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que los han mirado alguna vez durante estos últimos cinco años seguro que
se han encontrado con, no uno, sino varios mares. Mares llenos de dudas e
inseguridades, y también mares llenos de satisfacción y de loca y casi inex-
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ahora mismo, lo que veŕıa es felicidad y agradecimiento porque hoy puedo
decir que he logrado navegar en cada uno de esos mares y me he dado cuenta
de que nunca lo he hecho completamente sola.

Gracias, en primer lugar, a mis directores Fernando e Ireneo. Me siento
muy afortunada por haber sido dirigida por los dos.

Gracias Fernando por haber depositado tu confianza en mı́ y por haberme
dado la oportunidad de comenzar esta traveśıa a tu lado; por tu paciencia y
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ros y por haberme aguantado! Gracias Aless por compartir Madrid conmigo
desde la primera vez que puse un pie en esta ciudad, por tu buen humor, tu
amistad y la ayuda que siempre me has dado. Gracias Alberto por ser tan
buen hermano mayor, por haberme apoyado siempre.
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tener paciencia matemática. ¡Eres única! Gracias Tesa, por enseñarme que
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Notations

General notations

Symbol Meaning

x = (x1, x2, ..., xN) Element of RN

r = |x| =
√

(x2
1 + x2

2 + · · ·+ x2
N) Modulus of x

{e1, e2, . . . , eN} The standard Euclidean basis

Diu = ∂iu =
∂u

∂xi
= uxi Partial derivative of u respect to xi

Diju = ∂iju =
∂2u

∂xi∂xj
= uxixj Second partial derivative of u

respect to xi and xj

Du = ∇u =

(
∂u

∂x1

,
∂u

∂x2

, . . . ,
∂u

∂xN

)
Gradient of u

∆u = div(∇u) Laplacian of u

Asu Spectral fractional Laplacian of u

(−∆)su(x) = C(N, s)P.V
´
RN

u(x)−u(y)
|x−y|N+2s dy Fractional Laplacian of u

C(N, s) Normalized constant equal to(´
RN

1−cos(ξ1)
|ξ|N+2s dξ

)−1

∂w
∂νs

−κs limy→0+ y1−2s ∂w
∂y

κs Normalized constant equal to
Γ(s)

21−2sΓ(1−s)
p′ Conjugate exponent of p, that

satisfies 1
p

+ 1
p′

= 1

2∗s =
2N

(N − 2s)
Critical fractional Sobolev exponent

ρ1 First eigenvalue of (−∆) with zero

Dirichlet condition

ρ1, (−∆)s First eigenvalue of (−∆)s with zero

Dirichlet condition
ix



x Notations

Symbol Meaning

∂Ω Boundary of Ω

Ω′ ⊂⊂ Ω Ω′ Open subset of Ω with Ω′ ⊂ Ω

CΩ = Ω× (0,∞) ⊂ RN+1
+ Cylinder of Ω

∂LCΩ = ∂Ω× (0,∞) Lateral boundary of CΩ

BR Ball in RN centered in the origin with radio R

BR(x0) Ball in RN centered in x0 with radio R

sop u Support of the function u

a.e. Almost everywhere

|A| Lebesgue measure of A ⊂ RN

‖ · ‖X Norm in the space X

X ′ Dual space of X

〈·, ·〉 Scalar product in RN / duality X, X ′

δx0 Dirac’s Delta in x0

\ Difference of sets

v+ = max(v, 0) Positive part of the function v

v− = max(−v, 0) Negative part of the function v

C(Ω) ó C0(Ω) Continuous functions in Ω

C0(Ω) Continuous functions in Ω with compact support

C0,β(Ω) = Cβ(Ω) Hölder continuous functions in Ω with exponent β

Ck(Ω) Functions of class k in Ω

Ck,β(Ω) Functions Hölder continuous of class k in Ω

Ck0 (Ω) Functions in Ck(Ω) with compact support

C∞(Ω) Functions indefinitely differentiable in Ω

C∞0 (Ω) = D(Ω) Functions in C∞(Ω) with compact support

D′(Ω) Dual space of C∞0 (Ω), that is, the space of
distributions

S(RN) Schwartz class of functions in RN

Lp(Ω), 1 ≤ p <∞ {u : Ω→ R | u measurable,
´

Ω
|u|p <∞}

L∞(Ω) {u : Ω→ R | u measurable and ∃C
such that |u(x)| ≤ C in a.e. x ∈ Ω }

Lp
′
(Ω) Dual space of Lp(Ω)

Ls(RN) {u : RN → R measurable :
´
RN

|u(x)|
(1+|x|N+2s)

dx <∞}



xi

H1(RN) Completeness of C∞0 (RN) with the norm
‖φ‖H1(RN ) = ‖φ‖L2(RN ) + ‖∇φ‖L2(RN )

Hs(RN) Completeness of C∞0 (RN) with the norm

‖φ‖Hs(RN ) = ‖(1 + |ξ|s)φ̂(ξ)‖L2(RN )(
2

S(N,s)C(N,s)

)1/2

Embedding Sobolev constant Ḣs(RN)→ L2∗s(RN)

(κsT (N, s))1/2 Trace constant H1
0,L(CΩ, y

1−2s)→ L2∗s(Ω)

ΛN,s Fractional Hardy-Sobolev constant

H(Ω, s)
{
u =

∑
ajϕj ∈ L2(Ω) : ‖u‖H(Ω) =

(∑
ρsja

2
j

)1/2
<∞

}
H1

0,L(CΩ, y
1−2s) Completeness of C∞0 (RN) with the norm

‖φ‖H1
0,L(CΩ,y1−2s) =

(
κs
´

CΩ
y1−2s|∇φ|2

)1/2

Xs
0(Ω)

{
u ∈ Hs(RN) : u = 0 a.e. RN

}





Introducción, resumen de
resultados y conclusiones.

Introducción: el operador Laplaciano fraccio-

nario.

Este trabajo está dedicado al estudio de varios problemas, eĺıpticos y parábo-
licos, en Ecuaciones en Derivadas Parciales (EDP) que involucran al Lapla-
ciano fraccionario y otros operadores no locales. La teoŕıa de integrales
singulares y operadores no locales más generales en espacios de Banach ha
sido estudiada desde hace mucho tiempo desde el punto de vista del análisis
harmónico y funcional. Resultados clásicos sobre la misma pueden encon-
trarse en los trabajos de, entre otros, S. Bochner [32], T. Kato [108], H. Ko-
matsu [110], H. Landkof [114] y E. Stein [154]. Sin embargo en los últimos
años se ha acrecentado el interés sobre esta teoŕıa debido a las aplicaciones y
conexiones con múltiples fenómenos del mundo real que tienen las estructuras
no locales. De hecho los operadores no locales aparecen de manera natural
en problemas de elasticidad [148], en el problema del obstáculo con mem-
brana delgada [52], problemas de transición de fase [15,50,152], propagación
de llamas [54], dislocación de cristales [167], materiales estratificados [135],
ondas de agua [71,72,157] y fluidos quasi-geostróficos [62,121] entre otros.

Como estos operadores están relacionados con los procesos de Lévy (ver la
Introducción del Caṕıtulo 4) y tiene muchas aplicaciones a las matemáticas
financieras, han sido también estudiados desde un punto de vista proba-
biĺıstico (ver por ejemplo [24, 33, 36, 103, 106]). Un enfoque sencillo y muy
recomendable que ilustra como estas integrales singulares aparecen como
ĺımite continuo de procesos con saltos discretos aleatorios puede encontrarse
en [169].

El ejemplo básico de operador no local linear es el Laplaciano fraccionario.
Recordemos que si denotamos por ∆ el Laplaciano en RN , N ≥ 1, y para
una función u de la clase de Schwartz S(RN) definimos su transformada de

xiii



xiv Introducción.

Fourier como

û(ξ) :=
1

(2π)N/2

ˆ
RN
u(x)e−ix·ξ dx, (0.0.1)

entonces se tiene que

(̂−∆)u(ξ) = |ξ|2û(ξ), ξ ∈ RN .

Por tanto, es natural definir para 0 < s < 1, el Laplaciano fraccionario como

(̂−∆)su(ξ) = |ξ|2sû(ξ), ξ ∈ RN . (0.0.2)

La primera observación que podemos hacer a partir de la definićıon anterior
es que si u ∈ S y 0 < s < 1, (−∆)su no es necesariamente una función de
la clase de Schwartz porque |ξ|2s introduce una singularidad, en el origen, en
su transformada de Fourier.

Como es bien sabido (ver [114,154,156,169]) este operador también puede
ser representado, para funciones adecuadas, como un valor principal en la
forma

(−∆)su(x) := C(N, s)P.V.

ˆ
RN

u(x)− u(y)

|x− y|N+2s
dy

:= C(N, s) lim
ε→0

ˆ
RN\Bε(x)

u(x)− u(y)

|x− y|N+2s
dy. (0.0.3)

En la expresión anterior

C(N, s) :=

(ˆ
RN

1− cos(ξ1)

|ξ|N+2s
dξ

)−1

=
4sΓ

(
N
2

+ s
)

−πN
2 Γ(−s)

, (0.0.4)

es una constante de normalización elegida para garantizar que (0.0.2) se
verifica (ver [76, 151, 156, 169]). Más aún, (ver [76, Corollary 4.2]), se tiene
que

lim
s→1−

C(N, s)

s(1− s)
=

4N

ωN−1

y lim
s→0+

C(N, s)

s(1− s)
=

2

ωN−1

,

donde ωN−1 es la medida (N −1) dimensional de la esfera unidad SN−1. Con
estas propiedades asintóticas de la constante C(N, s), en [76, Proposition 4.4]
(ver también [156, Proposition 5.3]) los autores demuestran que

lim
s→1−

(−∆)su = −∆u y lim
s→0+

(−∆)su = u, u ∈ C∞0 (RN),

donde la convergencia es entendida en el sentido de las distribuciones. Notar
que los ĺımites anteriores pueden ser obtenidos también, de manera formal,
de (0.0.2).
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Usando (0.0.3) se puede demostrar que

|(−∆)sφ(x)| ≤ C

1 + |x|N+2s
, para toda φ ∈ S(RN). (0.0.5)

Esto motiva la introducción del espacio

Ls(RN) := {u : RN → R :

ˆ
RN

|u(x)|
(1 + |x|N+2s)

dx <∞}, (0.0.6)

dotado con la norma usual

‖u‖Ls(RN ) :=

ˆ
RN

|u(x)|
(1 + |x|N+2s)

dx.

Entonces para u ∈ Ls y φ ∈ S, utilizando (0.0.5), podemos definir formal-
mente el producto de dualidad 〈(−∆)su, φ〉 en sentido distribucional como

〈(−∆)su, φ〉 :=

ˆ
RN
u(−∆)sφ dx.

Volviendo de nuevo a la definición dada en (0.0.3) deducimos claramente
que (−∆)s es un operador no local porque el valor de (−∆)su(x) no depende
unicamente del comportamiento de u en un entorno de x sino de su compor-
tamiento en todo RN . Observemos como ejemplo que si u es una función no
negativa con soporte compacto en, por ejemplo Ω, entonces (−∆)su(x) 6= 0
para todo punto x /∈ Ω. Destacamos aqúı que, como veremos a lo largo de
este trabajo, esta propiedad, intŕınseca en todos los operadores que vamos
a estudiar, crea complicaciones porque los métodos clásicos utilizados en los
problemas en EDP locales no pueden ser aplicados para estudiar los proble-
mas no lineales que nos ocupan. Para superar esta dificultad L. Caffarelli y
L. Silvestre probaron en [55] que todo Laplaciano fraccionario puede ser ca-
racterizado como un operador que transforma una condición de contorno de
tipo Dirichlet en una de tipo Neumann utilizando un problema extendido que
es de naturaleza local. Esta herramienta se puede aplicar, por ejemplo, para
demostrar la desigualdad de Harnack para (−∆)s. Usaremos esta técnica de
extensión para resolver el problema tratado en el Caṕıtulo 1.

Además de la no localidad, muchas otras propiedades de este operador se
pueden encontrar en [151]. Una de estas propiedades que usaremos a menudo
a lo largo de este trabajo es el hecho de que

|(−∆)sφ| ≤ C, φ ∈ L∞(RN) ∩ C2s+β(RN), β > 0. (0.0.7)

Cuando s ≥ 1/2 la anterior suposición de regularidad debe entenderse como
φ ∈ L∞(RN) ∩ C1,2s+β−1(RN). Hacemos notar aqúı que (0.0.7) puede ser
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obtenida también si se remplaza la condición φ ∈ L∞(RN) por la condición,
más débil φ ∈ Ls(RN) donde Ls(RN) el espacio definido en (0.0.6).
Demostraremos (0.0.5) y (0.0.7) en las Secciones 2.2 y 2.1 del Caṕıtulo 2
respectivamente.

Una definición equivalente del Laplaciano fraccionario para funciones re-
gulares es la dada como la media de un segundo cociente incremental. De
hecho un cambio de variable estándar transforma (0.0.3) en la expresión

(−∆)su(x) =
C(N, s)

2

ˆ
RN

2u(x)− u(x+ y)− u(x− y)

|y|N+2s
dy. (0.0.8)

El argumento que presentaremos en la prueba de (0.0.7) (ver Section 2.1
del Caṕıtulo 2), demuestra que esta expresión es muy útil para tratar la
singularidad del núcleo en el caso s ≥ 1/2.

Finalmente presentamos otra definición equivalente de (−∆)s que proviene
da la teoŕıa de semigrupos y que nos muestra la relación entre (−∆)s y el ope-
rador As, definido a continuación, que será objeto de estudio en el Caṕıtulo
1. Este enfoque también permite extender la definición de potencias frac-
cionarias a una amplia clase de operadores positivos (ver [156]). En nuestro
caso denotamos por e−t(−∆) al generador del semigrupo del calor asociado a
(−∆). Esto significa que, para una función u adecuada,

e−t(−∆)u(x) =

ˆ
RN
Gt(x)u(x− z) dz =

1

(4πt)
N
2

ˆ
RN
e−
|x|2
4t u(x− z) dz,

es la solución única de{
vt + (−∆)v = 0 en RN × (0,∞),
v(x, 0) = u(x) en RN .

Entonces aplicando, formalmente, la transformada de Fourier (ver [156, Lemma
5.1]), se tiene que

(−∆)su(x) =
1

Γ(−s)

ˆ ∞
0

(e−t(−∆) − 1)u(x)
dt

t1+s
, (0.0.9)

donde

Γ(−s) = −Γ(1− s)
s

=

ˆ ∞
0

(e−t − 1)
dt

t1+s
< 0. (0.0.10)

Presentamos a continuación el importante papel que tiene el Laplaciano
fraccionario con respecto a los espacios de Sobolev en RN . Éste es resumido
en los siguientes teoremas que son bien conocidos. El primero es el teorema
de inmersión fraccionario, que usaremos de manera frecuente a lo largo de
este trabajo, y el segundo es la desigualdad de Hardy-Sobolev fraccionaria
que vamos a utilizar en el Caṕıtulo 3.
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Teorema 0.0.1. (Ver [7, Theorem 7.58], [76, Theorem 6.5], [117,153]) Sean
0 < s < 1 y N > 2s. Existe una constante S(N, s) tal que, para toda función
medible y con soporte compacto u : RN → R, se tiene

S(N, s)‖u‖2
L2∗s (RN )

≤ 2

C(N, s)
‖(−∆)s/2u‖2

L2(RN ),

donde

2∗s =
2N

N − 2s
, (0.0.11)

es el exponente de Sobolev fraccionario.

Teorema 0.0.2. (Ver [25,90,101]) Sean u una función en C∞0 (RN) y N > 2s.
Entonces u/|x|s ∈ L2(RN) y

ΛN,s

ˆ
RN

u2

|x|2s
dx ≤ ||(−∆)s/2u||2L2(RN ),

donde

ΛN,s = 22sΓ2
(
N+2s

4

)
Γ2
(
N−2s

4

) , (0.0.12)

es una constante óptima que no se alcanza.

Terminamos esta sección destacando que, como la primera parte de este
trabajo está dedicada al estudio de problemas de Dirichlet, usaremos con
frecuencia la Teoŕıa del Cálculo de Variaciones. Consideremos el problema
linear {

Lu = f in Ω,
condición de borde en Ω igual a cero,

donde el operador L está bien definido para elementos del espacio de Hilbert
H. Entonces, por el Teorema de Lax Milgram sabemos que si f pertenece al
espacio dual H∗, existe un único elemento uf ∈ H tal que

〈uf , v〉H = f(v) para todo v ∈ H. (0.0.13)

Aqúı f(v) = 〈f, v〉H∗,H . Más aún, uf es el minimizante del siguiente funcional

J(u) =
1

2
〈Lu, u〉H∗,H − f(u).

Esto es, (0.0.13) es la ecuación de Euler-Lagrange de J . Esta teoŕıa puede
ser aplicada a los operadores no locales que estudiaremos a lo largo de este
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trabajo. Por ejemplo se puede aplicar al problema de Dirichlet lineal que
involucra al operador Laplaciano fraccionario espectral definido como

Asu(x) :=
∑

ρsjajϕj(x), x ∈ Ω, (0.0.14)

donde u(x) =
∑
ajϕj(x), x ∈ Ω y (ϕj, ρj) son las autofunciones y autovalores

de (−∆) en Ω con condicón de borde cero. Aqúı el espacio de enerǵıa natural
asociado a dicho operador es el espacio de Hilbert definido por

H(Ω, s) :=
{
u ∈ L2(Ω) : ‖u‖H(Ω,s) = ‖As/2u‖L2(Ω) <∞

}
. (0.0.15)

También podemos usar la teoŕıa previa para tratar problemas de Dirichlet
que contienen el operador Laplaciano fraccionario definido en (0.0.3) y su
espacio de enerǵıa asociado

Xs
0(Ω) :=

{
u ∈ Hs(RN) : u = 0 c.t.p. en RN \ Ω

}
,

dotado con la norma

‖u‖2
Xs

0(Ω) =
2

C(N, s)
‖(−∆)s/2u‖2

L2(RN ).

Aqúı C(N, s) es la constante de normalización dada en (0.0.4).
Sin embargo, en este trabajo consideraremos problemas de Dirichlet con

ciertos operadores no locales pero con no linealidades en vez de problemas
lineales. Por lo tanto la teoŕıa previa de minimización no puede ser utilizada
por lo que, como veremos, necesitaremos otros resultados de la teoŕıa no lineal
de puntos cŕıticos. Daremos más detalles sobre los operadores anteriores y
sus espacios de Sobolev asociados en las Sección 1.1 del Caṕıtulo 1 y en la
Sección 2.1 del Caṕıtulo 2 respectivamente.

A lo largo de este trabajo usaremos el convenio habitual de que c y C
denotan constantes positivas que pueden tener valores diferentes cuando las
escribimos en distintos lugares, incluso en la misma ĺınea. Algunas veces
usaremos los paréntesis para indicar la dependencia expĺıcita de estas cons-
tantes de ciertos parámetros particulares. Es decir, por ejemplo, C(a, b, c)
expresa que C puede depender de a, b y c.

Resumen de resultados y conclusiones.

Como hemos comentado, el objetivo de este trabajo es estudiar algunos prob-
lemas en EDP que involucran operadores no locales. La Parte I está dedi-
cada a problemas de Dirichlet eĺıpticos no locales con no linearidades gene-
rales de tipo cóncavo-convexo (Ver Caṕıtulos 1-3). En el caso clásico (local),
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los problemas de tipo {
−∆u = f(u) en Ω,
u = 0 en ∂Ω,

(0.0.16)

para distintos tipos de funciones no lineales f , han sido el principal objetivo
de estudio de un gran número de trabajos de investigación en los últimos
treinta años. Ver, por ejemplo, [9,10,45,92,119]. Uno de los casos más impor-

tantes del problema (0.0.16) es el dado por la potencia crı’tica f(u) = u
N+2
N−2 ,

N > 2. Es bien conocido que este problema no tiene soluciones positivas
cuando el dominio es estrellado. En su trabajo pionero [45], Brezis y Niren-
berg demostraron que, en contra de la intuición, perturbando el problema
cŕıtico con un pequeño término lineal se obtienen soluciones positivas. Pos-
teriormente en [10], utilizando los resultados de concentración-compacidad
de Lions [119], Ambrosetti, Brezis y Cerami demostraron algunos resultados
de existencia y multiplicidad para perturbaciones sublineales del exponente
cŕıtico, entre otras.

Siguiendo estas ideas, en el Caṕıtulo 1 estudiaremos el efecto que tienen
las perturbaciones de menor orden en la existencia de soluciones positivas del
siguiente problema cŕıtico que involucra al Laplaciano fraccionario definido
mediante su descomposición espectral. Es decir, consideraremos el siguiente

(Pλ) =

 Asu = λuq + u
N+2s
N−2s en Ω,

u = 0 en ∂Ω,
u > 0 en Ω,

donde Ω ⊂ RN es un dominio regular acotado, N > 2s, λ > 0, 0 < q <
2∗s−1 = N+2s

N−2s
y As es el Laplaciano fraccionario espectral definido en (0.0.14).

Nuestros resultados principales en relación al Problema (Pλ) son los si-
guientes.

Teorema. 1.2.1 Sea 0 < q < 1. Entonces existe 0 < Λ < ∞ tal que el
problema (Pλ)

1 no tiene solución para λ > Λ;

2 tiene una solución minimal de enerǵıa para 0 < λ < Λ y, más aún, la
familia de soluciones minimales es creciente con respecto a λ;

3 si λ = Λ, existe al menos una solución de enerǵıa;

4 si s ≥ 1/2, existen al menos dos soluciones de enerǵıa para 0 < λ < Λ.
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Teorema. 1.3.1 Supongamos que q = 1, 0 < s < 1 y N ≥ 4s. Entonces el
problema (Pλ)

1 no tiene solución para λ ≥ ρs1;

2 tiene al menos una solución de enerǵıa para cada 0 < λ < ρs1. Aqúı ρ1

denota al primer autovalor del operador Laplaciano con condiciones de
Dirichlet cero.

Teorema. 1.4.1 Sean 1 < q < 2∗s − 1 y 0 < s < 1. Entonces el problema
(Pλ) admite al menos una solución de enerǵıa siempre que, o bien,

• N > 2s(q+3)
q+1

para λ > 0, o

• N ≤ 2s(q+3)
q+1

y λ > 0 es suficientemente grande.

Con respecto a la regularidad de las soluciones, demostraremos que éstas
son acotadas y “clásicas” en el sentido de que tienen tanta regularidad como
requiere la ecuación. Es decir, admiten al menos “2s derivadas”. Más aún,
en el caso s = 1/2, pertenecen a C1,q(Ω) o C2,γ(Ω), 0 < γ < 1, depende de si
0 < q < 1 o q ≥ 1, respectivamente. En efecto, tenemos la siguiente.

Proposición. 1.5.3 Sea u una función no negativa perteneciente al espacio
H(Ω, s) definido en (0.0.15). Si u es una solución de enerǵıa del problema{

Asu = f(x, u) en Ω,
u = 0 en ∂Ω,

con f satisfaciendo

|f(x, t|) ≤ C(1 + |t|p), (x, t) ∈ Ω× R, (0.0.17)

para algún 1 ≤ p ≤ 2∗s − 1 y C > 0, entonces u ∈ L∞(Ω).

Proposición. 1.5.5 Sea u una solución de enerǵıa de (Pλ). Entonces se
verifica que

(i) Si s = 1/2 y q ≥ 1 entonces u ∈ C∞(Ω)∩C2,γ(Ω), para algún 0 < γ < 1.

(ii) Si s = 1/2 y q < 1, entonces u ∈ C1,q(Ω).

(iii) Si s < 1/2, entonces u ∈ C2s(Ω).

(iv) Si s > 1/2, entonces u ∈ C1,2s−1(Ω).
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Organización del Caṕıtulo 1. En la Sección preliminar 1.1 de-
scribimos el marco funcional adecuado para el estudio del problema (Pλ).
Además introducimos el problema (local) extendido, mediante una variable
extra, que es equivalente al nuestro y que proporcionará algunas ventajas
computacionales (ver la Observación 1.1.4). Posteriormente dedicamos las
Secciones 1.2, 1.3 y 1.4 a las demostraciones de los Teoremas 1.2.1–1.4.1.
Finalmente los resultados de regularidad, junto con el teorema de concen-
tración-compacidad, serán probados en la Sección 1.5.

Note: Los resultados obtenidos en este caṕıtulo están contenidos en [18].

En el Caṕıtulo 2 consideraremos el mismo problema que tratamos en
el Caṕıtulo 1 pero reemplazando el Laplaciano fraccionario espectral por
el operador fraccionario definido en (0.0.3). Es decir, centraremos nuestra
atención en el problema

(Dλ) =

 (−∆)su = λuq + u
N+2s
N−2s en Ω

u = 0 en RN \ Ω,
u > 0 en Ω,

donde Ω ⊂ RN es un dominio regular y acotado, N > 2s, λ > 0, 0 < s < 1
y (−∆)s es el Laplaciano fraccionario definido en (0.0.3). Consideraremos,
como en el Caṕıtulo 1, de manera separada los dos casos 0 < q < 1 (potencia
cóncava) y 1 < q < 2∗s − 1 (potencia convexa). El caso lineal q = 1 ha sido
estudiado recientemente en [138–142] obteniéndose la existencia de soluciones
no necesariamente positivas.

Bajo condiciones apropiadas probaremos la existencia y multiplicidad de
la soluciones del problema (Dλ). Enunciamos a continuación los resultados
principales de este caṕıtulo.

Teorema. 2.2.1 Supongamos que 0 < q < 1. Entonces existe 0 < Λ < ∞
tal que el problema (Dλ)

1 no tiene solución para λ > Λ;

2 tiene una solución minimal de enerǵıa para todo 0 < λ < Λ y, más
aún, la familia de soluciones minimales es creciente con respecto a λ;

3 si λ = Λ, existe al menos una solución de enerǵıa;

4 para 0 < λ < Λ, existen al menos dos soluciones de enerǵıa.

En el marco convexo obtenemos el mismo resultado de existencia que en
el Teorema 1.4.1 para el problema (Dλ). Esto es.
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Teorema. 2.3.1 Sea 1 < q < 2∗s − 1. Entonces el problema (Dλ) admite al
menos una solución de enerǵıa siempre que, o bien

• N > 2s(q+3)
q+1

y λ > 0, o

• N ≤ 2s(q+3)
q+1

y λ > 0 es suficientemente grande.

Con respecto a la regularidad de las soluciones del problema (Dλ), ten-
emos la siguiente.

Proposición. 2.4.1 Sea u una solución de enerǵıa no negativa del problema{
(−∆)su = f(x, u) en Ω,

u = 0 en RN \ Ω,

y supongamos que |f(x, t)| ≤ C(1+ |t|p), para algún 1 ≤ p ≤ 2∗s−1. Entonces
u ∈ L∞(Ω).

Por el resultado anterior y utilizando [130, Proposition 1.1] se sigue que las
soluciones de (Dλ) pertenecen al espacio Cs(RN). Ver también [107] y [147].
Hacemos notar aqúı que el Teorema 2.2.1 corresponde a la versión no local
del resultado en [10] mientras que el Teorema 2.3.1 puede entenderse como
el equivalente no local de los resultados obtenidos, en el marco estándar del
Laplaciano, en [45, Subsecciones 2.3, 2.4 and 2.5]. Ver también [92, Teoremas
3.2 y 3.3] para el caso del operador p-Laplaciano. En particular, observar que
cuando s = 1, caso que corresponde con el clásico del Laplaciano, se tiene
que 2s(q + 3)/(q + 1) = 2(q + 3)/(q + 1) < 4, debido a la elección de q > 1.

Organización del Caṕıtulo 2. En la Sección 2.1 introducimos el
marco funcional apropiado para el estudio del problema (Dλ) y el operador
no local (0.0.3). Dedicaremos las Sección 2.2 a la demostración del Teorema
2.2.1 y la Sección 2.3 a la prueba del Teorema 2.3.1. Finalmente en la Sección
2.4 demostraremos la Proposición 2.4.1.

Nota: Los resultados contenidos en este caṕıtulo pueden encontrarse
en [19].

En el Caṕıtulo 3 continuamos con el estudio de problemas cóncavo-convexos
no locales pero, en este caso, motivados por los art́ıculos [41], [80] y [85],
analizaremos también la interacción entre el potencial de Hardy-Leray (ver
[116]) y el Laplaciano fraccionario. Es decir, consideraremos el siguiente
problema de Dirichlet

(Hλ,µ) =


(−∆)su− λ u

|x|2s = µuq + up en Ω

u = 0 en RN \ Ω,
u > 0 en Ω,
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donde Ω ⊂ RN es un dominio regular acotado, N > 2s y 0 < λ < ΛN,s, siendo
ΛN,s la constante definida en (0.0.12). Aqúı µ > 0, 0 < s < 1, 0 < q < 1 y
1 < p < p(λ, s), donde p(λ, s) es el dado en (3.1.4).

Presentamos a continuación los resultados principales de este caṕıtulo.
En cuanto a la existencia de soluciones, se tiene el siguiente.

Teorema. 3.2.1 Sean 0 < q < 1 y 0 < λ < ΛN,s. Entonces existe 0 < Υ <
∞ tal que el problema (Hλ,µ)

1 no tiene solución para µ > Υ ;

2 para todo 0 < µ < Υ , existe una solución minimal de enerǵıa si 1 <
p ≤ 2∗s−1, una solución minimal débil en el caso 2∗s−1 < p < p(λ, s) y,
más aún, la familia de soluciones minimales es creciente con respecto
a µ;

3 si µ = Υ , existe al menos una solución débil;

4 si 1 < p < 2∗s − 1, existen al menos dos soluciones de enerǵıa para
0 < µ < Υ .

Cuando p es mayor que el valor cŕıtico p(λ, s), obtenemos el siguiente
resultado de no existencia.

Teorema. 3.4.3 Supongamos que 0 < λ ≤ ΛN,s. Sea p ≥ p(λ, s). Entonces
hay explosión completa en el problema (Hλ,µ).

Organización del Caṕıtulo 3. En la Sección 3.1 describimos el
marco funcional adecuado para el estudio del problema (Hλ,µ). Dedicaremos
las Secciones 3.2 y 3.3 a la prueba del Teorema 3.2.1. Finalmente en la
Sección 3.4 demostraremos el Teorema 3.4.3.

Nota: Los resultados de este caṕıtulo pueden encontrarse en [21].

En la Parte II de este trabajo, estudiaremos operadores no locales más
generales, en particular, los llamados operadores integro-diferenciales. Para
ser consistentes con qué se entiende por un operador no local de manera
general, introducimos la siguiente.

Definición 0.0.1. ( [57, Definición 21]) Un operador no local I es una regla
que asigna a una función u el valor I(u, x) en todo punto x satisfaciendo las
siguientes condiciones.

• I(u, x) está bien definido siempre que u ∈ C1,1(x) ∩ L1(RN , ω).
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• Si u ∈ C1,1(Ω) ∩ L1(RN , w) entonces I(u, x) es una función de x con-
tinua en Ω.

Tı́picamente nuestro peso ω tendrá la forma ω(y) = 1/(1 + |y|N+2s), 0 < s <
1.

En la definición anterior, C1,1 denota la familia de funciones que satisface
la Definición 4.1.1.

El objetivo de esta segunda parte de este trabajo es probar un resultado
de regularidad para operadores integro-diferenciales (ver Caṕıtulo 4) para
obtener posteriormente la regularidad de las superficies mı́nimas no locales
que L. Caffarelli, J. M. Roquejoffre y O. Savin han introducido recientemente
en [53] (ver Caṕıtulo 5).

Para dar una idea intuitiva de lo que es una superficie mı́nima no local
usaremos el concepto de “peŕımetro no local”. Al igual que el peŕımetro
clásico mide la variación total de la función caracteŕıstica de un conjunto
E en un dominio fijo Ω, el peŕımetro no local mide la variación de dicha
función caracteŕıstica pero dentro y fuera de este dominio fijo con respecto a
un operador fraccionario.
Una superficie mı́nima no local es la frontera del conjunto E que minimiza
el peŕımetro no local en un dominio fijo Ω con las “condiciones de frontera”
que E ∩ (RN \ Ω) prescribe.
Sorprendentemente, como veremos en la Introducción del Caṕıtulo 5, como
el peŕımetro no local está relacionado con la norma Hs/2 de la función
carateŕıstica χE, estas superficies se pueden obtener minimizandos estas nor-
mas. Precisamente, cuando s < 1 y E es razonablemente suave, ‖χE‖Hs/2 es
finito mientras que para s = 1 no es cierto.
Para establecer de manera más clara la relación de estos objetos con las su-
perficies mı́nimas clásicas remarcamos aqúı que, como se verá en el Caṕıtulo
5, éstas tendrán curvatura media no local igual a cero. Más aún, cuando
s→ 1− el peŕımetro no local aproxima al perḿetro clásico (ver [13,60]).
Para obtener una idea intuitiva de las superficies mı́nimas no locales uti-
lizando el concepto de curvatura media no local, recomendamos el reciente
trabajo [1]. Ver también [170] donde el autor realiza un resumen de las
principales propiedades y problemas donde aparecen dichas superficies.

Volviendo a la estructura de la Parte II, en el Caṕıtulo 4 desarrollaremos
una“teoŕıa de regularidad de Schauder” para las soluciones viscosas de una
familia de ecuaciones integro-diferenciales formadas por una clase concreta de
núcleos no invariantes por traslaciones. De manera espećıfica, consideraremos
núcleos K = K(x,w) : RN × (RN \ {0}) → (0,+∞) que satisfacen ciertas
hipótesis generales. En lo que sigue, 1 < σ < 2.
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En primer lugar suponemos que K es próximo al núcleo del Laplaciano
fraccionario, es decir

(4.2.1)


existen a0, r0 > 0 y 0 < η < a0/4 tal que∣∣∣∣ |w|N+σK(x,w)

2− σ
− a0

∣∣∣∣ ≤ η, x ∈ B1, w ∈ Br0 \ {0}.

Además supondremos que

(4.2.2)



existen k ∈ N ∪ {0} y Ck = C(k) > 0 tales que

K ∈ Ck+1
(
B1 × (RN \ {0})

)
,

‖∂µx∂θwK(·, w)‖L∞(B1) ≤
Ck

|w|N+σ+|θ| ,

µ, θ ∈ (N ∪ {0})N , |µ|+ |θ| ≤ k + 1, w ∈ RN \ {0}.

Observamos que usaremos | · | tanto para denotar la norma Eucĺıdea de
un vector como, siendo α = (α1, . . . , αN) ∈ NN un multíındice, para denotar
|α| := α1 + · · · + αN . Sin embargo el significado de | · | siempre se deducirá
de manera clara del contexto en el que nos encontremos.

Por lo tanto, denotando a lo largo de toda la Parte II por

δu(x,w) := u(x+ w) + u(x− w)− 2u(x), (0.0.18)

el resultado principal de este caṕıtulo se puede enunciar como sigue.

Teorema. 4.2.1 Sean 1 < σ < 2, k ∈ N ∪ {0}, y u ∈ L∞(RN) una solución
viscosa de la ecuaciónˆ

RN
K(x,w) δu(x,w)dw = f(x, u(x)) en B1,

con f ∈ Ck+1(B1 × R). Supongamos que K : B1 × (RN \ {0}) → (0,+∞)
satisface las hipótesis (4.2.1) y (4.2.2) para el mismo valor de k.

Entonces, si η en (4.2.1) es lo suficientemente pequeño (cuyo tamaño es
independiente de k), se tiene que u ∈ Ck+σ+α(B1/2) para todo α < 1, y

‖u‖Ck+σ+α(B1/2) ≤ C
(
1 + ‖u‖L∞(RN ) + ‖f‖L∞(B1×[−M.M ])

)
,

donde M = ‖u‖L∞(B1) y C > 0 depende sólo de N , σ, k, Ck, y ‖f‖Ck+1(B1×R).

Organización del Caṕıtulo 4. En la Sección preliminar 4.1 intro-
ducimos la teoŕıa de las ecuaciones integro-diferenciales y presentamos var-
ios resultados de regularidad bien conocidos. Posteriormente dedicamos la
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Sección 4.2 a la demostración del Teorema 4.2.1.

En el Caṕıtulo 5, usando los resultados obtenidos en el Caṕıtulo 4, y mo-
tivados por el hecho de que las (s)-superficies mı́nimas no locales aproximan
a las clásicas cuando s→ 1−, demostraremos que las superficies mı́nimas no
locales son suaves. De hecho demostraremos que las (s)-superficies mı́nimas
no locales que son C1 son de hecho C∞. Para ello, a lo largo de este caṕıtulo
escribiremos x ∈ RN como x = (x′, xN) ∈ RN−1 ×R. Más aún, dados r > 0
y p ∈ RN , definimos

Kr(p) := {x ∈ RN : |x′ − p′| < r y |xN − pN | < r}.

Para p′ ∈ RN−1, consideraremos

BN−1
r (p′) := {x′ ∈ RN−1 : |x′ − p′| < r},

Kr := Kr(0), Br := Br(0) y BN−1
r := BN−1

r (0).
Con esta notación obtendremos el siguiente.

Teorema. 5.1.1 Sean 0 < s < 1 y ∂E una (s)-superficie mı́nima no local
en KR para algún R > 0. Supongamos que

∂E ∩KR =
{

(x′, xN) : x′ ∈ BN−1
R y xN = u(x′)

}
,

para algua función u : BN−1
R → R, tal que u ∈ C1,α(BN−1

R ) para todo α < s
y u(0) = 0. Entonces,

u ∈ C∞(BN−1
ρ ) para todo 0 < ρ < R.

Organización del Caṕıtulo 5. En la Sección 5.1 introducimos la
noción de (s)-superficie mı́nima no local con detalle y algunos resultados
conocidos acerca de las mismas. En la Sección 5.2 demostramos el Teorema
5.1.1 utilizando el resultado de regularidad obtenido en la Sección 4.2.

Nota: Los resultados de estos dos caṕıtulos están contenidos en [20].

Finalmente dedicamos la Parte III de este trabajo al estudio del prob-
lema parabólico más sencillo que involucra al Laplaciano fraccionario, es de-
cir, la ecuación del calor no local. De manera más precisa, en el Caṕıtulo 6
extendemos algunos resultados clásicos de la ecuación del calor que demostró
D.V. Widder en [172] en el marco de las ecuaciones de difusión no locales
probando unicidad de las soluciones positivas acorde con los Principios de la
Termodinámica. El resultado principal de este caṕıtulo es el siguiente.
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Teorema. 6.1.3 Si u ≥ 0 es una solución fuerte de

ut + (−∆)su = 0 para (x, t) ∈ RN × (0, T ), 0 < s < 1,

entonces

u(x, t) =

ˆ
RN
pt(x− y)u(y, 0) dy.

Aqúı

pt(x) =
1

tN/2s
p
( x

t1/2s

)
,

y

p(x) :=

ˆ
RN
eix·ξ−|ξ|

2s

dξ,

es la solución de{
pt + (−∆)sp = 0 para (x, t) ∈ RN × (0, T ),
p(x, 0) = δ0(x) en RN .

Organización del Caṕıtulo 6. En la Sección 6.1 introduciremos el
problema clásico de Widder y los distintos tipos de solución que utilizaremos
en este caṕıtulo. Después de ello, en la Sección 6.2 probaremos la unici-
dad para soluciones débiles que, a su vez, será el paso fundamental para
obtener nuestro teorema de representación. Posteriormente en la Sección 6.3
demostraremos el resultado principal para soluciones fuertes. Empezaremos
probando un lema de comparación que nos permitirá mostrar como cualquier
solución positiva fuerte u(x, t) es mayor o igual que la convolución de la traza
u(x, 0) con el núcleo pt(x). Por un argumento de traslación probaremos que
cualquier solución fuerte positiva es también una solución débil y, por el resul-
tado de unicidad de la sección anterior, concluiremos la prueba del teorema.
Finalmente en la última Sección 6.4, estableceremos un comportamiento pun-
tual para las soluciones positivas que, a parte de tener interés por śı mismo,
puede dar una prueba alternativa de nuestro teorema de representación.

Nota: Los resultados presentados en este caṕıtulo están contenidos en
[22].

Problemas abiertos y cuestiones por estudiar.

1. Un primer problema abierto de este trabajo es la demostración de la
afirmación 4 del Teorema 1.2.1 para el caso 0 < s < 1/2. Debido a la
falta de regularidad, ver Proposición 1.5.5, no sabemos cómo separar
las soluciones de manera correcta (ver el Lema 1.2.4 y también [67,73]).
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Esta dificultad parace ser técnica. Hacemos notar aqúı que la misma
restricción en s aparece en el estudio de estimaciones uniformes L∞ de
tipo Gidas-Spruck ( [96]) para el operador As que han sido estudiadas
en [37, 162]. En ese caso la principal dificultad proviene de encontrar
un teorema de tipo Liouville para 0 < s < 1/2 en RN

+ .

2. Dejamos abierto el rango 2s < N < 4s en el Teorema 1.3.1. Ver el caso
especial s = 1 y N = 3 en [45]. Como observamos en [161], si s = 1/2
este rango es vaćıo. Cuando consideramos el problema de Dirichlet con
(−∆)s en vez de con As, observamos que los autores dejan el mismo
rango dimensional por resolver(ver [140, Theorem 4]). El motivo por
el cual no hemos resuelto nuestro teorema para N < 4s es porque no
podemos probar la Proposición 1.3.2. De hecho la estimación obtenida
en (1.2.60) cuando N < 4s no es suficiente para obtener la conclusión
de dicha proposición.

3. Una cuestión interesante que proponemos como un posible objetivo de
estudio es obtener un resultado de multiplicidad establecido en la Ob-
servación 3.2.6 del Caṕıtulo 3 para el caso cŕıtico p = 2∗s − 1. Una
posible idea para resolver este problema podŕıa ser aplicar el principio
de concentración-compacidad de P. L. Lions [118,119], modificando los
cálculos hechos en el Lema 2.2.10, y utilizar los minimizantes apropi-
ados asociados al operador lineal L(u) := (−∆)su − λu/|x|2s. Para
obtener dichos minimizantes se podŕıa seguir las ideas dadas en [164].
Hacemos notar aqúı que la existencia de un mı́nimo en el espacio de
enerǵıa podŕıa obtenerse haciendo un cambio de variable para escon-
der el potencial de Hardy en el operador fraccionario y aśı obtener la
acotación de las soluciones. En nuestra opinión esto conllevaŕıa un
esfuerzo computacional bastante elevado.

4. Dejamos como problema abierto la existencia de, al menos, dos solu-
ciones positivas del problema (Hλ,µ) dado en el Caṕıtulo 3 cuando µ
pertenece a un intervalo adecuado (0, Υ ), λ = ΛN,s y 1 < p < 2∗s − 1.
Proponemos utilizar la desigualdad de Hardy-Sobolev mejorada, dada
por ejemplo en [85] (ver también [90]), como una herramienta para re-
solver dicha cuestión. Hacemos hincapié aqúı que en el caso local este
tipo de resultados ha sido obtenido en [94].

5. En el Caṕıtulo 5, un posible problema interesante que queda por re-
solver es la analiticidad de las superficies mı́nimas no locales estudiadas
en el mismo.
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6. Finalmente como problema abierto proponemos encontrar la mayor
clase posible de soluciones viscosas positivas para las cuales el teo-
rema de respresentación Teorema 6.1.3 se verifique. Más aún, en nues-
tra opinión, podŕıa ser útil demostrar que el comportamiento puntual
dado en el Lema 6.4.2 junto con algunos resultados de comparación,
pueden proporcionar, como en el caso clásico, una prueba alternativa
al resultado principal del Caṕıtulo 6.





Introduction, summary of
contents and conclusions.

Introduction: the fractional Laplacian opera-

tor.

This work is devoted to the study of several questions concerning elliptic
and parabolic problems in Partial Differential Equations that involve the
fractional Laplacian and other nonlocal operators. The theory of singular
integrals and general nonlocal operators on Banach spaces has been treated
at length in harmonic and functional analysis. Classical results about this
topic can be found in the papers of S. Bochner [32], T. Kato [108], H. Ko-
matsu [110], H. Landkof [114] and E. Stein [154] among others. However,
only in recent years considerable attention has been given to the potential
applications of these nonlocal structures and their connection with many real
world phenomena. Indeed, non local operators naturally appear in elastic-
ity problems [148], thin obstacle problem [52], phase transition [15, 50, 152],
flames propagation [54], crystal dislocation [167], stratified materials [135],
water waves [71,72,157], quasi-geostrophic flows [62,121] and others.

Since these operators are related to Lévy processes (see the Introduction
to Chapter 4) and have a lot of applications to mathematical finance, they
have been also studied from a probabilistic point of view (see for instance
[24, 33, 36, 103, 106]). A nice and simple approach that shows how singular
integrals naturally appear as a continuous limit of discrete long jump random
walks can be found in [169].

The basic example of a linear nonlocal operator is given by the fractional
Laplacian. Let us recall that if we denote by ∆ the Laplacian in RN , N ≥ 1,
and for a function u in the Schwartz’s class S(RN) we define its Fourier
transform as

û(ξ) :=
1

(2π)N/2

ˆ
RN
u(x)e−ix·ξ dx, (0.0.19)

1
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then one has
(̂−∆)u(ξ) = |ξ|2û(ξ), ξ ∈ RN .

From this, it becomes natural to define, for 0 < s < 1, the fractional Lapla-
cian as

(̂−∆)su(ξ) = |ξ|2sû(ξ), ξ ∈ RN . (0.0.20)

The first observation that we can do from this definition is that for u ∈ S
and 0 < s < 1, (−∆)su is not necessarily a function in the Schwartz class
because |ξ|2s introduces a singularity at the origin in its Fourier transform.

As is well known (see [114, 154, 156, 169]) this operator may be also rep-
resented, for suitable functions, as a principal value of the form

(−∆)su(x) := C(N, s)P.V.

ˆ
RN

u(x)− u(y)

|x− y|N+2s
dy

:= C(N, s) lim
ε→0

ˆ
RN\Bε(x)

u(x)− u(y)

|x− y|N+2s
dy. (0.0.21)

In the previous expression

C(N, s) :=

(ˆ
RN

1− cos(ξ1)

|ξ|N+2s
dξ

)−1

=
4sΓ

(
N
2

+ s
)

−πN
2 Γ(−s)

, (0.0.22)

is a normalizing constant chosen to guarantee that (0.0.20) is satisfied (see
[76,151,156,169]). Moreover, (see [76, Corollary 4.2]), we have

lim
s→1−

C(N, s)

s(1− s)
=

4N

ωN−1

and lim
s→0+

C(N, s)

s(1− s)
=

2

ωN−1

,

where ωN−1 is the (N−1) dimensional measure of the unit sphere SN−1. With
these asymptotic properties of the constant C(N, s), in [76, Proposition 4.4]
(see also [156, Proposition 5.3]) the authors prove that

lim
s→1−

(−∆)su = −∆u and lim
s→0+

(−∆)su = u, u ∈ C∞0 (RN),

where the convergence is given in the sense of distributions. Note that these
previous limits may be also obtained formally from (0.0.20).

From (0.0.21) one can check that

|(−∆)sφ(x)| ≤ C

1 + |x|N+2s
, for every φ ∈ S(RN). (0.0.23)

This motivates the introduction of the space

Ls(RN) := {u : RN → R :

ˆ
RN

|u(x)|
(1 + |x|N+2s)

dx <∞}, (0.0.24)
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endowed with the natural norm

‖u‖Ls(RN ) :=

ˆ
RN

|u(x)|
(1 + |x|N+2s)

dx.

Then, if u ∈ Ls and φ ∈ S, using (0.0.23), we can formally define the duality
product 〈(−∆)su, φ〉 in the distributional sense as

〈(−∆)su, φ〉 :=

ˆ
RN
u(−∆)sφ dx.

Coming back to the definition given in (0.0.21) we clearly deduce that
(−∆)s is a nonlocal operator because the value of (−∆)su(x) does not depend
only on the behavior of u in a neighborhood of x but on the whole RN .
Observe as an example that if u is a nonnegative function with compact
support in, say, Ω then (−∆)su(x) 6= 0 for every x /∈ Ω. We remark here
that, as we will see along this work, this property, intrinsic to all the operators
that we will study, creates complications because the classical local PDE
methods cannot be applied to study nonlinear problems. To overcome this
difficulty L. Caffarelli and L. Silvestre proved in [55] that every fractional
Laplacian can be characterized as an operator that maps a Dirichlet boundary
condition to a Neumann type condition via an extension problem that is
local in nature. This tool can be applied for example to prove Harnack’s
inequality for (−∆)s. We will use the extension’s technique to resolve the
problem treated in Chapter 1.

In addition to the non locality, many other properties of this operator
can be found in [151]. One of these properties that will be used often along
this work is that

|(−∆)sφ| ≤ C, φ ∈ L∞(RN) ∩ C2s+β(RN), β > 0. (0.0.25)

When s ≥ 1/2 the previous regularity assumption must be understood as
φ ∈ L∞(RN) ∩ C1,2s+β−1(RN). We note here that (0.0.25) can be also ob-
tained replacing condition φ ∈ L∞(RN) by the weaker condition φ ∈ Ls(RN)
defined in (0.0.24).
We will prove (0.0.23) and (0.0.25) in Sections 2.2 and 2.1 of Chapter 2 re-
spectively.

An equivalent definition of the fractional Laplacian for regular functions
may be given as the average of a second order increment. In fact, a standard
change of variables transforms (0.0.21) into the expression

(−∆)su(x) =
C(N, s)

2

ˆ
RN

2u(x)− u(x+ y)− u(x− y)

|y|N+2s
dy. (0.0.26)
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The argument that we will present in the proof of (0.0.25) (see Section 2.1 of
Chapter 2), shows that this expression is well fitted to treat the singularity
of the kernel when s ≥ 1/2.

Finally we introduce another equivalent definition of (−∆)s that comes
from the theory of semigroups and that show the relationship with (−∆)s and
the operator As, defined below, that will be the object of study in Chapter
1. This approach also allows to extend the definition of fractional powers to
a wide generality of positive operators (see [156]). In our case, let e−t(−∆)

denote the heat semigroup generator associated to (−∆). This means that
for suitable u,

e−t(−∆)u(x) =

ˆ
RN
Gt(x)u(x− z) dz =

1

(4πt)
N
2

ˆ
RN
e−
|x|2
4t u(x− z) dz,

is the unique solution of{
vt + (−∆)v = 0 in RN × (0,∞),
v(x, 0) = u(x) on RN .

Then, a formal application of the Fourier transform (see [156, Lemma 5.1]),
shows that

(−∆)su(x) =
1

Γ(−s)

ˆ ∞
0

(e−t(−∆) − 1)u(x)
dt

t1+s
, (0.0.27)

where

Γ(−s) = −Γ(1− s)
s

=

ˆ ∞
0

(e−t − 1)
dt

t1+s
< 0. (0.0.28)

We now present the important role of the fractional Laplacian in connec-
tion with Sobolev spaces in RN . This is summarized in the following well-
known theorems. The first one is the fractional embedding theorem that
will be frequently used along this work and the second one is the fractional
Hardy-Sobolev inequality that we will use in Chapter 3.

Theorem 0.0.2. (See [7, Theorem 7.58], [76, Theorem 6.5], [117, 153]) Let
0 < s < 1 and N > 2s. There exists a constant S(N, s) such that, for any
measurable and compactly supported function u : RN → R, we have

S(N, s)‖u‖2
L2∗s (RN )

≤ 2

C(N, s)
‖(−∆)s/2u‖2

L2(RN ),

where

2∗s =
2N

N − 2s
, (0.0.29)

is the Sobolev critical exponent.
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Theorem 0.0.3. (See [25,90,101]) Let u be a function in C∞0 (RN) and N >
2s. Then u/|x|s ∈ L2(RN) and

ΛN,s

ˆ
RN

u2

|x|2s
dx ≤ ||(−∆)s/2u||2L2(RN ),

where

ΛN,s = 22sΓ2
(
N+2s

4

)
Γ2
(
N−2s

4

) , (0.0.30)

is an optimal constant that cannot be achieved.

We finish this section pointing out that, since the first part of this work
is devoted to the study of Dirichlet problems, we will use frequently the
Theory of Calculus of Variations. In the more abstract sense, let us consider
the linear problem{

Lu = f in Ω,
zero boundary condition in Ω,

where the operator L is well defined for elements in a Hilbert space H. Then,
by the Lax-Milgram’s Theorem, we know that if f belongs to the dual space
H∗ there exists a unique uf ∈ H such that

〈uf , v〉H = f(v) for all v ∈ H. (0.0.31)

Here f(v) = 〈f, v〉H∗,H . Moreover uf is obtained as the minimizer of the
functional

J(u) =
1

2
〈Lu, u〉H∗,H − f(u).

That is, (0.0.31) is the Euler-Lagrange equation associated to J . This theory
can be applied to the nonlocal operators that we will study in this work.
For example it can be applied to linear Dirichlet problems that involve the
spectral fractional Laplacian defined as

Asu(x) :=
∑

ρsjajϕj(x), x ∈ Ω, (0.0.32)

where u(x) =
∑
ajϕj(x), x ∈ Ω and (ϕj, ρj) are the eigenfunctions and

eigenvectors of (−∆) in Ω with zero boundary data. Here the natural energy
space associated to this operator is the Hilbert space defined as

H(Ω, s) :=
{
u ∈ L2(Ω) : ‖u‖H(Ω,s) = ‖As/2u‖L2(Ω) <∞

}
. (0.0.33)

We can also use this theory to treat Dirichlet problems with the fractional
Laplacian defined in (0.0.21) and the associated energy space

Xs
0(Ω) :=

{
u ∈ Hs(RN) : u = 0 a.e. in RN \ Ω

}
,
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endowed with the norm

‖u‖2
Xs

0(Ω) =
2

C(N, s)
‖(−∆)s/2u‖2

L2(RN ).

Here C(N, s) is the normalizing constant given in (0.0.22).
However, in this work we will also consider Dirichlet problems with certain

nonlocal operators but with non linearities instead. Therefore we cannot use
the previous theory of minimization and, as we will see, we need another
results of nonlinear critical point theory. We will give more details about
the previous operators and the associated Sobolev spaces in Section 1.1 of
Chapter 1 and in Section 2.1 of Chapter 2 respectively. See also [145] where
these two operators are compared.

All along this work, we will use the usual convention that c and C denote
positive constants that could have different values at different places, even
in the same line. Sometimes we will use parenthesis to indicate the explicit
dependence of these constant on a particular parameter. Thus, for example,
C(a, b, c), expresses that C might depend on a, b and c.

Summary of contents and conclusions.

As we have said, the objective of this work is to study some problems in PDE
that involve non local operators. Part I is dedicated to Dirichlet elliptic non
local problems with a general concave-convex nonlinearity (See Chapters 1-
3). In the classical (local) case, problems of the type{

−∆u = f(u) in Ω,
u = 0 on ∂Ω,

(0.0.34)

for different kind of nonlinearities f , have been the main subject of investi-
gation in a large number of works in the last thirty years. See for example
the list (far from complete) [9, 10, 45, 92, 119]. One of the most important

cases of problem (0.0.34) is the one given by the critical power f(u) = u
N+2
N−2 ,

N > 2. It is well known that this problem has no positive solutions provided
the domain is star shaped. In the pioneering work [45], Brezis and Nirenberg
showed that, contrary to intuition, the critical problem with small linear
perturbations can provide positive solutions. After that, in [10], using the
results on concentration-compactness of Lions [119], Ambrosetti, Brezis and
Cerami proved some results on existence and multiplicity of solutions for a
sublinear perturbation of the critical power, among others.

Following this spirit, in Chapter 1 we study the effect of lower order
perturbations in the existence of positive solutions to the following critical
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elliptic problem that involves the fractional Laplacian defined via the spectral
decomposition. That is, we consider

(Pλ) =

 Asu = λuq + u
N+2s
N−2s in Ω,

u = 0 on ∂Ω,
u > 0 in Ω,

where Ω ⊂ RN is a regular bounded domain, N > 2s, λ > 0, 0 < q < 2∗s−1 =
N+2s
N−2s

and As is the spectral fractional Laplacian given in (0.0.32).
Our main results dealing with Problem (Pλ) are the following.

