
Modelling Unmanned Vehicles Mission

Planning problems as Constraint

Satisfaction Problems

Author: Cristian Oliver Ramı́rez Atencia

Advisor: David Camacho Fernández

A thesis submitted in partial fulfillment for the Master Degree on

Research and Innovation in Information and Communication Technologies

in the

Escuela Politécnica Superior

Departamento de Ingenieŕıa Informática

September 2014

http://www.uam.es
http://www.eps.uam.es/
http://www.uam.es/ss/Satellite/EscuelaPolitecnica/es/departamentos-3/departamentos-2/Page/subhome/ingenieria-informatica.htm

“Planning is a process of choosing among those many options. If we do not choose to

plan, then we choose to have others plan for us.”

Richard I. Winwood

Abstract

Escuela Politécnica Superior

Departamento de Ingenieŕıa Informática

Master on Research and Innovation in Information and Communication Technologies

by Cristian Oliver Ramı́rez Atencia

This Master Thesis 1 provides a first analysis of mission planning for Unmanned Air Vehicles

(UAVs), dealing with multiple UAVs that must perform one or more tasks in a set of waypoints

and specific time windows. The solution plans obtained should fulfill all the constraints given

by the different components and capabilities of the UAVs involved over the time periods given.

Therefore a Temporal Constraint Satisfaction Problem (TCSP) representation is needed.

In a first approach, a temporal constraint model is implemented and tested by performing Back-

tracking (BT) search in several missions. In this model, a set of resources and temporal con-

straints are designed to represent the main characteristics (task time, fuel consumption, ...) of

this kind of aircrafts. On the other hand, BT algorithm is used to look through the whole

solutions space to measure the scalability of the problem.

In a second approach, we consider a Constraint Satisfaction Optimization Problem (CSOP)

with an optimization function to minimize the fuel cost, the flight time and the number of UAVs

needed; and Branch & Bound (B&B) search is employed for solving this CSOP model. Finally,

some experiments will be carried out to validate both the quality of the solutions found and the

runtime spent to found them.

Keywords
Unmanned Aircraft Systems, Mission Planning, Temporal Constraint Satisfaction Problems,

Backtracking, Branch & Bound

1This work has been funded by Airbus Defence & Space (Savier Project: FUAM-076915), and par-
tially by Spanish Ministry of Science and Education (Project Code TIN2010-19872).

http://www.uam.es
http://www.eps.uam.es/
http://www.uam.es/ss/Satellite/EscuelaPolitecnica/es/departamentos-3/departamentos-2/Page/subhome/ingenieria-informatica.htm

Resumen

Escuela Politécnica Superior

Departamento de Ingenieŕıa Informática

Máster en Investigación e Innovación de las Tecnoloǵıas de la Información y las Comunicaciones

por Cristian Oliver Ramı́rez Atencia

El presente proyecto final de máster 2 muestra un primer análisis sobre planificación de misiones

para Veh́ıculos Aéreos no tripulados (UAVs), donde se trata con multiples UAVs que deben

realizar una o más tareas en un conjunto de puntos o waypoints y en una ventana temporal

espećıfica. Los planes obtenidos como solución deben cumplir todas las restricciones dadas por

los diferentes componentes y capacidades de los UAVs involucrados en un periodo de tiempo dado.

Por tanto, se precisa de una representación del problema como un Problema de Satisfacción de

Restricciones Temporales (TCSP).

En una primera aproximación, se implementa un modelo de restricciones temporales y se testea

ejecutando una búsqueda Backtracking (BT) cronológico en varias misiones. En este modelo, se

diseñan un conjunto de restricciones temporales y de recursos para representar las principales

caracteŕısticas (tiempo de la tarea, consumo de combustible, ...) de este tipo de aviones. Por

otro lado, el algoritmo BT es usado para examinar todo el espacio de soluciones para medir la

escalabilidad del problema.

En una segunda aproximación, consideramos un Problema de Optimización de Satisfacción de

Restricciones (CSOP) con una función de optimización que minimice el coste de combustible,

el tiempo de vuelo y el número de UAVs necesarios; y se utiliza Branch & Bound (B&B) para

resolver este modelo de CSOP. Finalmente, se realizarán algunos experimentos para validar tanto

la calidad de las soluciones encontradas como el tiempo de ejecución gastado en su búsqueda.

Palabras Clave
Sistemas Aéreos no tripulados, Planificación de Misiones, Problemas de Satisfacción de

Restricciones Temporales, Backtracking, Branch & Bound

2Este trabajo ha sido financiado por Airbus Defence & Space (Savier Project: FUAM-076915), y
parcialmente por el Ministerio Español de Educación y Ciencia (Código de Proyecto TIN2010-19872).

http://www.uam.es
http://www.eps.uam.es/
http://www.uam.es/ss/Satellite/EscuelaPolitecnica/es/departamentos-3/departamentos-2/Page/subhome/ingenieria-informatica.htm

Acknowledgements

First of all, I want to express my deepest gratitude to my family for the effort they

have put in to give me the best education and always supporting me in everything I

have done. Thanks to my parents for giving me the possibility to study the degree and

master degree that I wanted, even it was at a University long from home. Thanks to

my sister for being so kind, and to my grandparents for having always believed in and

been proud of me.

Secondly, I want to thank my friend Vı́ctor R.F. for making my university life easier

and funnier, for helping me and for the great moments lived together. There have been

6 years sharing life experiences that I will never forget.

I would like to thank Professor David Camacho, for giving me the opportunity to work

in this project, and Professor Maŕıa D. Rodŕıguez Moreno for her tutorship and time

dedicated in its achievement. Thanks to all my workmates for their help, Fernando

Palero, Héctor Menéndez, and specially to Gema Bello Orgaz, my mentor, without her

guidance and persistent help this dissertation would not have been possible.

