∫

{uk>n}
ukdx ≤

1

n

∫

Ω
u2kdx ≤

C

n
.

Therefore,

|{x ∈ Ω : n− 1 < uk(x) < n}| → 0,

|{x ∈ Ω : uk(x) > n}| → 0, uniformly on k as n→ ∞.

Thus,

∫

{uk≥n}
|∇uk|

2dx ≤ ψpλ

∫

{uk≥n−1}
ψn−1(uk)dx+

∫

{uk≥n−1}
fψn−1(uk)dx

≤ C

∫

{uk≥n−1}
ukdx+ ||f ||

L
N
2 (Ω

(

∫

{uk≥n}
u

N
N−2

k dx
)

N−2
N
.
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Then, we have

lim
n→∞

∫

{uk≥n}
|∇uk|

2dx = 0 uniformly on k. (3.14)

�

Lemma 2. Consider uk ⇀ u in W 1,2
0 (Ω) as above. Then

Tn(uk) → Tn(u) in W 1,2
0 (Ω).

Proof. Consider the functions Gn(s) = s − Tn(s) and φ(s) = se
1
4
s2

which verifies

φ′(s)− |φ(s)| ≥
1

2
.

Take φ(Tn(uk)− Tn(u)) as a test function in (3.9),

∫

Ω
∇ukφ

′(Tn(uk)− Tn(u))∇(Tn(uk)− Tn(u))dx

+

∫

Ω
|∇uk|

2φ(Tn(uk)− Tn(u))dx

=

∫

Ω
(λ

Tk(u
p
k)

|x|2 + 1
k

+ f)φ(Tn(uk)− Tn(u))dx.

To estimate the first term on the left hand side we proceed as follows,

∫

Ω
∇ukφ

′(Tn(uk)− Tn(u))∇(Tn(uk)− Tn(u))dx

=

∫

Ω
∇Tn(uk)φ

′(Tn(uk)− Tn(u))∇(Tn(uk)− Tn(u))dx

+

∫

Ω
∇Gn(uk)φ

′(Tn(uk)− Tn(u))∇(Tn(uk)− Tn(u))dx

=

∫

Ω
|∇Tn(uk)−∇Tn(u)|

2φ′(Tn(uk)− Tn(u))dx

+

∫

Ω
∇Tn(u)φ

′(Tn(uk)− Tn(u))∇(Tn(uk)− Tn(u))dx

+

∫

Ω
∇Gn(uk)φ

′(Tn(uk)− Tn(u))∇Tn(uk)dx

−

∫

Ω
∇Gn(uk)φ

′(Tn(uk)− Tn(u))∇Tn(u)dx.
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Since the supports of ∇Gn(uk) and ∇Tn(uk) are disjoint and the ones
of ∇Gn(uk) and ∇Tn(u) are almost disjoint, we get

∫

Ω
∇Gn(uk)φ

′(Tn(uk)− Tn(u))∇Tn(uk)dx = 0

=

∫

Ω
∇Gn(uk)φ

′(Tn(uk)− Tn(u))∇Tn(u)dx.

On the other hand, since Tn(uk)⇀ Tn(u) weakly inW 1,2
0 (Ω),∇Tn(uk)⇀

∇Tn(u) in L
2(Ω) and

∫

Ω
∇Tn(u)φ

′(Tn(uk)− Tn(u))∇(Tn(uk)− Tn(u))dx

=

∫

Ω
∇Tn(u)φ

′(Tn(uk)− Tn(u))∇Tn(uk)dx

−

∫

Ω
|∇Tn(u)|

2φ′(Tn(uk)− Tn(u))dx.

Thus,
∫

Ω
∇Tn(u)φ

′(Tn(uk)− Tn(u))∇(Tn(uk)− Tn(u))dx → 0, as k → ∞.

Therefore,
∫

Ω
∇ukφ

′(Tn(uk)− Tn(u))∇(Tn(uk)− Tn(u))dx

=

∫

Ω
|∇(Tn(uk)− Tn(u))|

2φ′(Tn(uk)− Tn(u))dx + o(1).

Notice that we have φ(Tn(uk)− Tn(u))χ{uk≥n}
= 0 and

∫

Ω
|∇uk|

2φ(Tn(uk)− Tn(u))dx =

∫

{uk≤n}
|∇uk|

2φ(Tn(uk)− Tn(u))dx

+

∫

{uk≥n}
|∇uk|

2φ(Tn(uk)− Tn(u))dx.

Therefore,
∫

Ω
|∇uk|

2φ(Tn(uk)− Tn(u))dx =

∫

Ω
|∇Tn(uk)|

2|φ(Tn(uk)− Tn(u))|dx

=

∫

Ω
|∇Tn(uk)−∇Tn(u)|

2|φ(Tn(uk)− Tn(u))|dx

−

∫

Ω
|∇Tn(u)|

2|φ(Tn(uk)− Tn(u))|dx

+ 2

∫

Ω
|∇Tn(uk)∇Tn(u)|φ(Tn(uk)− Tn(u))|dx.



58 3. Regularization in the semilinear model

Since∇Tn(u)φ(Tn(uk)−Tn(u)) → 0 in L2(Ω), and∇Tn(uk)⇀ ∇Tn(u)
in L2(Ω) we obtain

∫

Ω
|∇Tn(u)|

2|φ(Tn(uk)− Tn(u))|dx → 0 as k → ∞

and
∫

Ω
∇Tn(uk)∇Tn(u)φ(Tn(uk)− Tn(u))dx → 0 as k → ∞.

Then, passing to the limit as k → ∞, we have

∫

Ω
|∇uk|

2φ′(Tn(uk)− Tn(u))dx

=

∫

Ω
|∇Tn(uk)−∇Tn(u)|

2|φ(Tn(uk)− Tn(u))|dx + o(1).

Notice that
∫

Ω

(

λ
Tk(u

p
k)

|x|2 + 1
k

+ f
)

φ(Tn(uk)− Tn(u))dx

goes to zero as k → ∞.

Hence, since φ′(s)− |φ(s)| > 1
2 we conclude that

1

2

∫

Ω
|∇Tn(uk)−∇Tn(u)|

2dx

≤

∫

Ω
(φ′(Tn(uk)− Tn(u))−|φ(Tn(uk)−Tn(u))|)|∇Tn(uk)−∇Tn(u)|

2dx

with the last integral equal to o(1), whence, we conclude that Tn(uk) →
Tn(u) strongly in W 1,2

0 (Ω). �

To finish, we proceed to prove that

|∇uk|
2 → |∇u|2 strongly in L1(Ω).

Using Lemma 2, the sequence of the gradients converges a.e. In
order to apply Vitali’s Theorem again, we have to prove the equi-
integrability of the term |∇uk|

2.

Let E ⊂ Ω be a measurable set. Then,

∫

E
|∇uk|

2dx ≤

∫

E
|∇Tn(uk)|

2dx+

∫

{uk≥n}∩E
|∇uk|

2dx.
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By Lemma 2, for every n > 0, Tn(uk) → Tn(u) in W
1,2
0 (Ω) therefore,

∫

E
|∇Tn(uk)|

2dx is uniformly small for |E| small enough.

Using Lemma 1, we obtain
∫

{uk≥n}∩E
|∇uk|

2dx ≤

∫

{uk≥n}
|∇uk|

2dx→ 0

as n→ ∞ uniformly on k. Then, by Vitali’s Theorem,

|∇uk|
2 → |∇u|2 in L1(Ω).

Therefore, in particular, we conclude that u is a distributional solution
to the problem,











−∆u+ |∇u|2 = λ
up

|x|2
+ f, u ≥ 0 in Ω,

u = 0 on ∂Ω.
(3.15)

It is worthwhile to point out that the equation is verified even in a
stronger way, that is, testing with functions φ ∈W 1,2

0 (Ω) ∩ L∞(Ω).

�

2.4 Solving the problem with L1(Ω) data.

Consider now the problem with the following approximation of the data
fk = Tk(f), that is fk ↑ f in L1(Ω). Consider uk the solution to











−∆uk + |∇uk|
2 = λ

upk
|x|2

+ fk, uk ≥ 0 in Ω,

uk = 0 on ∂Ω,
(3.16)

found in the Subsection 2.1.

We define the following function,

Ψn(s) =

∫ s

0
Tn(t)

1
2 dt,

that explicitly is,

Ψn(s) =

{

2
3s

3
2 if s < n,

2
3n

3
2 + (s− n)n

1
2 if s > n.

(3.17)

We also consider the following numerical estimate.
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Lemma 3. Fixed p ∈ [1, 2), ∀ε > 0, ∀k > 0, ∃Cε such that

sp Tn(s) ≤ εΨ2
n(s) + Cε, s ≥ 0.

Proof.

• If s ≤ n, the estimation would be

sp+1 ≤ εCs3 + Cε.

Since p ∈ [1, 2), p+ 1 ≤ 3 and the estimation follows.

• If s > n, the estimation would be

spn ≤ ε(Cn
3
2 + (s− n)n

1
2 )2 + Cε ≤ C̃ε(Cn3 + (s− n)2n) + Cε.

Since p < 2, the inequality follows.

�

Taking Tn(uk) as a test function in the truncated problem, it follows that

∫

Ω
|∇Tn(uk)|

2dx+

∫

Ω
|∇uk|

2Tn(uk)dx = λ

∫

Ω

upk
|x|2

Tn(uk)dx+

∫

Ω
fkTn(uk)dx.

Notice that, taking into account the definition (3.17),

∫

Ω
|∇Ψn(uk)|

2dx =

∫

{uk<n}
|u

1
2
k |

2|∇uk|
2dx+

∫

{uk>n}
|∇uk|

2ndx.

Thus,

∫

Ω
|∇Ψn(uk)|

2dx =

∫

Ω
|∇uk|

2Tn(uk)dx.

Hence,

∫

Ω
|∇Tn(uk)|

2dx+

∫

Ω
|∇Ψn(uk)|

2dx ≤ λ

∫

Ω

upk
|x|2

Tn(uk)dx+

∫

Ω
fTn(uk)dx.

From Lemma 3 and by Poincaré’s and Young’s inequalities, we get
∫

Ω
|∇Tn(uk)|

2dx+

∫

Ω
|∇Ψn(uk)|

2dx

≤ ε
λ

ΛN

∫

Ω
|∇Ψn(uk)|

2dx+

∫

Ω

Cε

|x|2
dx+ n||f ||L1(Ω).
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Choosing 0 < ε
λ

ΛN
< 1, we get

∫

Ω
|∇Tn(uk)|

2dx+ (1− ε
λ

ΛN
)

∫

Ω
|∇Ψn(uk)|

2dx ≤

∫

Ω

Cε

|x|2
dx+ n||f ||L1(Ω).

Therefore, for every n > 0 it follows that

∫

Ω
|∇Tn(uk)|

2dx ≤ C(λ, ε,Ω, f, n) uniformly on k ∈ N,

∫

Ω
|∇Ψn(uk)|

2dx ≤ C(λ, ε,Ω, f, n) uniformly on k ∈ N.

Hence,

∫

Ω
|∇uk|

2dx ≤

∫

Ω
|∇Tn(uk)|

2dx+

∫

Ω∩{uk>n}
|∇uk|

2dx

≤

∫

Ω
|∇Tn(uk)|

2dx+

∫

Ω
|∇Ψn(uk)|

2dx ≤ C,

where C is independent of k. Hence, up to a subsequence

uk ⇀ u weakly in W 1,2
0 (Ω).

We prove now in a similar way to the previous Subsection that

1.
upk
|x|2

→
up

|x|2
in L1(Ω).

2. Tn(uk) → Tn(u) strongly in W 1,2
0 (Ω), for all n > 0.

3. lim
n→∞

∫

{uk≥n}
|∇uk|

2dx = 0 uniformly on k.

As before, we deduce that
upk
|x|2

is bounded in L1(Ω) and converges a.e. to

up

|x|2
. In order to apply Vitali’s Theorem, we check the equi-integrability of

upk
|x|2

. In this way we get 1.

Notice that 2 and 3 are necessary to demonstrate the strong convergence
of the gradients.

To get 2 we consider the function Gn(s) = s − Tn(s) and φ(s) = se
1
4
s2 ,

which verifies φ′(s)− |φ(s)| ≥ 1
2 . Using φ(Tn(uk)−Tn(u)) as a test function

in (3.16), we get
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∫

Ω
∇ukφ

′(Tn(uk)−Tn(u))∇(Tn(uk)− Tn(u))dx +

∫

Ω
|∇uk|

2φ(Tn(uk)−Tn(u))dx

=

∫

Ω
(λ

upk
|x|2

+ fk)φ(Tn(uk)− Tn(u))dx.

Estimating term by term as in Lemma 2, considering that uk ⇀ u in
W 1,2

0 (Ω) and using the assumption on φ(s) we conclude 2.

To get 3 we use the truncated function of Gn(s), ψr−1(s) = T1(Gr−1(s))
as a test function in (3.16), and proceed exactly as in the proof of Lemma
1.

Now we are able to prove that

|∇uk|
2 → |∇u|2 strongly in L1(Ω).

By 2, the sequence of the gradients converges a.e. In order to use Vitali’s
Theorem again, we need to prove the equi-integrability of |∇uk|

2.

Let E ⊂ Ω be a measurable set. Then
∫

E
|∇uk|

2dx ≤

∫

E
|∇Tn(uk)|

2dx+

∫

{uk≥n}∩E
|∇uk|

2dx.

By 2, for every n > 0, we get the strong convergence Tn(uk) → Tn(u) inW
1,2
0 (Ω)

and therefore,

∫

E
|∇Tn(uk)|

2dx is uniformly small for |E| small enough.

Thanks to 3, we obtain that

∫

{uk≥n}∩E
|∇uk|

2dx ≤

∫

{uk≥n}
|∇uk|

2dx→ 0

as n→ ∞ uniformly on k.

Then, by Vitali’s Theorem we obtain that

|∇uk|
2 → |∇u|2 strongly in L1(Ω).

Therefore, in particular we conclude that u is a distributional solution to
the problem,











−∆u+ |∇u|2 = λ
up

|x|2
+ f, u ≥ 0 in Ω,

u = 0 on ∂Ω.
(3.18)
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3 Existence with p ≥ 2

In order to have the same homogeneity in the two sides of the equation, we
need to add some term in the left hand side. We multiply the square of the
gradient by a power of u.











−∆u+ uβ |∇u|2 = λ
up

|x|2
+ f, u ≥ 0 in Ω,

u = 0 on ∂Ω.
(3.19)

Notice that if we take u as a test function in equation (3.19), we obtain

∫

Ω
|∇u|2dx+

∫

Ω
uβ+1|∇u|2dx =

∫

Ω
λ
up+1

|x|2
dx+

∫

Ω
fudx.

Thus, it follows

∫

Ω
|∇u|2dx+ C

∫

Ω
|∇(u)

β+1
2

+1|2dx =

∫

Ω
λ
up+1

|x|2
dx+

∫

Ω
fudx.

In order to get an estimation for the square of the gradient we need to
establish that

λ

∫

Ω

up+1

|x|2
dx ≤

∫

Ω
|∇u

p+1
2 |2dx.

Therefore, β+1
2 +1 = p+1

2 and this identity is true if β is, at least, p− 2.

Hence, it is sufficient to have β > p− 2 for the existence of solution. In
particular, if p = 2, to have existence it is sufficient with β = 1, in fact, in
Chapter 8 we are going to study carefully the existence of solution to the
parabolic problem associated to the problem (3.19) with β = 1 and p = 2.

Remark 1. We point out that we can find an interval of λ where we can
find a solution with the same regularization term, even if p = 2.

Assume f ∈ L1(Ω) a positive function and 0 < λ < 4
9ΛN . Then, there

exists a solution u ∈W 1,2
0 (Ω) to the problem











−∆u+ |∇u|2 = λ
u2

|x|2
+ f, u ≥ 0 in Ω,

u = 0 on ∂Ω.
(3.20)

Proof. To simplify the calculations we first assume f in Lm(Ω) and m > N
2

as in the case with 1 ≤ p < 2.
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The same arguments as in Section 2 allow us to conclude the existence
of a solution to the truncated problem



















−∆uk + |∇uk|
2 = λTk(

u2k
|x|2

) + f in Ω,

uk = 0 on ∂Ω,

uk ∈W 1,2
0 (Ω) ∩ L∞(Ω) and uk > 0.

In order to get the weak convergence in W 1,2
0 (Ω) of uk, we use uk as a test

function in the last equation,

∫

Ω
|∇uk|

2dx+
4

9

∫

Ω
|∇u

3
2
k |

2dx = λ

∫

Ω
Tk(

u2k
|x|2

)ukdx+

∫

Ω
fukdx

≤ λ

∫

Ω

(u
3
2
k )

2

|x|2
dx+

∫

Ω
fukdx.

Then, applying Poincaré, Young, Hölder and Sobolev inequalities, we get

α

∫

Ω
|∇uk|

2dx+
4

9

∫

Ω
|∇u

3
2
k |

2dx ≤
λ

ΛN

∫

Ω
|∇u

3
2
k |

2dx+ C||f ||
L

N
2 (Ω)

.

Therefore,

α

∫

Ω
|∇uk|

2dx+ (
4

9
−

λ

ΛN
)

∫

Ω
|∇u

3
2
k |

2dx ≤ C||f ||
L

N
2 (Ω)

.

Then, follow the arguments in Section 2, we can prove that there exists a

solution if 0 < λ <
4

9
ΛN . �

The optimality of this value of λ, as far as we know, is unknown.

4 Further results

In this Section we are going to study the existence of solution in relation
with the exponent p and a general exponent q for the gradient.

Theorem 11. Consider pN
N−2+p < q ≤ 2, 1 ≤ p < 2 and f a positive

function such that f ∈ L1(Ω). Then, for all λ > 0, there exists a solution
u ∈W 1,2

0 (Ω) obtained as limit of approximations to the problem











−∆u+ |∇u|q = λ
up

|x|2
+ f, u ≥ 0 in Ω,

u = 0 on ∂Ω.
(3.21)
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Proof.

The same arguments of Section 2 allow us to conclude the existence of
a solution to the truncated problems

−∆uk + |∇uk|
q = λTk(

upk
|x|2

) + Tk(f) in Ω, uk ∈W 1,2
0 (Ω). (3.22)

In order to analyze the convergence of {uk}, we take the function Tn(uk)
as a test function in the truncated problem, it follows that

∫

Ω
|∇Tnuk|

2dx+

∫

Ω
|∇uk|

qTnukdx = λ

∫

Ω
Tk(

upk
|x|2

)Tnukdx+

∫

Ω
Tk(f)Tnukdx.

We define, as in Section 2, the function Ψn(s) =
∫ s
0 Tn(t)

1
q dt, that ex-

plicitly is,

Ψn(s) =







q
q+1s

q+1
q if s < n

q
q+1n

q+1
q + (s− n)n

1
q if s > n.

(3.23)

Then,

∫

Ω
|∇Tnuk|

2dx+

∫

Ω
|∇Ψnuk|

qdx = λ

∫

Ω
Tk(

upk
|x|2

)Tnukdx+

∫

Ω
Tk(f)Tnukdx

and

λ

∫

Ω
Tk(

upk
|x|2

)Tnukdx+

∫

Ω
Tk(f)Tnukdx ≤ nλ

∫

Ω

upk
|x|2

dx+ n||f ||L1(Ω).

Therefore,

∫

Ω
|∇Tnuk|

2dx+

∫

Ω
|∇Ψnuk|

qdx ≤ nλ

∫

Ω

upk
|x|2

dx+ n||f ||L1(Ω).

To estimate the first term on the right hand side we are going to use
Hölder’s inequality,

nλ

∫

Ω

upk
|x|2

dx ≤ nλ
(

∫

Ω
(

1

|x|2
)

qN
qN−p(N−q) dx

)

qN−p(N−q)
qN

(

∫

Ω
u

qN
N−q

k dx
)

p(N−q)
qN

.

Notice that since q > Np
N+p−2 :

2q < Nq − pN + pq ⇔
qN

qN − p(N − q)
<
N

2
.
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Thus,

(

∫

Ω
(

1

|x|2
)

qN
qN−p(N−q) dx

)

qN−p(N−q)
qN

is integrable.

Since p
q > 1, we can apply Young’s inequality and we also use Sobolev’s

inequality, then, we obtain

nλ

∫

Ω

upk
|x|2

dx ≤ nλεC

∫

Ω
|∇uk|

qdx+ nλC(ε).

Therefore,

∫

Ω
|∇Tnuk|

2dx+

∫

Ω
|∇Ψnuk|

qdx ≤ nελC

∫

Ω
|∇uk|

qdx+λnC(ε)+n||f ||L1(Ω).

Notice that
∫

Ω
|∇uk|

qdx ≤

∫

Ω
|∇Tnuk|

2dx+ n

∫

{uk≥n}
|∇uk|

qdx+ Cq|Ω|.

Hence, for ε > 0 suitable small,

(

1− nελC
)

∫

Ω
|∇uk|

qdx ≤ n||f ||L1(Ω) + Cq|Ω|,

then, uk ⇀ u weakly in W 1,q
0 (Ω) and Tn(uk)⇀ Tnu in W 1,2

0 (Ω).

To get the strong convergence of Tn(uk) to Tn(u) in W 1,2
0 (Ω) we argue

as in Section 2. Then, up to a subsequence the gradients converge a.e. and
we can prove for the Vitali Lemma that |∇uk|

q → |∇u|q in L1(Ω), therefore,
u is a weak solution to the problem,











−∆u+ |∇u|q = λ
up

|x|2
+ f, u ≥ 0 in Ω,

u = 0 on ∂Ω,
(3.24)

with pN
N−2+p < q ≤ 2 and 1 ≤ p < 2. �
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Chapter 4

Existence and qualitative properties for the

p-Laplacian case

1 Introduction

In this Chapter we are going to study a perturbation of the following quasi-
linear problem



















−∆pu =
uq

|x|p
in Ω,

u ≥ 0 in Ω,

u = 0 on ∂Ω,

(4.1)

where −∆pu := −div(|∇u|p−2∇u), 1 < p < N , q > p− 1 and 0 ∈ Ω.

Notice that also in this quasilinear setting we are considering a super-
critical problem, therefore the results in this Chapter can be understood as
an extension of the ones obtained in Chapter 3 for the Laplacian operator.

If 0 ∈ Ω and q > p − 1, it is possible to prove by a direct way the
nonexistence of solution in W 1,p

0 (Ω) to the problem (4.1). The argument
for this proof is by contradiction and it is based in a comparison result and
a generalization of the standard Picone’s inequality. We recall these two
classical results for the reader’s convenience.

Proposition 2. (Weak Comparison Principle). Let f, g belonging to L1(Ω)
and u, v the unique entropy solutions to the problems

{

−∆pu = f in Ω

u = 0 on ∂Ω,

{

−∆pv = g in Ω

v = 0 on ∂Ω.

Moreover, let us suppose that f ≤ g. Then,

u ≤ v in Ω. (4.2)

Theorem 12. (Picone inequality generalization)

Assume v ∈W 1,p
0 (Ω) verifying

−∆pv = ν,
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a positive bounded Radon measure, v|∂Ω = 0 and v > 0. Then, for all

u ∈W 1,p
0 (Ω)

∫

Ω
|∇u|pdx ≥

∫

Ω

|u|p

vp−1

(

−∆pv)
)

dx.

A detailed proof can be found in [6, Theorem 3.1].

Now we are able to prove the following nonexistence result for solutions
u ∈W 1,p

0 (Ω).

Theorem 13. Assume 0 ∈ Ω, N ≥ 3, 1 < p < N and p − 1 < q. Then,
problem (4.1) has no solution u ∈W 1,p

0 (Ω).

Proof. We argue by contradiction, let u be a solution to the problem



















−∆pu =
uq

|x|p
in Ω,

u ≥ 0 in Ω,

u = 0 on ∂Ω.

We have −∆pu =
uq

|x|p
≥ 0, and by the Maximum Strong Principle for

the p-Laplacian operator, it follows that u > 0 in Ω. Therefore, there exists
c such that

c := inf
BR

u > 0,

for some R small. Then,

−∆pu =
uq

|x|p
≥

cq

|x|p
= −∆pv in BR. (4.3)

Since
cq

|x|p
∈ L1(Ω), thanks a uniqueness result in [6], the problem



















−∆pv =
cq

|x|p
in BR,

v ≥ 0 in BR,

v = 0 on ∂BR,

(4.4)

has a unique radial solution.

We write the −∆p(·) operator in radial coordinates in BR \ {0} as

−r1−n∂r(r
n−1|vr|

p−2vr),
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with, as usual, r = |x|. Integrating (4.4), we get

rn−1|vr|
p−2vr = −

∫

cqrn−1−pdr = −
1

n− p
cqrn−p + C.

Choosing C = 0, vr has to be negative and we have

v(|x|) =

(

cq

n− p

)
1

p−1

log

(

R

|x|

)

.

Therefore, by (4.3) and Proposition 2 we get

u(x) ≥ C̃ log

(

R

|x|

)

,

where C̃ > 0 is big enough and C̃ = C̃(c, n, p, q).

A generalization of the standard Picone’s inequality, see Theorem 12,
allows us to get

∫

BR

|∇φ|pdx ≥

∫

BR

|φ|p

up−1

(

− div(|∇u|p−2∇u)
)

dx =

∫

BR

uq−p+1|φ|p

|x|p

≥ C̃q−p+1

∫

BR

|φ|p

|x|p

(

log

(

R

|x|

))q−p+1

dx,

∀φ ∈ C∞
0 (BR). This is a contradiction with the Hardy-Sobolev’s inequality

and it concludes the proof. �

Indeed, there is no solution to problem (4.1) even in a more general sense,
entropy sense (see [22]). The proof of this result is a little more complicated
and it is written quite detailed in [5].

We define the kind of solutions that we are going to consider in this
Chapter.

Definition 4. Assume f ∈ L1(Ω). Let u be in W 1,p
0 (Ω). We say that u is

an energy solution to problem

−∆pu+ |∇u|p = ϑ
uq

|x|p
+ f in Ω,

if
∫

Ω
|∇u|p−2(∇u,∇φ) +

∫

Ω
|∇u|pφ = ϑ

∫

Ω

uq

|x|p
φ+

∫

Ω
fφ

for all φ ∈W 1,p
0 (Ω) ∩ L∞(Ω).
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The contents of this Chapter can be summarized as follows.

• As in the previous Chapter we will prove the regularizing effect due
to the presence of the gradient term |∇u|p on the left hand side of the
problem (4.1).

More precisely, we study the existence and qualitative properties of
weak positive solutions to the supercritical problem











−∆pu+ |∇u|p = ϑ
uq

|x|p
+ f in Ω,

u ≥ 0 in Ω, u = 0 on ∂Ω,
(4.5)

where Ω is a bounded domain in RN such that 0 ∈ Ω, ϑ > 0, p− 1 <
q < p, f ≥ 0, f ∈ L1(Ω) and 1 < p < N . Notice that we prove the
existence of a weak solution u to problem (4.5) for any ϑ > 0 and for
each f ∈ L1(Ω), f ≥ 0.

Taking into account that the data is a L1-function, the solution is
obtained as limit of approximation, to be short, SOLA, see [43], and
by using the results in [45] we know that also is an entropy solution
or renormalized solution. Notice that, since |∇u|p ∈ L1(Ω) we can
conclude also that u is a solution in the sense of the Definition 4.

Summarizing, the main existence result in this Chapter is the following

Theorem 14. Consider problem (4.5) with 1 < p < N , p− 1 < q < p
and assume that f ∈ L1(Ω) is a positive function. Then, for all ϑ > 0
there exists a weak solution u ∈W 1,p

0 (Ω) to (4.5).

The proof of this result has the following steps.

(i) We first prove the existence of solution to the truncated problem

−∆puk + |∇uk|
p = ϑTk(

uqk
|x|p

) + Tk(f) in Ω, uk ∈W 1,p
0 (Ω).

This can be done solving the correspondent approximated prob-
lem and passing to the limit in W 1,p

0 (Ω).

(ii) We show that the sequence of solutions to the truncated problem
converges weakly in W 1,p

0 (Ω) to the solution of (4.5) and then we
deduce the a.e. convergence of the gradients. Finally, we exploit
it to deduce the strong convergence in W 1,p

0 (Ω).

(iii) We pass to the limit in the truncated problem and we obtain the
existence of a solution to (4.5).
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Let us remark that, because of the presence of the gradient term (which
causes the existence of solutions), to pass to the limit in the truncated
problem it is necessary to deduce the convergence of uk (solutions of
the truncated problem) in W 1,p

0 (Ω). A convergence in W 1,q
0 (Ω) (in the

spirit of [28]), would be not sufficient to pass to the limit and get a
weak formulation of the problem; because q < p and W 1,q

0 (Ω) is not

enough, hence, we need to check the convergence in W 1,p
0 (Ω).

• In Section 3 of this Chapter we deal with the study of the qualitative
properties of solutions to (4.5). The main result is the following

Theorem 15. Let u ∈ C1(Ω \ {0}) be a weak solution to (4.5). Con-
sider the domain Ω strictly convex w.r.t. the ν−direction (ν ∈ SN−1)
and symmetric w.r.t. T ν

0 , where

T ν
0 = {x ∈ RN : x · ν = 0}.

Moreover, assume f ∈ C1(Ω \ {0}) to be non-decreasing w.r.t. the
ν−direction in the set

Ων
0 = {x ∈ Ω : x · ν < 0}

and even w.r.t. T ν
0 . Then, u is symmetric w.r.t. T ν

0 and non-decreasing
w.r.t. the ν−direction in Ων

0.

Remark 2. Notice that the extra regularity hypothesis on f is suffi-
cient to have the corresponding regularity of the solution.

Remark 3. If Ω is a ball and f is radial, then u is radially symmetric
with ∂u

∂r (r) < 0 for r 6= 0.

We point out that Theorem 15 will be a consequence of a more general
result, see Proposition 5 in Section 3, which states a monotonicity
property of the solutions in general domains near strictly convex parts
of the boundary. This can be useful for example in blow-up analysis.
Also, it will be clear from the proof that the same technique could
be applied to study the case of more general nonlinearities. Recall
that we are only looking for positive solutions of (4.5), thus, we only
consider the interval [0,∞) and since if u is near to zero, for some
values of q, the nonlinearity can be not Lipschitz anymore, we note
that the nonlinearity in problem (4.5) is in general locally Lipschitz
continuous only in (0 , ∞).

The main ingredient in the proof of the symmetry result is the well
known Moving Plane Method ([87]), that it was used in a clever way in
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the celebrated paper [62] for the semilinear nondegenerate case. Actu-
ally, the proof showed in this memory is more similar to the one in [23]
and is based on the weak comparison principle in small domains. The
Moving Plane Method was extended to the case of p-Laplace equations
firstly in [47] for the case 1 < p < 2 and later in [49] for the case p ≥ 2.

To study the qualitative properties of the solutions to (4.5), we first
need to include some summability results of the gradient and also a
weighted Poincaré’s inequality. These are, together with a weak com-
parison principle, the most important ingredients to prove the sym-
metry result using the Moving Plane Method.

The first crucial step is the proof of a weak comparison principle in
small domains that we carry out in Proposition 4. This is based on
some regularity results in the spirit of [49]. These results hold only
away from the origin due to the presence of the Hardy potential in
our problem. This will require more attention in the application of
the Moving Plane procedure. Moreover, the presence of the gradient
term |∇u|p, leads to a proof of the weak comparison principle in small
domains which makes use of the right choice of test functions.

We recall the following classical inequality which will be very useful in
all the memory.

Lemma 4. Let η, η′ ∈ RN . There exists positive constants C1, C2 depending
on p such that, ∀η , η′ ∈ RN with |η|+ |η′| > 0 and ∀x ∈ Ω, it follows

||η|p−2η − |η′|p−2η′| ≤ C1(|η| + |η′|)p−2|η − η′|, (4.6)

[|η|p−2η − |η′|p−2η′][η − η′] ≥ C2(|η| + |η′|)p−2|η − η′|2. (4.7)

Since |η − η′| ≤ |η|+ |η′| by (4.6) and by (4.7) it follows

||η|p−2η − |η′|p−2η′| ≤ C1|η − η′|p−1 if 1 < p ≤ 2 (4.8)

and
[|η|p−2η − |η′|p−2η′][η − η′] ≥ C2|η − η′|p if p ≥ 2. (4.9)

See the details, for example, in [46].

All the results of this Chapter can be seen in the paper [72].
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2 Existence of an energy solution

We use the same arguments as in the previous Chapter to find a solution to
the problem











−∆pu+ |∇u|p = ϑ
uq

|x|p
+ f in Ω

u ≥ 0 in Ω, u = 0 on ∂Ω.
(4.10)

We study the weak and the strong convergence of the approximated and
truncated solutions, and then, we pass to the limit.

2.1 Existence of solution to the truncated problem

First of all we are going to study the existence of solution to the following
truncated problem

−∆puk + |∇uk|
p = ϑTk(

uqk
|x|p

) + Tk(f) in Ω, uk ∈W 1,p
0 (Ω), (4.11)

where Tk(s) = max{min{k, s},−k} and k > 0.

The idea is to find a solution first of the approximated problems and get
the convergence of the solutions of these problems to the solution of (4.11).

Theorem 16. There exists a positive solution to problem (4.11).

Notice that φ ≡ 0 is a subsolution to problem (4.11). Consider ψ the
solution to

{

−∆pψ = ϑ · k + Tk(f) in Ω

ψ = 0 on ∂Ω.
(4.12)

In fact, ψ turns to be a supersolution to (4.11).

To prove Theorem 16 we will consider a sequence of approximated pro-
blems that we solve by iteration and using some convenient comparison
argument. We take as starting point w0 = 0 and consider iteratively the
following problem,











−∆pwn +
|∇wn|

p

1 + 1
n |∇wn|p

= ϑTk(
wq

n−1

|x|p ) + Tk(f) in Ω

wn = 0 on ∂Ω.

(4.13)
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Notice that the subsolution φ ≡ 0 and the supersolution ψ to problem (4.11)
are subsolution and supersolution to the problem (4.13) as well.

The poof of the next proposition follows using a comparison argument
from [29].

Proposition 3. There exists wn ∈W 1,p
0 (Ω) ∩ L∞(Ω) solution to (4.13).