Theorem. 1.2.1 Let 0 < q < 1 and 0 < s < 1. Then, there exists 0 < Λ <
∞ such that the problem (Pλ)

1 has no solution for λ > Λ;

2 has a minimal energy solution for any 0 < λ < Λ and, moreover, the
family of minimal solutions is increasing with respect to λ;

3 if λ = Λ, there is at least one energy solution;

4 if s ≥ 1/2, there are at least two energy solutions for 0 < λ < Λ.

Theorem. 1.3.1 Assume q = 1, 0 < s < 1 and N ≥ 4s. Then, the problem
(Pλ)

1 has no solution for λ ≥ ρs1;

2 has at least one energy solution for each 0 < λ < ρs1. Here ρ1 is the
first eigenvalue of the Laplace operator with zero Dirichlet condition.

Theorem. 1.4.1 Let 1 < q < 2∗s − 1 and 0 < s < 1. Then, problem (Pλ)
admits at least one energy solution provided that either

• N > 2s(q+3)
q+1

and λ > 0, or

• N ≤ 2s(q+3)
q+1

and λ > 0 is sufficiently large.

With respect to the regularity of the solutions we will see that they are
bounded and “classical” in the sense that they have as much regularity as
is required in the equation. By this we mean that they have at least “2s
derivatives”. Even more, if s = 1/2, they belong to C1,q(Ω) or C2,γ(Ω), 0 <
γ < 1, depending on whether 0 < q < 1 or q ≥ 1, respectively. In fact we
have the following.
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Proposition. 1.5.3 Let u be a nonnegative function of the space H(Ω, s)
given in (0.0.33). If u is an energy solution to the problem{

Asu = f(x, u) in Ω,
u = 0 in ∂Ω,

with f satisfying

|f(x, t|) ≤ C(1 + |t|p), (x, t) ∈ Ω× R, (0.0.35)

for some 1 ≤ p ≤ 2∗s − 1 and C > 0, then u ∈ L∞(Ω).

Proposition. 1.5.5 Let u be an energy solution of (Pλ). Then the following
hold

(i) If s = 1/2 and q ≥ 1 then u ∈ C∞(Ω) ∩ C2,γ(Ω), for some 0 < γ < 1.

(ii) If s = 1/2 and q < 1, then u ∈ C1,q(Ω).

(iii) If s < 1/2, then u ∈ C2s(Ω).

(iv) If s > 1/2, then u ∈ C1,2s−1(Ω).

Organization of Chapter 1. In the preliminary Section 1.1 we de-
scribe the appropriate functional setting for the study of problem (Pλ). Also
we include the definition of a local equivalent problem, with the aid of an ex-
tra variable, which provides some advantages, (see Remark 1.1.4). Then we
devote Sections 1.2, 1.3 and 1.4 to the proofs of Theorems 1.2.1–1.4.1. Finally
the regularity results, together with a concentration-compactness theorem,
are proved in Section 1.5.

Note: The results obtained in this chapter are contained in [18].

In Chapter 2 we consider the same problem as in Chapter 1 but replacing
the spectral Laplacian by the fractional operator given in (0.0.21). That is,
we focus our attention in the following problem

(Dλ) =

 (−∆)su = λuq + u
N+2s
N−2s in Ω

u = 0 in RN \ Ω,
u > 0 in Ω,

where Ω ⊂ RN is a regular bounded domain, N > 2s, λ > 0, 0 < s < 1 and
(−∆)s is the fractional Laplace operator defined in (0.0.21). We will consider,
as in Chapter 1, separately the two cases 0 < q < 1 (concave power) and
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1 < q < 2∗s − 1 (convex power). The linear case q = 1 has been recently
studied in [138–142] obtaining solutions that are not necessarly positive.

Under appropriate conditions we prove existence and multiplicity of so-
lutions to Problem (Dλ). We now state the main results of this chapter.

Theorem. 2.2.1 Assume 0 < q < 1. Then, there exists 0 < Λ < ∞ such
that problem (Dλ)

1 has no solution for λ > Λ;

2 has a minimal energy solution for any 0 < λ < Λ and, moreover, the
family of minimal solutions is increasing with respect to λ;

3 if λ = Λ, there exists at least one energy solution;

4 for 0 < λ < Λ, there are at least two energy solutions.

In the convex framework we obtain the same existence result as in The-
orem 1.4.1 for the problem (Dλ). That is.

Theorem. 2.3.1 Let 1 < q < 2∗s − 1. Then, problem (Dλ) admits at least
one energy solution provided that either

• N > 2s(q+3)
q+1

and λ > 0, or

• N ≤ 2s(q+3)
q+1

and λ > 0 is sufficiently large.

With respect to the regularity of the solutions of (Dλ), we have the fol-
lowing.

Proposition. 2.4.1 Let u be a nonnegative energy solution to the problem{
(−∆)su = f(x, u) in Ω,

u = 0 in RN \ Ω,

and assume that |f(x, t)| ≤ C(1 + |t|p), for some 1 ≤ p ≤ 2∗s − 1. Then
u ∈ L∞(Ω).

From the previous result, by [130, Proposition 1.1] it follows that solu-
tions of (Dλ) belong to Cs(RN). See also [107] and [147]. We remark here
that Theorem 2.2.1 corresponds to the nonlocal version of the result in [10],
while Theorem 2.3.1 may be seen as the nonlocal counterpart of the results
obtained in the standard Laplace framework in [45, Subsection 2.3, 2.4 and
2.5]. See also [92, Theorem 3.2 and 3.3] for the case of the p-Laplacian oper-
ator. In particular, note that when s = 1, which corresponds to the classical
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case of Laplace, one has 2s(q + 3)/(q + 1) = 2(q + 3)/(q + 1) < 4, due to the
choice of q > 1.

Organization of Chapter 2. In Section 2.1 we introduce the ap-
propriate functional framework for the study of problem (Dλ) and the non
local operator (0.0.21). Then we devote Section 2.2 to the proof of Theorem
2.2.1 and Section 2.3 to the proof of Theorem 2.3.1. Finally in Section 2.4
we prove Proposition 2.4.1.

Note: The results contained in this chapter can be found in [19].

In Chapter 3 we continue with the study of non local concave-convex prob-
lems but, in this case, motivated by the papers [41], [80] and [85], we also
analize the interplay between the Hardy-Leray potential (see [116]) and the
fractional Laplacian. That is, we consider the following Dirichlet problem

(Hλ,µ) =


(−∆)su− λ u

|x|2s = µuq + up in Ω

u = 0 in RN \ Ω,
u > 0 in Ω,

where Ω ⊂ RN is a regular bounded domain, N > 2s and 0 < λ < ΛN,s,
with ΛN,s defined in (0.0.30). Here µ > 0, 0 < s < 1, 0 < q < 1 and
1 < p < p(λ, s), where p(λ, s) is given in (3.1.4).

We now present the main results of this chapter. Concerning the existence
of solutions we get the following.

Teorema. 3.2.1 Let 0 < q < 1 and 0 < λ < ΛN,s. Then, there exists
0 < Υ <∞ such that the problem (Hλ,µ)

1 has no solution for µ > Υ ;

2 for any 0 < µ < Υ , there exists a minimal energy solution if 1 < p ≤
2∗s − 1, a minimal weak solution in the case 2∗s − 1 < p < p(λ, s) and,
moreover, the family of minimal solutions is increasing with respect to
µ;

3 if µ = Υ , there is at least one weak solution;

4 if 1 < p < 2∗s−1, there are at least two energy solutions for 0 < µ < Υ .

When p is greater than the critical value p(λ, s), we obtain the following
non existence result.

Theorem. 3.4.3 Assume that 0 < λ ≤ ΛN,s. Let p ≥ p(λ, s). Then, there
exists complete blow up of the problem (Hλ,µ).
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Organization of Chapter 3. In Section 3.1 we describe the appro-
priate functional setting for the study of problem (Hλ,µ). Then we devote
Sections 3.2 and 3.3 to the proof of Theorem 3.2.1. Finally in Section 3.4
we prove Theorem 3.4.3.

Note: The results contained in this chapter can be found in [21].

In Part II of this work we study more general non local operators, par-
ticularly, the so called integro-differential operators. To be consistent with
what we consider is a general non local operator, we introduce the following.

Definition 0.0.4. ( [57, Definition 21]) A nonlocal operator I is a rule that
assigns to a function u a value I(u, x) at every point x satisfying the following
assumptions.

• I(u, x) is well defined as long as u ∈ C1,1(x) ∩ L1(RN , ω).

• If u ∈ C1,1(Ω)∩L1(RN , w), then I(u, x) is continuous in Ω as a function
of x.

Typically our weight ω will be of the form ω(y) = 1/(1 + |y|N+2s), 0 < s < 1.

The class of functions C1,1(x) will be properly defined in Section 4.1.
The objective of this part of the work is to prove a regularity result for

these integro-differential operators (see Chapter 4) in order to improve the
regularity of non local minimal surfaces that L. Caffarelli, J. M. Roquejoffre
and O. Savin have recently introduced in [53] (see Chapter 5).

To give an intuitive idea of what we mean by nonlocal minimal surfaces
we use the concept of “nonlocal perimeter”. As the classical perimeter mea-
sures the total variation of the characteristic function of a set E in a fixed
domain Ω, a nonlocal perimeter measures the variation of this characteristic
function inside and outside this fixed domain with respect to a fractional
operator.
A nonlocal minimal surface is then the boundary of a set E that minimizes
this nonlocal perimeter inside a fixed domain Ω with the “boundary condi-
tion” that E ∩ (RN \ Ω) is prescribed.
Surprisingly, as we will see in the Introduction of Chapter 5, since the nonlo-
cal perimeter is related with the Hs/2 norm of the characteristic function χE,
these surfaces can be attained minimizing this norm. Precisely, when s < 1
and E is reasonably smooth, ‖χE‖Hs/2 becomes finite whereas for s = 1 this
is not true.
To establish more clearly the relation of these objects with the classical min-
imal surfaces we remark here that, as we will discuss in Chapter 5, they have
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a nonlocal mean curvature equal to zero. Moreover when s→ 1− the nonlocal
perimeter approaches the classical one (see [13,60]).
To give an intuitive definition to nonlocal minimal surfaces using the notion
of mean curvature and its geometric meaning, we refer to the recent work [1].
See also [170] where the author makes a summary of the main properties and
problems where these surfaces appear.

Coming back to the structure of Part II, in Chapter 4 we will develop
a “Schauder regularity theory” for viscosity solutions of a family of linear
integro-differential equations that involves a special class of kernels not invari-
ant under translations. Specifically we will consider kernels K = K(x,w) :
RN × (RN \ {0})→ (0,+∞) satisfying some general structural assumptions.
In the following, 1 < σ < 2.

First of all, we suppose that K is close to an autonomous kernel of frac-
tional Laplacian type, namely

(4.2.1)


there exist a0, r0 > 0 and 0 < η < a0/4 such that∣∣∣∣ |w|N+σK(x,w)

2− σ
− a0

∣∣∣∣ ≤ η, x ∈ B1, w ∈ Br0 \ {0}.

Moreover, we assume that

(4.2.2)



there exist k ∈ N ∪ {0} and Ck = C(k) > 0 such that

K ∈ Ck+1
(
B1 × (RN \ {0})

)
,

‖∂µx∂θwK(·, w)‖L∞(B1) ≤
Ck

|w|N+σ+|θ| ,

µ, θ ∈ (N ∪ {0})N , |µ|+ |θ| ≤ k + 1, w ∈ RN \ {0}.

Observe that we use | · | both to denote the Euclidean norm of a vector and,
for a multi-index α = (α1, . . . , αN) ∈ NN , to denote |α| := α1 + · · · + αN .
However, the meaning of | · | will always be clear from the context.

Then, setting along this Part II

δu(x,w) := u(x+ w) + u(x− w)− 2u(x), (0.0.36)

the principal result of this chapter reads as follows.

Theorem. 4.2.1 Fix 1 < σ < 2, k ∈ N ∪ {0}, and let u ∈ L∞(RN) be a
viscosity solution of the equationˆ

RN
K(x,w) δu(x,w)dw = f(x, u(x)) inside B1,

with f ∈ Ck+1(B1×R). Assume that K : B1×(RN \{0})→ (0,+∞) satisfies
assumptions (4.2.1) and (4.2.2) for the same value of k.
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Then, if η in (4.2.1) is sufficiently small (the smallness being independent
of k), we have u ∈ Ck+σ+α(B1/2) for any α < 1, and

‖u‖Ck+σ+α(B1/2) ≤ C
(
1 + ‖u‖L∞(RN ) + ‖f‖L∞(B1×[−M,M ])

)
,

where M = ‖u‖L∞(B1) and C > 0 depends only on N , σ, k, Ck, and
‖f‖Ck+1(B1×R).

Organization of Chapter 4. In the preliminary Section 4.1 we intro-
duce the theory of integro-differential equations and we present some well-
known regularity results. Then we devote Section 4.2 to the proof of Theorem
4.2.1.

In Chapter 5, using the results obtained in Chapter 4, and motivated by
the fact that (s)-minimal surfaces approach the classical ones when s→ 1−,
we will prove that nonlocal minimal surfaces are smooth. In fact we get that
C1 (s)-minimal surfaces are of class C∞. For that we write, here and along
this chapter, x ∈ RN as x = (x′, xN) ∈ RN−1 × R. Moreover, given r > 0
and p ∈ RN , we define

Kr(p) := {x ∈ RN : |x′ − p′| < r and |xN − pN | < r}.

For p′ ∈ RN−1, we set

BN−1
r (p′) := {x′ ∈ RN−1 : |x′ − p′| < r}.

We also consider Kr := Kr(0), Br := Br(0) and BN−1
r := BN−1

r (0).
With this notation, we get the following.

Theorem. 5.1.1 Take 0 < s < 1, and let ∂E be an (s)-minimal surface
in KR for some R > 0. Assume that

∂E ∩KR =
{

(x′, xN) : x′ ∈ BN−1
R and xN = u(x′)

}
,

for some u : BN−1
R → R, with u ∈ C1,α(BN−1

R ) for any α < s and u(0) = 0.
Then,

u ∈ C∞(BN−1
ρ ) for every 0 < ρ < R.

Organization of Chapter 5. In Section 5.1 we introduce the notion
of (s)-nonlocal minimal surfaces with detail and some well-known facts about
them. Then in Section 5.2 we prove Theorem 5.1.1 using the bootstrap
regularity result obtained in Section 4.2.

Note: The results of these two chapters are contained in [20].



14 Introduction.

Finally we devote Part III of this work to study the most simple parabolic
problem that involves the fractional Laplacian operator, that is, the non local
heat equation. Specifically in Chapter 6 we extend some classical results for
the heat equation by D.V. Widder in [172] to the nonlocal diffusion frame-
work proving uniqueness in the setting of positive solutions according with
the Principles of Thermodynamics. The main result of this chapter is the
following.

Theorem. 6.1.3 If u ≥ 0 is a strong solution (see Definition 6.1.7) of

ut + (−∆)su = 0 for (x, t) ∈ RN × (0, T ), 0 < s < 1,

then

u(x, t) =

ˆ
RN
pt(x− y)u(y, 0) dy.

Here,

pt(x) =
1

tN/2s
p
( x

t1/2s

)
,

and

p(x) :=

ˆ
RN
eix·ξ−|ξ|

2s

dξ,

is the solution of{
pt + (−∆)sp = 0 for (x, t) ∈ RN × (0, T ),
p(x, 0) = δ0(x) in RN .

Organization of Chapter 6. In Section 6.1 we will introduce the
classical problem of Widder and the different type of solutions that will be
used in the chapter. After that, in Section 6.2 we prove a uniqueness result
for weak solutions (see Definition 6.1.5) that, in turn, will be the key step
to obtain our representation theorem. Next, in Section 6.3, we prove the
main result for strong solutions. We start by proving a comparison lemma
that will allow us to show that every positive strong solution u(x, t) is bigger
than or equal to the convolution of the trace u(x, 0) with the kernel pt(x).
By a scaling argument we will prove that any positive strong solution is also
a weak solution and then, by the uniqueness result of the previous section,
we will conclude with the proof of the theorem. Finally, in the last section,
Section 6.4, we establish the pointwise behavior of positive strong solution
that has an interest on its own and that could provide an alternative proof
to our representation result.

Note: The results presented in this chapter are contained in [22].
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Open problems and further results.

1. It remains an open problem the statement 4 of Theorem 1.2.1 for the
case 0 < s < 1/2. The reason for it is that, due to the lack of regularity,
we do not know how to separate the solutions in the appropriate way
(see Lemma 1.2.4 and also [67,73]). This problem seems to be technical.
We note here that the same restriction on s appeared in the study of
an uniform L∞ estimate of Gidas-Spruck type ( [96]) for the operator
As that have been studied in [37,162]. In that case the main difficulty
was to find a Liouville-type theorem for 0 < s < 1/2 in RN

+ .

2. In Theorem 1.3.1 we have left open the range 2s < N < 4s. See the
special case s = 1 and N = 3 in [45]. As one can observe in [161], if
s = 1/2 this range is empty. When the Dirichlet problem is considered
with (−∆)s instead of As, the same range remains open (see [140,
Theorem 4]). One of the reasons why we leave this range open is
because for N < 4s we cannot prove Proposition 1.3.2. In fact the
estimate obtained in (1.2.60) when N < 4s is not enough to get the
conclusion of the proposition in that case.

3. We propose as an interesting unsolved question the study of the result
of multiplicity of solutions stated in the Remark 3.2.6 of Chapter 3
for the critical case p = 2∗s − 1. A possible way to solve this problem
would be to apply the Concentration Compactness Principle of P. L.
Lions [118,119], modifying the computations specified in Lemma 2.2.10,
and to use the appropriate minimizers associated to the lineal operator
L(u) := (−∆)su−λu/|x|2s. To get these minimizers one should follow,
perhaps, the ideas given in [164]. We notice that the existence of a
minimum in the energy space could be obtained doing a change of
variable to hide the Hardy potential in the operator in order to get
the boundedness of the solutions. In our opinion this will involve a
considerable computational effort.

4. We leave as an open problem the existence of at least two positive
solutions to the problem (Hλ,µ) given in Chapter 3 when µ belongs to
a suitable bounded interval (0, Υ ), λ = ΛN,s and 1 < p < 2∗s − 1. We
believe that the improved Hardy-Sobolev inequality, given for instance
in [85] (see also [90]), could be used as a tool to solve this question. We
remark here that in the local case this result was obtained in [94].

5. In Chapter 5, we mention as an interesting unsolved problem the ana-
lyticity of the non local minimal surfaces studied there.
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6. Finally, we consider an interesting problem to find the largest class of
positive viscosity solutions for which the representation property given
in Theorem 6.1.3 holds. In order to do that, it would be useful to
prove that the pointwise behavior obtained in Lemma 6.4.2, together
with some comparison arguments, suffices as in the classical case to
give an alternative proof of the main result in Chapter 6.



Part I

An elliptic nonlocal problem:
variational and non variational

methods.
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Chapter 1

On some elliptic critical
problems for the spectral
fractional Laplacian operator.

1.1 Introduction, preliminaries and functional

settings.

Recently, several studies have been performed for classical elliptic equations
with the Laplacian operator substituted by one of its fractional powers de-
fined through the spectral decomposition. In particular, in [161] is studied
the following problem

 A1/2u = λu+ u
N+1
N−1 in Ω,

u = 0 on ∂Ω,
u > 0 in Ω.

(1.1.1)

That is, the author has considered the analogue case to the problem in [45]
but with the square root of the Laplacian, defined spectrally in Ω with zero
Dirichlet boundary conditions, instead of the classical Laplacian operator.
Prior to this study, the authors in [51] proved that there is no solution in
the case λ = 0 for Ω star shaped. Moreover it has been proved in [37], using
a generalized Pohozaev identity, that the previous problem (1.1.1) with a
general operator As, 0 < s < 1, has no solution for λ = 0 whenever Ω is a
starshaped domain (see also [63] for the existence of positive and multiple
sign changing solutions when s = 1/2 and Ω is annular-shaped). This is the
reason why in this chapter we are interested in the following perturbations

19
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of the critical power case for different fractional powers of the Laplacian,

(Pλ) =


Asu = fλ(u) in Ω,
u = 0 on ∂Ω,
u > 0 in Ω,

where Ω ⊆ RN is a regular bounded domain. Here, we are under the hy-
potheses that N > 2s,

fλ(u) := λuq + u2∗s−1, λ > 0, 0 < q < 2∗s − 1, 0 < s < 1, (1.1.2)

and 2∗s is the fractional critical Sobolev exponent given in (0.0.29).
As we mentioned before, for the definition of the fractional Laplacian

operator we follow some recent ideas of [51], together with other results
from [37] and [55]. The powers As of the positive Laplace operator (−∆), in
a bounded domain Ω with zero Dirichlet boundary data, are defined through
the spectral decomposition using the powers of the eigenvalues of the original
operator. Indeed, if L is a positive linear operator with discrete spectrum
(ϕj, ρj) in Ω, the action of L on a function

u(x) =
∑
〈u, ϕj〉ϕj(x), x ∈ Ω,

is given by its action on each eigenfunction. That is

Lu(x) =
∑
〈u, ϕj〉Lϕj(x) =

∑
ρj〈u, ϕj〉ϕj(x), x ∈ Ω.

Then is clear how to define Ls, 0 < s < 1:

Lsu(x) =
∑

ρsj〈u, ϕj〉ϕj(x), x ∈ Ω.

Moreover using the formula

ηs =
1

Γ(−s)

ˆ ∞
0

(e−tη − 1)
dt

t1+s
, 0 < s < 1, η > 0, (1.1.3)

where Γ(−s) was defined in (0.0.28), it follows that

Lsu(x) =
1

Γ(−s)

ˆ ∞
0

∑
(e−tρj − 1)〈u, ϕj〉ϕj

dt

t1+s

=
1

Γ(−s)

ˆ ∞
0

(e−tL − 1)u(x)
dt

t1+s
.

Here
e−tLu(x) :=

∑
e−tρj〈u, ϕj〉ϕj(x), x ∈ Ω,
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is the solution of the diffusion equation
vt + Lv = 0 in Ω× (0,∞),
v(x, 0) = u(x) on Ω,
v(x, t) = 0 in ∂Ω× (0,∞).

See the clear relationship with (0.0.27).
Hence, if we consider (ϕj, ρj) the eigenfunctions and eigenvectors of (−∆)

in Ω with zero Dirichlet boundary data, then (ϕj, ρ
s
j) are the eigenfunctions

and eigenvectors of As, also with Dirichlet boundary conditions. In fact, as
we commented in the Introduction of this work, the fractional Laplacian As
is well defined in the space of functions

H(Ω, s) =
{
u =

∑
ajϕj ∈ L2(Ω) : ‖u‖2

H(Ω,s) =
∑

ρsja
2
j <∞

}
, (1.1.4)

and, as a consequence,

Asu =
∑

ρsjajϕj with ‖u‖H(Ω,s) = ‖As/2u‖L2(Ω). (1.1.5)

To understand the definition of H(Ω, s) we introduce the well know frac-
tional Sobolev space Hs(RN) = (H1(RN), L2(RN))[1−s] , 0 < s < 1, as follows

Hs(RN) = {u ∈ L2(RN) : |ξ|sû(ξ) ∈ L2(RN)}, (1.1.6)

with the usual norm given by

‖u‖Hs(RN ) = ||(1 + |ξ|s)û(ξ)‖L2(RN ).

Note that, by Plancherel’s formula, this norm is equivalent to the so called
Gagliardo norm, see for example [76, Proposition 3.4],

‖u‖L2(RN ) +

(ˆ
RN×RN

|u(x)− u(y)|2

|x− y|N+2s
dx dy

)1/2

. (1.1.7)

Given a regular bounded domain Ω ⊆ RN we define the space Hs(Ω), 0 <
s < 1 as the family of functions u ∈ L2(Ω) for which the norm

‖u‖Hs(Ω) = ‖u‖L2(Ω) +

(ˆ
Ω×Ω

|u(x)− u(y)|2

|x− y|N+2s
dx dy

)1/2

, (1.1.8)

is finite. Also we define Hs
0(Ω) the completion of C∞0 (Ω) with respect to the

previous norm (1.1.8). That is,

Hs
0(Ω) = C∞0 (Ω)

‖·‖Hs(Ω)
.
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By [120, Theorem 11.1] it is known that Hs
0(Ω) = Hs(Ω) when 0 < s ≤ 1/2.

In the case 1/2 < s < 1 the inclusion Hs
0(Ω) ⊆ Hs(Ω) is strict.

The space defined in (1.1.4) is the interpolation space (H1
0 (Ω), L2(Ω))[1−s]

(see for example [7,120,163]). Moreover in [120, Chapter2] the authors proved
that

(H1
0 (Ω), L2(Ω))[1−s] =

{
Hs

0(Ω) for 0 < s < 1, s 6= 1/2,

H
1/2
00 (Ω) if s = 1/2,

where

H
1/2
00 (Ω) =

{
u ∈ H1/2(Ω) :

ˆ
Ω

u2(x)

dist(x, ∂Ω)
dx <∞

}
.

Therefore we obtain that

H(Ω, s) =


Hs(Ω) for 0 < s < 1/2,

H
1/2
00 (Ω) if s = 1/2,

Hs
0(Ω) for 1/2 < s < 1.

In all the cases, denoting H ′(Ω, s) the topological dual of H(Ω, s), we have
that As : H(Ω, s) → H ′(Ω, s) is an isometric isomorphism. The inverse
operator is denoted by A−s.

We now go back to our problem (Pλ). To define correctly the energy
formulation of the problem, since we are looking for positive solutions, in
what follows we consider the next Dirichlet problem

(P+
λ ) =

{
Asu = fλ(u+) in Ω,
u = 0 in ∂Ω .

Note that, by the Maximum Principle given in [64, Lemma 2.3] and [84], if u
is a solution of (P+

λ ) then u > 0 in Ω and therefore is also a solution of (Pλ).
Since the above definition of the fractional Laplacian allows to integrate by
parts in the proper spaces, we are interested to find functions that satisfy
the following.

Definition 1.1.1. We say that u ∈ H(Ω, s) is a energy solution of (P+
λ ) if

the identity ˆ
Ω

As/2uAs/2ϕdx =

ˆ
Ω

fλ(u+)ϕdx (1.1.9)

holds for every function ϕ ∈ H(Ω, s).

Since fλ(u) = λuq + u2∗s−1, the right-hand side of (1.1.9) is well defined
(for the details, see (1.1.30)). Indeed ϕ ∈ H(Ω, s) ↪→ L2∗s(Ω) and f(u) ∈
L

2N
N+2s (Ω) ↪→ H ′(Ω, s), whence u ∈ H(Ω, s).
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Associated to problem (P+
λ ) we consider the energy functional

Is,λ(u) =
1

2

ˆ
Ω

∣∣As/2u∣∣2 dx− ˆ
Ω

Fλ(u) dx ,

where Fλ(u) =
´ u

0
fλ(η) dη. In our case it reads

Is,λ(u) =
1

2

ˆ
Ω

∣∣As/2u∣∣2 dx− ˆ
Ω

(
λ

q + 1
uq+1

+ +
1

2∗s
u

2∗s
+

)
dx. (1.1.10)

This functional is well defined in H(Ω, s), and moreover, by the standard
variational theory, the critical points of Is,λ correspond to solutions to (Pλ).

We now include the main ingredients of a recently developed technique
used in order to deal with fractional powers of the Laplacian that we will use
in this chapter.

Motivated by the work of Caffarelli and Silvestre [55], several authors
have considered an equivalent definition of the operator As in a bounded
domain with zero Dirichlet boundary data by means of an auxiliary variable.
See [37,48,49,51,64,156]. To explain this equivalent definition, associated to
the bounded domain Ω, let us consider the cylinder

CΩ = Ω× (0,∞) ⊂ RN+1
+ .

The points in CΩ are denoted by (x, y). The lateral boundary of the cylinder
will be denoted by ∂LCΩ = ∂Ω× (0,∞). Now, for a function u ∈ H(Ω, s), we
define the s-harmonic extension w = Es(u) to the cylinder CΩ as the unique
solution to the problem

div(y1−2s∇w) = 0 in CΩ,
w = 0 on ∂LCΩ,
w = u on Ω× {y = 0},

(1.1.11)

that belongs to the Hilbert space

H1
0,L(CΩ, y

1−2s) = C∞0 (Ω× (0,∞))
‖·‖

H1
0,L

(CΩ, y
1−2s) .

Here,

‖z‖H1
0,L(CΩ, y1−2s) =

(
κs

ˆ
CΩ

y1−2s|∇z|2
)1/2

,

and κs is the normalization constant given by

κs :=
Γ(s)

21−2sΓ(1− s)
. (1.1.12)
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With this constant we have that the extension operator is an isometry be-
tween H(Ω, s) and H1

0,L(CΩ, y
1−2s). That is

‖Es(ψ)‖H1
0,L(CΩ, y1−2s) = ‖ψ‖H(Ω,s) , ψ ∈ H(Ω, s). (1.1.13)

Indeed we have the following result, whose proof we add for completeness.

Lemma 1.1.2. If u =
∑
ajϕj ∈ H(Ω, s) then

Es(u)(x, y) =
∑

ajϕj(x)ψ(ρ
1/2
j y) ∈ H1

0,L(CΩ, y
1−2s),

where ψ(s)>0 solves the problem
ψ′′ +

(1− 2s)

y
ψ′ = ψ, y > 0,

− lim
y→0+

y1−2sψ′(y) =
1

κs
,

ψ(0) = 1.

(1.1.14)

One has also,

‖Asu‖H′(Ω,s) = ‖As/2u‖L2(Ω) = ‖u‖H(Ω,s) = ‖Es(u)‖H1
0,L(CΩ, y1−2s). (1.1.15)

Proof. Let us define

v(x, y) :=
∑

ajϕj(x)ψ(ρ
1/2
j y).

Then it is clear that

v(x, 0) = u(x) for x ∈ Ω and v(x, y) = 0 when (x, y) ∈ ∂LCΩ. (1.1.16)

Using the orthogonality of the family {ϕj}, (1.1.14) and
ˆ

Ω

ϕ2
j = 1,

ˆ
Ω

|∇ϕj|2 = ρj, (1.1.17)

we have

‖v‖2
H1

0,L(CΩ, y1−2s) = κs

ˆ ∞
0

y1−2s

ˆ
Ω

(∑
a2
j |∇ϕj(x)|2ψ2(ρ

1/2
j y)

+ a2
jρjϕj(x)2(ψ′(ρ

1/2
j y))2

)
dx dy

= κs

ˆ ∞
0

y1−2s
∑

a2
jρj

(
ψ2(ρ

1/2
j y) + (ψ′(ρ

1/2
j y))2

)
dy

= κs
∑

a2
jρ
s
j

ˆ ∞
0

η1−2s
(
ψ2(η) + (ψ′(η))2

)
dη. (1.1.18)
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Since ψ satisfies the problem (1.1.14), then it can be shown that it is a
combination of Bessel functions, see [115]. More precisely, ψ satisfies the
following asymptotic behaviour

ψ(η) ∼ 1− c1η
2s, for η → 0,

ψ(s) ∼ c2η
2s−1

2 e−η, for η →∞,
(1.1.19)

where

c1(s) =
21−2sΓ(1− s)

2sΓ(s)
, c2(s) =

2
1−2s

2 π1/2

Γ(s)
.

Then, by (1.1.12), (1.1.14) and (1.1.19), we obtain

ˆ ∞
0

(
ψ2(η) + ((ψ′)(η))2

)
η1−2s dη = − lim

η→0
η1−2sψ′(η)ψ(η) =

1

κs
.

Hence, since u ∈ H(Ω, s), from (1.1.17) and (1.1.18) it follows that

‖v‖2
H1

0,L(CΩ, y1−2s) =
∑

a2
jρ
s
j =

∑
(ajρ

s/2
j )2 = ‖As/2u‖2

L2(Ω) = ‖u‖2
H(Ω,s) <∞.

That is, we have obtained (1.1.15) and that

v ∈ H1
0,L(CΩ, y

1−2s). (1.1.20)

Finally using that ψ is a solution of (1.1.14) clearly we also get that

div(y1−2s∇v) = 0 in CΩ. (1.1.21)

Thus, by (1.1.16), (1.1.20) and (1.1.21), we conclude that v = Es(u).

Observe that for any function ϕ ∈ H1
0,L(CΩ, y

1−2s), we have that the trace
operator

trΩ : H1
0,L(CΩ, y

1−2s)→ H(Ω, s),

is linear and bounded, that is

‖ϕ(·, 0)‖H(Ω,s) ≤ ‖ϕ‖H1
0,L(CΩ, y1−2s). (1.1.22)

Then,

H(Ω, s) = {u = trΩv : v ∈ H1
0,L(CΩ, y

1−2s)}.

See [51, Proposition 2.1] for the case s = 1/2 and [64, Proposition 2.1] when
s 6= 1/2.



26 Chapter 1. Spectral fractional Laplacian.

Note that from (1.1.13) and (1.1.22) we deduce that Es(u) is the solution
of the problem

min{‖v‖H1
0,L(CΩ, y1−2s) : v ∈ H1

0,L(CΩ, y
1−2s), trΩ(v) = u}. (1.1.23)

The relevance of the extension function w = Es(u) is that it is related
to the fractional Laplacian of the original function u. Indeed, from Lemma
1.1.2 we can easily deduce the following formula:

− lim
y→0+

y1−2s∂w

∂y
(x, y) =

1

κs
Asu(x). (1.1.24)

See also [37,48,51,55,64,156].
When Ω = RN , the above Dirichlet-Neumann procedure (1.1.11)–(1.1.24)

provides a formula for the fractional Laplacian in the whole space equiva-
lent to that obtained from Fourier Transform, see [55]. In that case, the
s-harmonic extension and the fractional Laplacian have explicit expressions
in terms of the Poisson and the Riesz kernels, respectively. That is,

w(x, y) = P s
y ∗ u(x) = d(N, s)y2s

ˆ
RN

u(η)

(|x− η|2 + y2)
N+2s

2

dη , (1.1.25)

(−∆)su(x) = C(N, s)P.V.

ˆ
RN

u(x)− u(y)

|x− y|N+2s
dy. (1.1.26)

Here C(N, s) is the normalized constant given in (0.0.22). Moreover the con-
stants in (1.1.24), (1.1.25) and (1.1.26) clearly satisfy the identity 2sd(N, s)κs=
C(N, s). In that case the corresponding functional spaces are well defined on
the homogeneous fractional Sobolev space

Ḣs(RN) = {u ∈ S : |ξ|sû(ξ) ∈ L2(RN)}, s > 0,

and the weighted Sobolev space H1(RN+1
+ , y1−2s).

Throughout this chapter we will use the following notation,

Lsw := − div(y1−2s∇w),
∂w

∂νs
:= −κs lim

y→0+
y1−2s∂w

∂y
.

With the above notation and (1.1.24), we can reformulate our problem (P+
λ )

as

(P
+

λ ) =


Lsw = 0 in CΩ

w = 0 on ∂LCΩ

∂w

∂νs
= λwq+ + w

2∗s−1
+ in Ω× {y = 0}.

We introduce the following.
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Definition 1.1.3. An energy solution to problem (P
+

λ ) is a function w ∈
H1

0,L(CΩ, y
1−2s) such that for any ϕ ∈ H1

0,L(CΩ, y
1−2s),

κs

ˆ
CΩ

y1−2s〈∇w,∇ϕ〉 dx dy =

ˆ
Ω

fλ(w+(x, 0))ϕdx. (1.1.27)

As we have seen before, for any energy solution w ∈ H1
0,L(CΩ, y

1−2s) to

problem (P
+

λ ), the function u = w(·, 0), defined in the sense of traces, belongs
to the space H(Ω, s) and is an energy solution to problem (P+

λ ). The converse
is also true. Therefore, both formulations are equivalent.

Moreover if w is an enery solution of (P+
λ ), either w > 0 in CΩ or w ≡

0. In fact, from the classical strong maximum principle for strictly elliptic
operators we know that w cannot vanish at an interior point. Furthermore,
by the strong maximum principle given in [84] (see also [64, Lemma 2.6]), or
by the Hopf principle given in [48, Proposition 4.11], w cannot vanish when

y = 0. Therefore if w is a nontrivial solution of (P
+

λ ) then, its trace u := trΩw
will be strictly positive in Ω. Therefore u is going to be also a solution of
(Pλ).

We also introduce the associated energy functional to the problem (P
+

λ ):

I∗s,λ(w) =
κs
2

ˆ
CΩ

y1−2s|∇w|2 dx dy −
ˆ

Ω

(
λ

q + 1
wq+1

+ +
1

2∗s
w

2∗s
+

)
dx. (1.1.28)

Clearly, critical points of I∗s,λ in H1
0,L(CΩ, y

1−2s) correspond to critical points
of Is,λ in H(Ω, s). Even more, minima of I∗s,λ also correspond to minima of
Is,λ, see Section 1.2.

In what follows we will omit the term energy when working with solutions
that satisfy Definition 1.1.1 or Definition 1.1.3

Remark 1.1.4. In the sequel of this chapter, and in view of the above equiv-
alence, we will use both formulations of the problem, in Ω or in CΩ, whenever
we may take some advantage. In particular, we will use the extension version
(P λ) when dealing with the fractional operator acting on products of func-
tions. This difficulty appears in the proof of the concentration-compactness
result, Theorem 1.5.6, among others.

Another tool that will be very useful in what follows is the trace inequality.
See for instance [37, Theorem 2.1]. That is, for any 1 ≤ r ≤ 2∗s, N > 2s, and
v ∈ H1

0,L(CΩ, y
1−2s) there exists C = C(N, 2s, r,Ω) > 0 such that

ˆ
CΩ

y1−2s|∇v(x, y)|2 dx dy ≥ C

(ˆ
Ω

|v(x, 0)|r dx
)2/r

. (1.1.29)
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By (1.1.15), this is equivalent to the fractional Sobolev inequality
ˆ

Ω

|As/2u|2 dx ≥ Cκs

(ˆ
Ω

|u|r dx
)2/r

, (1.1.30)

where κs is defined in (1.1.12) and u ∈ H(Ω, s). The analogous result for the
Laplacian operator, instead of As, could be found in [82] and [119].

When r = 2∗s, the best constant in (1.1.29), that is not achieved in any
bounded domain, will be denoted by T (N, s). Its exact value, that is inde-
pendent of the domain, is

T (N, s) =
2πsΓ(N+2s

2
)Γ(1− s)(Γ(N

2
))

2s
N

Γ(s)Γ(N−2s
2

)(Γ(N))
2s
N

. (1.1.31)

See for instance [37, 156]. In the case Ω = RN , the previous constant is
achieved when U = v(·, 0) takes the form

U(x) = Uε(x) := (ε+ |x|2)−
N−2s

2 , (1.1.32)

with ε > 0 arbitrary and v = Es(U). See [70, Theorem1.1] and [37, 66, 81,
91, 117]. When s = 1, that is we are in the classical case of the Laplacian
operator, this result was obtained by G. Talenti in [159]. Consequently the
best constant in (1.1.30), when Ω = RN and r = 2∗s, is κsT (N, s). The
function given in (1.1.32) will be used in Sections 1.2, 1.3 and 1.4.

1.2 Sublinear case: 0 < q < 1.

Previously to study with detail the critical problem (Pλ) when 0 < q < 1, we
remark here that the associated subcritical problem, that is when the right
hand side fλ of the problem (Pλ) is equal to λuq + up, 1 < p < 2∗s − 1, has
been studied in [37, Section 5.3]. In this paper the authors used an argument
due by Alama [14] adapted for the spectral fractional Laplacian using the
extension tool.

The aim of this Section is to prove the following

Theorem 1.2.1. Let 0 < q < 1. Then, there exists 0 < Λ < ∞ such that
the problem (Pλ)

1 has no solution for λ > Λ;

2 has a minimal energy solution for any 0 < λ < Λ and, moreover, the
family of minimal solutions is increasing with respect to λ;

3 if λ = Λ, there is at least one energy solution;

4 if s ≥ 1/2, there are at least two energy solutions for 0 < λ < Λ.
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1.2.1 The existence of the first solution.

First of all we have

Lemma 1.2.2. Let Λ be defined by

Λ = sup {λ > 0 : Problem (Pλ) has solution} .

Then 0 < Λ <∞.

Proof. Following the ideas given in [31], we consider (ρs1, ϕ1) the first eigen-
value and the corresponding positive eigenfunction of the spectral fractional
Laplacian in Ω with zero Dirichlet condition. Let u > 0 be a solution of
(P+

λ ). Using ϕ1 as a test function in this problem we have that

ˆ
Ω

(
λuq + u2∗s−1

)
ϕ1 dx = ρs1

ˆ
Ω

uϕ1 dx. (1.2.1)

Since there exist positive constants c0, c1 such that λtq + t2
∗
s−1 > c0λ

c1t, for
any t > 0 we obtain from (1.2.1) that c0λ

c1 < ρs1 which implies

Λ <∞. (1.2.2)

To prove Λ > 0, following the ideas given in [31], see also [10, 92], we
use the sub- and supersolution technique to construct a solution for λ small
enough.
Step 1: Searching for a supersolution.

Let ω > 0 be the solution of the problem{
Asω(x) = 1 x ∈ Ω,
ω(x) = 0 x ∈ ∂Ω.

First of all we note that, by Proposition 1.5.3, or Proposition 1.5.1, ω ∈
L∞(Ω). Using the homogeneity of the operator As, if we define ωλ(x) =
λω(x), it is clear that ωλ solves the problem{

Asv(x) = λ x ∈ Ω,
v(x) = 0 x ∈ ∂Ω

and that
||ωλ||L∞(Ω) = c2λ with c2 = ||ω1||L∞(Ω). (1.2.3)

Whence we obtain that there exists λ0 > 0 such that if λ ∈ (0, λ0] then

0 ≤ uλ := T (λ)ωλ is a supersolution of (P+
λ ) for some T (λ) > 0. (1.2.4)
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Indeed, we have to prove

T (λ)λ ≥ λ(T (λ)ωλ)
q + (T (λ)ωλ)

2∗s−1,

for some T (λ) > 0 and λ ∈ (0, λ0]. By (1.2.3) it is enough to find T (λ) such
that

T (λ)λ ≥ λ(T (λ)c2λ)q + (T (λ)c2λ)2∗s−1. (1.2.5)

Note that (1.2.5) is equivalent to

1 ≥ Fλ(T (λ)), whit Fλ(T (λ)) = (T (λ))q−1(c2λ)q + (T (λ)λ)2∗s−2c
2∗s−1
2 .

Taking the derivative with respect to T , we get that

dFλ
dT

= 0⇔ T (λ) = T0(λ) =

(
(1− q)λq

(2∗s − 2)c
2∗s−1−q
2 λ2∗s−2

) 1
2∗s−1−q

.

So T0(λ) is a minimum for the function Fλ(T (λ)). Choosing

λ ≤ λ0(T0) :=

c2

( 1− q
2∗s − 2

) q−1
2∗s−1−q

+

(
1− q
2∗s − 2

) 2∗s−2

2∗s−1−q

 −1
2∗s−2

, (1.2.6)

we have that Fλ(T0(λ)) ≤ 1. Therefore (1.2.5) is obtained and consequently
(1.2.4) follows.

Step 2: Searching for a subsolution.
Let ϕ1 be the positive eigenfunction associated to ρs1 with ||ϕ1||L∞(Ω) = 1.

Let c3 > 0 a constant such that

λc3 > ρs1. (1.2.7)

Then there exists a positive constant η > 0 such that if 0 < t < η then

tρs1ϕ1 ≤ λ(tϕ1)q ≤ λ(tϕ1)q + (tϕ1)2∗s−1.

Hence 0 ≤ u := tϕ1 is a subsolution of (P+
λ ).

Step3: Comparison of sub and supersolutions.
Before using the Sattinger method ( [132]) we have to check that there

exits a subsolution u such that u ≤ uλ defined in (1.2.4). To obtain it we will
use a family of subsolutions in the form uk := tkϕ1 where {tk}k∈N verified
that

tk ∈ (0, η) , tk
k→∞−→ 0. (1.2.8)
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Let λ0 and c3 given in (1.2.6) and (1.2.7) respectively. For all λ ∈ (ρs1/c3, λ0],
by (1.2.8) there exist k0 ∈ N such that, if k ≥ k0 then

tkρ
s
1ϕ1(x) ≤ λT (λ), x ∈ Ω.

Then
Asuk(x) ≤ Asuλ(x), x ∈ Ω.

Therefore, by the comparison principle given in [64, Lemma 2.5] we conclude.

Step4: Applying the Sattinger method.
Set λ ∈ (ρs1/c3, λ0] and k ≥ k0 where k0 was given in Step 3 and λ0 and

c3 are given in (1.2.6) and (1.2.7) respectively. We define

u := uλ

and
u := tk0ϕ1.

Since by Step 3 u ≥ u, we can apply the Sattinger method. Indeed we
consider

u0 := u (1.2.9)

and a nonnegative sequence of functions {uk}k≥1 in H(Ω, s) ∩ L∞(Ω) of so-
lutions to the iterated problems

(Pk) =

{
Asuk = fλ(uk−1) in Ω,
uk = 0 in ∂Ω .

By comparison it can be checked that

u ≤ u1 ≤ ... ≤ u.

Hence, we can define, up to subsequence,

0 ≤ uλ := lim
k→∞

uk in L1(Ω). (1.2.10)

Moreover, since u ∈ L∞(Ω),

‖As/2uk‖2
L2(Ω) = λ

ˆ
Ω

uku
q
k−1 dx+

ˆ
Ω

uku
2∗s−1
k−1 dx

≤ λ

ˆ
Ω

uq+1 dx+

ˆ
Ω

u2∗s−1 dx

≤ C.
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Therefore, since H(Ω, s) is a Hilbert space, up to a subsequence, we have
uk ⇀ uλ in H(Ω, s). Hence we can pass to the limit in the iterated problems
to conclude that uλ defined in (1.2.10) is a bounded solution of (P+

λ ) and,
consequently to (Pλ). That is

Λ > 0. (1.2.11)

Then, by (1.2.2) and (1.2.11) we ended the proof.

In addition, we have the following.

Lemma 1.2.3. (Pλ) admits at least one minimal solution for 0 < λ ≤ Λ.
Also, for 0 < λ < Λ the family of minimal solutions is increasing with respect
to λ.

Proof. Since Λ > 0, we can find a solution for a value of λ as close as we
want to Λ. Denote this value by λ̃ and by uλ̃ the associated minimal solution.

Then, for all λ < λ̃, we get that uλ̃ is a supersolution for the problems (Pλ).
Furthermore, for every λ, ϕ1 can be modified to a subsolution to (Pλ) as
previously. Following the same procedure as before, we conclude that there
exists a solution uλ for all λ ∈ (0, λ̃), and therefore for all λ ∈ (0,Λ).

Even more, by construction, these solutions are minimal and, as a conse-
quence of the comparison principle, are increasing with respect to λ.

To prove existence of solution in the extremal value λ = Λ, the idea,
like in [10], consists on passing to the limit as λn ↗ Λ on the sequence
{un} = {uλn} ≥ 0, where uλn is the minimal solution of (Pλ) with λ = λn.
Denote by Is,λn the associated functional. Following the proof of [10, Lemma
3.5 and Theorem 2.1], we get that Is,λn(un) < 0. Hence

0 > Is,λn(un)− 1

2∗s
〈(Is,λn)′(un), un〉

=

(
1

2
− 1

2∗s

)
‖un‖2

H(Ω,s) − λn
(

1

q + 1
− 1

2∗s

)ˆ
Ω

uq+1
n dx.

Therefore, since q + 1 < 2∗s, by (1.1.30), there exits a constant C > 0 such
that ‖un‖H(Ω,s) ≤ C. As a consequence, there exists a subsequence weakly
convergent to some uΛ in H(Ω, s). By comparison, uΛ ≥ uλ > 0 in Ω, for
any 0 < λ < Λ, so one gets easily that uΛ is a nontrivial solution to (Pλ)
with λ = Λ.

1.2.2 The existence of the second solution. Variational
techniques.

Having proved the first three items in Theorem 1.2.1, we focus in the sequel
on proving the fourth statement. That is, the existence of the second solution
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fo s ≥ 1/2.
Although for λ small enough the functional Is,λ satisfies the geometry of

the Mountain Pass Theorem (MPT for short) by Ambrosetti and Rabinowitz
given in [11], we know that we cannot obtain a Palais Smale ((PS) for short)
condition without any assumption related to the unicity of the minimal so-
lution. In particular, even for λ small we cannot get inmediately, as occurs
in the subcritical case, a second solution applying the MPT. See Section 3.3
of Chapter 3 to see this difference with the subcritical case.

The proof of statement 4 of Theorem 1.2.1 uses a contradiction argu-
ment, inspired by [10], and is divided into several steps. Using the minimal
solutions given in Subsection 1.2.1, we first show that the functional Is, λ has
a local minimum. In the next step, in order to find a second solution, we
assume that this local minimum is the only critical point of the functional
and then we prove a local PS condition. This condition will be denoted by
(PS)c, with a constant c that has to be under a critical level related with the
best fractional critical Sobolev constant given in (1.1.31) for the extended
functional I∗s, λ. Also we will find a path with energy under this critical
level localizing the Sobolev minimizers of the Trace/Sobolev inequalities at
the possible Dirac Deltas. These Deltas are obtained by the concentration-
compactness result in Theorem 1.5.6 inspired in the classical result by P.L.
Lions in [119]. Applying the MPT, given [11] and its refinement given in [95],
we obtain a contradiction.

We begin proving the first step. That is, checking that Is,λ has a positive
minimum. First of all we have the next separation Lemma in the C1-topology.
To avoid confusions with the notation we clarify here that, in the next three
results we will denote by C1

0(Ω) the family of functions in C1(Ω) that are
equal to zero in ∂Ω.

Lemma 1.2.4. Let 0 < λ1 < λ0 < λ2 < Λ. Let zλ1, zλ0 and zλ2 be the
corresponding minimal solutions to (Pλ), λ = λ1, λ0 and λ2 respectively. If
X = {z ∈ C1

0(Ω)| zλ1 ≤ z ≤ zλ2}, then there exists ε > 0 such that

{zλ0}+ εB1 ⊂ X,

where B1 is the unit ball in C1
0(Ω).

Proof. Since s ≥ 1/2, by Proposition 1.5.5, if 0 < λ < Λ we have that any
solution u of (Pλ) belongs to C1,γ(Ω) for some positive γ. Therefore if we
define z := zλ2 − zλ0 > 0 and z := zλ0 − zλ1 > 0, since fλi , i = 0, 1, 2 is an
increasin function, by Hopf’s Lemma (see [162, Lemmas 1.2 and 3.5]) we get
that exist C1, C2 > 0 such that

z(x) ≥ C1δ(x) and z(x) ≥ C2δ(x), x ∈ Ω.
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Thus,

zλ0(x) ≤ zλ2(x)− C1δ(x) and zλ0(x) ≥ zλ1(x) + C2δ(x), x ∈ Ω.

Hence, taking ε < min{C1, C2}, for any x ∈ Ω, we conclude that

zλ1(x)+εδ(x) ≤ zλ1(x)+C2δ(x) ≤ zλ0(x) ≤ zλ2(x)−C1δ(x) ≤ zλ2(x)−εδ(x).

That is {zλ0}+ εB1 ⊂ X.

With this result, and following the ideas given in [10], we now obtain a
local minimum of the functional Is,λ in C1

0(Ω), as a first step, to obtain a
local minimum in H(Ω, s).

Lemma 1.2.5. For all λ ∈ (0,Λ) the problem (Pλ) has a solution u0 which
is in fact a local minimum of the functional Is,λ in the C1-topology.

Proof. Given 0 < λ1 < λ < λ2 < Λ, let zλ1 and zλ2 be the minimal solutions
of (Pλ1) and (Pλ2) respectively. Since zλ1 and zλ2 are properly ordered, then{

As(zλ2 − zλ1) > 0 in Ω,
zλ2 − zλ1 = 0 on ∂Ω.

We set

fT (x, η) =


fλ(zλ1(x)) if η ≤ zλ1 ,

fλ(η) if zλ1 < η < zλ2 ,

fλ(zλ2(x)) if zλ2 ≤ η,

FT (x, z) =

ˆ z

0

fT (x, η) dη

and

ITs,λ(z) =
1

2
‖z‖2

H(Ω,s) −
ˆ

Ω

FT (x, z)dx.

Standard calculation of weak lower semi-continuity shows that ITs,λ achieves
its global minimum at some u0 ∈ H(Ω, s), that is

ITs,λ(u0) ≤ ITs,λ(z), z ∈ H(Ω, s). (1.2.12)

Moreover it holds {
Asu0 = fT (x, u0) in Ω,
u0 = 0 on ∂Ω.
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Since zλ1 < u0 < zλ2 , by Lemma 1.2.4, it follows that {u0} + εB1 ⊆ X for
0 < ε small enough. Let now z satisfy

‖z − u0‖C1
0(Ω) ≤

ε

2
.

Then, for x ∈ Ω,

z(x) ≤ u0(x) +
ε

2
δ(x) ≤ zλ2(x)− ε

2
δ(x) < zλ2(x)

and
z(x) ≥ u0(x)− ε

2
δ(x) ≥ zλ1(x) +

ε

2
δ(x) > zλ1(x).

Therefore, for every z such that ‖z − u0‖C1
0(Ω) ≤ ε

2
, the previous inequalities

give that ITs,λ(z)− Is,λ(z) is zero. Hence, by (1.2.12) we obtain that

Is,λ(z) = ITs,λ(z) ≥ ITs,λ(u0) = Is,λ(u0), z ∈ C1
0(Ω), with ‖z− u0‖C1

0(Ω) ≤
ε

2
.

That is, u0 is a local minimum of Is,λ in the C1-topology.

Finally, to show that we have obtained the desired minimum in Hs
0(Ω),

we now check that the result by Brezis and Nirenberg in [46] is also valid in
our context.

Proposition 1.2.6. Let z0 ∈ H(Ω, s) be a local minimum of Is,λ in C1
0(Ω),

this means that, there exists r1 > 0 such that

Is,λ(z0) ≤ Is,λ(z0 + z), z ∈ C1
0(Ω) with ‖z‖C1

0(Ω) ≤ r1. (1.2.13)

Then z0 is a local minimum of Is,λ in H(Ω, s), that is, there exists r2 > 0 so
that

Is,λ(z0) ≤ Is,λ(z0 + z), z ∈ H(Ω, s) with ‖z‖H(Ω,s) ≤ r2.

Proof. Let z0 be as in (1.2.13) and set, for ε > 0,

Bε(z0) =
{
z ∈ H(Ω, s) : ‖z − z0‖H(Ω,s) ≤ ε

}
.

Now, we argue by contradiction and we suppose that for every ε > 0 we have

min
v∈Bε(z0)

Is,λ(v) < Is,λ(z0) . (1.2.14)

We pick vε ∈ Bε(z0) such that min
v∈Bε(z0)

Is,λ(v) = Is,λ(vε). The existence of vε

comes from a standard argument of weak lower semi-continuity. We want to
prove that

vε → z0 in C1
0(Ω) as ε↘ 0 , (1.2.15)
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because this will imply that there are z ∈ C1
0(Ω), arbitrarily close to z0 in the

metric of C1
0(Ω) (in fact, z = vε for some ε), such that

Is,λ(z) < Is,λ(z0).

This contradicts our hypothesis (1.2.13).