Finally, I would like to acknowledge the financial support given by Airbus Defence &

Space under the Savier project (FUAM-076915), as well as all the information provided

from Savier Open Innovation project members: José Insenser, César Castro and Gemma

Blasco.

viii

Contents

Abstract iv

Resumen vi

Acknowledgements viii

List of Figures xii

List of Tables xiii

Abbreviations xiv

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 3

1.3 Document structure . 4

2 Related Work 5

2.1 Mission Planning . 5

2.1.1 Mission Planning for UAS . 6

2.1.2 Collaborative Mission Planning . 7

2.2 Constraint Satisfaction Problems . 8

2.2.1 Temporal Constraint Satisfaction Problems 11

2.2.2 Constraint Satisfaction Optimization Problems 12

3 Architecture Model for UAV Mission Planning 15

3.1 Framework Architecture . 16

3.2 Mission Data Model . 17

3.2.1 Sensors . 17

3.2.2 Zones . 18

3.2.2.1 Coordinates . 18

3.2.2.2 Line . 19

3.2.2.3 Zone . 19

3.2.3 UAVs . 20

3.2.4 Tasks . 21

3.3 TCSP Mission Modelling . 22

x

Contents xi

3.3.1 TCSP Modelling using Gecode . 22

3.3.2 Optimization Function and Constraint Optimization Problem . . . 25

4 Experimental Setup 27

4.1 Missions datasets . 27

4.2 UAVs datasets . 28

4.3 Temporal schemas . 29

5 Experimental Results 31

5.1 Experiment 1: Search of the Complete Space of solutions with Backtracking 31

5.1.1 Study with temporally independent tasks 31

5.1.2 Study with 1-temporal dependency tasks 32

5.1.3 Study with 2-temporal dependencies tasks 34

5.1.4 Interdependency comparison . 35

5.1.5 Conclusions . 36

5.2 Experiment 2: Search of optimal solution with Branch & Bound 37

5.2.1 Individual Optimization . 37

5.2.2 Balanced cost function . 38

5.2.3 Optimizing the runtime with weighted cost functions 39

5.2.4 BT vs B&B . 40

5.2.5 Conclusions . 40

6 Conclusions and Future Works 43

6.1 Conclusions . 43

6.2 Future works . 44

A Constraint Satisfaction Problem (CSP) solvers comparison 45

B Publications 48

Bibliography 49

List of Figures

1.1 Ground Control Station (GCS) controlling a UAV. 2

2.1 Comparison of propagation techniques. 10

3.1 Mission Planning overview. 15

3.2 Mission Planning Framework Architecture. 16

3.3 Sensor UML Data Model. 17

3.4 Zone UML Data Model. 18

3.5 UAV UML Data Model. 21

3.6 Task UML Data Model. 22

3.7 Scenario for performance of task i by UAV k. 23

3.8 Scenario for performance of tasks i and j by UAV k. 24

4.1 Topology of the scenario where missions are performed. 28

4.2 Three schemas of the scenarios based on the number of temporal depen-
dencies between the tasks. 30

5.1 Number of solutions for missions with the No-Temporal Dependency Schema. 32

5.2 Runtime for missions with the No-Temporal Dependency Schema 32

5.3 Number of solutions for mission with the 1-Temporal Dependency Schema. 33

5.4 Runtime for mission with the 1-Temporal Dependency Schema. 33

5.5 Number of solutions for missions with the 2-Temporal Dependencies Schema. 34

5.6 Runtime for missions with the 2-Temporal Dependencies Schema. 34

5.7 Number of solutions for missions with the three temporal dependency
schemas. 35

5.8 Runtime for missions with the three temporal dependency schemas. . . . 35

xii

List of Tables

2.1 TCSP approaches and their Basic Temporal Relationss (BTRs). 12

3.1 Different task actions considered . 21

4.1 Unmanned Aircraft System (UAS) mission with 10 tasks 28

4.2 Team of 9 available UAVs . 29

5.1 Runtime for missions with 1 to 10 tasks for a group of 9 UAVs, with the
three temporal dependency schemas. 36

5.2 Objective values and runtime spent in the search of the optimal solution
using cost functions considering individually each objective. 37

5.3 Objective values and runtime spent in the search of the optimal solution
using binary balanced cost functions. 38

5.4 Objective values and runtime spent in the search of the optimal solution
using ternary balanced cost functions. 38

5.5 Objective values and runtime spent in the search of the optimal solution
using cost functions considering fuel and number of UAVs with different
percentages. 39

5.6 Runtime for missions with 10 tasks for a group of 9 UAVs, with the three
temporal dependency schemas, using BT and B&B. 40