Moreover, 0 ≤ wn ≤ ψ ∀n ∈ N.

Proof. Let us consider the problem:

−∆pwn + g(x,wn,∇wn) = 0, (4.14)

where the function g(x,wn,∇wn) is defined by















−ϑk − Tk(f) if wn ≥ ψ,
|∇wn|p

1+ 1
n
|∇wn|p

− ϑTk(
wq

n−1

|x|p )− Tk(f) if 0 ≤ wn < ψ,

−Tk(f) if wn ≤ 0.

(4.15)

Using Leray-Lions arguments, see it in [68], we can find solutions to the
approximated problem (4.14) for each n and by classical regularity results,
such solution wn belongs to W 1,p

0 (Ω) ∩ L∞(Ω).

As first step we are going to show that wn ≥ 0.

Since wn is a solution of (4.14) and 0 is a subsolution

−∆pwn + g(x,wn,∇wn) + Tk(f) ≥ 0.

Using −(w−
n ) as a test function in the last expression one has

−

∫

Ω
|∇wn|

p−2∇wn · ∇w−
n −

∫

Ω

(

g(x,wn,∇wn) + Tk(f)
)

(w−
n ) ≥ 0.

We define the following set,

R = {x : x ∈ Ω : wn ≤ 0},

therefore,

−

∫

Ω
|∇wn|

p−2∇wn · ∇w−
n dx−

∫

R

(

g(x,wn,∇wn) + Tk(f)
)

(w−
n )dx ≥ 0.

Taking into account (4.15), g(x,wn,∇wn) = −Tk(f) in R, then,

−

∫

Ω
|∇w−

n |
pdx ≤ 0.
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Hence, we can wconclude wn ≥ 0.

Now we want to prove wn ≤ ψ.

Since ψ and wn are respectively a supersolution and a solution of (4.14),
we have

−∆pwn +∆pψ + g(x,wn,∇wn)− g(x, ψ,∇ψ) ≤ 0

Using TM ([wn−ψ]
+) with M ∈ R+ as a test function in the last expres-

sion it follows
∫

Ω
< |∇wn|

p−2∇wn − |∇ψ|p−2∇ψ,∇TM (wn − ψ)+ > dx

+

∫

Ω

(

g(x,wn,∇wn) + ϑk + Tk(f)
)

TM ([wn − ψ]+)dx ≤ 0.

We define the following sets,

R = {x : x ∈ Ω : ψ ≤ wn},

RM = {x : x ∈ Ω : 0 ≤ wn − ψ ≤M}.

Thus,
TM ([wn − ψ]+) = 0 if x ∈ Ω−R or w−

n = 0

and
∇TM([wn − ψ]+) = 0 if x ∈ Ω−RM or w−

n = 0.

Therefore,

∫

RM

< |∇wn|
p−2∇wn − |∇ψ|p−2∇ψ,∇TM (wn − ψ)+ > dx

+

∫

R

(

g(x,wn,∇wn) + ϑk + Tk(f)
)

TM ([wn − ψ]+)dx ≤ 0.

By (4.15) and taking into account that ∇TM (wn − ψ)+ = ∇(wn − ψ)+, we
get

∫

RM

< |∇wn|
p−2∇wn − |∇ψ|p−2∇ψ,∇(wn − ψ)+ > dx ≤ 0 ∀M ∈ R+.

From Lemma 4, we have

0 ≥















Cp

∫

RM

|∇(wn − ψ)+|2

(|∇wn|+ |∇ψ|)2−p
dx if 1 < p < 2,

Cp

∫

RM

|∇(wn − ψ)+|pdx if p ≥ 2,
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which imply in any case that wn ≤ ψ. �

Proof of Theorem 16: we proceed in two steps in order to study carefully
the convergence of wn.

Step 1: Weak convergence of wn in W 1,p
0 (Ω).

By simplicity we set

Hn(∇wn) =
|∇wn|

p

1 + 1
n |∇wn|p

. (4.16)

Taking wn as a test function in the approximated problems (4.13), we
obtain

∫

Ω
|∇wn|

pdx+

∫

Ω
Hn(∇wn)wndx = ϑ

∫

Ω
Tk(

wq
n−1

|x|p
)wndx+

∫

Ω
Tk(f)wndx

≤ ϑ

∫

Ω
kwndx+

∫

Ω
fwndx.

Since wn ∈W 1,p
0 (Ω) ∩ L∞(Ω) and f ∈ L1(Ω),

∫

Ω
|∇wn|

pdx+

∫

Ω
Hn(∇wn)wndx ≤ ϑk||ψ||L∞(Ω) + ||ψ||L∞(Ω)||f ||L1(Ω).

Therefore, there exists a positive constant C(k, f, ψ, ϑ,Ω) such that

∫

Ω
|∇wn|

pdx+

∫

Ω
Hn(∇wn)wndx ≤ C(k, f, ψ, ϑ,Ω).

Moreover, since
∫

ΩHn(∇wn)wndx ≥ 0, we have

∫

Ω
|∇wn|

pdx ≤ C(k, f, ψ, ϑ,Ω). (4.17)

Therefore, up to a subsequence, wn ⇀ uk weakly in W 1,p
0 (Ω) and, since

||wn||L∞(Ω) < C, wn ⇀ uk weakly-* in L∞(Ω), thus,

∫

Ω
wnϕdx =

∫

Ω
ukϕdx; for ϕ ∈ L1(Ω).

Hence,
uk ∈W 1,p

0 (Ω) ∩ L∞(Ω).
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Step 2: Strong convergence of wn in W 1,p
0 (Ω) and passing to the limit

in (4.11).

To get the strong convergence of wn inW 1,p
0 (Ω) first of all we notice that

||wn − uk||W 1,p
0 (Ω) ≤ ||(wn − uk)

+||W 1,p
0 (Ω) + ||(wn − uk)

−||W 1,p
0 (Ω). (4.18)

Thus, we proceed estimating each term on the right-hand side of (4.18).

Asymptotic behavior of ||(wn − uk)
+||W 1,p

0 (Ω).

Chosing (wn − uk)
+ as a test function in (4.13) we obtain

∫

Ω
|∇wn|

p−2(∇wn,∇(wn − uk)
+)dx+

∫

Ω
Hn(∇wn)(wn − uk)

+dx

= ϑ

∫

Ω
Tk(

wq
n−1

|x|p
)(wn − uk)

+dx+

∫

Ω
Tk(f)(wn − uk)

+dx.

(4.19)

Since wn ⇀ uk in W 1,p
0 (Ω), one has wn → uk a.e. in Ω and thus,

(wn−uk)
+ → 0 a.e. in Ω together with (wn −uk)

+ ⇀ 0 in W 1,p
0 (Ω) as well.

Therefore, the right-hand side of (4.19) goes to zero when n goes to infinity.

Then, taking into account that
∫

ΩHn(∇wn)(wn − uk)
+dx ≥ 0, the ex-

pression (4.19) becomes

∫

Ω
|∇wn|

p−2
(

∇wn,∇(wn − uk)
+
)

dx

≤

∫

Ω
|∇wn|

p−2
(

∇wn,∇(wn − uk)
+
)

dx+

∫

Ω
Hn(∇wn)(wn − uk)

+dx

≤ o(1),

(4.20)

as n→ +∞.

Since by weak convergence;

∫

Ω
|∇uk|

p−2
(

∇uk,∇(wn − uk)
+
)

dx = o(1) as n→ +∞,

it follows
∫

Ω

(

|∇wn|
p−2∇wn − |∇uk|

p−2∇uk,∇(wn − uk)
+
)

dx ≤ o(1). (4.21)
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Then, from (4.21) and using Lemma 4, we have

o(1) =























C1(p)

∫

Ω

|∇(wn − uk)
+|2

(|∇wn|+ |∇uk|)2−p
if 1 < p < 2,

C1(p)

∫

Ω
|∇(wn − uk)

+|p if p ≥ 2,

(4.22)

with C1(p) a positive constant depending on p. In any case, since for 1 <
p < 2 using Hölder’s inequality one has

∫

Ω
|∇(wn − uk)

+|pdx

≤

(
∫

Ω

|∇(wn − uk)
+|2

(|∇wn|+ |∇uk|)2−p
dx

)

p
2
(
∫

Ω
(|∇wn|+ |∇uk|)

pdx

)
2−p
2

,

(4.23)

we obtain
||(wn − uk)

+||
W 1,p

0 (Ω)
→ 0 as n→ +∞. (4.24)

Asymptotic behavior of ||(wn − uk)
−||W 1,p

0 (Ω).

Let us consider e−wn [(wn − uk)
−] as a test function in (4.13),

∫

Ω
e−wn |∇wn|

p−2
(

∇wn,∇(wn − uk)
−
)

dx

+

∫

Ω
e−wn

(

|∇wn|
p

1 + 1
n |∇wn|p

− |∇wn|
p

)

(wn − uk)
−dx

= ϑ

∫

Ω
e−wnTk(

wq
n−1

|x|p
)(wn − uk)

−dx+

∫

Ω
e−wnTk(f)(wn − uk)

−dx.

(4.25)

Recalling that f = min(0, f), we want to point out that using this test
function it follows

∫

Ω
e−wn

(

|∇wn|
p

1 + 1
n |∇wn|p

− |∇wn|
p

)

(wn − uk)
−dx ≥ 0. (4.26)

As above, since (wn−uk)
− → 0 a.e. in Ω, the right-hand side of (4.25) tends

to zero as n goes to infinity. Moreover, being wn ≤ ψ (see Proposition 3),
there exists γ such that e−wn ≥ γ > 0 uniformly on n. Then, equation (4.25)
states as

γ

∫

Ω
|∇wn|

p−2
(

∇wn,∇(wn − uk)
−
)

dx ≤ o(1). (4.27)
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Arguing in the same way as we have done from equation (4.20) to (4.24),
we obtain

||(wn − uk)
−||W 1,p

0 (Ω) → 0 as n→ +∞. (4.28)

From equation (4.18), by (4.24) and (4.28) it follows

||(wn − uk)||W 1,p
0 (Ω)

→ 0 as n→ +∞

and consequently, ∇wn → ∇uk a.e. in Ω. Then, by (4.16), Hn(∇wn) →
|∇uk|

p a.e. in Ω and the equi-integrability follows. By Vitali’s lemma,

Hn(∇wn) → |∇uk|
p in L1(Ω).

Hence, uk ∈W 1,p
0 (Ω) ∩ L∞(Ω) satisfies the problem in the following sense

∫

Ω
|∇uk|

p−2(∇uk,∇φ)dx+

∫

Ω
|∇uk|

pφdx

= ϑ

∫

Ω
Tk(

upk
|x|p

)φdx+

∫

Ω
Tk(f)φdx,

(4.29)

for all φ ∈W 1,p
0 (Ω) ∩ L∞(Ω) and in this way we conclude the proof.

�

2.2 Passing to the limit and convergence to the solution

In this Subsection we are going to show that uk → u strongly in W 1,p
0 (Ω) in

order to prove the existence of a solution u to problem (4.5) and to prove
Theorem 14.

Proof of Theorem 14: We perform the proof in different steps in order to be
clear.

Step 1: Weak convergence of uk in W 1,p
0 (Ω).

We start taking Tn(uk) as a test function in the truncated problem (4.11),
in this way we obtain

∫

Ω
|∇Tn(uk)|

pdx+

∫

Ω
|∇uk|

pTn(uk)dx

= ϑ

∫

Ω
Tk(

uqk
|x|p

)Tn(uk)dx+

∫

Ω
Tk(f)Tn(uk)dx.
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Define

Ψn(s) =

∫ s

0
Tn(t)

1
pdt, (4.30)

that is, explicitly,

Ψn(s) =







p
p+1s

p+1
p if s < n,

p
p+1n

p+1
p + (s− n)n

1
p if s ≥ n.

(4.31)

Then,

∫

Ω
|∇Tn(uk)|

pdx+

∫

Ω
|∇Ψn(uk)|

pdx

= ϑ

∫

Ω
Tk(

uqk
|x|p

)Tn(uk)dx+

∫

Ω
Tk(f)Tn(uk)dx

≤ ϑ

∫

Ω

uqk
|x|p

Tn(uk)dx+ n||f ||L1(Ω).

(4.32)

We establish the following inequality.

For fixed q ∈ [p− 1, p), ∀ε > 0 and ∀n > 0, there exists Cε such that

sqTn(s) ≤ εΨp
n(s) + Cε s ≥ 0. (4.33)

By a straightforward calculation it is easy to check this expression;

• If s < n, (4.33) would be

sq+1 ≤ εCsp+1 + Cε.

And, since q < p, the last inequality follows.

• If s > n, (4.33) would be

nsq ≤ (Cnp+1/p + (s− n)n1/p)p + Cε ≤ Cnp+1 + (s− n)pn+ Cε.

And, since q < p, the last inequality follows.

Thanks to Hardy’s inequality (see Theorem 5) and (4.33), equation (4.32)
states as

∫

Ω
|∇Tn(uk)|

pdx+

∫

Ω
|∇Ψn(uk)|

pdx

≤ ε
ϑ

ΛN,p

∫

Ω
|∇Ψn(uk)|

pdx+ ϑCε

∫

Ω

dx

|x|p
+ n||f ||L1(Ω).



4.2. Existence of an energy solution 81

Then, choosing ε > 0 such that 0 < ε
ϑ

ΛN,p
< 1, for some positive C and

since p < N , we get

∫

Ω
|∇Tn(uk)|

pdx+ C

∫

Ω
|∇Ψn(uk)|

pdx

≤ ϑCε

∫

Ω

dx

|x|p
+ n||f ||L1(Ω) ≤ C(ϑ, ε, f, p, n,Ω).

(4.34)

Fixed n ≥ 1, by the definition (4.31) of Ψn and equation (4.34), one has

∫

Ω
|∇uk|

pdx

≤

∫

Ω
|∇Tn(uk)|

pdx+

∫

Ω∩{uk≥n}
|∇uk|

pdx

≤

∫

Ω
|∇Tn(uk)|

pdx+

∫

Ω∩{uk≥n}
|∇uk|

pdx+

∫

Ω∩{uk<n}
|∇uk|

pdx

≤

∫

Ω
|∇Tn(uk)|

pdx+
1

n

∫

Ω
|∇Ψn(uk)|

pdx ≤ C,

(4.35)

uniformly on k.

Therefore, up to a subsequence it follows that uk ⇀ u weakly inW 1,p
0 (Ω)

and a.e.

Step 2: Strong convergence in L1(Ω) of the singular term.

Since p < q, using Hölder’s inequality and by the previous estimation for
the gradient, we have

∫

Ω
Tk(

uqk
|x|p

) ≤

∫

Ω

uqk
|x|p

dx ≤

(
∫

Ω

upk
|x|p

dx

)

q
p
(
∫

Ω

1

|x|p
dx

)
p−q
p

≤ C

(
∫

Ω
|∇uk|

pdx

)
q
p

≤ C,

(4.36)

with C a positive constant that does not depend on k. It follows that

Tk(
uqk
|x|p

) is bounded in L1(Ω) and converges almost everywhere to
uq

|x|p
. In

particular, Fatou’s Lemma implies that
uq

|x|p
∈ L1(Ω).

Moreover, let E ⊂ Ω be a measurable set, by Fatou’s Lemma we obtain

∫

E
Tk(

uqk
|x|p

)dx ≤

∫

E

uqk
|x|p

dx ≤ lim
n→+∞

∫

E

wq
n

|x|p
dx ≤

∫

E

ψq

|x|p
dx ≤ δ(|E|),
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uniformly on k, where lim
s→0

δ(s) = 0, wn is as in the proof of Theorem 16 and

ψ as in Proposition 3. Thus, from Vitali’s Theorem it follows that

Tk(
uqk
|x|p

) →
uq

|x|p
in L1(Ω). (4.37)

Step 3: Strong convergence of |∇uk|
p → |∇u|p in L1(Ω).

To show the strong convergence of the gradients we need some prelimi-
nary results as in the semilinear case, see Chapter 3.

We need first the following Lemma.

Lemma 5. Let uk be defined by (4.11). Then

lim
n→∞

∫

{uk≥n}
|∇uk|

pdx = 0 (4.38)

uniformly on k.

Proof. Let us consider the truncated functions

Gn(s) = s− Tn(s), and ψn−1(s) = T1(Gn−1(s)).

Notice that ψn−1(uk)|∇uk|
p ≥ |∇uk|

p
χ{uk≥n}

. Using ψn−1(uk) as a test func-

tion in (4.11) we get

∫

{uk≥n}
|∇uk|

pdx

≤

∫

Ω
|∇ψn−1(uk)|

pdx+

∫

Ω
|∇uk|

pψn−1(uk)dx

=

∫

Ω
ϑTk(

uqk
|x|p

)ψn−1(uk)dx+

∫

Ω
Tk(f)ψn−1(uk)dx ≤ C.

(4.39)

Since {uk} is uniformly bounded inW 1,p
0 (Ω), then up to a subsequence, {uk}

strongly converges in Lp(Ω) for 1 ≤ p < p∗ = Np
N−p and a.e. in Ω. Thus, we

obtain that
∫

{n−1<uk<n}
ukdx ≤

1

n− 1

∫

Ω
u2kdx ≤

C

n− 1

and
∫

{uk>n}
ukdx ≤

1

n

∫

Ω
u2kdx ≤

C

n
.

Therefore,
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|{x ∈ Ω : n− 1 < uk(x) < n}| → 0 if n→ ∞ and

|{x ∈ Ω, : uk(x) > n}| → 0 if n→ ∞,

uniformly on k.

By (4.39),
∫

{uk≥n}
|∇uk|

pdx ≤ kψ

∫

{uk≥n−1}
ψn−1(uk)dx+ k

∫

{uk≥n−1}
ψn−1(uk)dx

≤ C

∫

{uk≥n−1}
ukdx.

Then, we have uniformly on k

lim
n→∞

∫

{uk≥n}
|∇uk|

pdx = 0. (4.40)

�

Next Lemma shows the strong convergence in W 1,p
0 (Ω) of the truncated

terms.

Lemma 6. Consider uk ⇀ u in W 1,p
0 (Ω) as above. Then, it holds uniformly

on m,
Tm(uk) → Tm(u) inW 1,p

0 (Ω) for k → +∞.

Proof. Notice that

||Tm(uk)− Tm(u)||
W 1,p

0 (Ω)

≤ ||(Tm(uk)− Tm(u))+||
W 1,p

0 (Ω)
+ ||(Tm(uk)− Tm(u))−||

W 1,p
0 (Ω)

.
(4.41)

We are going to estimate the convergence of each term on the right-hand
side of (4.41).

Asymptotic behavior of ||(Tm(uk)− Tm(u))+||
W 1,p

0 (Ω)
.

We take (Tm(uk)− Tm(u))+ as a test function in (4.11), obtaining
∫

Ω

(

|∇uk|
p−2∇uk,∇(Tm(uk)−Tm(u))+

)

dx

+

∫

Ω
|∇uk|

p(Tm(uk)−Tm(u))+dx

=

∫

Ω

(

ϑTk(
uqk
|x|p

) + Tk(f)

)

(Tm(uk)− Tm(u))+dx.

(4.42)
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Since Tm(uk) ⇀ Tm(u) in W 1,p
0 (Ω) and Tm(uk) → Tm(u) a.e. in Ω, we

have (Tm(uk) − Tm(u))+ ⇀ 0 in W 1,p
0 (Ω) and (Tm(uk) − Tm(u))+ → 0 a.e

in Ω. Thus, the right-hand side of (4.42) can be written as

∣

∣

∣

∫

Ω

(

ϑTk(
uqk
|x|p

) + Tk(f)

)

(Tm(uk)− Tm(u))+dx
∣

∣

∣
≤

∫

Ω
(ϑ

uqk
|x|p

+ f)(2m)dx

≤

∫

Ω
(ϑ

ψq

|x|p
+ f)(2m)dx,

then, the right hand side is dominated by a function in L1(Ω) independent
on k, thus, by the dominated convergence and since (Tm(uk)−Tm(u))+ → 0
a.e., tends to zero as k goes to infinity.

From (4.42) we have

∫

Ω

(

|∇uk|
p−2∇uk,∇(Tm(uk)− Tm(u))+

)

dx ≤ o(1). (4.43)

Let us define Ω1 = Ω ∩ {|uk| ≤ m} and Ω2 = Ω ∩ {|uk| > m}.

We estimate the left hand side of (4.43) as

∫

Ω

(

|∇uk|
p−2∇uk,∇(Tm(uk)− Tm(u))+

)

dx =

∫

Ω1

(

|∇Tm(uk)|
p−2∇Tm(uk)−|∇Tm(u)|p−2∇Tm(u),∇(Tm(uk)−Tm(u))+

)

dx

+

∫

Ω1

(

|∇Tm(u)|p−2∇Tm(u),∇(Tm(uk)− Tm(u))+
)

dx

+

∫

Ω2

(

|∇uk|
p−2∇uk,∇(Tm(uk)− Tm(u))+

)

dx.

(4.44)

Since (Tm(uk) − Tm(u))+ ⇀ 0 weakly in W 1,p
0 (Ω), the second term on the

right hand side of (4.44) becomes

∫

Ω1

(|∇Tm(u)|p−2∇Tm(u),∇(Tm(uk)− Tm(u))+)dx

≤

∫

Ω
(|∇Tm(u)|p−2∇Tm(u),∇(Tm(uk)− Tm(u))+)dx

+

∣

∣

∣

∣

∫

Ω2

(|∇Tm(u)|p−2∇Tm(u),∇(Tm(uk)− Tm(u))+)dx

∣

∣

∣

∣

≤ o(1) +

∫

Ω2

|∇Tm(u)|p−1∇(Tm(uk)− Tm(u))+)dx.
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Since Tm(uk) = m in the set Ω ∩ {uk > m}, it follows

∫

Ω1

(|∇Tm(u)|p−2∇Tm(u),∇(Tm(uk)− Tm(u))+)dx

≤ o(1) +

∫

Ω2

|∇Tm(u)|p−1∇udx.

By Hölder’s inequality and denoting χm the characteristic function of the
set {x ∈ Ω : |uk| > m},

∫

Ω1

(|∇Tm(u)|p−2∇Tm(u),∇(Tm(uk)− Tm(u))+)dx

≤ o(1) + C||u||p−1

W 1,p
0 (Ω)

||χm∇Tm(u)||Lp(Ω) → 0 as k → ∞,

by Dominate Convergence Theorem, since

∫

Ω
χm|∇Tm(u)|pdx ≤

∫

Ω
|∇Tm(u)|pdx

and since uk → u a.e., ∇Tm(u) = 0 in χm, thus, χm∇Tm(u) → 0 strongly
in (Lp(Ω))N .

As above, the last term in (4.44) can be estimated as

∣

∣

∣

∣

∫

Ω

(

|∇uk|
p−2∇uk, χm∇Tm(u)

)

dx

∣

∣

∣

∣

≤ C||uk||
p−1

W 1,p
0 (Ω)

||χm∇Tm(u)||Lp(Ω) → 0,
(4.45)

as k → +∞.

We study now the first term in the right hand side of (4.44),

∫

Ω1

(

|∇Tm(uk)|
p−2∇Tm(uk)−|∇Tm(u)|p−2∇Tm(u),∇(Tm(uk)−Tm(u))+

)

dx

=

∫

Ω

(

|∇Tm(uk)|
p−2∇Tm(uk)−|∇Tm(u)|p−2∇Tm(u),∇(Tm(uk)−Tm(u))+

)

dx

−

∫

Ω2

(

|∇Tm(uk)|
p−2∇Tm(uk)−|∇Tm(u)|p−2∇Tm(u),∇(Tm(uk)−Tm(u))+

)

dx

≤

∫

Ω

(

|∇Tm(uk)|
p−2∇Tm(uk)−|∇Tm(u)|p−2∇Tm(u),∇(Tm(uk)−Tm(u))+

)

dx

+
∣

∣

∣

∫

Ω2

(

|∇Tm(uk)|
p−2∇Tm(uk)−|∇Tm(u)|p−2∇Tm(u),∇(Tm(uk)−Tm(u))+

)

dx
∣

∣

∣
.
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Considering that, by the Dominated Convergence Theorem and since
∇Tm(uk) = 0 in Ω2, we have

∣

∣

∫

Ω2

(

|∇Tm(uk)|
p−2∇Tm(uk)−|∇Tm(u)|p−2∇Tm(u),∇(Tm(uk)−Tm(u))+

)

dx
∣

∣

≤

∫

Ω
χm|∇Tm(u)|pdx→ 0 as k → +∞,

equation (4.44) becomes

∫

Ω

(

|∇uk|
p−2∇uk,∇(Tm(uk)−Tm(u))+

)

dx =

∫

Ω

(

|∇Tm(uk)|
p−2∇Tm(uk)− |∇Tm(u)|p−2∇Tm(u),∇(Tm(uk)−Tm(u))+

)

dx

+ o(1).

Finally, by Lemma 4, we obtain

∫

Ω

(

|∇uk|
p−2∇uk,∇(Tm(uk)− Tm(u))+

)

dx (4.46)

≥























C1(p)

∫

Ω

|∇(Tm(uk)− Tm(u))+|2

(|∇Tm(uk)|+ |∇Tm(u|)2−p
+ o(1) if 1 < p < 2,

C1(p)

∫

Ω
|∇(Tm(uk)− Tm(u))+|p + o(1) if p ≥ 2,

with C1(p) a positive constant depending on p. Thanks to (4.43) it implies,
as the calculus done in (4.23), that

||(Tm(uk)− Tm(u))+||W 1,p
0 (Ω) → 0 as k → +∞. (4.47)
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Asymptotic behavior of ||(Tm(uk)− Tm(u))−||
W 1,p

0 (Ω)
.

We use e−Tm(uk)(Tm(uk)−Tm(u))− as a test function in (4.11), obtaining

∫

Ω
e−Tm(uk)

(

|∇uk|
p−2∇uk,∇(Tm(uk)− Tm(u))−

)

dx

−

∫

Ω
e−Tm(uk)(Tm(uk)− Tm(u))−(|∇uk|

p−2∇uk,∇Tm(uk))dx

+

∫

Ω
|∇uk|

pe−Tm(uk)(Tm(uk)− Tm(u))−dx

=

∫

Ω
e−Tm(uk)

(

|∇uk|
p−2∇uk,∇(Tm(uk)− Tm(u))−

)

dx

−

∫

Ω
e−Tm(uk)(Tm(uk)− Tm(u))−(|∇uk|

p−2∇uk,∇Tm(uk))dx

+

∫

Ω1

|∇uk|
pe−Tm(uk)(Tm(uk)− Tm(u))−dx

+

∫

Ω2

|∇uk|
pe−Tm(uk)(Tm(uk)− Tm(u))−dx

=

∫

Ω

(

ϑTk(
uqk
|x|p

) + Tk(f)

)

e−Tm(uk)(Tm(uk)− Tm(u))−dx.

(4.48)

In this case as well, since (Tm(uk) − Tm(u))− ⇀ 0 weakly in W 1,p
0 (Ω) and

(Tm(uk)−Tm(u))− → 0 a.e. in Ω, as in (4.44), the right hand side of (4.48)
tends to zero as k goes to infinity.

Since (∇Tm(uk))χm = 0, the second term in the left hand side of (4.48),
states as

−

∫

Ω
e−Tm(uk)(Tm(uk)− Tm(u))−(|∇uk|

p−2∇uk,∇Tm(uk))dx

= −

∫

Ω1

e−Tm(uk)(Tm(uk)− Tm(u))−(|∇uk|
p−2∇uk,∇Tm(uk))dx.

Therefore,

∫

Ω
e−Tm(uk)

(

|∇uk|
p−2∇uk,∇(Tm(uk)− Tm(u))−

)

dx

+

∫

Ω2

|∇uk|
pe−Tm(uk)(Tm(uk)− Tm(u))−dx = o(1).

(4.49)

We point out that

(Tm(uk)− Tm(u))−χm = 0 and e−Tm(uk) ≤ e−m.
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Hence, (4.49) becomes

∫

Ω

(

|∇uk|
p−2∇uk,∇(Tm(uk)− Tm(u))−

)

dx ≤ Cm o(1) (4.50)

as k → +∞, with Cm a positive constant depending on m.

The choice and use of e−Tm(uk)(Tm(uk) − Tm(u))− as a test function
allows us to simplify conveniently the equation (4.48) in order to obtain the
desired result, the strong convergence. In fact, we proceed writing the left
hand side of (4.50) as

∫

Ω

(

|∇uk|
p−2∇uk,∇(Tm(uk)− Tm(u))−

)

dx

=

∫

Ω1

(

|∇Tm(uk)|
p−2∇Tm(uk)−|∇Tm(u)|p−2∇Tm(u),∇(Tm(uk)−Tm(u))−

)

dx

+

∫

Ω1

|∇Tm(u)|p−2
(

∇Tm(u),∇(Tm(uk)− Tm(u))−
)

dx

+

∫

Ω2

(

|∇uk|
p−2∇uk,∇(Tm(uk)− Tm(u))−

)

dx ≤ o(1).

(4.51)

Since (Tm(uk)−Tm(u))− ⇀ 0 weakly inW 1,p
0 (Ω) and (Tm(uk)−Tm(u))− → 0

a.e. in Ω, the second term on the right hand side of (4.51) can be estimated
as follows

∫

Ω1

|∇Tm(u)|p−2
(

∇Tm(u),∇(Tm(uk)− Tm(u))−
)

dx

=

∫

Ω
|∇Tm(u)|p−2

(

∇Tm(u),∇(Tm(uk)− Tm(u))−
)

dx

−

∫

Ω2

|∇Tm(u)|p−2
(

∇Tm(u),∇(Tm(uk)− Tm(u))−
)

dx

≤ o(1) −

∫

Ω2

|∇Tm(u)|p−2
(

∇Tm(u),∇(Tm(uk)− Tm(u))−
)

dx.

(4.52)

By Hölder’s inequality we obtain

∫

Ω1

|∇Tm(u)|p−2
(

∇Tm(u),∇(Tm(uk)− Tm(u))−
)

≤ o(1) + C||u||p−1

W 1,p
0 (Ω)

||χm∇Tm(u)||Lp(Ω) → 0 as k → +∞,

since by weak convergence the first term on the right hand side of (4.52) goes
to zero, while the second one goes to zero using (4.35) and the fact that, for
dominated convergence, χm∇Tm(u) → 0 strongly in Lp(Ω). Moreover, we
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observe that the last term in (4.51) is zero since (Tm(uk)−Tm(u))−χm = 0.
Finally, as above, by Lemma 4, equation (4.51) becomes

o(1) ≥

∫

Ω

(

|∇uk|
p−2∇uk,∇(Tm(uk)− Tm(u))−

)

dx

≥























C1(p)

∫

Ω

|∇(Tm(uk)− Tm(u))−|2

(|∇Tm(uk)|+ |∇Tm(u|)2−p
+ o(1) if 1 < p < 2,

C1(p)

∫

Ω
|∇(Tm(uk)− Tm(u))−|p + o(1) if p ≥ 2,

(4.53)

with C1(p) a positive constant depending on p. By (4.50) and (4.53) (using
(4.23) again), we get

||(Tm(uk)− Tm(u))−||W 1,p
0 (Ω) → 0 as k → +∞. (4.54)

From (4.41), (4.47) and (4.54) we have the desired result, i.e.

||(Tm(uk)− Tm(u))||
W 1,p

0 (Ω)
→ 0 as k → +∞.

�

In order to be able to pass to the limit, we prove now that |∇uk|
p →

|∇u|p strongly in L1(Ω). By Lemma 6, the sequence of the gradients con-
verges a.e. In order to use again Vitali’s Theorem we need to prove the
equi-integrability of |∇uk|

p.

Let E ⊂ Ω be a measurable set, then

∫

E
|∇uk|

pdx ≤

∫

E
|∇Tm(uk)|

pdx+

∫

{uk≥m}∩E
|∇uk|

pdx.

By Lemma 6, Tm(uk) → Tm(u) inW 1,p
0 (Ω) ∀m > 0 and therefore,

∫

E
|∇Tm(uk)|

pdx is uniformly small for |E| small enough.

Moreover, by Lemma 5 we obtain

∫

{uk≥m}∩E
|∇uk|

pdx ≤

∫

{uk≥m}
|∇uk|

pdx→ 0 as m → ∞,

uniformly on k. Then, Vitali’s Theorem implies that

|∇uk|
p → |∇u|p strongly in L1(Ω). (4.55)

Step 4: Passing to the limit in (4.11).
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Finally, since ||uk − u||
W 1,p

0 (Ω)
→ 0 as k → +∞, we conclude that u is a

distributional solution to the problem



















−∆pu+ |∇u|p = ϑ
uq

|x|p
+ f in Ω,

u ≥ 0 on ∂Ω,

u = 0 in Ω.

In particular, we point out that the equation is verified even in a stronger
way, that is

∫

Ω
|∇u|p−2(∇u,∇φ)dx+

∫

Ω
|∇u|pφdx = ϑ

∫

Ω

uq

|x|p
φdx+

∫

Ω
fφdx

for all φ ∈W 1,p
0 (Ω) ∩ L∞(Ω).

�

3 Qualitative properties: Symmetry of solutions

In this Section we are going to study a symmetry property of the solution
u to (4.5). To study this qualitative property, we will need a weighted
Poincare’s inequality. First, we are going to recall the following definition.

Definition 5. Assume Ω̃ ⊂⊂ Ω \ {0} and let ρ ∈ L1(Ω̃) and 1 ≤ q < ∞.
The space H1,q

ρ (Ω̃) is defined as the completion of C1(Ω̃) (or C∞(Ω̃)) with
the norm

‖v‖H1,q
ρ

= ‖v‖Lq(Ω̃) + ‖∇v‖Lq(Ω̃,ρ), (4.56)

where

‖∇v‖q
Lp(Ω̃,ρ)

:=

∫

Ω̃
ρ(x)|∇v(x)|qdx.

We also recall that H1,q
ρ (Ω̃) may be equivalently defined as the space of

functions with distributional derivatives represented by a function for which
the norm defined in (4.56) is bounded. These two definitions are equivalent
if the domain has piecewise regular boundary.
The space H1,q

0,ρ(Ω̃) is consequently defined as the completion of C1
c (Ω̃) (or

C∞
c (Ω̃)), w.r.t. the norm (4.56).