Let 0 < ε� 1. We note that the Euler-Lagrange equation satisfied by vε
involves a Lagrange multiplier ξε in such a way that

〈I ′s,λ(vε), ϕ〉H′(Ω,s),H(Ω,s) = ξε〈vε, ϕ〉H(Ω,s), ϕ ∈ H(Ω, s). (1.2.16)

Since vε is a minimum of Is,λ, we have

ξε =
〈I ′s,λ(vε), vε〉
‖vε‖2

H(Ω,s)

≤ 0. (1.2.17)

Note that by (1.2.16), vε satisfies the problem{
Asvε = 1

1−ξεfλ((vε)+) := f ελ(vε) in Ω,

vε = 0 on ∂Ω.

Clearly ‖vε‖H(Ω,s) ≤ C, thus, by Proposition 1.5.3, this implies that ‖vε‖L∞(Ω) ≤
C. Moreover, by (1.2.17) it follows that ‖f ελ(vε)‖L∞(Ω) ≤ C. Therefore, fol-
lowing the proof of Proposition 1.5.5, we get that

‖vε‖C1,r(Ω) ≤ C, for r = min{q, 2s− 1} and C independent of ε.

By Ascoli-Arzelá Theorem, and the fact that vε → z0 in H(Ω, s), we ob-
tain that there exists a subsequence, still denoted by vε, such that vε → z0

uniformly in C1
0(Ω) as ε↘ 0, that is, (1.2.15) is proved.

Lemma 1.2.5 and Proposition 1.2.6 provide us with a local minimum of
Is,λ in H(Ω, s), which will be denoted by u0. We now perform a translation
in order to simplify the calculations. That is we consider the functions

gλ(x, η) =

{
λ(u0 + η)q − λuq0 + (u0 + η)2∗s−1 − u2∗s−1

0 if η ≥ 0,
0 if η < 0,

= λ(u0 + η+)q − λuq0 + (u0 + η+)2∗s−1 − u2∗s−1
0 , (1.2.18)

Gλ(x, u) =

ˆ u

0

gλ(x, η) dη, (1.2.19)
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and the energy functional

Ĩs,λ(u) =
1

2
‖u‖2

H(Ω,s) −
ˆ

Ω

Gλ(x, u)dx. (1.2.20)

Since u ∈ H(Ω, s), Gλ is well defined and bounded from below. Consider the
moved problem

(P̃λ) =

{
Asu = g(x, u) in Ω,
u = 0 on ∂Ω.

By standard variational theory, we know that if ũ 6≡ 0 is a critical point
of Ĩs,λ then it is a solution of (P̃λ). By the Strong Maximum Principle
(see [64, Lemma 2.3] and [84] or Remark 4.2 of [48]), we must have ũ > 0.
Therefore u = u0 + ũ will be a second solution of (Pλ) for the sublinear case.
Thus our next objective is to study the existence of these non-trivial critical
points for Ĩs,λ.

As we have mentioned in Remark 1.1.4, there are some points where it
is difficult to work directly with the spectral fractional Laplacian. For that

reason in what follows we consider the extended problem (P
+

λ ). To begin with
that problem it is necessary to prove that local minima of the functional Is,λ
correspond to local minima of the extended functional I∗s,λ.

Proposition 1.2.7. A function u0 ∈ H(Ω, s) is a local minimum of Is,λ if
and only if w0 = Es(u0) ∈ H1

0,L(CΩ, y
1−2s) is a local minimum of I∗s,λ.

Proof. On one hand let u0 ∈ H(Ω, s) be a local minimum of Is,λ. Suppose,
by contradiction, that w0 = Es(u0) is not a local minimum for the extended
functional I∗s,λ. Then by (1.1.13) and (1.1.22), we have that, for any ε > 0,
there exists wε ∈ H1

0,L(CΩ, y
1−2s), with ‖w0−wε‖H1

0,L(CΩ, y1−2s) < ε, such that

Is,λ(u0) = I∗s,λ(w0) > I∗s,λ(wε) ≥ Is,λ(zε),

where zε = wε(·, 0) ∈ H(Ω, s) satisfies ‖u0 − zε‖H(Ω,s) < ε.
On the other hand, let w0 ∈ H1

0,L(CΩ, y
1−2s) be a local minimum of I∗s,λ

such that w0(·, 0) = u0. Then by the definition of the s-harmonic extension,
see (1.1.23), w0 = Es(u0). Therefore, (1.1.13) clearly implies that u0 is a
minimum of Is,λ, so we conclude.

Considering now the moved functional

Ĩ∗s,λ(w) =
1

2
‖w‖2

H1
0,L(CΩ, y1−2s) −

ˆ
Ω

Gλ(w(x, 0))dx,

with Gλ defined in (1.2.19), we can prove the next.
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Lemma 1.2.8. w = 0 is a local minimum of Ĩ∗s,λ in H1
0,L(CΩ, y

1−2s).

Proof. The proof follows the lines of [10, Lemma 4.2]. Let w belong to
H1

0,L(CΩ, y
1−2s), then

Gλ(x,w(x, 0)) = F (u0 + w+(x, 0))− F (u0)− fλ(u0)w+(x, 0). (1.2.21)

Therefore

Ĩ∗s,λ(w) =
1

2
‖w+‖2

H1
0,L(CΩ, y1−2s)+

1

2
‖w−‖2

H1
0,L(CΩ, y1−2s)−

ˆ
Ω

Gλ(x,w(x, 0)) dx

=
1

2
‖w+‖2

H1
0,L(CΩ, y1−2s) +

1

2
‖w−‖2

H1
0,L(CΩ, y1−2s)

−
ˆ

Ω

F (u0 + w+(x, 0)) dx+

ˆ
Ω

F (u0) dx+

ˆ
Ω

fλ(u0)w+(x, 0) dx.

On the other hand by Proposition 1.2.7

I∗s,λ(w0 + w+) =
1

2
‖w0 + w+‖2

H1
0,L(CΩ, y1−2s) −

ˆ
Ω

F (u0 + w+(x, 0)) dx

=
1

2
‖w0‖2

H1
0,L(CΩ, y1−2s) +

1

2
‖w+‖2

H1
0,L(CΩ, y1−2s)

+ κs

ˆ
CΩ

y1−2s∇w0∇w+dx dy −
ˆ

Ω

F (u0 + w+(x, 0)) dx

=
1

2
‖w0‖2

H1
0,L(CΩ, y1−2s) +

1

2
‖w+‖2

H1
0,L(CΩ, y1−2s)

+

ˆ
Ω

fλ(u0)w+(x, 0) dx−
ˆ

Ω

F (u0 + w+(x, 0)) dx.

Finally, since w0 is a local minimum of I∗s,λ, we have that

Ĩ∗s,λ(w) = I∗s,λ(w0 + w+)− 1

2
‖w0‖2

H1
0,L(CΩ, y1−2s) +

1

2
‖w−‖2

H1
0,L(CΩ, y1−2s)

+

ˆ
Ω

F (u0) dx

≥ I∗s,λ(w0 + w+)− I∗s,λ(w0)

≥ 0 = Ĩ∗s,λ(0),

provided ‖w‖H1
0,L(CΩ, y1−2s) < ε. Then w = 0 is a local minimum of Ĩ∗s,λ in

H1
0,L(CΩ, y

1−2s).

Note that as a consequence of Proposition 1.2.7 and Lemma 1.2.8, we also
obtain that u = 0 is a local minimum of Ĩs,λ in H(Ω, s).
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As we said in the introduction of this subsection, to prove the existence
of the second solution of (Pλ), we will proceed by contradiction. For that, if

we assume that v = 0 is the unique critical point of Ĩ∗s,λ, using an extension
of a concentration-compactness result by Lions, see Theorem 1.5.6, then we
will prove that Ĩ∗s,λ satisfies a local (PS)c condition for c under a critical level

c∗ =
s

N
(κsT (N, s))

N
2s . (1.2.22)

Here κs and T (N, s) are defined in (1.1.12) and (1.1.31) respectively. First,
in order to apply Theorem 1.5.6, since we are considering the unbounded
domain CΩ, we need the next.

Lemma 1.2.9. Let {zn} ⊆ H1
0,L(CΩ, y

1−2s) be such that

‖zn‖2
H1

0,L(CΩ, y1−2s) ≤M, (1.2.23)

for some M > 0 and
(I∗s,λ)′(zn)→ 0. (1.2.24)

Then the sequence {y1−2s|∇zn|2}n∈N is tight, i.e., for any η > 0 there exists
τ0 > 0 such that ˆ

{y>τ0}

ˆ
Ω

y1−2s|∇zn|2dxdy ≤ η, n ∈ N. (1.2.25)

Proof. The proof of this Lemma follows some arguments of [12, Lema 2.2]
and [118, 119]. Since {zn} ⊆ H1

0,L(CΩ, y
1−2s) then, for every δ > 0, there

exists, for each n ∈ N, τn such that
ˆ
{y>τn}

ˆ
Ω

y1−2s|∇zn|2dx dy ≤ δ. (1.2.26)

Let ε > 0 be fixed, to be specified later, z be the weak limit of {zn} in
H1

0,L(CΩ, y
1−2s) and r > 0 be such that

ˆ
{y>r}

ˆ
Ω

y1−2s|∇z|2dx dy < ε.

Let now j =

[
M

κsε

]
be the integer part of

M

κsε
and consider Ik = {y ∈ R+ :

r + k ≤ y ≤ r + k + 1}, k = 0, 1, . . . , j. By (1.2.23), we clearly obtain that

j∑
k=0

ˆ
Ik

ˆ
Ω

y1−2s|∇zn|2dx dy ≤
ˆ

CΩ

y1−2s|∇zn|2dx dy ≤
M

κs
≤ ε(j + 1).
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Therefore there exists k0 ∈ {0, . . . , j} such that, up to a subsequence,

ˆ
Ik0

ˆ
Ω

y1−2s|∇zn|2dx dy ≤ ε, n ∈ N. (1.2.27)

Let χ ≥ 0 be the following regular nondecreasing cut-off function

χ(y) =

{
0 if y ≤ r + k0,
1 if y > r + k0 + 1.

Define vn(x, y) = χ(y)zn(x, y). Since vn(x, 0) = 0 and vn(x, y) = zn(x, y) if
y > r + k0 + 1, it follows that

|〈(I∗s,λ)′(zn)− (I∗s,λ)′(vn), vn〉|
κs

=

ˆ
CΩ

y1−2s〈∇(zn − vn),∇vn〉dx dy

=

ˆ
{y>r+k0}

ˆ
Ω

y1−2s〈∇(zn − vn),∇vn〉dx dy

=

ˆ
Ik0

ˆ
Ω

y1−2s〈∇(zn − vn),∇vn〉dx dy.(1.2.28)

Moreover by the Cauchy-Schwartz inequality, (1.2.27) and the compact in-
clusion H1

0 (Ik0 × Ω, y1−2s) into L2(Ik0 × Ω, y1−2s), we have(ˆ
Ik0

ˆ
Ω

y1−2s|∇vn|2 dx dy

)1
2

=

(ˆ
Ik0

ˆ
Ω

y1−2s|zn∇χ+ χ∇zn|2 dx dy

)1
2

≤

(
C

ˆ
Ik0

ˆ
Ω

y1−2s|∇zn|2 dx dy + 2

ˆ
Ik0

ˆ
Ω

y1−2s〈∇zn, zn〉| dx dy

)1
2

≤

Cε+ 2

(ˆ
Ik0

ˆ
Ω

y1−2s|zn|2 dx dy

)1
2
(ˆ

Ik0

ˆ
Ω

y1−2s|∇zn|2 dx dy

)1
2


1
2

≤ Cε
1
2 . (1.2.29)

Similarly we also get that(ˆ
Ik0

ˆ
Ω

y1−2s|∇(zn − vn)|2dx dy

)1
2

≤ ε
1
2 (1.2.30)
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Then, from (1.2.28), (1.2.29), (1.2.30) and the Cauchy-Schwartz inequality
again, we get that

|〈(I∗s,λ)′(zn)− (I∗s,λ)′(vn), vn〉|

≤ κs

(ˆ
Ik0

ˆ
Ω

y1−2s|∇(zn − vn)|2dx dy

)1
2
(ˆ

Ik0

ˆ
Ω

y1−2s|∇vn|2dx dy

)1
2

≤ C κs ε. (1.2.31)

On the other hand, by (1.2.24),

|〈(I∗s,λ)′(zn), vn〉| ≤ C κs ε+ o(1). (1.2.32)

So by (1.2.31) and (1.2.32), there exists n0 ∈ N such that for n ≥ n0,

ˆ
{y>r+k0+1}

ˆ
Ω

y1−2s|∇zn|2dx dy ≤
ˆ

CΩ

y1−2s|∇vn|2dx dy

=
〈(I∗s,λ)′(vn), vn〉

κs
≤ C ε.

Then, for any n ∈ N there exits τ0 = max{r + k0 + 1, τ1, . . . , τn0}, with
τi, i = 1, . . . , n0 given in (1.2.26), such that

ˆ
{y>τ0}

ˆ
Ω

y1−2s|∇zn|2dx dy ≤
ˆ

CΩ

y1−2s|∇vn|2dx dy ≤ η,

for every η > 0.

Now we are able in the situation to prove the compactness property of
the extended moved functional.

Lemma 1.2.10. If v = 0 is the only critical point of Ĩ∗s,λ in H1
0,L(CΩ, y

1−2s)

then Ĩ∗s,λ satisfies a local (PS)c condition below the critical level c∗ defined in
(1.2.22).

Proof. Let {wn} be a PS sequence for Ĩ∗s,λ satisfying

Ĩ∗s,λ(wn)→ c < c∗ and (Ĩ∗s,λ)′(wn)→ 0. (1.2.33)
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Then, there exist two positive constants C1 and C2 such that

c+ o(1) = Ĩ∗s,λ(wn)− 1

2∗s
〈(Ĩ∗s,λ)′(wn), w0 + (wn)+〉

≥
(

1

2
− 1

2∗s

)
‖wn‖2

H1
0,L(CΩ, y1−2s)

− λ

(
1

q + 1
− 1

2∗s

) ˆ
Ω

(w0 + (wn)+)q+1 dx

≥ C1‖wn‖2
H1

0,L(CΩ, y1−2s)

− C2

(
‖w0‖H1

0,L(CΩ, y1−2s) + ‖(wn)+‖H1
0,L(CΩ, y1−2s)

)q+1

.

That is, {wn} is uniformly bounded in H1
0,L(CΩ, y

1−2s). By the hypothe-

sis that v = 0 is the unique critical point of Ĩ∗s,λ, it follows that, up to a
subsequence,

wn ⇀ 0 weakly in H1
0,L(CΩ, y

1−2s),

wn(·, 0) → 0 strongly in Lr(Ω), 1 ≤ r < 2∗s, (1.2.34)

wn(·, 0) → 0 a.e. in Ω.

Also, since w0 is a critical point of I∗s,λ, we have that

I∗s,λ(zn) = Ĩ∗s,λ(wn) + I∗s,λ(w0)

+ λ

ˆ
Ω

(
(w0 + (wn)+)q+1

q + 1
+ wq0(wn − (wn)+)− (w0 + wn)q+1

+

q + 1

)
dx

+

ˆ
Ω

(
(w0 + (wn)+)2∗s

2∗s
+ w

2∗s−1
0 (wn − (wn)+)− (w0 + wn)

2∗s
+

2∗s

)
dx

≤ Ĩ∗s,λ(wn) + I∗s,λ(w0), (1.2.35)

where
zn := wn + w0.

Moreover for every ϕ ∈ H1
0,L(CΩ, y

1−2s),

〈(I∗s,λ)′(zn), ϕ〉 = 〈(Ĩ∗s,λ)′(wn), ϕ〉

+

ˆ
Ω

(
λ(w0 + (wn)+)q + (w0 + (wn)+)2∗s−1

)
ϕdx

−
ˆ

Ω

(
λ(w0 + wn)q+ + (w0 + wn)

2∗s−1
+

)
ϕdx. (1.2.36)



1.2. Sublinear case: 0 < q < 1. 43

Then, by (1.2.33), (1.2.34) and (1.2.36) we obtain that

(I∗s,λ)′(zn)→ 0. (1.2.37)

Since {zn} is uniformly bounded in H1
0,L(CΩ, y

1−2s), up to a subsequence,

zn ⇀ z weakly in H1
0,L(CΩ, y

1−2s)

zn(·, 0) → z(·, 0) strong in Lr(Ω), 1 ≤ r < 2∗s, (1.2.38)

zn(·, 0) → z(·, 0) a.e. in Ω.

Note that since we are assuming that v = 0 is the unique critical point of
Ĩ∗s,λ then, z = w0.

Since {zn} satisfies (1.2.23) and (1.2.24), applying Lemma 1.2.9 we get
that {y1−2s|∇zn|2}n∈N is tight and consequently {y1−2s|∇(zn)+|2}n∈N is also
tight. Therefore by Theorem 1.5.6, up to a subsequence, there exist an index
set I, at most countable, a sequence of points {xk}k∈I ⊂ Ω, and nonnegative
real numbers µk, νk, such that

y1−2s|∇(zn)+|2 → µ ≥ y1−2s|∇w0|2 +
∑
k∈I

µkδxk (1.2.39)

and
|(zn)+(·, 0)|2∗s → ν = |w0(·, 0)|2∗s +

∑
k∈I

νkδxk , (1.2.40)

in the sense of measures. Also we have relation

µk ≥ T (N, s)ν
2

2∗s
k , for every k ∈ I. (1.2.41)

We fix k0 ∈ I, and let φ ∈ C∞0 (RN+1
+ ) be a non increasing cut-off function

satisfying

φ =

{
1 in B+

1 (xk0),
0 in B+

2 (xk0)c.

Set now φε(x, y) := φ(x/ε, y/ε). Clearly

|∇φε| ≤
C

ε
. (1.2.42)

We denote Γ2ε = B+
2ε(xk0) ∩ {y = 0}. Taking φε(zn)+ ∈ H1

0,L(CΩ, y
1−2s) as a

test function in (1.2.37), since

ˆ
CΩ

y1−2s〈∇zn,∇(φε(zn)+)〉dx dy =

ˆ
CΩ

y1−2s〈∇(zn)+,∇(φε(zn)+)〉dx dy,
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we have

lim
n→∞

κs

ˆ
CΩ

y1−2s〈∇(zn)+,∇φε〉(zn)+dx dy

= lim
n→∞

(ˆ
Γ2ε

(λ|(zn)+|q+1 + |(zn)+|2
∗
s)φε dx

− κs

ˆ
B+

2ε(xk0
)

y1−2s|∇(zn)+|2φε dx dy

)
.

By (1.2.38), (1.2.39) and (1.2.40) we get

lim
n→∞

κs

ˆ
CΩ

y1−2s〈∇(zn)+,∇φε〉(zn)+ dx dy

= λ

ˆ
Γ2ε

wq+1
0 φε dx+

ˆ
Γ2ε

φε dν − κs
ˆ
B+

2ε(xk0
)

φε dµ. (1.2.43)

On the other hand, using Theorem 1.6 in [84], with w = y1−2s ∈ A2 and
k = 1, by (1.2.42) we obtain that(ˆ

B+
2ε(xk0

)

y1−2s|∇φε|2|(zn)+|2dx dy

)1/2

≤ C

ε

(̂
B+

2ε(xk0
)

y1−2s|(zn)+|2dx dy

)1/2

≤ C

(̂
B+

2ε(xk0
)

y1−2s|∇(zn)+|2dx dy

)1/2

.

Since (zn)+ ∈ H1
0,L(CΩ, y

1−2s), the last expression goes to zero as ε → 0.
Therefore

0 ≤ lim
n→∞

∣∣∣∣ˆ
CΩ

y1−2s〈∇(zn)+,∇φε〉(zn)+dx dy

∣∣∣∣
≤ lim

n→∞

(̂
CΩ

y1−2s|∇(zn)+|2dx dy
)1/2

(ˆ
B+

2ε(xk0
)

y1−2s|∇φε|2|(zn)+|2dx dy

)1/2

−→ 0, when ε→ 0. (1.2.44)

Hence, by (1.2.43) and (1.2.44), it follows that

lim
ε→0

[
λ

ˆ
Γ2ε

wq+1
0 φε dx+

ˆ
Γ2ε

φε dν − κs
ˆ
B+

2ε(xk0
)

φε dµ

]
= νk0 − κsµk0 = 0.

Therefore, by (1.2.41), we get that

νk0 = 0 or νk0 ≥ (κsT (N, s))
N
2s .
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Suppose that νk0 6= 0. Since 〈(I∗s,λ)′(w0), w0〉 = 0, by (1.2.33), (1.2.35) and
(1.2.37) we obtain that

c+ I∗s,λ(w0) ≥ lim
n→∞

(
I∗s,λ(zn)− 1

2
〈(I∗s,λ)′(zn), zn〉

)
≥ λ

(
1

2
− 1

q + 1

) ˆ
Ω

wq+1
0 dx+

s

N

ˆ
Ω

w
2∗s
0 dx+

s

N
νk0

≥ I∗s,λ(w0) +
s

N
(κsT (N, s))N/2s

= I∗s,λ(w0) + c∗.

This gives a contradiction with (1.2.33), and since k0 was arbitrary, νk = 0 for
all k ∈ I. As a consequence, (wn)+ → 0 in L2∗s(Ω). We finish in the standard
way: convergence of (wn)+ in L2∗s(Ω) implies convergence of f((wn)+) in

L
2N
N+2s (Ω), and finally by using the continuity of the inverse operator A−s,

we obtain convergence of wn in H(Ω, s). Note that the argument we have
used reflects the fact that the composition of a compact operator with a
continuous operator is compact.

Now it remains to show that we can obtain a local (PS)c sequence for

Ĩ∗s,λ under the critical level c = c∗. To do that we will use the family of
minimizers to the Trace-Sobolev inequalities given in (1.1.29)-(1.1.30). The
reason why we use these functions is because we have raised the problem
(Pλ) as a perturbation of the critical problem

(P∗) =


Asu = u2∗s−1 in Ω,
u = 0 on ∂Ω,
u > 0 in Ω.

Therefore it seems natural to expect that the solutions of (Pλ) are closer to
the solutions of (P∗). But remember that, by Pohozaev’s identity we can
assure that (P∗) has not solution when Ω is a star-shaped domain. However
when Ω = RN the problem (P∗) has solution (see [70, Theorem 1.1] and
[37, 81, 117]). That is, there exists a family of functions Uε given in (1.1.32)
for which the best constant in the inclusion Hs(RN) ⊆ L2∗s(RN) is achieved.
Moreover this family of functions is the unique positive solution of (P∗), with
Ω = RN , except dilations and translations. Therefore, in what follows we
will consider

uε(x) := Uε

(
x√
ε

)
=

ε(N−2s)/2

(|x|2 + ε2)(N−2s)/2
. (1.2.45)
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Observe that uε is also a minimizer of (1.1.30) because, by (1.1.26),

∥∥∥∥(−∆)s/2
(
Uε

(
x√
ε

))∥∥∥∥2

L2(RN )

=

∥∥∥∥ε− s2 ((−∆)s/2Uε
)( x√

ε

)∥∥∥∥2

L2(RN )

= ε
N
2
−s‖(−∆)s/2Uε‖2

L2(RN )

= κsT (N, s)ε
N
2
−s‖Uε‖2

L2∗s (RN )

= κsT (N, s)‖uε‖2
L2∗s (RN )

.

Moreover

‖uε‖2∗s
L2∗s (RN )

=

ˆ
RN

εN

(|x|2 + ε2)N
dx

≤
ˆ
{0<|x|<ε}

ε−N +

ˆ
{|x|>ε}

εN

|x|2N
dx := K1, (1.2.46)

is a constant independent of ε.

We note that the functions given in (1.2.45) do not have compact support
but when ε is small their mass is concentrated in x = 0. Therefore although
there are not solutions of (P∗), if we multiple them by a positive cut off
function, to adapt them to the domain Ω, and we take ε small enough, it is
expected that these functions are a good approximations to the solutions of
(P∗).

We remark that, except for the cases s = 1/2 and s = 1, wε = Es(uε)
does not have an explicit expression. Indeed for the case s = 1/2, by a result
of J. Escobar in [82] that uses differential geometry, we know that

wε(x, y) =
ε
N−1

2

(|x|2 + (y + ε)2)
N−1

2

.

If s 6= 1/2, we could think that the function

z(x, y) :=
ε
N−2s

2

(|x|2 + (y + ε)2)
N−2s

2

,

provides the associated minimizer. However z 6= wε when s 6= 1/2 because z
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is not a s-harmonic function. Indeed, if (x, y) ∈ CΩ, then

Lsz(x, y)

= −y1−2s(∆x,yz +
1− 2s

y
zy)(x, y)

= −y1−2s

(
ε
N−2s

2 (2s−N)(2s− 1)

(|x|2 + (y + ε)2)
N−2s

2
+1

+
1− 2s

y

ε
N−2s

2 (2s−N)(y + ε)

(|x|2 + (y + ε)2)
N−2s

2
+1

)

=
y−2sε

N−2s
2

+1(1− 2s)(N − 2s)

(|x|2 + (y + ε)2)
N−2s

2
+1

. (1.2.47)

Since, for every (x, y) ∈ CΩ, 0 < s < 1 and N > 2s, from (1.2.47) we deduce
that Lsz = 0 if and only if s = 1/2. In fact Lsz < 0 when s > 1/2 and
Lsz > 0 if s < 1/2.

The fact that wε is not explicit, is an extra difficulty that we have to
overcome. We take into account that the family uε is self-similar, that is,
uε(x) = ε

2s−N
2 u1(x/ε) and the fact that the Poisson kernel (1.1.25) is also

self-similar

P s
y (x) =

1

yN
P s

1

(
x

y

)
, (1.2.48)

where

P s
1 (z) =

1

(1 + |z|2)
N+2s

2

.

This gives easily that the family wε satisfies

wε(x, y) = ε
2s−N

2 w1

(x
ε
,
y

ε

)
. (1.2.49)

Here
w1

(x
ε
,
y

ε

)
=
(
P s
y
ε
(·) ∗ u1(·)

)(x
ε

)
.

We will denote P s = P s
1 . Also, we will write w1,2s (u1,2s) instead of w1

(u1) to emphasize the dependence on the parameter s. Before taking a cut
off function to adapt the minimizers to our domain Ω, we are going to prove
some useful properties of that family of extended functions that we present
as follows.

Lemma 1.2.11. With the above notation one has

|∇w1,2s(x, y)| ≤ C

y
w1,2s(x, y), s > 0, (x, y) ∈ RN+1

+ , (1.2.50)

|∇w1,2s(x, y)| ≤ Cw1,2s−1(x, y), s > 1/2, (x, y) ∈ RN+1
+ . (1.2.51)
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Moreover if

(x, y) ∈ C1/ε :=

{
(x, y) ∈ RN+1

+ :
1

2ε
≤ rxy ≤

1

ε

}
,

where rxy := |(x, y)| = (|x|2 + y2)
1
2 , then

w1,2s(x, y) ≤ CεN−2s, s > 0. (1.2.52)

Proof. Differentiating with respect to each variable xi , i = 1, . . . , N, and
the variable y, by Young’s inequality it follows that

|∂xiw1,2s(x, y)| ≤
ˆ
RN

(N + 2s)y2s|x− z|
(y2 + |x− z|2)

N+2s
2

+1(1 + |z|2)
N−2s

2

dz

≤ N + 2s

2y

ˆ
RN

y2s

(y2 + |x− z|2)
N+2s

2 (1 + |z|2)
N−2s

2

dz

=
C

y
w1,2s(x, y). (1.2.53)

Also since 2s|x− z|2 −Ny2 ≤ C(|x− z|2 + y2), we obtain

|∂yw1,2s(x, y)| =

∣∣∣∣∣
ˆ
RN

y2s−1(2s|x− z|2 −Ny2)

(y2 + |x− z|2)
N+2s

2
+1(1 + |z|2)

N−2s
2

dz

∣∣∣∣∣
≤ C

ˆ
RN

y2s−1

(y2 + |x− z|2)
N+2s

2 (1 + |z|2)
N−2s

2

dz

=
C

y
w1,2s(x, y). (1.2.54)

By (1.2.53) and (1.2.54) we deduce (1.2.50).

To obtain (1.2.51) we transfer the derivative to the function u1,2s because

it has the worst decay at infinity. Since u1,2s(z) = (1+ |z|2)−
N−2s

2 , by (1.2.48)
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and doing the change of variable z̃ =
x− z
y

, it follows that

|∂yw1,2s(x, y)| =

∣∣∣∣∂y (ˆ
RN

1

yN
P s

1

(
x− z
y

)
u1,2s(z)dz

)∣∣∣∣
=

∣∣∣∣∂y (ˆ
RN
P s

1 (z̃)u1,2s(x− yz̃) dz̃

)∣∣∣∣
=

∣∣∣∣ˆ
RN
P s

1 (z̃) 〈z̃,∇u1,2s(x− yz̃)〉 dz̃
∣∣∣∣

=

∣∣∣∣ˆ
RN

1

yN
P s

1

(
x− z
y

)〈
x− z
y

,∇u1,2s(z)

〉
dz

∣∣∣∣
≤ (N − 2s)

ˆ
RN

1

yN
P s

1

(
x− z
y

)
|x− z||z|

y(1 + |z|2)
N−2s

2
+1
dz

≤ (N − 2s)

ˆ
RN

y2s−1

(y2 + |x− z|2)
N+2s−1

2 (1 + |z|2)
N−2s+1

2

dz

= Cw1,2s−1(x, y). (1.2.55)

Doing the same calculations in the variables xi for i = 1, . . . , N , we obtain

|∂xiw1,2s(x, y)| =

∣∣∣∣∂xi (ˆ
RN
P s

1 (z̃)u1,2s(x− yz̃) dz̃

)∣∣∣∣
≤
ˆ
RN
P s

1 (z̃)|∇u1,2s|(x− yz̃)dz̃

=

ˆ
RN

1

yN
P s

1

(
x− z
y

)
|∇u1,2s|(z) dz

≤ (N − 2s)

ˆ
RN

y2s

(y2 + |x− z|2)
N+2s

2

|z|
(1 + |z|2)

N−2s
2

+1
dz

≤ Cw1,2s−1(x, y). (1.2.56)

Then (1.2.51) follows from (1.2.55) and (1.2.56).

Finally we will prove (1.2.52). Let (x, y) ∈ C1/ε and s > 0. Since

(y2 + |x− z|2)1/2 = C(y2 + |x|2)1/2, for |z| < 1/4ε
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and P s
y is a summability kernel, we obtain that

w1,2s(x, y) =

ˆ
|z|< 1

4ε

P s
y (x− z)u1,2s(z)dz +

ˆ
|z|> 1

4ε

P s
y (x− z)u1,2s(z) dz

≤ CεN+2sy2s

ˆ
|z|< 1

4ε

dz

|z|N−2s
+ CεN−2s

ˆ
RN
P s
y (z) dz

≤ Cy2sεN + CεN−2s

≤ CεN−2s.

Let us now introduce a non increasing cut-off function φ0 ∈ C∞(R+),
satisfying

φ0(η) =

{
1 if 0 ≤ η ≤ 1

2
,

0 if η ≥ 1.

Assume without loss of generality that 0 ∈ Ω. We then define, for some

fixed r > 0 small enough so that B
+

r ⊆ CΩ, the function

φ(x, y) = φr(x, y) = φ0

(rxy
r

)
, (1.2.57)

where rxy was defined in Lemma 1.2.11. Note that φwε ∈ H1
0,L(CΩ, y

1−2s).
In this way we get the next.

Lemma 1.2.12. With the above notation, for ε small enough and C > 0
that may depends on r, the family {φwε} and its trace at {y = 0}, {φuε},
satisfy

‖φwε‖2
H1

0,L(CΩ, y1−2s)≤‖wε‖
2
H1(RN+1

+ ,y1−2s)
+ CεN−2s, (1.2.58)

and

‖φuε‖p+1
Lp+1(Ω) ≥ CεN−(N−2s

2 )(p+1), if N > 2s

(
1 +

1

p

)
. (1.2.59)

In particular, for some positive constants C and C̃,

‖φuε‖2
L2(Ω)≥


Cε2s if N > 4s,
Cε2slog(1/ε) if N = 4s,

CεN−2s − C̃ε2s if N < 4s.
(1.2.60)
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Proof. First of all, since suppφ and supp∇φ are contained in CΩ, the product
φwε satisfies

‖φwε‖2
H1

0,L(CΩ, y1−2s) = ‖φwε‖2
H1(RN+1

+ ,y1−2s)

= κs

ˆ
RN+1

+

y1−2s(|φ∇wε|2+|wε∇φ|2+2〈wε∇φ, φ∇wε〉)dx dy

≤ ‖wε‖2
H1(RN+1

+ ,y1−2s)
+ κs

ˆ
CΩ

y1−2s|wε∇φ|2dxdy

+ 2κs

ˆ
CΩ

y1−2s〈wε∇φ, φ∇wε〉dx dy. (1.2.61)

To estimate the second term of the right hand side we take r > 0 such that
Cr = {r/2 ≤ rxy ≤ r} ⊂ CΩ. Then by (1.2.52),

ˆ
CΩ

y1−2s|wε∇φ|2 dx dy ≤ C

ˆ
Cr
y1−2sw2

ε(x, y) dx dy

= ε2s−N
ˆ
Cr
y1−2sw2

1,2s

(x
ε
,
y

ε

)
dx dy

= CεN−2s, (1.2.62)

where C may depends of r > 0. For the remaining term we note that by
(1.2.49) we get

ˆ
CΩ

y1−2s〈wε∇φ, φ∇wε〉dx dy

≤ C

ˆ
Cr
y1−2s|wε(x, y)‖∇wε(x, y)|dx dy

= Cε−N+2s−1

ˆ
Cr
y1−2s

∣∣∣w1,2s

(x
ε
,
y

ε

)∣∣∣ ∣∣∣∇w1,2s

(x
ε
,
y

ε

)∣∣∣ dx dy
= Cε

ˆ
C r
ε

y1−2s|w1,2s(x, y)| |∇w1,2s(x, y)|dx dy. (1.2.63)

If s < 1/2, from (1.2.50), (1.2.52) and (1.2.63), it follows that

ˆ
CΩ

y1−2s〈wε∇φ, φ∇wε〉dx dy ≤ Cε1+2(N−2s)

ˆ
C r
ε

y−2sdx dy

= CεN−2s. (1.2.64)

To obtain the similar estimate for s > 1/2 we use (1.2.51). Indeed by this
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estimate, together with (1.2.52) and (1.2.63) we get thatˆ
CΩ

y1−2s〈wε∇φ, φ∇wε〉dx dy ≤ Cε2(1+N−2s)

ˆ
C r
ε

y1−2sdx dy

= CεN−2s. (1.2.65)

Note that for s = 1/2, as wε is explicit, we can obtain the same estimate
directly.

Then, by (1.2.61)-(1.2.65), we have proved (1.2.58).

Finally we show that (1.2.59) holds. Let N > 2s

(
1 +

1

p

)
. Denoting by

α := −(N − (N − 2s)(p+ 1)) > 0, for some positive constant C > 0, we get
that ˆ

Ω

|φuε(x)|p+1 dx ≥
ˆ
|x|<r/2

|uε|p+1 dx

= ε(
N−2s

2 )(p+1)

ˆ
|x|<r/2

dx

(|x|2 + ε2)
(N−2s)(p+1)

2

= Cε−(N−2s
2 )(p+1)

ˆ r/2

0

ρN−1(
1 +

(
ρ
ε

)2
) (N−2s)(p+1)

2

dρ

= CεN−(N−2s
2 )(p+1)

ˆ r/2ε

0

tN−1

(1 + t2)
(N−2s)(p+1)

2

dt

≥ CεN−(N−2s
2 )(p+1)

ˆ r/2ε

1

tN−1−(N−2s)(p+1) dt

= C
εN−(N−2s

2 )(p+1)

α

(
1−

(
2ε

r

)α)
≥ CεN−(N−2s

2 )(p+1).

Finally we observe that (1.2.60) follows taking p = 1 in the previous estimate.

With the above properties in mind, we define the family of functions

ηε =
φwε

‖φuε‖L2∗s (Ω)

> 0. (1.2.66)

The we have.

Lemma 1.2.13. There exists ε > 0 small enough such that

sup
t≥0
Ĩ∗s,λ(tηε) < c∗. (1.2.67)
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Proof. Assume N ≥ 4s. We make use that for some µ > 0,

(a+ b)p ≥ ap + bp + µap−1b, a, b ≥ 0, p > 1. (1.2.68)

Therefore g(x, η) ≥ η
2∗s−1
+ + µw

2∗s−2
0 η+, and thus

G(w) ≥ 1

2∗s
w

2∗s
+ +

µ

2
w2

+w
2∗s−2
0 . (1.2.69)

This implies that

Ĩ∗s,λ(tηε) ≤
t2

2
‖ηε‖2

H1
0,L(CΩ, y1−2s) −

t2
∗
s

2∗s
− t2

2
µ

ˆ
Ω

w
2∗s−2
0 η2

εdx.

Since w0 ≥ a0 > 0 in supp(ηε) we get

Ĩ∗s,λ(tηε) ≤
t2

2
‖ηε‖2

H1
0,L(CΩ, y1−2s) −

t2
∗
s

2∗s
− t2

2
µ̃‖ηε‖2

L2(Ω). (1.2.70)

On the other hand we note that

‖φuε‖2∗s
L2∗s (Ω)

= ‖φuε‖2∗s
L2∗s (RN )

= ‖uε‖2∗s
L2∗s (RN )

+

ˆ
RN

(φ2∗s − 1)
εN

(|x|2 + ε2)N
dx

= ‖uε‖2∗s
L2∗s (RN )

− CεN . (1.2.71)

Therefore, by (1.2.46), (1.2.58) and (1.2.71) we have

‖ηε‖2
H1

0,L(CΩ, y1−2s) ≤
‖wε‖2

H1(RN+1
+ ,y1−2s)

+ CεN−2s(
‖uε‖2∗s

L2∗s (RN )
− CεN

) 2
2∗s

= κsT (N, s) + ĈεN−2s. (1.2.72)

Moreover, since, by (1.2.46),

‖φuε‖2
L2∗s (Ω)

= ‖φuε‖2
L2∗s (RN )

≤ ‖uε‖2
L2∗s (RN )

= K1,

whit K1 > 0 is a constant independent of ε, from (1.2.60) we obtain that

‖ηε‖2
L2(Ω)≥

{
C̃ε2s if N > 4s,

C̃ε2s log(1/ε) if N = 4s.
(1.2.73)
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Then from (1.2.70), (1.2.72) and (1.2.73), we get

Ĩ∗s,λ(tηε) ≤
t2

2
(κsT (N, s) + ĈεN−2s)− t2

∗
s

2∗s
− t2

2
µ̃C̃ε2s := g(t). (1.2.74)

It is clear that lim
t→∞

g(t) = −∞, and sup
t≥0

g(t) is attained at some tε ≥ 0. If

tε = 0 then
sup
t≥0
Ĩ∗s,λ(tηε) ≤ sup

t≥0
g(t) = g(0) = 0,

so (1.2.67) is trivially obtained. Therefore, we consider tε > 0. Differentiating
the above function we get

0 = g′(tε) = tε(κsT (N, s) + ĈεN−2s)− t2∗s−1
ε − tεµ̃C̃ε2s, (1.2.75)

which implies

tε ≤ (κsT (N, s) + ĈεN−2s)
1

2∗s−2 . (1.2.76)

Moreover for ε > 0 small enough, we have

tε ≥ c > 0. (1.2.77)

Indeed from (1.2.75),

t2
∗
s−2
ε = κsT (N, s) + ĈεN−2s − µ̃C̃ε2s ≥ c > 0,

provided ε is small. On the other hand, the function

t 7→ t2

2
(κsT (N, s) + ĈεN−2s)− t2

∗
s

2∗s

is increasing on [0, (κsT (N, s) + ĈεN−2s)
1

2∗s−2 ]. Whence, by (1.2.74), (1.2.76)
and (1.2.77), we obtain

sup
t≥0

g(t) = g(tε) ≤
s

N
(κsT (N, s) + ĈεN−2s)

N
2s − Cε2s, (1.2.78)

for some C > 0. Since for some C > 0,

(κsT (N, s) + ĈεN−2s)
N
2s = (κsT (N, s))

N
2s + CεN−2s +O(εN−2s)

and N > 4s, from (1.2.78) we conclude that

g(tε) ≤
s

N
(κsT (N, s))

N
2s + CεN−2s − Cε2s <

s

N
(κsT (N, s))

N
2s = c∗.
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Hence from (1.2.74) we obtain (1.2.67) for N > 4s.
If N = 4s the same conclusion follows because, doing as before, we obtain

g(tε) ≤
s

N
(κsT (N, s))

N
2s + Cε2s − Cε2s log

1

ε
< c∗.

The last case 2s < N < 4s follows by using the estimate (1.2.68) which
gives, for some µ′ > 0,

G(w) ≥ 1

2∗s
w

2∗s
+ + µ′w0w

2∗s−1
+ . (1.2.79)

Arguing in a similar way, by (1.2.79) jointly with (1.2.59) for p+ 1 = 2∗s − 1,
we finish the proof.

Proof of Theorem 1.2.1-3. To finish the last statement in Theorem 1.2.1, in
view of the previous results, we look for a path with energy below the critical
level c∗. We consider Mε > 0 big enough such that Ĩ∗s,λ(Mεηε) < Ĩ∗s,λ(0) = 0.
Also, by Lemma 1.2.8, there exists α > 0 such that if ‖u‖H1

0,L(CΩ, y1−2s) = α

then Ĩ∗s,λ(u) ≥ Ĩ∗s,λ(0). We define

Γε = {γ ∈ C([0, 1], H1
0,L(CΩ, y

1−2s)) : γ(0) = 0, γ(1) = Mεηε}

and the minimax value

cε = inf
γ∈Γε

sup
0≤t≤1

Ĩ∗s,λ(γ(t)). (1.2.80)

By the arguments above cε ≥ Ĩ∗s,λ(0) = max{Ĩ∗s,λ(0), Ĩ∗s,λ(Mεηε)}. Also, by
Lemma 1.2.13, for ε� 1, we obtain that

cε ≤ sup
0≤t≤1

Ĩ∗s,λ(tMεηε) = sup
t≥0
Ĩ∗s,λ(tηε) < c∗.

Therefore by Lemma 1.2.10 and the MPT [11] if cε > Ĩ∗s,λ(0), or the corre-

sponding refinement given in [95] if the minimax level is equal to Ĩ∗s,λ(0), we

obtain the existence of a nontrivial solution to (P̃λ). This is a contradiction

with the assumption that v = 0 is the unique critical point of Ĩ∗s,λ. Hence,
there exist at least two solutions of (Pλ) for s ≥ 1/2.

1.3 Linear case: q = 1.

In this section we will prove the following
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Theorem 1.3.1. Assume q = 1, 0 < s < 1 and N ≥ 4s. Then the problem
(Pλ)

1 has no solution for λ ≥ ρs1;

2 has at least one energy solution for each 0 < λ < ρs1. Here ρ1 is the
first eigenvalue of the Laplace operator with zero Dirichlet condition.

The proof of the previous result follows the ideas of [45]. Note that for
s = 1/2, where the minimizers given in (1.2.49) are explicit, this result has
ben recently proven in [161]. In our case, since we consider all the range
0 < s < 1, as above, the principal difficulty is that these minimizers are not
explicit.
The first part of the proof of that theorem is a straightforward computation.

Proof of Theorem 1.3.1 1. Let ϕ1 be the first positive eigenfunction of As
in Ω with zero Dirichlet condition. We haveˆ

Ω

As/2uAs/2ϕ1 dx =

ˆ
Ω

ρs1uϕ1 dx.

Moreover, taking ϕ1 ∈ H(Ω, s) as a test function in (Pλ),

ˆ
Ω

As/2uAs/2ϕ1 dx =

ˆ
Ω

(λu+ u2∗s−1)ϕ1 dx >

ˆ
Ω

λuϕ1 dx.

This clearly implies λ < ρs1.
To prove the second part of Theorem 1.3.1 we introduce the following

Rayleigh quotient

Qλ(w) =
‖w‖2

H1
0,L(CΩ, y1−2s)

− λ‖w(·, 0)‖2
L2(Ω)

‖w(·, 0)‖2
L2∗s (Ω)

and we define

Sλ = inf{Qλ(w) | w ∈ H1
0,L(CΩ, y

1−2s)}. (1.3.1)

Then we have the following.

Proposition 1.3.2. Assume 0 < λ < ρs1. If N ≥ 4s then Sλ < κsT (N, s)
where κs and T (N, s) are defined in (1.1.12) and (1.1.31) respectively.

Proof. Let φ = φr be the cut-off function defined in (1.2.57) and consider
φ(x) := φ(x, 0). Let wε be defined as in (1.2.49). Taking r sufficiently small
we can use φwε ∈ H1

0,L(CΩ, y
1−2s) as a test function in Qλ. Consider N > 4s.
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Then, taking ε small enough, by (1.2.46), (1.2.58), (1.2.60), and (1.2.71) we
obtain that

Qλ(φwε) ≤
κs

ˆ
RN+1

+

y1−2s|∇wε|2 dx dy − λC̃ε2s + CεN−2s

(K1 − CεN)2/2∗s

≤ κsT (N, s)− λC̃ε2s + CεN−2s

< κsT (N, s).

If N = 4s, a similar computation proves that for ε small enough,

Qλ(φwε) ≤ κsT (N, s)− λC̃ε2s log(1/ε) + Cε2s < κsT (N, s),

which finishes the proof.

Note that Recall now the Brezis-Lieb Lemma given in [44, Theorem 1].

Lemma 1.3.3. Let 1 ≤ q < ∞, Ω be an open set and {un} be a sequence
weakly convergent in Lq(Ω) and a.e. convergent in Ω. Then

lim
n→∞

(‖un‖qLq(Ω) − ‖un − u‖
q
Lq(Ω)) = ‖u‖qLq(Ω).

This property allows us to prove the following.

Proposition 1.3.4. Assume 0 < λ < ρs1. Then the infimum Sλ defined in
(1.3.1) is achieved in a nonnegative function.

Proof. First, since λ < ρ1 we have that Sλ > 0. Let us take a minimizing
sequence of Sλ, {wm} ⊂ H1

0,L(CΩ, y
1−2s). That is a sequence such that

lim
m→∞

‖wm‖2
H1

0,L(CΩ, y1−2s)
− λ‖wm(·, 0)‖2

L2(Ω)

‖wm(·, 0)‖2
L2∗s (Ω)

= Sλ. (1.3.2)

Without loss of generality we consider wm ≥ 0 (otherwise we take |wm|
instead of wm) and ‖wm(·, 0)‖L2∗s (Ω) = 1. Clearly this implies that

‖wm‖H1
0,L(CΩ, y1−2s) ≤ C,

then there exists a subsequence, still denoted by {wm}, satisfying

wm ⇀ w weakly in H1
0,L(CΩ, y

1−2s),
wm(·, 0) → w(·, 0) strongly in Lq(Ω), 1 ≤ q < 2∗s,
wm(·, 0) → w(·, 0) a.e in Ω.

(1.3.3)
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A simple calculation, using the weak convergence, gives that

‖wm‖2
H1

0,L(CΩ, y1−2s) = ‖wm − w‖2
H1

0,L(CΩ, y1−2s) + ‖w‖2
H1

0,L(CΩ, y1−2s)

+ 2κs

ˆ
CΩ

y1−2s〈∇w,∇wm −∇w〉dx dy

= ‖wm − w‖2
H1

0,L(CΩ, y1−2s) + ‖w‖2
H1

0,L(CΩ, y1−2s)

+ o(1). (1.3.4)

Since, by Lemma 1.3.3, we have that

‖(wm − w)(·, 0)‖L2∗s (Ω) = ‖wm(·, 0)‖L2∗s (Ω) − ‖w(·, 0)‖L2∗s (Ω) + o(1),

we can consider that ‖(wm − w)(·, 0)‖L2∗s (Ω) ≤ 1 for m big enough. More-
over since ‖wm(·, 0)‖L2∗s (Ω) ≤ 1 and wm(·, 0) → w(·, 0) a.e., we get that
‖w(·, 0)‖L2∗s (Ω) ≤ 1. Hence by (1.3.3) and (1.3.4) it follows that

Qλ(wm) = ‖wm‖2
H1

0,L(CΩ, y1−2s) − λ‖wm(·, 0)‖2
L2(Ω)

= ‖wm − w‖2
H1

0,L(CΩ, y1−2s) + ‖w‖2
H1

0,L(CΩ, y1−2s) − λ‖wm(·, 0)‖2
L2(Ω)

+ o(1)

≥ κsT (N, s)‖(wm − w)(·, 0)‖2
L2∗s (Ω)

+ Sλ‖w(·, 0)‖2
L2∗s (Ω)

+ o(1)

≥ κsT (N, s)‖(wm − w)(·, 0)‖2∗s
L2∗s (Ω)

+ Sλ‖w(·, 0)‖2∗s
L2∗s (Ω)

+ o(1).

By Lemma 1.3.3 again, this leads to

Qλ(wm) ≥ (κsT (N, s)− Sλ)‖(wm − w)(·, 0)‖2∗s
L2∗s (Ω)

+ Sλ‖wm(·, 0)‖2∗s
L2∗s (Ω)

+ o(1)

= (κsT (N, s)− Sλ)‖(wm − w)(·, 0)‖2∗s
L2∗s (Ω)

+ Sλ + o(1).

Then, by (1.3.2) and the previous inequality we obtain that

o(1) + Sλ ≥ (κsT (N, s)− Sλ)‖(wm − w)(·, 0)‖2∗s
L2∗s (Ω)

+ Sλ + o(1).

Thus by Proposition 1.3.2

wm(·, 0)→ w(·, 0) in L2∗s(Ω). (1.3.5)

Finally, by a standard lower semi-continuity argument, we conclude that w
is a minimizer for Qλ. Indeed if we consider

Q̃λ(v) := ‖v‖2
H1

0,L(CΩ, y1−2s) − λ‖v(·, 0)‖2
L2(Ω), v ∈ H1

0,L(CΩ, y
1−2s),
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we obtain that

Q̃λ( lim
m→∞

wm) ≤ lim
m→∞

Q̃λ(wm) = Sλ‖wm(·, 0)‖2∗s
L2∗s (Ω)

. (1.3.6)

Moreover
Q̃λ( lim

m→∞
wm) = Q̃λ(w) ≥ Sλ‖w(·, 0)‖2∗s

L2∗s (Ω)
. (1.3.7)

Hence, by (1.3.5), (1.3.6) and (1.3.7) we conclude that Sλ = Qλ(w).

Proof of Theorem 1.3.1 2. By Proposition 1.3.4 there exists an s-harmonic
function w ∈ H1

0,L(CΩ, y
1−2s), such that ‖w(·, 0)‖2

L2∗s (Ω)
= 1 and

‖w‖2
H1

0,L(CΩ, y1−2s) − λ‖w(·, 0)‖2
L2(Ω) = Sλ.

So we get a solution of (Pλ).

1.4 Superlinear case: 1 < q < 2∗s − 1.

In this section we discuss the problem (Pλ) in the convex setting q > 1. That
is, we will prove the following.

Theorem 1.4.1. Let 1 < q < 2∗s − 1 and 0 < s < 1. Then, problem (Pλ)
admits at least one energy solution provided that either

• N > 2s(q+3)
q+1

and λ > 0 or

• N ≤ 2s(q+3)
q+1

and λ > 0 is sufficiently large.

To prove the previous result, the only difficult part is to show that we
have a (PS)c sequence under the critical level c = c∗. This follows the same
type of computations like in Lemma 1.2.13, with the estimate (1.2.59) instead
of (1.2.60).

First of all it is easy to check the geometry of the functional fo every
λ > 0. That is we have the following

Proposition 1.4.2. Assume λ > 0 and 1 < q < 2∗s − 1. Then there exist
α > 0 and β > 0 such that

a) For any w ∈ H1
0,L(CΩ, y

1−2s) with ||w||H1
0,L(CΩ, y1−2s) = α it results that

I∗s,λ(w) ≥ β.

b) There exists a nonnegative function w1 ∈ H1
0,L(CΩ, y

1−2s) such that
||w1||H1

0,L(CΩ, y1−2s) > α and I∗s,λ(w1) < β.
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Proof. a) By the Trace inequality given in (1.1.29), since q + 1 < 2∗s, one
can check that

I∗s,λ(w) ≥ g(||w||H1
0,L(CΩ, y1−2s)),

where g(t) = C1t
2−λC2t

q+1−C3t
2∗s , for some positive constants C1, C2

and C3. Therefore there will exist α > 0 such that β := g(α) > 0.
Then I∗s,λ(w) ≥ β for w ∈ H1

0,L(CΩ, y
1−2s) with ||w||H1

0,L(CΩ, y1−2s) = α.

b) Fix a positive function w0 ∈ H1
0,L(CΩ, y

1−2s) such that ‖w0‖H1
0,L(CΩ, y1−2s) =

1 and consider t > 0. Since 2∗s > 2, it follows that

lim
t→∞
I∗s,λ(tw0) = −∞.

Then, there exists t0 large enough, such that, defining w1 := t0w0,
||w1||H1

0,L(CΩ, y1−2s) > α and I∗s,λ(w1) < β.

By a similar argument, it follows that

lim
t→0+
I∗s,λ(tw0) = 0. (1.4.1)

Let us check now that we have the compactness properties of I∗s,λ .

Proposition 1.4.3. Let λ > 0 and 1 < q < 2∗s−1. Then, the functional I∗s,λ
satisfies the (PS)c condition at any level c, provided c < c∗ , where c∗ is
defined in (1.2.22).

Proof. Let {wn} be a PS sequence for I∗s,λ verifying

I∗s,λ(wn)→ c < c∗ (1.4.2)

and
(I∗s,λ)′(wm)→ 0. (1.4.3)

Doing the same as in the beginning of the proof of the Lemma 1.2.10 we
obtain that {wm} is uniformly bounded in H1

0,L(CΩ, y
1−2s). Therefore

wn ⇀ w in H1
0,L(CΩ, y

1−2s), wn(·, 0)→ w(·, 0) in Lr(Ω), 1 ≤ r < 2∗s

and
wn(·, 0)→ w(·, 0) a.e. in Ω.

Moreover we also obtain that

y1−2s|∇(wn)+|2 → µ ≥ y1−2s|∇w+|2 +
∑
k∈I

µkδxk , µk > 0
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and

|(wn)+(·, 0)|2∗s → ν = |w+(·, 0)|2∗s +
∑
k∈I

νkδxk , νk > 0

where

νk = 0 or νk ≥ (κsT (N, s))N/2s , k ∈ I.

Suppose that there exists k0 ∈ I such that νk0 6= 0. Therefore, by (1.4.2) and
(1.4.3), since 2 < q + 1, it follows that

c = lim
n→∞

(
I∗s,λ(wn)− 1

2
〈(I∗s,λ)′(wn), wn〉

)
= lim

n→∞

(
λ

(
1

2
− 1

q + 1

) ˆ
Ω

(wn)q+1
+ (x, 0)dx+

s

2N

ˆ
Ω

(wn)
2∗s
+ (x, 0)dx

)
≥ lim

n→∞

s

2N

ˆ
Ω

(wn)
2∗s
+ (x, 0)dx

≥ s

N
(κsT (N, s))N/2s

which implies a contradiction with the hypothesis (1.4.2). Thus νk = µk = 0
for every k ∈ N. That is we get (wn)+(·, 0) → w+(·, 0) in L2∗s(Ω) so, by the
continuity of the inverse of the spectral fractional Laplacian, we obtain the
desired conclusion.

By Proposition 1.4.2 and (1.4.1) we get that I∗s,λ satisfies the geometric
features required by the MPT (see [11]). Moreover, by Proposition 1.4.3 the
functional I∗s,λ verifies the (PS)c at any level c, provided c < c∗, where c∗ is
given in (1.2.22) .

Now, as in the concave case, we show that we could find a path with
energy below the critical level c∗. That is we have the following.

Proposition 1.4.4. Let λ > 0, 1 < q < 2∗s − 1, c∗ given in (1.2.22) and ηε
be the function defined in (1.2.66). Then, there exists ε > 0 small enough
such that

sup
t≥0
I∗s,λ(tηε) < c∗ ,

provided

• N > 2s
(

3+q
1+q

)
and λ > 0 or

• N ≤ 2s
(

3+q
1+q

)
and λ > λs, for a suitable λs > 0.
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Proof. Let N > 2s
(

3+q
1+q

)
.