A.1 Comparison of different CSP solver technologies. 46

xiii

Abbreviations

AA Auction Algorithms

AC Arc Consistency

AI Artificial Intelligence

B&B Branch & Bound

BC BackChecking

BE Bucket Elimination

BJ BackJumping

BM BackMarking

BPA Basic Point Algebra

BT BackTracking

BTR Basic Temporal Relations

CPA Convex Point Algebra

CSOP Constraint Satisfaction Optimization Problem

CSP Constraint Satisfaction Problem

DAC Directional Arc Consistency

DPC Directional Path Consistency

FC Forward Checking

GA Genetic Algorithm

GCS Ground Control Station

GLS Greedy Local Search

GT Generate-and-Test

HC Hill Climbing

HCI Human Computer Interface

IA Interval Algebra

LAS Look Ahead Schema

xiv

Abbreviations xv

LBS Look Back Schema

MAC Maintaining Arc Consistency

MC Min-Conflic

MCRW Min-Conflict-Random-Walk

MDP Markov Decision Process

MILP Mixed-Integer Lineal Programming

MOEA Multi-Objective Evolutionary Algorithm

MTCSP Maximal Temporal Constraint Satisfaction Problem

NC Node Consistency

NSGA-II Non-dominated Sorting Genetic Algorithm-II

PA Point Algebra

PC Path Consistency

PCSP Partial Constraint Satisfaction Problem

PDL Procedure Definition Language

PLA Partial Look Ahead

POF Pareto Optimal Frontier

POFC Partial-Order Forward-Chaining

RDS Russian Doll Search

RHTA Receding-Horizon Task Assignment

RPC Restricted Path Consistency

SA Simulated Annealing

SDRW Steepest-Descent-Random-Walk

SI Swarm Intelligence

SPEA2 Strength Pareto Evolutionary Algorithm 2

TAL Temporal Action Logic

TCSP Temporal Constraint Satisfaction Problem

TS Tabu Search

UAS Unmanned Aircraft System

UAV Unmanned Air Vehicle

WCOP Weight Constraint Optimization Problem

Chapter 1

Introduction

1.1 Motivation

A Unmanned Aircraft System (UAS) ground control station hosts one or several opera-

tors who could take different roles along the course of a mission. Typically, navigation

modes of the UAS are based on automatic and semi-automatic mechanisms and it does

not allow operators to manually control the Unmanned Air Vehicle (UAV) surfaces.

Mission plans are pre-loaded into the UAV pre-takeoff, so it is conceivable that the UAS

operator can just sit back and monitor the mission and/or exploit sensor data. However,

as no mission can be completely predicted, likely mission re-planning and semi-automatic

commands will be required during the mission execution.

Nowadays, each Ground Control Station (GCS) has been designed to control only a

specific UAV. All the waypoints to follow and their associated tasks defined in the

mission have to be manually inserted by the UAS operators. In addition, the tactical

scenarios for the missions are on real-time and dynamic. Many changes can affect the

pre-loaded plan during its execution, and the operators have to manually re-plan the

mission again. The complexity and effort necessary to perform all these manual activities

by the operators is very high.

Moreover, future GCSs are likely to manage missions involving multiple UAVs, so it

is required that those manual tasks are automatized or simplified in order to reduce

operator’s workload. For this purpose, Automated Planning techniques can help to

1

Chapter 1. Introduction 2

Figure 1.1: GCS controlling a UAV.

build a planner able to generate several plans by interpreting the model of the mission

through a standard planning engine.

In general, in planning and scheduling problems, a set of activities and available re-

sources, temporal constraints and a performance measurement are given as an input.

Then as an output, the system will find the best assignment between the resources and

the activities satisfying the time constraints, and maximizing the performance. This is

common to many different engineering domains such as workflow problems, production

scheduling, or planning space missions.

These planning problems can be solved using different optimization methods such as

Mixed-Integer Linear Programming (MILP) [1], Simulated Annealing (SA) [2] or Auction

Algorithms (AA) [3], among others. Usually, these methods are the best way to find

the optimal solutions but, as the number of restrictions increase, the complexity of the

problem grows exponentially because it is a NP-hard problem.

Other modern approaches formulate the mission planning problem as a Constraint Sat-

isfaction Problem (CSP) [4], where the tactic mission is modelled and solved using

constraint satisfaction techniques.

The main goal of this work is to develop a mission planner which can deal with multiple

UAVs that must perform several tasks in different zones and in specific time windows.

The different components and capabilities of the UAVs involved in the mission entail

several constraints that must be fulfilled by the solution plans generated. Therefore,

Chapter 1. Introduction 3

it is necessary to model the problem as a Temporal Constraint Satisfaction Problem

(TCSP).

We will study several actual CSP solvers in order to select the best one in terms of

quality and runtime, and then use it to model and solve our mission planning problem.

The resolution of the problem will be carried out in two experiments. The first one will

focus on the search of the complete space of solutions of the problem, using chronological

Backtracking (BT). The second one will look for “optimal” solutions that minimize some

objective variables (the flight time, the fuel consumption and the number of vehicles

used) using Branch & Bound (B&B).

1.2 Objectives

The aim of this project is to model a UAVs Mission Planning problem as a TCSP, and

its subsequent resolution by a search algorithm. To do this, the following milestones

have been carried out:

• A review and analysis of existing tools to solve CSPs has been performed. In this

study, the best tool in terms of quality, optimal runtime and documentation to

facilitate the learning of the same is selected.

• Then, the modelling of the mission planning problem for UAS as a TCSP using

the selected tool has been performed. Thanks to the knowledge acquired during

studies conducted in the course Introduction to Research and Innovation, a simple

model was made, but rather close to the actual models used today in mission

planning.

• Then we proceeded to solve TCSP using some search algorithm. For a first simple

approach, chronological BT algorithm is used.

• On the other hand, the search for optimal solutions (minimizing the fuel consump-

tion, flight time and number of vehicles) is carried out considering the problem

as a Constraint Satisfaction Optimization Problem (CSOP). The modelling is the

same but adding a cost function and choosing B&B algorithm for the resolution.

• Finally, we have studied the temporal scalability and the number of solutions

obtained in the search of solutions, both for complete and optimal approaches.

Chapter 1. Introduction 4

1.3 Document structure

This document is structured as follows: chapter 2 shows the state of the art in the afore-

mentioned topics of Mission Planing and CSPs. Chapter 3 describes the architecture

model implemented for the UAV mission planning problem, including the modelling of

the problem as a TCSP. Chapter 4 describes the implementation and experimental setup

of the problem, and chapter 5 explains the experimental results obtained for the search

of the whole space of solutions and the search of some optimal solutions. Finally, the

last chapter presents the final analysis and conclusions of this work and future lines of

research.