A short, but quite complete, reference for weighted Sobolev spaces is in
[65] and the references therein.
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Theorem 17. (Weighted Poincare’s inequality). Let p ≥ 2 and u ∈ C1,α(Ω\
{0}) be a solution of (4.5). Setting ρ = |∇u|p−2 and Ω̃ ⊂⊂ Ω \{0}, we have
that H1,2

0 (Ω̃, ρ) is continuously embedded in Lq(Ω̃) for 1 ≤ q < 2̂∗ where

1

2̂∗
=

1

2
−

1

N
+
p− 2

p− 1

1

N
.

Consequently, since 2̂∗ > 2, for w ∈ H1,2
0 (Ω̃, ρ) we have

‖w‖L2(Ω̃) 6 CS‖∇w‖L2(Ω̃,ρ) = CS

(
∫

Ω̃
ρ |∇w|2

)
1
2

, (4.57)

with CS = CS(Ω̃) → 0 if |Ω̃| → 0.

See a detailed proof in [49].

Notice that Theorem 17 holds for p ≥ 2. If 1 < p < 2 and |∇u| is
bounded, 1

ρ = 1
|∇u|2−p ≥ C and

c

∫

Ω̃
ρ|∇u|2 ≥ C̃

∫

Ω̃
|∇u|2 ≥

∫

Ω̃
u2,

therefore, the weighted Poincaré’s inequality (4.57) follows at once by the
classic Poincaré’s inequality.

In order to prove the symmetry of the solution we need the analysis of the
regularity of the solution u that is summarized in the following Subsection.

3.1 Local regularity of solutions

Given any solution u ∈ W 1,p
0 (Ω) to (4.5), the C1,α

loc (Ω \ {0}) regularity of
u follows by a classical regularity result, see [51, 93]. The arguments in
[51, 93] do not work up to the origin, because the singularity of the potential.
Moreover, if one assumes that the domain is smooth, the C1,α(Ω \ {0})
regularity up to the boundary follows by a result in [70].

The fact that the solutions to p-Laplace equations are not in general
C2(Ω), leads to the study of the summability properties of the second deriva-
tives of the solutions. This fact is important for the study of some qualitative
properties of these solutions. The results in [49] (and in [73] where appears
a more general equation with a gradient term as in (4.5)) hold outside the
singularity. In this direction we need some previous results.

To study the symmetry, one of the main ingredients is the Moving Plane
Method by Alexandroff and Serrin. To use this geometrical argument we
need the weighted Poincaré’s inequality in Theorem 17 and, in order to
obtain the weighted Poincaré’s inequality, we need the following summability
result for the gradient.
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Theorem 18. Assume 1 < p < N and consider u ∈ C1,α(Ω\{0}) a solution
to (4.5), with f ∈ C1(Ω \ {0}). Denoting ui =

∂u
∂xi

, we have

∫

Ω̃

|∇u|p−2−β|∇ui|
2

|x− y|γ
dx 6 C ∀ i = 1, . . . , N , (4.58)

for any Ω̃ ⊂⊂ Ω \ {0} and uniformly for any y ∈ Ω̃, with

C : = C
(

p , γ , β , f , q , ϑ , ‖u‖L∞(Ω̃) , ‖∇u‖L∞(Ω̃) , dist(Ω̃, {0})
)

,

for 0 6 β < 1 and γ < (N − 2) if N ≥ 3 (γ = 0 if N = 2).

If we also assume that f is nonnegative in Ω then, it follows that, actually

ϑ
uq

|x|p
+ f is strictly positive in the interior of Ω and for any Ω̃ ⊂⊂ Ω \ {0},

uniformly for any y ∈ Ω̃, we have that
∫

Ω̃

1

|∇u|t
1

|x− y|γ
dx 6 C∗, (4.59)

with max{(p − 2) , 0} 6 t < p − 1 and γ < (N − 2) if N ≥ 3 (γ = 0 if
N = 2). Moreover, C∗ depends on C.

See [49], [73] for a detailed proof.

Remark 4. Let Zu = {x ∈ Ω : ∇u(x) = 0}. It is clear that Zu is a closed set
in Ω and moreover, by (4.59) it follows implicitly that the Lebesgue measure

|Zu| = 0,

provided that f is nonnegative.

Notice that if |Zu| 6= 0, hence, there exists x such that ∇u(x) = 0.
Therefore, the integral in (4.59) would explode.

3.2 Previous statements and properties of the solutions

We precise some notations and statements to introduce the main arguments
to study the qualitative property of the solution u.

Let ν be a direction in RN with |ν| = 1. For a real number λ we set the
hyperplane

T ν
λ = {x ∈ RN : x · ν = λ}. (4.60)

Notice that 0 ∈ T ν
0 . Moreover, let us denote

Ων
λ = {x ∈ Ω : x · ν < λ}, (4.61)
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xνλ = Rν
λ(x) = x+ 2(λ− x · ν)ν, (4.62)

(which is the reflection trough the hyperplane T ν
λ ),

uνλ(x) = u(xνλ), (4.63)

a(ν) = inf
x∈Ω

x · ν. (4.64)

When λ > a(ν), since Ων
λ is nonempty, we set

(Ων
λ)

′ := Rν
λ(Ω

ν
λ) (4.65)

and finally, for λ > a(ν) we denote

λ1(ν) = sup{λ : (Ων
λ)

′ ⊂ Ω}. (4.66)

Here below we are going to prove some useful results.

Lemma 7. Assume ϑ > 0 and f ≥ 0. Consider u ∈W 1,p
0 (Ω) a nonnegative

weak solution to problem (4.5) founded by Theorem 14. Then,

lim
|x|→0

u(x) = +∞.

Proof. We consider as a test function ϕ = e−uψ, with ψ ∈W 1,p
0 (Ω)∩L∞(Ω),

thus, ϕ ∈W 1,p
0 (Ω)∩L∞(Ω). Then, using ϕ as test function in (4.5) we obtain

∫

Ω
−e−uψ|∇u|p−1∇udx+

∫

Ω
∇ψe−u|∇u|p−1dx+

∫

Ω
|∇u|pe−uψdx =

= ϑ

∫

Ω

uq

|x|p
e−uψdx+

∫

Ω
fe−uψdx.

Hence,
∫

Ω
∇ψe−u|∇u|p−1dx ≥ ϑ

∫

Ω

uq

|x|p
e−uψdx.

Therefore,
∫

Ω
|e−

u
p−1∇u|p−2(e

− u
p−1∇u,∇ψ)dx ≥ ϑ

∫

Ω

uq

|x|p

(

e
− u

p−1

)p−1
ψdx, (4.67)

being f(·) nonnegative. Defining v = 1− e
− u

p−1 , it follows

|∇v|p−2 =
∣

∣

∣

−e
−u
p−1

p− 1
∇u
∣

∣

∣

p−2
.

From (4.67), we get

Cp

∫

Ω
|∇v|p−2(∇v,∇ψ)dx ≥ ϑ

∫

Ω

uq

|x|p
(1− v)p−1ψdx. (4.68)
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Let us consider now uR the radial solution to the problem
{

−∆pu+ |∇u|p = C
|x|p in BR

u ≥ 0 in BR, u = 0 on ∂BR,
(4.69)

constructed as limit of the solutions, say uR,k, to the truncated problems, in
the same way as we did in Section 2 but setting here ϑ = 0, with C,R some
positive constants that we choose later. Moreover, for k fixed, since the
right hand side is not depending on u, it is easy to check that the solution
uR,k is unique. In particular, the reflected function uνR,k,λ will be a solution
too and, since uR,k is unique, uR,k = uνR,k,λ, then, uR,k must be radial

for all k. Finally, the strong convergence in W 1,p
0 (Ω) (and thus, pointwise

uR(x) = limk→∞ uR,k(x)) implies that the limit of uR,k will be radial too,
then, uR(x) = uR(|x|).

Then, by setting ϕ = e−uRψ, vR = 1− e−
uR
p−1 (as in equations (4.67) and

(4.68)), we have

Cp

∫

BR

|∇vR|
p−2(∇vR,∇ψ)dx =

∫

BR

C

|x|p
(1− vR)

p−1ψdx. (4.70)

We note that by the regularity of u, the function v (resp. vR) belongs to
W 1,p

0 (Ω)∩L∞(Ω) (toW 1,p
0 (BR)∩L

∞(BR)). Using (4.68) with ψ = (vR−v)
+,

R small such that BR ⊂⊂ Ω and, since u ≥ 0 in Ω; in particular, u ≥ 0
on ∂BR and v ≥ 0 as well. Otherwise, by definition uR = 0 on ∂BR, thus,
vR = 0 on ∂BR, therefore, vR < v on ∂BR and ψ ∈W 1,p

0 (Ω) ∩ L∞(Ω), thus

Cp

∫

BR

|∇v|p−2(∇v,∇(vR − v)+)dx

≥

∫

BR

uq

|x|p
(1− v)p−1(vR − v)+dx

≥

∫

BR

CR

|x|p
(1− v)p−1(vR − v)+dx

(4.71)

with CR = infBR
u(x) > 0 by the strong maximum principle and

Cp

∫

BR

|∇vR|
p−2(∇vR,∇(vR − v)+)dx

=

∫

BR

CR

|x|p
(1− vR)

p−1(vR − v)+dx,

(4.72)

where, in (4.69), we choose C = CR. Thus, subtracting (4.71) and (4.72) we
obtain

Cp

∫

BR

(|∇vR|
p−2∇vR − |∇v|p−2∇v,∇(vR − v)+)dx

=

∫

BR

CR

|x|p

(

(1− vR)
p−1 − (1− v)p−1

)

(vR − v)+dx.

(4.73)
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On the set BR ∩ {vR ≥ v}, the right hand side of (4.73) is nonpositive
and, therefore,

∫

BR

(|∇vR|
p−2∇vR − |∇v|p−2∇v,∇(vR − v)+)dx ≤ 0,

By Lemma 4, ∇(vR−v)
+ = 0, hence, (vR−v)

+ = C and, since (vR−v)
+ = 0

on ∂BR, (vR − v)+ = 0 in BR, that is (using the definition of v and vR and

the monotonicity of s = 1− e−
s

p−1 ),

1− e−
u

p−1 ≥ 1− e−
uR
p−1 then u ≥ uR. (4.74)

We are going to study the qualitative behavior of uR considering the test
function ϕ = e−uRψ, with ψ = ψ(|x|) belonging to W 1,p

0 (BR) ∩ L∞(BR).
Then, by (4.69) we have

∫ R

0
|∇uR|

p−2(∇uR, ψ
′)e−uR |x|N−1dx−

∫ R

0
|∇uR|

p−2(∇uR, ψ)|∇uR|e
−uRdx

+

∫ R

0
|∇uR|

pe−uRψdx =

∫ R

0

c

|x|p
e−uRψ|x|N−1dx.

Therefore,
∫ R

0
e−uR |u′R|

p−2(u′R, ψ
′)ρN−1dρ =

∫ R

0
CRe

−uRψρN−1−pdρ,

with ρ = |x|. By Hopf’s Lemma, if |x| = ρ 6= 0, ∇u(x) 6= 0, and by classical
regularity results for the Laplacian operator we have uR ∈ C2(BR \ {0})
and thus, integrating by parts,

∫ R

0
e−uR |u′R|

p−2(u′R, ψ
′)ρN−1dρ =

∫ R

0
(e−uR |u′R|

p−2|u′R|ψρ
N−1)dρ.

Therefore,
∫ R

0
ψ(e−uR |u′R|

p−2|u′R|ρ
N−1)dρ−

∫ R

0
CRe

−uRψρN−1−pdρ = 0,

thus,
∫ R

0
ψ(e−uR |u′R|

p−2|u′R|ρ
N−1 − CRe

−uRρN−1−p)dρ = 0.

Hence,
(

e−uR |u′R|
p−2(−u′R)ρ

N−1
)′

= CRe
−uRρN−1−p ∀ ρ 6= 0. (4.75)

Since uR(ρ) is positive and monotone decreasing w.r.t. ρ, we have the two
following cases:
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(i) either lim
ρ→0

uR(ρ) = C > 0;

(ii) or lim
ρ→0

uR(ρ) = +∞.

If we assume the case (i), from the expression (4.75), we have

(

e−uR |u′R|
p−2(−u′R)ρ

N−1
)′
/(ρN−p)′ → C as ρ→ 0,

for some positive constant C. Using L’Hôpital,

(

e−uR |u′R|
p−2(−u′R)ρ

N−1
)

/ρN−p → C as ρ→ 0.

Since uR(ρ) is positive and by (i),

(−u′R)
p−1 → C/ρp−1 as ρ→ 0.

Therefore, −u′R ≥ C/ρ + o(1) for ρ → 0, getting a contradiction with
the case (i). Then, the case (ii) holds and together with (4.74) it concludes
the proof. �

From now on we shall assume the following hypotheses:

(hp. 1) f(x) ∈ C1(Ω \ {0}) and f(x) ≥ 0;

(hp. 2) Monotonicity of f(·) in the ν−direction:

f(x) ≤ f(xνλ), ∀λ ∈ (a(ν) , λ1(ν)).

Define φρ(x) ∈ C
∞
c (Ω), φ ≥ 0 such that











φ ≡ 1 in Ω \B2ρ(0)

φ ≡ 0 in Bρ(0)

|∇φ| ≤ C
ρ in B2ρ(0) \Bρ(0),

(4.76)

where Bρ(0) denotes the open ball centered in 0 and with radius ρ > 0.

Lemma 8. Let u ∈ C1(Ω \ {0}) be a solution to (4.5) and let us define the
critical set

Zu = {x ∈ Ω : ∇u(x) = 0}.

Then, the set Ω \Zu does not contain any connected component C such that
C ⊂ Ω. Moreover, if we assume that Ω is a smooth bounded domain with
connected boundary, it follows that Ω \ Zu is connected.
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Proof. To prove the Lemma we proceed by contradiction. Assume that
such component exists, namely

C ⊂ Ω such that ∂C ⊂ Zu.

Recall that, by Remark 4, we have that

|Zu| = 0.

Thus,

−∆pu+ |∇u|p = ϑ
uq

|x|p
+ f(x) a.e. in Ω. (4.77)

For all ε > 0, we define Jε : R+ ∪ {0} → R in the following way

Jε(t) =











t if t ≥ 2ε

2t− 2ε if ε ≤ t ≤ 2ε

0 if 0 ≤ t ≤ ε.

(4.78)

We shall use

Ψ = e−uφρ(x)
Jε(|∇u|)

|∇u|
χC (4.79)

as a test function in (4.77), where φρ(x) is as in (4.76). Notice that the
function Ψ does not have problems in the critical set Zu because Ψ = 0 if
∇u(x) = 0. We point out that Ψ is well defined in C and, since ∂C ⊂ Zu,
Ψ is 0 on ∂C. In particular, suppΨ ⊂ C, which implies that Ψ ∈ W 1,p

0 (C).
Integrating by parts we get

∫

C
e−u

(

|∇u|p−2∇u,∇

(

Jε(|∇u|)

|∇u|

))

φρdx

+

∫

C
e−u(|∇u|p−2∇u,∇φρ)

Jε(|∇u|)

|∇u|
dx

−

∫

C
e−u|∇u|pφρ

Jε(|∇u|)

|∇u|
dx+

∫

C
e−u|∇u|pφρ

Jε(|∇u|)

|∇u|
dx

= ϑ

∫

C

uq

|x|p
e−uφρ

Jε(|∇u|)

|∇u|
dx+

∫

C
fe−uφρ

Jε(|∇u|)

|∇u|
dx,

(4.80)

notice that we have used the fact that the boundary term in the integration
is zero since ∂C ⊂ Zu and the definition of Ψ. Remarkably, using the test
function Ψ defined in (4.79), we are able to integrate on the boundary ∂C
which could be not regular. We estimate the first term on the left hand side
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of (4.80), denoting hε(t) =
Jε(t)

t
and since e−u ≤ 1,

∣

∣

∣

∣

∫

C
e−u

(

|∇u|p−2∇u,∇

(

Jε(|∇u|)

|∇u|

))

φρdx

∣

∣

∣

∣

≤ C

∫

C
|∇u|p−1|h′ε(|∇u|)||∇(|∇u|)|φρdx

≤ C

∫

C
|∇u|p−2

(

|∇u|h′ε(|∇u|)
)

||D2u||φρdx.

(4.81)

We show now the following claim.

Claim.

(i) |∇u|p−2||D2u||φρ ∈ L1(C) ∀ρ > 0;

(ii) |∇u|h′ε(|∇u|) → 0 a.e. in C as ε → 0 and |∇u|h′ε(|∇u|) ≤ C with C
not depending on ε.

Let us prove (i).

By Hölder’s inequality it follows that
∫

C
|∇u|p−2||D2u||φρdx

≤ C(C)

(
∫

C
|∇u|2(p−2)||D2u||2φ2ρdx

)
1
2

= C

(
∫

C
|∇u|p−2−β||D2u||2φ2ρ|∇u|

p−2+βdx

)
1
2

.

(4.82)

Notice that φρ = 0 in Bρ and, taking into account that we are looking away
from the singularity, φ2ρ|∇u|

p−2+β is bounded since β can be any value with
0 ≤ β < 1,

∫

C
|∇u|p−2||D2u||φρdx

≤ C||∇u||
(p−2+β)/2
L∞(C\Bρ)

(

∫

C\Bρ

|∇u|p−2−β||D2u||2dx

)
1
2

≤ C,

where we have used also Theorem 18 to conclude (i).

Let us prove (ii). Exploiting the definition (4.78), by straightforward
calculation we obtain

h′ε(t) =











0 if t ≥ 2ε
2ε
t2

if ε ≤ t ≤ 2ε

0 if 0 ≤ t ≤ ε,
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and then, we have

|∇u|h′ε(|∇u|) =











0 if ∇u ≥ 2ε
2ε

|∇u| if ε ≤ ∇u ≤ 2ε

0 if 0 ≤ ∇u ≤ ε.

Thus,

|∇u|h′ε(|∇u|) → 0 a.e. for ε→ 0 in C. Notice also that in ε ≤ ∇u ≤ 2ε,
2ε

|∇u| ≤ 2; hence, |∇u|h′ε(|∇u|) ≤ 2.

Then, by the Claim (using Dominated Convergence Theorem) and equa-
tion (4.81) we have
∫

C
e−u

(

|∇u|p−2∇u,∇

(

Jε(|∇u|)

|∇u|

))

φρdx→ 0 as ε→ 0, ∀ρ > 0.

Since hε(t) ≤ Jε(t), by the Dominated Convergence Theorem, exploiting
(4.78) and passing to the limit in (4.80), it follows
∫

C
e−u(|∇u|p−2∇u,∇φρ)dx = ϑ

∫

C

uq

|x|p
e−uφρdx+

∫

C
fe−uφρdx ∀ρ > 0.

Then, using the definition of φρ, we obtain
∫

B2ρ\Bρ

e−u(|∇u|p−2∇u,∇φρ)dx = ϑ

∫

C

uq

|x|p
e−uφρdx+

∫

C
fe−uφρdx.

(4.83)

Letting ρ → 0 in (4.83), by Hölder’s inequality and since e−u ≤ C, we
estimate the left hand side as

∣

∣

∣

∣

∣

∫

B2ρ\Bρ

e−u(|∇u|p−2∇u,∇φρ)dx

∣

∣

∣

∣

∣

≤ C

(

∫

B2ρ\Bρ

|∇u|pdx

)
p−1
p
(

∫

B2ρ\Bρ

|∇φρ|
pdx

)
1
p

≤ C

(

(2ρ− ρ)
N

p−1 (

∫

Ω
|∇u|pdx)

1
p−1

)
p−1
p
(C

ρp
)

1
p

= C
(

ρ
N
p ||u||W 1,p

0 (Ω)

) C

ρ
=

(

ρN

ρp

)

1
p

→ 0, as ρ→ 0,

where we used also that |∇φρ| ≤
C

ρ
and p < N . On the other hand, for

ρ → 0, the right hand side of (4.83), by Dominated Convergence Theorem,
becomes

ϑ

∫

C

uq

|x|p
e−udx+

∫

C
fe−udx > 0,
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which is a contradiction.

If Ω is smooth, since the right hand side of (4.77) is positive, by Hopf’s
Lemma (see [82]), a neighborhood of the boundary belongs to a component
C of Ω \ Zu. By what we have just proved above, a second component
C′ can not be contained compactly in Ω. Thus, Ω \ Zu is connected.

�

3.3 Comparison principles

In order to use the Moving Plane Method, we need to prove the following
proposition

Proposition 4 (Weak Comparison Principle). Let λ < 0 and Ω̃ be a
bounded domain such that Ω̃ ⊂⊂ Ων

λ. Assume that u ∈ C1(Ω \ {0}) is a
solution to (4.5) such that u ≤ uνλ on ∂Ω̃. Then, there exists a positive

constant δ = δ
(

λ, dist(Ω̃, ∂Ω)
)

such that if we assume |Ω̃| ≤ δ, then it holds

u ≤ uνλ in Ω̃.

Proof. We have (in the weak sense)

− ∆pu+ |∇u|p = ϑ
uq

|x|p
+ f in Ω, (4.84)

− ∆pu
ν
λ + |∇uνλ|

p = ϑ
(uνλ)

q

|xνλ|
p
+ f νλ in Ω, (4.85)

where f νλ (x) = f(xνλ).

Let us set φνρ,λ(x) = φρ(x
ν
λ), with φρ(·) as in (4.76). By contradiction,

we assume the statement false and we consider

(i) e−u(u− uνλ)
+(φνρ,λ)

2χΩ̃ ∈W 1,p
0 (Ω̃), as a test function in (4.84);

(ii) e−uν
λ(u− uνλ)

+(φνρ,λ)
2χΩ̃ ∈W 1,p

0 (Ω̃), as a test function in (4.85).

Notice that, by Lemma 7 we have that lim
|x|→0

u(x) = +∞. This, together

with the fact that u ∈ L∞(Ω̃), implies that (see expression (4.62))

0νλ = Rν
λ(0) 6∈ supp(u− uνλ)

+, (4.86)
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because if 0νλ ∈ supp(u − uνλ)
+, u > uνλ in Rν

λ(0) but when x is near the 0,
uνλ = ∞ thus, u >∞, which is a contradiction with the fact that u ∈ L∞(Ω̃).

Therefore, Rν
λ(0) 6∈ supp(u − uνλ)

+ which implies that supp(u − uνλ)
+ is

away from 0 and ∇u is bounded in this support.

Then, if we subtract (in the weak formulation) (4.84) and (4.85), we get

∫

Ω̃
(e−uν

λ − e−uν
λ + e−u)(|∇u|p−2∇u,∇(u− uνλ)

+)(φνρ,λ)
2dx

+

∫

Ω̃
Ce−u(|∇u|p−2∇u, (u− uνλ)

+)|∇φνρ,λ|φ
ν
ρ,λdx

−

∫

Ω̃
e−u(|∇u|p, (u− uνλ)

+)(φνρ,λ)
2dx+

∫

Ω̃
e−u(|∇u|p, (u− uνλ)

+)(φνρ,λ)
2dx

−

∫

Ω̃
e−uν

λ(|∇uνλ|
p−2∇uνλ,∇(u− uνλ)

+)(φνρ,λ)
2dx

−

∫

Ω̃
e−uν

λC(|∇uνλ|
p−2∇uνλ, (u− uνλ)

+)|∇φνρ,λ|φ
ν
ρ,λdx

+

∫

Ω̃
e−uν

λ(|∇uνλ|
p, (u− uνλ)

+)(φνρ,λ)
2 − e−uν

λ(|∇uνλ|
p, (u− uνλ)

+)(φνρ,λ)
2dx

= ϑ

∫

Ω̃
e−u u

q

|x|p
(u− uνλ)

+(φνρ,λ)
2dx− ϑ

∫

Ω̃
e−uν

λ
(uνλ)

q

|xνλ|
p
(u− uνλ)

+(φνρ,λ)
2dx

+

∫

Ω̃
e−uf(x)(u− uνλ)

+(φνρ,λ)
2dx−

∫

Ω̃
e−uν

λf(xνλ)(u− uνλ)
+(φνρ,λ)

2dx.

Groping the terms, we obtain

∫

Ω̃
e−uν

λ(|∇u|2∇u− |∇uνλ|
p−2∇uνλ,∇(u− uνλ)

+)(φνρ,λ)
2dx

+

∫

Ω̃
(e−u − e−uν

λ)(|∇u|2∇u,∇(u− uλν )+)(φνρ,λ)
2dx

+

∫

Ω̃
C(e−u|∇u|p−2∇u− e−uν

λ |∇uνλ|
p−2∇uνλ,∇φ

ν
ρ,λ)(u− uνλ)

+φνρ,λdx

= ϑ

∫

Ω̃
e−u u

q

|x|p
(u− uνλ)

+(φνρ,λ)
2dx− ϑ

∫

Ω̃
e−uν

λ
(uνλ)

q

|xνλ|
p
(u− uνλ)

+(φνρ,λ)
2dx

+

∫

Ω̃
e−uf(x)(u− uνλ)

+(φνρ,λ)
2dx−

∫

Ω̃
e−uν

λf(xνλ)(u− uνλ)
+(φνρ,λ)

2dx.
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Since
∫

Ω̃
e−uν

λ(|∇u|p−2∇u− |∇uνλ|
p−2∇uνλ,∇(u− uνλ)

+)(φνρ,λ)
2dx

+

∫

Ω̃
(e−u − e−uν

λ)(|∇u|p−2∇u,∇(u− uλν )+)(φνρ,λ)
2dx

+

∫

Ω̃
C(e−u|∇u|p−2∇u− e−uν

λ |∇uνλ|
p−2∇uνλ,∇φ

ν
ρ,λ)(u− uνλ)

+φνρ,λdx

≥

∫

Ω̃
e−uν

λ(|∇u|2∇u− |∇uνλ|
p−2∇uνλ,∇(u− uνλ)

+)(φνρ,λ)
2dx

−

∫

Ω̃

∣

∣

∣
(e−u − e−uν

λ)(|∇u|2∇u,∇(u− uλν )+)(φνρ,λ)
2
∣

∣

∣
dx

−

∫

Ω̃

∣

∣

∣
C(e−u|∇u|p−2∇u− e−uν

λ |∇uνλ|
p−2∇uνλ,∇φ

ν
ρ,λ)(u− uνλ)

+φνρ,λ

∣

∣

∣
dx,

we can write
∫

Ω̃
e−uν

λ(|∇u|p−2∇u− |∇uνλ|
p−2∇uνλ,∇(u− uνλ)

+)(φνρ,λ)
2dx

≤

∫

Ω̃

∣

∣(e−u − e−uν
λ)(|∇u|p−2∇u,∇(u− uνλ)

+)
∣

∣ (φνρ,λ)
2dx

+ C

∫

Ω̃

∣

∣(e−u|∇u|p−2∇u− e−uν
λ |∇uνλ|

p−2∇uνλ,∇φ
ν
ρ,λ)
∣

∣ (u− uνλ)
+φνρ,λdx

+ ϑ

∫

Ω̃
e−u u

q

|x|p
(u− uνλ)

+(φνρ,λ)
2dx− ϑ

∫

Ω̃
e−uν

λ
(uνλ)

q

|xνλ|
p
(u− uνλ)

+(φνρ,λ)
2dx

+

∫

Ω̃
e−uf(x)(u− uνλ)

+(φνρ,λ)
2dx−

∫

Ω̃
e−uν

λf(xνλ)(u− uνλ)
+(φνρ,λ)

2dx.

(4.87)

The term in the third line of (4.87) can be estimated using the definition of
φνρ,λ, Hölder’s inequality, the condition p < N and taking into account that
if u > uνλ, u− uνλ ≤ ||u||+ ||uνλ|| ≤ C||u||,

C

∫

Ω̃

∣

∣(e−u|∇u|p−2∇u− e−uν
λ |∇uνλ|

p−2∇uνλ,∇φ
ν
ρ,λ)
∣

∣ (u− uνλ)
+φνρ,λdx

≤ C(||u||L∞(Ων
λ
))

∫

Ω̃

∣

∣|∇u|p−1 + |∇uνλ|
p−1
∣

∣ |∇φνρ,λ|φ
ν
ρ,λdx

≤ C||u|L∞(Ων
λ)

[(

∫

Ω̃
|∇u|pdx

)
p−1
p
(

∫

Ω̃
|∇φνρ,λ|

pdx
)

1
p

+
(

∫

Ω̃
|∇uνλ|

pdx
)

p−1
p
(

∫

Ω̃
|∇φνρ,λ|

pdx
)

1
p
]

≤ C(||u||L∞(Ων
λ
))

(
∫

Ω̃
(|∇u|p + |∇uνλ|

p)dx

)
p−1
p

(

∫

B2ρ\Bρ

|∇φνρ,λ|
pdx

)
1
p

.
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Since u, uνλ ∈W 1,p(Ω̃) and by the definition of φνρ,λ,

C

∫

Ω̃

∣

∣(e−u|∇u|p−2∇u− e−uν
λ |∇uνλ|

p−2∇uνλ,∇φ
ν
ρ,λ)
∣

∣ (u− uνλ)
+φνρ,λdx

≤ C|B2ρ −Bρ|
1
p

(C

ρ

)p
ρN−1 → 0 as ρ→ 0.

Notice that we are considering the set Ω̃∩{u ≥ uλ} and, therefore, |x| ≥ |xνλ|
and 1

|x| ≤
1

|xν
λ
| .

Recall also that since we are in this set, −e−uν
λ ≥ −e−u. Using the last

estimation, equation (4.87) becomes

∫

Ω̃
e−uν

λ(|∇u|p−2∇u− |∇uνλ|
p−2∇uνλ,∇(u− uνλ)

+)(φνρ,λ)
2dx

≤

∫

Ω̃

∣

∣(e−u − e−uν
λ)(|∇u|p−2∇u,∇(u− uνλ)

+)
∣

∣ (φνρ,λ)
2dx

+ ϑ

∫

Ω̃
e−u

(

uq − (uνλ)
q

|x|p

)

(u− uνλ)
+(φνρ,λ)

2dx

+

∫

Ω̃
e−u (f(x)− f(xνλ)) (u− uνλ)

+(φνρ,λ)
2dx+ o(1).

By (hp.2), f(x) ≤ f(xνλ), it follows that the last term in the previous
equation is negative.

Taking into account also that for λ < 0, the distance to any point to 0
is positive, that is, |x| ≥ C in Ων

λ for some positive constant C, one has

∫

Ω̃
e−uν

λ(|∇u|p−2∇u− |∇uνλ|
p−2∇uνλ,∇(u− uνλ)

+)(φνρ,λ)
2dx

≤

∫

Ω̃

∣

∣(e−u − e−uν
λ)(|∇u|p−2∇u,∇(u− uνλ)

+)
∣

∣ (φνρ,λ)
2dx

+ C3

∫

Ω̃
[(u− uνλ)

+]2(φνρ,λ)
2dx+ o(1),

(4.88)

with C3 = C3

(

λ, ϑ, ||u||L∞(Ων
λ
), dist(Ω̃, ∂Ω)

)

.

We note that, in the last inequality, we have used the fact that the term
uq − (uνλ)

q is locally Liptschitz continuous in (0,+∞), hence, uq − (uνλ)
q ≤

C(u − uνλ) and the fact that, by strong maximum principle (see [82]), the
solution u is strictly positive in Ω̃.

Thus, since the term (e−u − e−uν
λ) is locally Lipschitz continuous and
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since 1

e
uν
λ
≥ C, from (4.88) and by Lemma 4, we get

C1

∫

Ω̃
(|∇u|+ |∇uνλ|)

p−2|∇(u− uνλ)
+|2(φνρ,λ)

2dx

≤ C2

∫

Ω̃
|∇u|p−1|∇(u− uνλ)

+|(u− uνλ)
+(φνρ,λ)

2dx

+ C3

∫

Ω̃
[(u− uνλ)

+]2(φνρ,λ)
2dx+ o(1),

(4.89)

with C1 = C1(p, ||u||L∞(Ων
λ)
) and C2 = C2(||u||L∞(Ων

λ)
) positive constants.

We are going to split the proof in two cases.

Case: p ≥ 2. Let us evaluate the terms on the right hand side of the
inequality (4.89). Exploiting the weighted Young’s inequality and taking
into account that u ∈W 1,p

0 (Ω̃), we get

C2

∫

Ω̃
|∇u|p−1|∇(u− uνλ)

+|(u− uνλ)
+(φνρ,λ)

2dx

≤ εC2

∫

Ω̃
|∇u|p−2|∇(u− uνλ)

+|2(φνρ,λ)
2dx+

C2

ε

∫

Ω̃
|∇u|p[(u− uνλ)

+]2(φνρ,λ)
2dx

≤ εC2

∫

Ω̃
(|∇u|+ |∇uνλ|)

p−2|∇(u− uνλ)
+|2(φνρ,λ)

2dx

+ C̃2

∫

Ω̃
[(u− uνλ)

+]2(φνρ,λ)
2dx,

(4.90)

with C̃2 = C̃2(ε, ||u||L∞(Ων
λ
), ||∇u||L∞(Ων

λ
)) a positive constant. Since p > 2,

we also used |∇u|p−2 ≤ (|∇u|+ |∇uνλ|)
p−2.

Thus, choosing ε sufficiently small such that C1 − εC2 ≥ C̃1 > 0, using
(4.90), equation (4.89) becomes

∫

Ω̃
(|∇u|+ |∇uνλ|)

p−2|∇(u− uνλ)
+|2(φνρ,λ)

2dx

≤ C

∫

Ω̃
[(u− uνλ)

+]2(φνρ,λ)
2dx+ o(1),

(4.91)

for some positive constant C = C̃2+C3

C̃1
.