First of all note that since q > 1 we get that N > 2s

(
1 +

1

q

)
. Therefore

by (1.2.59) it follows that

‖ηε‖q+1
Lq+1(Ω) ≥ C̃εN−(N−2s

2 )(q+1), (1.4.4)

for some C̃. Then by (1.2.72) and (1.4.4) for any t ≥ 0 and ε > 0 small
enough we obtain

I∗s,λ(tηε) =
t2

2
‖ηε‖2

H1
0,L(CΩ, y1−2s) −

t2
∗
s

2∗s
− λ t

q+1

q + 1

ˆ
Ω

ηq+1
ε dx

≤ t2

2
(κsT (N, s) + CεN−2s)− t2

∗
s

2∗s
− C̃λ t

q+1

q + 1
εN−(N−2s

2 )(q+1)

:= g(t). (1.4.5)

It is clear that
lim
t→∞

g(t) = −∞,

therefore supt≥0 g(t) is attained at some tε,λ := tε ≥ 0. As we mentioned
in the proof of Lemma 1.2.13 we may suppose tε > 0. Differentiating the
function g(t) and equaling to zero, we obtain that

0 = g′(tε) = tε(κsT (N, s) + CεN−2s)− t2∗s−1
ε − C̃λtqεε

N−(N−2s
2 )(q+1). (1.4.6)

Hence
tε < (κsT (N, s) + CεN−2s)

1
2∗s−2 .

Moreover we have that for ε > 0 small enough

tε ≥ ĉ > 0. (1.4.7)

Indeed, from (1.4.6) it follows that

t2
∗
s−2
ε + C̃λtq−1

ε εN−(N−2s
2 )(q+1) = κsT (N, s) + CεN−2s ≥ ĉ > 0.

Also, since the function

t 7→ t2

2
(κsT (N, s) + CεN−2s)− t2

∗
s

2∗s

is increasing on [0, (κsT (N, s)+CεN−2s)
1

2∗s−2 ], by (1.4.5) and (1.4.7), we obtain

sup
t≥0

g(t) = g(tε) ≤
s

N
(κsT (N, s) + CεN−2s)

N
2s − CεN−(N−2s

2 )(q+1)

≤ s

N
(κsT (N, s))

N
2s + CεN−2s − Cε(

N+2s
2 )(q+1), (1.4.8)
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for some C > 0. Finally, since N > 2s

(
3 + q

1 + q

)
, from (1.4.5) and (1.4.8) we

conclude that
sup
t≥0
I∗s,λ(tηε) ≤ g(tε) <

s

N
(κsT (N, s))

N
2s .

Consider now the case N ≤ 2s
(

3+q
1+q

)
. Arguing exactly as in the case N >

2s
(

3+q
1+q

)
, we get that

t
2∗s−2
ε,λ + C̃λtq−1

ε,λ ε
N−(N−2s

2 )(q+1) = (κsT (N, s) + CεN−2s), (1.4.9)

whit tε,λ > 0 the point where the supt≥0 g(t) is attained. We claim that

tε,λ → 0 when λ→ +∞. (1.4.10)

To see this assume that lim
λ→∞

tε,λ = ` > 0. Then, passing to the limit when

λ → +∞ in (1.4.9) we would get (κsT (N, s) + CεN−2s) = +∞ which is a
contradiction. Therefore, by (1.4.5) and (1.4.10) we obtain that

0 ≤ sup
t≥0
I∗s,λ(tηε)

≤ g(tε,λ)

=
t2ε,λ
2

(κsT (N, s) + CεN−2s)−
t
2∗s
ε,λ

2∗s
− Cλ

tq+1
ε,λ

q + 1
εN−(N−2s

2 )(q+1)

≤
t2ε,λ
2

(κsT (N, s) + CεN−2s)−
t
2∗s
ε,λ

2∗s
→ 0,

when λ→∞. Then
lim

λ→+∞
sup
t≥0
I∗s,λ(tηε) = 0,

which easily yields the desired conclusion for the case N ≤ 2s
(

3+q
1+q

)
.

We conclude now the proof of Theorem 1.4.1. We define

Γε = {γ ∈ C([0, 1], H1
0,L(CΩ, y

1−2s)) : γ(0) = 0, γ(1) = Mεηε},

for some Mε > 0 big enough such that I∗s,λ(Mεηε) < 0. We observe that
for every γ ∈ Γε the function t → ‖γ(t)‖H1

0,L(CΩ, y1−2s) is continuous in [0, 1].

Therefore for α given in Proposition 1.4.2, since

‖γ(0)‖H1
0,L(CΩ, y1−2s) = 0 < α,
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and, for every Mε big enough,

‖γ(1)‖H1
0,L(CΩ, y1−2s) = ‖Mεηε‖H1

0,L(CΩ, y1−2s) > α,

there exists t0 ∈ (0, 1) such that ‖γ(t0)‖H1
0,L(CΩ, y1−2s) = α. As a consequence,

sup
0≤t≤1

I∗s,λ(γ(t)) ≥ I∗s,λ(γ(t0)) ≥ inf
‖v‖

H1
0,L

(CΩ, y
1−2s)

=α
I∗s,λ(v) ≥ β > 0,

where β is the positive value given in Proposition 1.4.2. Hence

cε = inf
γ∈Γε

sup
0≤t≤1

I∗s,λ(γ(t)) > 0.

Then, by Proposition 1.4.4, Proposition 1.4.3 and the MPT given in [11] we
conclude that the functional I∗s,λ admits a critical point u ∈ H1

0,L(CΩ, y
1−2s),

provided N > 2s
(

3+q
1+q

)
and λ > 0 or N ≤ 2s

(
3+q
1+q

)
and λ > λs, for a

suitable λs > 0. Moreover, since I∗s,λ(w) = cε ≥ β > 0 and I∗s,λ(0) = 0, the
function w is not the trivial one. This concludes the proof of Theorem 1.4.1.
�

1.5 Regularity and concentration-compactness.

We begin this section with some results about the boundedness and regu-
larity of solutions. The next result, that we include here for the readers
convenience, can be found also in [37, Proposition 5.3].

We consider the problem given by{
Asu = g(x) in Ω,
u = 0 in ∂Ω,

(1.5.1)

We also introduce the extension problem. That is,
Lsw = 0 in CΩ,
w = 0 in ∂LCΩ,
∂w
∂νs

= g(x) in Ω× {y = 0}.
(1.5.2)

The following regularity result holds true

Proposition 1.5.1. Let u ∈ H(Ω, s) be the solution to problem (1.5.1) and
let g ∈ Lr(Ω) for some r > N

2s
. Then, u ∈ L∞(Ω) .
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Proof. The proof follows the well-known Moser’s iterative technique (see [97,
Theorem 8.15]). Without loss of generality, we may assume that the solution
w of (1.5.2) is non-negative, to simplify the notation. The general case follows
in a similar way taking |w| instead of w. Consider β ≥ 1, K ≥ k and define
the following functions

H(z) =

{
zβ − kβ if z ∈ [k,K],
βKβ−1(z −K) + (Kβ − kβ) if z > K,

and v = w + k, ν = v(x, 0). We choose as test function

ϕ = G(v) =

ˆ v

k

|H ′(η)|2 dη, with ∇ϕ = |H ′(v)|2∇v.

Observe that, since |H ′(v)| ≤ βKβ−1 = C, ϕ is an admissible test function
for problem (1.5.2), i.e.,

ˆ
CΩ

y1−2s|∇ϕ|2dxdy <∞.

Then, we obtain
ˆ

CΩ

y1−2s
〈
∇w,∇ϕ

〉
dx dy =

ˆ
CΩ

y1−2s|∇v|2|H ′(v)|2 dx dy

=

ˆ
CΩ

y1−2s|∇H(v)|2 dx dy

≥ C‖H(ν)‖2
L2∗s (Ω)

, (1.5.3)

where the last inequality is a consequence of the Trace one given in (1.1.29).
Moreover, since H ′ is increasing, we get that

G(t) =

ˆ t

k

|H ′(η)|2 dη ≤ t|H ′(t)|2 = tG′(t),

so ˆ
Ω

g(x)ϕ(x, 0) dx =

ˆ
Ω

g(x)G(ν) dx

≤
ˆ

Ω

g(x)νG′(ν) dx

≤
ˆ

Ω

g(x)|ν
1
2H ′(ν)|2 dx

≤ ‖g‖Lr(Ω)‖ν
1
2H ′(ν)‖2

L
2r
r−1 (Ω)

. (1.5.4)
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Inequality (1.5.3), together with (1.5.2) and (1.5.4), leads to

‖H(ν)‖L2∗s (Ω) ≤
(

1

C
‖g‖Lr(Ω)

)1/2

‖ν1/2H ′(ν)‖
L

2r
r−1 (Ω)

. (1.5.5)

By choosing k = 0 and passing to the limit as K → ∞ in the definition
of H, the inequality (1.5.5) becomes

‖νβ‖L2∗s (Ω) ≤ Cβ‖νβ−
1
2‖

L
2r
r−1 (Ω)

,

where C is a positive constant. Hence, for all β ≥ 1 we have that

ν ∈ L
2r(β− 1

2 )

r−1 (Ω) ⇒ ν ∈ L
2Nβ
N−2s (Ω) .

Observe that we have obtained a better integrability since

2Nβ

N − 2s
>

2r(β − 1
2
)

r − 1
,

for all β > 1 if and only if r > N
2s

. The conclusion follows now, as in [97], by

an iteration argument, starting with the exponent β = N(r−1)
r(N−2s)

+ 1
2
> 1. This

gives ν ∈ L∞(Ω).

Remark 1.5.2. Following the proof of Proposition 1.5.1 one also proves that
the solution of problem (1.5.2) is in L∞(CΩ).

Now we obtain the following result that is essentially based on an argu-
ment used, in the classical case, by Trudinger in [168] for Yamabe’s Problem.
The main point is to use some nonlinear test functions in the line of the
classical Moser method. See also [43].

Proposition 1.5.3. Let u a nonnegative function of the space H(Ω, s). If u
is an energy solution to the problem{

Asu = f(x, u) in Ω,
u = 0 in ∂Ω,

with f satisfying

|f(x, t|) ≤ C(1 + |t|p), (x, t) ∈ Ω× R, (1.5.6)

for some 1 ≤ p ≤ 2∗s − 1 and C > 0, then u ∈ L∞(Ω).
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Proof. We define

a(x) :=
|f(x, u(x))|
1 + |u(x)|

.

Since 1 ≤ p ≤ 2∗s − 1, it is clear that for any x ∈ Ω

0 ≤ a(x) ≤ C(1 + |u(x)|p−1) ∈ L
N
2s (Ω). (1.5.7)

Given T > 0 we define

wT = w − (w − T )+, uT (·) = wT (·, 0) ,

where v+ denotes the positive part of v, that is v+ := max{v, 0} . For β ≥ 0,
we haveˆ

CΩ

y1−2s|∇(wwβT )|2 dx dy

=

ˆ
CΩ

y1−2sw2β
T |∇w|

2 dx dy + (2β+β2)

ˆ
{w≤T}

y1−2sw2β|∇w|2 dx dy.(1.5.8)

We also note thatˆ
CΩ

y1−2s〈∇w,∇(ww2β
T )〉 dx dy

=

ˆ
CΩ

y1−2sw2β
T |∇w|

2 dx dy + 2β

ˆ
{w≤T}

y1−2sw2β|∇w|2 dx dy. (1.5.9)

On the other hand, using wwβT ∈ H1
0,L(CΩ, y

1−2s) as a test function in prob-
lem (1.5.2) we obtain

κs

ˆ
CΩ

y1−2s〈∇w,∇(ww2β
T )〉 dx dy =

ˆ
Ω

f(x, u)uu2β
T dx

≤ 2

ˆ
Ω

a(x)(1 + u2)u2β
T dx. (1.5.10)

Thus, by (1.5.8)-(1.5.10) we have

ˆ
CΩ

y1−2s|∇(wwβT )|2 dx dy ≤ C

ˆ
Ω

a(x)(1 + u2)u2β
T dx,

which, by (1.1.29), implies that

‖uuβT‖
2
L2∗s (Ω)

≤ C̃

ˆ
Ω

a(x)(1 + u2)u2β
T dx, (1.5.11)



68 Chapter 1. Spectral fractional Laplacian.

where C and C̃ are positive constants depending only on N, s, β, and |Ω|.
To estimate the term on the right-hand side in (1.5.11) we take β to be

the maximum exponent such that uβ+1 ∈ L2(Ω), that is, (β + 1)/2 = 2∗s. We
want to prove that ‖uuβT‖L2∗s (Ω) is bounded by a constant that is independent
of T . Therefore we consider, without loss of generality, that

‖uuβT‖L2∗s (Ω) ≥ 1. (1.5.12)

Then we obtain thatˆ
Ω

a(x)u2u2β
T dx = T0

ˆ
{a<T0}

u2u2β
T +

ˆ
{a≥T0}

a(x)u2u2β
T

= C1T0+

(ˆ
{a≥T0}

a(x)
N
2s

) 2s
N

‖uuβT‖
2
L2∗s (Ω)

.(1.5.13)

Similarly, using (1.5.12) and the fact that |uT | ≤ u, we get

ˆ
Ω

a(x)u2β
T dx ≤ C2T0 +

(ˆ
{a≥T0}

a(x)
N
2s

) 2s
N
(ˆ
{a≥T0}

u
2∗sβ
T

) 2
2∗s

≤ C2T0

+

(ˆ
{a≥T0}

a(x)
N
2s

) 2s
N

((ˆ
{a≥T0}

u
2∗s(β+1)
T

) β
β+1

|{a ≥ T0}|
1

β+1

) 2
2∗s

≤ C2T0+

(ˆ
{a≥T0}

a(x)
N
2s

) 2s
N

|{a ≥ T0}|
2

2∗s(β+1)‖uβ+1
T ‖

2β
β+1

L2∗s (Ω)

≤ C2T0+

(ˆ
{a≥T0}

a(x)
N
2s

) 2s
N

|{a ≥ T0}|
2

2∗s(β+1)‖uuβT‖
2
L2∗s (Ω)

(1.5.14)

Here C1 and C2 are positive constants independent of T , that depend on β.
Since

lim
T0→∞

ε(T0) := lim
T0→∞

(ˆ
{a≥T0}

a(x)
N
2s

)N
2s

and
lim
T0→∞

ε̃(T0) := lim
T0→∞

|{a ≥ T0}|
2

2∗s(β+1) ,

from (1.5.11), using (1.5.13) and (1.5.14), it follows that

‖uuβT‖
2
L2∗s (Ω)

≤ C̃ T0(C1 + C2) + C̃ ‖uuβT‖
2
L2∗s (Ω)

ε(T0)(1 + ε̃(T0)).

Therefore, taking T0 big enough such that C̃ ε(T0)(1+ε̃(T0)) = 1/2, we obtain

‖uuβT‖
2
L2∗s (Ω)

≤ K,
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where K := 2C̃ T0(C1 + C2) is a constant independent of T but dependent
of β.

Finally, letting T → ∞ we conclude that uβ+1 ∈ L2∗s(Ω). Therefore, by
(1.5.6), in a finite number of steps we get that f(·, u) ∈ Lr(Ω) for some r >
N
2s

, and so the assertion of Proposition 1.5.3 comes from Proposition 1.5.1.

Remark 1.5.4. As in Remark 1.5.2, following the proof of Proposition 1.5.3,
one also proves that the solution of problem (1.5.2) is in L∞(CΩ).

Now we characterize the regularity of the solutions of (Pλ) for the whole
range of exponents. That is, we will prove the following.

Proposition 1.5.5. Let u be an energy solution of (Pλ). Then the following
hold

(i) If s = 1/2 and q ≥ 1 then u ∈ C∞(Ω) ∩ C2,γ(Ω), for some 0 < γ < 1.

(ii) If s = 1/2 and q < 1 then u ∈ C1,q(Ω).

(iii) If s < 1/2 then u ∈ C2s(Ω).

(iv) If s > 1/2 then u ∈ C1,2s−1(Ω).

Proof. First we observe that, by Proposition 1.5.3, we have u ∈ L∞(Ω) and
also fλ(u) ∈ L∞(Ω).

(i) Applying [51, Proposition 3.1 (iii)], we get that u ∈ Cγ(Ω), for some
γ < 1. Since q ≥ 1 then fλ(u) ∈ Cγ(Ω), so, again by [51, Proposition
3.1 (iv)], it follows that u ∈ C1,γ(Ω) for some γ < 1. That is, fλ(u) ∈
C1,γ̃(Ω), for some γ̃ > 0, and therefore we conclude by [51, Proposition
3.1 (v)]. The interior regularity is clear iterating this process.

(ii) As before we have u ∈ Cγ(Ω), for some γ < 1. Therefore fλ(u) ∈
Cqγ(Ω). It follows that u ∈ C1,qγ(Ω), which gives fλ(u) ∈ Cq(Ω). Finally
this implies u ∈ C1,q(Ω).

(iii) By [64, Lemma 2.10] we obtain that u ∈ Cγ(Ω) for all γ ∈ (0, 2s).
This implies that fλ(u) ∈ Cr(Ω) for every r < min{q2s, 2s}. Therefore
by [64, Lemma 2.9 and Lemma 2.11], we get that u ∈ C2s(Ω).

(iv) Since s > 1/2, we can write problem (Pλ) as follows
A 1

2
u = v in Ω,

A 2s−1
2
v = fλ(u) in Ω,

u = v = 0 on ∂Ω.

(1.5.15)
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Reasoning as before, we obtain the desired regularity using [64, Lemma
2.9 and Lemma 2.11] and [51, Proposition 3.1].

We end the last section of this chapter adapting to our setting a concentration-
compactness result by P.L. Lions [119, Lemma 2.3], used in the proof of
Lemma 1.2.10. We recall that a related concentration-compactness result for
the fractional Laplacian, not to the spectral one, has been recently obtained
in [126]. We will use this result in the next chapter.

Theorem 1.5.6. Let {wn}n∈N be a bounded sequence in H1
0,L(CΩ, y

1−2s),
such that the sequence {y1−2s|∇wn|2}n∈N is tight. Let un = tr(wn) and u =
tr(w). Let µ, ν be two non negative measures such that

y1−2s|∇wn|2 → µ and |un|2
∗
s → ν, as n→∞ (1.5.16)

in the sense of measures. Then there exist an at most countable set I and
points {xi}i∈I ⊂ Ω such that

1. ν = |u|2∗s +
∑
k∈I

νkδxk , νk > 0,

2. µ ≥ y1−2s|∇w|2 +
∑
k∈I

µkδxk , µk > 0,

3. µk ≥ T (N, s)ν
2

2∗s
k .

Proof. Let ϕ ∈ C∞0 (CΩ). By (1.1.29) with r = 2∗s it follows that

T (N, s)

(ˆ
Ω

|ϕun|2
∗
sdx

)2/2∗s

≤
ˆ

CΩ

y1−2s|∇(ϕwn)|2dx dy. (1.5.17)

Let K∗ := K1 × K2 ⊆ C Ω be the support of ϕ and suppose first that the
weak limit of wn in H1

0,L(CΩ, y
1−2s), that we will call w, is equal to zero.

Then we get thatˆ
CΩ

y1−2s|∇(ϕwn)|2dx dy =

ˆ
K∗
y1−2s|∇(ϕwn)|2dx dy

=

ˆ
K∗
y1−2s|wn|2|∇ϕ|2dx dy

+

ˆ
K∗
y1−2s|ϕ|2|∇wn|2dx dy

+ 2

ˆ
K∗
y1−2swnϕ〈∇ϕ,∇wn〉dx dy.(1.5.18)
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Since K∗ is a bounded domain, and y1−2s is an A2 weight, we have the
compact inclusion

Ḣ1(K∗, y1−2s) ↪→ Lr(K∗, y1−2s) , 1 ≤ r <
2(N + 1)

N − 1
, 0 < s < 1.

Therefore, for a suitable subsequence, we get that

lim
n→∞

ˆ
K∗
y1−2s|wn|2|∇ϕ|2dx dy = 0. (1.5.19)

By the weak convergence, given by hypothesis, we also obtain

lim
n→∞

ˆ
K∗
y1−2swnϕ〈∇ϕ,∇wn〉dx dy = 0. (1.5.20)

Hence, by (1.5.16), (1.5.19) and (1.5.20), from (1.5.18) we conclude that

lim
n→∞

ˆ
CΩ

y1−2s|∇(ϕwn)|2dx dy =

ˆ
CΩ

|ϕ(x, y)|2dµ.

Then, from (1.5.16) and (1.5.17) we get

T (N, s)

(ˆ
Ω

|ϕ|2∗sdν
)2/2∗s

≤
ˆ

CΩ

|ϕ|2dµ, ϕ ∈ C∞0 (CΩ). (1.5.21)

If now w 6= 0, we apply the above result to the function vn = wn−w. Indeed
if

y1−2s|∇vn|2 → dµ̃ and |vn(·, 0)|2∗s → dν̃, as n→∞,

it follows that

T (N, s)

(ˆ
Ω

|ϕ|2∗sdν̃
)2/2∗s

≤
ˆ

CΩ

|ϕ|2dµ̃ , ϕ ∈ C∞0 (CΩ),

therefore by [119], for some sequence of points {xk}k∈I ⊂ Ω, we have

dν̃ =
∑
k∈I

ν̃kδxk , dµ̃ ≥
∑
k∈I

µ̃kδxk ,

with µ̃k ≥ T (N, s)ν̃
2/2∗s
k . Hence, by the Brezis-Lieb Lemma stated in Lemma

1.3.3, we obtain

dν = |u|2∗s +
∑
k∈I

ν̃kδxk .
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On the other hand, for every test function ϕ we have

ˆ
CΩ

y1−2sϕ|∇wn|2dx dy =

ˆ
CΩ

y1−2sϕ|∇w|2dx dy

+

ˆ
CΩ

y1−2sϕ|∇(wn − w)|2dx dy

+ 2

ˆ
CΩ

y1−2sϕ〈∇(wn − w),∇w〉dx dy.

Since wn ⇀ w in H1
0,L(CΩ, y

1−2s), taking limits when n→∞ we get that

ˆ
CΩ

ϕdµ =

ˆ
CΩ

y1−2sϕ|∇w|2dx dy +

ˆ
CΩ

ϕdµ̃

≥
ˆ

CΩ

y1−2sϕ|∇w|2dx dy +

ˆ
CΩ

y1−2sϕ
∑
k∈I

µ̃kδxkdx dy.

That is,

µ ≥ |∇w|2 +
∑
k∈I

µ̃kδxk ,

with µ̃k ≥ T (N, s)ν̃
2∗s/2
k . So we obtain the desired conclusion.



Chapter 2

Elliptic critical problems for
the fractional Laplacian
operator in a bounded domain.

2.1 Introduction, preliminaries and functional

settings.

The aim of this chapter is to study the same equation treated in Chapter
1, with the operator As replaced by the fractional Laplace operator (−∆)s

defined by the Riesz potential as in (0.0.21) and (0.0.26). We recall that for
0 < s < 1 and an appropriate function u, we set for x ∈ RN

(−∆)su(x) = C(N, s)P.V.

ˆ
RN

u(x)− u(y)

|x− y|N+2s
dy

=
C(N, s)

2
P.V.

ˆ
RN

2u(x)− u(x+ y)− u(x− y)

|y|N+2s
dy,

where C(N, s) is the normalized constant given in (0.0.22).

Before to introduce the Dirichlet problem that we will study along this
chapter, first we will prove a useful property that we announced in (0.0.25)
in the Introduction. That is, we have the following.

Proposition 2.1.1. Set β > 0 and take φ ∈ L∞(RN) ∩ C2s+β(RN) (or
C1,2s+β−1(RN) if s ≥ 1/2). Then there exists C > 0 such that

|(−∆)sφ(x)| ≤ C, x ∈ RN .

73
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Proof. Let us first consider 0 < s < 1/2. Then

|(−∆)sφ(x)| = C(N, s)P.V.

∣∣∣∣ˆ
RN

φ(x)− φ(y)

|x− y|N+2s
dy

∣∣∣∣
≤ C(N, s)

ˆ
RN

|φ(x)− φ(y)|
|x− y|N+2s

dy

≤ C(N, s)‖φ‖Cβ+2s

ˆ
{y: |x−y|<1}

1

|x− y|N−β
dy

+ 2C(N, s)‖φ‖L∞(RN )

ˆ
{y: |x−y|≥1}

1

|x− y|N+2s
dy

= C(N, s, φ) <∞.

We now take 1/2 ≤ s < 1. Manipulating the principal value, we get that
there exists C1 > 0 such that

lim
ε→0

∣∣∣∣ˆ
{y: ε<|x−y|<1}

φ(x)− φ(y)

|x− y|N+2s
dy

∣∣∣∣
= lim

ε→0

∣∣∣∣ˆ
{z: ε<|z|<1}

φ(x)− φ(x− z)

|z|N+2s
dz

∣∣∣∣
= lim

ε→0

∣∣∣∣ˆ
{z: ε<|z|<1}

φ(x)− φ(x− z) + z · ∇φ(x)

|z|N+2s
dz

∣∣∣∣
≤
ˆ
{z: |z|<1}

|φ(x)− φ(x− z) + z · ∇φ(x)|
|z|N+2s

dz

≤ C

ˆ
{z: |z|<1}

‖φ‖C1,2s+β−1

|z|N−β
dz ≤ C1(s, β, φ).

From here it follows that

|(−∆)sφ(x)| ≤ C(N, s)

(
lim
ε→0

∣∣∣∣ˆ
{y: ε<|x−y|<1}

φ(x)− φ(y)

|x− y|N+2s
dy

∣∣∣∣
+

ˆ
{y: |x−y|≥1}

|φ(x)− φ(y)|
|x− y|N+2s

dy

)
≤ C(N, s)C1

+ 2C(N, s)‖φ‖L∞(RN )

ˆ
{y: |x−y|≥1}

1

|x− y|N+2s
dy

< C̃(N, s, φ).
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We now consider the following Dirichlet problem with convex-concave
nonlinearities

(Dλ) =


(−∆)su = fλ(u) in Ω,
u > 0 in Ω,
u = 0 in RN \ Ω ,

where Ω ⊆ RN is a bounded Lipschitz domain satisfying the exterior ball
condition, N > 2s and fλ is given in (1.1.2). We recall that a domain Ω
satisfies the exterior ball condition if there exists a positive radius ρ∗ such
that all the points on ∂Ω can be touched by some exterior ball of radius ρ∗.
These hypotheses will remain and will not be specified again in what follows.

We point out here that, as it happens in Chapter 1, if p ≥ 2∗s − 1 and Ω
is a starshaped domain, the only solution of the critical problem{

(−∆)su = u2∗s−1 in Ω,
u = 0 in RN \ Ω ,

is the trivial one. This result follows by an argument of Pohozaev type (see
[131] and [86, Corollary 1.3]). As in Chapter 1, this fact motivates the term
uq, q < 1 in (Dλ). Other recent works related to the Dirichlet problem for
the fractional Laplacian with semilinear perturbations are [140,141,144,146].

In what follows we denote by Hs(RN) the usual fractional Sobolev space
defined in (1.1.6) endowed with the norm in (1.1.7), while Xs

0(Ω) is the
function space defined as

Xs
0(Ω) =

{
u ∈ Hs(RN) : u = 0 a.e. in RN \ Ω

}
. (2.1.1)

We refer to [140, 144] and the references therein, for a general definition
of Xs

0(Ω) and its properties even with kernels different from the fractional
Laplacian. In Xs

0(Ω) we can consider the following norm

‖v‖Xs
0(Ω) =

(ˆ
RN×RN

|v(x)− v(y)|2

|x− y|N+2s
dx dy

)1/2

=

(ˆ
Q

|v(x)− v(y)|2

|x− y|N+2s
dx dy

)1/2

, (2.1.2)

where Q = (RN × RN) \ (RN \ Ω× RN \ Ω). It is easy to prove that Xs
0(Ω)

may also be defined as the completion of C∞0 (Ω) with respect to the metric
of (2.1.2), that is.

Xs
0(Ω) := C∞0 (Ω)

‖·‖Xs0(Ω)
, (2.1.3)



76 Chapter 2. Fractional Laplacian in a bounded domain.

(see [88,123]). We also recall that
(
Xs

0(Ω), ‖ · ‖Xs
0(Ω)

)
is a Hilbert space, with

scalar product

〈u, v〉Xs
0(Ω) =

ˆ
RN×RN

(u(x)− u(y)) (v(x)− v(y))

|x− y|N+2s
dx dy . (2.1.4)

See for instance [7, Theorem 5], [120] and [144, Lemma 7]. Moreover,

(−∆)s : Xs
0(Ω)→ X−s(Ω),

and its inverse, are continuous operators.
Observe that by [76, Proposition 3.6] we have the following identity

‖u‖2
Xs

0(Ω) =
2

C(N, s)
‖(−∆)s/2u‖2

L2(RN ), u ∈ Xs
0(Ω). (2.1.5)

Then it is easy to check that for u, ϕ ∈ Xs
0(Ω),

2

C(N, s)

ˆ
RN
u(x)(−∆)sϕ(x) dx =

ˆ
RN×RN

(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dx dy.

(2.1.6)
Therefore, in particular, (−∆)s is selfadjoint in Xs

0(Ω). Also, in this context,
the Sobolev constant is given by

S(N, s) := inf
v∈Hs(RN )\{0}

QN,s(v) > 0, (2.1.7)

where

QN,s(v) :=

ˆ
RN×RN

|v(x)− v(y)|2

|x− y|N+2s
dx dy(ˆ

RN
|v(x)|2∗sdx

)2/2∗s
, v ∈ Hs(RN),

is the associated Rayleigh quotient (see Theorem (0.0.2)). As can be seen
in [7, Theorem 7.58], the constant S(N, s) is well defined. Moreover by (2.1.5)
one has

S(N, s) =
2

C(N, s)
κsT (N, s), (2.1.8)

where κs and T (N, s) are defined in (1.1.12) and (1.1.31) respectively.
Similarly to Chapter 1, to define correctly the weak formulation of prob-

lem (Dλ), and taking into account that we are looking for positive solutions,
in what follows we consider the next Dirichlet problem

(D+
λ ) =

{
(−∆)su = fλ(u+) in Ω,
u = 0 in RN \ Ω .
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Note that, by the Maximum Principle [151, Proposition 2.2.8], if u is a so-
lution of (D+

λ ) then u > 0 in Ω and therefore is also a solution of (Dλ).
Therefore we can introduce the following definition .

Definition 2.1.2. We say that u ∈ Xs
0(Ω) is an energy solution of (D+

λ ) if,
for every ϕ ∈ Xs

0(Ω),

C(N, s)

2

ˆ
RN×RN

(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dx dy = λ

ˆ
Ω

fλ(u+)ϕdx.

We remark that, as occurs in Chapter 1, by Theorem 0.0.2, the previous
equality is finite. In this chapter we will omit the term energy when referring
to solutions that satisfy Definition 2.1.2. To find solutions of (Dλ), as in
Chapter 1 we will use a variational approach. Hence, we will associate a
suitable functional to our problem. More precisely, the equation given (D+

λ ) is
the Euler–Lagrange equation associated to the functional Js, λ : Xs

0(Ω)→ R
defined as follows

Js, λ(u) =
C(N, s)

4

ˆ
RN×RN

|u(x)− u(y)|2

|x− y|N+2s
dx dy−

ˆ
Ω

(
λ

q + 1
uq+1

+ +
1

2∗s
u

2∗s
+

)
dx.

Note that Js,λ is C1 and, clearly, its critical points correspond to solutions
of (D+

λ ).

In both cases, q < 1 and q > 1, we will use, as in Chapter 1, the Mountain
Pass Theorem (MPT for short) of [11]. In order to do that, we will show that
Js, λ satisfies a compactness property and has suitable geometrical features.
The fact that the functional has the suitable geometry is easy to check.
Observe that the embeddingXs

0(Ω) ↪→ L2∗s(RN) is not compact (see [7]). This
is even true when the nonlocal operator has a more general kernel (see [140,
Lemma 9-b)]). Hence, the difficulty to apply MPT lies on proving a local
Palais–Smale (PS for short) condition at level c ∈ R ((PS)c). Moreover, since
the PS condition does not hold globally, we have to prove that the Mountain
Pass critical level of Js, λ lies below the threshold of application of the (PS)c
condition.

In the concave setting, q < 1, as in Section 1.2 of Chapter 1, we prove, in
Section 2.2, the existence of at least two positive solutions for an admissible
small range of λ. We first show that we have a solution that is a local
minimum for the functional Js, λ. In the next step, in order to find a second
solution, we suppose that this local minimum is the only critical point of the
functional, and then we prove a local (PS)c condition for c under a critical
level related with the best fractional critical Sobolev constant given in (2.1.8).
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Also we find a path under this critical level localizing the Sobolev minimizers
at the possible concentration on Dirac Deltas. These Deltas are obtained by
the concentration-compactness result in [126, Theorem 1.5] inspired in the
classical result by P.L. Lions in [118, 119]. Applying the MPT given in [11]
and its refined version given in [95], we will reach a contradiction.

In Section 2.3 we treated the case q > 1. We also apply the MPT to
obtain the existence of at least one solution for (Dλ) for suitable values of λ
depending on the dimension N . As before, we prove a local (PS)c condition in
a appropriate range related with the constant S(N, s) defined on (2.1.8). The
strategy to obtain a solution follows the ideas given in [45] (see also [158,174])
adapted to our nonlocal functional framework.

The linear case q = 1, when the right hand side of the equation is equal
to λu+ |u|2∗s−2u, was treated in [138–142]. In these works the authors studied
also nonlinearities more general, but also symmetric, than those given by the
power critical function as well as the existence of solutions not necessarily
positive.

2.2 Sublinear case: 0 < q < 1.

We begin this sections noting that the technique that we present to prove
the existence of at least two nontrivial solutions can also be applied for the
sublinear subcritical case. That is when the right hand side of (Dλ) is equal
to λuq +up with 1 < p < 2∗s−1 and 0 < q < 1. We remark here that, for this
subcritical case, the existence of solutions could also be obtained applying
the Alama’s tool that we present in Section 3.3 of Chapter 3.

As we said in the previous section, the objective here is to prove the
following.

Theorem 2.2.1. Assume 0 < q < 1. Then, there exists 0 < Λ < ∞ such
that problem (Dλ)

1 has no solution for λ > Λ;

2 has a minimal energy solution for any 0 < λ < Λ and, moreover, the
family of minimal solutions is increasing with respect to λ;

3 if λ = Λ there exists at least one energy solution;

4 for 0 < λ < Λ there are at least two energy solutions.

To prove the previous theorem we need some results that we present
as follows. Firstly, by standard arguments, it can be proved the following
comparison lemma.
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Lemma 2.2.2 (Comparison principle for energy solutions). Let u ∈ Hs(RN)
and v ∈ Hs(RN) be solutions to the problems{

(−∆)su = f1 in Ω,

u = g1 in RN \ Ω.

{
(−∆)sv = f2 in Ω,

v = g2 in RN \ Ω.

respectively. If f1 ≤ f2 and g1 ≤ g2 then u(x) ≤ v(x), for all x ∈ RN .

Proof. Let us define a function w = u − v. Then, since (−∆)s is a linear
operator, w solves the problem{

(−∆)sw = f1 − f2 in Ω,

w = g1 − g2 in RN \ Ω.

Consider w+ = max{w, 0} as a test function in the previous problem. There-
fore,

C(N, s)

2

ˆ
RN×RN

(w(x)− w(y))(w+(x)− w+(y))

|x− y|N+2s
dx dy =

ˆ
Ω

(f1 − f2)w+ dx

≤ 0. (2.2.1)

Note that

if w(x) ≥ w(y), then w+(x) ≥ w+(y).

Likewise,

if w(x) ≤ w(y), we also have w+(x) ≤ w+(y).

Thus,

(w(x)− w(y))(w+(x)− w+(y)) ≥ 0

for all x, y ∈ RN . Then from (2.2.1) we deduce that,

(w(x)− w(y))(w+(x)− w+(y)) = 0.

Therefore w(x) − w(y) = 0 or w+(x) − w+(y) = 0 for all x, y ∈ RN . In
both cases we get that w+(x) =cte. Since w+ = 0 in RN \ Ω, we conclude
that w+(x) = 0 for all x ∈ RN , and consequently w(x) ≤ 0. That is,
u(x) ≤ v(x).

By this previous lemma, Proposition 2.4.1 and following the ideas given
in Lemma 1.2.2, we have the next result.
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Lemma 2.2.3. Let 0 < q < 1 and let Λ be defined by

Λ := sup {λ > 0 : problem (Dλ) has solution} . (2.2.2)

Then, 0 < Λ < ∞. The critical concave problem (Dλ) has at least one
solution for every 0 < λ ≤ Λ. Moreover, for 0 < λ < Λ we get a family of
minimal solutions increasing with respect to λ.

We remark here that in the proof of this previous lemma, to construct
the subsolution, instead of (ρ1, ϕ1) introduced in the proof of Lemma 1.2.2,
we consider (ρ1,(−∆)s , ϕ1,(−∆)s) where ϕ1 := ϕ1,(−∆)s in that case solve the
eigenvalue problem

(D1) =

{
(−∆)sϕ1 = ρ1,(−∆)sϕ1 in Ω,

ϕ1 = 0 in RN \ Ω.
(2.2.3)

We also note that, by Proposition 2.4.1 (or [141, Proposition 4]) and [144,
Proposition 9], we can assure that 0 ≤ ϕ1 ∈ Xs

0(Ω) ∩ L∞(Ω).
By Lemma 2.2.3 we easily deduce statements 1 -3 of Theorem 2.2.1.

Hence, in the sequel we focus on proving statement 4 of that theorem, that
is on the existence of a second solution for (Dλ) and 0 < s < 1.

As we said in the introduction of this chapter, to find the existence of the
second solution, we first show that the minimal solution given by Lemma 2.2.3
is a local minimum for the functional Js, λ. For that, following the ideas given
in Lemma 1.2.4 we establish a separation lemma now in the topology of the
class

Cs(Ω) :=

{
w ∈ C0(Ω) : ‖w‖Cs(Ω) :=

∥∥∥w
δs

∥∥∥
L∞(Ω)

<∞
}
, (2.2.4)

where δ(x) = dist(x, ∂Ω). Indeed we have the following separation result.

Lemma 2.2.4. Let 0 < λ1 < λ0 < λ2 < Λ. Let zλ1, zλ0 and zλ2 be the
corresponding minimal solutions to (Dλ), for λ = λ1, λ0 and λ2 respectively.
If

Z = {z ∈ Cs(Ω)| zλ1 ≤ z ≤ zλ2},

then there exists ε > 0 such that

{zλ0}+ εB1 ⊂ Z,

with B1 = {w ∈ C0(Ω) : ‖ w
δs
‖L∞(Ω) < 1}.
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Proof. Let u be an arbitrary solution of (Dλ) for 0 < λ < Λ. By [130,
Proposition 1.1], we get that there exists a positive constant C such that

u(x) ≤ Cδ(x)s, x ∈ Ω.

Then, doing as in the proof of Lemma 1.2.4, using the Hopf’s Lemma given
in [130, Lemma 3.2] (see also [54, Proposition 2.7]), we conclude.

As we know, the previous result is the first step to obtain a local minimum
of Js, λ in Xs

0(Ω). Previously we need the following.

Lemma 2.2.5. For all λ ∈ (0,Λ) the problem (Dλ) has a solution u0 which
is in fact a local minimum of the functional Js, λ in the Cs-topology.

Proof. The proof follows in a similar way as that in Lemma 1.2.5. Here we
have to consider the non local operator (−∆)s instead of As and the space
Cs(Ω) instead of C1

0(Ω). We omit the details.

To prove that we already have the desired minimum in the space Xs
0(Ω)

we now prove that the result obtained in [45] is also valid in our setting. The
proof of the following Proposition follows, closely, the proof of Proposition
1.2.6.

Proposition 2.2.6. Let z0 ∈ Xs
0(Ω) be a local minimum of Js, λ in Cs(Ω),

this means that, there exists r1 > 0 such that

Js, λ(z0) ≤ Js, λ(z0 + z), z ∈ Cs(Ω) with ‖z‖Cs(Ω) ≤ r1. (2.2.5)

Then z0 is a local minimum of Js, λ in Xs
0(Ω), that is, there exists r2 > 0 so

that
Js, λ(z0) ≤ Js, λ(z0 + z), z ∈ Xs

0(Ω) with ‖z‖Xs
0(Ω) ≤ r2.

Proof. Let z0 be as in (2.2.5) and

Bε(z0) =
{
z ∈ Xs

0(Ω) : ‖z − z0‖Xs
0(Ω) ≤ ε

}
for any ε > 0.

As in Proposition 1.2.6, we argue by contradiction and we suppose that
for any ε > 0

∃ vε ∈ Bε(z0) such that min
v∈Bε(z0)

Js,λ(v) = Js, λ(vε) < Js, λ(z0) . (2.2.6)

The existence of vε comes from a standard argument of weak lower semi-
continuity. We want to prove that

vε → z0 in Cs(Ω) as ε↘ 0 . (2.2.7)
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because this will implies a contradiction with (2.2.5).
Let 0 < ε � 1. Doing the same as in (1.2.16)-(1.2.17) with the space

Xs
0(Ω) instead of H(s,Ω), we get that vε satisfies{

(−∆)svε = 1
1−ξεfλ(vε) =: f ελ((vε)+) in Ω

vε = 0 in Rn \ Ω,

with the Lagrange multiplier
ξε ≤ 0. (2.2.8)

Since ‖vε‖Xs
0(Ω) ≤ C, by Proposition 2.4.1 there exists a constant C1 > 0

independent of ε such that ‖vε‖L∞(Ω) ≤ C1. Moreover, by (2.2.8), it follows
that ‖f ελ(vε)‖L∞(Ω) ≤ C. Therefore, by [130, Proposition 1.1], we get that
‖vε‖Cs(Ω) ≤ C2, for some C2 independent of ε.

Thus, by the Ascoli-Arzelá Theorem there exists a subsequence, still de-
noted by vε, such that vε → z0 uniformly as ε↘ 0. Moreover, by [130, The-
orem 1.2], we obtain that for a suitable positive constant C∥∥∥vε − z0

δs

∥∥∥
L∞(Ω)

≤ C sup
Ω

∣∣f ελ(vε)− fλ(z0)
∣∣→ 0 as ε↘ 0 ,

that is (2.2.7) is proved.

Lemma 2.2.5 and Proposition 2.2.6 provide us a local minimum in Xs
0(Ω)

that we will denote u0. Now, as in Section 1.2 in Chapter 1, we make a
translation in order to simplify the calculations. That is, for 0 < λ < Λ, we
consider the energy functional J̃s, λ : Xs

0(Ω)→ R given by

J̃s, λ(u) =
C(N, s)

4
‖u‖2

Xs
0(Ω) −

ˆ
Ω

Gλ(x, u)dx, (2.2.9)

where Gλ is given in (1.2.19). Also we define the translate problem

(D̃λ) =

{
(−∆)su = gλ(x, u) in Ω ⊂ RN ,
u = 0 on Rn \ Ω.

We note here that, doing as in Lemma 1.2.8 we get that

u = 0 is a local minimum of J̃s, λ in Xs
0(Ω). (2.2.10)

Moreover we know that if ũ 6≡ 0 is a critical point of J̃s, λ then it is a solution

of (D̃λ) and, by the Maximum Principle, given in [151, Proposition 2.2.8],
this implies that ũ > 0. Therefore u = u0 + ũ > 0 will be a second solution
of (Dλ).
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Hence, as we did in Section 1.2 in Chapter 1, in order to prove statement 4
of Theorem 2.2.1, it is enough to study the existence of a non-trivial critical
point for J̃s, λ. Then our objective now, as in Lemma 1.2.10, is to prove that,

assuming that we have a unique critical point, the functional J̃s, λ satisfies
a local PS condition (see Lemma 2.2.10). The main tool for proving this
fact is an application of the concentration-compactness principle by Lions
in [118, 119] for nonlocal fractional operators, given in [126, Theorem 1.5].
In order to do that we need some technical auxiliary results, related to the
behavior of the fractional Laplacian of a product of two functions. We start
with the following.

Lemma 2.2.7. Let φ be a regular functions that satisfies

|φ(x)| ≤ C̃

1 + |x|N+s
, x ∈ RN (2.2.11)

and

|∇φ(x)| ≤ C̃

1 + |x|N+s+1
, x ∈ RN , (2.2.12)

for some C̃ > 0. Let B : X
s/2
0 (Ω)×Xs/2

0 (Ω)→ R be the bilinear form defined
by

B(f, g)(x) := C(N, s)

ˆ
RN

(f(x)− f(y))(g(x)− g(y))

|x− y|N+s
dy, x ∈ RN . (2.2.13)

Then, for every 0 < s < 1, there exist positive constants C1 and C2, that
depend on N and s, such that for any x ∈ RN

|(−∆)s/2φ(x)| ≤ C1

1 + |x|N+s

and

|B(φ, φ)(x)| ≤ C2

1 + |x|N+s
.

Proof. Let

I(x) :=

ˆ
RN

|φ(x)− φ(y)|
|x− y|N+s

dy.

For any x ∈ RN , it is clear that,

|(−∆)s/2φ(x)| ≤ C(N, s)I(x)

and, since |φ(x)| ≤ C̃,

|B(φ, φ)(x)| ≤ 2C(N, s)C̃I(x).
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Hence it suffices to prove that, for every x ∈ RN ,

I(x) ≤ C

1 + |x|N+s
, (2.2.14)

for a suitable positive constante C.
Since φ is a regular function, for |x| < 1 we obtain that,

I(x) ≤ ‖∇φ‖L∞(RN )

ˆ
|y|<2

dy

|x− y|N+s−1
+ C

ˆ
|y|≥2

dy

|y|N+s

≤ C ≤ C

1 + |x|N+s
. (2.2.15)

Let now |x| ≥ 1. Then

I(x) := IA1(x) + IA2(x) + IA3(x), (2.2.16)

where

IAi(x) :=

ˆ
Ai

|φ(x)− φ(y)|
|x− y|N+s

dy, i = 1, 2, 3,

with

A1 :=

{
y : |x− y| ≤ |x|

2

}
, A2 :=

{
y : |x− y| > |x|

2
, |y| ≤ 2|x|

}
and

A3 :=

{
y : |x− y| > |x|

2
, |y| > 2|x|

}
.

Therefore, since for |x| ≥ 1 and y ∈ A1, it follows that |φ(x) − φ(y)| ≤

|∇φ(ξ)||x− y| with
|x|
2
≤ |ξ| ≤ 3

2
|x| by (2.2.12), we obtain that

IA1(x) ≤ C

|x|N+s+1

ˆ
A1

dy

|x− y|N+s−1
≤ C|x|−(N+2s). (2.2.17)

Using now that, for any x, y ∈ RN it holds true the following inequality,

|φ(x)|+ |φ(y)| ≤ C

1 + min{|x|N+s, |y|N+s}
,

we get

IA2(x) ≤ C

|x|N+s

ˆ
A2

dy

(1 + |y|N+s)
≤ C|x|−(N+s) (2.2.18)
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and

IA3(x) ≤ C

|x|N+s

ˆ
A3

dy

|y|N+s
≤ C|x|−(N+2s). (2.2.19)

The last estimate has been obtained using that if (x, y) ∈ A3, then |x− y| ≥
|y|/2. Then, by (2.2.17)-(2.2.19), from (2.2.16) we obtain that

I(x) ≤ C|x|−(N+s) ≤ C

1 + |x|N+s
, |x| ≥ 1. (2.2.20)

Hence, by (2.2.15) and (2.2.20), we get (2.2.14) as wanted.

We remark here that the previous Lemma in particular proves (0.0.23)
that we annouced in the Introduction of this work. To establish the next
auxiliary results we consider a radially nonincreasing cut-off function φ ∈
C∞0 (RN), χB1(x0) ≤ φ ≤ χB2(x0) for some x0 ∈ RN , and set, for ε > 0,

φε(x) := φ(x/ε). (2.2.21)

Now we have the following

Lemma 2.2.8. Let {zm} be an uniformly bounded sequence in Xs
0(Ω) and

φε the function defined in (2.2.21). Then

lim
ε→0

lim
m→∞

∣∣∣∣ˆ
RN
zm(x)(−∆)s/2φε(x)(−∆)s/2zm(x) dx

∣∣∣∣ = 0. (2.2.22)

Proof. First of all note that, as a consequence of the fact that {zm} is uni-
formly bounded in the reflexive space Xs

0(Ω), say by M , we get that there
exists z ∈ Xs

0(Ω), such that, up to a subsequence,

zm ⇀ z weakly in Xs
0(Ω),

zm → z strongly in Lr(Ω), 1 ≤ r < 2∗s, (2.2.23)

zm → z a.e. in Ω.

Also by Proposition 2.1.1 it is clear that

|(−∆)s/2φε(x)| = ε−s
∣∣∣((−∆)s/2φ

) (x
ε

)∣∣∣ ≤ Cε−s. (2.2.24)

Therefore defining

I1 :=

∣∣∣∣ˆ
RN
zm(x)(−∆)s/2φε(x)(−∆)s/2zm(x) dx

∣∣∣∣ ,
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from (2.2.24) and the fact that ‖zm‖Xs
0(Ω) < M , we get

I1 ≤ ‖(−∆)s/2zm‖L2(RN )‖zm(−∆)s/2φε‖L2(Ω)

≤ M‖(zm − z)(−∆)s/2φε‖L2(Ω) +M‖z(−∆)s/2φε‖L2(Ω)

≤ Cε−s‖zm − z‖L2(Ω) +M‖z(−∆)s/2φε‖L2(Ω). (2.2.25)

Let us now recall that since ‖z‖Xs
0(Ω) ≤ M then ‖z‖L2∗s (Ω) ≤ C, that is

z2 ∈ L
N

N−2s (Ω). Hence, for every ρ > 0 there exits η ∈ C∞0 (Ω) such that

‖z2 − η‖
L

N
N−2s (Ω)

≤ ρ. (2.2.26)

Then, by (2.2.24), (2.2.26) and the Hölder inequality with p = N/N − 2s we
obtain that

‖z(−∆)s/2φε‖2
L2(Ω) ≤

ˆ
RN
|z2(x)− η(x)||(−∆)s/2φε(x)|2 dx

+

ˆ
RN
|η(x)||(−∆)s/2φε(x)|2 dx

≤ ‖z2 − η‖
L

N
N−2s (Ω)

‖(−∆)s/2φε‖2

L
N
s (RN )

+ ‖η‖L∞(Ω)‖(−∆)s/2φε‖2
L2(RN )

≤ ρε−2s

(ˆ
RN

∣∣∣((−∆)s/2φ
) (x

ε

)∣∣∣Ns dx) 2s
N

+ Cε−2s

ˆ
RN

∣∣∣((−∆)s/2φ
) (x

ε

)∣∣∣2 dx
≤ ρ

(ˆ
RN
|(−∆)s/2φ(z)|

N
s dz

) 2s
N

+ CεN−2s

ˆ
RN
|(−∆)s/2φ(z)|2 dz

≤ Cρ+ CεN−2s. (2.2.27)

Hence using (2.2.23), from (2.2.25), (2.2.27) and the fact that N > 2s, it
follows that

lim
ε→0

lim
m→∞

I1 ≤ lim
ε→0

C
(
ρ+ εN−2s

) 1
2 = Cρ

1
2 .

Since ρ > 0 is fix but arbitrarily small we conclude the proof of Lemma
2.2.8.

Also we have the following.
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Lemma 2.2.9. With the same assumptions of Lemma 2.2.8 we have that

lim
ε→0

lim
m→∞

∣∣∣∣ˆ
RN

(−∆)s/2zm(x)B(zm, φε)(x) dx

∣∣∣∣ = 0, (2.2.28)

where B is defined in (2.2.13).

Proof. Let

I2 :=

∣∣∣∣ˆ
RN

(−∆)s/2zm(x)B(zm, φε)(x) dx

∣∣∣∣ .
Since ‖zm‖Xs

0(Ω) ≤M , then

I2 ≤ M‖B(zm, φε)‖L2(RN )

≤ M‖B(zm − z, φε)‖L2(RN ) +M‖B(z, φε)‖L2(RN ), (2.2.29)

where z is, as in Lemma 2.2.8, the weak limit of the sequence {zm} in Xs
0(Ω).

We estimate each of the summands in the previous inequality. Let

ψ(x) :=
1

1 + |x|N+s
and ψε(x) := ψ

(x
ε

)
. (2.2.30)

By Lemma 2.2.7 applied to φ, we note that

B(φε, φε)(x) ≤ ε−sB(φ, φ)
(x
ε

)
≤ Cε−sψε(x) ≤ Cε−s. (2.2.31)

Therefore, by Cauchy-Schwarz inequality, the fact that {zm} is uniformly
bounded in Xs

0(Ω) and (2.2.31), it follows that

‖B(zm − z, φε)‖2
L2(RN ) ≤

ˆ
RN
B(zm − z, zm − z)(x)B(φε, φε)(x) dx

≤ Cε−s
ˆ
RN
B(zm − z, zm − z)(x) dx

= Cε−s‖zm − z‖2

X
s
2
0 (Ω)

= Cε−s
ˆ
RN

(zm − z)(x)(−∆)s/2(zm − z)(x) dx

≤ Cε−s‖zm − z‖L2(Ω)‖(−∆)s/2(zm − z)‖L2(RN )

≤ Cε−s‖zm − z‖L2(Ω). (2.2.32)

On the other hand, for a suitable function f , we have thatˆ
RN
z2(x)(−∆)s/2f(x) dx =

ˆ
RN
f(x)(−∆)s/2z2(x) dx

=

ˆ
RN
f(x)

(
2z(x)(−∆)s/2z(x)

− B(z, z)(x)) dx. (2.2.33)
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Then, arguing as in (2.2.32), by (2.2.31) and applying (2.2.33) with f :=
ψε(x), we get

‖B(z, φε)‖2
L2(RN ) ≤

ˆ
Rn
B(z, z)(x)B(φε, φε)(x) dx

≤ Cε−s
ˆ
RN
B(z, z)(x)ψε(x) dx

≤ Cε−s
ˆ
RN

(
−z2(x)(−∆)s/2ψε(x)

+ 2z(x)ψε(x)(−∆)s/2z(x)
)
dx

:= I2,1 + I2,2. (2.2.34)

We now estimate I2,1 and I2,2 separately. Let ρ > 0. On one hand, since ψ
also satisfies (2.2.24), by Lemma 2.2.7 applied to ψ, it follows that

|I2,1| ≤ Cε−2s

ˆ
RN
z2(x)

∣∣∣((−∆)s/2ψ
) (x

ε

)∣∣∣ dx
≤ Cε−2s

ˆ
RN
z2(x)ψ

(x
ε

)
dx

≤ Cε−2s

ˆ
RN

(z2 − η)(x)ψε(x) dx

+ ε−2s

ˆ
RN
η(x)ψε(x) dx, (2.2.35)

where η ∈ C∞0 (Ω) is the function that satisfies (2.2.26). Then using Hölder
inequality, (2.2.26) and (2.2.35) we obtain

|I2,1| ≤ ρε−2s ‖ψε‖
L
N
2s (RN )

+ ε−2s‖η‖L∞(RN ) ‖ψε‖L1(RN )

≤ ρ‖ψ‖
L
N
2s (RN )

+ εN−2s‖η‖L∞(RN )‖ψ‖L1(RN ). (2.2.36)

On the other hand, since z ∈ Xs
0(Ω),

|I2,2| ≤ Cε−s‖(−∆)s/2z‖L2(RN ) ‖zψε‖L2(Ω) ≤ Cε−s ‖zψε‖L2(Ω) . (2.2.37)

Therefore, by (2.2.26), we get

|I2,2|2 ≤ Cε−2s

(ˆ
Ω

|z2 − η|(x) |ψε(x)|2 dx+

ˆ
RN
η |ψε(x)|2 dx

)
≤ Cε−2s

(
ρ‖ψε‖2

L
N
s (RN )

+ ‖η‖L∞(RN ) ‖ψε‖2
L2(RN )

)
≤ Cρ‖ψ‖2

L
N
s (RN )

+ CεN−2s‖η‖L∞(RN )‖ψ‖2
L2(RN ). (2.2.38)
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Then by (2.2.36) and (2.2.38), from (2.2.34), it follows that

‖B(z, φε)‖2
L2(RN ) ≤ C

(
ρ+ ρ

1
2

)
+ C̃

(
εN−2s + ε

N−2s
2

)
. (2.2.39)

Hence from (2.2.23), (2.2.32) and (2.2.39), since N > 2s, we obtain

lim
ε→0

lim
m→∞

‖B(zm − z, φε)‖2
L2(RN ) + ‖B(z, φε)‖2

L2(RN )

≤ lim
ε→0

C
(
ρ

1
2 + ε

N−2s
2

)
= Cρ

1
2 .