Chapter 2

Related Work

In this chapter, we introduce a state of the art on Mission Planning problems, focusing

on collaborative missions. Then, in a second section, we provide a basic background on

CSPs and their temporal (TCSP) and optimization (CSOP) approaches.

2.1 Mission Planning

Planning has been an area of research in Artificial Intelligence (AI) for over three decades

[5]. A variety of tasks including robotics [6], web-based information gathering[7][8], au-

tonomous agents [9] and mission control [10][11] have benefited from planning techniques.

Therefore, mission planning is a common problem in AI.

Sometimes, these planning problems involve considering dynamic environments [12][13]

and/or cooperation between interacting agents.

Now, in a first subsection, we will talk about mission planning for UAS and the main

state of the art approaches. Secondly, we will focus on collaborative mission planning

and talk about some approaches in the field.

5

Chapter 2. Related Work 6

2.1.1 Mission Planning for UAS

Mission planning for UAS can be defined as the planning process of the locations to visit

(waypoints) and the vehicle actions to do (loading/dropping a load, taking videos/pic-

tures, acquiring information), typically over a time period. Functionally, mission plan-

ning resides above the process of path planning, where the mission planner generates a

desired mission plan, and then the path planner generates the flight plan (trajectories)

between the waypoints.

In the literature there are some attempts to implement UAS guidance systems that

achieve mission planning. Doherty et al.[14] presented an architectural framework for

mission planning and execution monitoring and its integration into a fully deployed un-

manned helicopter. The knowledge gathered from the sensors during plan execution is

used to create state structures, incrementally building a partial logical model represent-

ing the actual development of the system and its environment over time. Then planning

and monitoring modules use Temporal Action Logic (TAL) for reasoning about actions

and changes.

NASA/Army autonomous rotorcraft project developed a guidance system for the au-

tonomous surveillance planning problem for multiple and varying targets [15], which

generates mission plans using a decision theoretic approach. High-level autonomous

control is provided by Apex framework [16], a reactive, procedure based planner/sched-

uler used for mission-level task execution, navigation. Apex synthesizes a course of

action mainly by linking together elemental procedures expressed in Procedure Defini-

tion Language (PDL), a notation developed specifically for the Apex reactive planner.

This guidance system has been integrated into a robotic helicopter and flight tested in

more than 240 scenarios.

A similar project, called ReSSAC (Search and Rescue by Cooperative Autonomous Sys-

tem), was carried out by the French Aerospace Lab (ONERA) for a search and rescue

scenarios [17]. This architecture for an exploration mission has been developed based on

the idea of decomposing the mission into a sequence of tasks or macro-actions associated

with rewards. The problem has been modeled using a Markov Decision Process (MDP)

framework and dynamic programming algorithms for the mission planning. Konigsbuch

[18] extends the Guidance System and integrates it in a robotic helicopter.

Chapter 2. Related Work 7

Finally, German Aerospace Centre (DLR) also developed a mission management system

based on the behavior paradigm [19], which has been integrated onboard the ARTIS

helicopter and validated in different scenarios, including waypoint following and search

and track missions.

2.1.2 Collaborative Mission Planning

An essential concept in Mission Planning is cooperation or collaboration, which occurs at

a higher level when various UAVs work together in a common mission sharing data and

controlling actions together. Besides, techniques and algorithms for cooperative missions

can be divided into two main categories: cooperative perception and cooperative mission

planning and decision-making [20].

The COMETS25 project [21] is one of the main projects for cooperative perception

that implements a system for cooperative activities using heterogeneous UAS such as

unmanned helicopters and blimps. This cooperative system processes data from the

different vehicles for fire detection/alarm confirmation, localization, and monitoring.

When a fire alarm is detected and localized, the mission is replanned to send more

UAVs to confirm the alarm. In the cooperative perception area also the Aerospace

Control Lab (ACL) at MIT has been studying and testing UAS cooperation using the

RAVEN platform [22]. This research work is addressed to the problem of persistent

vision-based search and track using multiple UAVs.

Regarding cooperative mission planning, there are few contributions that deal with multi

UAS problems in a deliberative paradigm (cooperative task assignment and mission

planning). A mission planner should provide a list of tasks assignment, where each task

is assigned to an available vehicle that should perform this task. This assignment is

based on information about the tasks and the capabilities of the vehicles.

Bethke et al. [23] proposes an algorithm for cooperative task assignment that extends

the Receding-Horizon Task Assignment (RHTA) algorithm [24] developed at MIT. This

algorithm solves an optimization problem to select the optimal sequence of tasks for

each UAS by breaking it down to smaller problems and iteratively solving them using

Petal algorithm [25].

Chapter 2. Related Work 8

Finallly, Kvarnstrom et al. [26] proposed a new mission-planning algorithm for collabo-

rative UAS based on combining ideas from forward-chaining planning with partial-order

planning, leading to a new hybrid Partial-Order Forward-Chaining (POFC) framework.

This framework meets certain degree of centralization and abstraction for understanding

and eventually signing off on potential plans, which is necessary in realistic environments

such as natural and man-made catastrophes where emergency services personnel are in-

volved.

2.2 Constraint Satisfaction Problems

A mission can be described as a set of goals that are achieved by performing some task

with a group of resources over a period of time. The whole problem can be summed up

in finding the correct schedule of resource-task assignments that satisfies the proposed

constraints, like a CSP does. A CSP can be defined as [27]:

• A set of variables V = v1, , vn

• for each variable, a finite set of possible values Di (its domain)

• and a set of constraints Ci restricting the values that variables can simultaneously

take

In a CSP, the environment of the problem is represented by a state space. A path

through the state space from the initial state to a goal state is a solution.