By weighted Poincaré’s inequality (see Theorem 17) and the definition
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of φνρ,λ, we get

C

∫

Ω̃
[(u− uνλ)

+]2(φνρ,λ)
2dx

≤ C̃C2
p(Ω̃)

∫

Ω̃
|∇u|p−2|∇(u− uλ)

+|2(φνρ,λ)
2dx

+ C∗(||u||L∞(Ων
λ)
, ||∇u||L∞(Ων

λ)
)

∫

B2ρ\Bρ

|∇φνρ,λ|
2dx+ o(1)

≤ C̃C2
p(Ω̃)

∫

Ω̃
(|∇u|+ |∇uνλ|)

p−2|∇(u− uλ)
+|2(φνρ,λ)

2dx+ o(1),

(4.92)

as before, since N > p > 2, we have |∇u|p−2 ≤ (|∇u|+ |∇uνλ|)
p−2 and

∫

B2ρ\Bρ

|∇φνρ,λ|
2dx→ 0 as ρ→ 0.

Concluding, collecting the estimates (4.91) and (4.92) we get
∫

Ω̃
(|∇u|+ |∇uνλ|)

p−2|∇(u− uνλ)
+|2(φνρ,λ)

2dx

≤ C̃C2
p(Ω̃)

∫

Ω̃
(|∇u|+ |∇uνλ|)

p−2|∇(u− uλ)
+|2(φνρ,λ)

2dx+ o(1).

(4.93)

Since (see Theorem 17) Cp(Ω̃) goes to zero provided the Lebesgue measure
of Ω̃ goes to 0, if |Ω̃| ≤ δ, with δ (depending on λ) sufficiently small, we
assume Cp(Ω̃) so small such that

C̃C2
p(Ω̃) < 1.

Notice that, since the definition of φνρ,λ,

∫

Ω̃
(|∇u|+ |∇uνλ|)

p−2|∇(u− uνλ)
+|2(φνρ,λ)

2dx

≤

∫

Ω̃
(|∇u|+ |∇uνλ|)

p−2|∇(u− uνλ)
+|2dx.

Thus, letting ρ→ 0 in (4.93), by the Dominated Convergence Theorem
we get the contradiction, showing that, actually, (u−uνλ)

+ = 0 and then the
thesis for p ≥ 2. We point out that here (p ≥ 2) we do not need to assume
that |∇u| is bounded.

Let us consider now the other interval of p.

Case: 1 < p < 2. From (4.86) we infer that |∇u|, |∇uνλ| ∈ L∞(Ω̃∩ {u ≥
uνλ}) and, therefore we have that (u − uνλ)

+ ∈ W 1,2(Ω̃ ∩ {u ≥ uνλ}). Then,



106 4. Existence and qualitative properties for the p-Laplacian

the conclusion follows using the classical Poincaré inequality: in fact, since
p < 2, the term (|∇u| + |∇uνλ|)

p−2 is bounded below being |∇u|, |∇uνλ| ∈
L∞(Ω̃ ∩ {u ≥ uνλ}). Then, equation (4.89) gives

C1

∫

Ω̃∩{u≥uν
λ}
(|∇u|+ |∇uνλ|)

p−2|∇(u− uνλ)
+|2(φνρ,λ)

2dx

≤ C1

∫

Ω̃∩{u≥uν
λ}

|∇(u− uνλ)
+|2(φνρ,λ)

2dx

≤ C2

∫

Ω̃∩{u≥uν
λ}

|∇(u− uνλ)
+|(u− uνλ)

+(φνρ,λ)
2dx

+ C3

∫

Ω̃∩{u≥uν
λ}
[(u− uνλ)

+]2(φνρ,λ)
2dx+ o(1).

(4.94)

By Dominated Convergence Theorem and by the definition of φνρ,λ, the last
expression states as

C1

∫

Ω̃∩{u≥uν
λ
}
|∇(u− uνλ)

+|2dx

≤ C2

∫

Ω̃∩{u≥uν
λ
}
|∇(u− uνλ)

+|(u− uνλ)
+dx+ C3

∫

Ω̃∩{u≥uν
λ
}
[(u− uνλ)

+]2dx+o(1)

and by weighted Young’s inequality, arguing as above (see equation (4.90)),

C1

∫

Ω̃∩{u≥uν
λ}

|∇(u− uνλ)
+|2dx ≤ εC2

∫

Ω̃∩{u≥uν
λ}

|∇(u− uνλ)
+|2dx

+
C2

ε

∫

Ω̃∩{u≥uν
λ}
((u− uνλ)

+)2dx+ C3

∫

Ω̃∩{u≥uν
λ}
[(u− uνλ)

+]2dx+ o(1).

For fixed small ε such that

C1 − εC2 ≥ C̃1 > 0,

we have
∫

Ω̃∩{u≥uν
λ
}
|∇(u− uνλ)

+|2dx ≤ C

∫

Ω̃∩{u≥uν
λ
}
[(u− uνλ)

+]2dx, (4.95)

with C =
C2 + εC3

εC̃1

. The conclusion follows using the classical Poincaré’s

inequality in (4.95), i.e.
∫

Ω̃∩{u≥uν
λ}

|∇(u− uνλ)
+|2dx ≤ CC2

p(Ω̃)

∫

Ω̃∩{u≥uν
λ}

|∇(u− uνλ)
+|2dx,

choosing δ = δ(λ) ≥ |Ω̃| small such that CC2
p(Ω̃) < 1 and then, getting

(u− uνλ)
+ = 0. �
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3.4 The moving plane method

In this last part of the Chapter, we complete the proof of Theorem 15. Now
we are able to use the Moving Plane Method.

We refer to the notations and definitions of preliminaries, (equations
(4.60) - (4.66)). To prove Theorem 15, we first need the following result

Proposition 5. Let u ∈ C1,α(Ω \ {0}) be a solution to problem (4.5). Set

λ01(ν) := min{0 , λ1(ν)},

where λ1(ν) is defined in (4.66). Then, for any a(ν) ≤ λ ≤ λ01(ν), we have

u(x) ≤ uνλ(x), ∀x ∈ Ων
λ. (4.96)

Moreover, for any λ with a(ν) < λ < λ01(ν), we have

u(x) < uνλ(x), ∀x ∈ Ων
λ \ Zu,λ, (4.97)

where Zu,λ ≡ {x ∈ Ων
λ : ∇u(x) = ∇uνλ(x) = 0}. Finally,

∂u

∂ν
(x) ≥ 0, ∀x ∈ Ων

λ1(ν)
. (4.98)

Proof. Let a(ν) < λ < λ01(ν) with λ sufficiently close to a(ν). By Hopf’s
Lemma, it follows that for a neighborhood of the boundary, ∇u(x) > 0,
thus, u and uνλ are ordered on ∂Ων

λ. Therefore, by Proposition 4 (since |Ων
λ|

is small enough because λ is sufficient close to a(ν)),

u− uνλ ≤ 0 in Ων
λ.

We now define the set where the functions are ordered,

Λ0 = {λ > a(ν) : u ≤ ut in Ων
t for all t ∈ (a(ν), λ]} (4.99)

and
λ0 = sup Λ0. (4.100)

Notice that by continuity we obtain u ≤ uνλ0
in Ων

λ0
. We have to show that

λ0 = λ01(ν). Assume by contradiction that λ0 < λ01(ν) ≤ 0 and let Aλ0 ⊂ Ων
λ0

be an open set such that Zu,λ0 ∩Ων
λ0

⊂ Aλ0 ⊂⊂ Ω. Such set exists by Hopf’s
Lemma because by this Lemma there exists, at least, a neighborhood of ∂Ω
such that ∇u(x) 6= 0 and then, x /∈ Zu and Aλ0 ⊂⊂ Ω.

Notice also that, since |Zu,λ0 | = 0 as we remarked above, we can take Aλ0

with measure arbitrarily small. Since we are working in Ων
λ0

which is away
from 0, we have that the weight 1/|x|p is not singular there. Moreover, in a
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neighborhood of the reflected point of the origin 0νλ, we know, by Lemma 7,
that u < uνλ0

. Since elsewhere 1/|xνλ|
p is not singular and u,∇u, uνλ,∇u

ν
λ

are bounded, we can exploit the strong comparison principle, see e.g. [82,
Theorem 2.5.2], to get that

u < uνλ0
or u ≡ uνλ0

in any connected component of Ων
λ0

\ Zu. It follows that

• the case u ≡ uνλ0
in some connected component C of Ωλ0 \ Zu,λ0 is

not possible, since if u ≡ uνλ0
, when we are close to Zu, ∇u = ∇uνλ0

and, by symmetry, it would imply the existence of a local symmetry
phenomenon and consequently that Ω \Zu,λ0 would be not connected,
in spite of the result showed in Lemma 8.

Note also that, since the domain is strictly convex, by Hopf’s Lemma if
u is near to the hyperplane Tλ0 , there exists a neighborhood of ∂Ων

λ0
such

that ∇u(x) > 0 and, then, there are monotony. If u is on ∂Ων
λ0

but far
from the hyperplane T ν

λ0
, the Dirichlet condition (see e.g. [48]), implies that

u = 0 at the boundary, but uνλ0
> 0 in the interior, then, we get that there

exists a neighborhood Nλ0 of ∂Ων
λ0

∩ ∂Ω where u < uνλ0
in Nλ0 .

We deduce that there exists a compact set K in Ων
λ0

such that

- |Ων
λ0

\
(

(K \Aλ0)∪Nλ0

)

| is sufficiently small so that Proposition 4 can
be used.

- uνλ0
− u is positive in (K \ Aλ0) ∪ Nλ0 , because u

ν
λ0

− u is positive in
Ων
λ0

\ Zu and K is a subset of Ων
λ0

and we just proved also that there
exists a set Nλ0 where uνλ0

− u is positive..

Therefore, since K \ Aλ0 is a compact set, by continuity (and redefining
Aλ0+ε as small as we want and Nλ0+ε, exploiting Hopf’s Lemma) we find
ε > 0 such that

- |Ων
λ0+ε\

(

(K\Aλ0+ε)∪Nλ0+ε

)

| is sufficiently small so that Proposition 4
applies.

- uνλ0+ε − u is positive in (K \ Aλ0+ε) ∪Nλ0+ε.

Since uνλ0+ε − u > 0 in K \ Aλ0+ε, then uνλ0+ε − u > 0 on ∂(K \ Aλ0+ε)

because K is compact. Hence, uνλ0+ε − u ≥ 0 on ∂
(

(K \ Aλ0+ε) ∪ Nλ0+ε

)

.

Since ∂
(

Ων
λ0+ε\(K \Aλ0+ε)∪Nλ0+ε

)

= ∂
(

K \Aλ0+ε)∪Nλ0+ε

)

∪T ν
λ0+ε and,
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since u = uνλ0+ε in T ν
λ0+ε, u ≤ uνλ0+ε on ∂

(

Ων
λ0+ε \

(

(K \Aλ0+ε)∪Nλ0+ε

))

.

By Proposition 4 it follows u ≤ uνλ0+ε in Ων
λ0+ε \

(

(K \Aλ0+ε)∪Nλ0+ε

)

and

since u < uνλ0+ε in (K\Aλ0+ε)∪Nλ0+ε, u ≤ uνλ0+ε in Ων
λ0+ε, what contradicts

the assumption λ0 < λ01(ν). Therefore, λ0 ≡ λ01(ν) and the thesis is proved.

We point out that we are exploiting Proposition 4 in the set Ων
λ0+ε \

(

(K \ Aλ0+ε) ∪ Nλ0+ε

)

which is bounded away from the boundary ∂Ω and

then, the constant δ in the statement is uniformly bounded.

The proof of (4.97) follows by the strong comparison theorem applied as
above; because since Ων

λ \ Zu,λ has one connected component, u < uνλ or
u ≡ uνλ in all Ων

λ \ Zu,λ, but the case u ≡ uνλ is not possible (as we saw
before), thus, u < uνλ in Ων

λ \ Zu,λ for any λ < λ01(ν).

Finally, (4.98) follows considering x1 ≤ x2 and taking the hyperplane which
is in the middle of u(x1) and u(x2). By (4.96), u(x) ≤ u(xνλ) in Ων

λ, with
λ ≤ λ01. Thus, taking x = x1 and x2 = xν1λ, u(x1) ≤ u(xν1λ) = u(x2) and
then u(x1) ≤ u(x2). Hence, the monotonicity follows. �

Proof of Theorem 15:

Since Ω is strictly convex w.r.t. the ν−direction and symmetric w.r.t.
to (see equation (4.60))

T ν
0 = {x ∈ RN : x · ν = 0},

it follows by Proposition 5, being λ1(ν) = 0 = λ01(ν) in this case, that

u(x) ≤ uνλ(x) for x ∈ Ων
0 .

In the same way, performing the Moving Plane Method in the opposite
direction, −ν, we obtain

u(x) ≥ uνλ(x) for x ∈ Ων
0 ,

that is, u is symmetric and non decreasing w.r.t. the ν−direction, since
monotonicity follows by (4.98).

Finally, if Ω is a ball, repeating this argument along any direction, it

follows that u is radially symmetric. The fact that
∂u

∂r
(r) < 0 for r 6= 0,
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follows by the Hopf’s boundary Lemma which works in this case since the
level sets are balls and the Hopf’s boundary Lemma works in each level set
and therefore, fulfill the interior sphere condition.

�
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Chapter 5

Regularization by a concave term

1 Introduction and some preliminaries

The existence of solution to the supercritical problem







−∆u =
up

|x|2
, u ≥ 0 in Ω,

u = 0 on ∂Ω,
(5.1)

with 0 ∈ ∂Ω and 1 < p < 2∗ − 1 has been studied in the paper [50]. The
existence of solution in this case depends on the geometry of the domain.
J. Dávila and I. Peral find solution to problem (5.1) for a specific type of
domain and they get also a nonexistence result for a starshaped domains.
In the next Chapter we will explain deeply this argument and we generalize
it for the p-Laplacian operator.

In this Chapter we perturb problem (5.1) in order to get solutions with-
out restriction on the domain. In this way, we avoid the lack of the existence
that it has been introduced in [50].

To get this result we add a regularizing zero order term in the right hand
side of problem (5.1). More precisely, we study the existence of solutions to
the model problem







−∆u =
up

|x|2
+ λuq, u ≥ 0 in Ω,

u = 0 on ∂Ω,
(5.2)

with p ≥ 1, 0 < q < 1 and 0 ∈ ∂Ω. We prove that for any smooth domain
Ω there exists a solution for a positive interval of λ.

We use a Sattinger’s monotonicity argument (see [85]) to get the solution.
A nonexistence result for λ large is also studied in this Chapter.

To obtain the solution we are going to use the following classical existence
and regularity results

Theorem 19. Let ρ ≥ C, f(t)
t decreasing and consider Ω a bounded domain,



114 5. Regularization by a concave term

then, the problem
{

−∆u = ρ(x)f(u) in Ω,

u = 0 on ∂Ω,

has a unique solution.

The existence is given by minimization and the proof of the uniqueness
can be seen in [35].

Theorem 20. Let Ω be a bounded domain in R and consider the problem
{

−∆u = f in Ω,

u = 0 on ∂Ω,
(5.3)

• (i) If f ∈ Lp(Ω) with 1 < p < +∞, then, (5.3) has a unique weak
solution u ∈W 1,2

0 (Ω) ∩W 2,p(Ω) such that

||u||W 2,p(Ω) ≤ C||f ||Lp(Ω)

• (ii) If Ω is of the class C2,α and f ∈ C0,α(Ω), then, u ∈ C2,α(Ω).

See details in [15].

We recall also some Hölder-regularity result for weak solutions.

Theorem 21. Let Ω be a bounded open subset of RN , with a C1 boundary.
Assume u ∈W k,p(Ω).

• If k < N
p , then u ∈ Lq(Ω) where

1

q
=

1

p
−
k

N
.

We have in addition the estimate

||u||Lq(Ω) ≤ C||u||W k,p(Ω),

with the constant C depending only on k, p,N and Ω.

• If k > N
p , then u ∈ C

k−[N
p
]−1,α

(Ω). In addition we have,

||u||
C

k−[Np ]−1,α
(Ω)

≤ C||u||W k,p(Ω),

with the constant C depending only on k, p,N and Ω.

We introduce the following Theorem that we will use to get the Lipschitz
regularity up to the boundary. See details in [42].



5.2. Existence result for an interval of λ 115

Theorem 22. Let Ω be a bounded subset of RN with N ≥ 3, such that
∂Ω ∈ C1,α(Ω). Assume that f ∈ LN,1(Ω), where LN,1(D) denotes the cor-
responding Lorentz space. Recall that

Lq,q(D) = Lq(D) for q ∈ (1,∞), (5.4)

Lq1,σ1(D) $ Lq2,σ2(D) if q1 > q2 and σ1, σ2 ∈ (0,∞].

Let u be a weak solution to
{

−∆u = f in Ω,

u = 0 on ∂Ω.
(5.5)

Then, u is Lipschitz continuous on Ω.

All the results in this Chapter can be seen in the first part of the paper
[74].

2 Existence result for an interval of λ

The main existence result in this Chapter is the following

Theorem 2.1. Let 0 ≤ q < 1 and p > 1. Then, there exists Λ0 > 0, such
that

a) ∀λ ∈ (0,Λ0), problem (5.2) admits a solution uλ ∈W 1,2
0 (Ω) ∩ L∞(Ω).

b) If λ > Λ0, problem (5.2) has no solution.

Moreover, if λi < Λ0, i = 1, 2,

1. uλi
∈ C2,α(Ω).

2. If 0 < λ1 < λ2 ≤ Λ0, then uλ1 ≤ uλ2 .

Proof. Consider Γ ⊂ ∂Ω, a regular submanifold which is a neighborhood of
the pole of the potential. We can assume, for instance, that Γ = ∂Ω∩Br(0)
for r > 0 small in order to have Γ connected. We define the following
function for x ∈ Ω,

dΓ = dist(x,Γ).

We organize the proof in several steps in order to be clear.

Step 1. We start looking for a supersolution uλ to (5.2).
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Since 0 ∈ Γ ⊂ ∂Ω and the boundary is a smooth manifold, we have that

dpΓ
|x|2

∈ Lq(Ω) ⇔ (p− 2)q > N ⇔ q >
N

p− 2
.

In particular, it holds for some q > N (see [50]). Then, since 0 < q < 1, by
Theorem 20, there exists a unique solution w which verifies







−∆w =
dpΓ
|x|2

+ wq, w ≥ 0 in Ω,

w = dΓ on ∂Ω.

(5.6)

By classical elliptic regularity theory, see Theorems 21 and 22, we have that
w ∈ C1,α(Ω)∩C0,1(Ω). Notice that the regularity of w implies the existence
of a constant C = C(Ω, p, q) such that

w(x)− w(y)

|x− y|
≤ C.

If x ∈ Ω and y ∈ ∂Ω, w(y) = dΓ and

w(x)− dΓ ≤ C̃dΓ,

thus,

w(x) ≤ CdΓ, x ∈ Ω.

Let T be a positive parameter and define uλ = Tw, thus

−∆uλ = T (−∆w) = T
dpΓ
|x|2

+ Twq

≥ T
wp

Cp|x|2
+ Twq = T

upλ
T pCp|x|2

+ T
uλ

q

T q
.

In order to have a supersolution we need that −∆uλ ≥
upλ
|x|2

+ λuqλ.

Notice that, to get this, it is sufficient that

T ≥ λ
1

1−q and T ≤
( 1

Cp

)
1

p−1
.

Therefore, putting together both inequalities we observe that it is possible

to find such supersolution uλ for λ ∈ (0,Λ), where Λ =
( 1

Cp

)
1−q
p−1

.

Notice that we have found a supersolution only in the interval (0,Λ) and
this result is almost optimal as we will see in Step 4 below.
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Step 2. Next we have to find a subsolution u to (5.2), such that uλ ≤ uλ.

We consider uλ the solution to the problem
{

−∆uλ = λuqλ, uλ ≥ 0 in Ω,

uλ = 0 on ∂Ω.

The existence (and also the uniqueness) of this function, since 0 < q < 1,
is given by Theorem 19.

It is obvious that uλ is a subsolution of (5.2) and, by elliptic regularity
results, see Theorems 20 and 21, uλ ∈ C2,γ(Ω) ∩ C1,β(Ω).

To prove that the supersolution and the subsolution are ordered we are
going to use the argument used in [35] to prove the uniqueness in Theorem
19.

Notice that uλ and uλ are subsolution and supersolution respectively to
the equation

−∆uλ = λuqλ, with 0 < q < 1

and uλ ≤ uλ on ∂Ω.

That is,

{

−∆uλ ≤ λuqλ, uλ ≥ 0 in Ω,

uλ = 0 on ∂Ω.

and
{

−∆uλ ≥ λuqλ, uλ ≥ 0 in Ω,

uλ = 0 on ∂Ω.

We divide each equation by uλ and uλ respectively and we subtract the
two expressions, it follows that

∫

Ω

(−∆uλ
uλ

+
∆uλ
uλ

)

dx ≤

∫

Ω
λ(uq−1

λ − uq−1
λ )dx.

Multiplying the last expression by (u2λ − u2λ)
+,

∫

Ω
−∆uλuλ+

∆uλ
uλ

u2λ+
∆uλ
uλ

u2λ−∆uλuλdx ≤

∫

Ω
λ(uq−1

λ −uq−1
λ )(u2λ−u

2
λ)

+dx.

Integrating by parts and using Picone’s inequality in the left hand side,
see Theorem 7, we obtain

0 ≤

∫

Ω
λ(uq−1

λ − uq−1
λ )(u2λ − u2λ)

+dx.
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Since λ > 0, q < 1 and taking into account that we are in the set {uλ > uλ},

0 ≤

∫

Ω
λ(uq−1

λ − uq−1
λ )(u2λ − u2λ)

+dx ≤ 0.

Thus, (u2λ − u2λ)
+ = 0. Therefore, we can conclude that uλ ≤ uλ.

Step 3. We use an iteration argument as in [26]. Consider λ ∈ (0,Λ),
u0 ≡ uλ and uk the solution to











−∆uk =
upk−1

|x|2
+ λuqk−1, uk ≥ 0 in Ω,

uk = 0 on ∂Ω.

(5.7)

Using the weak comparison principle as above, we prove by recurrence that

uλ ≡ u0 ≤ u1 ≤ ... ≤ uk ≤ ... ≤ uλ.

Therefore, we get a sequence of functions {u}k which is bounded from
above and from below and it is ordered, thus, we can define uλ(x) =
lim
k→∞

uk(x) with x ∈ Ω.

Moreover, since
upk−1

|x|2
+ λuqk−1 ≤

upλ
|x|2

+ λuqλ, by the Dominated Con-

vergence Theorem, the right hand side of (5.7) converges to
upλ
|x|2

+ λuqλ in

L1(Ω). Therefore, uλ is a solution to problem (5.2) in a distributional sense.
The right hand side of the equation (5.7) converges in W−1,2(Ω) because,

since this side converges to
upλ
|x|2

+ λuqλ in L1(Ω),

∫

Ω
(
upk−1

|x|2
+ λuqk−1)vdx→

∫

Ω
(
upλ
|x|2

+ λuqλ)vdx,

with v ∈W 1,2
0 (Ω).

Therefore, the continuity of the operator −∆−1 implies that

uk → uλ in W 1,2
0 (Ω).

It is easy to check that this solution, uλ, is a minimal solution for such λ.

Since if λ1 < λ2, the solution uλ2 for λ2 is a supersolution to the problem
for λ1 then, using the weak comparison argument as above, we conclude that
uλ1 ≤ uλ2 .

The regularity is now easy to obtain. Since uλ ≤ CdΓ, the right hand
side of (5.2) belongs to some Lr(Ω), with r > N. The solution to (5.2), uλ,
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verifies uλ ∈ L∞(Ω) then, by elliptic regularity as above and a bootstrapping
argument, uλ ∈ C0,1(Ω) ∩C2,α(Ω).

Step 4.- We will prove the following claim.

Claim.- There exists λ0 such that ∀λ ∈ [λ0,∞), problem (5.2) has no
solution uλ ∈ W 1,2

0 (Ω).

To prove the claim we closely follow the arguments used in [26].

We proceed by contradiction. Consider v1 such that

−∆v1 = λ1v1, v1 ∈W 1,2
0 (Ω) ∩ L∞(Ω) and v1 > 0.

Suppose that for all λ there exists a solution to problem (5.2), uλ ∈
W 1,2

0 (Ω), with uλ > 0. Then, near the zero, by Hopf’s Lemma, there exists
space between the solution uλ and the boundary, so we can put the eigen-
function v1 under the solution uλ, hence, there exists t > 0 verifying tv1 ≤ uλ
in Ω. We define ψ = tv1. Pick ε > 0 such that λ1 + ε < λ2, the second
eigenvalue of the Laplace operator. Consider now µ ∈ (λ1, λ1 + ε) and

cΩ = inf
x∈Ω

1

|x|2
. If λ is such that λ1 + ε ≤ bqλ

p−1
p−q where bq satisfies

bqλ
p−1
p−q uλ ≤ λuqλ + cΩu

p
λ ≤ λuqλ +

upλ
|x|2

,

then,

−∆ψ = λ1ψ ≤ µψ ≤ µuλ ≤ (λ1 + ε)uλ ≤ bqλ
p−1
p−q uλ ≤ λuqλ +

upλ
|x|2

= −∆uλ.

That is, ψ ≤ uλ are subsolution and supersolution respectively to the prob-
lem

{

−∆u = µu in Ω,
u = 0 on ∂Ω,

(5.8)

with µ ∈ (λ1, λ1 + ε). A standard iteration argument shows that problem
(5.8) has positive solution, that is a contradiction with the isolation of the
first eigenvalue of the Laplacian, λ1. Then, there exists λ0 such that ∀λ ∈
[λ0,∞) the problem (5.2) has no solution.

Final Step. Define Λ0 = sup{λ | problem (5.2) has a solution}. Ac-
cording to the previous step, Λ0 < ∞. Moreover, if λ ∈ (0,Λ0) we can find
λ∗ such that λ < λ∗ and problem (5.2) has a solution for λ∗. Such solution
is a supersolution to problem (5.2) for λ. Then, we proceed as in Step 3 to
find a solution for λ ∈ (0,Λ0).

In others words, we conclude that the set of λ > 0 for which there exists
a solution to problem (5.2) is a bounded interval in the positive real line.

�
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Remark 5. It is worthy to point out that if 1 < p < N+2
N−2 a perturbative

argument as in [50] allows us to find a second solution to problem (5.2) in
a conveniently thin dumbbell domains. We skip the details because can be
found in [50].
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Chapter 6

Supercritical problem for the p-Laplacian:

Solvability and regularization

1 Introduction

In this Chapter we are going to study the following problem with 0 ∈ ∂Ω


















−∆pu =
uq

|x|p
+ g(λ, x, u) in Ω,

u ≥ 0 in Ω,

u = 0 on ∂Ω,

(6.1)

where q > p− 1, 1 < p < N and Ω ∈ RN is a bounded domain with smooth
boundary and g(λ, x, u) as in one of the two cases:

(i) g(λ, x, u) ≡ 0 and q < p∗ − 1;

(ii) g(λ, x, u) = λf(x)ur, with λ > 0, f(x) 
 0 belonging to L∞(Ω),
0 ≤ r < p− 1 and any positive exponent q > p− 1.

We are going to study the existence of solutions to (6.1) in the cases (i) and
(ii) with different approach. We notice that since q > p−1, the problem to be
considered is supercritical. We would like to point out that the regularization
that produces the sub-diffusive term eliminates any condition on the size of
q.

It is classical that if 0 < q < p−1, problem (6.1) has a solution that does
not depend on the location of the origin. If g(λ, x, u) = λur with r ≤ p∗−1,
a variational solution can be found as a critical point of the functional

J(u) =
1

p

∫

Ω
|∇u|pdx−

1

q + 1

∫

Ω

uq+1

|x|p
dx−

λ

r + 1

∫

Ω
fur+1dx,

which is well defined in u ∈W 1,p
0 (Ω).

As a consequence, we will focus only in the case q > p− 1.

We want to point out also that the case (i), g(λ, x, u) ≡ 0, exhibits a
different behavior from the other one, the existence of solutions turns to be,
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as in the semilinear case, depending on the geometry of the domain and on
the exponent q, while in the case (ii), g(λ, x, u) = λf(x)ur 
 0, the existence
does not depend neither on the geometry of Ω or on the exponent q.

In the case (i), g(λ, x, u) ≡ 0, we get the existence result following the
idea used in [50], but taking into account the intrinsic differences due to the
p-Laplacian operator.

If g(λ, x, u) ≡ 0, the problem in general has no solution. For instance,
if the domain is starshaped with respect to the pole, a suitable application
of the Pohozaev’s identity provides a non existence result in W 1,p

0 (Ω). This
result motivates, as in the semilinear case, see [50], to look for dumbbell type
domains in which such obstruction does not exists.

To motivate the analysis and the existence result for the dumbbell type
domains we first consider the problem in the following sets

Ω = B1(1, 0, . . . , 0) ∪B1(3, 0, . . . , 0) and let v be a solution to



















−∆pu =
uq

|x|p
, in B1(3, 0, . . . , 0),

u ≥ 0, in Ω,

u = 0, on ∂B1(3, 0, . . . , 0).

This solution is obtained, for instance, using the classical Mountain Pass
Theorem, see Theorem 25 below, since in this domain the weight is bounded
and hence, the problem is subcritical. Then, we can extend this solution to
0 for the set B1(1, 0, . . . , 0), in this way,

u(x) =

{

0 if x ∈ B1(1, 0, . . . , 0)

v(x) if x ∈ B1(3, 0, . . . , 0)

is a solution to



















−∆pu =
uq

|x|p
in Ω,

u ≥ 0 in Ω,

u = 0 on ∂Ω,

where Ω = B1(1, 0, . . . , 0) ∪B1(3, 0, . . . , 0).

The idea is to have connected domains but being not too far from the
above case, this is why we join the sets B1(1, 0, . . . , 0) and B1(3, 0, . . . , 0)
with a tiny tubular neighborhood Cε. This perturbation of the domain
allows us to obtain some type of connected domains, dumbbell domains, for
which the problem has solution.
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We can conjecture, then, that the result of existence could be obtained
if the domain lies in the conditions of the following definition.

Definition 6. We call Ωε a dumbbell domain if it is a domain with a smooth
boundary of the form Ωε = Ω1∪Cε∪Ω2, where Ω1 and Ω2 are smooth bounded
domains such that Ω1 ∩ Ω2 = ∅ and Cε is a region contained in a tubular
neighborhood of radius less than ε > 0 around a curve joining Ω1 and Ω2.

Even assuming a domain as in Definition 6, the proof is quite involved
and perturbative in nature. A direct variational approach is not possible.
Notice that if we consider the energy functional associated to (6.1) in a naif
way,

J(u) :=
1

p

∫

Ω
|∇u|pdx−

1

q + 1

∫

Ω

uq+1

|x|p
dx,

it is not well defined in W 1,p
0 (Ω), just by the supercritical value of the power

q.

Therefore, to handle the problem we will proceed as follows.

i) Truncating the functional in a convenient way:

Eδ,ε,θ(u) =
1

p

∫

Ωε

|∇u|pdx−
1

q + 1

∫

Ωε

(u+)q+1

|x|p + δ
dx.

ii) Penalizing such truncated functional in order to avoid that the moun-
tain pass level goes to zero:

Eδ,ε,θ(u) =
1

p

∫

Ωε

|∇u|pdx−
1

q + 1

∫

Ωε

(u+)q+1

|x|p + δ
dx+ ηθ(Iδ(u)).

iii) Considering a convenient supersolution in order to have control from
above near the zero.

The main result for the case (i), g(λ, x, u) = 0, is the following

Theorem 23. Assume that 1 < p < N and assume also

(♭) Ωε is a dumbbell domain;
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(♮) 0 ∈ ∂Ω1 ∩ ∂Ωε;

(♯) p− 1 < q < p∗ − 1.

Then, there exists ε0 such that if 0 < ε < ε0, the problem


















−∆pu =
uq

|x|p
in Ωε,

u ≥ 0 in Ωε,

u = 0 on ∂Ωε,

has a solution u ∈W 1,p
0 (Ωε).

In the case (ii), g(λ, x, u) = λf(x)ur, we prove the existence of a solution
using the method of super- and subsolutions, see [26], [85].

The presence of the concave term λf(x)ur in the equation gives the ex-
istence of a solution that does not depend neither on the geometry of the
domain or on the coefficient q. We generalize the result of Chapter 5 for
the p-Laplace operator. The idea is to construct an appropriate super- and
subsolution and then generate a monotone (and bounded) non decreasing
sequence. Finally, we pass to the limit to conclude the existence. We sum-
marize this result in the following Theorem

Theorem 24. Let 0 ∈ ∂Ω, q > p − 1, 1 < p < N , 0 ≤ r < p − 1 and
consider the problem



















−∆pu =
uq

|x|p
+ λf(x)ur in Ω,

u ≥ 0 in Ω,

u = 0 on ∂Ω,

(6.2)

with f ∈ L∞(Ω), f(x) 
 0 and Ω ∈ RN a smooth bounded domain with
N ≥ 3. Then, there exists a positive constant λmax such that

(a) ∀λ ∈ (0, λmax), problem (6.2) has a solution uλ ∈W 1,p
0 (Ω) ∩ L∞(Ω).

(b) If λ > λmax, problem (6.2) has no solution.

Moreover, if 0 < λ1 < λ2 < λmax then, uλ1 ≤ uλ2 .

For the reader’s convenience we are going to recall the Definition of a
Palais-Smale sequence and Palais-Smale condition, in order to recall also
the classical Ambrosetti-Rabinowitz Mountain Pass Theorem, introduced in
[16] which is an important tool in the proof of the existence of solution in
the case (i), g(λ, x, u) ≡ 0.
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Definition 7. (Palais Smale sequence) Let X be a Banach space and let
J : X → R be a differentiable functional. A sequence {uk}k ⊂ X such that
{J(uk)}k is bounded in R and J ′(uk) → 0 in X ′ as k → ∞, is called a
Palais-Smale sequence for J .

Definition 8. (Palais Smale condition) Let X be a Banach space and let
J : X → R be a differentiable functional. We say that J satisfies the Palais-
Smale condition (shortly: J satisfies (PS)) if every Palais-Smale sequence
for J has a converging subsequence (in X).

Theorem 25. (Mountain Pass Theorem) Let H be a Hilbert space, and let
J ∈ C1,1(H) satisfying J(0) = 0. Assume that there exist positive numbers
ρ and α such that

• J(u) > α if ||u|| = ρ;

• There exists v ∈ H such that ||v|| > ρ and J(v) < 0.