Thus, since ρ is an arbitraty positive value,

lim
ε→0

lim
m→∞

‖B(zm − z, φε)‖2
L2(RN ) + ‖B(z, φε)‖2

L2(RN ) = 0. (2.2.40)

Finally, by (2.2.29) and (2.2.40), we conclude that

lim
ε→0

lim
m→∞

|I2| = 0.

Now we can prove the compactness result for the translated functional
J̃s, λ defined in (2.2.9).

Lemma 2.2.10. If u = 0 is the only critical point of J̃s, λ in Xs
0(Ω) then

J̃s, λ satisfies a local Palais Smale condition below the critical level c∗ given
in (1.2.22).

Proof. Let {um} be a PS sequence for J̃s, λ verifying

J̃s, λ(um)→ c < c∗ and J̃ ′s, λ(um)→ 0. (2.2.41)

The argument presented at the beginning of the proof of Lemma 1.2.10,
shows that {um} is uniformly bounded in Xs

0(Ω). Moreover taking

zm := um + u0,

we have that

Js, λ(zm) ≤ J̃s, λ(um) + Js, λ(u0) (2.2.42)

and

J ′s, λ(zm)→ 0. (2.2.43)
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Since {zm} is uniformly bounded in Xs
0(Ω) and u = 0 is the unique critical

point of Js, λ, up to a subsequence, we get that

zm ⇀ u0 weakly in Xs
0(Ω),

zm → u0 strongly in Lr(Ω), 1 ≤ r < 2∗s, (2.2.44)

zm → u0 a.e. in Ω.

Moreover, since the positive part is a Lipschitz function, with constant equal
to one, we know that

‖(zm)+‖Xs
0(Ω) ≤ ‖zm‖Xs

0(Ω).

Hence {(zm)+} is also uniformly bounded in Xs
0(Ω) and, since u0 > 0,

{(zm)+} has the same convergence properties as {zm} given above. Then,
by (2.1.3), applying [126, Theorem 1.5] we have that there exist an index
set I ⊆ N, a sequence of points {xk}k∈I ⊂ Ω, and nonnegative real numbers
µk, νk, such that

|(−∆)s/2(zm)+|2 → µ ≥ |(−∆)s/2u0|2 +
∑
k∈I

µkδxk (2.2.45)

and
|(zm)+|2

∗
s → ν = |u0|2

∗
s +

∑
k∈I

νkδxk , (2.2.46)

in the sense of measures, with

νk ≤
(
C(N, s)

2
S(N, s)

)− 2∗s
2

µ
2∗s
2
k = (κsT (N, s))−

2∗s
2 µ

2∗s
2
k , (2.2.47)

for every k ∈ I. Here δxk denotes the Dirac delta at xk, while κs and T (N, s)
are the constants defined in (1.1.12) and (1.1.31) respectively. We fix k0 ∈ I,
and we consider φ ∈ C∞0 (RN) a radially nonincreasing cut-off function

φ =

{
1 in B1(xk0),
0 in B2(xk0)c.

(2.2.48)

Set now
φε(x) = φ(x/ε). (2.2.49)

Then, using φε(zm)+ as a test function in (2.2.43), by (2.1.6) and the fact
that ˆ

RN
(φε(zm)+)(−∆)szm dx ≥

ˆ
RN

(φε(zm)+)(−∆)s(zm)+ dx,
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we have that

0 ≥ lim
m→∞

(ˆ
RN

(φε(zm)+)(−∆)s(zm)+ dx

−

(
λ

ˆ
B2ε(xk0

)

((zm)+)q+1φε dx+

ˆ
B2ε(xk0

)

((zm)+)2∗sφε dx

))
.

Hence, denoting by

A(φε, (zm)+)(x, y) := (φε(x)− φε(y))((zm)+(x)− (zm)+(y)), x, y ∈ RN ,

it follows that

lim
m→∞

(ˆ
RN

(zm)+(x)(−∆)s/2(zm)+(x)(−∆)s/2φε(x) dx

− C(N, s)

ˆ
RN

(−∆)s/2(zm)+(x)

ˆ
RN

A(φε, (zm)+)(x, y)

|x− y|N+s
dx dy

)
≤ lim

m→∞

(
λ

ˆ
B2ε(xk0

)

((zm)+)q+1φε dx+

ˆ
B2ε(xk0

)

((zm)+)2∗sφε dx

−
ˆ
B2ε(xk0

)

((−∆)s/2(zm)+)2φε dx

)
.

Therefore by (2.2.44), (2.2.45) and (2.2.46) we get

lim
ε→0

lim
m→∞

(ˆ
RN

(zm)+(x)(−∆)s/2(zm)+(x)(−∆)s/2φε(x) dx

− C(N, s)

ˆ
RN

(−∆)s/2(zm)+(x)

ˆ
RN

A(φε, (zm)+)(x, y)

|x− y|N+s
dx dy

)
≤ lim

ε→0

(
λ

ˆ
B2ε(xk0

)

uq+1
0 φε dx

ˆ
B2ε(xk0

)

φε dν −
ˆ
B2ε(xk0

)

φε dµ

)
. (2.2.50)

Since φ is a regular function with compact support, it is clear that φ satisfies
the hypotheses of Lemma 2.2.7. Therefore by Lemma 2.2.8 and Lemma 2.2.9
applied to the sequence {(zm)+}, it follows that the left hand side of (2.2.50)
goes to zero. That is, we obtain that

lim
ε→0

(ˆ
B2ε(xk0

)

φε dν+λ

ˆ
B2ε(xk0

)

|u0|q+1φε dx−
ˆ
B2ε(xk0

)

φε dµ

)
= νk0 −µk0 ≥ 0.

Thus, from (2.2.47), we have that

νk0 = 0 or νk0 ≥ (κsT (N, s))
N
2s .
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As in the proof of Proposition 1.2.10, we get a contradiction with (2.2.41).
Since k0 was arbitrary, we deduce that νk = 0 for all k ∈ I. As a consequence,
we obtain that (um)+ → 0 in L2∗s(Ω). Note that, since um is equal to zero out-
side Ω, we have that (um)+ → 0 in L2∗s(RN). We finish in the standard way:

convergence of um in L2∗s(RN) implies convergence of f((um)+) in L
2N
N+2s (RN),

and finally by using the continuity of the inverse operator (−∆)−s, we obtain
convergence of um in Xs

0(Ω).

In Lemma 2.2.10 we have proved that if u = 0 is the only critical point
of the functional J̃s, λ, then J̃s, λ verifies the (PS)c condition at any level c,
provided c stays below the level c∗ defined in (1.2.22).

Now, we want to show that we can obtain a local (PS)c sequence for J̃s, λ
under the critical level c∗. For this, assume, without loss of generality, that
0 ∈ Ω. As we explain in Section 1.2 of Chapter 1, we know that the infimum
in (2.1.7) is attained at the function

uε(x) =
ε(N−2s)/2

(|x|2 + ε2)(N−2s)/2
, ε > 0, (2.2.51)

that is
‖(−∆)s/2uε‖2

L2(RN ) = κsT (N, s)‖uε‖2
L2∗s (RN )

.

Consider now, as in Chapter 1, the family of truncated functions

ηε :=
φuε

‖φuε‖L2∗s (Ω)

, (2.2.52)

where

φ(x) = φ0

(
|x|
r

)
, x ∈ RN ,

with r a small positive number such that Br ⊆ Ω and φ0 ∈ C∞(R+), satisfying

φ0(η) =

{
1 if 0 ≤ η ≤ 1

2
,

0 if η ≥ 1.

Following the same procedure as in Lemma 1.2.13, using the estimate given
in [140, Proposition 21] instead of the estimate (1.2.58) given in Lemma
1.2.12, we have the following

Lemma 2.2.11. There exists ε > 0 small enough such that

sup
t≥0
J̃s, λ(tηε) < c∗.

Therefore, to prove statement 4 in Theorem 2.2.1, as in the end of Section
1.2 in Chapter 1, we use (2.2.10), Lemma 2.2.10 and Lemma 2.2.11.
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2.3 Superlinear case: q > 1.

The existence of at least one solution of (Dλ) for the convex subcritical case
is straightforward. In fact this existence follows proving the good geometry
of the functional using the ideas given in the proof of Proposition 1.4.2 and
the Theorem 0.0.2 instead of the Trace inequality given in (1.1.29). The
conclusion follows using the compactness property of the functional, see for
example Proposition 3.3.3, and applying the MPT given in [11].

Therefore we focus in the critical case, that is, in the proof of the following.

Theorem 2.3.1. Let 1 < q < 2∗s − 1. Then, problem (Dλ) admits at least
one energy solution provided that either

• N > 2s(q+3)
q+1

and λ > 0 or

• N ≤ 2s(q+3)
q+1

and λ > 0 is sufficiently large.

As we said, even for the critical case it is easy to check the good geometry
of the functional Js,λ. Now we show that the functional Js, λ satisfies the PS
condition in a suitable energy range involving the best fractional critical
Sobolev constant S(N, s) given in (2.1.8). The proof that we will present
has been done following the ideas of [158] and [174] , adapted in order to
take into account the nonlocal nature of the fractional Laplace operator.
We mention here that, alternatively, Proposition 2.3.2 could be proved using
the concentration-compactness theory. That is, using the same arguments
performed in the proof of Lemma 2.2.10.

Proposition 2.3.2. Assume λ > 0 and 1 < q < 2∗s − 1. Then, the func-
tional Js, λ satisfies the (PS)c condition provided c < c∗ , where c∗ is given in
(1.2.22).

Proof. Let {um} be a (PS)c sequence for Js, λ in Xs
0(Ω), that is

Js, λ(um)→ c (2.3.1)

and
J ′s, λ(um)→ 0 (2.3.2)

as m→∞ . First of all by (2.3.1) and (2.3.2) there exists M > 0 such that

‖um‖Xs
0(Ω) ≤M. (2.3.3)

In order to prove our result we proceed by steps.
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Claim 1. There exists u∞ ∈ Xs
0(Ω) such that 〈J ′s, λ(u∞), ϕ〉 = 0 for any

ϕ ∈ Xs
0(Ω) .

Proof. By (2.3.3) and the fact that Xs
0(Ω) is a reflexive space, up to a sub-

sequence, still denoted by um, there exists u∞ ∈ Xs
0(Ω) such that um ⇀ u∞

weakly in Xs
0(Ω), that is, for any ϕ ∈ Xs

0(Ω),
ˆ
RN×RN

(um(x)− um(y)) (ϕ(x)− ϕ(y))

|x− y|N+2s
dx dy →

ˆ
RN×RN

(u∞(x)− u∞(y)) (ϕ(x)− ϕ(y))

|x− y|N+2s
dx dy.

(2.3.4)

Moreover by the Sobolev embedding theorem given in Theorem 0.0.2 we also
have that, up to a subsequence

um ⇀ u∞ weakly in L2∗s(Ω), (2.3.5)

um → u∞ in Lr(Ω), 1 ≤ r < 2∗s − 1 (2.3.6)

and
um → u∞ a.e. in Ω. (2.3.7)

Also, since the positive part is a Lipschitz function, by the above convergences
we also know that

(um)
2∗s−1
+ ⇀ (u∞)

2∗s−1
+ weakly in L2∗s/(2

∗
s−1)(Ω), (2.3.8)

(um)+ → (u∞)+ in Lq+1(Ω) and (um)+ → (u∞)+ a.e. in Ω. (2.3.9)

Therefore, since (2∗s/(2
∗
s − 1))′ = 2∗s, by (2.3.8), we obtain that

ˆ
Ω

(um)
2∗s−1
+ ϕdx→

ˆ
Ω

(u∞)
2∗s−1
+ ϕdx, ϕ ∈ Xs

0(Ω). (2.3.10)

Similarly, by (2.3.9), for every ϕ ∈ Xs
0(Ω) we get

ˆ
Ω

(um)q+ϕdx→
ˆ

Ω

(u∞)q+ϕdx. (2.3.11)

Then, by (2.3.2), (2.3.4), (2.3.10) and (2.3.11) we conclude

C(N, s)

2

ˆ
RN×RN

(u∞(x)− u∞(y)) (ϕ(x)− ϕ(y))

|x− y|N+2s
dx dy

− λ

ˆ
Ω

(u∞)q+ϕdx−
ˆ

Ω

(u∞)
2∗s−1
+ ϕdx = 0,

for any ϕ ∈ Xs
0(Ω).



2.3. Superlinear case: q > 1. 95

Claim 2. The following equality holds:

Js, λ(um) = Js, λ(u∞) +
C(N, s)

4
‖um − u∞‖2

Xs
0(Ω)

− 1

2∗s

ˆ
Ω

|(um)+(x)− (u∞)+(x)|2∗s dx+ o(1).

Proof. First of all since the sequence um is bounded in Xs
0(Ω) and in L2∗s(Ω),

by (2.3.9) and the Brezis-Lieb Lemma given in Lemma 1.3.3, we get

‖um‖2
Xs

0(Ω) = ‖um − u∞‖2
Xs

0(Ω) + ‖u∞‖2
Xs

0(Ω) + o(1), (2.3.12)

‖(um)+‖2∗s
L2∗s (Ω)

= ‖(um)+(x)−(u∞)+(x)‖2∗s
L2∗s (Ω)

+‖(u∞)+‖2∗s
L2∗s (Ω)

+o(1) (2.3.13)

and

‖(um)+‖Lq+1(Ω) → ‖(u∞)+‖Lq+1(Ω). (2.3.14)

Therefore by (2.3.12), (2.3.13) and (2.3.14) we deduce that

Js, λ(um) =
C(N, s)

4
‖um − u∞‖2

Xs
0(Ω) +

C(N, s)

4
‖u∞‖2

Xs
0(Ω)

− λ

q + 1

ˆ
Ω

((u∞)+)q+1dx− 1

2∗s

ˆ
Ω

|(um)+(x)− (u∞)+(x)|2∗s dx

− 1

2∗s

ˆ
Ω

((u∞)+)2∗s dx+ o(1)

= Js, λ(u∞) +
C(N, s)

4
‖um − u∞‖2

Xs
0(Ω)

− 1

2∗s

ˆ
Ω

|(um)+(x)− (u∞)+(x)|2∗s dx+ o(1),

which gives the desired assertion.

Claim 3. The following equality holds:

C(N, s)

2
‖um − u∞‖2

Xs
0(Ω) =

ˆ
Ω

|(um)+(x)− (u∞)+(x)|2∗sdx+ o(1)

≤
ˆ

Ω

|(um)(x)− (u∞)(x)|2∗sdx+ o(1).

Proof. First of all, note that, as a consequence of (2.3.6), (2.3.8) and (2.3.13),
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we get

ˆ
Ω

(
((um)+)2∗s−1(x)− ((u∞)+)2∗s−1(x)

)
(um(x)− u∞(x)) dx

=

ˆ
Ω

((um)+)2∗s dx−
ˆ

Ω

((u∞)+)2∗s−1um dx

−
ˆ

Ω

((um)+)2∗s−1u∞ dx+

ˆ
Ω

((u∞)+)2∗s dx

=

ˆ
Ω

((um)+)2∗s dx−
ˆ

Ω

((u∞)+)2∗s dx+ o(1)

=

ˆ
Ω

|(um)+(x)− (u∞)+(x)|2∗s dx+ o(1). (2.3.15)

Furthermore, (2.3.6), (2.3.11) and (2.3.14) give

ˆ
Ω

(((um)+)q(x)− ((u∞)+)q(x)) (um(x)− u∞(x)) dx

=

ˆ
Ω

((um)+)q+1 dx−
ˆ

Ω

((u∞)+)qum dx

−
ˆ

Ω

((um)+)qu∞ dx+

ˆ
Ω

((u∞)+)q+1 dx

= o(1). (2.3.16)

Then, by (2.3.2), Claim 1, (2.3.15) and (2.3.16), we conclude that

o(1) = 〈J ′s, λ(um), um − u∞〉
= 〈J ′s, λ(um)− J ′s, λ(u∞), um − u∞〉

=
C(N, s)

2
‖um − u∞‖2

Xs
0(Ω)

− λ

ˆ
Ω

(((um)+)q(x)− ((u∞)+)q(x)) (um(x)− u∞(x)) dx

−
ˆ

Ω

(
((um)+)2∗s−1(x)− ((u∞)+)2∗s−1(x)

)
(um(x)− u∞(x)) dx

=
C(N, s)

2
‖um − u∞‖2

Xs
0(Ω) −

ˆ
Ω

|((um)+)(x)− ((u∞)+)(x)|2∗s dx+o(1).

Now, we can finish the proof of Proposition 2.3.2 .
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By Claim 3 we know that

C(N, s)

4
‖um − u∞‖2

Xs
0(Ω) −

1

2∗s

ˆ
Ω

|(um)+(x)− (u∞)+(x)|2∗sdx

=
s

N

C(N, s)

2
‖um − u∞‖2

Xs
0(Ω) + o(1). (2.3.17)

Then, by Claim 2, (2.3.1) and (2.3.17), for m→ +∞, we obtain

Js, λ(u∞)+
s

N

C(N, s)

2
‖um−u∞‖2

Xs
0(Ω) = Js, λ(um)+o(1) = c+o(1). (2.3.18)

Also, by (2.3.3), up to a subsequence we can assume that

‖um − u∞‖2
Xs

0(Ω) → L ≥ 0. (2.3.19)

Then, as a consequence of Claim 3,

ˆ
Ω

|um(x)− u∞(x)|2∗s dx→ L̃ ≥ C(N, s)

2
L.

Therefore, by definition of the constant S(N, s) we have

L ≥ (L̃)2/2∗sS(N, s) ≥ L2/2∗sS(N, s)

(
C(N, s)

2

) 2
2∗s
,

so that, by (2.1.8),

L = 0 or L ≥ 2

C(N, s)
(κsT (N, s))

N
2s .

We will prove that the case L ≥ 2

C(N, s)
(κsT (N, s))

N
2s cannot hold. Indeed,

taking ϕ = u∞ ∈ Xs
0(Ω) as a test function in Claim 1, we have that

C(N, s)

2
‖u∞‖2

Xs
0(Ω) = λ

ˆ
Ω

((u∞)+)q+1 dx+

ˆ
Ω

((u∞)+)2∗sdx.

That is,

Js, λ(u∞) = λ

(
1

2
− 1

q + 1

)
‖((u∞)+)‖q+1

Lq+1(Ω)

+
s

N
‖((u∞)+)‖2∗s

L2∗s (Ω)
≥ 0 , (2.3.20)
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thanks to the positivity of λ and the fact that q > 1 . Therefore, if L ≥
2

C(N,s)
(κsT (N, s))

N
2s , then, by (2.3.18), (2.3.19) and (2.3.20) we get

c = Js, λ(u∞) +
s

N

C(N, s)

2
L ≥ s

N

C(N, s)

2
L ≥ s

N
(κsT (N, s))

N
2s ,

which contradicts the fact that c < c∗. Thus L = 0 and so, by (2.3.19), we
obtain that

‖um − u∞‖Xs
0(Ω) → 0.

Then as in Proposition 1.4.4 using the estimate in [140, Proposition 21]
instead of (1.2.58) we get

Proposition 2.3.3. Let λ > 0, 1 < q < 2∗s − 1, c∗ given in (1.2.22) and ηε
be the function defined in (2.2.52). Then, there exists ε > 0 small enough
such that

sup
t≥0
Js, λ(tηε) < c∗ ,

provided

• N > 2s
(

3+q
1+q

)
and λ > 0 or

• N ≤ 2s
(

3+q
1+q

)
and λ > λs, for a suitable λs > 0.

Since Js, λ satisfies the geometric features required by the MPT given in
[11] and, by Proposition 2.3.2, the functional Js, λ satisfies the (PS)c condition
at any level c, provided c < c∗, we conclude the proof of Theorem 2.3.1.

Remark 2.3.4. Note that for the case s = 1 we have obtained that

• For N ≥ 4, exists a solution for (Dλ) for every λ > 0.

• For N < 4 and q <
6−N
N − 2

exists a solution for λ > 0 big enough.

This coincide when the result obtained in [45] and [92] for the p-Laplacian
operator.
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2.4 Regularity result.

We present the proof of the regularity result about the solutions of (Dλ) used
in the proof of Lemma 2.2.6. That is, we will prove the following.

Proposition 2.4.1. Let u be a nonnegative energy solution to the problem{
(−∆)su = f(x, u) in Ω,

u = 0 in RN \ Ω,

and assume that |f(x, t)| ≤ C(1 + |t|p), for some 1 ≤ p ≤ 2∗s − 1. Then
u ∈ L∞(Ω).

Note that the equivalent result for the spectral fractional Laplacian was
given in Proposition 1.5.5. We point out here that in the proof of that
proposition we used the extension tool associated to problem (Pλ) and here
we will not use it.

Proof. The proof uses standard techniques for the fractional Laplacian, in
particular the following inequality: If ϕ is a convex function, then

(−∆)sϕ(u) ≤ ϕ′(u) (−∆)su.

This follows from the fact that for ϕ convex one has

ϕ(v)− ϕ(w) ≤ ϕ′(v)(v − w), v, w ∈ R.

Let us define, for β ≥ 1 and T > 0 large,

ϕ(t) = ϕT,β(t) =

{
max(t, 0)β, if t < T

βT β−1(t− T ) + T β, if t ≥ T.

Observe that ϕ(u) ∈ Xs
0(Ω) since ϕ is Lipschitz with constant K = βT β−1

and, therefore,

‖ϕ(u)‖Xs
0(Ω) =

(ˆ
RN×RN

|ϕ(u(x))− ϕ(u(y))|2

|x− y|N+2s
dx dy

)1/2

≤
(ˆ

RN×RN

K2|u(x)− u(y)|2

|x− y|N+2s
dx dy

)1/2

= K‖u‖Xs
0(Ω).

By (2.1.5) and the Sobolev embedding theorem we have
ˆ

Ω

ϕ(u)(−∆)sϕ(u) =
C(N, s)

2
‖ϕ(u)‖2

Xs
0(Ω)

≥ κsT (N, s)‖ϕ(u)‖2
L2∗s (Ω)

. (2.4.1)
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On the other hand, since 0 ≤ ϕ is convex, and ϕ(u)ϕ′(u) ∈ Xs
0(Ω),ˆ

Ω

ϕ(u)(−∆)sϕ(u) ≤
ˆ

Ω

ϕ(u)ϕ′(u) (−∆)su ≤ C

ˆ
Ω

ϕ(u)ϕ′(u)
(
1 + u2∗s−1

)
.

From (2.4.1) and the previous inequality we get the following basic estimate:

‖ϕ(u)‖2
L2∗s (Ω)

≤ C

ˆ
Ω

ϕ(u)ϕ′(u)
(
1 + u2∗s−1

)
. (2.4.2)

Since uϕ′(u) ≤ β ϕ(u) and ϕ′(u) ≤ β (1 + ϕ(u)), then

ϕ(u)ϕ′(u)
(
1 + u2∗s−1

)
≤ βϕ(u)(1 + ϕ(u)) + β(ϕ(u))2u2∗s−2

≤ Cβ(1 + (ϕ(u))2) + β(ϕ(u))2u2∗s−2.

Therefore (2.4.2) becomes(ˆ
Ω

(ϕ(u))2∗s

)2/2∗s

≤ C β

(
1 +

ˆ
Ω

(ϕ(u))2 +

ˆ
Ω

(ϕ(u))2u2∗s−2

)
. (2.4.3)

It is important to point out here that since ϕ(u) grows linearly, both sides
of (2.4.3) are finite.

Claim: Let β1 such that 2β1 = 2∗s. Then u ∈ Lβ1 2∗s .

To see this, we take R large to be determined later. Then, Hölder’s inequality
with p = β1 = 2∗s/2 and p′ = 2∗s/(2

∗
s − 2) givesˆ

Ω

(ϕ(u))2 u2∗s−2 =

ˆ
{u≤R}

(ϕ(u))2 u2∗s−2 +

ˆ
{u>R}

(ϕ(u))2 u2∗s−2

≤
ˆ
{u≤R}

(ϕ(u))2R2∗s−2

+

(ˆ
Ω

(ϕ(u))2∗s

)2/2∗s
(ˆ
{u>R}

u2∗s

)(2∗s−2)/2∗s

.

By the Monotone Convergence Theorem, we may take R so that(ˆ
{u>R}

u2∗s

)(2∗s−2)/2∗s

≤ 1

2C β1

.

In this way, the second term above is absorbed by the left hand side of (2.4.3)
to get for ϕ = ϕT,β1 ,(ˆ

Ω

(ϕ(u))2∗s

)2/2∗s

≤ 2C β1

(
1 +

ˆ
Ω

(ϕ(u))2 +

ˆ
{u≤R}

(ϕ(u))2R2∗s−2

)
.
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Using that ϕT,β1(u) ≤ uβ1 in the right hand side of the previous inequality
and letting T →∞ in the left hand side, since 2β1 = 2∗s, we obtain(ˆ

Ω

u2∗sβ1

)2/2∗s

≤ 2C β1

(
1 +

ˆ
Ω

u2∗s +R2∗s−2

ˆ
Ω

u2∗s

)
<∞.

This proves the Claim.

We now go back to inequality (2.4.3) and we use as before that ϕT,β(u) ≤
uβ in the right hand side and we take T →∞ in the left hand side. Then,(ˆ

Ω

u2∗sβ

)2/2∗s

≤ C β

(
1 +

ˆ
Ω

u2β +

ˆ
Ω

u2β+2∗s−2

)
.

Since

ˆ
Ω

u2β ≤ |Ω| +

ˆ
Ω

u2β+2∗s−2, we get the following recurrence formula

(ˆ
Ω

u2∗sβ

)2/2∗s

≤ 2C β (1 + |Ω|)
(

1 +

ˆ
Ω

u2β+2∗s−2

)
.

Therefore,(
1 +

ˆ
Ω

u2∗sβ

) 1
2∗s(β−1)

≤ C
1

2(β−1)

β

(
1 +

ˆ
Ω

u2β+2∗s−2

) 1
2(β−1)

, (2.4.4)

where Cβ = 4C β (1 + |Ω|).
For m ≥ 1 we define βm+1 inductively so that 2βm+1 + 2∗s− 2 = 2∗sβm, that is

βm+1 − 1 =
2∗s
2

(βm − 1) =

(
2∗s
2

)m
(β1 − 1).

Hence from (2.4.4) it follows that(
1 +

ˆ
Ω

u2∗sβm+1

) 1
2∗s(βm+1−1)

≤ C
1

2(βm+1−1)

βm+1

(
1 +

ˆ
Ω

u2∗sβm

) 1
2∗s(βm−1)

,

with Cm+1 := Cβm+1 = 4C βm+1 (1 + |Ω|). Therefore, defining

Am :=

(
1 +

ˆ
Ω

u2∗sβm

) 1
2∗s(βm−1)

, m ≥ 1,

by the Claim proved before, and using a limiting argument, we conclude that
there exists C0 > 0, independent of m > 1, such that

Am+1 ≤
m+1∏
k=2

C
1

2(βk−1)

k A1 ≤ C0A1. (2.4.5)



102 Chapter 2. Fractional Laplacian in a bounded domain.

This implies that
‖u‖L∞(Ω) ≤ C0A1. (2.4.6)

Indeed, suppose that (2.4.6) is not true, that is, there exits

M > C0A1 such that |{u > M}| 6= 0. (2.4.7)

Then, by (2.4.5), for every m ≥ 1, we obtain that(
M2∗sβm|{u > M}|

) 1
2∗s(βm−1) ≤ C0A1,

that is
M

βm
βm−1 |{u > M}|

1
2∗s(βm−1) ≤ C0A1.

Taking the limit when m → ∞ this implies that M ≤ C0A1 which is a
contradiction with (2.4.7), so (2.4.6) is proved.



Chapter 3

Some remarks on the solvability
of non local elliptic problems
with the Hardy potential.

3.1 Introduction, preliminaries and functional

settings.

During the last twenty years or so a great effort has been devoted to under-
standing the role of the Hardy-Leray potential in the solvability of elliptic and
parabolic problems in, both, the linear and nonlinear settings. The evolution
of the research on elliptic problems involving the inverse square potential can
be found in the references, [39,41,80,93,94] as well as in [2–6], among others.

The Hardy potential appears as a pure analytical subject in one dimen-
sion. To the best of our knowledge, the first time in which the Hardy-Leray
potential arises in dimension N ≥ 3 is in the seminal paper by J. Leray
about the Navier-Stokes equations, [116]. From the point of view of the
applications, the inverse square potential appears for instance as a border-
line case in Quantum Mechanics, in some elliptic problems with supercritical
reaction terms that are models in Combustion Theory or in Astrophysics
(see [65, 125,128]).

As is well known the classical Hardy-Leray inequality, states

ΛN

ˆ
RN

φ2(x)

|x|2
dx ≤

ˆ
RN
|∇φ(x)|2dx, φ ∈ C∞0 (RN), (3.1.1)

where ΛN =
(
N−2

2

)2
is the optimal constant. This constant is never attained

in the sense that equality in (3.1.1) only happens for the trivial case φ ≡ 0.

103
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Notice that |x|−2 ∈ Lploc(RN) for all p < N
2

, in fact the inverse square potential

is in the Marcinkiewicz space MN
2 (RN). This is the analytical motivation

to the peculiar behavior of the Hardy potential in its interaction with the
differential operators. A classical extension of the Hardy inequality (3.1.1)
in terms of the Fourier transform can be written as follows,

ΛN,s

ˆ
RN

u2

|x|2s
dx ≤

ˆ
RN
|ξ|2sû2dξ, u ∈ C∞0 (RN), (3.1.2)

where 0 < s < 1, the Fourier’s transform is given in (0.0.19) and ΛN,s was
given in (0.0.30). See [25, 90, 155]. Taking into account the behavior of the
Fourier transform with respect to the homogeneity (see (0.0.20)), the Heisen-
berg uncertainty principle can be related to the Hardy Sobolev inequality for
the pseudodifferential operator (−∆)s/2, 0 < s < 1, in the form announced
in Theorem 0.0.3. That is,

ΛN,s

ˆ
RN

u2

|x|2s
dx ≤ ||(−∆)s/2u||2L2(RN ), u ∈ C∞0 (RN). (3.1.3)

In a more general setting, beyond the Hilbertian framework, we find the
references [89,91] where an improved inequality is also proved. Notice that

ΛN,s →
(
N − 2

2

)2

as s→ 1.

As we have commented in the introduction of this work, inspired by
the papers [41], [80] and [85] our objective here is to study the interplay
between the Hardy potential, the solvability of the Dirichlet problem for the
nonlocal operator (−∆)s and a concave term. In particular, we will analyze
the existence of non trivial solutions for the following problem

(Hλ,µ) =


(−∆)su− λ u

|x|2s
= µuq + up in Ω,

u >0 in Ω,
u = 0 in RN \ Ω ,

where, as in Chapter 2, Ω ⊆ RN is a bounded Lipschitz domain of RN

satisfying the exterior ball condition. We also consider 0 ∈ Ω, 0 < s < 1,
N > 2s, µ > 0, 0 < q < 1 and λ < ΛN,s. Here p > 1 and is smaller
than an upper bound that we will explain right after. These hypotheses will
remain and will not be specified again in what follows. As in Chapter 2, the
condition u = 0 in RN \Ω (not only in ∂Ω) is necessary due to the non local
character of the operator.
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Recently M. M. Fall, in [85], has extended for the non local case some
results given by Brezis-Dupaigne-Tesei in [41]. He analyzes in detail the
threshold of the power p to have solvability when µ = 0 and studies the
Dirichlet-Neumann operator associated to the problem using the extension
given by L. Caffarelli and L. Silvestre in [55]. We will study directly the
problem (Hλ,µ) without appealing to the harmonic extension.

To establish the upper bound for p we follow the ideas of [41] developed
in [85] in the non local setting. We look for a radial solution to the problem

(−∆)sw − λ w

|x|2s
= wp.

In particular, if we choose w = A|x| 2s−N2
+β, with A a positive constant, we

have
Aγβ|x|−2s+ 2s−N

2
+β − λA|x|−2s+ 2s−N

2
+β = Ap|x|(

2s−N
2

+β)p,

where

γβ :=
22sΓ(N+2s+2β

4
)Γ(N+2s−2β

4
)

Γ(N−2s−2β
4

)Γ(N−2s+2β
4

)
.

Hence, in order to have homogeneity, we need that

2s−N
2

+ β =
−2s

p− 1
,

and therefore, the equation becomes

γβ − λ = Ap−1.

Since A > 0, we need γβ − λ > 0. Indeed, since the map

γ : [0, N−2s
2

) 7→ (0,ΛN,s]
β 7→ γβ

is decreasing, see [74], there exists an unique αλ such that γαλ = λ. Thus
γβ − λ > 0 is equivalent to αλ > β. Therefore we choose

αλ >
−2s

p− 1
+
N − 2s

2
,

or equivalently,

p <
N + 2s− 2αλ
N − 2s− 2αλ

:= p(λ, s). (3.1.4)

Then, for p < p(λ, s) we will be able to construct a radial supersolution
for the Dirichlet problem (Hλ, µ), just modifying the w found above. Hence
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this bound for p will be the threshold for the existence also for the Dirichlet
problem.

In this chapter we follow the same notation as in Chapter 2. That is we
will consider the Hilbert space

Xs
0(Ω) = {u ∈ Hs(RN) with u = 0 a.e. in RN \ Ω},

endowed with the norm given in (2.1.2).
We point out here that, by (2.1.5), if 0 ∈ Ω, we can rewrite the Hardy

inequality (3.1.3) as

C(N, s)

2

ˆ
Q

|u(x)− u(y)|2

|x− y|N+2s
dx dy ≥ ΛN,s

ˆ
Ω

u2

|x|2s
dx, u ∈ Xs

0(Ω), (3.1.5)

where Q = (RN × RN) \ (RN \ Ω × RN \ Ω). By scaling we can prove that
the optimal constant is independent of the domain containing the origin.

Also as in the previous chapter, in order to describe correctly the energy
formulation of the problem (Hλ, µ), we will work in all this chapter with the
problem

(H+
λ,µ) =

{
(−∆)su− λ u+

|x|2s
= µuq+ + up+ in Ω,

u = 0 in RN \ Ω ,

By Lemma 2.2.2 and the Maximum Principle given in [151, Proposition 2.2.8],
as occurs in Chapter 2, the solutions of the previous problem are strictly
positive in Ω and so satisfy also the problem (Hλ,µ). Taking into account
(2.1.6), we introduce the following.

Definition 3.1.1. Let 1 < p ≤ 2∗s − 1. We say that u ∈ Xs
0(Ω) is an energy

solution of (H+
λ, µ) if, for every ϕ ∈ Xs

0(Ω), the following condition hold:

1

2
C(N, s)

ˆ
Q

(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dx dy − λ

ˆ
Ω

u+ϕ

|x|2s
dx

= µ

ˆ
Ω

uq+ϕdx+

ˆ
Ω

up+ϕdx. (3.1.6)

As usual, if considering positive test functions, the previous equality is sat-
isfied for with ≥ (respectively ≤) and u ≥ 0 (respectively ≤) in RN \ Ω, we
say that u is a supersolution (respectively subsolution) of (H+

λ, µ).

If 1 < p ≤ 2∗s−1 the problem (H+
λ, µ) is variational in nature, i.e., solutions

in the sense of Definition 3.1.1 correspond to critical points of the functional
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Fs,λ,µ : Xs
0(Ω)→ R given by

Fs,λ,µ(u) :=
1

4
C(N, s)

ˆ
Q

|u(x)− u(y)|2

|x− y|N+2s
dx dy

− λ

2

ˆ
Ω

(u+)2

|x|2s
dx− µ

q + 1

ˆ
Ω

uq+1
+ dx− 1

p+ 1

ˆ
Ω

up+1
+ dx.

That is, the problem (H+
λ,µ) represents the Euler-Lagrange equation associ-

ated to the functional Fs,λ,µ. Observe that, since p ≤ 2∗s− 1, up+ ∈ L
2N
N+2s (Ω),

so, in particular, the right hand side in (3.1.6) is finite.
If p > 2∗s − 1, we are concerned with a supercritical problem and there is

no possible variational formulation. In this supercritical context we need the
following definition of solution.

Definition 3.1.2. We say that u ∈ L1(Ω) is a weak solution of (Hλ,µ) if
u ≥ 0 a.e., u = 0 in RN \ Ω, and satisfies

ˆ
Ω

(
λ

u

|x|2s
+ up + µuq

)
δs dx <∞ (3.1.7)

and ˆ
RN
u(−∆)sϕdx =

ˆ
Ω

(
λ

u

|x|2s
+ up + µuq

)
ϕdx,

for all ϕ ∈ C2s+β(Ω) ∩ Cs(Ω), β > 0, with ϕ = 0 in RN \ Ω and δ(x) :=
dist(x, ∂Ω).

Note that the right hand side makes sense because, since ϕ ∈ Cs(Ω), it
follows that |ϕ(x)| ≤ Cδs(x).

We remark here that if µ = 0 and p < 2∗s−1 is possible to find a variational
solution using the classical Mountain Pass Lemma (MPL) introduced by A.
Ambrosetti and P. Rabinowitz in [11] (see Section 3.3). However if p ≥ 2∗s−1,
µ = 0 and Ω is a star shaped domain, the only solution in Xs

0(Ω) is the trivial
one. This result follows by an argument of Pohozaev type (see [86, Corollary
1.3]). As in the previous chapters, this fact motivates the term uq, q < 1 in
this chapter.

In Section 3.2 we deal with the existence of at least one solution for
the whole range 1 < p < p(λ, s), where p(λ, s) is the threshold to have
existence of a positive radial weak solution of the equation in the whole RN

(see (3.1.4)). Proceeding by a monotonicity argument, similar to the one
used in the previous chapters, if 1 < p ≤ 2∗s − 1 we reach a finite energy
solution, while if 2∗s − 1 < p < p(λ, s) we find a weak solution.
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In Section 3.3 we prove the existence of at least two energy solutions of
(Hλ,µ) in the subcritical case, that is, 1 < p < 2∗s − 1. To prove the existence
of the second solution, in Subsection 3.3, we generalize an argument due to
Alama (see [14] for the classical case, and [37] for the case of the spectral
fractional Laplacian using the s-harmonic extension). This generalization is
not immediate because, due to the nonlocal behavior of our operator, the
bounded support of the test functions is not preserved.

In Section 3.4 we will study the non-existence of solution for the case
p ≥ p(λ, s). In fact, using the non local version of [39, Lemma 3.2] (see
Lemma 3.4.2), we will prove that the solutions to the truncated problems
blow up for every x in Ω. In this section we also prove a fractional Picone’s
inequality.

3.2 Existence of minimal solutions for 1 < p <

p(λ, s).

In this section we will prove the first three items of the following.

Theorem 3.2.1. Let 0 < q < 1 and 0 < λ < ΛN,s. Then, there exists
0 < Υ <∞ such that the problem (Hλ,µ)

1 has no solution for µ > Υ ;

2 for any 0 < µ < Υ , there exists a minimal energy solution if 1 < p ≤
2∗s − 1, a minimal weak solution in the case 2∗s − 1 < p < p(λ, s) and,
moreover, the family of minimal solutions is increasing with respect to
µ;

3 if µ = Υ , there is at least one weak solution;

4 if 1 < p < 2∗s−1, there are at least two energy solutions for 0 < µ < Υ .

The fourth statement of the previous result will be proved in the next
section.

To prove the assertions 1-3 of the previous theorem for the supercritical
case, that is when 2∗s − 1 < p < p(λ, s), we will need some regularity results
that we present as follows.

Lemma 3.2.2 (Comparison principle for weak solutions). Consider a non-
negative function f ∈ L1(Ω, δs(x) dx). If v ∈ L1(Ω) is a weak solution of the
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problem {
(−∆)sv = f in Ω,

v ≥ 0 in RN \ Ω,
(3.2.1)

then

v ≥ 0 a.e. in Ω. (3.2.2)

Proof. We consider a nonnegative function F ∈ C∞0 (Ω) and we define ϕF the
solution of {

(−∆)sϕF = F ≥ 0 in Ω,

ϕF = 0 in RN \ Ω.

By the Maximum Principle, [151, Proposition 2.2.8], ϕF ≥ 0 in RN . Also
[130, Proposition 1.1 and Proposition 1.4] imply that ϕF ∈ C2s+β(Ω)∩Cs(Ω).
Therefore considering ϕF as a test function in (3.2.1), we obtain that

ˆ
Ω

vF dx+

ˆ
RN\Ω

v(−∆)sϕF dx =

ˆ
Ω

fϕF dx ≥ 0. (3.2.3)

Since ϕF = 0 in RN \ Ω and ϕF ≥ 0 in RN then

(−∆)sϕF (x) ≤ 0, if x ∈ RN \ Ω. (3.2.4)

Hence by (3.2.3), (3.2.4) and the fact that v ≥ 0 in RN \Ω, we conclude that

ˆ
Ω

vF dx ≥ 0.

Then (3.2.2) follows.

Also we have the next.

Lemma 3.2.3. Take f ∈ L1(Ω, δs(x) dx). Then there exists a unique v ∈
L1(Ω) that is a weak solution of the problem

(Df ) =

{
(−∆)sv = f in Ω,

v = 0 in RN \ Ω.

Moreover

‖v‖L1(Ω) ≤ C‖f‖L1(Ω,δs(x) dx). (3.2.5)
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Proof. The proof follows closely the arguments given in [40, Lemma 1]. Let us
assume f ≥ 0 (otherwise we write f = f+−f−). We define the nondecreasing
family of functions

fk(x) := min{k, f(x)}, k ∈ Z ∪ {0}.

By the Monotone Convergence Theorem we clearly get that
ˆ

Ω

fkδ
s(x) dx→

ˆ
Ω

fδs(x) dx. (3.2.6)

Let us now consider vk the weak solution of

(Dfk) =

{
(−∆)svk = fk in Ω,

vk = 0 in RN \ Ω.

By Lemma 3.2.2 it follows that {vk} is also a monotone nondecreasing se-
quence of positive functions. Moreover considering ξ1 ∈ C2s+β(Ω)∩Cs(Ω) the
solution to the linear problem

(Dξ1) =

{
(−∆)sξ1 = 1 in Ω,

ξ1 = 0 in RN \ Ω,
(3.2.7)

we get that
ˆ

Ω

vk − vl dx =

ˆ
Ω

(fk − fl)ξ1 dx ≤ C

ˆ
Ω

(fk − fl)δs(x) dx, k ≥ l. (3.2.8)

Therefore by (3.2.6) and (3.2.8),

{vk} is a Cauchy sequence in L1(Ω). (3.2.9)

Consequently there exists v ∈ L1(Ω) such that

vk → v, in L1(Ω) and vk → v, a.e. Ω in a monotone fashion.

By the Monotone Convergence Theorem, passing to the limit in (Dfk) we
obtain that v is a weak solution of (Df ), and (3.2.5) follows taking ξ1 as a
test function in (Df ).

To prove the uniqueness we consider v1 ≤ v2 two weak solutions of (Df )
and we define w := v2 − v1. Following the proof of Lemma 3.2.2 we easily
conclude that w = 0 a.e. Ω.

Consider now 1 < p < p(λ, s). By Lemma 3.2.2 and Lemma 3.2.3, we can
already prove the existence results of this section.
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Proposition 3.2.4. Let Υ be defined by

Υ = sup{µ > 0 : problem (Hλ,µ) has a solution}. (3.2.10)

Then 0 < Υ <∞.

Proof. We want to construct a well ordered subsolution and supersolution
to the problem (H+

λ,µ). For the first one, consider ϕ1 ∈ Xs
0(Ω) ∩ L∞(Ω) the

nonnegative solution of the eigenvalue problem (2.2.3). Hence, taking t small
enough, we have that, in Ω,

(−∆)s(tϕ1) = ρ1,(−∆)stϕ1 ≤ µ(tϕ1)q ≤ µ(tϕ1)q + (tϕ1)p + λ
tϕ1

|x|2s
.

Thus, 0 ≤ u := tϕ1 is a subsolution of (H+
λ,µ). To build the supersolution,

we need to deal with the subcritical and the supercritical case separately.

(i) Subcritical and critical cases: 1 < p ≤ 2∗s − 1.

We look for a supersolution of the form w(x) := A|x|−β ≥ 0 where A > 0
and β is a positive real parameter that satisfies

β <
N − 2s

2
.

Since p ≤ 2∗s − 1, for this value of β one has

pβ < β + 2s (3.2.11)

and
β(p+ 1) < N. (3.2.12)

The condition (3.2.11) and an appropriate choice of A clearly imply that

(−∆)sw − λ w

|x|2s
≥ wp, in Ω. (3.2.13)

Let ς := infΩ w > 0. For µ small enough, taking u := C1w with 0 < C1 < 1
a suitable constant such that

ςp−q ≥ µ
1

C1−q
1 (1− Cp

1 )
, (3.2.14)

it follows that

(−∆)su− λ u

|x|2s
≥ up + µuq.
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Thus, we have obtained a positive supersolution of (H+
λ, µ) for 1 < p ≤ 2∗s−1.

Moreover, by (3.2.11) and (3.2.12) we also have

u ∈ Lp+1(Ω) and
u2

|x|2s
∈ L1(Ω). (3.2.15)

Choosing the parameter t of u := tϕ1 small enough, it yields u ≥ u. Now,
since p ≤ 2∗s − 1, we can build a nonnegative sequence {uk} in Xs

0(Ω) of
solutions to the iterated problems

(Hk) =

{
(−∆)suk = λuk−1

|x|2s + µuqk−1 + upk−1 in Ω,

uk = 0 in RN \ Ω ,

for k ≥ 1 and u0 := u. By Lemma 2.2.2 it can be checked that

u ≤ u1 ≤ ... ≤ u.

Hence, we can define, up to a subsequence, uµ := limk→∞ uk in L1(Ω). More-
over, by (3.2.15),

‖(−∆)s/2uk‖2
L2(RN ) = λ

ˆ
Ω

ukuk−1

|x|2s
dx+

ˆ
Ω

uku
p
k−1 dx+ µ

ˆ
Ω

uku
q
k−1 dx

≤ λ

ˆ
Ω

u2

|x|2s
dx+

ˆ
Ω

up+1 dx+ µ

ˆ
Ω

uq+1 dx

≤ C. (3.2.16)

Therefore, up to a subsequence again, we know that uk ⇀ uµ in Xs
0(Ω).

Hence, since p ≤ 2∗s − 1, by the Dominated Convergence Theorem, we can
pass to the limit in the iterated problems to conclude that 0 ≤ uµ is a minimal
energy solution of (H+

λ, µ) and, consequently, of (Hλ, µ).

(ii) Supercritical case: 2∗s − 1 < p < p(λ, s).

In this case, we follow the ideas of [80]. First, as we said in the Introduc-

tion, in [85] M. M. Fall builds a radial function u(x) := A|x|
−2s
p−1 ≥ 0, with A

a positive constant, satisfying

(−∆)su− λ u

|x|2s
= up in RN .

Since p > 2∗s − 1 >
N

N − 2s
,

u ∈ Lploc(R
N), and

u

|x|2s
∈ L1

loc(RN). (3.2.17)



3.2. Existence of minimal solutions for 1 < p < p(λ, s). 113

Taking u = C1u, with C1 > 0 a suitable constant (see (3.2.14)) we get that{
(−∆)su− λ u

|x|2s ≥ µuq + up in Ω,

u > 0 in RN \ Ω.

Moreover by (3.2.17), u ≥ 0 satisfies (3.1.7). Hence, by Lemma 3.2.3 we can
define {uk} to be the weak solutions to (Hk), and we will prove by induction
that, in fact,

uk ∈ L1(RN) and 0 ≤ u ≤ uk−1 ≤ uk ≤ u a.e. Ω, for every k ∈ N.

For u there is nothing to prove. Suppose the result true up to order k − 1,
that is,

u ≤ uj−1 ≤ uj ≤ u for j ≤ k − 1 a.e. in Ω.

Then

(−∆)suk = λ
uk−1

|x|2s
+ µuqk−1 + upk−1 ≤ λ

u

|x|2s
+ µuq + up.

Hence, by (3.2.17), since the right hand side in the previous inequality is in
L1(Ω), by Lemma 3.2.3 uk will be in L1(Ω) too. Moreover, by the induction
hypothesis,

(−∆)s(uk − uk−1) = λ
(uk−1 − uk−2)

|x|2s
+ µ(uqk−1 − u

q
k−2) + (upk−1 − u

p
k−2) ≥ 0,

and

(−∆)s(u− uk) = λ
(u− uk−1)

|x|2s
+ (up − upk−1) + µ(uq − uqk−1) ≥ 0.

Therefore, by (3.2.2), we have that

0 ≤ u ≤ uk−1 ≤ uk ≤ u a.e. Ω.

By a standard monotone convergence argument we conclude that {uk} con-
verges in L1(RN) to a weak nonnegative solution uµ of (Hλ,µ) for 2∗s − 1 <
p < p(λ, s).

Observe that for µ small enough, we have built a minimal solution in
both subcritical, critical and supercritical case. That is, we have proved that
Υ > 0.

To finish the proof we need to check that Υ <∞. Consider 1 < p ≤ 2∗s−1
and the eigenvalue problem with the Hardy potential given by

(D2) =

{
(−∆)sφ1 − λ φ1

|x|2s = λ1φ1 in Ω,

φ1 = 0 in RN \ Ω.
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Note that, since λ < ΛN,s this problem is well defined and, following the same
ideas as in the proof of [146, Lemma 9-b)], we also know that φ1 ∈ Xs

0(Ω).
Suppose that u is a solution to problem (H+

λ,µ). Then, we know that u > 0
in Ω. Taking φ1 as a test function in this problem we get that

1

2
C(N, s)

ˆ
Q

(φ1(x)− φ1(y))(u(x)− u(y))

|x− y|N+2s
dx dy − λ

ˆ
Ω

φ1u

|x|2s
dx

= µ

ˆ
Ω

uqφ1 dx+

ˆ
Ω

upφ1 dx.

Using now that φ1 is a solution of (D2) it follows that

ˆ
Ω

(µuq + up)φ1 dx = λ1

ˆ
Ω

uφ1 dx. (3.2.18)

If 2∗s − 1 < p < p(λ, s), we consider ϕ1 ≥ 0, solution to (2.2.3), as a test
function in (H+

λ,µ). Then

ˆ
Ω

u(−∆)sϕ1 dx =

ˆ
Ω

(
λ

u

|x|2s
+ µuq + up

)
ϕ1 dx

≥
ˆ

Ω

(µuq + up)ϕ1 dx. (3.2.19)

Moreover, since ϕ1 is also an energy bounded solution of the eigenvalue prob-
lem (2.2.3) that belongs to C2s+β(Ω) ∩ Cs(Ω) ( see [130, Proposition 1.1 and
Proposition 1.4]), then ϕ1 is also a classical solution. Hence from (3.2.19) we
also get

ρ1,(−∆)s

ˆ
Ω

uϕ1 dx ≥
ˆ

Ω

(up + µuq)ϕ1 dx. (3.2.20)

Since there exist structural positive constants c0, c1 such that

tp + µtq > c0µ
c1t, for every t > 0,

we obtain from (3.2.18) and (3.2.20) that Υ <∞ for p < p(λ, s).

Proposition 3.2.5. Problem (Hλ,µ) has at least one solution for every 0 <
µ < Υ . In fact, the sequence {uµ} of minimal solutions is increasing with
respect to µ. If µ = Υ the problem (Hλ,µ) admits at least one weak solution.

Proof. Doing the same procedure as in the proof of Lemma 1.2.2, we conclude
that there exists a solution uµ for all µ ∈ (0, µ), and therefore for all µ ∈
(0, Υ ). Moreover uµ < uµ if µ < µ.
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For the case µ = Υ , the idea, as in [80, Proposition 2.1], consists on
passing to the limit when µn ↗ Υ on the sequence {un} = {uµn} ≥ 0, where
uµn is the minimal solution of (H+

λ, µ) (and of (Hλ, µ)) with µ = µn. Consider
the solution ϕ1 to the eigenvalue problem (D1), defined in (2.2.3), as a test
function in (H+

λ, µ). Since suppun ⊆ Ω we get that

ρ1,(−∆)s

ˆ
Ω

unϕ1 dx = λ

ˆ
Ω

unϕ1

|x|2s
dx+ µ

ˆ
Ω

uqnϕ1 dx+

ˆ
Ω

upnϕ1 dx. (3.2.21)

By Young’s inequality, for ε > 0, it follows that

ρ1,(−∆)s

ˆ
Ω

unϕ1 dx ≤ ρ1,(−∆)s

(
ε

p

ˆ
Ω

upnϕ1 dx+
p− 1

pε
1
p−1

ˆ
Ω

ϕ1 dx

)
.

Then from (3.2.21) we obtain that

λ

ˆ
Ω

unϕ1

|x|2s
dx+ µ

ˆ
Ω

uqnϕ1 dx+
p− ερ1,(−∆)s

p

ˆ
Ω

upnϕ1 dx

≤ ρ1,(−∆)s
p− 1

pε
1
p−1

ˆ
Ω

ϕ1 dx ≤ C,

with C > 0 independent of n. Therefore, by Hopf’s Lemma (see [54] or [130,
Lemma 3.2]) we can conclude that

λ

ˆ
Ω

unδ
s

|x|2s
dx+ µ

ˆ
Ω

uqnδ
s dx+

ˆ
Ω

upnδ
s dx ≤ C, (3.2.22)

where δ(x) := dist(x, ∂Ω), x ∈ Ω.
Using ξ1, given in (3.2.7), as a test function of (H+

λ, µ), since suppun ⊆ Ω,
by [130, Proposition 1.1] and (3.2.22), we have that

ˆ
Ω

un dx = λ

ˆ
Ω

unξ1

|x|2s
dx+ µ

ˆ
Ω

uqnξ1 dx+

ˆ
Ω

upnξ1 dx

≤ C

(
λ

ˆ
Ω

unδ
s

|x|2s
dx+ µ

ˆ
Ω

uqnδ
s dx+

ˆ
Ω

upnδ
s dx

)
≤ C.

Hence {un} converges in L1(Ω) to a limit uΥ ≥ 0. Then, since {un} is an
increasing sequence that is uniformly bounded in L1(Ω), by the Monotone
Convergence Theorem, taking the limit when n → ∞, we conclude that uΥ
is actually a weak solution of (HΥ ).
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Remark 3.2.6. 1. Propositions 3.2.4 and 3.2.5 can be easily reproduced
in the case q = 0, that is, considering a function f with appropriate
growth conditions instead of the concave term uq. In particular this
gives the same existence results given in [80] in the nonlocal framework.