In the initial space all the variables are unassigned, and using some operators, they will

be assigned a value from their domains. Then, the goal test function will check if all

variables are assigned and all constraints satisfied. The goal test is decomposed into a

set of constraints on variables rather than being a “black box.”.

The domain D of each variable V can be discrete or continuous. In discrete CSPs,

where the domains are finite, constraints can be represented simply by enumerating the

allowable combinations of values.

Constraints come in several varieties. Unary constraints concern the value of a single

variable, Binary constraints relate pairs of variables, Higher-order constraints involve

Chapter 2. Related Work 9

three or more variables, and Global Constraints apply to all the variables. Finally,

constraints can be absolute constraints, violation of which rules out a potential solution,

or preference constraints that say which solutions are preferred.

Theoretically, solving a CSP is trivial using systematic exploration of the solution space,

but this is not efficient practically. An example is the generate-and-test (GT) constraint

satisfaction algorithm, which generates a random complete labelling of variables and

test its constraint satisfaction.

Consistency techniques [28] are methods to solve CSPs based on removing inconsistent

values from the variables’ domains. These techniques are deterministic, but most of

them are not complete. The main techniques are:

• Node Consistency (NC), which removes values from variables domains that are

inconsistent with unary constraints on the respective variable.

• Arc Consistency (AC), which removes values from variables domains that are in-

consistent with binary constraints. The arc (Vi, Vj) is arc consistent if and only

if ∀x ∈ Di current domain of Vi, ∃y ∈ Dj current domain of Vj such that Vi = x

and Vj = y is permitted by the binary constraint between Vi and Vj . There are

several AC algorithms named from AC-1 to AC-7. The AC-3 algorithm performs

re-revisions only for those arcs that are possibly affected by a previous revision.

The AC-4 works with individual pairs of values to remove potential inefficiency of

checking pairs of values again and again.

• Path Consistency (PC), which requires for every pair of two variables X, Y sat-

isfying the respective binary constraint that there exists a value for each variable

along some path between X and Y such that all binary constraints in the path are

satisfied.

• K-consistency, which involves that if for every system of values for K-1 variables

satisfying all the constraints among these variables, there exists a value for arbi-

trary K-th variable such that the constraints among all K variables are satisfied.

Strongly K-consistency is J-consistency ∀JK.

Restricted forms of these techniques, as Directional Arc Consistency (DAC) (revises each

arc only once), Directional Path Consistency (DPC) (revises each path only once) or

Chapter 2. Related Work 10

Restricted Path Consistency (RPC) (extends AC-4 to some form of PC), remove similar

amount of inconsistencies but they are more efficient.

Both systematic search and constraint techniques are used simultaneously to solve CSPs

(Constraint Propagation). There are two main schemas for this approach: the Look Back

Schema (LBS), which uses consistency checks among already instantiated variables; and

the Look Ahead Schema (LAS), which avoid late detection of conflicts.

The most known method on LBS is BT [29] which incrementally extends a partial so-

lution towards a complete solution by repeatedly choosing a value for another variable

consistent with the values in the current partial solution. If a partial solution violates any

of the constraints, backtracking is performed to the most recently instantiated variable

that still has alternatives available. BT is strictly better than random generate-and-test

algorithm, however, its running complexity for most nontrivial problems is exponential.

This method has three principal problems: thrashing (avoided in Backjumping (BJ)),

redundant work (avoided in Backchecking (BC) and Backmarking (BM)) and late de-

tection of conflicts (which is avoided in LASs).

The main strategies on LAS are Forward Checking (FC) (which performs AC between

pairs of not yet instantiated variable and instantiated variable) [30], Partial Look Ahead

(PLA) (similar to FC but using DAC) and Full Look Ahead or Maintaining Arc Con-

sistency (MAC) (which uses full AC after each labelling step). Figure 2.1 shows where

each method makes consistency checks.

Figure 2.1: Comparison of propagation techniques.

Chapter 2. Related Work 11

On the other hand, Greedy Local Search (GLS) strategies used in Stochastic and Heuris-

tic Algorithms have become popular over the last decade. Most known stochastic algo-

rithms are:

• Hill Climbing (HC). It starts with an initial random labelling of variables and, at

each step, it changes a value of some variable in such a way that the resulting

labelling satisfies more constraints. If a strict local minimum is reached then the

algorithm restarts at other randomly generated state. The algorithm stops as soon

as a global minimum is found, i.e., all constraints are satisfied, or some resource is

exhausted.

• Min-Conflicts (MC). It avoids exploring the whole state’s neighbourhood like HC.

This heuristic chooses randomly any conflicting variable and then picks a value

which minimises the number of violated constraints. If no such value exists, it picks

randomly one value that does not increase the number of violated constraints.

• Tabu Search (TS). It avoids cycling and getting trapped in local minimum by pre-

venting using the configurations of a tabu list, i.e. a special short term memory

that maintains a selective history, composed of previously encountered configura-

tions or more generally pertinent attributes of such configurations.

Sometimes they used the Random Walk strategy to avoid local-minimum, as in MC (Min-

Conflicts-Random-Walk (MCRW)) or HC (Steepest-Descent-Random-Walk (SDRW)).

2.2.1 Temporal Constraint Satisfaction Problems

A TCSP is a particular class of CSP where variables represent times (time points, time

intervals or durations) and constraints represent sets of allowed temporal relations be-

tween them [31]. Different classes of constraints are characterized by the underlying set

of Basic Temporal Relationss (BTRs). The main classes of TCSPs and their correspond-

ing BTRs can be shown in Table 2.1.