Then, there exists a Palais-Smale sequence (see Definition 7) for J at a level
c ≥ 0. If J satisfies (PS) (see Definition 8), then, there exists a critical point
at level c.

All the results in this Chapter can be seen in the paper [71].

2 The problem with g(λ, x, u) ≡ 0

In this Section we are interested in find some sufficient conditions for which
the existence or nonexistence of solutions holds. In particular, we refer to
energy solutions of (6.1) with g(λ, x, u) ≡ 0, namely



















−∆pu =
uq

|x|p
in Ω,

u ≥ 0 in Ω,

u = 0 on ∂Ω,

(6.3)

with u ∈W 1,p
0 (Ω) and

∫

Ω
|∇u|p−2(∇u,∇φ) =

∫

Ω

uq

|x|p
φ ∀φ ∈W 1,p

0 (Ω).

We shall see below in Proposition 6, that if the domain is starshaped
with respect to the origin there are no energy solutions.
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However, despite this negative result we show also in this Section that
for a convenient non-starshaped domain there exists a solution to problem
(6.3).

We introduce first the non-exisistence result of energy solutions to (6.3).

2.1 Nonexistence result of energy solutions in starshaped do-

mains

First of all we are going to recall the Definition of starshaped domain.

Definition 9. An open set Ω is called starshaped with respect to 0 provided
for each x ∈ Ω, the line segment

{λx | 0 ≤ λ ≤ 1}

lies in Ω.

Notice that if ∂Ω is sufficiently regular then, denoting ν the outer unit
normal, x · ν ≥ 0, ∀x ∈ ∂Ω.

To use conveniently the Pohozaev’s identity and to obtain the nonexis-
tence result of energy solutions to (6.3), we need a-priori estimates for the
gradient ∇u of these solutions.

Lemma 9. Assume N ≥ 2 and 1 < q < p∗ − 1 (q > 1 if N = p). If u is
an energy solution to (6.3), then u ∈ L∞(Ω). Moreover, there exists some
C > 0 such that

|∇u(x)| ≤
C

|x|
∀x ∈ Ω.

Proof.

By a classical regularity result it is well known that, away from the
origin, the solutions of p-Laplace equations are locally bounded, since the
problem is subcritical, see [86]. Actually, by a classical regularity result of
[70], the solutions are C1,α

loc and the equation (6.3) has to be understood in
the weak sense.

Suppose now x0 ∈ Ω and x0 6= 0. Consider r = |x0|
2 and define v(y) =

u(x0 + ry) for y ∈
(Ω− x0)

r
. Then, v satisfies

−∆pv =
rpuq(x0 + ry)

|x0 + ry|p
=

rp

|x0 + ry|p
vq, in

(Ω− x0)

r
. (6.4)

Considering (6.4) in D := B1(0) ∩
Ω−x0

r ,

|x0| − r|y| ≤ |x0 + ry| ≤ |x0|+ r|y| = |x0|+
|x0|

2
=

3

2
|x0|.
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Since y ∈ B1(0), |y| ≤ 1 and

|x0| −
|x0|

2
≤ |x0| − r|y| ≤ |x0 + ry| ≤

3

2
|x0|,

therefore,

|x0|

2
≤ |x0 + ry| ≤

3

2
|x0| thus,

2

3
|x0| ≤

1

|x0 + ry|
≤

2

|x0|
.

Then,

( |x0|
2 )p

|x0 + ry|
≤ 1,

hence, the weight is uniformly bounded and it is smooth in this region.
Using the results in [88] and in [95] we know that there exists a univer-
sal constant C > 0 such that v(0) < C and then, u ∈ L∞(Ω). Using a
regularity result in [70] we deduce that v ∈ C1,α(D). Namely, there exists
some universal constant C (not depending on v) such that |∇v(0)| ≤ C.
Since |∇v| = r|∇u|, we get |∇u(x)| ≤ C/|x|, ∀x ∈ Ω, being x0 arbitrary.

�

Proposition 6. Assume 1 < p < N and p− 1 < q < p∗− 1. Then, problem
(6.3) has no energy solutions if 0 ∈ ∂Ω and Ω is starshaped with respect to
the origin.

Proof. In this proof we are going to use a Pohozaev’s identity.

We multiply (using a density argument) −∆pu =
uq

|x|p
by < x,∇u > and

integrate in Ω \Bρ(0), with ρ > 0. One has

∫

Ω\Bρ(0)

(−∆pu) < x,∇u > dx =

∫

Ω\Bρ(0)

−div(|∇u|p−2∇u) < x,∇u > dx

=

∫

Ω\Bρ(0)

|∇u|pdx+
N
∑

i=1

∫

Ω\Bρ(0)

|∇u|p−2 < ∇u,∇
∂u

∂xi
> xidx

−

∫

∂(Ω\Bρ(0))
∇u|∇u|p−2 < x,∇u >

∂u

∂ν
dx.
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Therefore,
∫

Ω\Bρ(0)

(−∆pu) < x,∇u > dx

=

∫

Ω\Bρ(0)

|∇u|pdx+
1

p

N
∑

i=1

∫

Ω\Bρ(0)

(

∂

∂xi
|∇u|p

)

xidx

−

∫

∂(Ω\Bρ(0))
∇u|∇u|p−2 < x,∇u >

∂u

∂ν
dx

=

∫

Ω\Bρ(0)

|∇u|pdx−
N

p

∫

Ω\Bρ(0)

|∇u|pdx−

∫

∂(Ω\Bρ(0))
∇u|∇u|p−2< x,∇u >

∂u

∂ν
dx

+

∫

∂(Ω\Bρ(0))

|∇u|p

p
< x, ν > dx

=
p−N

p

∫

Ω\Bρ(0)

|∇u|pdx+
1− p

p

∫

∂(Ω\Bρ(0))
|∇u|p < x, ν > dx

and
∫

Ω\Bρ(0)

uq

|x|p
< x,∇u > dx = −

1

q + 1

∫

Ω\Bρ(0)

uq+1div

(

x

|x|p

)

dx

+
1

q + 1

∫

∂(Ω\Bρ(0))

uq+1

|x|p
< x, ν > dx.

Notice that

−
uq+1

q + 1
div(

x

|x|p
) = −

uq+1

q + 1
(
div(x)

|x|p
+ xdiv(

1

|x|p
))

= −
uq+1

q + 1
(
N

|x|p
− p

x

|x|p+1
) = −

uq+1

q + 1
(
N

|x|p
− p

1

|x|p
).

Therefore,

∫

Ω\Bρ(0)

(−∆pu) < x,∇u > dx

= −
N − p

q + 1

∫

Ω\Bρ(0)

uq+1

|x|p
dx+

1

q + 1

∫

∂(Ω\Bρ(0))

uq+1

|x|p
< x, ν > dx.

Combining the last calculations, we get

−
N − p

q + 1

∫

Ω\Bρ(0)

uq+1

|x|p
dx+

1

q + 1

∫

∂(Ω\Bρ(0))

uq+1

|x|p
< x, ν > dx

=
1− p

p

∫

∂(Ω\Bρ(0))
|∇u|p < x, ν > dx+

p−N

p

∫

Ω\Bρ(0)

|∇u|pdx.
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Multiplying equation (6.1) by u and integrating in Ω \Bρ(0) we have

∫

Ω\Bρ(0)

−u∆pudx =

∫

Ω\Bρ(0)

uq

|x|p
udx.

Integrating this last expression by parts,

−

∫

∂(Ω\Bρ(0))
u|∇u|p−2∂u

∂ν
dx+

∫

Ω\Bρ(0)

|∇u|pdx =

∫

Ω\Bρ(0)

uq+1

|x|p
dx.

Therefore, substituting,

0 = (N − p)(
1

p
−

1

q + 1
)

∫

Ω\Bρ(0)

uq+1

|x|p
dx+ (

N − p

p
)

∫

∂(Ω\Bρ(0))
u|∇u|p−2∂u

∂ν
dx

+
1

q + 1

∫

∂(Ω\Bρ(0))

uq+1

|x|p
< x, ν > dx+ (

p − 1

p
)

∫

∂(Ω\Bρ(0))
|∇u|p < x, ν > dx.

Since u ≡ 0 on ∂Ω, ∂(Ω \Bρ(0)) = ∂Bρ(0) ∩ Ω, then,

∫

∂(Ω\Bρ(0))

uq+1

|x|p
< x, ν > dx =

∫

∂Bρ(0)∩Ω

uq+1

|x|p
< x, ν > dx.

Since p < N and by Lemma 9,

∫

∂(Ω\Bρ(0))
u|∇u|p−2∂u

∂ν
dx ≤

∫

∂(Ω\Bρ(0))
C(

C

|x|
)p−1dx

=

∫

∂(Ω\Bρ(0))
C(

C

|ρ|
)p−1ρN−2dx = O(ρN−p) → 0 as ρ→ 0.

Since |ν| = 1 and by Lemma 9, u ∈ L∞(Ω),

∫

∂(Ω\Bρ(0))

uq+1

|x|p
< x, ν > dx ≤

∫

∂(Ω\Bρ(0))

uq+1

|x|p
xdx ≤ C

∫

∂(Ω\Bρ(0))

x

|x|p
dx.

Since p < N and being ρN−2 the jacobian term in the boundary,

∫

∂(Ω\Bρ(0))

uq+1

|x|p
< x, ν > dx

≤ C

∫

∂(Ω\Bρ(0))

ρN−2

ρp−1
dρ = O(ρN−p) → 0 as ρ→ 0.

In this way we get

0 = (N − p)(
1

p
+

1

q + 1
)

∫

Ω

uq+1

|x|p
dx+ (

p− 1

p
)

∫

∂Ω
|∇u|p < x, ν > dx.
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Therefore,

(N − p)(
1

p
+

1

q + 1
)

∫

Ω

uq+1

|x|p
dx = −(

p− 1

p
)

∫

∂Ω
|∇u|p < x, ν > dx.

Being Ω a starshaped domain w.r.t. the origin (i.e < x, ν > ≥ 0 on ∂Ω)
and 1 < p < N , then,

(N − p)(
1

p
+

1

q + 1
)

∫

Ω

uq+1

|x|p
dx = 0.

Therefore, u ≡ 0 in Ω. �

2.2 Existence of energy solutions in dumbbell domains

In this Subsection we prove Theorem 23. We follow [50] to prove the exis-
tence result, taking into account the differences due to the nonlinearity and
the change of regularity of solutions introduced by the p-Laplacian operator.
We consider the truncated weight 1

|x|p+δ and we proceed in several steps in
order to be clear in the proof.

We recall first some regularity results that we are going to use along this
Section. A Stampacchia’s type argument gives

Lemma 10. Let u ∈W 1,p
0 (Ω) an energy solution to

{

−∆pu = f in Ω

u = 0 on ∂Ω,
(6.5)

with f ∈ Lr(Ω), and r > N
p . Then, u ∈ L∞(Ω).

We also need some regularity up to the boundary, see [70] for the details.
It is important to point out that the result for the regularity without reach
the boundary has been studied in [93] and [51].

2.2.1 The truncated-penalized functional.

We first define the function η ∈ C1(R),










η(s) = 0 s ∈ [0, 1],

0 ≤ η(s) ≤ 2 and η′(s) ≥ 0 s ∈ [1, 2],

η(s) = s s ∈ [2,∞].

(6.6)
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Given θ > 0, we define the function ηθ(t) = η(t/θ), t ≥ 0 and we fix h such
that

min

(

p, (q − (p− 1))
N

p

)

< h < q + 1.

Since in the hypothesis we are considering q > p − 1, we only need to
check that (q − (p − 1))Np < q + 1. To do that we argue by contradiction.
Suppose that

(q − (p− 1))
N

p
≥ q + 1,

hence,

q(
N

p
− 1) ≥ 1 +

N

p
(p − 1).

Then,

q ≥
N(p− 1) + p

N − p
,

which is a contradiction with (♯) in the hypotheses.

Let g ∈ C1(R) be the function















g(s) = 0, s ≤ 0

0 ≤ g(s) ≤ 1 and 0 ≤ g′(s) ≤ hs(q−(p−1))N
p
−1 s ∈ [0, 1],

g(s) = s
(q−(p−1))N

p s ≥ 1.

(6.7)

Given δ > 0, we define

gδ(t) = δ
(q−(p−1))N

p g(
t

δ
).

For ε, δ, θ > 0 we define the penalized energy functional Eδ,ε,θ :W
1,p
0 (Ωε) →

R as follows

Eδ,ε,θ(u) =
1

p

∫

Ωε

|∇u|pdx−
1

q + 1

∫

Ωε

(u+)q+1

|x|p + δ
dx+ ηθ(Iδ(u)),

where u+ = max(u, 0) and ηθ(Iδ(u)) is the penalization of the energy
functional. This term will be crucial to prove that the solution that we are
looking for is not the trivial one. It is called penalization because we try to
find a infimum and this term rises a little the functional.

Notice that the penalization is only defined in Ω1 because is where the
zero is located. The term Iδ(u) is given by the following expression

Iδ(u) =

∫

Ω1

gδ(u+ δ)

(|x|p + δ)
N
p

dx. (6.8)
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It is easy to verify the C1 regularity of Eδ,ε,θ since the C1 regularity of
η(·) and g(·) holds. Then, if u is a critical point of Eδ,ε,θ it satisfies

{

−∆pu+ a(x, u)g′δ(u+ δ) = (u+)q

|x|p+δ in Ωε

u = 0 on ∂Ωε,
(6.9)

where a(x, u)g′δ(u+ δ) = η′θ(Iδ(u))I
′
δ(u) and by the definition of Iδ(u),

I ′δ(u) = g′δ(u+ δ)
χΩ1(x)

(|x|p + δ)
N
p

.

In this way,

a(x, u) = η′θ(Iδ(u))
χΩ1(x)

(|x|p + δ)
N
p

,

with χΩ1(x) the characteristic function of Ω1.

Multiplying (6.9) by the test function (u+ δ)−, we get

∫

Ωε

−div(|∇u|p−2∇u)(u+ δ)−dx+

∫

Ωε

a(x, u)g′δ(u+ δ)(u+ δ)−dx

=

∫

Ωε

(u+)q(u+ δ)−

|x|p + δ
dx.

(6.10)

d u l c i, si ves esto te mando un v́ıdeo bailando como la brasi

Integrating (6.10) by parts we have
∫

Ωε

|∇u|p−1∇(u+ δ)−dx+

∫

Ωε

a(x, u)g′δ(u+ δ)(u + δ)−dx

=

∫

Ωε

(u+)q(u+ δ)−

|x|p + δ
dx.

Notice that if u+ δ ≤ 0, gδ(u+ δ) = 0, as a consequence,
∫

Ωε

a(x, u)g′δ(u+ δ)(u + δ)−dx = 0 and

∫

Ωε

(u+)q(u+ δ)−

|x|p + δ
dx ≤ 0.

Therefore,
∫

Ωε

|∇u|p−1∇(u+ δ)−dx ≤ 0.

Thus,
∫

Ωε

|∇(u+ δ)−|pdx ≤ 0. (6.11)

Then, we have that (u+ δ)− ≡ 0, that is, a solution u ∈ W 1,p
0 (Ωε) to (6.9)

is not necessarily positive but satisfies u ≥ −δ in Ωε.
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2.2.2 Study of the functional Eδ,ε,θ and the mountain pass geom-

etry condition.

We study the functional for each δ, ε, θ fixed in order to obtain the conditions
for the Mountain Pass Theorem (see Theorem 25).

Lemma 11. Fix ε, θ, δ > 0. Then, Eδ,ε,θ :W
1,p
0 (Ωε) → R is C1 and satisfies

the Palais-Smale condition (see Definition 8).

Proof. Let un be a Palais-Smale sequence (see Definition 7) in W 1,p
0 (Ωε)

such that Eδ,ε,θ ≤ C and E′
δ,ε,θ → 0 in W−1,p′(Ωε). Therefore,

C + o(1)||un||W 1,p
0 (Ωε)

≥ Eδ,ε,θ(un)−
1

q + 1
E′

δ,ε,θ(un)un

=
1

p

∫

Ωε

|∇un|
pdx−

1

q + 1

∫

Ωε

(u+n )
q+1

|x|p + δ
dx+ηθ(Iδ(un))−

1

q + 1

∫

Ωε

|∇un|
p−1∇undx

+
1

q + 1

∫

Ωε

(u+n )
q+1

|x|p + δ
dx−

1

q + 1
η′θ(Iδ(un))

∫

Ω1

g′δ(un + δ)un

(|x|p + δ)
N
p

dx

=
1

p

∫

Ωε

|∇un|
pdx+ ηθ(Iδ(un))−

1

q + 1

∫

Ωε

|∇un|
pdx

−
1

q + 1
η′θ(Iδ(un))

∫

Ω1

g′δ(un + δ)un

(|x|p + δ)
N
p

dx

= (
1

p
−

1

q + 1
)

∫

Ωε

|∇un|
pdx+ ηθ(Iδ(un))−

1

q + 1
η′θ(Iδ(un))

∫

Ω1

g′δ(un + δ)un

(|x|p + δ)
N
p

dx

= (
1

p
−

1

q + 1
)||un||

p

W 1,p
0 (Ωε)

+ ηθ(Iδ(un))−
1

q + 1
η′θ(Iδ(un))

∫

Ω1

g′δ(un + δ)un

(|x|p + δ)
N
p

dx.

We are going to prove the following claim

g′δ(un + δ)un ≤ hgδ(un + δ), ∀un ∈ R. (6.12)

We consider the following three cases:

→ If un ≥ 0, by definition, gδ(un + δ) = (un + δ)(q−(p−1))N
p and

g′δ(un + δ) = (q − (p− 1))
N

p
(un + δ)(q−(p−1))N

p
−1.

Therefore,

g′δ(un + δ)(un + δ) = (q − (p− 1))
N

p
(un + δ)

(q−(p−1))N
p ≤ hgδ(un + δ).
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→ If −δ ≤ un ≤ 0, we obtain

g′δ(un + δ)un ≤ 0 ≤ hgδ(un + δ).

→ If un ≤ −δ, (6.12) is satisfied because

g′δ(un + δ)un = 0 = hgδ(un + δ).

By the previous claim we have

∫

Ω1

g′δ(un + δ)un

(|x|p + δ)
N
p

dx ≤

∫

Ω1

h
gδ(un + δ)

(|x|p + δ)
N
p

dx ≤ hIδ(un). (6.13)

We consider now

(i) Assume Iδ(un) ≥ 2θ, then η′θ(Iδ(un)) = 1 and by the definition of
ηθ(Iδ(un)), it follows

ηθ(Iδ(un))−
1

q + 1
η′θ(Iδ(un))

∫

Ω1

g′δ(un + δ)un

(|x|p + δ)
N
p

dx

=
1

θ

(

Iδ(un)−
1

q + 1

∫

Ω1

g′δ(un + δ)un

(|x|p + δ)
N
p

dx

)

and by (6.13) and since h < q + 1, we get

ηθ(Iδ(un))−
1

q + 1
η′θ(Iδ(un))

∫

Ω1

g′δ(un + δ)un

(|x|p + δ)
N
p

dx

≥
1

θ
(1−

h

q + 1
)Iδ(un) ≥ 0.

Therefore,

C + o(1)||un||W 1,p
0 (Ωε)

≥ (
1

p
−

1

q + 1
)||un||

p

W 1,p
0 (Ωε)

and for all n,

||un||W 1,p
0 (Ωε)

≤ C,

with C independent on n.
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(ii) If Iδ(un) ≤ θ, then ηθ(Iδ(un)) = 0 = η′θ(Iδ(un)) and

ηθ(Iδ(un))−
1

q + 1
η′θ(Iδ(un))

∫

Ω1

g′δ(un + δ)un

(|x|p + δ)
N
p

dx = 0,

hence, as in the case (i),

||un||W 1,p
0 (Ωε)

≤ C ∀n.

(iii) If θ ≤ Iδ(un) ≤ 2θ, by (6.13),

ηθ(Iδ(un))−
1

q + 1
η′θ(Iδ(un))

∫

Ω1

g′δ(un + δ)un

(|x|p + δ)
N
p

dx

≥ −
C

θ
Iδ(un) ≥ −C.

Therefore,
||un||W 1,p

0 (Ωε)
≤ C ∀n.

So, we can conclude

un ⇀ u in W 1,p
0 (Ωε),

un → u in Lp(Ωε) for 1 ≤ p < p∗.

Taking a subsequence, un converges weakly to u in W 1,p
0 (Ωε).

Then, uq+1
n and u

(q−(p−1))N
p

n converge strongly in L1(Ωε), namely

(u+)q

|x|p + δ
− a(x, u)g′δ(u+ δ) ⊂W−1,p′(Ωε)

because
∫

Ωε

( (u+n )
q

|x|p + δ

)

ϕdx→

∫

Ωε

( (u+)q

|x|p + δ

)

ϕdx

with ϕ ∈W 1,p
0 (Ωε), and

∫

Ωε

a(x, un)g
′
δ(un + δ)ϕdx →

∫

Ωε

a(x, u)g′δ(u+ δ)ϕdx

with ϕ ∈W 1,p
0 (Ωε).

In the first case, since |x|p + δ ≥ δ, we only need to check that the
following term is going to zero

∫

Ωε

(u+n )
q − (u+)q

|x|p + δ
ϕdx ≤

∫

Ωε

(u+n )
q − (u+)q

δ
ϕdx.
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Using Hölder’s inequality and since q p∗

p∗−1 ≤ p∗ (recall that q ≤ p ∗−1
and un → u in Lp(Ωε) for 1 ≤ p < p∗) and using also that ϕ ∈
W 1,p

0 (Ωε),

∫

Ωε

(u+n )
q − (u+)q

|x|p + δ
ϕdx ≤

(

∫

Ωε

ϕp∗dx
)

1
p∗
(

∫

Ωε

((u+n )
q − (u+)q

)
p∗

p∗−1 dx
)

p∗−1
p∗

≤
(

∫

Ωε

ϕp∗dx
)

1
p∗C(p∗)

(

∫

Ωε

(u+n )
q p∗

p∗−1 − (u+)q
p∗

p∗−1 dx
)

p∗−1
p∗ ≤ o(1).

For the second convergence, in order to be able to pass to the limit,
we only need to prove that

u
q−(p−1)N

p
−1

n ϕ ∈ L1(Ωε).

Using Hölder’s inequality, we get

∫

Ωε

u
q−(p−1)N

p
−1

n ϕdx ≤ (

∫

Ωε

ϕp∗dx)
1
p∗
(

∫

Ωε

u
(q−(p−1)N

p
−1)( p∗

p∗−1
)

n dx
)

p∗−1
p∗

and since, by the hypothesis of h, we know that q− (p− 1)Np − 1 < q,

thus, (q − (p − 1)Np − 1)( p∗

p∗−1) < p∗, hence, as before, since un →

u in Lp(Ωε) for 1 ≤ p < p∗ and ϕ ∈W 1,p
0 (Ωε),

u
q−(p−1)N

p
−1

n ϕ ∈ L1(Ωε).

Since un is a Palais-Smale sequence, and by the continuity of −∆−1
p (·),

one has

un = (−∆−1
p )

(

(u+n )
q

|x|p + δ
− a(x, un)g

′
δ(un + δ) + yn

)

n↑∞
−→

(−∆−1
p )

(

(u+)q

|x|p + δ
− a(x, u)g′δ(u+ δ)

)

= u in W 1,p
0 (Ωε).

�

The mountain pass geometry condition is a consequence of the following
observation: if ‖u‖

W 1,p
0 (Ωε)

is small enough by definitions (6.6) and (6.7) one

has Eδ,ε,θ(u) = Ẽδ,ε(u) where

Ẽδ,ε(u) =
1

p

∫

Ωε

|∇u|pdx−
1

q + 1

∫

Ωε

(u+)q+1

|x|p + δ
dx,
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is the functional without penalization.

Let v > 0 be a solution to −∆pu =
uq

|x|p
in Ω2 with u = 0 on ∂Ω2,

obtained for example by the Mountain Pass Theorem, since the weight is
bounded because 0 is away from Ω2 and the problem is subcritical. Fix
s > 0 large enough such that

Eδ,ε,θ(sv) =
1

p
sp
∫

Ω2

|∇v|pdx−
1

q + 1
sq+1

∫

Ω2

vq+1

|x|p + δ
dx < 0.

Consider cδ,ε,θ = infγ maxt∈[0,1]Eδ,ε,θ(γ(t)), where the infimum ranges over

all continuous paths γ : [0, 1] →W 1,p
0 (Ωε) such that γ(0) = 0 and γ(1) = sv.

Lemma 12. Since the functional Eδ,ε,θ satisfies the assumptions of the
Mountain Pass Lemma, there exists a critical point u of Eδ,ε,θ with criti-
cal value cδ,ε,θ. Moreover, there exists a constant C independent of ε, θ, δ
such that

cδ,ε,θ ≤ C.

Proof. Since the weight
1

|x|p + δ
is bounded, there exists ρ > 0 such that

inf {Ẽδ,ε(u) : ‖u‖W 1,p
0 (Ωε)

= ρ} >

inf {
1

p
ρp −

1

q + 1

∫

Ωε

(u+)q+1

|x|p + δ
} > 0

and also since ηθ(Iδ(u)) > 0,

inf {Eδ,ε,θ(u) : ‖u‖
W 1,p

0 (Ωε)
= ρ}

> inf {
1

p
ρp −

1

q + 1

∫

Ωε

(u+)q+1

|x|p + δ
+ ηθ(Iδ(u))} > 0.

Consider γ(t) = t(sv) and notice that maxt∈[0,1] Eδ,ε,θ(t(sv)) is bounded
uniformly on δ, ε, θ because v is a solution in Ω2 and the penalization is
only in Ω1, so the maximum does not depend on δ, ε, θ. Thus, since cδ,ε,θ =
infδ maxt∈[0,1] Eδ,ε,θ(γ(t)), cδ,ε,θ ≤ maxt∈[0,1]Eδ,ε,θ(γ(t)) ≤ C.

Hence, we get the upper bound for cδ,ε,θ.

�

Next lemma proves that the mountain pass level cδ,ǫ,θ admits a uniform
bound from below away from zero. This will be important in the limit
process in order to find a positive (u 6≡ 0) solution.
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Lemma 13. There exists θ0 > 0 and c0 > 0 independent of ε, θ, δ such that

cδ,ε,θ ≥ c0,

for 0 < θ ≤ θ0.

Proof. Since 0 ∈ ∂Ω1, in Ωε \ Ω1 the weight 1
|x|p+δ is uniformly bounded

on ε, δ and we can fix ρ > 0 independently on ε, δ such that, by Hölder’s
inequality,

1

p

∫

Ωε

|∇u|pdx−
1

q + 1

∫

Ωε\Ω1

(u+)q+1

|x|p + δ
dx

≥
1

p

∫

Ωε

|∇u|pdx−
1

q + 1
C
(

∫

Ωε\Ω1

((u+)q+1)
p∗

q+1 dx
)

q+1
p∗

|Ωε \ Ω1|
( q+1

p∗
)′

=
1

p
||u||p

W 1,p
0 (Ωε)

−
1

q + 1
CΩ||u||

q+1

Lp∗ (Ωε\Ω1)
.

Using Sobolev’s inequality,

1

p

∫

Ωε

|∇u|pdx−
1

q + 1

∫

Ωε\Ω1

(u+)q+1

|x|p + δ
dx

≥
1

p
||u||p

W 1,p
0 (Ωε)

−
1

q + 1
SCΩ||u||

q+1

W 1,p
0 (Ωε\Ω1)

.

Since q+1 > p, if ||u||W 1,p
0 (Ωε)

is small enough, ||u||p
W 1,p

0 (Ωε)
≥ ||u||q+1

W 1,p
0 (Ωε\Ω1)

.

Therefore,

1

p

∫

Ωε

|∇u|pdx−
1

q + 1

∫

Ωε\Ω1

(u+)q+1

|x|p + δ
dx ≥ Cp‖u‖

p

W 1,p
0 (Ωε)

, ∀‖u‖
W 1,p

0 (Ωε)
≤ ρ.

If we focus now only in Ω1, by Hölder’s inequality

∫

Ω1

(u+)q+1

|x|p + δ
dx ≤

(
∫

Ω1

(u+)p
∗
dx

)
N−p
N

(

∫

Ω1

(u+)(q−(p−1))N
p

(|x|p + δ)
N
p

dx

)

p
N

. (6.14)

Using Sobolev’s inequality we obtain

∫

Ω1

(u+)q+1

|x|p + δ
dx ≤ C‖u‖p

W 1,p
0 (Ωε)

Iδ(u)
p
N ,

where C depends on Ω1, p,N. By this expression and the calculation in
Ωε \ Ω1, it follows that

E(u) ≥ Cp‖u‖
p

W 1,p
0 (Ωε)

− CρpIδ(u)
p
N + ηθ(Iδ(u)), ∀‖u‖W 1,p

0 (Ωε)
≤ ρ.

(6.15)



6.2. The problem with g(λ, x, u) ≡ 0 139

Consider now the function h(t) = ηθ(t)− Cρpt
p
N . If t ≥ 2θ,

h(t) = t
p
N

(

t
N−p
N

θ
− Cρp

)

≥ t
p
N

(

2
N−p
N θ−

p
N − Cρp

)

.

Fixing ρ > 0, we take θ0 > 0 small, thus

2
N−p
N θ−

p
N − Cρp ≥ 1 for 0 < θ ≤ θ0. (6.16)

Therefore,

h(t) ≥ t
p
N , for t ≥ 2θ. (6.17)

For 0 ≤ t ≤ 2θ we obtain

h(t) ≥ −Cρpt
p
N ≥ −Cρp(2θ)

p
N . (6.18)

Let γ : [0, 1] → W 1,p
0 (Ωε) be continuous such that γ(0) = 0 and γ(1) =

sv. We take ρ > 0 small so that s‖v‖W 1,p
0 (Ωε)

> ρ. Let t∗ be defined by

t∗ = min{ t ∈ [0, 1] : ‖γ(t)‖W 1,p
0 (Ωε)

≥ ρ or Iδ(γ(t)) ≥ 1 }.

t∗ is well defined and satisfies the properties ‖γ(t)‖W 1,p
0 (Ωε)

≤ ρ, Iδ(γ(t)) ≤ 1

for 0 ≤ t ≤ t∗ because of the definition of t∗ and one of the following cases:
either ‖γ(t∗)‖W 1,p

0 (Ωε)
= ρ or Iδ(γ(t

∗)) = 1.

Assume first that ‖γ(t∗)‖
W 1,p

0 (Ωε)
= ρ. Then, using (6.15), (6.17) and

(6.18) we get

E(γ(t∗)) ≥ Cp‖γ(t
∗)‖p

W 1,p
0 (Ωε)

− Cρp(2θ)
p
N = Cpρ

p −Cρp(2θ)
p
N .

Choosing θ0 smaller it follows

Cpρ
p − Cρp(2θ)

p
N ≥ C̃pρ

p, for 0 < θ ≤ θ0, (6.19)

for some positive constant C̃p independent of ε, θ, δ. Thus,

E(γ(t∗)) ≥ C̃pρ
p.

Suppose now that Iδ(γ(t
∗)) = 1. Since Iδ(γ(t

∗)) ≥ 2θ, we may also assume
that θ0 ≤

1
2 . Then, by (6.15) it follows

E(γ(t∗)) ≥ Cp‖γ(t
∗)‖p

W 1,p
0 (Ωε)

− CρpIδ(γ(t
∗))

p
N + ηθ(Iδ(γ(t

∗))),

for all ‖γ(t∗)‖W 1,p
0 (Ωε)

≤ ρ.
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By (6.17),

E(γ(t∗)) ≥ Cp‖γ(t
∗)‖p

W 1,p
0 (Ωε)

+ Iδ(γ(t
∗))

p
N ≥ Cp‖γ(t

∗)‖p
W 1,p

0 (Ωε)
+ 1 ≥ 1.

It follows that the mountain pass level cδ,ε,θ satisfies

cδ,ε,θ ≥ min
(

C̃pρ
p, 1
)

(6.20)

provided 0 < θ ≤ θ0 and 0 < θ0 ≤ 1
2 is such that (6.16) and (6.19) hold.

�

Remark 6. The inequality (6.14) motivates the importance of the penal-
ization term. We need this term to obtain the uniform bound from below
(6.20) away from zero. In Subsection 2.2.6 we shall see that this control will
be necessary to pass to the limit and then to reach a nontrivial solution to
(6.3).

2.2.3 Uniform estimates for the mountain pass critical points.

In order to prove that the penalization is small enough when we pass to the
limit, we need to check some uniform estimates of the critical points.

We claim that there exists C independent on δ, θ, ε such that for all
δ > 0, θ > 0 and ε > 0, if u ∈ W 1,p

0 (Ωε) is a mountain pass critical point of
the energy functional Eδ,ε,θ(u), then

‖u‖
W 1,p

0 (Ωε)
≤ C (6.21)

and

Iδ(u) ≤ Cθ. (6.22)

The argument is the same as in the proof of Lemma 11. Indeed, since
Eδ,ε,θ(u) ≤ C we have

C ≥ Eδ,ε,θ(u)−
1

q + 1
E′

δ,ε,θ(u)u

=

(

1

p
−

1

q + 1

)

‖u‖p
W 1,p

0 (Ωε)
+ ηθ(Iδ(u))−

h

q + 1
η′θ(Iδ(u))Iδ(u).

(i) If Iδ(u) ≥ 2θ

ηθ(Iδ(u))−
h

p+ 1
η′θ(Iδ(u))Iδ(u) =

1

θ

(

1−
h

q + 1

)

Iδ(u)
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and we deduce (6.21) as in Lemma 11.

Notice also that

C ≥ Cp,q||u||
p

W 1,p
0 (Ωε)

+
1

θ

(

1−
h

q + 1

)

Iδ(u)

≥
1

θ

(

1−
h

q + 1

)

Iδ(u) ≥
1

θ
C̃Iδ(u).

Therefore, Iδ(u) ≤ Cθ and (6.22) holds with C independent on δ, θ, ε.