2. Note that the procedure done in Proposition 3.2.5 to obtain a solution
in the extremal value µ = Υ is different from the ones done in Lemma
1.2.2 and Lemma 2.2.3. This is because, following the ideas given in
[10, Lemma 3.5 and Theorem 2.1], we cannot assert that Fs,λ,µ(un) < 0.
This comes from the fact that we do not guarantee that the function
a(x) := µquq−1

µ + pup−1
µ is in Lr(Ω), for r > N/2s. Observe also that

this is the reason why we obtain a weak solution in the extremal value.
In fact, if we could prove that Fs,λ,µ(un) < 0, we would obtain that
‖un‖Xs

0(Ω) ≤ C and this would imply that uΥ ∈ Xs
0(Ω).

3.3 Subcritical case: existence of at least two

solutions. Variational techniques.

In this section we will consider 1 < p < 2∗s − 1. Since Propositions 3.2.4
and Proposition 3.2.5 prove the first three items of Theorem 3.2.1, we will
prove in this section statement 4 of this theorem taking advantage of the
variational structure of (Hλ,µ).

We will use minimization to find the first solution, and the MPT to guar-
antee the existence of the second one. In order to use this last result, we need
to check some conditions concerning to the geometry and the compactness
of the functional. By Theorem 0.0.2, the Hardy inequality given in (3.1.5)
and following the ideas given in the proof of Proposition 1.4.2, it is easy to
check that, for µ small enough, the functional Fs,λ,µ has the good geometry.
That is, we have the following

Proposition 3.3.1. There exist α > 0 and β > 0 such that

a) Fs,λ,µ(u) ≥ β, for any u ∈ Xs
0(Ω) with ||u||Xs

0(Ω) = α and µ small
enough.

b) There exists u1 ∈ Xs
0(Ω) positive such that ||u1||Xs

0(Ω) > α and Fs,λ,µ(u1) <
β.

Also we obtain that

lim
t→0+
Fs,λ,µ(tu0) = 0−. (3.3.1)
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Now we need to check that the functional Fs,λ,µ satisfies the (PS) condi-
tion. First we prove the following

Proposition 3.3.2. Let {un} be a bounded sequence in Xs
0(Ω) such that

F ′s,λ,µ(un) → 0 as n → ∞. Then there exists u ∈ Xs
0(Ω) such that, up to a

subsequence, ||un − u||Xs
0(Ω) → 0 when n→∞.

Proof. Since {un} is uniformly bounded in the Hilbert space Xs
0(Ω) with the

norm ‖ · ‖Xs
0(Ω), then there exists C > 0 such that

‖un‖2
∗ :=

C(N, s)

2
‖un‖2

Xs
0(Ω) − λ

ˆ
Ω

(un)2
+

|x|2s
dx ≤ C(N, s)

2
‖un‖2

Xs
0(Ω) ≤ C.

Since, by (3.1.5), ‖ · ‖2
∗ is a norm equivalent to ‖ · ‖2

Xs
0(Ω), we consider Xs

0(Ω)
endowed with this norm and hence, up to a subsequence, there exists u ∈
Xs

0(Ω) such that

un ⇀ u in Xs
0(Ω) with the norm ‖ · ‖∗, (3.3.2)

un → u in Lr(RN), 1 ≤ r < 2∗s, un → u a.e. in RN . (3.3.3)

Therefore, since F ′s,λ,µ(un)→ 0 and q + 1 < p + 1 < 2∗s, by (3.3.3) it follows
that

lim
n→∞

(
C(N, s)

2

ˆ
Q

(un(x)− un(y))2

|x− y|N+2s
dx dy − λ

ˆ
Ω

(un)2
+

|x|2s
dx

)
= lim

n→∞

(
µ

ˆ
Ω

(un)q+1
+ dx+

ˆ
Ω

(un)p+1
+ dx

)
= µ

ˆ
Ω

uq+1
+ dx+

ˆ
Ω

up+1
+ dx

= fλ,µ(u). (3.3.4)

Similarly we obtain

lim
n→∞

(
C(N, s)

2

ˆ
Q

(un(x)− un(y))(u(x)− u(y))

|x− y|N+2s
dx dy−λ

ˆ
Ω

(un)+u

|x|2s
dx

)
= fλ,µ(u). (3.3.5)

Hence, from (3.3.2), (3.3.4) and (3.3.5) we get

lim
n→∞

‖un‖2
∗ = ‖u‖2

∗.

Consequently, by (3.3.2), we conclude that lim
n→∞

||un − u||2∗ = 0. Finally, by

the equivalence of norms, we conclude that

lim
n→∞

||un − u||2Xs
0(Ω) = 0.
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Now we can prove the PS condition. That is,

Proposition 3.3.3. Let un be a sequence in Xs
0(Ω), and c ∈ R such that

Fs,λ,µ(un)→ c, (3.3.6)

F ′s,λ,µ(un)→ 0. (3.3.7)

Then, up to a subsequence, there exists u = lim
n→∞

un in Xs
0(Ω).

Proof. By (3.3.6) and (3.3.7) it follows that

Fs,λ,µ(un)− 1

p+ 1
〈F ′s,λ,µ(un), un〉 = c+ o(1).

Hence, since p+ 1 > 2 > q + 1, by the Sobolev embedding theorem given in
Theorem 0.0.2 and (3.1.5), we obtain

c+ o(1) =
C(N, s)

2

(
1

2
− 1

p+ 1

)
||un||2Xs

0(Ω) − λ
(

1

2
− 1

p+ 1

) ˆ
Ω

(un)2
+

|x|2s
dx

− µ

(
1

q + 1
− 1

p+ 1

) ˆ
Ω

(un)q+1
+ dx

≥ C1||un||2Xs
0(Ω) − C2||un||q+1

Xs
0(Ω),

with C1 and C2 positive constants. Therefore there exists C > 0 such that
||un||Xs

0(Ω) ≤ C. Applying the previous proposition we conclude the strong
convergence in the space Xs

0(Ω).

Now we can state the following existence theorem.

Theorem 3.3.4. For µ small enough, the problem (Hλ,µ) has at least two
solutions.

Proof. We construct the first one by minimization. As we saw in Proposition
3.3.1, there exists α > 0 such that Fs,λ,µ(u) ≥ β > 0 for all u ∈ Xs

0(Ω) with
‖u‖Xs

0(Ω) = α. Thus we can choose

α1 =

{
inf
α∈R

α : Fs,λ,µ(u) > 0 for all u ∈ Xs
0(Ω) with ‖u‖Xs

0(Ω) = α

}
.

We know that α1 > 0, because near the origin the functional is negative.
We choose now α2 > α1 so close that Fs,λ,µ(u) is non decreasing for u with
α1 ≤ ||u||Xs

0(Ω) ≤ α2. We define now a smooth function τ as

τ(t) :=

{
1, t ≤ α1,

0, t ≥ α2,
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and we consider the truncated functional

F s,λ,µ(u) :=
C(N, s)

4
‖u‖2

Xs
0(Ω) −

λ

2

ˆ
Ω

u2
+

|x|2s
dx

− µ

q + 1

ˆ
Ω

uq+1
+ dx−

τ(‖u‖Xs
0(Ω))

p+ 1

ˆ
Ω

up+1
+ dx.

By definition,

F s,λ,µ(u) = Fs,λ,µ(u) whenever ‖u‖Xs
0(Ω) ≤ α1

and

F s,λ,µ(u) =
C(N, s)

4
‖u‖2

Xs
0(Ω) −

λ

2

ˆ
Ω

u2
+

|x|2s
dx− µ

q + 1

ˆ
Ω

uq+1
+ dx,

whenever ‖u‖Xs
0(Ω) ≥ α2. Note that, by Theorem 0.0.2 and (3.1.5), since

q+ 1 < 2 the functional F s,λ,µ is coercive. The lower semicontinuity is given
because Xs

0(Ω) is a Hilbert space. Therefore we can assert that there exists a
minimum u0 of F s,λ,µ with negative energy, that is also a minimum of Fs,λ,µ.
Hence, we have already found the first solution to (H+

λ,µ) and, therefore, of
(Hλ,µ).

For the second one, as we have proved, for µ small enough the functional
Fs,λ,µ has the suitable geometry (Propositions 3.3.1 and (3.3.1)) and satisfies
the PS condition (Proposition 3.3.3). If we consider

Γ := {γ ∈ C0([0, 1], Xs
0(Ω)) : γ(0) = u0, γ(1) = u1},

where u1 is the point found in Proposition 3.3.1, and

C := inf
γ∈Γ

sup
t∈[0,1]

Fs,λ,µ(γ(t)),

the MPT in [11] gives us a solution u ∈ Xs
0(Ω) satisfying

Fs,λ,µ(u) = C ≥ β > 0.

Here β is specified in Proposition 3.3.1. Note that this solution and the one
obtained before are different because the previous one had negative energy.
Therefore, for µ small enough, problem (H+

λ,µ) and consequently, (Hλ,µ) has
at least two solutions.

Now we want to see that in fact our problem (H+
λ,µ) has two solutions

for every µ ∈ (0,M). As we said in the introduction of this chapter, with
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this purpose we will generalize a result by Alama to check that the minimal
solution obtained in Proposition 3.2.4 is a local minimum. This will allow us
to apply the MPT. Due to the difficult computations involved, this proof is
presented in detail. Before to prove the following result, we clarify that, in
order to avoid cumbersome notation, along the next proof we use the symbol
of positive or negative part of a function either as subscript or superscript.

Theorem 3.3.5. Let 1 < p < 2∗s − 1. Then for 0 < µ < Υ , where Υ is
defined in (3.2.10), the problem (Hλ,µ) has at least two energy solutions.

Proof. Let µ0 ∈ (0, Υ ) and take µ1 such that µ0 < µ1 < Υ . Then, by
Proposition 3.2.5, we can consider wµ0 and wµ1 the minimal solutions to the
problems (Hλ,µ0) and (Hλ,µ1) respectively, which satisfy wµ0 < wµ1 . Now we
define

W = {w ∈ Xs
0(Ω) : 0 ≤ w ≤ wµ1}.

Since W is a closed convex set of Xs
0(Ω), we know that Fs,λ,µ0 is bounded

from below and semicontinuous in W , and hence there exists w ∈ W such
that Fs,λ,µ0(w) = infw∈W Fs,λ,µ0(w). Let w0 ∈ Xs

0(Ω) be a positive solution
to {

(−∆)sw0 − λ w0

|x|2s = µ0w
q
0 in Ω,

w0 = 0 in RN \ Ω.

Note that, since λ < ΛN,s, the existence is given by minimization. Then, for
0 < ε << µ0, we have that Fs,λ,µ0(εw0) < 0 because the term with power
q + 1 dominates over the quadratic terms. Taking ε small enough, since
εw0 ∈ W , we get that w 6= 0 and Fs,λ,µ0(w) < 0. Following the idea of the
proof of [158, Theorem 2.4], adapted to the nonlocal framework, we also have
that w is a solution to the problem (Hλ,µ0).

Hence, we have two possible cases. If w 6= wµ0 , then we have finished be-
cause we have found two different solutions of (Hλ,µ0). Otherwise, if w = wµ0

and we prove that w is a local minimum of Fs,λ,µ0 , then we obtain a second
solution applying the MPT given in [11], or its refinement given in [95] which
is a contradiction. Therefore w is not the unique solution of (Hλ,µ), and the
conclusion follows.

Therefore our goal now is to prove that w is a local minimum of the func-
tional Fs,λ,µ0 .

Let us argue by contradiction. Suppose w is not a local minimum of
Fs,λ,µ0 in the space Xs

0(Ω). Then there exists a sequence {vn} ⊆ Xs
0(Ω) such
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that

‖vn − w‖Xs
0(Ω) → 0 and Fs,λ,µ0(vn) < Fs,λ,µ0(w). (3.3.8)

Let wµ1 be the minimal solution associated to µ1. Define

wn := (vn − wµ1)+

and

0 ≤ zn(x) :=


0, vn(x) ≤ 0,

vn(x), 0 ≤ vn(x) ≤ wµ1(x),

wµ1(x), wµ1(x) ≤ vn(x).

Note that wn and zn belong to the energy space Xs
0(Ω). Consider now the

sets given by

Tn := {x : zn(x) = vn(x)}, T̃n = Tn ∩ Ω

and

Sn := {x : vn(x) ≥ wµ1(x)}, S̃n = Sn ∩ Ω.

Note that

zn(x) = wµ1(x), x ∈ Sn (3.3.9)

zn(x) = v+
n (x), x ∈ Scn := RN \ Sn. (3.3.10)

Define now

Fµ0(t) =
1

p+ 1
tp+1
+ +

µ0

q + 1
tq+1
+ . (3.3.11)

Thus,

ˆ
Ω

Fµ0(vn) =

ˆ
T̃n

Fµ0(vn) +

ˆ
S̃n

Fµ0(vn) =

ˆ
T̃n

Fµ0(zn) +

ˆ
S̃n

Fµ0(vn).

By simplicity, let’s denote

Vn(x, y) :=
(vn(x)− vn(y))2

|x− y|N+2s
, V +

n (x, y) :=
(v+
n (x)− v+

n (y))2

|x− y|N+2s
,

V −n (x, y) :=
(v−n (x)− v−n (y))2

|x− y|N+2s
, Zn(x, y) :=

(zn(x)− zn(y))2

|x− y|N+2s
,

and

Wn(x, y) :=
(wn(x)− wn(y))2

|x− y|N+2s
.
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Hence, we have
ˆ
RN×RN

Vn(x, y) dx dy =

ˆ
RN×RN

V +
n (x, y) dx dy +

ˆ
RN×RN

V −n (x, y) dx dy

+ 2

ˆ
RN×RN

(v+
n (x)− v+

n (y))(−v−n (x) + v−n (y))

|x− y|N+2s
dx dy

=

ˆ
RN×RN

V +
n (x, y) dx dy +

ˆ
RN

ˆ
RN
V −n (x, y) dx dy

+ 4

ˆ
RN×RN

v+
n (x)v−n (y)

|x− y|N+2s
dx dy. (3.3.12)

Also it is clear thatˆ
Ω

v2
n

|x|2s
dx =

ˆ
Ω

(v+
n )2

|x|2s
dx+

ˆ
Ω

(v−n )2

|x|2s
dx. (3.3.13)

Then from (3.3.11), (3.3.12) and (3.3.13) it follows

Fs,λ,µ0(vn) ≥ C(N, s)

4

ˆ
RN×RN

Vn(x, y) dx dy − λ

2

ˆ
Ω

v2
n

|x|2s
dx−

ˆ
Ω

Fµ0(vn)dx

≥ C(N, s)

4

(ˆ
RN×RN

V +
n (x, y) dx dy +

ˆ
RN×RN

V −n (x, y) dx dy

)
− λ

2

ˆ
Ω

(v+
n )2

|x|2s
dx− λ

2

ˆ
Ω

(v−n )2

|x|2s
dx

−
ˆ
T̃n

Fµ0(zn) dx−
ˆ
S̃n

Fµ0(vn) dx. (3.3.14)

From (3.3.10) we get
ˆ
RN×RN

V +
n (x, y) dx dy =

ˆ
Sn×Sn

V +
n (x, y) dx dy

+

ˆ
Scn×Scn

Zn(x, y) dx dy

+ 2

ˆ
Sn

ˆ
Scn

V +
n (x, y) dx dy. (3.3.15)

Also, since
ˆ
RN×RN

Zn(x, y) dx dy =

ˆ
Sn×Sn

Zn(x, y) dx dy

+

ˆ
Scn×Scn

Zn(x, y) dx dy + 2

ˆ
Sn

ˆ
Scn

Zn(x, y) dx dy,
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we obtain from (3.3.15)ˆ
RN×RN

V +
n (x, y) dx dy =

ˆ
Sn×Sn

V +
n (x, y) dx dy + 2

ˆ
Sn

ˆ
Scn

V +
n (x, y) dx dy

+

ˆ
RN×RN

Zn(x, y) dx dy − 2

ˆ
Sn

ˆ
Scn

Zn(x, y) dx dy

−
ˆ
Sn×Sn

Zn(x, y) dx dy. (3.3.16)

Moreover, using the same argument,ˆ
Ω

(v+
n )2

|x|2s
dx =

ˆ
S̃n

(v+
n )2

|x|2s
dx+

ˆ
Ω

z2
n

|x|2s
dx−

ˆ
S̃n

z2
n

|x|2s
dx. (3.3.17)

Therefore by (3.3.14), (3.3.16) and (3.3.17) we get that

Fs,λ,µ0(vn) ≥ C(N, s)

4

(
1− λ

ΛN,s

)
‖v−n ‖2

Xs
0(Ω) + Fs,λ,µ0(zn)

+
C(N, s)

4

ˆ
Sn×Sn

(v+
n (x)− v+

n (y))2 − (zn(x)− zn(y))2

|x− y|N+2s
dx dy

+
C(N, s)

2

ˆ
Sn

ˆ
Scn

(v+
n (x)− v+

n (y))2 − (zn(x)− zn(y))2

|x− y|N+2s
dx dy

− λ

2

ˆ
S̃n

(v+
n )2 − z2

n

|x|2s
dx

+

ˆ
S̃n

Fµ0(zn)− Fµ0(vn) dx. (3.3.18)

As wn(x) = vn(x)− wµ1(x) when x ∈ Sn, using (3.3.9) we obtain thatˆ
Sn×Sn

(v+
n (x)− v+

n (y))2 − (zn(x)− zn(y))2

|x− y|N+2s
dx dy

=

ˆ
Sn×Sn

(wn(x) + wµ1(x)− wn(y)− wµ1(y))2 − (wµ1(x)− wµ1(y))2

|x− y|N+2s
dx dy

=

ˆ
Sn×Sn

(wn(x)− wn(y))2

|x− y|N+2s
dx dy

+

ˆ
Sn×Sn

2(wn(x)− wn(y))(wµ1(x)− wµ1(y))

|x− y|N+2s
dx dy. (3.3.19)

and ˆ
S̃n

(v+
n )2 − z2

n

|x|2s
dx =

ˆ
S̃n

(wn + wµ1)2 − w2
µ1

|x|2s
dx

=

ˆ
S̃n

w2
n + 2wnwµ1

|x|2s
dx. (3.3.20)
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Also from (3.3.9) and (3.3.10) it follows that

ˆ
Sn

ˆ
Scn

(v+
n (x)− v+

n (y))2 − (zn(x)− zn(y))2

|x− y|N+2s
dx dy

=

ˆ
Sn

ˆ
Scn

(v+
n (x)− wn(y)− wµ1(y))2 − (v+

n (x)− wµ1(y))2

|x− y|N+2s
dx dy

=

ˆ
Sn

ˆ
Scn

w2
n(y)− 2wn(y)(v+

n (x)− wµ1(y))

|x− y|N+2s
dx dy. (3.3.21)

Furthermore, since suppwn = Sn, then
ˆ
RN×RN

Wn(x, y) dx dy =

ˆ
Sn×Sn

Wn(x, y) dx dy

+ 2

ˆ
Sn

ˆ
Scn

w2
n(y)

|x− y|N+2s
dx dy. (3.3.22)

Using (3.3.19), (3.3.20), (3.3.21) and (3.3.22), from (3.3.18) we get that

Fs,λ,µ0(vn) ≥ C(N, s)

4

((
1− λ

ΛN,s

)
‖v−n ‖2

Xs
0(Ω) + ‖wn‖2

Xs
0(Ω)

)
+ Fs,λ,µ0(zn)

+
C(N, s)

2

ˆ
Sn×Sn

(wn(x)− wn(y))(wµ1(x)− wµ1(y))

|x− y|N+2s
dx dy

− C(N, s)

ˆ
Sn

ˆ
Scn

wn(y)(v+
n (x)− wµ1(y))

|x− y|N+2s
dx dy

− λ

2

ˆ
S̃n

w2
n + 2wnwµ1

|x|2s
dx

+

ˆ
S̃n

Fµ0(zn)− Fµ0(vn) dx. (3.3.23)

Since v+
n (x) ≤ wµ1(x), for x ∈ Scn, using that suppwn = Sn, from (3.3.23) it

follows that

Fs,λ,µ0(vn) ≥ C(N, s)

4

((
1− λ

ΛN,s

)
‖v−n ‖2

Xs
0(Ω) + ‖wn‖2

Xs
0(Ω)

)
+ Fs,λ,µ0(zn)

+
C(N, s)

2

ˆ
RN×RN

(wn(x)− wn(y))(wµ1(x)− wµ1(y))

|x− y|N+2s
dx dy

− λ

2

ˆ
S̃n

w2
n(x) + 2wnwµ1(x)

|x|2s
dx

+

ˆ
S̃n

Fµ0(zn)− Fµ0(vn) dx. (3.3.24)
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Since wµ1 is a supersolution of (Hλ,µ0), testing in that problem with the
function wn, we obtain that

C(N, s)

2

ˆ
RN×RN

(wn(x)− wn(y))(wµ1(x)− wµ1(y))

|x− y|N+2s
dx dy − λ

ˆ
Ω

wnwµ1

|x|2s
dx

≥
ˆ
S̃n

wnF
′
µ0

(wµ1) dx. (3.3.25)

Now, from (3.3.24), by (3.1.5) and (3.3.25) we have that

Fs,λ,µ0(vn) ≥ C(N, s)

4

(
1− λ

ΛN,s

)
‖v−n ‖2

Xs
0(Ω) +

C(N, s)

4
‖wn‖2

Xs
0(Ω)

+ Fs,λ,µ0(zn)− λ

2

ˆ
S̃n

w2
n

|x|2s
dx

+

ˆ
S̃n

(Fµ0(wµ1)− Fµ0(wµ1 + wn) + wnF
′
λ0

(wµ1)) dx

≥ C(N, s)

4
‖wn‖2

Xs
0(Ω) + Fs,λ,µ0(zn)− λ

2

ˆ
S̃n

w2
n

|x|2s
dx

+ µ0

ˆ
S̃n

wq+1
µ1
− (wµ1 + wn)q+1

q + 1
+ wnw

q
µ1
dx

+

ˆ
S̃n

wp+1
µ1
− (wµ1 + wn)p+1

p+ 1
+ wnw

p
µ1
dx.

Since 0 < q + 1 < 2 it follows that

0 ≤ 1

q + 1

(
(wµ1 + wn)q+1 − wq+1

µ1

)
− wnwqµ1

≤ q

2

w2
n

w1−q
µ1

. (3.3.26)

On the other hand, using that wµ1 is a solution of (Hλ, µ1), since

|wn(x)− wn(y)|2 ≥ (wµ1(x)− wµ1(y))

(
w2
n

wµ1

(x)− w2
n

wµ1

(y)

)
,

we obtain from (3.3.26), that

C(N, s)

2
‖wn‖2

Xs
0(Ω) ≥

ˆ
Ω

(
λ
wµ1

|x|2s
+ µ1w

q
µ1

)
w2
n

wµ1

dx

≥ λ

ˆ
Ω

w2
n

|x|2s
dx+ µ0

ˆ
Ω

w2
n

w1−q
µ1

dx. (3.3.27)
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Hence from (3.3.26) and (3.3.27) we get

q

2

(
C(N, s)

2
‖wn‖2

Xs
0(Ω) − λ

ˆ
Ω

w2
n

|x|2s
dx

)
≥ λ0

ˆ
S̃n

(wµ1 + wn)q+1 − wq+1
µ1

q + 1
− wnwqµ1

dx. (3.3.28)

Moreover, since p+ 1 > 2, in S̃n, we have that

0 ≤ 1

p+ 1

(
(wµ1 + wn)p+1 − wp+1

µ1

)
− wpµ1

wn

≤ C(p)(wp−1
µ1

w2
n + wp+1

n ). (3.3.29)

Therefore, from (3.3.26), by (3.3.28) and (3.3.29) it follows that

Fs,λ,µ0(vn) ≥ (1− q)
(

1

4
C(N, s)‖wn‖2

Xs
0(Ω) −

λ

2

ˆ
Ω

w2
n

|x|2s
dx

)
+ Fs,λ,µ0(zn) +

ˆ
S̃n

C(p)(−wp−1
µ1

w2
n − wp+1

n ) dx,

≥ C1‖wn‖2
Xs

0(Ω) + Fs,λ,µ0(zn),

+

ˆ
S̃n

C(p)(−wp−1
µ1

w2
n − wp+1

n ) dx, (3.3.30)

where

C1 = (1− q)C(N, s)

4

(
1− λ

ΛN,s

)
> 0.

What remains to prove now is that

lim
n→∞

|S̃n| = 0. (3.3.31)

Let ε, δ > 0, and define

An = {x ∈ Ω : vn(x) ≥ wµ1(x) and wµ1 > w + δ}

Bn = {x ∈ Ω : vn(x) ≥ wµ1(x) and wµ1 ≤ w + δ}.

Since

0 = |{x ∈ Ω : wµ1(x) < w}| =
∣∣∣∣ ∞⋂
j=1

{x ∈ Ω : wµ1(x) < w +
1

j
}
∣∣∣∣

= lim
j→∞

∣∣∣∣{x ∈ Ω : wµ1(x) < w +
1

j
}
∣∣∣∣, (3.3.32)
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then, for j0 large enough and δ < 1
j0

we have

|{x ∈ Ω : wµ1(x) < w + δ}| ≤ ε

2
.

Therefore |Bn| ≤ ε
2
. Moreover, by (3.4.6),

lim
n→∞

‖vn − w‖Xs
0(Ω) = 0.

Then, by Theorem 0.0.2 and Hölder inequality, it follows that

lim
n→∞

‖vn − w‖L2(Ω) = 0.

That is, for n ≥ n0 large enough we get that

δ2ε

2
≥
ˆ

Ω

|vn − w|2 dx ≥
ˆ
An

|vn − w|2 dx ≥ δ2|An|.

Therefore |An| ≤
ε

2
, for n ≥ n0. Since S̃n ⊂ Bn ∪ An we conclude that

|S̃n| ≤ ε for n ≤ n0. Hence (3.3.31) follows.
Since p + 1 < 2∗s, by (3.3.31), Hölder inequality and Theorem 0.0.2, we

obtain ˆ
S̃n

wp+1
n + wp−1

µ1
w2
n dx ≤ o(1)

(
‖wn‖2

Xs
0(Ω) + ‖wn‖p+1

Xs
0(Ω)

)
.

From (3.3.30) we conclude that

Fs,λ,µ0(vn) ≥ C1‖wn‖2
Xs

0(Ω) + Fs,λ,µ0(zn)− o(1)
(
‖wn‖2

Xs
0(Ω) + ‖wn‖p+1

Xs
0(Ω)

)
.

Hence, for n large enough, since zn ∈ W and w was the infimum of Fs,λ,µ0

over W , this implies

Fs,λ,µ0(vn) ≥ Fs,λ,µ0(zn) ≥ Fs,λ,µ0(w),

which is a contradiction with the hypothesis (3.3.8). Hence w is a minimum.

3.4 Non-existence for p ≥ p(λ, s): complete

blow up.

Let Ω be an open bounded set of RN . In [85, Theorem 0.2 ] it is proved,
using an extension tool, that for 0 < λ ≤ ΛN,s and p ≥ p(λ, s), there does
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not exist a positive u ∈ Ls∩Lploc(B \{0}) in any ball B centered at the origin
such that

(−∆)su− λ u

|x|2s
≥ up in D′(B \ {0}),

where Ls is defined in (0.0.24). We remark here that this non existence
result could be also obtained using a generalization of the Picone’s identity
(see Subsection 3.4.1 below) and [85, Lemma 3.2]. As a byproduct of the
existence and non-existence results of the previous sections we are able to
prove complete blow-up given by the following.

Definition 3.4.1. ( [80, Definition 0.1]) Let {an(x)}, {fn(u)} and {gn(u)}
be increasing sequences of bounded smooth functions converging pointwise
respectively to |x|2s, uq and up. Let un be the minimal nonnegative solution
of {

(−∆)sun − λanTn(un) = µfn(un) + gn(un) in Ω,
un = 0 in RN \ Ω ,

where

Tn(x) :=

{
x if |x| ≤ n,
n x
|x| if |x| > n.

(3.4.1)

We say that there is a complete blow-up in (Hλ, µ) if, given {an(x)}, {fn(u)},
{gn(u)} and {un} as above, then

un(x)

δs(x)
→∞ uniformly in Ω,

where δ(x) = dist(x, ∂Ω).

We will see that the solutions un of the truncated problems considered in
this chapter satisfy that un(x)→∞ when n→∞ and x ∈ Ω. Before prov-
ing this result, that corresponds with Theorem 3.4.3, we need the following
auxiliary lemma that is a generalization of [39, Lemma 3.2].

Lemma 3.4.2. Let F (x, u) ≥ 0 in L∞(Ω), and let u be the solution of

(DF ) =

{
(−∆)su = F (x, u) in Ω,

u = 0 in RN \ Ω.

Then,
u(x)

δs(x)
≥ C

ˆ
Ω

F (z, u)δs(z) dz, x ∈ Ω, (3.4.2)

where δ(z) = dist(z, ∂Ω) and C is a constant depending only on Ω.
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Proof. First of all we will prove (3.4.2) for points that belong to a, fix but
arbitrary, compact set K ⊂ Ω. Let x0 ∈ K. There exits r > 0 such that
r ≤ dist(x0, ∂Ω) for every x0 ∈ K. Then by [151, Proposition 2.2.6 and
Proposition 2.2.2], we have

u(x0) ≥
ˆ
RN
u(z)γr(z − x0) dz =

ˆ
Ω

u(z)γr(z − x0) dz > 0, x0 ∈ K.

Here γr = (−∆)sΓr where Γr is a C1,1 function that matches outside the ball
B(0, r) with the fundamental solution Φ := C|x|2s−N and that is a paraboloid
inside this ball. Therefore there exist a positive constant c > 0 such that
u(x0) > c for every x0 ∈ K. That is

u(x0) > M

ˆ
Ω

u(z) dz, x0 ∈ K, (3.4.3)

where

M = c

(ˆ
Ω

u(z) dz

)−1

> 0.

Consider now ξ1, the solution of the problem (Dξ1) given in (3.2.7), as a test
function in (DF ). By (3.4.3) we obtain

u(x0) ≥ M

ˆ
Ω

u(z) dz

= M

ˆ
Ω

F (z, u)ξ1(z) dz, x0 ∈ K.

Then, by Hopf’s Lemma ( [54] or [130, Lemma 3.2]),

u(x0) ≥ C

ˆ
Ω

F (z, u)δs(z) dz, x0 ∈ K.

Moreover, since c1 ≤ δs(x0) ≤ C2 for x0 ∈ K, then there exists C̃ > 0 such
that

u(x0)

δs(x0)
≥ C̃

ˆ
Ω

F (z, u)δs(z)dz , x0 ∈ K. (3.4.4)

Take now w satisfying 
(−∆)sw = 0 in Ω \K,
w = 0 in RN \ Ω,
w = 1 in K.

We define

v(x) =
u(x)

C̃

ˆ
Ω

F (z, u)δs(z) dz
, x ∈ RN ,
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where C̃ was given in (3.4.4). Therefore
(−∆)sv ≥ 0 in Ω
v = 0 in RN \ Ω
v ≥ 1 in K.

By the maximum principle, v(x) ≥ w(x) for x ∈ Ω \ K. Then, since by
Hopf’s Lemma we get that w(x) ≥ Cδs(x), it follows that

u(x0)

δs(x0)
≥ C

ˆ
Ω

F (z, u)δs(z) dz, x0 ∈ Ω \K, (3.4.5)

for some C > 0. Hence, by (3.4.4) and (3.4.5), we obtain the desired estimate
given in (3.4.2).

Now we can prove the following.

Theorem 3.4.3. Assume that 0 < λ ≤ ΛN,s. Let p ≥ p(λ, s). Then there
exists complete blow up of the problem (Hλ,µ).

Proof. We argue by contradiction. Consider the positive minimal solution
un to the truncated problem

(Hn) =

{
(−∆)sun = λan(x)Tn(un) + µfn(un) + gn(un) in Ω,
un = 0 in RN \ Ω ,

where

an(x) := Tn

(
1

|x|2s

)
, fn(u) := Tn(uq+), gn(u) := Tn(up+)

and Tn is the truncated function defined in (3.4.1). Note that we can assume
that this minimal solution exists because, since

λan(x)Tn(un) + µfn(un) + gn(un) ≤ Cn,

we can consider, for a suitable c > 0, the functions u := Cnξ1 and 0 ≤ u :=
cϕ1 as a well ordered super and subsolution of (Hn) respectively. Here ϕ1

is the nonnegative first eigenfunction of the fractional Laplacian defined in
(2.2.3) and ξ1 is given in (3.2.7).

We suppose that

ˆ
Ω

(λan(x)Tn(un) + µfn(un) + gn(un))δs(x)dx ≤ C <∞, n ∈ N, (3.4.6)
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with C independent of n. Using ξ1 as a test function in problem (Hn),
by [130, Proposition 1.1], we obtain that

ˆ
RN
un =

ˆ
RN
un(−∆)sξ1

= λ

ˆ
Ω

anTn(un)ξ1 + µ

ˆ
Ω

fn(un)ξ1 +

ˆ
Ω

gn(un)ξ1

≤ C.

Hence, up to a subsequence, {un} converges in L1(Ω) to a positive limit u.

Then, since λan(x)Tn(un) + µfn(un) + gn(un) increases to λ
u

|x|2s
+ µuq + up

in Ω, (3.4.6) also gives

an(x)Tn(un) + µfn(un) + gn(un)↗ u

|x|2s
+ µuq + up in L1(Ω, δs(x) dx),

again by monotone convergence. Then we can pass to the limit in (Hn)
obtaining a positive weak solution of the problem{

(−∆)su− λ u
|x|2s = µuq + up in Ω

u = 0 in RN \ Ω .

But this is a contradiction with [85, Theorem 0.2], and therefore

lim
n→∞

ˆ
Ω

(λan(x)Tn(un) + µfn(un) + gn(un))δs(x)dx =∞.

We conclude applying Lemma 3.4.2.

3.4.1 Fractional Picone’s inequality.

To finish this chapter, we present here an extension of a well-known inequal-
ity, that in the case of regular functions and the Laplacian operator was
obtained by Picone in [129] (see also [3] and [8] for an extension to positive
Radon measures and the p-Laplacian with p > 1).

Theorem 3.4.4. Picone Inequality. Consider u, v ∈ Xs
0(Ω) with u ≥ 0.

Assume that (−∆)su ≥ 0 restricted to Ω represents a positive Borel measure.
Then, ˆ

Ω

(−∆)su

u
v2 dx ≤ C(N, s)

2
‖v‖2

Xs
0(Ω).
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Proof. Let us recall first that, by (2.1.4) and (2.1.6), if u, v ∈ Xs
0(Ω), we have

〈u, v〉Xs
0(Ω) =

2

C(N, s)

ˆ
RN
u(−∆)sv =

2

C(N, s)

ˆ
RN
v(−∆)su

=

ˆ
RN×RN

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dx dy. (3.4.7)

This means that, writing A(u, v)(x, y) = (u(x)− u(y))(v(x)− v(y)), thenˆ
RN×RN

A(u, v)(x, y)

|x− y|N+2s
dx dy = 〈u, v〉Xs

0(Ω).

Define vk = Tkv given in (3.4.1) and ũ = u+ η, for η > 0. If we set w =
v2
k

ũ
,

then one can easily check that w ∈ Xs
0(Ω). We will prove that, for every

k, η > 0,
2

C(N, s)

ˆ
Ω

(−∆)su
v2
k

ũ
≤ ‖vk‖2

Xs
0(Ω). (3.4.8)

Note that, since ‖vk‖2
Xs

0(Ω) ≤ ‖v‖2
Xs

0(Ω), taking k → ∞ and η → 0 in the
previous inequality we would obtain our result by monotone convergence.

From (3.4.7), prove (3.4.8) is equivalent to obtain that

〈u,w〉Xs
0(Ω) ≤ ‖vk‖2

Xs
0(Ω). (3.4.9)

Inequality (3.4.9), in turns, follows from the trivial pointwise estimate

A(u,w)(x, y) ≤ A(vk, vk)(x, y), (x, y) ∈ RN × RN ,

which we now show. Observe that

A(u,w)(x, y) = (u(x)− u(y))(w(x)− w(y))

= (ũ(x)− ũ(y))

(
v2
k(x)

ũ(x)
− v2

k(y)

ũ(y)

)
= v2

k(x) + v2
k(y)− v2

k(x)
ũ(y)

ũ(x)
− v2

k(y)
ũ(x)

ũ(y)
.

Then, putting α2 = ũ(y)
ũ(x)

and using that 2ab ≤ a2 + b2, we get

A(u,w)(x, y) = v2
k(x) + v2

k(y)− (vk(x)α)2 − (vk(y)/α)2

≤ v2
k(x) + v2

k(y)− 2vk(x)vk(y)

= A(vk, vk)(x, y).
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Chapter 4

Bootstrap regularity
for integro-differential
equations.

4.1 Introduction, preliminaries and functional

settings.

The aim of this chapter is to prove a regularity result for some nonlocal
linear elliptic equations. Recall that the model example for a linear elliptic
equation is given by the Laplace equation.

∆u(x) = 0 in Ω.

Roughly speaking, we can say that elliptic equations are those which have
similar properties to the above equation. The most natural, coordinate inde-
pendent, definition of the Laplace operator may be

∆u(x) = lim
r→0

c

rN+2

ˆ
Br

(u(x+ y)− u(x)) dy, x ∈ Ω.

A simple, although rather uninteresting, example of a nonlocal equation
would be the following non infinitesimal relationship

ˆ
Br

(u(x+ y)− u(x)) dy = 0, x ∈ Ω,

stated for a fixed r > 0.

135



136 Chapter 4. Integro-differential equations.

The equation tells us that the value u(x) is equal to the average of u
in the ball Br(x). A more general integral equation is given by a weighted
version of the above, that is,

ˆ
RN

(u(x+ y)− u(x))K(y)dy = 0, x ∈ Ω,

where K : RN → R is a non negative kernel. The equation shows that
u(x) is a weighted average of the values of u in the neighborhood of x. This
is true in some sense for all elliptic equations, but it is most apparent for
integro-differential ones.

As we know, (see Chapters 2 and 3), in the Dirichlet problem associated
to this type of equations, the boundary values have to be prescribed in the
whole complement of the domain and not only in the boundary. That is,

ˆ
RN

(u(x+ y)− u(x))K(y) dy = 0, x ∈ Ω,

u(x) = g(x), x ∈ RN \ Ω.

Similar to the Laplace equation that comes from Brownian motion, integro-
differential equations are derived from discontinuous stochastic processes,
more precisely, from Levy processes with jumps. We remark here that a
Levy process is an important type of stochastic processes, that is, a family
of RN -valued random variables each indexed by a positive number t ≥ 0.
Roughly speaking a Levy proces is a random trajectory, that generalizes the
concept of Brownian motion, and that may contain jump discontinuities.
More precisely jumps from a point x to x + y, with y ∈ A for some set
A ⊆ RN , follow a Poisson process whose intensity is related with the Levy
measure µ. In our case µ is given by

µ(A) =

ˆ
A

K(y) dy, A ⊆ RN .

The kernel K represents then the frequency of jumps in each direction. The
small jumps may happen more often than large ones. In fact, small jumps
may happen infinitely often and still have a well defined stochastic process.
This means that the kernels K may have a singularity at the origin. The
exact assumption one has to make is the standar Levy-Khintchine condition
given by ˆ

RN
K(y) min{1, |y|2} dy <∞.

Note that this guarantees that for u ∈ C2 near the origin and bounded at
infinity, the operator makes sense.
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These type of processes, that is, Levy processes, are well understood and
studied in probability. The associated generating operator is given by

Iu(x) =

ˆ
RN

(u(x+ y)− u(x)− y · ∇u(x)χB1(y))K(y) dy.

Assuming that K(y) = K(−y), this expression simplifies to

Iu(x) = P.V.

ˆ
RN

(u(x+ y)− u(x))K(y) dy,

or, equivalently, to

Iu(x) =
1

2

ˆ
RN

(u(x+ y) + u(x− y)− 2u(x))K(y) dy

:=
1

2

ˆ
RN
δu(x, y)K(y) dy

These equations are linear. However, an optimal control problem for jump
processes leads to the non linear integro-differential Bellman equation

Iu(x) := sup
α

ˆ
RN

(u(x+ y)− u(x))Kα(y) dy = 0, x ∈ Ω.

Another possibility is to consider a problem with two parameters, which
are controlled by two competitive players. This is the non linear integro-
differential Isaacs equation.

Iu(x) := inf
β

sup
α

ˆ
RN

(u(x+ y)− u(x))Kαβ(y) dy = 0, x ∈ Ω.

The difference of the two previous operators is the convexity and they have
been recently studied in, for example, [56,57]. See also [150] for more details.

Other contexts in which integral equations arise are for example popula-
tion dynamics, kinetic models ( [124]), nonlocal electrostatics ( [102, 105]),
nonlocal image processing and fluid mechanics (see for instance [62,69,149]).

Following the classical case, a natural ellipticity condition for linear integro-
differential operators would be to impose that the kernel is comparable to
that of the fractional Laplacian. The condition could be

c(N, s)
λ

|y|N+s
≤ K(y) ≤ c(N, s)

Λ

|y|N+s
, with K(y) = K(−y).

But, proceeding as in the theory of fully non linear equations, other ellipticity
conditions are possible (see [56] for a definition that involves the non local
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Pucci maximal operators). Note that, with this assumptions in the kernel K,
if u ∈ C1,1(x)∩Ls/2(RN) then the integro-differential operator is well defined
at x. When u is less regular we interpret the operator in a viscosity sense
(see Definition 4.1.2 below). Here C1,1(x) is a family of functions defined as
follows.

Definition 4.1.1. ( [56]) A function ϕ is said to be C1,1 at the point x0, and
we write ϕ ∈ C1,1(x0), if there are a vector v ∈ RN and a positive number M
such that

|ϕ(x0 + y)− ϕ(x0)− v · y| ≤M |y|2 for |y| small enough.

A function ϕ is C1,1 in a set Ω if ϕ ∈ C1,1(x) for every x ∈ Ω.

We also remark here that we can recover second order elliptic operators
as limits of integral ones. In fact, given any bounded, even, positive function
a : RN → R, the family of operators

Lsu(x) = (2− s)
ˆ
RN

(u(x+ y) + u(x− y)− 2u(x))
a(y/|y|)
|y|N+s

dy, 0 < s < 2,

defines in the limit s → 2− a second order linear elliptic operator (possibly
degenerate). This can be checked for any fixed u ∈ C2 by a straightforward
computation using the second order Taylor expansion.

This fact has motivated the study of the non local version of some im-
portant regularity theorems such as the Krylov-Safonov’s Theorem (KST),
[112, 113], and Evans-Krylov’s Theorem (EKT), [83, 111]. These results,
adapted to integro-differential equations, involves the notion of viscosity so-
lutions. Roughly speaking, the continuous function u satisfies Iu ≥ f in B1

in the viscosity sense (u is subsolution) if the inequality holds at all points
y ∈ B1 where u admits a smooth tangent function by above. Similarly, it
is possible to define the notion of supersolution. More precisely we have the
following.

Definition 4.1.2. ( [56–58]) A function u : RN → R, upper (lower) semi
continuous in Ω, is a subsolution (supersolution) to Iu = f in Ω in the
viscosity sense, and we write Iu ≥ f (Iu ≤ f) in Ω, if every time we are in
the situation that

x0 is a point in Ω,

O is a neighborhood of x0 in Ω,

ϕ : RN → R is some function such that ϕ ∈ C1,1(x0),
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ϕ(x0) = u(x0), and

ϕ(y) > u(y) (ϕ(y) < u(y)) for every y ∈ O \ {x0},

then Iv(x0) ≥ f(x0) (Iv(x0) ≤ f(x0)), with

v(x) :=

{
ϕ, in O,
u, in RN \ O.

A viscosity solution is a function u for which both Iu ≤ f and Iu ≥ f hold
in Ω.

The idea of the definition is to translate the difficulty of pointwise eval-
uation of the operator I into a simple action on a smooth test function ϕ.
In this way, the function u is only required to be continuous. More pre-
cisely, upper (lower) semicontinuous for the inequality Iu ≥ 0 (Iu ≤ 0). The
function ϕ is a test function “touching u from above (below)” at x0. Aldo
the previous definition focuses in the behavior around the point x0, we are
implicity assuming that u is integrable at infinity with respect to the weight
determinated by the kernel of I.

As we mentioned before, using the previous notion of viscosity solution
L. Caffarelli and L. Silvestre have recently proved in [56, Theorem 12.1], the
non local version of the KST for fully nonlinear, elliptic and invariant by
translations equations. Later the same authors extended the C1,α regularity
to linear, and non linear, equations with variable coefficients ( [57, Theorem
6.1 and Theorem 6.3]). Finally in [58, Theorem 1.1] they proved the non local
version of the EKT for invariant convex non local fully non linear equations
leaving open the case where the kernels have a dependence on x. Another
type of regularity results for integro-differential equations can be found in
[23].

Our objective in this chapter is to improve the recent result of [57] for
linear equations that involves a special family of kernels not invariant under
translations in order to, in the next chapter, prove the regularity theorem
for the non local minimal surfaces (see Theorem 5.1.1). This is, in fact, the
statement of Theorem 4.2.1.

4.2 Proof of the main result: regularity of

the solutions.

As we said in the Introduction of this work, along this chapter we will consider
a family of kernel that are not invariant by translation. More precisely they
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satisfy that
there exist a0, r0 > 0 and 0 < η < a0/4 such that∣∣∣∣ |w|N+σK(x,w)

2− σ
− a0

∣∣∣∣ ≤ η, x ∈ B1, w ∈ Br0 \ {0}.
(4.2.1)

Also we assume that

there exist k ∈ N ∪ {0} and Ck = C(k) > 0 such that

K ∈ Ck+1
(
B1 × (RN \ {0})

)
,

‖∂µx∂θwK(·, w)‖L∞(B1) ≤
Ck

|w|N+σ+|θ| ,

µ, θ ∈ (N ∪ {0})N , |µ|+ |θ| ≤ k + 1, w ∈ RN \ {0}.

(4.2.2)

Under the above assumptions, in this section we will prove the principal
result of this chapter. That is, we will give the proof of the following.

Theorem 4.2.1. Fix 1 < σ < 2, k ∈ N ∪ {0}, and let u ∈ L∞(RN) be a
viscosity solution of the equation

ˆ
RN
K(x,w) δu(x,w)dw = f(x, u(x)) inside B1, (4.2.3)

with f ∈ Ck+1(B1×R). Assume that K : B1×(RN \{0})→ (0,+∞) satisfies
(4.2.1) and (4.2.2) for the same value of k.

Then, if η in (4.2.1) is sufficiently small (the smallness being independent
of k), we have u ∈ Ck+σ+α(B1/2) for any α < 1, and

‖u‖Ck+σ+α(B1/2) ≤ C
(
1 + ‖u‖L∞(RN ) + ‖f‖L∞(B1×[−M,M ])

)
, (4.2.4)

where M = ‖u‖L∞(B1) and C > 0 depends only on N , σ, k, Ck, and
‖f‖Ck+1(B1×R).

As customary, when 1 < σ+α < 2 (resp. σ+α > 2), by (4.2.4) we mean
that u ∈ Ck+1,σ+α−1(B1/2) (resp. u ∈ Ck+2,σ+α−1(B1/2)). To avoid any issue,
we will always implicitly assume that α is chosen different from 2−σ, so that
σ + α 6= 2.

Before starting with the proof of the previous result, we note that if in
(4.2.2) one replaces the Ck+1-regularity of K with the Ck,β-assumption

‖∂µx∂θwK(·, w)‖C0,β(B1) ≤
Ck

|w|N+σ+|θ| , (4.2.5)

for all |µ|+ |θ| ≤ k, then we obtain the following.
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Theorem 4.2.2. Let 1 < σ < 2, k ∈ N ∪ {0}, and take u ∈ L∞(RN) a
viscosity solution of equation (4.2.3) with f ∈ Ck,β(B1 × R). Assume that
K : B1× (RN \ {0})→ (0,+∞) satisfies assumptions (4.2.1) and (4.2.5) for
the same value of k.

Then, if η in (4.2.1) is sufficiently small (the smallness being independent
of k), we have u ∈ Ck+σ+α(B1/2) for any α < β, and

‖u‖Ck+σ+α(B1/2) ≤ C
(
1 + ‖u‖L∞(RN ) + ‖f‖L∞(B1×[−M,M ])

)
,

where M = ‖u‖L∞(B1), C > 0 depends only on n, σ, k, Ck, and ‖f‖Ck,β(B1×R).

The proof of Theorem 4.2.2 is essentially the same as the one of Theorem
4.2.1, the only difference being that instead of differentiating the equations
(see for instance the argument in Section 4.2.4) one should use incremental
quotients. Although this does not introduce any major additional difficulties,
it makes the proofs longer and more tedious. Hence, since the proof of
Theorem 4.2.1 already contains all the main ideas to prove also Theorem
4.2.2, we will show the details of the proof only for Theorem 4.2.1. The core
of this proof is the step k = 0, which will be proved in several steps.

4.2.1 Toolbox.

We collect here some preliminary observations on scaled Hölder norms, cov-
ering arguments, and differentiation of integrals that will play an important
role in the proof of Theorem 4.2.1. This material is mainly technical, and
the expert reader may go directly to Section 4.2.2.

Scaled Hölder norms and coverings.

Given m ∈ N, 0 < α < 1, x ∈ RN , and r > 0, we define the Cm,α-norm of a
function u in Br(x) as

‖u‖Cm,α(Br(x)) :=
∑
|γ|≤m

‖Dγu‖L∞(Br(x)) +
∑
|γ|=m

sup
y 6=z∈Br(x)

|Dγu(y)−Dγu(z)|
|y − z|α

.

For our purposes it is also convenient to look at the following classical rescaled
version of the norm:

‖u‖∗Cm,α(Br(x)) :=
m∑
j=0

∑
|γ|=j

rj‖Dγu‖L∞(Br(x))

+
∑
|γ|=m

rm+α sup
y 6=z∈Br(x)

|Dγu(y)−Dγu(z)|
|y − z|α

.
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This scaled norm behaves nicely under covering, as the next observation
points out.

Lemma 4.2.3. Let m ∈ N, 0 < α < 1, ρ > 0, and x ∈ RN . Fix 0 < λ <
1, and suppose that Bρ(x) is covered by finitely many balls {Bλρ/2(xk)}Nok=1.
Then, there exists Co > 0, depending only on λ, α and m, such that

‖u‖∗Cm,α(Bρ(x)) ≤ Co

No∑
k=1

‖u‖∗Cm,α(Bλρ(xk)).

Proof. We first observe that, if j ∈ {0, . . . ,m} and |γ| = j,

ρj‖Dγu‖L∞(Bρ(x)) ≤ λ−j(λρ)j max
k=1,...,No

‖Dγu‖L∞(Bλρ(xk))

≤ λ−m
No∑
k=1

(λρ)j‖Dγu‖L∞(Bλρ(xk))

≤ λ−m
No∑
k=1

‖u‖∗Cm,α(Bλρ(xk)).

Now, let |γ| = m. We claim that

ρm+α sup
y 6=z∈Bρ(x)

|Dγu(y)−Dγu(z)|
|y − z|α

≤ 2λ−(m+α)

No∑
k=1

‖u‖∗Cm,α(Bλρ(xk)).

To check this, we take y, z ∈ Bρ(x) with y 6= z and we distinguish two cases.
If |y − z| < λρ/2 we choose ko ∈ {1, . . . , No} such that y ∈ Bλρ/2(xko).
Then |z − xko| ≤ |z − y| + |y − xko| < λρ, which implies y, z ∈ Bλρ(xko),
therefore

ρm+α |Dγu(y)−Dγu(z)|
|y − z|α

≤ ρm+α sup
ỹ 6=z̃∈Bλρ(xko )

|Dγu(ỹ)−Dγu(z̃)|
|ỹ − z̃|α

≤ λ−(m+α)‖u‖∗Cm,α(Bλρ(xko )).

Conversely, if |y − z| ≥ λρ/2, recalling that 0 < α < 1, we have

ρm+α |Dγu(y)−Dγu(z)|
|y − z|α

≤ 2λ−αρm‖Dγu‖L∞(Bρ(x))

≤ 2λ−αρm
No∑
k=1

‖Dγu‖L∞(Bλρ(xk))

≤ 2λ−(m+α)

No∑
k=1

‖u‖∗Cm,α(Bλρ(xk)).

This proves the claim and concludes the proof.
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Scaled norms behave also nicely in order to go from local to global bounds,
as the next result shows.

Lemma 4.2.4. Let m ∈ N, 0 < α < 1, and u ∈ Cm,α(B1). Suppose that there
exist 0 < µ < 1/2 and µ < ν ≤ 1 for which the following holds: for any ε > 0
there exists Λε > 0 such that, for any x ∈ B1 and any 0 < r ≤ 1 − |x|, we
have

‖u‖∗Cm,α(Bµr(x)) ≤ Λε + ε‖u‖∗Cm,α(Bνr(x)). (4.2.6)

Then there exist constants εo, C > 0, depending only on N , m, µ, ν, and α,
such that

‖u‖Cm,α(Bµ) ≤ CΛεo .

Proof. First of all, since 0 < r < 1, we observe that

‖u‖∗Cm,α(Bµr(x)) ≤ ‖u‖Cm,α(Bµr(x)) ≤ ‖u‖∗Cm,α(B1) = ‖u‖Cm,α(B1),

which implies that

M := sup
x∈B1

r∈(0,1−|x|]

‖u‖∗Cm,α(Bµr(x)) <∞.

We now use a covering argument: pick 0 < λ ≤ 1/2 to be chosen later, and
fixed any x ∈ B1 and 0 < r ≤ 1 − |x| we cover Bµr(x) with finitely many
balls {Bλµr/2(xk)}Nok=1, with xk ∈ Bµr(x) and some No depending only on λ
and the dimension N . We now observe that, since µ < 1/2,

|xk|+ r/2 ≤ |xk − x|+ |x|+ r/2 ≤ µr + |x|+ r/2 < r + |x| ≤ 1. (4.2.7)

Hence, since λ ≤ 1/2, we can use (4.2.6) (with x = xk and r scaled to λr) to
obtain

‖u‖∗Cm,α(Bλµr(xk)) ≤ Λε + ε‖u‖∗Cm,α(Bλνr(xk)).

Then, using Lemma 4.2.3 with ρ := µr and λ = µ/(2ν), and recalling (4.2.7)
and the definition of M , we get

‖u‖∗Cm,α(Bµr(x)) ≤ Co

No∑
k=1

‖u‖∗Cm,α(Bλµr(xk))

≤ CoNoΛε + Coε

No∑
k=1

‖u‖∗Cm,α(Bλνr(xk))

= CoNoΛε + Coε
No∑
k=1

‖u‖∗Cm,α(Bµr/2(xk))

≤ CoNoΛε + εCoNoM.
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Therefore,
M ≤ CoNoΛε + εCoNoM,

so that, by choosing εo := 1/(2CoNo),

M ≤ 2CoNoΛεo .

Thus we have proved that

‖u‖∗Cm,α(Bµr(x)) ≤ 2CoNoΛεo x ∈ B1, 0 < r ≤ 1− |x|,

and the desired result follows by setting x = 0 and r = 1.

Differentiating integral functions.

In the proof of Theorem 4.2.1 we will need to differentiate under the integral
sign smooth functions that are either supported near the origin or far from
it. This purpose will be accomplished in Lemmas 4.2.7 and 4.2.8, after some
technical bounds that are needed in order to use the Dominated Convergence
Theorem.

Recalling the notation introduced in (0.0.36), we get the following.

Lemma 4.2.5. Let r > r′ > 0, v ∈ C3(Br), x ∈ Br′ and h ∈ R with |h| <
(r − r′)/2. Then, for any w ∈ RN with |w| < (r − r′)/2, we have

|δv(x+ he1, w)− δv(x,w)| ≤ |h| |w|2‖v‖C3(Br).

Proof. Fixed x ∈ Br′ and |w| < (r−r′)/2, for every (r′−r)/2 ≤ h ≤ (r−r′)/2
we set

g(h) := v(x+ he1 + w) + v(x+ he1 − w)− 2v(x+ he1).