In the related literature, Mouhoub [32] proved that on real-time or Maximal Temporal

Constraint Satisfaction Problem (MTCSP), the best methods for solving them were

MCRW in the case of under-constrained and middle-constrained problems. In the over-

constrained case, TS and SDRW would be the best choice. He also design an algorithm

Chapter 2. Related Work 12

Table 2.1: TCSP approaches and their BTRs.

TCSP Variable types Algebras BTR

Basic Point Algebra (BPA) <,=, >, ?
Qualitative
Point

Time points Convex Point Algebra (CPA) ∅, <,=, >,≤,≥, ?

Point Algebra (PA) ∅, <,=, >,≤,≥, ?, 6=
Qualitative
Interval

Time intervals
Interval Algebra (IA)

before, after, meets, meetBy,
overlaps, overlapsBy, during,

Metric
Point

Time points
contains, equal, starts,
startedBy, finishes, finishedBy

(AC-3.1—DC) based on the AC-3 algorithm implemented for dynamic environments

that gave efficient time and space results.

In other works, Mouhoub developed a temporal model, TemPro [33], which was based

on interval algebra, to translate an application involving temporal information into a

CSP.

Ragni [34] used Allen’s IA and Franks cardinal direction calculus (CD) to create the

temporalized cardinal direction calculus (TCD), which allows to encode temporalized

spatial constraint satisfaction problems as deterministic planning problems.

A TCSP can perfectly represent an UAS mission as a set of temporal constraints over

the time the tasks in the mission start and end. Besides the temporal constraints, the

problem has various constraints imposed by the proficiency of the UAVs to perform the

tasks.

2.2.2 Constraint Satisfaction Optimization Problems

In many real-life applications it is necessary to find a good solution, and not the complete

space of possible solutions. CSOP consists of a standard CSP and an optimization

function (objective function) that maps every solution (complete labelling of variables)

to a numerical value measuring the quality of the solution.

There are several methods for solving CSOP such as Russian Doll Search (RDS) [35],

Bucket Elimination (BE) [36], Genetic Algorithm (GA) [37] and Swarm Intelligence (SI)

[38]. The most widely used algorithm for finding optimal solutions in CSOP is called

B&B [39][40]. This algorithm searches for solutions in a depth first manner and behaves

like BT except that as soon as a value is assigned to the variable, the value of heuristic

Chapter 2. Related Work 13

function for the labelling is computed. If this value exceeds the bound (initially set to

minus or plus infinity given it is a minimization or maximization problem), then the

sub-tree under the current partial labelling is pruned immediately. The efficiency of

B&B is determined by two factors: the quality of the heuristic function and whether a

good bound is found early.

In many problems, it is necessary to optimize several variables all together, and the

optimization function becomes a Multi-Objective function. In most of these cases, the

optimality of the solutions is analysed looking at the Pareto Optimal Frontier (POF).

Other approaches avoid computing the POF by using Soft Constraints and/or mapping

the objectives into a single weighted cost function. Torrens called this approach Weight

Constraint Optimization Problem (WCOP) [41].

A common approach for computing an approximation of the POF are Multi-Objective

Evolutionary Algorithms (MOEAs). These algorithms has been used in Mission Plan-

ning problems in recent researches [42]. The most known MOEA methods are Strength

Pareto Evolutionary Algorithm 2 (SPEA2) [43] and Non-dominated Sorting Genetic

Algorithm-II (NSGA-II) [44]. SPEA2 uses a regular population and an archive (exter-

nal set which will contain the POF), which is initially empty. After the fitness assignment

phase, the archive is updated with the nondominated individuals from both the popula-

tion and the archive (environmental phase). This method performs a mating selection,

which consists on binary tournament selection with replacement on the archive obtained

from the environmental phase in order to fill the mating pool. On the other hand, NSGA-

II performs a nondominated sorting of the individuals of the population, followed by a

crowding-distance sorting. That is, between two solutions with differing nondomination

ranks, the crowding-distance sorting prioritizes the solution with the lower (better) rank;

otherwise, if both solutions belong to the same front, then it prioritizes the solution that

is located in a lesser crowded region.

Chapter 3

Architecture Model for UAV

Mission Planning

UAV missions consists of a number n of tasks performed by a team of m UAVs. The

main goal to solve the Misison Planning problem is to assign each task with an UAV

that is able to perform it in a departure time sufficient to reach the task area in time.

Note that the UAV could be parked at an airport or in flight after performing a previous

task. Figure 3.1 shows an overview of the mission planning process.

Figure 3.1: Mission Planning overview.

15

Chapter 3. Architecture Model for UAV Mission Model 16

In this process, the Mission Planner receives a big amount of data about the environment,

the available vehicles and its sensors and the mission for the purpose of using it for

planning. The mission planner uses this information to compute the plans and then

returns a set of tuples < Task, V ehicle, T ime > that specifies what tasks must do a

UAV in a determinate moment.

Aiming to reproduce this functionality, we have developed a Mission Planning frame-

work, that will be shown in next section.

3.1 Framework Architecture

The architecture of the framework developed is shown in Figure 3.2. In this architecture,

the Mission Planner, which is placed in the Mission Planning Module, uses a CSP solver,

in this case Gecode [45], to model and solve the TCSP model that will be explained in

section 3.3. The planner receives the resource information (i.e. the information about

the zones, sensors and UAVs involved in the mission), which is a static information

stored in the system. On the other hand, the operator of the mission, through a Human

Computer Interface (HCI), provides the information about the mission (i.e. its tasks).