(ii) If Iδ(u) ≤ θ we obtain the same conclusion because

ηθ(Iδ(u))−
h

p+ 1
η′θ(Iδ(u))Iδ(u) = 0.

(iii) If θ ≤ Iδ(u) ≤ 2θ,

ηθ(Iδ(u)) −
h

p+ 1
η′θ(Iδ(u))Iδ(u)

≥ −
h

p+ 1
η′θ(Iδ(u))Iδ(u) ≥ −

C

θ
Iδ(u) ≥ −C,

then,
C ≥ Cp,q||u||

p

W 1,p
0 (Ωε)

− C,

proving (6.21) and concluding the proof.

2.2.4 A local supersolution.

In order to control the mountain pass solutions close to the singularity and
to be able to pass to the limit, we are going to construct an appropriate
supersolution to be above the solution u and to control this function.

Fix r0 > 0 small and define a set near the singularity,

D = {x ∈ Ωε : |x| < r0}, Γ1 = ∂Ωε ∩ {|x| < r0} and Γ2 = Ωε ∩ {|x| = r0}.

Since we assume that the curve that joins Ω1 and Ω2 along which runs Cε

is fixed and 0 ∈ ∂Ω1 ∩ ∂Ωε, if we take r0 > 0 small, D is independent of ε.
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Consider dΓ1(x) = dist(x,Γ1) with Γ1 defined as above and p− 1 < q <
p∗ − 1. Let ζ be defined as the solution to







−∆pζ =
dqΓ1
|x|p in D

ζ = 0 on Γ1, ζ = dΓ1 on Γ2.
(6.23)

We want to check the regularity of the term in the right hand side of
(6.23),

(

∫

D

( dqΓ1

|x|p
)r
)

1
r
<∞.

The function dqΓ1
/|x|p belongs to Lr(D) for any 1 ≤ r < N

p−q if q < p

and for any r ≥ 1 if q ≥ p. In both cases there exists r > N > N
p such

that dqΓ1
/|x|p ∈ Lr(D). The solution ζ to (6.23) is bounded by Lemma 10

and by classical regularity results, see [93] and [51], belongs to C1,α(D).
To construct the desired supersolution, we need a control from above of ζ,
up to the boundary, by the distance function dΓ1(x). Obviously, since in
the case q ≥ p the weight is bounded, ζ ∈ C1,α(D) by a regularity result
in [70] and, moreover, ∂ζ

∂ν < 0 by [94], ν denoting the outer unit normal.
If q < p, we need to be away from the origin, and the regularity will be
C1,α(D \Bρ(0)). For our purposes we need the boundedness of the gradient
of the solution to (6.23) up to the boundary, that is, the global Lipschitz
continuity of the solution. In the paper [42], the authors established the
minimal assumptions on the integrability of the data and on the regularity
of the boundary to get the boundedness of the gradient of some class of
quasilinear elliptic equations.

In particular ζ turns to be Lipschitz continuous on D when dqΓ1
/|x|p ∈

LN,1(D) (see in [42] a quasilinear version of the Theorem 22), where LN,1(D)
denotes the corresponding Lorentz space. We recall the following embed-
ding,

Lq,q(D) = Lq(D) for q ∈ (1,∞), (6.24)

Lq1,σ1(D) $ Lq2,σ2(D) if q1 > q2 and σ1, σ2 ∈ (0,∞].

Then, for every q > p−1, there exists r > N such that dqΓ1
/|x|p ∈ Lr(D) and,

since r > N , by the embedding (6.24) it follows that dqΓ1
/|x|p ∈ LN,1(D).

Thus, ζ ∈ C0,1(D) ∩ C1,α(D \Bρ(0)).

Hence, there exists some constant C > 0 such that ζ ≤ CdΓ1 . Setting

λ0 = C
− q

q−(p−1) > 0 and defining w = λζ, such that

−∆p(w) = −∆p(λζ) = λp−1(−∆p(ζ)) = λp−1
dqΓ1

|x|p
.
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Since ζq ≤ CqdqΓ1
, −∆p(λζ) ≥ λq ζq

|x|p , and w satisfies











−∆pw ≥ wq

|x|p in D

w > 0 in D

w = 0 on Γ1, w ≥ λdΓ1 on Γ2,

(6.25)

for any 0 ≤ λ ≤ λ0 and, furthermore, w(x) ≤ CdΓ1(x) for some constant C.
In the sequel we fix λ = λ0 and w = λ0ζ.

2.2.5 Comparison and control of the penalization.

We are going to show that, when θ goes to zero, any mountain pass critical
point u of Eδ,ε,θ satisfies

u ≤ w in D.

Indeed, as Iδ(u) ≤ Cθ, see (6.22), by the energy estimate (6.21), the
classical L∞ and Cβ-estimates give us that for any K compact, K ⊂ (Ω1 ∪
Γ1) \ {0},

‖u‖L∞(K) → 0 as θ → 0 uniformly on ε, δ.

Then, by bootstrapping, ‖u‖C1,β(K) ≤ C uniformly on ε, δ. Thus, there
is θ1 > 0 independent of ε, δ, such that for 0 < θ ≤ θ1 we obtain

u ≤ λdΓ1 on Γ2.

From (6.9) we have

−∆pu ≤
uq

|x|p + δ
in D,

and therefore

−∆pu− (−∆pw) ≤
uq − wq

|x|p + δ
in D.

Multiplying the equation by (u− w)+ and integrating on D we obtain

∫

D
< |∇u|p−2∇u− |∇w|p−2∇w,∇(u− w)+ > dx

≤

∫

D

uq − wq

|x|p + δ
(u− w)+dx.

(6.26)

• If p > 2, thanks to Lemma 4, the left hand side of (6.26) becomes

Cp

∫

D
|∇(u− w)+|pdx

≤

∫

D
< |∇u|p−2∇u− |∇w|p−2∇w,∇(u−w)+ > dx,

(6.27)
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for some positive constant Cp depending on p. Using Lagrange’s The-
orem, the right hand side of (6.26) satisfies

∫

D

uq − wq

|x|p + δ
(u−w)+dx ≤ C

∫

D
[(u− w)+]2

uq−1

|x|p + δ
dx

=

∫

D
[(u− w)+]2

u[q−(p−1)]+(p−2)

|x|p + δ
dx,

(6.28)

since q > 1 in this case.

Being (N−p)(p−2)
Np + p

N + 2N−p
Np = 1, by Hölder’s inequality we obtain

∫

D
[(u− w)+]2

u[q−(p−1)]+(p−2)

|x|p + δ
dx

≤

(
∫

D
[(u− w)+]

Np
N−p dx

)

2(N−p)
Np

(

∫

D

u
[q−(p−1)]N

p

(|x|p + δ)
N
p

dx

)

p
N(∫

D
u

pN
N−p dx

)

(N−p)(p−2)
Np

.

(6.29)

By Sobolev’s inequality and by the definition of Iδ(u), we get

∫

D
[(u− w)+]2

u[q−(p−1)]+(p−2)

|x|p + δ
dx

≤ C||∇(u− w)+||2Lp(D)(Iδ(u))
p
N S||u||p−2

W 1,p
0 (D)

.

Therefore, by (6.27), (6.28), (6.29) and taking into account the esti-
mation in (6.21), one has

∫

D
|∇(u− w)+|pdx ≤ C||∇(u− w)+||2Lp(Ω)(Iδ(u))

p
N ,

that is
||∇(u− w)+||Lp(Ω) ≤ C(Iδ(u))

p
N(p−2) . (6.30)

• If p ≤ 2, by classical estimates which characterize the p-Laplacian
operator (see Lemma 4), we get

Cp

∫

D

|∇(u− w)+|2

(|∇u|+ |∇w|)2−p
dx

≤

∫

D
< |∇u|p−2∇u− |∇w|p−2∇w,∇(u−w)+ > dx,

(6.31)

with Cp = Cp(p) a positive constant.
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Being

∫

D
|∇(u− w)+|pdx =

∫

D

|∇(u− w)+|p

(|∇u|+ |∇w|)
(2−p)p

2

(|∇u|+ |∇w|)
(2−p)p

2 dx,

by Hölder’s inequality it follows

∫

D
|∇(u−w)+|pdx≤(

∫

D

|∇(u− w)+|2

(|∇u|+ |∇w|)(2−p)
dx)

p
2 (

∫

D
(|∇u|+|∇w|)pdx)

2−p
2 .

Hence,

∫

D

|∇(u− w)+|2

(|∇u|+ |∇w|)(2−p)
dx ≥

(

∫

D |∇(u− w)+|p

(
∫

D(|∇u|+ |∇w|)p)
2−p
2

dx
)

2
p
. (6.32)

We estimate the right hand side of (6.26) as

∫

D

uq − wq

|x|p + δ
(u−w)+dx

≤ C

∫

D
(u− w)+

uq

|x|p + δ
dx = C

∫

D
(u− w)+

u[q−(p−1)]+(p−1)

|x|p + δ
dx.

(6.33)

Since (N−p)(p−1)
Np + p

N + N−p
Np = 1, by Hölder’s inequality we get in this

case

∫

D
(u− w)+

u[q−(p−1)]+(p−1)

|x|p + δ
dx

≤

(
∫

D
[(u− w)+]

Np
N−p dx

)
N−p
Np

(

∫

D

u
[q−(p−1)]N

p

(|x|p + δ)
N
p

dx

)

p
N(∫

D
u

Np
N−pdx

)

(N−p)(p−1)
Np

and then, using (6.31), (6.32), (6.33) and the estimation for the norm
of u, we have

(

∫

D |∇(u− w)+|p

(
∫

D(|∇u|+ |∇w|)p)
2−p
2

dx
)

2
p
≤ C||∇(u− w)+||Lp(Ω)(Iδ(u))

p
N .

(6.34)

If ||∇(u−w)+||Lp(Ω) = 0 we are done. Suppose that ||∇(u−w)+||Lp(Ω) >
0. From (6.34) we have

||∇(u− w)+||Lp(Ω) ≤ C(Iδ(u))
p
N . (6.35)
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By (6.30) and (6.35) we get the contradiction since Iδ(u) → 0 as θ → 0,
because the left hand side of (6.30) and (6.35) is strictly positive and the
right hand side is going to zero.

The following lemma shows that for ε small enough, the contribution
due to the penalization is actually zero. This is a necessary result to pass
to the limit and to have a solution of our problem.

Lemma 14. There exists ε0 > 0 such that

Iδ(uε,δ) < θ for all 0 < ε ≤ ε0 and all 0 < δ ≤ ε0.

If we prove that, we would have

Eδ,ε,θ(uε,δ) =
1

p

∫

Ωε

|∇u|pdx−
1

q + 1

∫

Ωε

(u+)q+1

|x|p + δ
dx.

Proof. We argue by contradiction. Assume that there are sequences of
positive numbers εn → 0, δn → 0 such that Iδn(uεn,δn) ≥ θ. Let us write
un = uεn,δn . By (6.21), for some subsequence, un ⇀ u in W 1,p(Ω1) weakly
and, by Rellich’s Theorem, it converges strongly in Lr(Ω1) with r < p∗; in
particular, since q < p∗ − 1 by hypothesis, un → u strongly in Lq+1(Ω1).
Moreover, u ≤ w in D as we saw before.

Let us show that

Iδn(un) → I0(u) as n→ ∞, (6.36)

where

Iδn(un) =

∫

Ω1

gδn(un + δn)

(|x|p + δn)
N
p

dx and I0 =

∫

Ω1

(u+)(q−(p−1))N
p

|x|N
dx.

Notice that
gδn(un + δn)

(|x|p + δn)
N
p

→
(u+)

(q−(p−1))N
p

|x|N
pointwise in Ω1 and since

we are far from zero,
gδn(un + δn)

(|x|p + δn)
N
p

is uniformly bounded in Ω1 \ D. Since

u ≤ w in D and by the definition of gδn(un + δn), the following inequalities
hold

gδn(un + δn)

(|x|p + δn)
N
p

≤
gδn(w + δn)

(|x|p + δn)
N
p

≤ C
(w + δn)

(q−(p−1))N
p

(|x|p + δn)
N
p

.

Since w ≤ C|x|,

gδn(un + δn)

(|x|p + δn)
N
p

≤ C
(|x|+ δn)

(q−(p−1))N
p

(|x|p + δn)
N
p

.
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For δn small,

gδn(un + δn)

(|x|p + δn)
N
p

≤ C
(|x|+ δ

1
p
n )

(q−(p−1))N
p

(|x|+ δ
1
p
n )N

≤ C(|x|+ δ
1
p
n )

(q−(p−1))N
p
−N

.

If (q − (p − 1))Np − N ≥ 0 this quantity is uniformly bounded and if (q −

(p− 1))Np −N < 0, one has

gδn(un + δn)

(|x|p + δn)
N
p

≤
C

(|x|+ δ
1
p
n )

N−(q−(p−1))N
p

≤ C|x|(q−(p−1))N
p
−N ,

which is integrable because since q > p− 1, −(q − (p− 1))Np +N < N . By

the Dominated Convergence Theorem (since |x|(q−(p−1))N
p
−N is independent

on n), we deduce the validity of (6.36). As a consequence of (6.36) and
(6.22), we have

I0(u) ≤ Cθ. (6.37)

We claim that u satisfies
{

−∆pu+ (q − (p − 1))Np η
′
θ(I0(u))

χ[u>0]

|x|N
u(q−(p−1))N

p
−1 ≤ (u+)q

|x|p in Ω1,

u = 0 on ∂Ω1.

(6.38)

Consider ϕ ∈ C1(Ω1), ϕ ≥ 0 with ϕ = 0 on ∂Ω1∩∂Ωε. Multiplying (6.9)
by ϕ and integrating by parts in Ω1 it yields

−
∣

∣

∣
ϕ|∇un|

p−2∇un

∣

∣

∣

∂Ω1

+

∫

Ω1

< |∇un|
p−2∇un,∇ϕ > dx

+ η′θ(Iδn(un))

∫

Ω1

g′δn(un + δn)

(|x|p + δn)
N
p

ϕdx =

∫

Ω1

(u+n )
q

|x|p + δn
ϕdx.

Since u ≡ 0 in ∂Ω1, we only need to evaluate the first term of the last
expression in the intersection of the boundary of Cε and the boundary of
Ω1, where the measure is εN−1. Since we are away from zero, un ∈ C1 and
then, ∇un = C, thus,

∫

Ω1

< |∇un|
p−2∇un,∇ϕ > dx− CεN−1 + η′θ(Iδn(un))

∫

Ω1

g′δn(un + δn)

(|x|p + δn)
N
p

ϕdx

=

∫

Ω1

(u+n )
q

|x|p + δn
ϕdx.
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We remark that the term CεN−1 comes from the integration by parts and
C is a constant that does not depend on ε. In fact, away from the origin,
problem (6.9) has C1,α

loc solutions. As before,

∫

Ω1

(u+n )
q

|x|p + δn
ϕdx→

∫

Ω1

(u+)q

|x|p
ϕdx as n→ ∞.

Using Fatou’s lemma we conclude (6.38),

(q − (p− 1))
N

p

∫

Ω1

χ[u>0]u
(q−(p−1))N

p
−1

|x|N
ϕdx ≤

∫

Ω1

g′δn(un)

(|x|p + δn)
N
p

ϕdx.

Multiplying (6.38) by u+, integrating on Ω1 and using Hölder’s and
Sobolev’s inequalities, we obtain
∫

Ω1

|∇u+|pdx

≤

∫

Ω1

(u+)q+1

|x|p
dx ≤ C

(
∫

Ω1

(u+)p
∗
dx

)
N−p
N

(

∫

Ω1

(u+)
(q−(p−1))N

p

|x|N
dx

)

p
N

+CεN−1

≤ C

∫

Ω1

|∇u+|pI0(u)
p
N dx+ CεN−1

and by (6.37) we have
∫

Ω1

|∇u+|pdx ≤ Cθ
p
N

∫

Ω1

|∇u+|pdx+ CεN−1.

For a fixed θ > 0 sufficiently small we conclude that u+ ≡ 0 in Ω1, since we
can choose ε small as we like. Therefore, I0(u) = 0, which is a contradiction
with I0(u) = limn→∞ Iδn(un) ≥ θ.

2.2.6 The end of the proof.

To conclude the proof we pass to the limit. In this way we are able to get a
solution to (6.3) for ε small enough.

If 0 < ε ≤ ε0 and 0 < δ ≤ ε0 themountain pass solution uε,δ of Lemma 12
satisfies

{

−∆pu = (u+)q

|x|p+δ in Ωε

u = 0 on ∂Ωε.
(6.39)

Then, uε,δ ≥ 0.

Since by definition, E(0) = 0 and recalling that, by Lemma 13,

Eδ,ε,θ(uε,δ) ≥ c0 > 0,
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thus, uε,δ 6≡ 0 and by the strong maximum principle [94], uε,δ > 0 in Ωε.

Now, for fixed 0 < ε ≤ ε0 we let δ → 0. Since uε,δn ≤ w we can apply
the Dominated Convergence Theorem to show that

∫

Ωε

uqε,δn
|x|p + δn

ϕdx→

∫

Ωε

uqε
|x|p

ϕdx as δn → 0 for any ϕ ∈ C1(Ωε).

Thus, by the continuity of −∆−1
p (·), uε satisfies











−∆pu = uq

|x|p in Ωε

u ≥ 0 in Ωε

u = 0 on ∂Ωε.

Multiplying (6.39) by uε,δn we find that,

∫

Ωε

(−∆puε,δn)uε,δndx =

∫

Ωε

uε,δn
(u+ε,δn)

q

|x|p + δn
dx.

Then,
∫

Ωε

|∇uε,δn |
pdx =

∫

Ωε

(u+ε,δn)
q+1

|x|p + δn
dx.

By definition we know that Eδn,ε,θ(uε,δn) satisfies

Eδn,ε,θ(uε,δn) =
1

p

∫

Ωε

|∇uε,δn |
pdx−

1

q + 1

∫

Ωε

(u+ε,δn)
q+1

|x|p + δn
dx.

Therefore,

Eδn,ε,θ(uε,δn) =

(

1

p
−

1

q + 1

)
∫

Ωε

uq+1
ε,δn

|x|p + δn
dx

and, by Dominated Convergence Theorem, using the fact that uε,δn ≤ w in
D, we see that

Eδn,ε,θ(uε,δn) →

(

1

p
−

1

q + 1

)
∫

Ωε

uq+1
ε

|x|p
dx as n→ ∞.

Since Eδn,ε,θ(uε,δn) ≥ c0 > 0 by Lemma 13 we deduce that uε > 0. This
concludes the proof of Theorem 23.

�

Remark 7. For the same reasons as in subsection 2.2.4, since uε,δn ≤ w
uniformly on ε and δ, the energy solution u to (6.3) belongs to C0,1(Ωε) ∩
C1,α(Ωε).
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3 The problem with g(λ, x, u) = λf(x)ur

In this Section we are goint to prove Theorem 24, the aim is to study the
existence of solution to the problem



















−∆pu =
uq

|x|p
+ λf(x)ur in Ω

u ≥ 0 in Ω

u = 0 on ∂Ω,

(6.40)

where 1 < p < N , q > p−1, f 
 0 belongs to L∞(Ω), 0 ≤ r < p−1 and Ω is
a bounded smooth domain in RN . The aim is to find a solution that does not
depend on the geometry of the domain. The idea is to construct a super- and
subsolution ordered and then, by iteration, to get a non decreasing sequence
of solutions {uk}k≥1 uniformly bounded by the supersolution. Notice that
we do not assume any bound (from above) for the exponent q.

This result can be considered as a generalization of the one in Chapter
5. In the same way, we include the concave term in the equation in order to
avoid the geometry restriction for the existence of solution.

To prove Theorem 24, we proceed step by step in order to be clear.

Step 1: Construction of a supersolution u to (6.40). Consider
dΓ = dist(x,Γ), with x ∈ Ω, 0 ∈ Γ ⊂ ∂Ω and Γ a regular submanifold of the
boundary. Let w1 be the solution to



















−∆pw =
dqΓ
|x|p

+ f(x)wr in Ω

w ≥ 0 in Ω

w = dΓ on ∂Ω,

(6.41)

Since f ∈ L∞(Ω), q > p−1 and 0 ≤ r < p−1, by standard regularity theory
[42], [51],[93], we have w1 ∈ C0,1(Ω) ∩ C1,α(Ω) and thus, w1 ≤ CdΓ, where
C = C(Ω, p, q, r, f) is a positive constant.

Let uλ = Tw1, with T a positive parameter. Then,

−∆puλ = T p−1 d
q
Γ

|x|p
+ T p−1f(x)wr

1 ≥ T p−1 wq
1

Cq|x|p
+ T p−1f(x)wr

1

= T p−1 uqλ
T qCq|x|p

+
T p−1

T r
f(x)urλ.

In order to get a supersolution we want that −∆puλ ≥
uqλ
|x|p

+ λf(x)urλ.
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Therefore, ∃T = T (λ) such that if

T ≥ λ
1

p−1−r and T ≤

(

1

Cq

)
1

q−(p−1)

,

uλ is a supersolution to (6.40).

Hence, there exists Λ > 0 such that ∀λ ∈ (0,Λ] we have a supersolution

uλ ∈ C0,1(Ω) ∩ C1(Ω), with Λ = C
−q(p−1−r)
q−(p−1) . Let us denote u = uλ.

Step 2: Construction of a subsolution u to (6.40).

To construct the subsolution of (6.40) we are going to use the following
Theorem

Theorem 26. Let ρ a non-negative bounded function such that ρ(x) 6= 0,

the function f(t)
tp−1 decreasing and consider Ω a bounded domain. Then, the

problem
{

−∆pu = ρ(x)f(u) in Ω

u = 0 on ∂Ω,

has a unique solution.

The existence result is given by minimization and the proof of the unique-
ness can be seen in [5].

Therefore, we can consider v be the (unique) solution to











−∆pv = λf(x)vr in Ω

v ≥ 0 in Ω

v = 0 on ∂Ω.

(6.42)

Actually, it is easy to see that v is, in fact, a subsolution of (6.40) and, by
regularity results, see [70], belongs to C1,β(Ω). Let us recall v = u.

Step 3: Comparison and iteration argument. To prove that u ≥ u
in Ω, we note that −∆pu ≥ λf(x)ur, being u a supersolution to (6.40). We
argue as in the comparison proof in [5]. Thanks to the definition of u, one
can write

−∆pu

up−1 +
∆pu

up−1
≥ λf(x)

(

ur

up−1 −
ur

up−1

)

.

Multiplying the last expression by (up − up)+ we get that
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∫

Ω

(

−∆pu

up−1 +
∆pu

up−1

)

(up − up)+dx ≥ λf(x)

∫

Ω

(

ur

up−1 −
ur

up−1

)

(up − up)+dx

= λf(x)

∫

Ω∩{u≥u}

(

ur

up−1 −
ur

up−1

)

(up − up)+dx.

(6.43)

Integrating by parts, the left hand side of (6.43) becomes

∫

Ω

(

−∆pu

up−1 +
∆pu

up−1

)

(up − up)+dx

=

∫

Ω∩{u≥u}

(

p
up−1

up−1 |∇u|
p−2〈∇u,∇u〉 − (p− 1)

up

up
|∇u|p − |∇u|p

)

dx

+

∫

Ω∩{u≥u}

(

p
up−1

up−1
|∇u|p−2〈∇u,∇u〉 − (p− 1)

up

up
|∇u|p − |∇u|p

)

dx.

Since u > 0 and u > 0, by a generalized Picone’s inequality (see Theorem
12), we have

0 ≥

∫

Ω

(

−∆pu

up−1 +
∆pu

up−1

)

(up − up)+dx. (6.44)

We point out that g(t) = tr

tp−1 ↓ since r < p− 1. Then, as a consequence of
f 
 0, the following term turns to be non-negative in the set Ω ∩ {u ≥ u}

λ

∫

Ω∩{u≥u}
f(x)

(

ur

up−1 −
ur

up−1

)

(up − up)+dx ≥ 0. (6.45)

Equations (6.44) and (6.45) imply that (u−u)+ ≡ 0 in Ω. Therefore, u ≤ u.

We are going to define now the iterative problems in order to pass to the
limit and to get the desired solution.

Let u1 be the solution to











−∆pu1 =
uq

|x|p + λf(x)ur in Ω

u1 ≥ 0 in Ω

u1 = 0 on ∂Ω.

(6.46)

Since u is a subsolution, one has

−∆pu ≤
uq

|x|p
+ λf(x)ur = −∆pu1 ≤

uq

|x|p
+ λf(x)ur ≤ −∆pu.
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By the weak comparison principle, as we saw before, we get u ≤ u1 ≤ u.
Therefore, using the Sattinger method (see in [85]), we construct a sequence
{uk}k≥1 in W 1,p

0 (Ω) ∩ L∞(Ω) such that















−∆puk+1 =
uq
k

|x|p + λf(x)urk in Ω

uk+1 ≥ 0 in Ω

uk+1 = 0 on ∂Ω,

(6.47)

with u ≤ u1 ≤ u2 ≤ ... ≤ uk ≤ ... ≤ u, ∀k ≥ 1. In particular, ∀x ∈ Ω,
{uk(x)}k≥1 is a non decreasing sequence which is bounded and therefore, it
converges. Thus, we are able to define the limit uλ(x) = limk→∞ uk(x), ∀x ∈
Ω. By Dominated Convergence Theorem, the right hand side of (6.47) con-

verges to
uq
λ

|x|p + λf(x)ur in L1(Ω), ∀q > 0. Finally, we pass to the limit in

(6.47) using the continuity of −∆−1
p (·).

The solution uλ is a minimal solution in the sense that any other solution
ũ to (6.40) verifies uλ ≤ ũ. To prove that, it is needed to repeat the above
argument using ũ as a supersolution.

Step 4: Nonexistence for λ large. We show the following claim:

There exists λ̃ such that, ∀λ ∈ [λ̃,∞), problem (6.40) has no solution
u ∈ W 1,p

0 (Ω).

Consider the following eigenvalue problem

{

−∆pu = λf(x)
q−(p−1)

q |u|p−1 in Ω

u = 0 on ∂Ω.
(6.48)

We are going to proceed by contradiction. Let us suppose that uλ ∈
W 1,p

0 (Ω) is a solution to problem (6.40). Let us see that in weak sense the
following inequality holds,

−∆puλ =
uqλ
|x|p

+ λf(x)urλ ≥ Cuqλ + λf(x)urλ

≥ (λ1 + ε)f(x)
q−(p−1)

q up−1
λ in Ω,

(6.49)

where C = inf
x∈Ω

1

|x|p
and λ1 is the first eigenvalue of problem (6.48). Notice

that in the points where f(·) is equal to zero, (6.49) is true for every λ since
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q > p − 1. On the other hand, by straightforward calculations in the set
{x ∈ Ω : f(x) > 0}, it is possible to show that there exists λ such that

min
t>0

Φλ(t) := Ctq−(p−1) + λf(x)tr+1−p ≥ (λ1 + ε)f(x)
q−(p−1)

q .

We now fix ε > 0 small such that λ1 + ε < λ2, the second eigenvalue
of (6.48) and consider µ ∈ (λ1, λ1 + ε). Moreover, by Hopf’s Lemma, near
the zero there exist space between the solution uλ and the boundary, so we
can put the eigenfunction ϕ1 under the solution uλ, hence, there exists δ > 0
small enough such that v1 = δ1/(p−1)ϕ1 ≤ uλ, where ϕ1 be the first positive
eigenfunction to (6.48) associated with the eigenvalue λ1. Thus, using (6.49)
we have

−∆pv1 = λ1f(x)
q−(p−1)

q vp−1
1 ≤ µf(x)

q−(p−1)
q vp−1

1 ≤

µf(x)
q−(p−1)

q up−1
λ ≤ (λ1 + ε)f(x)

q−(p−1)
q up−1

λ ≤ −∆puλ,

that is, by weak comparison principle, v1 ≤ uλ and moreover uλ, v1 are
super- and subsolution to

{

−∆pu = µf(x)
q−(p−1)

q up−1 in Ω

u = 0 on ∂Ω,
(6.50)

with µ ∈ (λ1, λ1 + ε).

A standard iteration argument proves that problem (6.50) has a positive
solution, which is a contradiction with the isolation of λ1 (see [17]) being ε
arbitrary.

Step 5: The maximal interval of existence.

We define

λmax = sup{λ ∈ R+ : (6.40) has a non trivial solution}.

Obviously, previous steps imply λmax > 0 and λmax < ∞. Moreover if λ ∈
(0, λmax), we can find λ∗ such that λ < λ∗ and problem (6.40) has a solution
for λ∗, which is a supersolution to (6.40) for λ. As in Step 3 we find a
solution for such λ.

At the end, notice that for 0 < λ1 < λ2 ≤ Λ we have that the solution
uλ2 is a supersolution to problem (6.40) for λ1. Hence, −∆puλ1 ≤ −∆puλ2

and by the weak comparison principle we have uλ1 ≤ uλ2 .

�
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Remark 8. Since u ≤ CdΓ, the right hand side of (6.40) belongs to some
Lr(Ω) with r > N. Then, by Lemma 10, the solution uλ of (6.40) belongs
to L∞(Ω) and hence u ∈ C0,1(Ω) ∩ C1,α(Ω).

In the next proposition we show that the minimal solution uλ is, in fact, the
minimizer of the functional

J(u) =
1

p

∫

Ω
|∇u|pdx−

1

q + 1

∫

Ω

uq

|x|p
dx−

λ

r + 1

∫

Ω
f(x)ur+1dx, (6.51)

defined on
K = {v ∈W 1,p

0 (Ω) : u ≤ v ≤ uλ}. (6.52)

Thanks to the supersolution u (as in Step 1 above), the functional (6.51) is
well defined in the closed and convex set K. Then, there exists u ∈ K such
that

J(u) = min
v∈K

J(v).

Proposition 7. The minimal solution uλ is the minimizer of J(v).

Proof. By the definition of K, it is sufficient to prove that uλ ≤ u.

Let u1 be the solution to (6.47) corresponding to k = 1. Let us define
v = u+ (u1 − u)+ which belongs to K. Then, by definition of minimizer u
we have
∫

Ω
< |∇u|p−2∇u,∇(u1 − u)+ > dx ≥

∫

Ω

( uq

|x|p
+ λf(x)ur

)

(u1 − u)+dx

and since u1 verifies (6.46),
∫

Ω
< |∇u1|

p−2∇u1,∇(u1 − u)+ > dx =

∫

Ω

( uq

|x|p
+ λf(x)ur

)

(u1 − u)+dx.

Therefore, subtracting the last two expressions, we obtain

∫

Ω
< |∇u1|

p−2∇u1 − |∇u|p−2∇u,∇(u1 − u)+ > dx

≤

∫

Ω
(
uq

|x|p
−

uq

|x|p
)(u− u)+dx.

(6.53)

Since,
∫

Ω
(
uq

|x|p
−

uq

|x|p
)(u− u)+dx ≤ 0

and by in Lemma 4, (u− u)+ = 0.

An induction argument allows us to prove that uk ≤ u, ∀k ∈ N. Since
uλ(x) = limk→∞ uk(x) (see Step 3 above), we conclude uλ ≡ u. �
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Chapter 7

Critical and supercritial parabolic problems

with 0 ∈ ∂Ω

1 Introduction

In this Chapter we are going to study the following parabolic problem























ut −∆u = λ
up

|x|2
in ΩT = Ω× (0, T ),

u > 0 in ΩT ,
u(x, 0) = u0(x) ≥ 0 in Ω,

u = 0 on ∂Ω× (0, T ),

(7.1)

where p ≥ 1 and Ω ⊂ IRN is a bounded domain such that N ≥ 3 and 0 ∈ ∂Ω.

One of the main goals in this Chapter will be to emphasize the contrast
with the case 0 ∈ Ω, which behaves in a deep different way.

If 0 ∈ Ω, Baras and Goldstein proved in [20] that if p = 1 and λ > ΛN ,
the problem does not have distributional solution. More precisely, they
established the following result

Theorem 27. (Baras–Goldstein’s Theorem)

Consider the initial value problem with Dirichlet boundary data,

(P )



















ut −∆u = λ
u

|x|2
+ g if x ∈ Ω ⊂ IRN , N ≥ 3, t > 0, λ ∈ IR,

u(x, 0) = f(x) if x ∈ Ω, f ∈ L2(Ω),

u(x, t) = 0 if x ∈ ∂Ω, t > 0,

where Ω is a domain such that 0 ∈ Ω. Then,

(i) If λ ≤ ΛN , the problem (P ) has a unique global solution if

∫

Ω
|x|−α1u(x, 0) dx <∞ and

∫ T

0

∫

Ω
|x|−α1g dx dt <∞,

with α the smallest root of α2 − (N − 2)α + λ = 0.
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(ii) If λ > ΛN , the problem (P ) has no local solution if f > 0.

Indeed, if vn is the solution of the truncated problem for n ∈ IN and
λ ∈ R,


















ut −∆u = min
{

n, λ
u

|x|2

}

if x ∈ Ω ⊂ IRN , N ≥ 3, t > 0,

u(x, 0) = f(x) if x ∈ Ω, f ∈ L2(Ω),

u(x, t) = 0 if x ∈ ∂Ω, t > 0,

then, lim
n→∞

vn(x, t) = ∞, for every (x, t) ∈ Ω× (0,∞).

Moreover, in the supercritical problem, p > 1, independently of the value
of λ > 0, a nonexistence result in distributional sense is obtained in [32],
where it is also proved an instantaneous and complete blow-up result.

We prove in this Chapter that if 0 ∈ ∂Ω and p = 1 there is no such
Baras-Goldstein type result. Indeed, we find a unique global solution to
(7.1) without restriction in the parameter λ and for all initial data in L1(Ω).

We also prove in Section 3 that if 0 ∈ ∂Ω and p > 1, the problem















ut −∆u =
up

|x|2
in ΩT = Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),
u(x, 0) = u0(x) in Ω,

(7.2)

has a bounded solution provided that ū ∈ L∞(Ω) is a suitable supersolution
to the stationary problem (5.1) and 0 ≤ u0 ≤ ū. Moreover, this solution is
unique in L∞(ΩT ). Notice that, in the parabolic problem we do not have
any restriction on the shape of the domain in contrast with the Elliptic case
(see the previous Part of this work and [50]).