Then

|g(h)− g(0)| ≤ |h| sup
|ξ|≤|h|

|g′(ξ)|

≤ |h| sup
|ξ|≤|h|

∣∣∂1v(x+ ξe1 + w) + ∂1v(x+ ξe1 − w)− 2∂1v(x+ ξe1)
∣∣.

Noticing that since |x+ ξe1 ± w| ≤ r′ + |h|+ |w| < r, a second order Taylor
expansion of ∂1v with respect to the variable w gives∣∣∂1v(x+ξe1+w)+∂1v(x+ξe1−w)−2∂1v(x+ξe1)

∣∣ ≤ |w|2‖∂1v‖C2(Br). (4.2.8)

Therefore

|δv(x+ he1, w)− δv(x,w)| = |g(h)− g(0)| ≤ |h| |w|2‖v‖C3(Br),

as desired.
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Lemma 4.2.6. Let r > r′ > 0, v ∈ W 1,∞(RN), h ∈ R. Then, for any w ∈
RN ,

|δv(x+ he1, w)− δv(x,w)| ≤ 4|h|‖∇v‖L∞(RN ).

Proof. It suffices to proceed as in the proof of Lemma 4.2.5, but replac-
ing (4.2.8) with the following trivial estimate:∣∣∂1v(x+ ξe1 + w) + ∂1v(x+ ξe1 − w)− 2∂1v(x+ ξe1)

∣∣ ≤ 4‖∂1v‖L∞(RN ).

Lemma 4.2.7. Let ` ∈ N, 0 < r < 2, K satisfy (4.2.2), and U ∈ C`+2
0 (Br).

Let γ = (γ1, . . . , γN) ∈ NN with |γ| ≤ ` ≤ k + 1. Then

∂γx

ˆ
RN
K(x,w) δU(x,w) dw =

ˆ
RN
∂γx (K(x,w) δU(x,w)) dw

=
∑

1≤i≤N
0≤λi≤γi

λ=(λ1,...,λN )

(
γ1

λ1

)
. . .

(
γN
λN

) ˆ
RN
∂λxK(x,w) δ(∂γ−λx U)(x,w) dw

(4.2.9)

for any x ∈ Br.

Proof. The second equality follows from the standard product derivation
formula, so we focus on the proof of the first identity. The proof is by
induction over |γ|. If |γ| = 0 the result is trivially true, so we consider the
inductive step. We take x with r′ := |x| < r, we suppose that |γ| ≤ ` − 1
and, by inductive hypothesis, we know that

gγ(x) := ∂γx

ˆ
RN
K(x,w) δU(x,w) dw =

ˆ
RN
θ(x,w) dw

with

θ(x,w) :=
∑

1≤i≤N
0≤λi≤γi

λ=(λ1,...,λN )

(
γ1

λ1

)
. . .

(
γN
λN

)
∂λxK(x,w) δ(∂γ−λx U)(x,w) dw.

By (4.2.2), if 0 < |h| < (r − r′)/2 then

|∂λxK(x+ he1, w)− ∂λxK(x,w)| ≤ C|λ|+1|h| |w|−N−σ. (4.2.10)

Moreover, if |w| < (r − r′)/2, we can apply Lemma 4.2.5 with v := ∂γ−λx U
and obtain

|δ(∂γ−λx U)(x+ he1, w)− δ(∂γ−λx U)(x,w)| ≤ |h| |w|2‖U‖C|γ−λ|+3(Br). (4.2.11)
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On the other hand, by Lemma 4.2.6 we get

|δ(∂γ−λx U)(x+ he1, w)− δ(∂γ−λx U)(x,w)| ≤ 4 |h| ‖∂γ−λx U‖C1(RN ).

All in all,

|δ(∂γ−λx U)(x+ he1, w)− δ(∂γ−λx U)(x,w)|
≤ |h| ‖U‖C|γ−λ|+3(RN ) min{4, |w|2}. (4.2.12)

Analogously, a simple Taylor expansion provides also the bound

|δ(∂γ−λx U)(x,w)| ≤ ‖U‖C|γ−λ|+2(RN ) min{4, |w|2}. (4.2.13)

Hence, (4.2.2), (4.2.10), (4.2.12), and (4.2.13) give∣∣∂λxK(x+ he1, w) δ(∂γ−λx U)(x+ he1, w)− ∂λxK(x,w) δ(∂γ−λx U)(x,w)
∣∣

≤
∣∣∂λxK(x+ he1, w)

(
δ(∂γ−λx U)(x+ he1, w)− δ(∂γ−λx U)(x,w)

)∣∣
+

∣∣(∂λxK(x+ he1, w)− ∂λxK(x,w)
)
δ(∂γ−λx U)(x,w)

∣∣
≤ C|h| min{|w|−N−σ, |w|2−N−σ},

with C > 0 depending only on `, C`, given in (4.2.2), and ‖U‖C`+2(RN ). As a
consequence,

|θ(x+ he1, w)− θ(x,w)| ≤ C2|h| min{|w|−N−σ, |w|2−N−σ},

and, by the Dominated Convergence Theorem, we get

ˆ
RN
∂x1θ(x,w) dw = lim

h→0

ˆ
RN

θ(x+ he1, w)− θ(x,w)

h
dw

= lim
h→0

gγ(x+ he1)− gγ(x)

h
= ∂x1gγ(x),

which proves (4.2.9) with γ replaced by γ+ e1. Analogously one could prove
the same result with γ replaced by γ + ei, i = 1, . . . , N , concluding the
inductive step.

The differentiation under the integral sign in (4.2.9) may also be obtained
under slightly different assumptions, as the next result points out.

Lemma 4.2.8. Let ` ∈ N, 0 < r < R. Let U ∈ C`+1(RN) with U = 0
in BR. Let γ = (γ1, . . . , γN) ∈ NN with |γ| ≤ `. Then (4.2.9) holds true for
any x ∈ Br.
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Proof. If x ∈ Br, w ∈ B(R−r)/2 and |h| ≤ (R − r)/2, we have that |x + w +
he1| < R and so δU(x+ he1, w) = 0. In particular

δU(x+ he1, w)− δU(x,w) = 0,

for small h when w ∈ B(R−r)/2. This formula replaces (4.2.11), and the rest
of the proof goes on as the one of Lemma 4.2.7.

Integral computations.

Here we collect some integral computations which will be used in the proof
of Theorem 4.2.1.

Lemma 4.2.9. Let v : RN → R be smooth and with all its derivatives
bounded and K satisfy (4.2.2). Let x ∈ B1/4, and γ, λ ∈ NN , with γi ≥ λi
for any i ∈ {1, . . . , N} and |γ| ≤ k+ 1. Then there exists a constant C ′ > 0,
depending only on N and σ, such that∣∣∣∣ˆ

RN
∂λxK(x,w) δ(∂γ−λx v)(x,w) dw

∣∣∣∣ ≤ C ′C|γ| ‖v‖C|γ−λ|+2(RN ). (4.2.14)

Furthermore, if

v = 0 in B1/2, (4.2.15)

we have∣∣∣∣ˆ
RN
∂λxK(x,w) δ(∂γ−λx v)(x,w) dw

∣∣∣∣ ≤ C ′C|γ| ‖v‖L∞(RN ). (4.2.16)

Proof. By (4.2.2) and (4.2.13) (with U = v),

ˆ
RN

∣∣∂λxK(x,w)
∣∣ ∣∣ δ(∂γ−λx v)(x,w)

∣∣ dw
≤ C|λ|

(
‖v‖C|γ−λ|+2(RN )

ˆ
B2

|w|−N−σ+2 dw

+ 4‖v‖C|γ−λ|(RN )

ˆ
RN\B2

|w|−N−σ dw
)
,

which proves (4.2.14).

We now prove (4.2.16). For this we notice that, thanks to (4.2.15), v(x+
w) and v(x− w), and also their derivatives, are equal to zero if x and w lie
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in B1/4. Hence, by an integration by parts, for x ∈ B1/4, we get

ˆ
RN
∂λxK(x,w) δ(∂γ−λx v)(x,w) dw

=

ˆ
RN
∂λxK(x,w) ∂γ−λw [v(x+ w)− v(x− w)] dw

=

ˆ
RN\B1/4

∂λxK(x,w) ∂γ−λw [v(x+ w)− v(x− w)] dw

= (−1)|γ−λ|
ˆ
RN\B1/4

∂λx∂
γ−λ
w K(x,w) [v(x+ w)− v(x− w)] dw.

Consequently, by (4.2.2),∣∣∣∣ˆ
RN
∂λxK(x,w) δ(∂γ−λx v)(x,w) dw

∣∣∣∣
≤ 2C|γ| ‖v‖L∞(RN )

ˆ
RN\B1/4

|w|−N−σ−|γ−λ| dw,

proving (4.2.16).

4.2.2 Approximation by nicer kernels.

In what follows, it will be convenient to approximate the solution u of (4.2.3)
with smooth functions uε obtained by solving equations similar to (4.2.3), but
with kernels Kε which coincide with the fractional Laplacian in a neighbor-
hood of the origin. Indeed, this will allow us to work with smooth functions,
ensuring that in our computations all integrals converge. We will then prove
uniform estimates on uε, which will give the desired Cσ+α-bound on u by
letting ε→ 0.

To simplify the notation, up to multipling both K and f by 1/a0, we
assume without loss of generality that the constant a0 in (4.2.1) is equal to
1.

Let η ∈ C∞(RN) satisfy

η =

{
1 in B1/2,
0 in RN \B3/4,

and, for given ε, δ > 0, set

ηε(w) := η
(w
ε

)
, and η̃δ(x) := δ−Nη

(x
δ

)
.
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Then we define

Kε(x,w) := ηε(w)
2− σ
|w|N+σ

+ (1− ηε(w))K̃ε(x,w), (4.2.17)

where
K̃ε(x,w) := K(x,w) ∗

(
η̃ε2(x)η̃ε2(w)

)
, (4.2.18)

and

Lεv(x) :=

ˆ
RN
Kε(x,w) δv(x,w)dw. (4.2.19)

We also define
fε(x) := f(x, u(x)) ∗ η̃ε(x). (4.2.20)

Note that we get a family fε ∈ C∞(B1) such that

lim
ε→0+

fε = f uniformly in B3/4.

Finally, we define uε ∈ L∞(RN) ∩ C(RN) as the unique (see for instance [17,
Theorem 1] and the argument used in the proof of [28, Theorem 3.2]) solution
to the following linear problem{

Lεuε = fε(x) in B3/4,
uε = u in RN \B3/4.

(4.2.21)

It is easy to check that the kernels Kε satisfy (4.2.1) and (4.2.2) with con-
stants independent of ε. This can be easily checked using the definition of
K̃ε. Indeed, for example to prove (4.2.2) with |θ| = 0, by the presence of the
term (1− ηε(w)) which vanishes for |w| ≤ ε/2, one only needs to check that

ˆ
RN
|w − z|−N−ση̃ε2(z) dz ≤ C|w|−N−σ for |w| ≥ ε/2,

which is easy to prove.
Also, since K satisfies assumption (4.2.2) with k = 0 and the convolution

parameter ε2 in (4.2.17) is much smaller than ε, the operators Lε converge to
the operator associated to K in the weak sense introduced in [57, Definition
22]. Indeed, let v a smooth function satisfying

|v| ≤M in RN for some M > 0, (4.2.22)

and

|v(w)− v(x)− (w − x) · ∇v(x)| ≤M |x− w|2, w ∈ B1(x). (4.2.23)
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Then, from (4.2.1), (4.2.2), (4.2.22) and (4.2.23), it follows that

ˆ
RN

∣∣∣∣ηε(w)
2− σ
|w|N+σ

+ (1− ηε(w))(K(x,w) ∗ η̃ε2(x)η̃ε2(w))−K(x,w)

∣∣∣∣
×|δv(x,w)| dw

≤
ˆ
RN

(
ηε(w)

∣∣∣∣ 2− σ
|w|N+σ

−K(x,w)

∣∣∣∣
+ (1− ηε(w)) |K(x,w) ∗ η̃ε2(x)η̃ε2(w)−K(x,w)|

)
× |δv(x,w)| dw

≤
ˆ
Bε

C|w|2−N−σ

+

ˆ
RN\Bε

∣∣K(x,w) ∗ η̃ε2(x)η̃ε2(w)−K(x,w)
∣∣ |δv(x,w)| dw

≤ Cε2−σ + I, (4.2.24)

with

I :=

ˆ
RN\Bε

∣∣K(x,w) ∗ η̃ε2(x)η̃ε2(w)−K(x,w)
∣∣ |δv(x,w)| dw.

By (4.2.2), (4.2.22), and the fact that σ > 1, we have

I =

ˆ
RN\Bε

ˆ
B3/4

ˆ
B3/4

∣∣K(x− ε2y, w − ε2w̃)η(y)η(w̃)−K(x,w)
∣∣ dy dw̃

×|δv(x,w)| dw

≤
ˆ
RN\Bε

Cε2

|w|N+1+σ
|δv(x,w)| dw

≤ C

ˆ
B1\Bε

ε2

|w|N−1+σ
dw + C

ˆ
RN\B1

ε2

|w|N+1+σ
dw

≤ C(ε3−σ + ε2).

Combining this estimate with (4.2.24), we get

ˆ
RN

∣∣∣∣ηε(w)
2− σ
|w|N+σ

+ (1− ηε(ω))(K(x,w) ∗ η̃ε2(x)η̃ε2(w))−K(x,w)

∣∣∣∣
×|δv(x,w)| dw

≤ Cε2−σ,

where C depends of M and σ. Since σ < 2 we conclude that

‖Lε − L‖ → 0 as ε→ 0, where ‖ · ‖ was defined in [57, Definition 22].
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Thanks to this fact, we can repeat almost word by word the proof of [57,
Lemma 7] to obtain the uniform convergence

uε → u on RN as ε→ 0. (4.2.25)

Note that, in order to use the argument in the proof of [57, Lemma
7] one needs to know that the functions uε are equicontinuous, which is a
consequence of [57, Lemmas 2 and 3]. To be precise, to apply [57, Lemma 3]

one would need the kernels to satisfy the bounds (2−σ)λ
|w|N+σ ≤ K∗(x,w) ≤ (2−σ)Λ

|w|N+σ

for all w 6= 0, while in our case the kernel K (and so also Kε) satisfies

(2− σ)λ

|w|N+σ
≤ K(x,w) ≤ (2− σ)Λ

|w|N+σ
, |w| ≤ r0, (4.2.26)

with λ := a0 − η, Λ := a0 + η, and r0 > 0 (observe that, by our assumptions
in (4.2.1), λ ≥ 3a0/4).

However this is not a big problem: if v ∈ L∞(RN) satisfiesˆ
RN
K∗(x,w) δv(x,w) dw = f(x) in B3/4,

for some kernel satisfying (4.2.2) and (2−σ)λ
|w|N+σ ≤ K∗(x,w) ≤ (2−σ)Λ

|w|N+σ only for

|w| ≤ r0, we define

K ′(x,w) := ζ(w)K∗(x,w) + (2− σ)
1− ζ(w)

|w|N+σ
,

with ζ a smooth cut-off function supported inside Br0 , to getˆ
RN
K ′(x,w) δv(x,w) dw = f(x)

+

ˆ
RN

(1− ζ(w))

(
−K∗(x,w) +

2− σ
|w|N+σ

)
δv(x,w) dw.

Since 1−ζ(w) = 0 near the origin, by assumption (4.2.2), the second integral
is uniformly bounded as a function of x, so [57, Lemma 3] applied to K ′ gives
the desired equicontinuity.

As we said before, the uniqueness for the boundary problem
ˆ
RN
K(x,w) δv(x,w) dw = f(x, u(x)) in B3/4,

v = u, on RN \B3/4.

follows by a standard comparison principle argument (see the proof of [28,
Theorem 3.2]).
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4.2.3 Smoothness of the approximate solutions.

We prove now that the functions uε defined in the previous section are of
class C∞ inside a small ball, whose size is uniform with respect to ε: namely,
there exists r ∈ (0, 1/4) such that, for any m ∈ NN

‖Dmuε‖L∞(Br) ≤ C, (4.2.27)

for some positive constant C = C(m,σ, ε, ‖u‖L∞(RN ), ‖f‖L∞(B1×R)). For this,
we observe that by (4.2.17)

2− σ
|w|N+σ

= Kε(x,w)− (1− ηε(w))K̃ε(x,w) + (1− ηε(w))
2− σ
|w|N+σ

.

Then, for any x ∈ B1/4,

−2(2− σ)

C(N, σ
2
)
(−∆)σ/2uε(x) =

ˆ
RN

2− σ
|w|N+σ

δuε(x,w)dw

= fε(x)−
ˆ
RN

(1− ηε(w))K̃ε(x,w) δuε(x,w)dw

+

ˆ
RN

(1− ηε(w))
2− σ
|w|N+σ

δuε(x,w)dw,

where C
(
N, σ

2

)
was introduced in (0.0.22). Then, for any x ∈ B1/4 it follows

that

(−∆)σ/2uε(x)

= D
(
N,

σ

2

)[
fε(x)+

ˆ
RN

(1− ηε(w))

(
2− σ
|w|N+σ

− K̃ε(x,w)

)
δuε(x,w)dw

]
=: D

(
N,

σ

2

)
[fε(x) + hε(x)] (4.2.28)

=: D
(
N,

σ

2

)
gε(x).

with D
(
N,

σ

2

)
:= −

C
(
N, σ

2

)
2(2− σ)

.

Making some changes of variables we can rewrite hε as follows:

hε(x) =

ˆ
RN

(1− ηε(w − x))

(
2− σ

|w − x|N+σ
− K̃ε(x,w − x)

)
uε(w)dw

+

ˆ
RN

(1− ηε(x− w))

(
2− σ

|w − x|N+σ
− K̃ε(x, x− w)

)
uε(w)dw

− 2uε(x)

ˆ
RN

(1− ηε(w))

(
2− σ
|w|N+σ

− K̃ε(x,w)

)
dw. (4.2.29)
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We now notice that “the function hε is locally as smooth as uε”, is the sense
that for any m ∈ N and U ⊂ B1/4 open we have

‖hε‖Cm(U) ≤ C(ε, m)
(
1 + ‖uε‖Cm(U)

)
, (4.2.30)

for some constant C(ε, m) > 0. To see this observe that, in the first two

integrals, the variable x appears only inside ηε and in the kernel K̃ε, and ηε
is equal to 1 near the origin. Hence, since K̃ε is smooth, see (4.2.18), the first
two integrals are smooth functions of x. The third term is clearly as regular
as uε because the third integral is smooth by the same reason as before. This
proves (4.2.30).

We will now prove that the functions uε belong to C∞(B1/5), with

‖uε‖Cm(B1/4−rm ) ≤ C(r1,m, σ, ε, ‖uε‖L∞(RN ), ‖f‖L∞(B1×[−M,M ])), (4.2.31)

for any m ∈ N, where rm := 1/20 − 25−m and M = ‖u‖L∞(B1). Note that,
for every m ∈ N,

1/4− rm > 1/5, (4.2.32)

To show (4.2.31), we begin by observing that, since 1 < σ < 2, by (4.2.28),
(4.2.30), and [57, Theorem 61], we have that uε ∈ L∞(RN) ∩ C1,β(B1/4−r1)
for any β < σ − 1 and, for M = ‖u‖L∞(B1),

‖uε‖C1,β(B1/4−r1 ) ≤ C(ε)
(
‖u‖L∞(RN ) + ‖f‖L∞(B1×[−M,M ])

)
. (4.2.33)

As already observed on page 151, the fact that the kernel satisfies (4.2.26)
only for w small is not a problem, and one can easily check that [57, Theorem
61] still holds in our setting.

Now, to get a bound on higher derivatives, the idea would be to differen-
tiate (4.2.28) and use again (4.2.30) and [57, Theorem 61]. However we do
not have C1 bounds on the function uε outside B1/4−r1 , and therefore we can
not apply directly this strategy to obtain the C2,α regularity of the function
uε.

To avoid this problem we follow the localization argument given in [56,
Theorem 13.1]. That is, we take ν > 0 small (to be chosen) and we consider
a smooth cut-off function

ϑ :=

{
1 in B1/4−(1+ν)r1 ,
0 on RN \B1/4−r1 .

For fixed e ∈ SN−1 and |h| < νr1 we define

v(x) :=
uε(x+ eh)− uε(x)

|h|
. (4.2.34)
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We note that the function v(x) is uniformly bounded in B1/4−(1+ν)r1 because
u ∈ C1(B1/4−r1). We now write v(x) = v1(x) + v2(x), with

v1(x) :=
ϑuε(x+ eh)− ϑuε(x)

|h|

and

v2(x) :=
(1− ϑ)uε(x+ eh)− (1− ϑ)uε(x)

|h|
.

By (4.2.33) it is clear that
v1 ∈ L∞(RN)

and, since |h| < νr1, that

v1 = v inside B1/4−(1+2ν)r1 . (4.2.35)

Moreover, for x ∈ B1/4−(1+2ν)r1 , using (4.2.20), (4.2.28) and (4.2.30) we get∣∣(−∆)σ/2v1(x)
∣∣ =

∣∣(−∆)σ/2v(x)− (−∆)σ/2v2(x)
∣∣

=

∣∣∣∣gε(x+ eh)− gε(x)

|h|
− (−∆)σ/2v2(x)

∣∣∣∣
≤ C(ε)

(
1 + ‖uε‖C1(B1/4−r1 )

)
+
∣∣(−∆)σ/2v2(x)

∣∣ . (4.2.36)

Now, let us denote by Ko(y) :=
C(N,σ2 )
|y|N+σ the kernel of the fractional Laplacian

defined in (0.0.21). Since for x ∈ B1/4−(1+2ν)r1 and |h| < νr1 we have that
(1− ϑ)uε(x± eh) = 0, then v2(x) = 0. Therefore, from a change of variable,
it follows that

|(−∆)σ/2v2(x)| ≤
∣∣∣∣ˆ

RN
(v2(x+ y) + v2(x− y)− 2v2(x))Ko(y) dy

∣∣∣∣
≤

∣∣∣∣ˆ
RN

(1− ϑ)uε(x+ y + eh)− (1− ϑ)uε(x+ y)

|h|
Ko(y) dy

∣∣∣∣
+

∣∣∣∣ˆ
RN

(1− ϑ)uε(x− y + eh)− (1− ϑ)uε(x− y)

|h|
Ko(y) dy

∣∣∣∣
≤
ˆ
RN

(1− ϑ)|uε(x+ y)|
∣∣∣∣Ko(y − eh)−Ko(y)

|h|

∣∣∣∣ dy
+

ˆ
RN

(1− ϑ)|uε(x− y)|
∣∣∣∣Ko(y − eh)−Ko(y)

|h|

∣∣∣∣ dy
≤ ‖uε‖L∞(RN )

ˆ
RN\Bνr1

1

|y|N+σ+1
dy

≤ C‖uε‖L∞(RN ), for x ∈ B1/4−(1+2ν)r1 and C = C(σ, r1).
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Therefore, by (4.2.36) we obtain∣∣(−∆)σ/2v1(x)
∣∣ ≤ C(ε)

(
1 + ‖uε‖C1(B1/4−r1 ) + ‖uε‖L∞(RN )

)
, x ∈ B1/4−(1+2ν)r1 ,

and we can apply [57, Theorem 52] to get that v1 ∈ C1,β(B1/4−r2) for any
β < σ − 1, with

‖v1‖C1,β(B1/4−r2 ) ≤ C(ε)
(

1 + ‖v1‖L∞(RN ) + ‖uε‖C1(B1/4−r1) + ‖uε‖L∞(RN )

)
,

provided ν > 0 was chosen sufficiently small so that r2 > (1 + 2ν)r1. By
(4.2.33), (4.2.34) and (4.2.35) this implies that uε ∈ C2,β(B1/4−r2), with

‖uε‖C2,β(B1/4−r2 ) ≤ C(ε)
(

1 + ‖uε‖C1(B1/4−r1 ) + ‖uε‖L∞(RN )

)
≤ C(ε)

(
1 + ‖u‖L∞(RN ) + ‖f‖L∞(B1×[−M,M ])

)
,

for M = ‖u‖L∞(B1). Iterating this argument we obtain (4.2.31), as desired.

4.2.4 Uniform estimates and conclusion of the proof
for k = 0.

Knowing now that the functions uε defined by (4.2.21) are smooth inside B1/5

(see (4.2.31) and (4.2.32)), our goal is to obtain a-priori bounds independent
of ε.

By [57, Theorem 61] applied to u, we have that u ∈ C1,β(B1−R1) for any
β < σ − 1 and R1 > 0, with

‖u‖C1,β(B1−R1
) ≤ C

(
‖u‖L∞(RN ) + ‖f‖L∞(B1×[−M,M ])

)
, (4.2.37)

where M = ‖u‖L∞(B1). Then, for any ε sufficiently small, fε ∈ C1(B1/2) with

‖fε‖C1(B1/2) ≤ C ′
(

1 + ‖u‖C1(B1−R1
)

)
≤ C ′C

(
1 + ‖u‖L∞(RN ) + ‖f‖L∞(B1×[−M,M ])

)
, (4.2.38)

where C ′ > 0 depends on ‖f‖C1(B1×R) only.
Consider a cut-off function

ϑ̃ :=

{
1 in B1/7,
0 on RN \B1/6.

Then, recalling (4.2.21), we write the equation satisfied by uε as

fε(x) =

ˆ
RN
Kε(x,w) δ(ϑ̃uε)(x,w)dw +

ˆ
RN
Kε(x,w) δ((1− ϑ̃)uε)(x,w)dw.
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Differentiating the previous equality, say in direction e1, we obtain (recall
Lemmas 4.2.7 and 4.2.8)

∂x1fε(x) =

ˆ
RN
Kε(x,w)δ(∂x1(ϑ̃uε))(x,w)dw

+

ˆ
RN
∂x1

[
Kε(x,w)δ((1− ϑ̃)uε)(x,w)

]
dw

+

ˆ
RN
∂x1Kε(x,w)δ(ϑ̃uε)(x,w)dw.

It is convenient to rewrite this equation asˆ
RN
Kε(x,w)δ(∂x1(ϑ̃uε))(x,w)dw = A1 − A2 − A3,

with

A1 := ∂x1fε(x),

A2 :=

ˆ
RN
∂x1Kε(x,w)δ(ϑ̃uε)(x,w)dw, and

A3 :=

ˆ
RN
∂x1

[
Kε(x,w)δ((1− ϑ̃)uε)(x,w)

]
dw.

We claim that

‖A1 − A2 − A3‖L∞(B1/14) ≤ C
(

1 + ‖u‖L∞(RN ) + ‖uε‖C2(B1/6)

)
(4.2.39)

with C depending only on ‖f‖C1(B1×R). To prove this, we first observe that
by (4.2.38),

‖A1‖L∞(B1/14) ≤ C
(
1 + ‖u‖L∞(RN )

)
. (4.2.40)

Also, since |∂x1K̃ε(x,w)| ≤ C|w|−(N+σ), by (4.2.14) (used with γ = λ :=

(1, 0, . . . , 0) and v := ϑ̃uε) we get

‖A2‖L∞(B1/14) ≤ C‖ϑ̃uε‖C2(RN ) ≤ C‖uε‖C2(B1/6), (4.2.41)

where we used that ϑ̃ is supported in B1/6.

Moreover, since (1 − ϑ̃)uε = 0 inside B1/7, we can use (4.2.16) with

v := (1− ϑ̃)uε to obtain∣∣∣∣ˆ
RN
∂x1Kε(x,w) δ((1− ϑ̃)uε)(x,w) dw

∣∣∣∣
+

∣∣∣∣ˆ
RN
Kε(x,w) ∂x1δ((1− ϑ̃)uε)(x,w) dw

∣∣∣∣
≤ C‖(1− ϑ̃)uε‖L∞(RN ), (4.2.42)
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for any x ∈ B1/14. Since ‖uε‖L∞(RN ) ≤ C
(
1 + ‖u‖L∞(RN )

)
, by (4.2.42) we

obtain that
‖A3‖L∞(B1/14) ≤ C

(
1 + ‖u‖L∞(RN )

)
. (4.2.43)

Then (4.2.40)-(4.2.43) imply (4.2.39).

Since ∂x1(ϑ̃uε) is bounded on the whole of RN , by (4.2.39) and [57, The-

orem 61] we obtain that ∂x1(ϑ̃uε) ∈ C1,β(B1/14−R2) for any R2 > 0, with

‖∂x1(ϑ̃uε)‖C1,β(B1/14−R2
) ≤ C

(
1 + ‖u‖L∞(RN ) + ‖uε‖C2(B1/6)

)
, 0 < β < σ − 1,

which implies

‖uε‖C2,β(B1/15) ≤ C
(

1 + ‖u‖L∞(RN ) + ‖uε‖C2(B1/6)

)
. (4.2.44)

To end the proof we need to reabsorb the C2-norm on the right hand side.
To do this, we observe that by standard interpolation inequalities (see for
instance [97, Lemma 6.35]), for every 0 < ν < 1 there exists Cν = C(ν) > 0
such that

‖uε‖C2(B1/6) ≤ ν‖uε‖C2,β(B1/5) + Cν‖uε‖L∞(RN ). (4.2.45)

Hence, by (4.2.44) and (4.2.45) we obtain

‖uε‖C2,β(B1/15) ≤ Cν(1 + ‖u‖L∞(RN )) + Cν‖uε‖C2,β(B1/5). (4.2.46)

To conclude, one needs to apply the above estimates at every point inside
B1/5 at every scale: for any x ∈ B1/5, let r > 0 be a radius such that
Br(x) ⊂ B1/5. Then we consider

vxε,r(y) := uε(x+ ry), (4.2.47)

and we observe that vxε,r solves an analogous equation as the one solved by uε
with the kernel given by

Kx
ε,r(y, z) := rN+σKε(x+ ry, rz)

and with right hand side

F x
ε,r(y) := rσ

ˆ
RN
f(x+ ry − x̃, u(x+ ry − x̃))η̃ε(x̃)dx̃.

We now observe that the kernels Kx
ε,r satisfy assumptions (4.2.1) and (4.2.2)

uniformly with respect to ε, r, and x. Moreover, for |x| + r ≤ 1/5, and ε
small, we have

‖F x
ε,r‖C1(B1/2) ≤ rσC(1 + ‖u‖C1(B3/4)),
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with C > 0 depending on ‖f‖C1(B1×R) only. Hence, by (4.2.37) this implies

‖F x
ε,r‖C1(B1/2) ≤ rσC

(
1 + ‖u‖L∞(RN ) + ‖f‖L∞(B1×[−M,M ])

)
,

where M = ‖u‖L∞(B1). Thus, applying (4.2.46) to vxε,r (by the discussion we
just made, the constants are all independent of ε, r, and x) and scaling back,
we get

‖uε‖∗C2,β(Br/15(x)) ≤Cν
(
1+‖u‖L∞(RN )+‖f‖L∞(B1×[−M,M ])

)
+Cν‖uε‖∗C2,β(Br/5(x)).

Using now Lemma 4.2.4 inside B1/5 with µ = 1/15, ν = 1/5, m = 2, and
Λν = Cν(1 + ‖u‖L∞(RN ) + ‖f‖L∞(B1×[−M,M ])), we conclude

‖uε‖C2,β(B1/75) ≤ C
(
1 + ‖u‖L∞(RN ) + ‖f‖L∞(B1×[−M,M ])

)
.

This implies

‖u‖C2,β(B1/75) ≤ C
(
1 + ‖u‖L∞(RN ) + ‖f‖L∞(B1×[−M,M ])

)
,

by letting ε→ 0 (see (4.2.25)). Since β < σ − 1, this is equivalent to

‖u‖Cσ+α(B1/75) ≤ C
(
1 + ‖u‖L∞(RN ) + ‖f‖L∞(B1×[−M,M ])

)
, for any α < 1,

and M = ‖u‖L∞(B1). A standard covering/rescaling argument completes the
proof of Theorem 4.2.1 in the case k = 0.

4.2.5 The induction argument.

We already proved Theorem 4.2.1 in the case k = 0.

We now show by induction that, for any k ≥ 1 and every 1 < σ < 2,
0 < α < 1,

‖u‖Ck+σ+α(B
1/23k+4 ) ≤ C(k)

(
1 + ‖u‖L∞(RN ) + ‖f‖L∞(B1×[−M,M ])

)
, (4.2.48)

for M = ‖u‖L∞(B1) and some constant C(k) > 0: by a standard cover-
ing/rescaling argument, this proves (4.2.4) and so Theorem 4.2.1. As we
shall see, the argument is more or less identical to the case k = 0.

By a slight abuse of notation, we define the cut-off function

ϑ̃ :=

{
1 in B1/23k+5 ,
0 on RN \B1/23k+4 .
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Using Lemmas 4.2.7 and 4.2.8, we differentiate the equation k + 1 times
according to the following computation: first we observe that, since by in-
duction hypothesis (4.2.48) is true for k−1 and we can choose 2−σ < α < 1
so that σ + α > 2, we deduce that fε ∈ Ck+1(B1/23k+4) with

‖fε‖Ck+1(B
1/23k+4 ) ≤ C

(
1 + ‖u‖Ck+1(B

1/23k+4 )

)
≤ C

(
‖u‖L∞(RN ) + ‖f‖L∞(B1×[−M,M ])

)
, (4.2.49)

where M = ‖u‖L∞(B1) and with C > 0 depending on ‖f‖Ck+1(B1×R) only. Now
we take γ ∈ (N ∪ {0})N with |γ| = k + 1 and we differentiate the equation
to obtain

∂γfε(x)

=
∑

1≤i≤N
0≤λi≤γi

λ=(λ1,...,λN )

(
γ1

λ1

)
. . .

(
γN
λN

)ˆ
RN
∂λxKε(x,w) δ(∂γ−λx (ϑ̃uε))(x,w) dw

+
∑

1≤i≤N
0≤λi≤γi

λ=(λ1,...,λN )

(
γ1

λ1

)
. . .

(
γN
λN

) ˆ
RN
∂λxKε(x,w) δ(∂γ−λx (1− ϑ̃)uε)(x,w) dw.

Then, we isolate the term with λ = 0 in the first sum:ˆ
RN
Kε(x,w) δ(∂γx(ϑ̃uε))(x,w) dw = A1 − A2 − A3,

with

A1 := ∂γfε(x),

A2 :=
∑

1≤i≤N
0≤λi≤γi

λ=(λ1,...,λN )6=0

(
γ1

λ1

)
. . .

(
γN
λN

)ˆ
RN
∂λxKε(x,w) δ(∂γ−λx (ϑ̃uε))(x,w) dw

A3 :=
∑

1≤i≤N
0≤λi≤γi

λ=(λ1,...,λN )

(
γ1

λ1

)
. . .

(
γN
λN

)ˆ
RN
∂λxKε(x,w) δ(∂γ−λx (1− ϑ̃)uε)(x,w) dw.

We claim that

‖A1−A2−A3‖L∞(B
1/23k+6 )≤C

(
1+‖u‖L∞(RN )+‖uε‖Ck+2(B

1/23k+4 )

)
, (4.2.50)

with a constant that depends only on ‖f‖Ck+1(B1×R). Indeed, by the fact

that |γ − λ| ≤ k, and the definition of ϑ̃, we see that

‖A2‖L∞(B
1/23k+6 ) ≤ C(k) ‖ϑ̃uε‖Ck+2(RN )

≤ C(k) ‖uε‖Ck+2(B
1/23k+4 ).

(4.2.51)
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Furthermore, since (1 − ϑ̃)uε = 0 inside B1/23k+5 , we can use (4.2.16) with

v := (1− ϑ̃)uε to obtain

‖A3‖L∞(B
1/23k+6 ) ≤ C‖u‖L∞(RN ).

This last estimate, (4.2.49), and (4.2.51) allow us to conclude the validity
of (4.2.50).

Now, by [57, Theorem 61] applied to ∂γx(ϑ̃uε) we get

‖uε‖Cσ+k+α(B
1/23k+7 ) ≤ C

(
1 + ‖uε‖Ck+2(B

1/23k+4 ) + ‖u‖L∞(RN )

)
, 0 < α < 1,

with C > 0 depending on ‖f‖Ck+1(B1×R). Note that the previous inequality
is the analogous of (4.2.44) with σ+α = 2 + β where 0 < β < σ− 1. Hence,
arguing as in the case k = 0 (see the argument after (4.2.44)) we conclude
that

‖uε‖Cσ+k+α(B
1/23(2k+1)+5 ) ≤ C

(
1 + ‖u‖L∞(RN ) + ‖f‖L∞(B1×[−M,M ])

)
,

where M = ‖u‖L∞(B1). Then taking the limit when ε → 0, and using a
covering argument, we prove (4.2.48) concluding the proof of Theorem 4.2.1.



Chapter 5

Regularity of nonlocal minimal
surfaces.

5.1 Introduction, preliminaries and functional

settings.

Classically, minimal surfaces, or surfaces with zero mean curvature, arise in
physical situations where two phases interact and the energy of this inter-
action is proportional to the area of interface. Motivated by the structure
of interphases arising in phase transition models with long range interac-
tions, that is when two particles on different phases contribute with a non
trivial amount to the total energy even if they are away from the interface,
(see [59, 127, 133, 134, 136]), L. Caffarelli, J. M. Roquejoffre and O. Savin
introduced in [53] a nonlocal version of minimal surfaces. These objects are
obtained by minimizing a “nonlocal perimeter” inside a fixed domain Ω.
Roughly speaking, if we consider a measurable set E ⊆ RN the main idea of
its fractional, or nonlocal, perimeter inside Ω is that every point of E inter-
acts with every point outside E giving rise to a functional that we want to
minimize. In this minimization we have to take into account “the boundary
datum” that will imply that there are some interactions that will not con-
tribute to the minimization procedure. More precisely, for 0 < s < 1 and
two sets A,B ⊂ RN with disjoint interiors, we define the interaction term

L(A,B) :=

ˆ
A

ˆ
B

dx dy

|x− y|N+s
.

161
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Then, the nonlocal (s)-perimeter of E inside Ω is defined by

Per(E,Ω, s) := L
(
E ∩ Ω, (RN \ E) ∩ Ω

)
+ L

(
E ∩ Ω, (RN \ E) ∩ (RN \ Ω)

)
+ L

(
E ∩ (RN \ Ω), (RN \ E) ∩ Ω

)
. (5.1.1)

See the following figure where we represent the set E in gray and Ω as a
circle:

E ∩ Ω

(RN \ E) ∩ Ω

E ∩ (RN \ Ω)

(RN \ E) ∩ (RN \ Ω)

We remark here that, formally,

Per(E,Ω, s) = L(E,RN \ E)− L(E \ Ω, (RN \ E) ∩ (RN \ Ω))

=
‖χE‖2

Hs/2(RN )

2
− L(E \ Ω, (RN \ E) ∩ (RN \ Ω)).(5.1.2)

It is worth pointing out the assumption that 0 < s < 1 is needed to define
a proper interaction between a set and its complement. For example, an easy
computation shows that even for an simple set E like the unit ball, the term
L(E,RN \ E) diverges to infty when s ∈ (−∞, 0] ∪ [1,∞).

The previous functional (5.1.1) gives rise to a minimization problem on
the family of sets which coincide with E outside Ω. That is, one can say that
E is (s)-minimal in Ω if Per(E,Ω, s) ≤ Per(F,Ω, s) for every measurable
set F such that F \ Ω = E \ Ω. We note here that, by [53, Section 3], we
can assure that the nonlocal perimeter has the necessary compactness and
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semicontinuity properties to guarantee the existence of these (s)-minimizers
(see [53, Theorem 3.2]).

As was mentioned previously, the nonlocal (s)-minimal surfaces corre-
spond to the boundary of the (s)-minimizers of the above functional (5.1.1)
with the “boundary condition” that E ∩ (RN\Ω) is prescribed. By (5.1.2),
we get that, surprisingly, these surfaces can be attained my minimizing the
Hs/2 norm of the characteristic function χE. More recisely, when s < 1 and
E is reasonably smooth, ‖χE‖Hs/2 becomes finite whereas for s = 1 this is not
true. That is, we cannot obtain classical minimal surfaces as sets minimizing
the H1/2 norm.

Moreover, in [53, Theorem 5.1], it is proved that the Euler-Lagrange
equation corresponding to the functional (5.1.1), and satisfied by the (s)-
minimizers, is the following:

Hs(x) :=

ˆ
RN

χE(y)− χRN\E(y)

|x− y|N+s
dy = 0, x on ∂E. (5.1.3)

The scalar quantity Hs(x) is called the nonlocal mean curvature of E (or of
∂E) at x. From the geometric point of view, the fact that Hs(x) is equal
to zero implies that an average of E, centered at a given point of ∂E, is
adjusted by the average of its complementary. That is, while the standard
mean curvature measures “mean deviation from flatness” at the infinitesimal
scale, the nonlocal mean curvature takes into account all scales. We remark
that if ∂E is C2 in a neighborhood of x, then Hs(x) is well-defined in the
principal value sense. On the other hand, if ∂E is not smooth, it satisfies the
equation in a suitable viscosity sense (in particular, the equation is satisfied
in the classical sense at every point where ∂E is C2). The Euler-Lagrange
equation in the viscosity sense means that at every point x where ∂E has a
tangent C2 surface included in E (respectively RN\E) we have≥ (respectively
≤) in (5.1.3).

We also remark here that (5.1.3) says that (−∆)s/2(χE − χRN\E) = 0
along ∂E.

As we observed, (s)-minimal surfaces have vanishing (s)-mean curvature,
as occurs analogously in the classical case with minimal surfaces and the mean
curvature. To make the analogy even stronger, we recall that, suitably renor-
malized, the (s)-perimeter approaches, when s→ 1−, the classical perimeter,
with good geometric and functional analytic properties (see [13, 60]). That
is, s-minimal surfaces approach the classical ones, both in a geometric sense
and in a Γ-convergence framework, with uniform estimates as s→ 1−.

With respect to regularity, in the pioneering work [53] it is proved that
“flat (s)-minimal surface” are C1,α hypersurfaces for all α < s. In particular,
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when s is sufficiently close to 1, they inherit some nice regularity properties
from the classical minimal surfaces.

However in all the previous literature people only focused on the C1,α

regularity of these objects, and higher regularity was left as an open problem.
In this chapter we address this issue, and we prove that C1,α (s)-minimal
surfaces are indeed C∞. In fact this is the statement of the following.

Theorem 5.1.1. Take 0 < s < 1, and let ∂E be an (s)-minimal surface
in KR for some R > 0. Assume that

∂E ∩KR =
{

(x′, xN) : x′ ∈ BN−1
R and xN = u(x′)

}
, (5.1.4)

for some u : BN−1
R → R, with u ∈ C1,α(BN−1

R ) for any α < s and u(0) = 0.
Then,

u ∈ C∞(BN−1
ρ ) for every 0 < ρ < R.

The previous theorem combined with Corollary 1 in [137] gives the fol-
lowing regularity result in the plane.

Corollary 5.1.2. Let N = 2. Then, for 0 < s < 1, any (s)-minimal surface
is a smooth embedded curve of class C∞.

By [53, Theorem 2.4], the previous corollary and Theorem 5.1.1 we get
that if E is an (s)-minimizer on B1, then ∂E ∩ B1/2 is, with the possible
exception of a closed set Σ of finite (N − 3) Hausdorff dimension, a C∞-
hypersurface around each of its points. Observe that, since we expect that
∂E has (N − 1) dimension, Σ is somehow negligible inside ∂E.

Moreover, the regularity result of Theorem 5.1.1 combined with [53, The-
orem 6.1] and [61, Theorems 1, 3, 4, 5], implies also the following results.

Corollary 5.1.3. Fix 0 < so < 1. Let so < s < 1 and ∂E be a (s)-minimal
surface in BR for some R > 0. There exists ε? > 0, possibly depending on N ,
so and α, but independent of s and R, such that if

∂E ∩BR ⊆ {|x · eN | ≤ ε?R}

then ∂E ∩BR/2 is a C∞-graph in the eN -direction.

Corollary 5.1.4. There exists 0 < εN < 1 such that if 1−εN < s < 1, then:

• If N ≤ 7, any (s)-minimal surface is of class C∞;

• If N = 8, any (s)-minimal surface is of class C∞ except, at most, at
countably many isolated points.



5.2. Proof of the principal result: C∞ smoothness. 165

More generally, in dimension N ≥ 9 there exists 0 < εN < 1 such that
if 1 − εN < s < 1 then any (s)-minimal surface is of class C∞ outside a
closed set Σ of Hausdorff dimension N − 8.

In the proof of the previous corollary nothing is known about εN , except
when N = 2 because from Corollary 6.3.8 we deduce that ε2 = 1. That is,
except in the case N = 2, no explicit bound is available. We recall here that
when s → 0+ the (s)-minimal sets are related with the minimizers of the
Lebesgue measure (see [77]) for which no regularity is possible. This makes
the regularity of (s)-minimal sets when s is close to 0 more difficult to prove
than the case when s is close to 1.

5.2 Proof of the principal result: C∞ smooth-

ness.

The idea of the proof of Theorem 5.1.1 is to write the fractional minimal
surface equation in a suitable form so that we can apply Theorem 4.2.1.

5.2.1 Writing the equation in terms of the function u.

The first step in our proof, using a vertical integration near the origin, consists
in writing the (s)-minimal surface functional in terms of the function u, which
(locally) parametrizes the boundary of a set E. More precisely, we assume
that u parameterizes ∂E ∩KR and that, without loss of generality, E ∩KR

is contained in the hypograph of u. That is,

E ∩KR = {(x′, xN) : x′ ∈ BN−1
R and u(x′) ≥ xN}.

Moreover, since by assumption u(0) = 0 and u is of class C1,α, up to rotating
the system of coordinates, so that ∇u(0) = 0, and reducing the size of R, we
can also assume that

∂E ∩KR ⊂ BN−1
R × [−R/8, R/8]. (5.2.1)

Let ϕ ∈ C∞(R) be an even function satisfying

ϕ(t) =

{
1 if |t| ≤ 1/4,
0 if |t| ≥ 1/2,

and define the smooth cut-off functions

ζR(x′) := ϕ(|x′|/R), ηR(x) := ϕ(|x′|/R)ϕ(|xn|/R).
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Observe that

ζR = 1 in BN−1
R/4 , ζR = 0 outside BN−1

R/2 ,

ηR = 1 in KR/4, ηR = 0 outside KR/2.

From (5.1.3) we have that

ˆ
RN
ηR(y − x)

χE(y)− χRN\E(y)

|x− y|N+s
dy

=

ˆ
RN

(ηR(y − x)− 1)
χE(y)− χRN\E(y)

|x− y|N+s
dy, (5.2.2)

in the viscosity sense for x ∈ ∂E ∩KR. We study each of the sides of this
equation separately.

First of all we claim that, for any

x = (x′, u(x′)) ∈ ∂E ∩
(
BN−1
R/2 × [−R/8, R/8]

)
,

ˆ
RN
ηR(y − x)

χE(y)− χRN\E(y)

|x− y|N+s
dy

= 2

ˆ
RN−1

F

(
u(x′ − w′)− u(x′)

|w′|

)
ζR(w′)

|w′|N−1+s
dw′, (5.2.3)

where

F (t) :=

ˆ t

0

dτ

(1 + τ 2)(N+s)/2
.

Indeed, since ηR is even, writing y = x− w we have

ˆ
RN
ηR(y − x)

χE(y)− χRN\E(y)

|x− y|N+s
dy

=

ˆ
RN
ηR(w)

χE(x− w)− χRN\E(x− w)

|w|N+s
dw (5.2.4)

=

ˆ
RN−1

ζR(w′)

[ˆ R/4

−R/4

χE(x− w)− χRN\E(x− w)

(1 + (wN/|w′|)2)(N+s)/2
dwN

]
dw′

|w′|N+s
,

where the last equality follows from the fact that ϕ(|wN |/R) = 1 for |wN | ≤
R/4 and that, by (5.2.1) and by symmetry, the contributions of χE(x − w)
and χRN\E(x− w) outside {|wN | ≤ R/4} cancel each other.
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We now compute the inner integral: using the change variables t :=
wN/|w′| we have

ˆ R/4

−R/4

χE(x− w)

(1 + (wN/|w′|)2)(N+s)/2
dwN

=

ˆ R/4

u(x′)−u(x′−w′)

1

(1 + (wN/|w′|)2)(N+s)/2
dwN

= |w′|
ˆ R/(4|w′|)

(u(x′)−u(x′−w′))/|w′|

1

(1 + t2)(N+s)/2
dt

= |w′|
[
F

(
R

4|w′|

)
− F

(
u(x′)− u(x′ − w′)

|w′|

)]
.

In the same way,

ˆ R/4

−R/4

χRN\E(x− w)

(1 + (wN/|w′|)2)(N+s)/2
dwN

= |w′|
[
F

(
u(x′)− u(x′ − w′)

|w′|

)
− F

(
− R

4|w′|

)]
.

Therefore, since F is odd, we immediately get that

ˆ R/4

−R/4

χE(x− w)− χRN\E(x− w)

(1 + (wN/|w′|)2)(N+s)/2
dwN = 2|w′|F

(
u(x′ − w′)− u(x′)

|w′|

)
,

which together with (5.2.4) proves (5.2.3).
Let us point out that to justify these computations in a pointwise fashion

one would need u ∈ C1,1(x) (in the sense of Definition 4.1.1). However, by
using the viscosity definition it is immediate to check that (5.2.3) holds in the
viscosity sense (since one only needs to verify it at points where the graph of
u can be touched with paraboloids).

Now we focus on the right hand side of the equation (5.2.1). Let us define
the function

ΨR(x) :=

ˆ
RN

[1− ηR(y − x)]
χE(y)− χRN\E(y)

|x− y|N+s
dy. (5.2.5)

Since 1 − ηR(y − x) vanishes in a neighborhood of {x = y}, it is immediate

to check, by induction over |α|, that the function ψR(z) :=
1− ηR(z)

|z|N+s
is of

class C∞, with

|∂αψR(z)| ≤ C(|α|)
1 + |z|N+s

, ∀α ∈ NN .
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Hence, since 1/(1 + |z|N+s) ∈ L1(RN) we deduce that

ΨR ∈ C∞(RN), with all its derivatives uniformly bounded. (5.2.6)

Consequently, by (5.2.3) and (5.2.5) we deduce that u is a viscosity solu-
tion ofˆ

RN−1

F

(
u(x′ − w′)− u(x′)

|w′|

)
ζR(w′)

|w′|N−1+s
dw′ = −ΨR(x′, u(x′))

2
,

inside BN−1
R/2 . Since F is odd, we can add the term F

(
−∇u(x′) · w′|w′|

)
inside

the integral in the left hand side, so the equation actually becomes

ˆ
RN−1

[
F

(
u(x′ − w′)− u(x′)

|w′|

)
− F

(
−∇u(x′) · w

′

|w′|

)]
ζR(w′)

|w′|N−1+s
dw′

= −ΨR(x′, u(x′))

2
. (5.2.7)

5.2.2 The regularity of the equation and conclusion.

We would like to apply the regularity result from Theorem 4.2.2, exploit-
ing (5.2.6) to bound the right hand side of (5.2.7). To this aim, using the
Fundamental Theorem of Calculus, we rewrite the left hand side in (5.2.7)
as ˆ

RN−1

(
u(x′ − w′)− u(x′) +∇u(x′) · w′

)a(x′,−w′)ζR(w′)

|w′|N+s
dw′, (5.2.8)

where

a(x′,−w′) :=

ˆ 1

0

(
1 +

(
t
u(x′ − w′)− u(x′)

|w′|
−(1− t)∇u(x′) · w

′

|w′|

)2)−(N+s)
2

dt.

Now, we claim that
ˆ
RN−1

δu(x′, w′)KR(x′, w′) dw′ = −ΨR(x′, u(x′)) + AR(x′), (5.2.9)

where

KR(x′, w′) :=
[a(x′, w′) + a(x′,−w′)]ζR(w′)

2|w′|(N−1)+(1+s)
,

and

AR(x′) :=

ˆ
RN−1

[u(x′−w′)−u(x′)+∇u(x′)·w′] [a(x′, w′)− a(x′,−w′)]ζR(w′)

|w′|N+s
dw′.
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To prove (5.2.9) we introduce a short-hand notation: we define

u±(x′, w′) := u(x′±w′)−u(x′)∓∇u(x′)·w′, a±(x′, w′) := a(x′,±w′) ζR(w′)

|w′|N+s
,

while the integration over RN−1, possibly in the principal value sense, will
be denoted by I[·]. With this notation, and recalling (5.2.8), it follows that
(5.2.7) can be written

−ΨR

2
= I[u−a−]. (5.2.10)

By changing w′ with −w′ in the integral given by I, we see that

I[u+a+] = I[u−a−].

Consequently (5.2.10) can be rewritten as

−ΨR

2
= I[u+a+]. (5.2.11)

Notice also that

u+ + u− = δu, I[u+(a+ − a−)] = I[u−(a− − a+)]. (5.2.12)

Hence, by (5.2.10)-(5.2.12), we obtain

−ΨR = I[u+a+] + I[u−a−]

=
1

2
I[(u+ + u−)(a+ + a−)] +

1

2
I[(u+ − u−)(a+ − a−)]

=
1

2
I[δu (a+ + a−)] +

1

2
I[(u+ − u−)(a+ − a−)]

=
1

2
I[δu (a+ + a−)]− I[u−(a+ − a−)],

which proves (5.2.9).
Now, to conclude the proof of Theorem 5.1.1 it suffices to apply The-

orem 4.2.2 iteratively: more precisely, let us start by assuming that u ∈
C1,β(BN−1

2r ) for some r ≤ R/2 and any β < s. Then, by the discussion above
we get that u solves

ˆ
RN−1

δu(x′, w′)Kr(x
′, w′) dw′ = −Ψr(x

′, u(x′)) + Ar(x
′) in BN−1

r .

Moreover, one can easily check that the regularity of u implies that the
assumptions of Theorem 4.2.2 with k = 0 are satisfied with σ := 1 + s,
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a0 := 1/(1− s) and r0 = R/4. Observe that (4.2.5) holds since ‖u‖C1,β(BN−1
2r ).

Furthermore, for |w′| ≤ r/2 and |x′| ≤ r,

|(u(x′ − w′)− u(x′) +∇u(x′) · w′) (a(x′, w′)− a(x′,−w′))|
≤ C|w′|2β+1. (5.2.13)

To prove the previous inequality, we define

p(τ) :=
1

(1 + τ 2)
N+s

2

. (5.2.14)

With this notation

a(x′,−w′) =

ˆ 1

0

p

(
t
u(x′ − w′)− u(x′)

|w′|
− (1− t)∇u(x′) · w

′

|w′|

)
dt. (5.2.15)

Let us now consider

A(x′, w′) := a(x′, w′)− a(x′,−w′), (5.2.16)

and

A∗(x′, w′) := a(x′, w′)− p
(

+∇u(x′) · w
′

|w′|

)
.

Since p is even, we get that

A(x′, w′) = A∗(x′, w′)−A∗(x′,−w′). (5.2.17)

Therefore, since |p′(t)| ≤ C, by (5.2.15) and the fact that u ∈ C1,β(BN−1
2r ), it

follows that

|A∗(x′,−w′)|

≤
ˆ 1

0

ˆ 1

0

∣∣∣∣ ddλp
(
λt
u(x′ − w′)− u(x′)

|w′|
− [λ(1− t)+(1− λ)]∇u(x′) · w

′

|w′|

)∣∣∣∣ dλ dt
≤
ˆ 1

0
t
|U(x′, w′)|
|w′|

(ˆ 1

0

∣∣∣∣p′(λtU(x′, w′)

|w′|
− ∇u(x′) · w

′

|w′|

)∣∣∣∣ dλ) dt
≤ C|w′|β, (5.2.18)

for all |w′| ≤ r/2, where

U(x′, w′) := u−(x′, w′) = u(x′ − w′)− u(x′) +∇u(x′) · w′. (5.2.19)

Estimating A∗(x′, w′) in the same way, by (5.2.16)-(5.2.18), we get

|a(x′, w′)− a(x′,−w′)| ≤ |w′|β, (5.2.20)
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for x′ ∈ BN−1
r and w′ ∈ BN−1

r/2 . Since u ∈ C1,β(BN−1
2r ), by the previous

inequality we obtain (5.2.13). Observe that (5.2.13) implies that the integral
defining Ar is convergent by choosing β > s/2. Furthermore, a tedious
computation (which we postpone to Subsection 5.2.3 below) shows that

Ar ∈ C2β−s(BN−1
r ). (5.2.21)

Hence, by Theorem 4.2.2 with k = 0 we deduce that u ∈ C1,2β(BN−1
r/2 ).