After the execution of the Mission Planner, it returns a set of plans or solutions, which

contain the tuples < Task, V ehicle, T ime > and some extra information about the

estimated parameters of the mission, such as the fuel consumption, the speed of the

vehicles, the total flight time, etc.

Figure 3.2: Mission Planning Framework Architecture.

Chapter 3. Architecture Model for UAV Mission Model 17

The following sections will describe in detail the data model used in the Mission Planner

and the TCSP modelling of the mission planning problem.

3.2 Mission Data Model

The data model used in the Mission Planner can be divided in four components related

to the Sensors (or Payloads), Zones, UAVs and Mission (or Tasks) information. The

next subsections explain each one of these components in detail.

3.2.1 Sensors

Sensors or payloads are attached to vehicles and they permit developing the tasks of the

mission, such as taking photos or tracking a zone. Figure 3.3 shows a UML data model

of class sensor and its main subclasses.

Figure 3.3: Sensor UML Data Model.

In this work, we have considered three different sensors:

• Camera Electro-Optical/Infra-red (EO/IR): This sensor allow the UAV to take

photos. It has some internal features, such as the type of the camera, its zoom,

resolution and its modes.

• Radar: It allows to track the elements in a zone near the vehicle. Its main feature

is the type of the radar (SAR, I-SAR or GMTI).

• Communications Equipment: This equipment allows the UAV to communicate

and send real-time pictures to the GCS.

Chapter 3. Architecture Model for UAV Mission Model 18

3.2.2 Zones

Zones or areas are used to represent the place where the tasks of the mission are devel-

oped. Figure 3.4 shows a UML data model of class Zone and its associate classes.

Figure 3.4: Zone UML Data Model.

3.2.2.1 Coordinates

The class Coordinates is used to represent a geographic point. It is composed by its

Longitude, Latitude and Altitude. In this work, the distance between two points (name

them, x1[long1, lat1, alt1] and x2[long2, lat2, alt2]) is computed using the Haversine for-

mula with the latitude and longitude:

d2D(x1, x2) = 2rEARTH arcsin

√
sin2(

lat2 − lat1
2

) + cos(lat1) cos(lat2) sin2(
long2 − long1

2
)

(3.1)

and then the Euclidean distance with the resulting and the altitude

d3D(x1, x2) =
√
d22D(x1, x2) + (alt2 − alt1)2. (3.2)

Besides, the bearing between two points is computed as:

θ12 = arctan2(sin(long2−long1) cos(lat2), cos(lat1) sin(lat2)−sin(lat1) cos(lat2) cos(long2−long1))

(3.3)

Chapter 3. Architecture Model for UAV Mission Model 19

3.2.2.2 Line

On the other hand, the class Line, which extends from class Segment, is composed by

two points. The 2D distance from a line (name it, l1 with points x1 and x2) to a external

point (name it, x3[long3, lat3, alt3]) is computed using the cross-track distance:

d2D(l1, x3) = arcsin(sin(δ13) sin(θ13 − θ12))rEARTH (3.4)

where δ13 is the distance between the point and the first vertex of the line, θ13 is the

starting bearing between the first vertex of the line and the point and θ12 is the starting

bearing between the first vertex and the second vertex of the line.

Then, the 3D distance is computed using Euclidean distance with the 2D distance and

the altitude difference of the point to the closest point in the line:

d3D(l1, x3) =
√
d22D(l1, x3) + (altclosest − alt3)2. (3.5)

The altitude of the closest point is directly known from:

altclosest = alt1 + (alt2 − alt1) ∗
arccos(cos(δ13/rEARTH)

cos(d2D(l1,x3)/rEARTH))rEARTH

δ12
. (3.6)

3.2.2.3 Zone

The class Zone represents an area where a task is developed. An zone is composed by

• Several segments. As the only type of segment implemented is the line, a zone is

a polygon (or a polygonal prism).

• An altitude window [hmin, hmax] defined by the minimum and maximum altitude.

• A flag indicating whether the zone is restricted or not.

The class Zone determines whether a zone is closed or not if all the points of every

segment is repeated at least twice. The position of a point respect to a zone is determined

using the winding number algorithm:

Chapter 3. Architecture Model for UAV Mission Model 20

Algorithm 1 Calculate the position of a point respect to a zone.

cumulated = 0
for each segment of the zone do

if (initLong−pointLong)·(pointLong−endLong) ≥ 0 AND (initLat−pointLat)·
(pointLat − endLat) ≥ 0 AND (pointLongitude − initLongitude) · (endLatitude −
initLat) = (pointLat− initLat) · (endLong − initLong)) then

if pointAlt < minAlt OR pointAlt > maxAlt then
return OUTSIDE

end if
return BOUND

end if
angle = point.endBearing(init)point.endBearing(end)
if angle ≥ PI then

angle− = 2 ∗ PI
else

if angle ≤ −PI then
angle+ = 2 ∗ PI

end if
end if
cumulated+ = angle

end for
if cumulated/PI = 0 OR pointAlt < minAlt OR pointAlt > maxAlt then

return OUTSIDE
else

return INSIDE
end if

Finally, the distance from a point to a zone is computed as the minimum distance to

any of the segments of the zone.

3.2.3 UAVs

A mission counts with a number m of available UAVs for its development. Each UAV

(named it, UAV k) has some specific characteristics:

• Position and fuel at the beginning of the mission.

• Fuel consumption rate

• The maximum reachable speed vk,max

• The minimum cruise speed vk,min

• Maximum and minimum flight altitude [hmin, hmax]

Chapter 3. Architecture Model for UAV Mission Model 21

• Permission to go to restricted zones

• Available sensors Pk (cameras, radars, communication equipments, . . .)