We recall the wellknown Gronwall’s inequality and some preliminary
results that we are going to use in this Chapter.

Lemma 15. (Gronwall’s inequality) Let η(.) be a nonnegative, absolutely
continuous function on [0, T ], which satisfies a.e. the differential inequality

η′(t) ≤ φ(t)η(t) + ψ(t). (7.3)

Where φ(t) and ψ(t) are nonnegative summable functions on [0, T], then

η(t) ≤ e
∫ t

0
φ(s)ds

[

η(0) +

∫ t

0
ψ(s)ds

]

for all 0 ≤ t ≤ T. (7.4)

See, for instance, [53].
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Lemma 16. Let Ω be a bounded domain such that 0 ∈ ∂Ω and assume that
0 < q < 1. Then, the problem







−∆w =
wq

|x|2
in Ω,

w = 0 on ∂Ω,
(7.5)

has a unique positive solution w such that w ∈W 1,2
0 (Ω) ∩ L∞(Ω).

See [4] (even if 0 ∈ Ω) for a proof of existence of solution in the energy
space. Notice that the uniqueness is a consequence of Brezis-Kamin com-
parison argument in [35]. The boundedness can be obtained considering a
suitable µ > 0 for which we have a solution u to the problem

{

−∆u = uq

|x|2
+ µur in Ω,

u = 0 on ∂Ω,

with 1 < r < N+2
N−2 .

In a similar way to [50] (see Lemma 2.2 in such reference), we define

v(y) = u(|x0|+ ry) with r = |x0|
2 and y ∈ (Ω−x0)

r such that the problem

−∆v =
r2vq

(|x0|+ ry)2
+ µr2vr.

Using the Gidas-Spruck estimates (see Theorem 1.1 in [63]), there exists a
universal constant C > 0 such that, in particular, v(0) ≤ C. Since u is a
supersolution to problem (7.5), using the comparison argument by Brezis-
Kamin in [35] we get that w(x) ≤ u(x) and then, w ∈ L∞(Ω).

The following Theorem is proved in [24], see also [79].

Theorem 28. Suppose that F ∈ L1(ΩT ) and u0 ∈ L1(Ω), then, the problem







ut −∆u = F in ΩT ,
u = 0 on ∂Ω× (0, T ),
u(x, 0) = u0(x) in Ω,

(7.6)

has one and only one entropy solution u ∈ C([0, T ], L1(Ω)), moreover,
u ∈ Ls(0, T ;W 1,s

0 (Ω)) for all s < N+2
N+1 .

We point out that in this case the solution called entropy solution is
equivalent to solution obtained as limit of approximations and to distribu-
tional solution. Thus, we will consider distributional solution obtained as
limit of approximated problems that also provides this regularity.

All the results in this Chapter can be seen in the paper [19].
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2 The critical problem: p = 1

2.1 Existence result

The main existence result of this Section is the following.

Theorem 29. Let Ω ⊂ IRN be a bounded domain and 0 ∈ ∂Ω. Assume that
u0 ∈ L1(Ω) is a nonnegative function. Then, for all λ > 0, the problem











ut −∆u = λ
u

|x|2
in ΩT ,

u(x, 0) = u0(x) in Ω,
u = 0 on ∂Ω× (0, T ),

(7.7)

has a unique solution u such that
u

|x|2
∈ L1(ΩT ) and u ∈ Lσ(0, T ;W 1,σ

0 (Ω))

for all σ < N+2
N+1 .

Proof. Fixed u0 ∈ L1(Ω), consider a sequence of nonnegative functions
{u0n}n ⊂ L∞(Ω) such that u0n is increasing in n and u0n ↑ u0 as n→ ∞ in
L1(Ω).

Consider u1 ≡ 0, and define by recurrence, un ∈ L2(0, T ;W 1,2
0 (Ω)) ∩

L∞(ΩT ), with n > 1, as the unique positive solution to the approximated
problem























(un)t −∆un = λ
un−1

|x|2 + 1
n

in ΩT ,

un > 0 in ΩT ,
u(x, 0) = u0n(x) in Ω,

un = 0 on ∂Ω× (0, T ).

(7.8)

The existence and the uniqueness of un and the fact that {un}n is an in-
creasing sequence, are a consequence of the elementary results for the heat
equation, see Theorem 28.

Thanks to Theorem 16, we can set 0 < q < 1
2 and consider w the unique

positive solution to







−∆w =
wq

|x|2
in Ω,

w = 0 on ∂Ω.
(7.9)

Fixed λ > 0, for all ε > 0 there exists C > 0 such that,

λ < C|x|2 + εwq−1(x) for all x ∈ Ω. (7.10)

Indeed, in a neighborhood of 0 at the boundary w = 0 and ∀K ⊂⊂ Ω
compact, |x|2 > C1, then it is sufficient to choose C large enough.
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Using w as a test function in (7.8) and taking into account the expression
(7.10), we get

∫

Ω
(un)twdx+

∫

Ω
un(−∆w)dx ≤ C

∫

Ω
unwdx+ ε

∫

Ω

wqun
|x|2

dx.

By the definition of w and choosing ε << 1, it follows that
∫

Ω
(un)twdx+ (1− ε)

∫

Ω
un

wq

|x|2
dx ≤ C

∫

Ω
unwdx.

Since un, w > 0,hola a n g!!

d

dt

∫

Ω
unwdx ≤ C

∫

Ω
unwdx.

Applying Gronwall’s inequality again(see Lemma 15),

∫

Ω
unwdx ≤ eCT [

∫

Ω
u0wdx].

Thus,
∫

Ω
(un)twdx+ (1− ε)

∫

Ω
un

wq

|x|2
dx ≤ eCT [

∫

Ω
u0wdx].

Integrating the last expression on time,

∫

Ω
un(x, T )wdx+(1−ε)

∫ T

0

∫

Ω
un

wq

|x|2
dxdt ≤ (T+C̄)eCT

∫

Ω
u0wdx. (7.11)

Therefore, taking into account that u0 ∈ L1(Ω) and w ∈ L∞(Ω),

∫ T

0

∫

Ω
un

wq

|x|2
dxdt ≤ C1(T ) and

∫

Ω
un(x, T )wdxdt ≤ C2(T ).

Since {un}n is increasing in n, using the Monotone Convergence Theorem,

we get the existence of a measurable function u such that
unw

q

|x|2
→

uwq

|x|2

strongly in L1(ΩT ), and then, un ↑ u strongly in L1
loc(ΩT ).

We claim that {
un
|x|2

}n is bounded in L1(ΩT ). Indeed, we consider ψ ∈

W 1,2
0 (Ω) as the unique positive bounded solution to the problem

−∆ψ =
1

|x|2 + ε
in Ω, ψ = 0 on ∂Ω. (7.12)

We define ϕ = ψ
1

1−q , and by a direct computation we obtain

−∆ϕ =
( 1

1− q

)

ψ
q

q−1 (−∆ψ) =
( 1

1− q

) ϕq

|x|2 + ε
.



164 7. Critical and supercritial parabolic problems with 0 ∈ ∂Ω

Therefore,

−∆ϕ ≤
( 1

1− q

) ϕq

|x|2
.

Hence, since −∆w =
wq

|x|2
and q < 1, we can use the same arguments as in

the proof of the uniqueness to Theorem 19 (that we used also in Chapter 5).

Therefore, get that ϕ ≤ Cw and then

ψ ≤ Cw1−q. (7.13)

Using ψ as a test function in (7.8) we deduce that

d

dt

∫

Ω

unψdx+

∫

Ω

un(−∆ψ)dx

= λ

∫

Ω

un−1ψ

|x|2 + 1
n

dx ≤ Cλ

∫

Ω

unw
1−q

|x|2
dx.

(7.14)

Therefore,

d

dt

∫

Ω
unψdx+

∫

Ω

un
|x|2 + ε

dx ≤ Cλ

∫

Ω

unw
1−q

|x|2
dx.

Taking into account that q < 1
2 and using the fact that w is bounded, we

obtain that w1−q ≤ Cwq because

1 ≤
Cwq

w1−q
⇔ 1 ≤ Cw2q−1.

Since q < 1
2 , 1 ≤ C

wa , with a > 0, then, w ≤ C.

Thus, thanks to (7.14),

d

dt

∫

Ω
unψdx+

∫

Ω

un
|x|2 + ε

dx = λ

∫

Ω

un−1ψ

|x|2 + 1
n

dx

≤ Cλ

∫

Ω

unw
q

|x|2
dx ≤ C(T ).

(7.15)

Integrating on time, we get

∫

Ω
un(x, T )ψdx+

∫ T

0

∫

Ω

un
|x|2 + ε

dxdt ≤ C(T ).

Hence, using Fatou’s Lemma we can pass to the limit in ε and the claim

follows. Therefore, we obtain that
un
|x|2

∈ L1(ΩT ). The equation holds in a

distributional sense and also as a limit of approximations. By Theorem 28 we

get that u ∈ C((0, T ), L1(Ω)) and u ∈ Lσ(0, T ;W 1,σ
0 (Ω)) for all σ <

N + 2

N + 1
.
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Notice that estimate (7.11) ensures that u is globally defined on time.

It is clear that u is the minimal solution to problem (7.7), this follows
considering another solution v, in particular, v is a supersolution and, using
the classical comparison result as before, one can get that u ≤ v.

Let us prove now the uniqueness result.

We argue by contradiction. Suppose v is another solution. Since u is
a minimal solution, v ≥ u. Let us define the function z = v − u, then
z

|x|2
∈ L1(ΩT ) and z satisfies











zt −∆z = λ
z

|x|2
in ΩT ,

z(x, 0) = 0 in Ω,
z = 0 on ∂Ω× (0, T ).

(7.16)

Using w, the solution of (7.5), as a test function in (7.16) and following the
same computation as in the proof of the existence result, we get

∫

Ω
ztwdx+ (1− ε)

∫

Ω
z
wq

|x|2
dx ≤ C

∫

Ω
zwdx,

where ε << 1. Since z, w ≥ 0,

d

dt

∫

Ω
zwdx ≤ C

∫

Ω
zwdx.

Using Gronwall’s inequality as before, we obtain that z(x, t)w(x)dx ≤ 0 for
all t > 0. Therefore, z ≡ 0 and the uniqueness follows. �

Concerning the regularity of u we want to point out the following re-
marks. We consider µ(Ω) as the Hardy constant for Ω defined in as

µ(Ω) = inf
{

∫

Ω
|∇φ|2 : φ ∈W 1,2

0 (Ω),

∫

Ω

φ2

|x|2
= 1
}

.

• If λ < µ(Ω) and u0 ∈ L2(Ω),

∫ T

0

∫

Ω
untundxdt+

∫ T

0

∫

Ω
un(−∆un)dxdt = λ

∫ T

0

∫

Ω

u2n
|x|2

dxdt.

Thus,

1

2

∫

Ω
u2n(x, T )dx+

∫ T

0

∫

Ω
|∇un|

2dxdt

≤
λ

µ(Ω)

∫ T

0

∫

Ω
|∇un|

2dxdt+
1

2

∫

Ω
u20dx,
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then,

1

2

∫

Ω
u2n(x, T )dx+ (1−

λ

µ(Ω)
)

∫ T

0

∫

Ω
|∇un|

2dxdt ≤ C.

Since λ < µ(Ω), (1− λ
µ(Ω)) ≥ 0 and u ∈ L2(0, T ;W 1,2

0 (Ω)).

Notice that if u0 ∈ L∞(Ω), we can find a supersolution u ∈ L∞(ΩT )
such that u0 ≤ u and we can prove that u ∈ L∞(ΩT ).

• If λ ≥ µ(Ω), we claim

∫ T

0

∫

Ω
|∇u|2wdxdt < ∞. To see that we use

unw as a test function in (7.8), obtaining

1

2

d

dt

∫

Ω
u2nwdx+

∫

Ω
|∇un|

2wdx+
3

2

∫

Ω

u2nw
q

|x|2
dxdt ≤ λ

∫

Ω

u2nw

|x|2
dxdt.

By (7.10), we have that

λ
wu2n
|x|2

< Cwu2n + ε
wqu2n
|x|2

,

thus,

1

2

d

dt

∫

Ω
u2nwdx+

∫

Ω
|∇un|

2wdx+
3

2

∫

Ω

u2nw
q

|x|2
dxdt

≤ λ

∫

Ω
Cwu2ndx+

∫

Ω
ε
wqu2n
|x|2

dx,

and choosing ε < 3
2 , it yields

1

2

d

dt

∫

Ω
u2nwdx+

∫

Ω
|∇un|

2wdx+(
3

2
− ε)

∫

Ω

u2nw
q

|x|2
dxdt ≤ C

∫

Ω
u2nwdx.

Gronwall’s inequality allows us to conclude that
∫

Ω
u2n(x, t)wdx ≤

(

∫

Ω
u20nwdx

)

eCt, t > 0.

Therefore,
∫ T

0

∫

Ω
|∇un|

2wdxdt ≤ C(T ).

Hence, the claim follows. Notice that, an iteration argument allows us
to prove that, if u0 ∈ L∞(Ω), u ∈ L∞(D) for any compact set D in
ΩT .

In the next Subsection we are going to analyze the asymptotic behavior
of the solution to problem (7.7) obtained in Theorem 29.
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2.2 Asymptotic behavior

Theorem 30. Let u be the solution to problem (7.7) found in Theorem 29,
then

1. If λ < µ(Ω), u(x, t) → 0 in L1(Ω) as t→ ∞

2. If λ > µ(Ω), u(x, t) → ∞ in L1(δ(x)dx,Ω) as t → ∞,tengo un culo
muy bonito

where µ(Ω) is, as above, the Hardy constant for Ω defined in as

µ(Ω) = inf
{

∫

Ω
|∇φ|2 : φ ∈W 1,2

0 (Ω),

∫

Ω

φ2

|x|2
= 1
}

,

and δ(x) = min
y∈∂Ω

{|x− y|}.

Proof. Let u be the very weak solution to problem (7.7), then
u

|x|2
∈ L1(ΩT )

for all T <∞. We split the proof in the two cases:¿por qué a n a nos odia?

Case 1: λ < µ(Ω). We use u as a test function in (7.7),

1

2

d

dt

∫

Ω
u2dx+

∫

Ω
|∇u|2dx = λ

∫

Ω

u2

|x|2
dx ≤

λ

µ(Ω)

∫

Ω
|∇u|2dx.

Since λ < µ(Ω) and by Poincaré’s inequality, we get

1

2

d

dt

∫

Ω
u2dx+C(1−

λ

µ(Ω)
)

∫

Ω
u2dx ≤ 0,

therefore, we reach that setting γ := C(1−
λ

µ(Ω)
),

∫

Ω
u2dx ≤ e−γt

∫

Ω
u20dx and then lim

t→∞

∫

Ω
u(x, t)dx = 0.

Case 2: λ > µ(Ω). Let ρn be the positive eigenfunction of the eigenvalue
problem







−∆ρn = µn
ρn

|x|2 + 1
n

in Ω,

ρn = 0, on ∂Ω.
(7.17)

We assume ρn normalized, ||ρn||∞ = 1. In the limit, ρ verifies

{

−∆ρ = D
ρ

|x|2
in Ω,

ρ = 0, on ∂Ω.
(7.18)
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Multiplying this equation by ρ, we get

∫

Ω
|∇ρ|2dx = D

∫

Ω

ρ2

|x|2
dx

and since ρ is an eigenfunction, we know that D = µ(Ω). Therefore, µn ↓
µ(Ω) as n → ∞. Since λ > µ(Ω), there exists n0 ∈ IN such that for all
n ≥ n0, µn < λ. For n0 fixed, we denote ρn0 by ρ and µn0 by µ. Using ρ as
a test function in (7.7), we get

d

dt

∫

Ω
uρdx+ µ

∫

Ω

uρ

|x|2 + 1
n0

dx = λ

∫

Ω

uρ

|x|2
dx.

Taking into account that
1

|x|2
≥

1

|x|2 + 1
n0

≥ C in Ω, it follows

d

dt

∫

Ω
uρdx ≥ C(λ− µ)

∫

Ω
uρdx.

Integrating in both sides of the last expression and considering µ < λ, we
obtain that, for some c > 0,

Y (t) ≥ Y0e
(λ−µ)ct where Y (t) =

∫

Ω
u(x, t)ρdx.

Thus, Y (t) → ∞ as t→ ∞ and by Hopf’s lemma, we know that the distance
from any point x to a point y in the boundary is strictly positive, so there is
space between the function ρ(x) and this distance, i.e., ρ(x) ≥ cδ(x). Then,
we conclude. �

3 The supercritical problem: p > 1

In this Section we are interested in the super-linear case, p > 1, that corre-
sponds to the supercritical case with respect to the Sobolev embedding with
the Hardy weight, see Theorem 6. Without loss of generality we can assume
λ = 1.

3.1 Existence result

The main result in this Section is the following.
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Theorem 31. Assume that Ω is a smooth bounded domain such that 0 ∈ ∂Ω
and let p > 1. Then, there exists ū ∈ L∞(Ω) such that if 0 ≤ u0 ≤ ū, the
problem















ut −∆u =
up

|x|2
in ΩT ,

u = 0 on ∂Ω× (0, T ),
u(x, 0) = u0(x) in Ω,

(7.19)

has a unique positive solution u ∈ L2(0, T ;W 1,2
0 (Ω))∩L∞(ΩT ), for all T > 0.

Proof. We start the proof finding a supersolution to (7.19). Consider
dΓ1(x) = dist(x,Γ1), with x ∈ Ω, where Γ1 is a regular submanifold of the
boundary and 0 ∈ Γ1 ⊂⊂ ∂Ω. Let ζ be defined as the solution to











−∆ζ =
dpΓ1

|x|2
in Ω,

ζ = dΓ1 on ∂Ω.

(7.20)

The function dpΓ1
/|x|2 belongs to Lr(Ω) for any 1 ≤ r < N

2−p if p < 2
and for any r ≥ 1 if p ≥ 2. In both cases there exists r > N such that
dpΓ1

/|x|2 ∈ Lr(Ω). Thus, using the classical regularity theory, as in Chapter
5, we conclude that ζ, the solution of (7.20), is bounded and, moreover,
ζ ∈ C1,α(Ω). Then, by Hopf’s Lemma we conclude that, there exists some
constant C > 0 such that ζ ≤ CdΓ1 .

Setting T = C− p
p−1 > 0 and defining u = Tζ, by a direct calculation we

find that

−∆u = T (−∆ζ) =
TdpΓ1

|x|2
≥

Tζp

|x|2Cp
=
T pT 1−pζp

|x|2Cp
=

up

|x|2
.

Therefore,



















−∆u ≥
up

|x|2
in Ω,

u > 0 in Ω,

u = TdΓ1 on ∂Ω.

(7.21)

Hence, u is a supersolution to (7.19) if u0 ≤ u.

To find a subsolution to problem (7.19) it is sufficient to consider u the
solution to the linear problem,







ut −∆u = 0 in ΩT ,
u(x, 0) = u0(x) ≤ u in Ω,

u = 0 on ∂Ω× (0, T ).
(7.22)
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Furthermore, by the weak comparison principle, see Lemma 18, we get easily
that u(x) ≥ u(x, t), ∀(x, t) ∈ ΩT .

Consider now the following iterative approximation: We set u0 = u and
for k ≥ 1 and define uk as the unique solution to the problem,















ukt −∆uk =
(uk−1)p

|x|2 + 1
k

in ΩT ,

uk(x, 0) = u0(x) ≤ u in Ω,
uk = 0 on ∂Ω× (0, T ).

(7.23)

The existence and the uniqueness of this solution follows by Theorem 28.
By recurrence and using Lemma 18, we get

u ≤ u1 ≤ u2 ≤ ... ≤ uk ≤ uk+1 ≤ .. ≤ u.

Therefore, {uk}k∈N is an ordered increasing sequence. This fact allows

us to define u by lim
k→∞

uk(x, t) = u(x, t). Since (uk−1)p

|x|2+ 1
k

≤ up

|x|2
, by Dominated

Convergence Theorem, u is a solution to (7.19) in the distributional sense.
Moreover

u ∈ L2(0, T ;W 1,2
0 (Ω)) ∩ L∞(ΩT ),

up

|x|2
∈ L1(ΩT ).

As in the previous Subsection, to prove the uniqueness we argue by contra-
diction. Consider v ∈ L2(0, T ;W 1,2

0 (Ω))∩L∞(ΩT ) a second positive solution
to problem (7.19). By the construction of u, we have that u ≤ v. Defining
v = v − u, it follows















vt −∆v =
vp − up

|x|2
≤ p||v||p−1

L∞(Ω)

v

|x|2
in ΩT ,

v(x, 0) = 0 in Ω,
v = 0 on ∂Ω× (0, T ).

(7.24)

We conclude using the same argument as in the proof of the uniqueness
in the linear case. That is, taking w defined by (7.5) as a test function in
(7.24) and using Gronwall’s inequality, we obtain that v = 0, hence v = u.

�

Remark 9. Notice that in contrast with the elliptic case, see [50] and Chap-
ter 6, in Theorem 31 we do not need any restriction on the shape of the
domain Ω.
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4 Further results

Consider the following parabolic problem















ut −∆u =
up

|x|2
+ µuq in Ω× (0, T (µ)),

u(x, 0) = u0(x) in Ω,
u = 0 on ∂Ω × (0, T (µ)),

(7.25)

with Ω a smooth bounded domain, 0 ∈ ∂Ω and 0 < q < 1 < p.

A similar problem without the Hardy potential was studied in [40]. In
Chapter 5 we show that the associated stationary problem has a nontrivial
solution independently of the shape of the domain Ω. More precisely, we
prove the existence of µ0 > 0 such that the problem







−∆z =
zp

|x|2
+ µzq in Ω,

z = 0 on ∂Ω.
(7.26)

has at least a positive solution for µ ≤ µ0 and it has not a positive solution
for µ > µ0.

As a consequence we can formulate the following result.

Proposition 8. Assume that 0 ∈ ∂Ω, 0 < q < 1 < p and µ0 > µ > 0, then
the following problem















ut −∆u =
up

|x|2
+ µuq in ΩT ,

u(x, 0) = u0(x) ≤ v̄ in Ω,
u = 0 on ∂Ω× (0, T ),

(7.27)

admits a solution u ∈ L2(0, T ;W 1,2
0 (Ω)) ∩ L∞(ΩT ), where v̄ is a positive

solution to (7.26).
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Chapter 8

Regularization of a first order term

1 Introduction and some preliminaries

In this last Chapter we are going to consider 0 ∈ Ω. In [32] has been proved
that if u satisfies the following inequality

ut −∆u ≥ λ
u2

|x|2
in D′(Ω \ {0}) × (0, T ), (8.1)

there is no solution but the trivial one, u ≡ 0. Moreover, the authors proved
that a instantaneous and complete blow-up happens for related equations.

The main goal of this Chapter is to analyze how a first order absorption
term regularizes the supercritical term with respect to the Hardy potential
avoiding the restriction on the existence of solution obtained in [32]. We
will prove also the existence of a solution for the largest class of initial and
source data. More precisely, we will study the following parabolic problem,















ut −∆u+ u|∇u|2 = λ
up

|x|2
+ f in ΩT = Ω× (0, T ),

u = 0 on ∂Ω× (0, T ) and u ≥ 0 in ΩT ,
u(x, 0) = u0(x) in Ω,

(8.2)

where Ω ⊂ IRN is a bounded domain with 0 ∈ Ω, λ > 0, f ∈ L1(ΩT ) a
positive function, the initial data u0 ∈ L1(Ω) and 1 < p < 3.

This Chapter is organized as follows:

• In Section 2 we prove the main existence result. We begin considering
the regular case, namely f ∈ L∞(ΩT ) and u0 ∈ L∞(Ω). Truncating

the gradient term and the reaction term
up

|x|2
, we are able to get the

existence of a minimal solution. The main difficulty to reach the gen-
eral case, f ∈ L1(ΩT ) and u0 ∈ L1(Ω), is to pass to the limit in the
gradient term, to face this difficulty we use a particular ”exponential”
function term introduced in [30], in this way we get the existence of a
solution to (8.2). Taking into account that the data is a L1-function,
the solution is obtained as limit of solution to approximated problems,
see [43].
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• A partial result on the asymptotic behavior of the solution is given in
Section 3. More precisely, we are able to prove that if f ≡ 0, there
exists a suitable positive constant C, such that if λ < C, u(x, t) → 0
as t→ ∞, a.e. in Ω.

In this Chapter we are looking for distributional solutions and we will
give some regularity information in each case. In the case of the heat equa-
tion with integrable data, all the usual concepts of solution that appear in
the literature coincide. See, for instance [2] for the proof of the correspond-
ing uniqueness result, even in a more general framework.

We recall some classical results that we are going to use along this Chap-
ter.

Theorem 32. (Compactness result) Consider the sequences {Fn}n, {un0}n
be such that Fn ∈ L∞(ΩT ) and un0 ∈ L1(Ω). Assume that ||Fn||L1(ΩT ) +
||uno||L1(Ω) ≤ C.

Let un be the unique solution to the problem







unt −∆un = Fn in ΩT ,
un = 0 on ∂Ω× (0, T ),
un(x, 0) = un0(x) in Ω.

(8.3)

Then, there exists a measurable function u such that un ⇀ u weakly in
Ls(0, T ;W 1,s

0 (Ω)),∀s < N+2
N+1 and Tk(un)⇀ Tk(u) weakly in L

2(0, T ;W 1,2
0 (Ω)),

moveover, up to a subsequence, ∇un → ∇u a.e. in ΩT . If, in addi-
tion, Fn → F strongly in L1(ΩT ) and un0 → u0 strongly in L1(Ω), then
Tk(un) → Tk(u) strongly in L2(0, T ;W 1,2

0 (Ω)) and u is an entropy solution
to (8.3) with data (F, u0).

See, for instance [76].

Definition 10. Since Fn → F strongly in L1(ΩT ) and un0 → u0 strongly in
L1(Ω), the solution obtained in the previous result is called solution obtained
as limit of approximation.

The following compactness result in L1 can be found in [89], Corollary
4.

Theorem 33. (Compactness result in L1) Let un be a sequence bounded in
Lq(0, T ;W 1,q(Ω)) such that unt is bounded in L1(ΩT )+L

s′(0, T ;W−1,s′(Ω))
with q, s > 1, then un is relatively strongly compact in L1(ΩT ), that is, up to
subsequences, un strongly converges in L1(ΩT ) to some function u ∈ L1(ΩT ).

We recall also the following maximum principle, proved in [11].
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Lemma 17. (Maximum principle)

Assume that Ω is a bounded regular domain, and let h(x, t) be a mea-
surable function such that |h| ∈ L2r0([0, T ];L2p0(Ω)) where p0, r0 > 1 and
N

2p0
+

1

r0
< 1. Assume that w(x, t) ≥ 0 verifies,

i) w ∈ C((0, T );L1(Ω))∩Lr1([0, T ];W 1,p1
0 (Ω)), where r1, p1 ≥ 1 such that

N
2p1

+ 1
r1
> N+1

2 ,

ii) w is a subsolution to problem







wt −∆w ≤ |h||∇w| in ΩT ,
w(x, t) = 0 on ∂Ω× (0, T ),
w(x, 0) = 0 in Ω.

(8.4)

Then, w ≡ 0.jijiji, hola fantasmito

We will apply the previous Lemma to get the following Comparison
Principle.

Lemma 18. (Comparison Principle) Consider H(x, t, s) a Caratheodory
function with (x, t, s) ∈ Ω× (0, T )× IR such that H(x, t, ·) ∈ C1(IRN ) for all
(x, t) ∈ ΩT and

|H(x, t, s1)−H(x, t, s2)| ≤ h(x, t)|s1 − s2|,

where h be a measurable function such that |h| ∈ L2r0([0, T ];L2p0(Ω)) where

p0, r0 > 1 and
N

2p0
+

1

r0
< 1. Let u, v ∈ C((0, T );L1(Ω))∩Lp((0, T );W 1,p

0 (Ω)),

for some p > 1, be such that |ut −∆u| ∈ L1(ΩT ), |vt −∆v| ∈ L1(ΩT ) and

{

ut −∆u ≥ H(x, t,∇u) + f in ΩT ,

u(x, 0) = u0(x) in Ω,

{

vt −∆v ≤ H(x, t,∇v) + f in ΩT ,

v(x, 0) = v0(x) in Ω,

(8.5)

where f ∈ L1(ΩT ), u0, v0 ∈ L1(Ω) and v0(x) ≤ u0(x) in Ω.

Then, v ≤ u in ΩT .

See [11] for a proof of this Lemma.

All the results in this Chapter can be seen in the paper [1].
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2 Existence result

The main existence result of this Section is the following.

Theorem 34. Let Ω ⊂ IRN be a bounded domain with 0 ∈ Ω. Consider
f ∈ L1(ΩT ) and u0 ∈ L1(Ω) be such that f, u0 ≥ 0 and (f, u0) 6= (0, 0).
Assume that p < 3, then, for all λ > 0, the problem















ut −∆u+ u|∇u|2 = λ
up

|x|2
+ f(x, t) in ΩT ,

u(x, 0) = u0(x) in Ω,
u = 0 on ∂Ω× (0, T ).

(8.6)

has a nonnegative entropy solution u with u
3
2 (x, t) ∈ L2(0, T,W 1,2

0 (Ω)).

The proof of Theorem 34 will be given in several steps in order to be
clear. The main idea is to show the existence for ”regular data” and then
get the general existence result using some compactness arguments.

Theorem 35. Assume that f ∈ L∞(ΩT ) and u0 ∈ L∞(Ω), with f, u0 ≥ 0.
Then, for all n,m ∈ IN \ {0}, the problem















vt −∆v + Tm(v)
|∇v|2

1 + 1
m |∇v|2

= λ
Tn(v)

p

|x|2 + 1
n

+ f in ΩT ,

v = 0 on ∂Ω× (0, T ),
v(x, 0) = u0(x) in Ω,

(8.7)

has a minimal nonnegative bounded solution vm,n ∈ L2(0, T ;W 1,2
0 (Ω)).

Proof.

We follow by approximation. Fixed n ≥ 1, for i ≥ 0 we define the
sequence {vi}i with v0 ≡ 0 and vi defined as the solution of the problem



















vit −∆vi + Tm(vi)
|∇vi|

2

1 + 1
m |∇vi|2

= λ
(Tn(vi−1)

+)p

|x|2 + 1
n

+ f in ΩT ,

vi = 0 on ∂Ω× (0, T ),

vi(x, 0) = u0(x) in Ω.

(8.8)

Notice that the existence of vi follows using the classical existence result in
[68]. Notice also that since f ≥ 0, 0 is a subsolution to (8.8).

Using −(vi)
− as a test function in (8.8) (recall that (vi)

− ≤ 0) and in
the equation verified by 0 and subtracting the two expressions, we obtain
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−

∫ T

0

∫

Ω
vit(vi)

−dxdt−

∫ T

0

∫

Ω
|∇(vi)

−|2dxdt−

∫ T

0

∫

Ω
Tm(vi)

|∇vi|
2

1 + 1
m |∇vi|2

(vi)
−dxdt

≥ λ

∫ T

0

∫

Ω
−(vi)

− (Tn(vi−1)
+)p

|x|2 + 1
n

≥ 0.

Therefore, multiplying the last expression by (−1),

1

2

d

dt

∫ T

0

∫

Ω
(vi)

−2
dxdt+

∫ T

0

∫

Ω
|∇(vi)

−|2dxdt

−

∫ T

0

∫

Ω
Tm(vi)

|∇vi|
2

1 + 1
m |∇vi|2

|vi|dxdt ≤ 0.

Since −Tm(vi) ≥ −vi and being in the set vi ≤ 0, −vi = −(−|vi|), then, the
second term in the last expression is positive too. Thus,

1

2

d

dt

∫ T

0

∫

Ω
(vi)

−2
dxdt+

∫ T

0

∫

Ω
|∇(vi)

−|2dxdt ≤ 0.

Hence, since the derivative is negative, the function is decreasing, but,
since the starting point vi(x, 0) is nonegative, (v

−
i )

2 = 0 and also

∫ T

0

∫

Ω
|∇(vi)

−|2dxdt ≤ 0.

Therefore, (v−i )
2 = 0 and then, we conclude that vi ≥ 0.

Consider Vn the unique bounded positive solution to the problem














Vnt −∆Vn = λ
np

|x|2 + 1
n

+ f in ΩT ,

Vn = 0 on ∂Ω× (0, T ),
Vn(x, 0) = u0(x) in Ω.

(8.9)

Considering (vi − Vn)
+ as a test function in (8.8) and in (8.9) and sub-

tracting the both expressions, we get

∫ T

0

∫

Ω
(vit − Vnt)(vi − Vn)

+dxdt+

∫ T

0

∫

Ω
|∇(vi − Vn)

+|2dxdt

+

∫ T

0

∫

Ω
Tm(vi)

|∇vi|
2

1 + 1
m |∇vi|2

(vi − Vn)
+dxdt

= λ

∫ T

0

∫

Ω

((Tn(vi−1)
+)p

|x|2 + 1
n

−
np

|x|2 + 1
n

)

(vi − Vn)
+dxdt.
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Since
(Tn(vi−1)

+)p

|x|2 + 1
n

≤
np

|x|2 + 1
n

,

the last term in the previous expression in negative, then,

1

2

d

dt

∫ T

0

∫

Ω
((vi − Vn)

+)2dxdt+

∫ T

0

∫

Ω
|∇(vi − Vn)

+|2dxdt

+

∫ T

0

∫

Ω
Tm(vi)

|∇vi|
2

1 + 1
m |∇vi|2

(vi − Vn)
+dxdt ≤ 0.

Since vi ≥ 0, Tm(vi) ≥ 0 and vi(x, 0) = Vn(x, 0), hence,

1

2

∫

Ω
(((vi − Vn)(x, T ))

+)2dx+

∫ T

0

∫

Ω
|∇(vi − Vn)

+|2dxdt ≤ 0.

Arguing as before, (vi − Vn)
+ = 0 and, then, vi ≤ Vn.