But then this implies that Ar ∈ C4β−s(BN−1
r/4 ) and so by Theorem 4.2.2 again

u ∈ C1,4β(BN−1
r/8 ) for all β < s. Note that, once we know that ‖u‖Ck,β(BN−1

2r ) is

bounded for some k ≥ 2 and β ∈ (0, 1], for any |γ| ≤ k − 1 we get, exactly
as in the case k = 0, that for |w′| ≤ r/2,∣∣∂γx([u(x′ − w′)− u(x′) +∇u(x′) · w′] [a(x′, w′)− a(x′,−w′)]

)∣∣ ≤ C|w′|2β+1.

Hence

∂γxAr(x)=

ˆ
RN−1

∂γx
(
U(x′, w′)A(x′, w′)

) ζr(w′)
|w′|N+s

dw′,

is well define for β > s/2. One can also prove that Ar ∈ Ck−1,2β−s(BN−1
r ).

Therefore we can iterate this argument infinitely many times to get that
u ∈ Cm(BN−1

λmr ) for some λ > 0 small, for every m ∈ N. Then, by a simple
covering argument we obtain that u ∈ Cm(BN−1

ρ ) for any ρ < R and m ∈ N,
that is, u is of class C∞ inside Bρ for any ρ < R. This completes the proof
of Theorem 5.1.1.

5.2.3 Hölder regularity of Ar.

We now prove (5.2.21), that is,

if u ∈ C1,β(BN−1
2r ) then Ar ∈ C2β−s(BN−1

r ) for r ≤ R/2.

For this we observe that, by (5.2.17) and (5.2.19),

Ar(x
′) =

ˆ
RN−1

U(x′, w′)
A(x′, w′)

|w′|N+s
ζr(w

′) dw′.

To prove the desired Hölder condition of the function Ar(x
′), we first note

that

U(x′, w′) =

ˆ 1

0

[
∇u(x′)−∇u(x′ − tw′)

]
dt · w′.

Since u ∈ C1,β(BN−1
R ) and 2r ≤ R, we get, for x′, y′ ∈ BN−1

r and w′ ∈ BN−1
r/2 ,

|U(x′, w′)− U(y′, w′)| ≤ C min{|x′ − y′|β|w′|, |w′|β+1} (5.2.22)



172 Chapter 5. Nonlocal minimal surfaces.

and
|U(x′, w′)| ≤ C|w′|β+1. (5.2.23)

Therefore, from (5.2.22) and (5.2.23) it follows that, for any x′, y′ ∈ BN−1
r ,

|Ar(x′)− Ar(y′)|

=

∣∣∣∣ˆ
RN−1

(
U(x′, w′)A(x′, w′)− U(y′, w′)A(y′, w′)

) ζr(w′)
|w′|N+s

dw′
∣∣∣∣

≤ C

ˆ
RN−1

min{|x′ − y′|β|w′|, |w′|β+1}|A(x′, w′)|
|w′|N+s

ζr(w
′) dw′

+ C

ˆ
RN−1

|w′|β+1 |A(x′, w′)−A(y′, w′)|
|w′|N+s

ζr(w
′) dw′

=: I1(x′, y′) + I2(x′, y′). (5.2.24)

On one hand, by (5.2.16) and (5.2.20) we get, for any β > s/2,

I1(x′, y′) ≤ C

ˆ
RN−1

min{|x′ − y′|β|w′|, |w′|β+1}|w′|β−N−sζr(w′) dw′

≤ C|x′ − y′|β
ˆ r/2

|x′−y′|
tβ−s−1dt+

ˆ |x′−y′|
0

t2β−s−1 dt

≤ C|x′ − y′|2β−s. (5.2.25)

On the other hand, to estimate I2 we note that

|A(x′, w′)−A(y′, w′)| ≤ |A∗(x′, w′)−A∗(y′, w′)|
+ |A∗(y′,−w′)−A∗(x′,−w′)|. (5.2.26)

Hence, arguing as in (5.2.18) we have

|A∗(x′,−w′)−A∗(y′,−w′)|

≤
ˆ 1

0

t
|U(x′, w′)|
|w′|

ˆ 1

0

∣∣∣∣p′(λtU(x′, w′)

|w′|
− ∇u(x′) · w

′

|w′|

)
− p′

(
λt
U(y′, w′)

|w′|
− ∇u(y′) · w

′

|w′|

)∣∣∣∣ dλ dt
+

ˆ 1

0

t
|U(x′, w′)− U(y′, w′)|

|w′|

ˆ 1

0

∣∣∣∣p′(λtU(y′, w′)

|w′|
− ∇u(y′) · w

′

|w′|

)∣∣∣∣ dλ dt
=: I2,1(x′, y′) + I2,2(x′, y′). (5.2.27)

We bound each of these integrals separately. First, since |p′(t)| ≤ C, it
follows immediately from (5.2.22) that

I2,2(x′, y′) ≤ C min{|x′ − y′|β, |w′|β}. (5.2.28)
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On the other hand, by (5.2.22), (5.2.23) and the fact that u ∈ C1,β(BN−1
2r )

and p′ is uniformly Lipschitz, we get

I,1(x′, y′) ≤ C|w′|β
(
|U(x′, w′)− U(y′, w′)|

|w′|
+ |∇u(x′)−∇u(y′)|

)
≤ C|w′|β

(
min{|x′ − y′|β, |w′|β}+ |x′ − y′|β

)
≤ C|w′|β|x′ − y′|β. (5.2.29)

Then, assuming without loss of generality r ≤ 1, so that also |x′ − y′| ≤ 1
and |w′| ≤ 1/2, by (5.2.27), (5.2.28) and (5.2.29) it follows that

|A∗(x′,−w′)−A∗(y′,−w′)| ≤ C

(
|w′|β|x′ − y′|β + min{|x′ − y′|β, |w′|β}

)
≤ C min{|x′ − y′|β, |w′|β}. (5.2.30)

Since |A∗(y′, w′) − A∗(x′, w′)| is bounded in the same way, by (5.2.26), we
have

|A(x′, w′)−A(y′, w′)| ≤ C min{|x′ − y′|β, |w′|β}.

By arguing as in (5.2.25), we get that, for any s/2 < β < s,

I2(x′, y′) ≤ C

ˆ
RN−1

|w′|β+1 min{|x′ − y′|β, |w′|β}
|w′|N+s

ζr(w
′)dw′

≤ C|x′ − y′|2β−s. (5.2.31)

Finally, by (5.2.24), (5.2.25) and (5.2.31), we conclude that

|Ar(x′)− Ar(y′)| ≤ C|x′ − y′|2β−s, x′, y′ ∈ BN−1
r ,

as desired.
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Part III

A non local parabolic problem.
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Chapter 6

A Widder’s type Theorem for
the heat equation with nonlocal
diffusion.

6.1 Introduction, preliminaries and functional

settings.

The heat equation has the hyperplane t = 0 as a characteristic surface and
this causes that the Cauchy problem with initial data on t = 0 is not well
posed in general. There is however a perfect match between the Principles
of Thermodynamics (see [87]) and the model of transfer of heat given by
such an equation. This is reflected into the fact that the initial temperature
evolves in time as the convolution with a kernel, giving rise to an average and
smoothing out in this way the potential effect of sharp thermal differences in
agreement with the entropy effect of the Second Principle of Thermodynam-
ics. On the other hand, uniqueness holds true under a positivity assumption
on the function, in agreement this time with the so called Third Principle
of Thermodynamics, according to which temperatures are always positive
if measured in the Kelvin scale. In this sense D. V. Widder, following the
ideas of Täcklind and Tychonoff in [160,166], proved that there cannot be a
positive solution of the heat equation that vanishes at time zero. Moreover
he obtained the following classical result:

Theorem 6.1.1. ( [172, Theorem 6]) Assume that u : RN×[0, T ) ⊂ RN
+ → R

is so that

u(x, t) ≥ 0, u ∈ C(RN × [0, T )), ut, uxixi ∈ C(RN × (0, T )),

177
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and satisfies

ut(x, t)−∆u(x, t) = 0, (x, t) ∈ RN × (0, T ),

in the classical sense. Then

u(x, t) =
1

(4πt)
N
2

ˆ
RN
u(y, 0)e

−|x−y|2
4t dy.

References [78, 98, 160, 165, 166] show how, in the 1920’s and 1930’s, pre-
viously to the work of Widder, a number of authors have dealt with the
question of the uniqueness by imposing various restrictions on the behavior
of the function u(x, t) in portions of the xt-plane near x = ±∞. Widder’s
representation theorem has had a wide range of applications in the work of
many other authors. See for instance [100] and the references therein.

A fundamental step to obtain this seminal result is the following.

Lemma 6.1.2. ( [172, Theorem B]) Let u ∈ C(RN × (0, T )) be a strong
solution of{

ut(x, t)−∆u(x, t) = 0 for (x, t) ∈ RN × (0, T ),
u(x, 0) = 0 in RN ,

such that |u(x, t)| ≤ aeb|x|
2

for some positive constants a and b and (x, t) ∈
RN × (0, T ). Then u(x, t) = 0 for every (x, t) ∈ RN × (0, T ).

Note that this lemma follows in the spirit of the well-known unique-
ness lemma for bounded solutions, changing this boundedness property by a
growth condition.

In this chapter we obtain a similar result for the nonlocal heat equation

ut + (−∆)su = 0 for (x, t) ∈ RN × (0, T ), 0 < s < 1, (6.1.1)

in which the diffusion is given by a power of the Laplacian. This is precisely
the statement of the following.

Theorem 6.1.3. If u ≥ 0 is a strong solution of

ut + (−∆)su = 0 for (x, t) ∈ RN × (0, T ), 0 < s < 1, (6.1.2)

then

u(x, t) =

ˆ
RN
pt(x− y)u(y, 0) dy.
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Here,

pt(x) =
1

tN/2s
p
( x

t1/2s

)
, (6.1.3)

and

p(x) :=

ˆ
RN
eix·ξ−|ξ|

2s

dξ, (6.1.4)

is the solution of{
pt + (−∆)sp = 0 for (x, t) ∈ RN × (0, T ),
p(x, 0) = δ0(x) in RN .

Also, from the previous theorem we trivially deduce the next.

Corollary 6.1.4. If u is a bounded strong solution of (6.1.2) then

u(x, t) =

ˆ
RN
pt(x− y)u(y, 0) dy.

It is worthy to point out that for every 0 < s ≤ 1 the operator in (6.1.1)
does not satisfies the so called Hadamard condition, that is, the Cauchy
problem is ill posed (see [99] for more details). Indeed if we consider u(x, t) =
eλt+ix·w as a solution of the nonlocal heat equation we obtain that

λ = |h|2s > C(1 + log(1 + |h|)), C > 0.

This follows from the fact that

(−∆)seλt+ix·w = |w|2seλt+ix·w,

as the following computations shows:

(−∆)s(eix·w) = C(N, s)P.V.

ˆ
RN

eix·w − eiy·w

|x− y|N+2s
dy

= C(N, s)eix·wP.V.

ˆ
RN

1− eiz·w

|z|N+2s
dz

= C(N, s)eix·w lim
ε→0

ˆ ∞
ε

ˆ
SN−1

1− cos(tθ · w)

t1+2s
dσ(θ) dt

= C(N, s)|w|2seix·w
ˆ ∞

0

ˆ
SN−1

1− cos(tθ · w′)
t1+2s

dσ(θ) dt

= |w|2seix·w.

Observe that, by rotation invariance,

(C(N, s))−1 =

ˆ ∞
0

ˆ
SN−1

1− cos(tθ · w′)
t1+2s

dσ(θ) dt =

ˆ
RN

1− cos(z1)

|z|N+2s
dz,
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independently of w′.
As a consequence we face here a problem similar to the one of the heat

equation. For that reason, in order to get the proof of Theorem 6.1.3, it would
be natural to look for a similar result as Lemma 6.1.2, that is, to get the
uniqueness of the solutions under a pointwise condition related to the decay
of the fundamental solution. However we will observe that, consistently with
the non local behavior of the problem, it is necessary to ask for a boundedness
in the norm instead of a pointwise boundedness. See condition i) of Definition
6.1.5 and Theorem 6.2.1. Proposition 6.4.2 shows how to obtain the natural
pointwise condition for strong solutions that are s-subharmonic.

We also remark here that if we consider the problem

ut + (−∆)su = 0 for (x, t) ∈ RN × (0, T ), 0 < s < 1,

with initial datum u(x, 0) = u0(x) assuming, say, u0 ∈ C(RN)
⋂
L∞(RN),

then a solution is obtained by the convolution with the kernel given in (6.1.3)-
(6.1.4). That is, a solution is given by

u(x, t) =

ˆ
RN
pt(x− y)u0(y) dy. (6.1.5)

We look here for a class of solutions of the fractional parabolic equation, such
that the unilateral sign condition u(x, t) ≥ 0 implies that u, necessarily, is of
the form (6.1.5) with u0(x) replaced by the trace u(x, 0). This is the type of
extension that we propose for the classical result of Widder to the nonlocal
equation in (6.1.1). There exists another type of uniqueness results for this
equation. See for example [109, Proposition 8.1] where the author obtained
the uniqueness for solutions in u(·, t) ∈ C0(RN) when u0(x) ∈ C0(RN).

Along this chapter we will describe several interpretations of what solution
to equation (6.1.1) means, and consider weak, viscosity and strong solutions,
in a sense that we now make more precise.

Let us recall that, u(·, t) ∈ Ls(RN) if
ˆ
RN

|u(x, t)|
1 + |x|N+2s

dx <∞,

(see (0.0.24)). Then we have the following.

Definition 6.1.5. We say that u(x, t) is a weak solution of the fractional
heat problem {

ut + (−∆)su = 0 for (x, t) ∈ RN × (0, T ),
u(x, 0) = u0(x) in RN ,

if the following conditions hold:
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i) u ∈ L1([0, T ′],Ls(RN)) for every T ′ < T .

ii) u ∈ C((0, T ), L1
loc(RN)).

iii) For every test function ϕ ∈ C∞0 (RN × [0, T )) and 0 < T ′ < T one has
that

ˆ T ′

0

ˆ
RN

[−u(x, t)ϕt(x, t) + u(x, t)(−∆)sϕ(x, t)] dx dt =

ˆ
RN
u0(x)ϕ(x, 0) dx−

ˆ
RN
u(x, T ′)ϕ(x, T ′) dx. (6.1.6)

Condition ii) is imposed so that the right hand side of equality (6.1.6)
makes sense for every T ′. Notice that the continuity would follow in any case
from the left hand side of (6.1.6) due to the integrability condition in i).

Consider now

C1,2
p (RN × (0, T )) =

{
f : RN × (0, T )→ R | ft ∈ C(RN × (0, T )),

fxi,xj ∈ C(RN × (0, T )) and

sup
t∈(0,T )

|f(x, t)| ≤ C(1 + |x|)p
}
.

Definition 6.1.6. A function u ∈ C(RN × (0, T )) is a viscosity subsolution
(resp. supersolution) of

ut + (−∆)su = 0 in RN × (0, T ), (6.1.7)

if for all (x, t) ∈ RN × (0, T ) and ϕ ∈ C1,2
p (RN × (0, T )) such that u − ϕ

attains a local maximum (minimum) at (x, t) one has

ϕt(x, t) + (−∆)sϕ(x, t)) ≤ 0 (resp. ≥).

We say that u ∈ C(RN × (0, T )) is a viscosity solution of (6.1.7) in
RN × (0, T ) if it is both a viscosity subsolution and supersolution.

See [104] for more details about this type of solutions.
Finally we introduce the notion of strong solutions of the fractional heat

equation. For that we remark here that, by Proposition 2.1.1 if, for some
β > 0, u ∈ Ls(RN)∩C2s+β(RN) (or C1,2s+β−1(RN) if s > 1/2), then (−∆)su is
well defined as the principal value given in (0.0.21) and defines a continuous
function.
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In this chapter, and following standard procedures in the theory of sin-
gular integrals, we will define hereafter the principal value as the two-sided
limit

P.V.

ˆ
RN

u(x)− u(y)

|x− y|N+2s
dy = lim

ε→0

ˆ

{y | ε<|x−y|<1/ε}

u(x)− u(y)

|x− y|N+2s
dy.

We will use the same notation for this extended operator. When u ∈ Ls(RN)
this definition coincides with the usual one.

Definition 6.1.7. We say that u(x, t) is a strong solution of the fractional
heat equation

ut + (−∆)su = 0 for (x, t) ∈ RN × (0, T ),

if the following conditions hold:

i) ut ∈ C(RN × (0, T )).

ii) u ∈ C(RN × [0, T )).

iii) The equation is satisfied pointwise for every (x, t) ∈ RN × (0, T ), that
is,

ut(x, t) + C(N, s)P.V.

ˆ
RN

u(x, t)− u(y, t)

|x− y|N+2s
dy = 0.

Note that if u(x, t) is a strong solution then

P.V.

ˆ
RN

u(x, t)− u(y, t)

|x− y|N+2s
dy ∈ C(RN × (0, T )).

Observe also that condition ii) implies u ∈ C((0, T ), L1
loc(RN)). Therefore,

if u(x, t) is a strong solution of the fractional heat equation satisfying u(x, t) ∈
L1([0, T ′],Ls(RN)) for every T ′ < T , then

u(x, t) is a weak solution of the fractional heat equation. (6.1.8)

As a byproduct of our results, we will see that this holds true for non-negative
strong solutions (see the forthcoming Corollary 6.3.6).

Now for a given polynomial P with real coefficients we consider the dif-
ferential operator P (D). Then one has

P (D)pt(x) =

ˆ
RN
eix·ξP (iξ)e−t|ξ|

2s

dξ,

where pt is the kernel given in (6.1.3) and (6.1.4). Since e−t|ξ|
2s

is a tempered
distribution we deduce that pt ∈ C∞(RN × (0,∞)) (see for instance [34]
and [79] for more details). In particular, and as a consequence of Theorem
6.1.3, we get that if u is a non negative strong solution of the fractional heat
equation then u ∈ C∞(RN × (0, T )).
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6.2 Uniqueness for weak solutions.

To begin with, we prove a uniqueness result for weak solutions with van-
ishing initial condition. The proof is quite complicated and involves many
fine integral estimates. The nonlocal feature of the problem also makes lo-
calization and cutoff arguments much harder than in the classical case. The
question of uniqueness for another type of weak solutions belonging to the
class L2(RN × (0, T )) ∩ L2((0, T ) : Hs(RN)), that is energy solutions, has
been studied in [75, Theorem 6.1].

Our uniqueness result for general weak solutions is the following.

Theorem 6.2.1. Set T > 0, 0 < s < 1 and let u be a weak solution of the
fractional heat equation{

ut + (−∆)su = 0 for (x, t) ∈ RN × (0, T ),
u(x, 0) = 0 in RN .

(6.2.1)

Then u(x, t) = 0 for every t ∈ (0, T ) and a.e. x ∈ RN .

Proof. We must show that u(x, t0) = 0 for an arbitrary t0 ∈ (0, T ) and
x ∈ RN . For this, we fix R0 > 0 and θ ∈ C∞0 (BR0) and we will prove that

ˆ
RN
u(x, t0)θ(x) dx = 0.

For any t ∈ [0, t0), we define

ϕ(x, t) := (θ(·) ∗ pt0−t(·))(x).

Therefore

ϕ̂(ξ, t) = θ̂(ξ)e−(t0−t)|ξ|2s = C(ξ)et|ξ|
2s

.

Since

ϕ̂t(ξ, t) = |ξ|2sϕ̂(ξ, t),

we have that {
ϕt − (−∆)sϕ = 0 for (x, t) ∈ RN × [0, t0),
ϕ(x, t0) = θ(x) in RN .

(6.2.2)

By [109] (see also [30, 35,47]) we know that

1

C

1

1 + |x|N+2s
≤ p(x) ≤ C

1 + |x|N+2s
. (6.2.3)
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Then we claim that

|ϕ(x, t)| = |θ(x) ∗ pt0−t(x)| ≤ C1

1 + |x|N+2s
, (6.2.4)

where C1 depends of N , 2s, R0, M := ‖θ‖L∞(BR0
) and t0.

Indeed, considering without lost of generality that 2R0 > 1, we will distin-
guish two cases:

When |x| ≤ 2R0, using that pt is a summability kernel in L1 we have that∣∣∣∣ˆ
RN
pt0−t(y)θ(x− y) dy

∣∣∣∣ ≤ M

ˆ
RN
pt0−t(y) dy = M

≤ M
1 + (2R0)N+2s

1 + |x|N+2s

≤ c1

1 + |x|N+2s
. (6.2.5)

where c1 = c1(N, 2s, R0, M).
Consider now |x| > 2R0. Note that from (6.1.3) and (6.2.3), we obtain

that

pt(y) ≤ C

t
N
2s

(
1 + |y|N+2s

t
N+2s

2s

) ≤ Ct

|y|N+2s
. (6.2.6)

Then, since for |x− y| ≤ R0 it follows that |y| ≥ |x|
2

, we have

pt0−t(y) ≤ 2N+2sC(t0 − t)
|x|N+2s

.

As a consequence,∣∣∣∣ˆ
RN
pt0−t(y)θ(x− y) dy

∣∣∣∣ =

∣∣∣∣ˆ
|x−y|≤R0

pt0−t(y)θ(x− y) dy

∣∣∣∣
≤ 2N+2sCM |BR0|

t0 − t
|x|N+2s

≤ 2N+2s2CM |BR0|
t0

1 + |x|N+2s

≤ c2

1 + |x|N+2s
, (6.2.7)

where c2 = c2(N, 2s, R0, M, t0) and |BR0| denotes, as usual, the Lebesgue
measure of the ball BR0 . Hence, (6.2.4) follows from (6.2.5) and (6.2.7).
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Applying (6.2.4) to the derivatives of θ ∈ C∞0 (BR0), we also have

|∇ϕ(x, t)| = |∇θ(x) ∗ pt0−t(x)| ≤ C2

1 + |x|N+2s
, (6.2.8)

where C2 depends on N , 2s, R0, M ′ := ‖∇θ‖L∞(BR0
) and t0.

Then, from (6.2.4) and the fact that u ∈ L1([0, t0],Ls(RN)) we deduce
that

M2 :=

ˆ t0

0

ˆ
RN
|u(x, t)ϕ(x, t)| dx dt <∞. (6.2.9)

Let now φ ∈ C∞0 (RN) be such that

χB1/2
≤ φ ≤ χB1 . (6.2.10)

For R > 2R0 we define

φR(x) := φ
( x
R

)
, x ∈ RN ,

and

ψ(x, t) := ϕ(x, t)φR(x).

As was discussed in Chapter 2, recall that, for suitable f and g, we have

(−∆)s(fg)(x) = f(x)(−∆)sg(x) + g(x)(−∆)sf(x)−B(f, g)(x),

where B(f, g) is the bilinear form given by

B(f, g)(x) := C(N, s)

ˆ
RN

(f(x)− f(y))(g(x)− g(y))

|x− y|N+2s
dy.

Applying this formula, for a fixed t, to the functions ϕ and φR we obtain
from (6.2.2)

(−∆)sψ = ϕ(−∆)sφR + φRϕt −B(ϕ, φR). (6.2.11)

Moreover, by the terminal condition in (6.2.2), (uψ)(x, t0) = u(x, t0)θ(x)φR(x).
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Thus, considering ψ as a test function in (6.2.1) we obtain∣∣∣∣ˆ
RN
u(x, t0)θ(x)φR(x) dx

∣∣∣∣ (6.2.12)

=

∣∣∣∣ˆ t0

0

ˆ
RN

[uϕt(x, t)φR(x)− u(−∆)s(ψ(x, t))] dx dt

∣∣∣∣
=

∣∣∣∣ˆ t0

0

ˆ
RN

[uB(ϕ, φR)(x, t)− uϕ(x, t)(−∆)sφR(x)] dx dt

∣∣∣∣
≤
ˆ t0

0

ˆ
RN
|uϕ(x, t)| |(−∆)sφR(x)| dx dt

+

ˆ t0

0

ˆ
RN
|u(x, t)| |B(ϕ, φR)(x, t)| dx dt.

Since θ is supported in BR0 and R0 < R/2, and recalling (6.2.10), we conclude
that ∣∣∣∣ˆ

RN
u(x, t0)θ(x) dx

∣∣∣∣ ≤ ˆ t0

0

ˆ
RN
|uϕ(x, t)| |(−∆)sφR(x)| dx dt

+

ˆ t0

0

ˆ
RN
|u(x, t)| |B(ϕ, φR)(x, t)| dx dt

=: I1(R) + C(N, s) I2(R). (6.2.13)

It remains to show that

lim
R→∞

I1(R) + I2(R) = 0.

Indeed, since by Proposition 2.1.1,

|(−∆)sφR(x)| = R−2s
∣∣∣((−∆)sφ)

( x
R

)∣∣∣ ≤ C0R
−2s,

then, using (6.2.9), it follows that

I1(R) ≤ C0R
−2s

ˆ t0

0

ˆ
RN
|uϕ(x, t)| dx dt ≤ C0M2R

−2s.

Therefore
lim
R→∞

I1(R) = 0. (6.2.14)

We now proceed with the estimate of I2(R). For this we split RN × RN

into six domains suitably described by the radii R/4, R/2, R and 2R and
represented (for N = 1) in the following picture:
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R
4

R
2

R 2R

R/4
R/2

R

2R

A1

A2

A3

A4

A5

A5

C

C

C
C

Therefore

R2N =

(
5⋃

k=1

Ak

)
∪ C,

where

A1 := {(x, y) : |x| > R/2, |y| ≤ R/4}, A2 := {(x, y) : |x| ≤ R/4, |y| > R/2},

A3 := {(x, y) : |x| ≥ 2R, R/4 < |y| < R},

A4 := {(x, y) : R/4 < |x| < R, |y| ≥ 2R},

A5 := {(x, y) : R/4 < |x| < 2R, R/4 < |y| < 2R} \ C

and

C := {(x, y) : |x| ≤ R/2, |y| ≤ R/2} ∪ {(x, y) : |x| ≥ R, |y| ≥ R}.

From (6.2.10), we know that φR(x)− φR(y) = 0 if (x, y) ∈ C, and so

I2(R) =

ˆ t0

0

ˆ
RN
|u(x, t)|

∣∣∣∣ˆ
RN

(ϕ(x, t)− ϕ(y, t)) (φR(x)− φR(y))

|x− y|N+2s
dy dx

∣∣∣∣ dt
≤

5∑
k=1

IAk2 (R), (6.2.15)

where

IAk2 (R) =

ˆ t0

0

ˆ
Ak

|u(x, t)| |ϕ(x, t)− ϕ(y, t)| |φR(x)− φR(y)|
|x− y|N+2s

dy dx dt,
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for k = 1, . . . , 5.
We estimate each of these five integrals separately. For (x, y) ∈ A1 we

get that |x− y| ≥ C|x|. Moreover by (6.2.4) it follows that

|ϕ(x, t)|+ |ϕ(y, t)| ≤ C

1 + |y|N+2s
.

Therefore

IA1
2 (R) ≤

ˆ t0

0

ˆ
|x|>R/2

|u(x, t)|
|x|N+2s

ˆ
|y|≤R/4

C

1 + |y|N+2s
dy dx dt

≤ C

ˆ t0

0

ˆ
|x|>R/2

|u(x, t)|
|x|N+2s

dx dt. (6.2.16)

Following the same ideas, since for (x, y) ∈ A2 we obtain that

|ϕ(x, t)|+ |ϕ(y, t)| ≤ C

1 + |x|N+2s
, and |x− y| ≥ C|y|, (6.2.17)

then

IA2
2 (R) ≤

ˆ t0

0

ˆ
|x|≤R/4

|u(x, t)|
1 + |x|N+2s

ˆ
|y|>R/2

C

|y|N+2s
dy dx dt

≤ CR−2s

ˆ t0

0

ˆ
|x|≤R/4

|u(x, t)|
1 + |x|N+2s

dx dt. (6.2.18)

Also, since for (x, y) ∈ A3,

|ϕ(x, t)|+ |ϕ(y, t)| ≤ C

|y|N+2s
, and |x− y| ≥ C|x|,

then

IA3
2 (R) ≤ CR−2s

ˆ t0

0

ˆ
|x|≥2R

|u(x, t)|
|x|N+2s

dx dt. (6.2.19)

Similarly, using again the good decay of ϕ and the fact that |x − y| ≥ C|y|
for every (x, y) ∈ A4, we obtain that

IA4
2 (R) ≤ CR−2s

ˆ t0

0

ˆ
R/4<|x|<R

|u(x, t)|
|x|N+2s

dx dt. (6.2.20)

Then, using the Monotone Convergence Theorem and the fact that u ∈
L1([0, t0],Ls(RN)), from (6.2.16), (6.2.18), (6.2.19) and (6.2.20) it follows
that

lim
R→∞

IA1
2 (R) = lim

R→∞
IA2

2 (R) = lim
R→∞

IA3
2 (R) = lim

R→∞
IA4

2 (R) = 0. (6.2.21)
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To estimate IA5
2 (R) we will treat separately the cases 0 < s < 1/2 and

1/2 ≤ s < 1.

We start with the case 0 < s < 1/2. Let (x, y) ∈ A5. Since in A5 the
roles of x and y are symmetric, we deduce from (6.2.4) that, in this case,

|ϕ(x, t)|+ |ϕ(y, t)| ≤ C

|x|N+2s
. (6.2.22)

Also

|φR(x)− φR(y)| ≤ C

R
|x− y|. (6.2.23)

Thus

IA5
2 (R) ≤ C

R

ˆ t0

0

ˆ
R
4
≤|x|≤2R

|u(x, t)|
|x|N+2s

ˆ
R
4
≤|y|≤2R

1

|x− y|N+2s−1
dy dx dt.

(6.2.24)
By the change of variables ỹ := x− y, it follows from (6.2.24) that

IA5
2 (R) ≤ C

R

ˆ t0

0

ˆ
R
4
≤|x|≤2R

|u(x, t)|
|x|N+2s

ˆ
R
4
≤|x−ỹ|≤2R

1

|ỹ|N+2s−1
dỹ dx dt

≤ C

R

ˆ t0

0

ˆ
R
4
≤|x|≤2R

|u(x, t)|
|x|N+2s

ˆ
|ỹ|≤4R

1

|ỹ|N+2s−1
dỹ dx dt.

≤ CR−2s

ˆ t0

0

ˆ
R
4
≤|x|≤2R

|u(x, t)|
|x|N+2s

dx dt. (6.2.25)

Therefore, using that u ∈ L1([0, t0],Ls(RN)), we conclude that

lim
R→∞

IA5
2 (R) = 0, when 0 < s < 1/2. (6.2.26)

We consider now the case 1/2 ≤ s < 1. By (6.2.8), we get that

|ϕ(x, t)− ϕ(y, t)| ≤ C

1 + |z|N+2s
|x− y|, (6.2.27)

for some z in the segment joining x and y. We define the set

Q :=

{
(x, y) ∈ A5 : |x− y| ≤ R

100

}
.

Note that, if (x, y) ∈ Q then every point z lying on the segment from x to
y satisfies |z| ≥ C|x|. Hence, (6.2.27) and the previous estimate for φR in
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(6.2.23), gives that

ˆ t0

0

ˆ
(x,y)∈Q

|u(x, t)| |(φR(x)− φR(y))(ϕ(x, t)− ϕ(y, t))|
|x− y|N+2s

dy dx dt

≤
ˆ t0

0

ˆ
(x,y)∈Q

|u(x, t)| C

R|x|N+2s|x− y|N+2s−2
dy dx dt

≤ C

R

ˆ t0

0

ˆ
R
4
≤|x|≤2R

|u(x, t)|
|x|N+2s

ˆ
R
4
≤|y|≤2R

1

|x− y|N+2s−2
dy dx dt

≤ C

R

ˆ t0

0

ˆ
R
4
≤|x|≤2R

|u(x, t)|
|x|N+2s

ˆ
R
4
≤|x−ỹ|≤2R

1

|ỹ|N+2s−2
dỹ dx dt

≤ CR1−2s

ˆ t0

0

ˆ
R
4
≤|x|≤2R

|u(x, t)|
|x|N+2s

dx dt. (6.2.28)

On the other hand, if (x, y) ∈ A5 \ Q we have that

|x− y| > R

100
≥ C|y|. (6.2.29)

Then by (6.2.22) and (6.2.29) it follows that

ˆ t0

0

ˆ
(x,y)∈A5\Q

|u(x, t)| |(φR(x)− φR(y))(ϕ(x, t)− ϕ(y, t))|
|x− y|N+2s

dy dx dt

≤ C

R

ˆ t0

0

ˆ
(x,y)∈A5\Q

|u(x, t)| |(ϕ(x, t)− ϕ(y, t))|
|x− y|N+2s−1

dy dx dt

≤ C

R

ˆ t0

0

ˆ
(x,y)∈A5\Q

|u(x, t)|
|x|N+2s

1

|y|N+2s−1
dy dx dt

≤ C

R

ˆ t0

0

ˆ
R
4
≤|x|≤2R

|u(x, t)|
|x|N+2s

ˆ
R
4
≤|y|≤2R

1

|y|N+2s−1
dy dx dt

≤ CR−2s

ˆ t0

0

ˆ
R
4
≤|x|≤2R

|u(x, t)|
|x|N+2s

dx dt. (6.2.30)
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Therefore, from (6.2.28) and (6.2.30)

IA5
2 (R) ≤

ˆ t0

0

ˆ
(x,y)∈Q

|u(x, t)| |(φR(x)− φR(y))(ϕ(x, t)− ϕ(y, t))|
|x− y|N+2s

dy dx dt

+

ˆ t0

0

ˆ
(x,y)∈A5\Q

|u(x, t)| |(φR(x)− φR(y))(ϕ(x, t)− ϕ(y, t))|
|x− y|N+2s

dy dx dt

≤ CR1−2s

ˆ t0

0

ˆ
R
4
≤|x|≤2R

|u(x, t)|
|x|N+2s

dx dt

+ CR−2s

ˆ t0

0

ˆ
R
4
≤|x|≤2R

|u(x, t)|
|x|N+2s

dx dt. (6.2.31)

Since u ∈ L1([0, t0],Ls(RN)), and using the Monotone Convergence Theorem
when s = 1/2, we obtain

lim
R→∞

IA5
2 (R) = 0, whenever 1/2 ≤ s < 1. (6.2.32)

Putting together (6.2.15), (6.2.21), (6.2.26) and (6.2.32) it follows that

lim
R→∞

I2(R) = 0, when 0 < s < 1. (6.2.33)

Therefore, from (6.2.13), by (6.2.14) and (6.2.33) we conclude thatˆ
RN
u(x, t0)θ(x) dx = 0,

for an arbitrary θ ∈ C∞0 (BR0), as wanted.

6.3 Uniqueness for strong positive solutions.

In this section we will establish the representation of the positive strong
solutions of the fractional heat equation as the Poisson integral of the initial
value. That is, we prove here Theorem 6.1.3. We will need some preliminaries
results. First of all, we establish that, among all possible positive solutions
of the fractional heat equation, the minimal one is given by a formula that
involves the convolution with the fractional heat kernel (see Lemma 6.3.2).
To prove it we will use the following.

Lemma 6.3.1 (A maximum principle). Set DT := Ω×(0, T ) and let v(x, t) ∈
C(Ω× [0, T )) a strong solution of the problem{

vt + (−∆)sv ≤ 0 for (x, t) ∈ DT ,
v(x, t) ≤ 0 in

(
RN × [0, T )

)
\DT .

(6.3.1)

Then v ≤ 0 in Ω× [0, T ).
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Proof. Fixing an arbitrary T ′ ∈ (0, T ), we define

v(x0, t0) := max
Ω×[0,T ′]

v(x, t).

Our goal is to show that v(x0, t0) ≤ 0. The proof is by contradiction, assum-
ing that

v(x0, t0) > 0. (6.3.2)

If this is the case, then (x0, t0) cannot lie in (∂Ω× [0, T )) ∪ (Ω× {0}), since
v ≤ 0 there, thanks to the boundary conditions in (6.3.1). As a consequence,
(x0, t0) lies in Ω × (0, T ′] and then vt(x0, t0) ≥ 0. Therefore the equation in
(6.3.1) implies that

0 ≥ (−∆)sv(x0, t0) = C(N, s)P.V.

ˆ
RN

v(x0, t0)− v(y, t0)

|y − x0|N+2s
dy

= C(N, s)

(
P.V.

ˆ
Ω

v(x0, t0)− v(y, t0)

|y − x0|N+2s
dy +

ˆ
RN\Ω

v(x0, t0)− v(y, t0)

|y − x0|N+2s
dy

)
≥ C(N, s)P.V.

ˆ
RN\Ω

v(x0, t0)− v(y, t0)

|y − x0|N+2s
dy.

Since v(y, t0) ≤ 0 for y ∈ RN \Ω, thanks to (6.3.1), we obtain that the latter
integrand is strictly positive, due to (6.3.2), and this is a contradiction.

Now we are able to prove that positive strong solutions are upper bounds
for the kernel convolutions.

Lemma 6.3.2. Let (x, t) ∈ RN × (0, T ). If u(x, t) ≥ 0 is a strong solution
of the fractional heat equation then

I :=

ˆ
RN
pt(x− y)u(y, 0) dy ≤ u(x, t), (6.3.3)

where pt(x) is the function defined in (6.1.3) and (6.1.4).

Proof. First of all, observe that the integral I = I(x, t) exists, for is given
by the integration of the product of two (measurable) positive functions,
although we do not know a priori that I is finite. However, this will be
a consequence of our result that gives the inequality I ≤ u(x, t) for every
(x, t) ∈ RN × [0, T ). To this aim, for x ∈ RN , we let, by a slight abuse of
notation,

φR(x) :=


1, |x| ≤ R− 1,
R− |x|, R− 1 ≤ |x| ≤ R,
0, |x| > R.

(6.3.4)
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We define

vR(x, t) :=

ˆ
RN
pt(x− y)φR(y)u(y, 0) dy = (pt(·) ∗ φRu(·, 0))(x).

Then 
∂vR
∂t

+ (−∆)svR = 0 for (x, t) ∈ RN × (0, T ),

vR(x, t) ≥ 0 for (x, t) ∈ RN × (0, T ),
vR(x, 0) = φR(x)u(x, 0) in RN .

Let |x| > R. Since u(x, t) ∈ C(RN × [0, T )), we can define the real number

MR := sup
|y|<R

u(y, 0) <∞.

By (6.2.6) we have that

0 ≤ vR(x, t) ≤ MR

ˆ
BR

pt(x− y) dy

≤ CMR

ˆ
BR

T

|x− y|N+2s
dy

≤ C(T,MR)

ˆ
BR

dy

||x| −R|N+2s

= C(T,MR, N)
RN

||x| −R|N+2s
,

for any (x, t) ∈ (RN \BR)× (0, T ).
Then, for every ε > 0 it follows that

0 ≤ vR(x, t) ≤ ε, for |x| ≥ ρ, t ∈ (0, T ), (6.3.5)

where

ρ = R +

(
C(T,MR, N)RN

ε

) 1
N+2s

> 0.

Moreover, we have that

vR(x, 0) = φR(x)u(x, 0) ≤ u(x, 0) ≤ ε+ u(x, 0), for any |x| ≤ ρ, (6.3.6)

and, since u(x, t) ≥ 0 in RN × [0, T ), from (6.3.5), we also obtain

0 ≤ vR(x, t) ≤ ε ≤ ε+ u(x, t), for any |x| ≥ ρ, t ∈ [0, T ). (6.3.7)
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Consider now the cylinder

Dρ,T = Bρ × (0, T ).

We define the function

w(x, t) := vR(x, t)− u(x, t)− ε.

Then, by (6.3.6) and (6.3.7), we get that w(x, t) ≤ 0 in RN × [0, T ) \ Dρ,T .
Therefore, since u(x, t) is a strong solution of the fractional heat equation in
RN × [0, T ), applying Lemma 6.3.1 in Dρ,T to the function w(x, t) we have
that

vR(x, t) ≤ ε+ u(x, t), for |x| ≤ ρ and t ∈ [0, T ).

Hence, from (6.3.7), it follows that

vR(x, t) ≤ ε+ u(x, t), for x ∈ RN and t ∈ [0, T ).

Since ε is fixed but arbitrary, the previous inequality implies that

vR(x, t) ≤ u(x, t), for every x ∈ RN and t ∈ [0, T ).

Finally, by the Monotone Convergence Theorem, as lim
R→∞

φR = 1, we conclude

that

0 ≤ v(x, t) = lim
R→∞

vR(x, t) =

ˆ
RN
pt(x− y)u(y, 0)dy ≤ u(x, t).

By a simple time translation, we obtain from Lemma 6.3.2 the following.

Corollary 6.3.3. Let 0 < τ < T and (x, t) ∈ RN × (0, T − τ). If u(x, t) ≥ 0
is a strong solution of the fractional heat equation then

ˆ
RN
pt(x− y)u(y, τ) dy ≤ u(x, t+ τ). (6.3.8)

As a consequence, for every x ∈ RN and t ∈ (0, T − τ) we have

ˆ T−t

0

ˆ
RN
pt(x− y)u(y, τ) dy dτ ≤

ˆ T−t

0

u(x, t+ τ)dτ . (6.3.9)

The proof follows directly from the previous results and will be omited.

Moreover we have the following
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Corollary 6.3.4. Let (x, t) ∈ RN × (0, T ). If u(x, t) ≥ 0 is a strong solution
of the fractional heat equation then, u(·, t) ∈ Ls(RN).

Proof. Let 0 < T ′ < T . Taking t = T − T ′ in (6.3.8), from (6.2.3), we get
that

T − T ′

C

ˆ
RN

u(y, τ)

(T − T ′)N+2s
2s + |x− y|N+2s

dy ≤
ˆ
RN
pT−T

′
(x− y)u(y, τ) dy

≤ u(x, T − T ′ + τ)

< ∞, 0 < τ < T ′. (6.3.10)

Let

C(T ) := min

{
1,

1

(T − T ′)N+2s
2s

}
.

Then, since
1

(T − T ′)N+2s
2s + |y|N+2s

≥ C(T )
1

1 + |y|N+2s
,

taking x = 0 in (6.3.10), we conclude that

ˆ
RN

|u(y, τ)|
(1 + |y|N+2s)

dy <∞, 0 < τ < T ′.

Remark 6.3.5. Clearly, the same argument as in the previous proof gives,
by (6.3.3), that u(·, 0) ∈ Ls(RN). Therefore, as was mentioned in the intro-
duction of this chapter, if we define

p̃(x, t) :=

ˆ
RN
pt(x− y)u(y, 0) dy, (6.3.11)

then, using the decay of the kernel pt, and its derivatives, we get that p̃(x, t) ∈
C∞(RN × (0, T )).

We also have

Corollary 6.3.6. Let (x, t) ∈ RN × (0, T ). If u(x, t) ≥ 0 is a strong solution
of the fractional heat equation, then u(·, t) ∈ L1([0, T ′],Ls(RN)) for every
0 < T ′ < T.

Proof. Take an arbitrary 0 < T ′ < T . Doing as in the proof of Corollary
6.3.4 we get that

C̃(t)

ˆ
RN

u(y, τ)

1 + |y|N+2s
dy ≤ u(0, t+ τ), 0 < τ < T − t,
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where

C̃(t) =
t

C
min

{
1,

1

t
N+2s

2s

}
.

That is

ˆ T ′−t

0

C̃(t)

ˆ
RN

u(y, τ)

1 + |y|N+2s
dy dτ ≤

ˆ T ′−t

0

u(0, t+ τ) dτ

≤
ˆ T ′

0

u(0, τ) dτ = c(T ′) <∞.

Let now T ′ < T ′′ < T . Doing the same as before we get

ˆ T ′′−t

0

C̃(t)

ˆ
RN

u(y, τ)

1 + |y|N+2s
dy dτ ≤ c(T ′′) <∞.

Finally taking 0 < t = T ′′ − T ′ < T we obtain

0 < C̃(T ′′ − T ′)
ˆ T ′

0

ˆ
RN

u(y, τ)

1 + |y|N+2s
dy dτ ≤ c(T ′′) <∞.

That is, u ∈ L1([0, T ′],Ls(RN)) for every 0 < T ′ < T.

Note that, as we announced in Section 6.1 (see (6.1.8)), from Corol-
lary 6.3.6 we can assert that if u(x, t) ≥ 0 is a strong solution of the fractional
heat equation then u is also a weak solution of the same equation.

Now we are in the situation to prove our main result:

Proof of Theorem 6.1.3. By Corollary 6.3.6 we get that u ∈ L1([0, T ′],Ls(RN))
for every 0 < T ′ < T. Moreover by Lemma 6.3.2 and the previous Corollary,
we also have that p̃ ∈ L1([0, T ′],Ls(RN)) where p̃ was defined in (6.3.11).
Define now the function

w(x, t) := u(x, t)− p̃(x, t) ≥ 0, (x, t) ∈ RN × [0, T ).

It is clear that w is a strong solution of the fractional heat equation. More-
over, as w ∈ L1([0, T ′],Ls(RN)), then w(x, t) is also a solution in the weak
sense with zero initial datum. Therefore applying Theorem 6.2.1, using
the continuity of the function w, we conclude that w(x, t) = 0 for every
(x, t) ∈ RN × [0, T ).
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6.3.1 A remark on viscosity solutions.

As was said at the beginning of this chapter, it is natural to consider viscosity
solutions of the fractional heat equation. Our purpose here is to describe some
cases in which a positive viscosity solution has the unique representation in
terms of the kernel pt.

Proposition 6.3.7. Let {un} be a sequence of non-negative, strong solutions
of the fractional heat equation converging, uniformly over compact sets, to a
given function u. Then u ≥ 0 is a viscosity solution of (6.1.1) satisfyingˆ

RN
pt(x− y)u(y, 0) dy ≤ u(x, t), (x, t) ∈ RN × (0, T ) (6.3.12)

and
u ∈ L1([0, T ′],Ls(RN)) for every 0 < T ′ < T. (6.3.13)

That is, the conclusions of Lemma 6.3.2 and Corollary 6.3.6 are satisfied.

Proof. By Lemma 6.3.2 it follows thatˆ
RN
pt(x− y)un(y, 0) dy ≤ un(x, t), (x, t) ∈ RN × (0, T ).

Applying the Fatou Lemma we obtain (6.3.12). Therefore, doing as in the
proof of the Corollary 6.3.6 we conclude (6.3.13). Note also that, by the
comparison principle (Corolary 2.1.6 of [151]), un ≥ 0 is a viscosity solution
of (6.1.1) for every n ∈ N. Therefore, since u is the uniform limit over
compact sets of viscosity solutions, we get that u is also a viscosity solution
of (6.1.1).

Notice that to conclude the equality in (6.3.12) we would need to pass
to the limit in the conclusion of Theorem 6.1.3. In order to obtain this we
introduce a monotonicity condition over the sequence {un}. That is, we have
the following.

Proposition 6.3.8. Let {un} be a monotone sequence of non-negative, strong
solutions of the fractional heat equation converging, uniformly over compact
sets, to a given function u. Then u ≥ 0 is a strong, and viscosity, solution
of (6.1.1) satisfyingˆ

RN
pt(x− y)u(y, 0) dy = u(x, t), (x, t) ∈ RN × (0, T ). (6.3.14)

Proof. Since, for every n ∈ N, un ≥ 0 satisfies Theorem 6.1.3, by the Mono-
tone Convergence Theorem we obtain (6.3.14). Clearly this implies that
u ≥ 0 is a strong solution of (6.1.1).
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6.4 Other results.

Motivated by the results obtained in the classical case to prove Theorem
6.1.1, we present in this subsection two lemmas. As we remarked in the
introduction of this work, it would be interesting to provide an alternative
proof of Theorem 6.1.3, so the idea is to present them as a possible tool to
obtain this different demonstration.

First of all we note that, as in the local case (see [173]), given a solution
u, one can define the enthalpy term

v(x, t) :=

ˆ t

0

u(x, τ) dτ , (6.4.1)

which is also a solution of the fractional heat equation. Indeed we have the
following result.

Lemma 6.4.1. Let (x, t) ∈ RN × [0, T ). If u(x, t) is a strong solution of the
fractional heat equation with vanishing initial condition satisfying

ˆ t

0

ˆ
RN

|u(x, t)− u(y, t)|
|x− y|N+2s

dy dt = C(x) <∞,

then the enthalpy term defined in (6.4.1) is also a strong solution of the
fractional heat equation. Moreover, if u is positive the function v is increasing
in t for x fixed and s-subharmonic as a function of x.

Proof. We will give a direct proof that does not require the full extend of
Theorem 6.1.3. Let (x, t) ∈ RN × [0, T ). First of all note that v(x, t) satisfies
the conditions i) − ii) of the Definition 6.1.7. Therefore, since u(x, t) is a
strong solution of the fractional heat equation, by Fubini’s Theorem and the
Fundamental Theorem of Calculus, it follows that

C(N, s)P.V.

ˆ
RN

v(x, t)− v(y, t)

|x− y|N+2s
dy

= C(N, s)P.V.

ˆ
RN

ˆ t

0

u(x, τ)− u(y, τ)

|x− y|N+2s
dτ dy

=

ˆ t

0

(−∆)su(x, τ) dτ

= −
ˆ t

0

uτ (x, τ) dτ

= −u(x, t)

= −vt(x, t),
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for any (x, t) ∈ RN×(0, T ]. Then, v(x, t) satisfies the fractional heat equation
in the strong sense. Also if u ≥ 0 from the previous calculations we deduce
that

−(−∆)sv(x, t) = vt(x, t) = u(x, t) ≥ 0.

So v is s-subharmonic as a function of x and increasing in t for x fixed.

Lemma 6.4.1 shows that the enthalpy belongs to the special class of pos-
itive strong solutions that are also s-subharmonic. This class naturally sat-
isfies a polynomial estimate, as shown by the following result.

Lemma 6.4.2. For (x, t) ∈ RN × [0, T ), let u(x, t) ≥ 0 be such that

i) u(x, t) is an s-subharmonic function with respect to the variable x,

ii) u(x, t) is a strong solution of the fractional heat equation.

Then, u(x, t) ≤ C(t)(1 + |x|N+2s).

Proof. Since u is an s-subharmonic function with respect to the variable x
for t fixed, then u is increasing in time.
Let now 0 < t1 < T and 0 < t0 < T − t1. By Corollary 6.3.3 we have that

ˆ
RN
pt(x− y)u(y, t1)dy ≤ u(x, t+ t1), for any 0 < t < T − t1.

Therefore

Mt0 :=

ˆ
RN
pt0(y)u(y, t1)dy ≤ u(0, t0 + t1) <∞. (6.4.2)

Our objective is to show that

|u(x, t1)| ≤ C(t1)(1 + |x|N+2s). (6.4.3)

Once this is done, using that u is increasing in time, we would get

0 ≤ u(x, t) ≤ u(x, t1) ≤ C(t1)(1 + |x|N+2s) for every (x, t) ∈ RN × (0, t1).

But, since t0 and t1 are fixed but arbitrary, we would conclude that

|u(x, t)| ≤ C(t)(1 + |x|N+2s).

So, we are left to showing that (6.4.3) is true. Note that from Corollary
6.3.4 we have that u ∈ Ls(RN). Then, since u is s-subharmonic, by [151,
Proposition 2.2.6] u also satisfies the following mean value property:

u(x, t) ≤
ˆ
RN
γλ(x− y)u(y, t)dy, (6.4.4)
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for every x ∈ Ω ⊆ RN and λ ≤ dist(x, ∂Ω). Here

γλ(x) := (−∆)sΓλ(x),

was introduced in the proof of Lemma 3.4.2. Recall that

Γλ(x) :=
1

λN−2s
Γ
(x
λ

)
,

with Γ is a C1,1 function that coincides with Φ(x) := c|x|2s−N (the funda-
mental solution of (−∆)s), outside the ball Bλ and with a paraboloid inside
this ball. From (6.4.4) we have

u(x, t1)(1 + |x|N+2s)−1 ≤ (1 + |x|N+2s)−1

ˆ
RN
γλ(y)u(x− y, t1) dy

= (1 + |x|N+2s)−1

ˆ
{y: |y|≥λ}

γλ(y)u(x− y, t1) dy

+ (1 + |x|N+2s)−1

ˆ
{y: |y|≤λ}

γλ(y)u(x− y, t1) dy

:= I1(x) + I2(x). (6.4.5)

Choosing

λ =
|x|
4

+ 1, (6.4.6)

if y ∈ {y : |y| ≥ λ}, we have that |y| ≥ C0(1 + |x − y|) whit C0 = 1/5.
Therefore, by [151, Proposition 2.2.3], we obtain

I1(x) ≤ C(1 + |x|N+2s)−1

ˆ
{y: |y|≥λ}

u(x− y, t1)

|y|N+2s
dy

≤ C(1 + |x|N+2s)−1

ˆ
RN

u(x− y, t1)

(1 + |x− y|)N+2s
dy

≤ C‖u(·, t1)‖Ls(RN ) := C1(t1). (6.4.7)

Moreover, since γλ is the fractional laplacian of a bounded C1,1 function,
we have that γλ is continuous and, in particular, uniformly bounded in the
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compact set {y : |y| ≤ λ}. Then, by (6.2.3) and (6.4.6), it follows that

I2(x) ≤ C(1 + |x|N+2s)−1

ˆ
{y: |y|≤λ}

u(x− y, t1) dy

≤ C(1 + |x|N+2s)−1

ˆ
{z: |x−z|≤λ}

u(z, t1) dz

≤ C(1 + |x|N+2s)−1

ˆ
{z: |z|≤2|x|+1}

u(z, t1)p1(z)
1

p1(z)
dz

≤ C(1 + |x|N+2s)−1(1 + (2|x|+ 1)N+2s)

ˆ
{z: |z|≤2|x|+1}

u(z, t1)p1(z) dz

≤ CM1(1 + |x|N+2s)−1(1 + (2|x|+ 1)N+2s)

≤ C̃(N, s)u(0, 1 + t1) := C2(t1), (6.4.8)

where M1 was given in (6.4.2). By (6.4.5), (6.4.7) and (6.4.8), we obtain
(6.4.3) and we conclude the proof.
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Non Linéaire, 6 (1989), no. 5 , 321-330.



211

[96] B. Gidas, J. Spruck, A priori bounds for positive solutions of nonlinear
elliptic equations. Comm. Partial Differential Equations, 6 (1981), no.
8, 883-901.

[97] D. Gilbarg, N. Trudinger, Elliptic partial differential equations of sec-
ond order. Classics in Mathematics, Springer, Berlin. 2001.

[98] E. Goursat, Cours d’analyse mathematique. Paris, 1923, vol. 3, chap.
29.

[99] J. Hadamard, Lectures on Cauchy’s problem in linear partial differ-
ential equations. Dover Publications, New York, 1953. iv+316 pp.

[100] D. T. Haimo, Widder temperature representations. Journal of Mathe-
matical Analysis and Applications, 41 (1973), 170-178.

[101] I. Herbst, Spectral theory of the operator (p2 +m2)1/2 − Ze2/r. Com-
mun. math. Phys., 53 (1977), 285-294.

[102] A. Hildebrandt, R. Blossey, S. Rjasanow, O. Kohlbacher, H. P. Lenhof,
Electrostatic potentials of proteins in water: a structured continuum
approach. Bioinformatics (Oxford Univ Press), 23 (2) (2007), e99.

[103] R. Husseini, M. Kassmann, Jump processes, L-harmonic functions,
continuity estimates and the Feller property. Ann. Inst. Henri
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