We claim that vi ≤ vi+1 for all i ≥ 0. Since vi ≥ 0 and v0 = 0, then
v1 ≥ v0. Let us prove that v2 ≥ v1. Using (8.8) and the monotony of Tn(s),
it follows that

v2t −∆v2 + Tm(v2)
|∇v2|

2

1 + 1
m |∇v2|2

≥ v1t −∆v1 + Tm(v1)
|∇v1|

2

1 + 1
m |∇v1|2

.

Now we set

Hm(s) =
s2

1 + 1
ms

2
,

then

(v1 − v2)t −∆(v1 − v2) + Tm(v1)(Hm(|∇v1|)−Hm(|∇v2|))

+(Tm(v1)− Tm(v2))Hm(|∇v2|) ≤ 0.

Since (Tm(v1) − Tm(v2))Hm(|∇v2|) ≥ 0 in the set {v1 ≥ v2}, using the
comparison principle in Lemma 18, there results that v1 ≥ v2. Hence, the
claim follows using an induction argument.

Thus, 0 ≤ v1 ≤ vi ≤ Vn.

Taking the function vi as a test function in (8.8),

∫ T

0

∫

Ω
vitvidxdt+

∫ T

0

∫

Ω
|∇vi|

2dxdt+

∫ T

0

∫

Ω
viTm(vi)

|∇vi|
2

1 + 1
m |∇vi|2

dxdt

= λ

∫ T

0

∫

Ω
vi
(Tn(vi−1)

+)p

|x|2 + 1
n

dxdt+

∫ T

0

∫

Ω
vifdxdt.
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Since vi ≤ Vn and f ∈ L∞(ΩT ),

∫ T

0

∫

Ω
vitvidxdt+

∫ T

0

∫

Ω
|∇vi|

2dxdt+

∫ T

0

∫

Ω
viTm(vi)

|∇vi|
2

1 + 1
m |∇vi|2

dxdt ≤ C.

Therefore, {vi}i is bounded in the space L2(0, T ;W 1,2
0 (Ω)) ∩ L∞(ΩT ).

Hence, we get the existence of v ∈ L2(0, T ;W 1,2
0 (Ω)) ∩ L∞(ΩT ) such

that vi ⇀ v weakly in L2(0, T ;W 1,2
0 (Ω)) and vi ↑ v strongly in Ls(ΩT ) for

all s ≥ 1. To show that v solves (8.7) we have just to prove that

Hm(|∇vi|) → Hm(|∇v|) strongly in L1(ΩT ).

We define the following function,

Fi = Tm(vi)
|∇vi|

2

1 + 1
m |∇vi|2

+ λ
(Tn(vi−1))

p

|x|2 + 1
n

+ f,

since Fi is bounded in L∞(Ω), using Theorem 32, if follows that ∇vi →
∇vm,n a.e. in ΩT . Thus, since Hm(|∇vi|) ≤ |∇vi|, the dominated conver-
gence theorem allows us to conclude. �

Under the same hypotheses on f and u0, we want to pass to the limit as
m→ ∞ for n fixed.

More precisely, we are going to prove the following result

Theorem 36. Assume λ > 0 and let vm,n be the minimal solution to the
problem















vt −∆v + Tm(v)
|∇v|2

1 + 1
m |∇v|2

= λ
Tn(v)

p

|x|2 + 1
n

+ f in ΩT ,

v = 0 on ∂Ω × (0, T ),
v(x, 0) = u0(x) in Ω.

(8.10)
Then, vm,n → vn, as m→ ∞, strongly in L2(0, T ;W 1,2

0 (Ω)), where vn solves
the truncated problem















vnt −∆vn + vn|∇vn|
2 = λ

Tn(vn)
p

|x|2 + 1
n

+ f in ΩT ,

vn = 0 on ∂Ω× (0, T ),
vn(x, 0) = u0(x) in Ω

(8.11)

and vn ∈ L2(0, T ;W 1,2
0 (Ω)) ∩ L∞(ΩT ).

Proof.

The existence of vm,n follows using Theorem 35, furthermore, we know
that vm,n ≤ Vn for all m ≥ 1. Using vm,n as a test function in (8.10), we
obtain
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T
∫

0

∫

Ω
(vm,n)tvm,ndxdt+

T
∫

0

∫

Ω
|∇vm,n|

2dxdt+

T
∫

0

∫

Ω
vm,n

Tm(vm,n)|∇vm,n|
2

1 + 1
m |∇vm,n|2

dxdt

≤ λ

T
∫

0

∫

Ω

vp+1
m,n

|x|2
dxdt+ ||f ||L1(ΩT )||vm,n||L∞(ΩT ).

(8.12)

Therefore, integrating the first term on time and taking into account that
vm,n ≤ Vn,

1

2

∫

Ω
v2m,n(x, T )dx+

T
∫

0

∫

Ω
|∇vm,n|

2dxdt+

T
∫

0

∫

Ω
vm,n

Tm(vm,n)|∇vm,n|
2

1 + 1
m |∇vm,n|2

dxdt

≤ λC +
1

2

∫

Ω
u20dx.

(8.13)

Thus, since u0(x) ∈ L∞(Ω) and Tn(vm,n) → vm,n as m → ∞, there exists
constant A such that,

∫

Ω
v2m,n(x, T )dx ≤ A and

T
∫

0

∫

Ω
|∇vm,n|

2dxdt ≤ A. (8.14)

Then, up to a subsequence,

vm,n ⇀ vn weakly in L2(0, T ;W 1,2
0 (Ω)).

Therefore, the sequence {vm,n}m is bounded in L2(0, T ;W 1,2
0 (Ω))∩L∞(ΩT ).

Hence, we get the existence of vn ∈ L2(0, T ;W 1,2
0 (Ω)) ∩ L∞(ΩT ) such that

vm,n ⇀ vn, as m → ∞, weakly in L2(0, T ;W 1,2
0 (Ω)), in particular v

3
2
m,n ∈

L2(0, T ;W 1,2
0 (Ω)).

Since ∆vm,n−Tm(vm,n)
|∇vm,n|

2

1 + 1
m |∇vm,n|2

+λ
Tn(vm,n)

p

|x|2 + 1
n

+ f is in L1(ΩT )+

L2(0, T ;W−1,2(Ω)), by Theorem 33, vm,n → vn strongly in L1(ΩT ). Then,
since the strong convergence in L1(ΩT ) and since the both functions are in
L∞(ΩT ), we obtain that the term

∫ T

0

∫

Ω
(vm,n − vn)

sdxdt =

∫ T

0

∫

Ω
(vm,n − vn)(vm,n − vn)

s−1dxdt

is going to zero as m → ∞ for all s ≥ 1. Therefore, vm,n → vn strongly in
Ls(ΩT ), for all s ≥ 1.
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We need to check now the strong convergence of the truncated terms.
We study first the Hardy potential truncation,

∫ T

0

∫

Ω
λ
Tn(vm,n)

p

|x|2 + 1
n

dxdt ≤

∫ T

0

∫

Ω
λ

vpm,n

|x|2 + 1
n

dxdt.

Using Hölder’s inequality and since p < 3,

∫ T

0

∫

Ω
λ
Tn(vm,n)

p

|x|2 + 1
n

dxdt ≤ λ
(

∫ T

0

∫

Ω

v3m,n

|x|2
dxdt

)
p
3
(

∫ T

0

∫

Ω

1

|x|2
dxdt

)
3−p
3
.

By Hardy’s inequality, see Theorem 4, we get

∫ T

0

∫

Ω
λ
Tn(vm,n)

p

|x|2 + 1
n

dxdt ≤
λ

λN
C

∫ T

0

∫

Ω
|∇v

3
2
m,n|

2dxdt.

Since v
3
2
m,n ∈ L2(0, T ;W 1,2

0 (Ω)), we have the term bounded in L1(ΩT ).
The strong convergence in L1(ΩT ) follows by Vitali’s Theorem. Thus,
Tn(vm,n)

p

|x|2 + 1
n

→
vpn
|x|2

in L1(ΩT ).

To conclude, we have to prove also that Tm(vm,n)|∇vm,n|
2 → vn|∇vn|

2

strongly in L1(ΩT ).

Let us consider the Landes regularizer defined by the following expression

vn,ν(x, t) =

∫ t

−∞
νv̄n(x, s)χ(0,T )(s)e

ν(s−t)ds,

where

v̄n(x, s) =

{

vn(x, s) if t ∈ [0, T ],
0 if t /∈ [0, T ].

(8.15)

then, vn,ν(x, 0) = 0 and vn,ν converges to vn strongly in L2(0, T ;W 1,2
0 (Ω))

as ν tends to infinity. Moreover, we have

(vν)t = ν(v − vν), i.e., < (vν)
′, w >= ν

∫ T

0

∫

Ω
(v − vν)wdxdt,

for all w ∈ L2(0, T ;W 1,2
0 (Ω)).

Since vn ∈ L∞(ΩT ), ||vn,ν ||∞ ≤ ||vn||∞ ≡ Cn and vn,ν → vn strongly in
Ls(ΩT ) for all s ≥ 1.

Let us define φ(s) = seαs
2
where α > C2

n, this function verifies that
φ′(s)− Cn|φ(s)| ≥

1
2 .
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Using φ(vm,n − vn,ν) as a test function in (8.10), we obtain

< (vm,n)t, φ(vm,n − vn,ν) >+

∫ T

0

∫

Ω
∇vm,nφ

′(vm,n − vn,ν)∇(vm,n − vn,ν)dxdt

+

∫ T

0

∫

Ω
Tm(vm,n)

|∇vm,n|
2

1 + 1
m |∇vm,n|2

φ(vm,n − vn,ν)dxdt

=

∫ T

0

∫

Ω
(λ

(Tn(vm,n))
p

|x|2 + 1
n

+ f)φ(vm,n − vn,ν)dxdt.

Notice that

< (vm,n)t, φ(vm,n − vn,ν) >=
< (vm,n − vn,ν)t, φ(vm,n − vn,ν) > + < (vn,ν)t, φ(vm,n − vn,ν) > .

It is clear that

< (vm,n − vn,ν)t, φ(vm,n − vn,ν) >=

∫

Ω

∫ T

0

d

dt

(

∫ vm,n−vn,ν

0
φ(s)ds

)

dtdx.

Therefore,

< (vm,n − vn,ν)t, φ(vm,n − vn,ν) >=

∫

Ω

∣

∣

∣

∫ vm,n−vn,ν

0
φ(s)ds

∣

∣

∣

T

0
dx

=

∫

Ω
[φ(vm,n − vn,ν)]

T
0 dx ≥ o(ν,m),

where φ(s) =
∫ s
0 φ(σ)dσ.

By the definition of (vn,ν)t, we have

< (vn,ν)t, φ(vm,n − vn,ν) >= ν

∫ T

0

∫

Ω
(vn − vn,ν)φ(vm,n − vn,ν)dxdt

= ν

∫ T

0

∫

Ω
vnφ(vm,n − vn,ν)dxdt− ν

∫ T

0

∫

Ω
vn,νφ(vm,n − vn,ν)dxdt.

Since vn ∈ L∞(ΩT ) and by the strong convergence of vnν to vn in
L2(0, T ;W 1,2

0 (Ω)), we have

< (vn,ν)t, φ(vm,n − vn,ν) >= o(ν,m).

Therefore,
< (vm,n)t, φ(vm,n − vn,ν) >= o(ν,m).

Using the fact that vm,n ≤ Vn, we get easily that

∫ T

0

∫

Ω
(λ

(Tn(vm,n))
p

|x|2 + 1
n

+ f)φ(vm,n − vn,ν)dxdt = o(ν,m).
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Thus, we only need to study these two terms

I1 =

∫ T

0

∫

Ω
∇vm,nφ

′(vm,n − vn,ν)∇(vm,n − vn,ν)dxdt

and

I2 =

∫ T

0

∫

Ω
Tm(vm,n)

|∇vm,n|
2

1 + 1
m |∇vm,n|2

φ(vm,n − vn,ν)dxdt.

We can write I1 as

I1 =

∫ T

0

∫

Ω
∇vm,nφ

′(vm,n − vn,ν)∇(vm,n − vn,ν)dxdt

−

∫ T

0

∫

Ω
∇vn,νφ

′(vm,n − vn,ν)∇(vm,n − vn,ν)dxdt

+

∫ T

0

∫

Ω
∇vn,νφ

′(vm,n − vn,ν)∇(vm,n − vn,ν)dxdt.

The weak convergence of vm,n and the definition of vn,ν imply that

I1 =

∫ T

0

∫

Ω
|∇(vm,n − vn,ν)|

2φ′(vm,n − vn,ν)dxdt+ o(ν,m).

On the other hand, we have

|I2| ≤ Cn

∫ T

0

∫

Ω
|∇vm,n|

2|φ(vm,n − vn,ν)|dxdt

≤ Cn

∫ T

0

∫

Ω
|∇(vm,n − vn,ν)|

2|φ(vm,n − vn,ν)|dxdt

− Cn

∫ T

0

∫

Ω
|∇vn,ν |

2|φ(vm,n − vn,ν)|dxdt

+ 2Cn

∫ T

0

∫

Ω
|∇vm,n∇vn,ν||φ(vm,n − vn,ν)|dxdt.

Since the last two terms in the last expression are going to zero as m→ ∞,
we obtain

|I2| ≤ Cn

∫ T

0

∫

Ω
|∇(vm,n − vn,ν)|

2|φ(vm,n − vn,ν)|dxdt,

where Cn = ||Vn||∞. Combining the above estimates, it follows that

∫ T

0

∫

Ω
(φ′(vm,n − vn,ν)−Cn|φ(vm,n − vn,ν)|)|∇(vm,n − vn,ν)|

2dxdt ≤ o(ν,m).

Since φ′(s)− Cn|φ(s)| ≥
1
2 ,

∫ T

0

∫

Ω
|∇(vm,n − vn,ν)|

2dxdt = o(ν,m).
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As a consequence, we conclude that |∇vm,n|
2 → |∇vn|

2 strongly in
L1(ΩT ) and then the result follows because, since vm,n is bounded we can
use the Dominated Convergence Theorem knowing that Tm(vm,n) → vn in
Ls(ΩT ), for all s ≥ 1, thus, Tm(vm,n)|∇vm,n|

2 → vn|∇vn|
2 in L1(ΩT ).

�

We are now able to prove Theorem 34

Proof of Theorem 34. Let fn = Tn(f) and un0 = Tn(u0). Define un
as a nonnegative solution to the following approximated problem














(un)t −∆un + un|∇un|
2 = λ

Tn(un)
p

|x|2 + 1
n

+ fn in ΩT ,

un = 0 on ∂Ω × (0, T ),
un(x, 0) = u0(x) in Ω.

(8.16)

The existence of un follows using Theorems 35 and 36.

Using Tk(un) as a test function in (8.16), it follows that

∫ T

0

∫

Ω
(un)tTk(un)dxdt+

∫ T

0

∫

Ω
|∇Tk(un)|

2dxdt

+

∫ T

0

∫

Ω
Tk(un)un|∇un|

2dxdt ≤ kλ

∫ T

0

∫

Ω

upn
|x|2

dxdt+ k||f ||L1(ΩT ).

(8.17)
Notice that

∫ T

0

∫

Ω
(un)tTk(un)dxdt =

∫

Ω

Θk(un)(x, T )dx −

∫

Ω

Θk(un0)(x)dx,

where Θk(s) =

∫ s

0
Tk(τ) dτ and verifies that Θ(s) ≤ ks. In the same way

we have
∫ T

0

∫

Ω
Tk(un)un|∇un|

2dxdt =

∫ T

0

∫

Ω
|∇Ψk(un)|

2dxdt

where, for s ≥ 0,

Ψk(s) =

∫ s

0
(σTk(σ))

1
2 dσ. (8.18)

Notice that, in particular,

Ψk(s) =

{ 1
2s

2 if s ≤ k,
1
2k

2 + 2
3k

1
2 (s

3
2 − k

3
2 ) if s > k.

(8.19)

For s < 0, we set that Ψk(s) ≡ Ψk(−s). It is clear that, for s ≥ 0,

Ψ2
k(s) ≥

2

3
s3 −C(k). (8.20)
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Hence, we can conclude that

∫

Ω

Θk(un)(x, T )dx+

∫ T

0

∫

Ω
|∇Tk(un)|

2dxdt+

∫ T

0

∫

Ω
|∇Ψk(un)|

2dxdt ≤

kλ

∫ T

0

∫

Ω

upn
|x|2

dxdt+ k(||f ||L1(ΩT ) + ||u0||L1(Ω)).

Using Hardy Sobolev’s inequality and by the inequality (8.20), we reach that

∫ T

0

∫

Ω
|∇Ψk(un)|

2dxdt ≥ΛN

∫ T

0

∫

Ω

Ψ2
k(un)

|x|2
dxdt ≥ ΛN

∫ T

0

∫

Ω

u3n
|x|2

dxdt−C2,

where C2 > 0 independent on n.

Using the fact that p < 3, we get

kλ

∫ T

0

∫

Ω

upn
|x|2

dxdt ≤ kλ
(

∫ T

0

∫

Ω

u3n
|x|2

dxdt
)

p
3
(

∫ T

0

∫

Ω

1

|x|2
dxdt

)
3−p
3

≤ εkλ

∫ T

0

∫

Ω

u3n
|x|2

dxdt+ C(ε)kλ.

Hence,

∫

Ω

Θk(un)(x, T )dx +

∫ T

0

∫

Ω
|∇Tk(un)|

2dxdt+

∫ T

0

∫

Ω
|∇Ψk(un)|

2dxdt

≤
Ckλε

ΛN

∫ T

0

∫

Ω
|∇Ψk(un)|

2dxdt+ k(||f ||L1(ΩT ) + ||u0||L1(Ω)).

Therefore,

∫

Ω

Θk(un)(x, T )dx +

∫ T

0

∫

Ω
|∇Tk(un)|

2dxdt+ C̃

∫ T

0

∫

Ω
|∇Ψk(un)|

2dxdt

≤ C(k, ||f ||L1(ΩT ), ||u0||L1(Ω)).

Combining the above estimates, we conclude that the sequence {un}n is
bounded in L2(0, T,W 1,2

0 (Ω)), hence, up to a subsequence,

un ⇀ u and Ψk(un)⇀ Ψk(u) weakly in L2(0, T ;W 1,2
0 (Ω)).

Arguing as in the proof of Theorem 36 and since p < 3, using Vitali’s
Lemma we prove thatturi, si ves esto, trato

λ
Tn(un)

p

|x|2 + 1
n

+ Tn(f) → λ
up

|x|2
+ f strongly in L1(ΩT ). (8.21)
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In order to conclude we have to show that un|∇un|
2 → u|∇u|2 strongly

in L1(ΩT ). To prove that we need some previous results.

We claim that

lim
k→∞

∫ T

0

∫

{un≥k}
un|∇un|

2dxdt = 0 uniformly on n. (8.22)

To prove the claim we take ψk−1(un) as a test function in (8.16), where
ψk−1(s) = T1(Gk−1(s)) and Gk(s) = s− Tk(s),

∫ T

0

∫

Ω
untψk−1(un)dxdt+

∫ T

0

∫

Ω
|∇ψk−1(un)|

2dxdt

+

∫ T

0

∫

Ω
ψk−1(un)un|∇un|

2dxdt ≤
∫ T

0

∫

{un≥k−1}
λ
upn
|x|2

dxdt+

∫ T

0

∫

{un≥k−1}
fdxdt.

Since un ∈ L2(ΩT ),

|{(x, t) ∈ ΩT : k − 1 < un(x, t) < k}| → 0,
|{(x, t) ∈ ΩT : un(x, t) > k}| → 0, uniformly on n as k → ∞.

(8.23)

Thus, using (8.21), we get

lim
k→∞

(

∫ T

0

∫

{un≥k−1}
λ
upn
|x|2

dxdt+

∫ T

0

∫

{un≥k−1}
fdxdt

)

= 0 uniformly on n.

On the other hand, we have

∫ T

0

∫

Ω
untψk−1(un)dxdt =

∫

Ω

ψk(un(x, T ))dx −

∫

Ω
ψk(u0n(x))dx,

where ψk(s) =
∫ s
0 ψk(σ)dσ. In particular,

ψk(s) =







0 if s ≤ k − 1,
1
2 (s− (k − 1))2 if k − 1 ≤ s ≤ k,
1
2 + (s− k) if s > k.

Notice that,

∫ T

0

∫

Ω
untψk−1(un)dxdt+

∫ T

0

∫

{un≥k}
un|∇un|

2dxdt

≤

∫ T

0

∫

Ω
untψk−1(un)dxdt+

∫ T

0

∫

Ω
|∇ψk−1(un)|

2dxdt

+

∫ T

0

∫

Ω
ψk−1(un)un|∇un|

2dxdt.
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Combining the above estimates and the definition of ψk(s), we conclude that

∫ T

0

∫

{un≥k}
un|∇un|

2dxdt

≤

∫

Ω

ψk(u0n(x))dx+ λ

∫ T

0

∫

{un≥k−1}

upn
|x|2

dxdt+

∫ T

0

∫

{un≥k−1}
fdxdt.

Hence, by (8.23) and since u0 ∈ L1(Ω),

lim
k→∞

∫ T

0

∫

{un≥k}
un|∇un|

2dxdt = 0 uniformly on n

and the claim follows.

We are going to prove now the following claim.

Let un be as above, then,

Tk(un) → Tk(u) strongly in L2(0, T ;W 1,2
0 (Ω)), for all k > 0. (8.24)

As in the proof of Theorem 36 we consider the Landes regularization of
Tk(u), (Tk(u))ν , defined as

d(Tk(u))ν
dt

= ν(Tk(u)− (Tk(u))ν),

then,

(Tk(u))ν → Tk(u) strongly in L2(0, T ;W 1,2
0 (Ω)) and a.e. in ΩT

and
||Tk(u)ν ||L∞(ΩT ) ≤ k, ∀k > 0.

We define again the function φ(s) = seαs
2
for some α > k2, verifying φ′(s)−

k|φ(s)| ≥ 1
2 .

Using φ(Tn(uk)− (Tn(u))ν) as a test function in (8.16), it follows that

< (un)t, φ(Tk(un)− (Tk(u))ν) >

+

∫ T

0

∫

Ω
∇unφ

′(Tk(un)− (Tk(u))ν)∇(Tk(un)− (Tk(u))ν)dxdt

+

∫ T

0

∫

Ω
un|∇un|

2φ(Tk(un)− (Tk(u))ν)dxdt

=

∫ T

0

∫

Ω
(λ
Tk(un)

p

|x|2 + 1
n

+ fn)φ(Tk(un)− (Tk(u))ν)dxdt.
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Notice that, by the definition of Gk(s),

< (un)t, φ(Tk(un)− (Tk(u))ν) >=

< (Tk(un)− (Tk(u))ν)t, φ(Tk(un)− (Tk(u))ν) >

+ < (Tk(u))ν)t, φ(Tk(uk)− (Tk(u))ν) >

+ < (Gk(un))t, φ(Tk(un)− (Tk(u))ν) > .

It is clear that

< (Tk(un)− (Tk(u))ν)t, φ(Tk(un)− (Tk(u))ν) >

=

∫

Ω
[φ(Tk(un)− (Tk(u))ν)]

T
0 dx ≥ 0,

where φ(s) =
∫ s
0 φ(σ)dσ.

Notice that, taking into account the support of the function Gk(s),

< (Gk(un))t, φ(Tk(un)− (Tk(u))ν) >=< (Gk(un))t, φ(k − (Tk(u))ν) >,

then, using a variation of Lemma 3.1. in [25], it follows that

< (Gk(un))t, φ(Tk(un)− (Tk(u))ν) >≥ o(ν, n).

In the same way, using the definition of (Tk(u))ν , we reach that

< (Tk(u))ν)t, φ(Tk(uk)− (Tk(u))ν) >≥ o(ν, n).

We set

J1 ≡

∫ T

0

∫

Ω
∇unφ

′(Tk(uu)− (Tk(u))ν)∇(Tk(un)− (Tk(u))ν)dxdt,

then, we can write this term as follows

J1 =

∫ T

0

∫

Ω
∇Tk(un)φ

′(Tk(un)− (Tk(u))ν)∇(Tk(un)− (Tk(u))ν)dxdt

+

∫ T

0

∫

Ω
∇Gk(un)φ

′(Tk(un)− (Tk(u))ν)∇(Tk(un)− (Tk(u))ν)dxdt

=

∫ T

0

∫

Ω
|∇Tk(un)−∇(Tk(u))ν |

2φ′(Tk(un)− (Tk(u))ν)dxdt

+

∫ T

0

∫

Ω
∇(Tk(u))νφ

′(Tk(uk)− (Tk(u))ν)∇(Tk(un)− (Tk(u))ν)dxdt

+

∫ T

0

∫

Ω
∇Gk(un)φ

′(Tk(un)− (Tk(u))ν)∇Tk(un)dxdt

−

∫ T

0

∫

Ω
∇Gk(un)φ

′(Tk(un)− (Tk(u))ν)∇(Tk(u))νdxdt.
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Since the supports of ∇Gk(un) and ∇Tk(un) are disjoint and using the weak
convergence of {Gk(un)}n and the strong convergence of {(Tk(un))ν}n,ν , it
follows that

∣

∣

∣

∫ T

0

∫

Ω
∇(Tk(u))νφ

′(Tk(uk)− (Tk(u))ν)∇(Tk(un)− (Tk(u))ν)dxdt

+

∫ T

0

∫

Ω
∇Gk(un)φ

′(Tk(un)− (Tk(u))ν)∇Tk(un)dxdt

−

∫ T

0

∫

Ω
∇Gk(un)φ

′(Tk(un)− (Tk(u))ν)∇(Tk(u))νdxdt
∣

∣

∣

= o(ν, n).

Thus,

J1 =

∫ T

0

∫

Ω
|∇Tk(un)−∇(Tk(u))ν |

2φ′(Tk(un)− (Tk(u))ν)dxdt+ o(ν, n).

We deal now with the term

J2 =

∫ T

0

∫

Ω
un|∇un|

2φ(Tk(un)− Tk(u)ν)dxdt.

Notice that φ(Tk(un)− Tk(u)ν)χ{un≥k}
≥ 0, then we have

J2 =

∫ T

0

∫

{un≤k}
un|∇un|

2φ(Tk(un)− Tk(u)ν)dxdt

+

∫ T

0

∫

{un≥k}
un|∇un|

2φ(Tk(un)− Tk(u)ν)dxdt

≥

∫ T

0

∫

Ω
Tk(un)|∇Tk(un)|

2|φ(Tk(un)− Tk(u)ν)|dxdt

≥ −k

∫ T

0

∫

Ω
|∇Tk(un)−∇Tk(u)ν |

2|φ(Tk(un)− Tk(u)ν)|dxdt − o(ν, n).

Combining the above estimates, we get
∫ T

0

∫

Ω
(φ′(Tk(un)−Tk(u)ν)−k|φ(Tk(un)−Tk(u)ν)|)|∇Tk(un)−∇Tk(u)ν |

2dxdt

≤ o(ν, n).

Recall that φ′(s)− k|φ(s)| > 1
2 , hence,

1

2

∫ T

0

∫

Ω
|∇Tk(un)−∇Tk(u)ν |

2dxdt ≤ o(ν, n).

And since
∫ T

0

∫

Ω
|∇Tk(un)−∇Tk(u)|

2dxdt

≤ C
(

∫ T

0

∫

Ω
|∇Tk(un)−∇Tk(u)ν |

2dxdt+

∫ T

0

∫

Ω
|∇Tk(u)ν −∇Tk(u)|

2dxdt
)

,
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we conclude that Tk(un) → Tk(u) strongly in L2(0, T ;W 1,2
0 (Ω)).

To finish we are going to prove that

un|∇un|
2 → u|∇u|2 strongly in L1(ΩT ).

It is clear that un|∇un|
2 → u|∇u|2 a.e. in ΩT . We are going to use Vitali’s

Lemma in order to prove the strong convergence of this term in L1(ΩT ). Let
E ⊂ ΩT be a measurable set, then

∫ T

0

∫

E
un|∇un|

2dxdt

=

∫ T

0

∫

E∩{un≤k}
un|∇un|

2dxdt+

∫ T

0

∫

E∩{un>k}
un|∇un|

2dxdt

≤

∫ T

0

∫

E
Tk(un)|∇Tk(un)|

2dxdt+

∫ T

0

∫

{un>k}
un|∇un|

2dxdt.

From (8.22) we get the existence of k0, independent of n such that for k ≥ k0,
∫ T

0

∫

{un>k}
un|∇un|

2dxdt ≤
ε

2
.

Using the strong convergence of {Tk(un)}n, we get the existence of δ > 0

such that if |E| ≤ δ, then,

∫ T

0

∫

E
Tk(un)|∇Tk(un)|

2dxdt ≤
ε

2
for n ≥ n0.

Hence, we conclude that

∫ T

0

∫

E
un|∇un|

2dxdt ≤ ε.

Therefore, by Vitali’s Lemma, un|∇un|
2 → u|∇u|2 strongly in L1(ΩT )

and u solves (8.6).

Taking into account that

u|∇u|2 + λ
up

|x|2
+ f(x, t) ∈ L1(ΩT ) and u0 ∈ L1(Ω),

u is an entropy solution to (8.6).

Remark 10. It is worthy to point out that for p > 3 it is sufficient to regu-
larize with a quasilinear term of the form |u|q−1u|∇u|2 q > p− 2. The proof
of this general result is an straightforward change on the proof of existence
for problem (8.6). We omit it to be short.

3 Asymptotic behavior

In this Section we are going to analyze the asymptotic behavior of the so-
lution to problem (8.6), obtained in Theorem 34, under certain hypotheses
on the data.
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Theorem 37. Assume that f ≡ 0 and u0 ∈ L1(Ω) is such that u0 	 0. Let
u be the solution to















ut −∆u+ u|∇u|2 = λ
up

|x|2
in ΩT ,

u(x, 0) = u0(x) in Ω
u = 0 on ∂Ω× (0, T ).

(8.25)

Then, there exists λ̄ > 0 such that if λ ≤ λ̄, u(x, t) → 0 as t → ∞ a.e. in
Ω.

Proof.

Let us define H(s) =
∫ s
0 e

− 1
2
σ2
dσ and we also set vk = Dk(u), where

Dk(s) = H(s)H ′(Tk(s)), it is clear that vk ∈ L2(0, T ;W 1,2
0 (Ω)) ∩ L∞(Ω).

Using vk as a test function in problem (8.25), it follows that

d

dt

∫

Ω

D̄k(u)dx+

∫

Ω

D′
k(u)|∇u|

2dx+

∫

Ω

Dk(u)u|∇u|
2dx = λ

∫

Ω

upDk(u)

|x|2
dx,

where D̄k(s) =
∫ s
0 Dk(σ)dσ. Notice that

∫

Ω

D′
k(u)|∇u|

2dx =

∫

{u<k}
H ′(u)H ′(u)|∇u|2dx+

∫

{u<k}
H(u)H ′′(u)|∇u|2dx

+

∫

{u≥k}
(H(u)H ′(k))′|∇u|2dx.

Therefore,

∫

Ω

D′
k(u)|∇u|

2dx =

∫

Ω

H ′(u)H ′(Tk(u))|∇u|
2dx+

∫

{u<k}
H(u)H ′′(u)|∇u|2dx.

Thus,

∫

Ω

D′
k(u)|∇u|

2dx+

∫

Ω

Dk(u)u|∇u|
2dx =

∫

Ω

H ′(u)H ′(Tk(u))|∇u|
2dx+

∫

{u≥k}
H ′(k)H(u)u|∇u|2dx.

On the other hand, we have

spDk(s) = spH(s)H ′(s) ≤ CH2(s).
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Since u|∇u|2,
up

|x|2
∈ L1(ΩT ), letting k → ∞, combining the above estimates

and using Hardy’s inequality, it follows

d

dt

∫

Ω

V(x, t)dx+

∫

Ω

|∇H(u)|2dx ≤ Cλ

∫

Ω

H2(u)

|x|2
dx ≤

Cλ

ΛN

∫

Ω

|∇H(u)|2dx.

where V = 1
2H

2(u). If Cλ
ΛN

< 1, there results that

d

dt

∫

Ω

V(x, t)dx + (1−
Cλ

ΛN
)

∫

Ω

|∇H(u)|2dx ≤ 0.

Thus, using Poincaré inequality

d

dt

∫

Ω

V(x, t)dx + 2λ1(1−
Cλ

ΛN
)

∫

Ω

V(x, t)dx ≤ 0.

Hence
∫

Ω

V(x, t)dx ≤ e
−2λ1(1−

Cλ
ΛN

)t
∫

Ω

V(x, 0)dx ≤ Ce
−2λ1(1−

Cλ
ΛN

)t
.

Therefore, V(x, t) → 0 strongly in L1(Ω) as t → ∞ and then, the result
follows.

�
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tions. Ann. I. H. Poincaré - AN 25 (2008), 969-985.

[10] B. Abdellaoui-I. Peral-A. Primo, Influence of the Hardy potential in
a semilinear heat equation. Proceedings of the Royal Society of Ed-
inburgh, Section A Mathematics, Volume 139 (2009), 5, 897-926.



194 BIBLIOGRAPHY

[11] B. Abdellaoui, I. Peral, A. Primo, Optimal results for parabolic prob-
lems arising in some physical models with critical growth in the gra-
dient respect to a Hardy potential. Adv. Math. 225 (2010), no. 6,
2967–3021.

[12] B. Abdellaoui, I. Peral, A. Primo, Strong regularizing effect of a gra-
dient term in the heat equation with the Hardy potential, Journal of
Functional Analysis 258 (2010), 1247-1272.

[13] J. A. Aguilar, I. Peral, On an elliptic equation with exponential
growth. Rend. Semi. Mat. Univ. Padova, 96 (1996), 143–175.

[14] N. Alaa, M. Pierre, Weak solutions of some quasilinear elliptic equa-
tions with data measures. SIAM J. Math. Anal. 24, no. 1 (1993),
23–35.

[15] A. Ambrosetti, A. Malchiodi, Nonlinear Analysis and Semilinear El-
liptic Problems. Cambridge Studies in Advanced Mathematics, 104
(2007).

[16] A. Ambrosetti, P.H. Rabinowitz, Dual variational methods in critical
point theory and applications. J. Functional Analysis 14 (1973), 349-
381.
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