Moreover, in each point in time, each UAV is positioned at some specific coordinates,

flies at some specific cruise speed vk→i and is filled with a specific amount of fuel.

Figure 3.5 shows the class UAV and its attributes. Some additional attributes, such as

the maxFlightTime and the withinRange are not consider in the modelling, but they

have been added for future works.

Figure 3.5: UAV UML Data Model.

3.2.4 Tasks

A mission consists of a set of n tasks to be performed. A task consists of performing an

action in a specific zone, such as exploring the area or search for an object. Therefore,

each task (name it, task i) consist of:

• An action, which can be carried out thanks to the sensors or payloads Pi belonging

to a particular UAV. Table 3.1 shows the relation between actions and sensor needs.

Table 3.1: Different task actions considered

Action ID Action Sensors Needed

A0 Taking pictures of a zone – Camera EO/IR

A1 Taking real-time pictures of a zone
– Camera EO/IR

– Communications Equipment

A2 Tracking a zone – Radar SAR

Chapter 3. Architecture Model for UAV Mission Model 22

• Geographic area with altitude window [hmin, hmax], which could be restricted.

• Time interval with duration τi and end time ti

• Mean speed v̄i at performing the task

Figure 3.6 shows the class Task and its attributes.

Figure 3.6: Task UML Data Model.

3.3 TCSP Mission Modelling

Nowadays there are several functionally CSP solvers developed. Our purpose is to use

one of these already developed solvers to model and solve our Mission Planning problem.

For this purpose, different CSP solver technologies have been studied (see Appendix A)

in order to choose the better one to be improved, not only the fastest but the most

suitable to our aim.

From this study, Gecode [45] has been selected as the best tool for CSP solving in terms

of efficiency. This tool will be used in the following section to model the mission planning

problem.

3.3.1 TCSP Modelling using Gecode

One of the main advantages of using Gecode for TCSP modelling is that, in its most

recent versions, it provides float variables, which can be used for defining all the real

variables of the problem: times, speeds, distances, . . . These float variables and the

constraints involving them are internally solved through Allen’s IA (see Chapter 2.2.1).

Now, the problem domain is modelled as a TCSP. The main variables are the tasks and

their values will be the UAVs that perform each task and their respective departure

Chapter 3. Architecture Model for UAV Mission Model 23

times. Moreover, there are some additional variables: the cruise speed to reach the area

of the task vk→i, the fuel cost, the distance travelled for each task; which can be deduced

from tasks assignment and UAV characteristics.

Figure 3.7 shows an assignment of a UAV k to a task i. In this representation, it must

be considered that:

Figure 3.7: Scenario for performance of task i by UAV k.

• The vehicle is positioned at posk,i at departure time tdi

• The distance travelled to reach the task area in time dk→i, is computed using the

formulas from section 3.2.2:

dk→i = i.area.distance(posk,i) (3.7)

• The flight time of the vehicle is

flightT imei =
dk→i
vk→i

+ τi (3.8)

• The fuel consumed by the vehicle is

fi = k.fuelConsume ∗ (dk→i + τiv̄i) (3.9)

The main constraints defined in this model are as follows:

1. Temporal constraints assuring a UAV does not perform two tasks at the same

time. Let k be a UAV that executes two tasks i and j, where i takes place before

j, then ti must precede the departure time tdj (see Figure 3.8):

Chapter 3. Architecture Model for UAV Mission Model 24

ti 6 tdj = tj − flightT imei (3.10)

Figure 3.8: Scenario for performance of tasks i and j by UAV k.

2. Logical constraints:

(a) Speed window constraints: the mean speed necessary to perform the task i,

v̄i, must be contained in the speed window vk,max and vk,min:

vk,min ≤ v̄i ≤ vk,max (3.11)

(b) Altitude window constraints: a UAV k, with an altitude window khmax and

khmin
, performing a task i developed in an area with an altitude window hmax

and hmin, must obey:

k.hmax ≥ i.area.hmax (3.12)

k.hmin ≤ i.area.hmin (3.13)

(c) Zone permission constraints: another constraint is the implication that a

restricted area has in the tasks to perform. Just UAVs with permissions in

those areas shall perform the tasks.

3. Resource constraints:

(a) Sensor constraints: another constraint is whether a UAV carries the corre-

sponding sensor to perform a task. Let Pk denote the sensors available for

UAV k and Pi the sensors needed for the task i (performed by k), then:

Pi ⊆ Pk, (3.14)

Chapter 3. Architecture Model for UAV Mission Model 25

(b) Fuel constraints: finally, we must constraint the fuel cost for each UAV. The

fuel cost for a UAV k performing a task i is

fi = k.fuelConsumeRate ∗ (dk→i + τiv̄i) (3.15)

So the following inequality must be obeyed:

∑
i∈Tk

fi 6 k.fuel (3.16)

To compute the distance (needed for the compute of flight time, see Equation 3.8), it

is necessary to know where the vehicle is located before the start of the task, i.e. its

position posk,i. Therefore, we have created a m×n matrix of tasks to UAV position. This

matrix is initialized with every row, i.e. the positions of a specific vehicle, to the initial

position of that vehicle. Each time a task assignment is considered in the constraint

propagation process, this matrix is updated with the computed position of each vehicle

at the end of the task.

All the aforementioned variables and constraints have been computed in Gecode to

represent the Mission Planning Model. In following chapters, it will be shown how to

solve this model with some methods provided by the solver.

3.3.2 Optimization Function and Constraint Optimization Problem

As in many real-life applications, we just want to find some good solutions, what can

be achieved considering a CSOP. In order to apply a method for solving CSOP, a new

optimization function has been designed. This new function is looking to optimize

(minimize) 3 objectives:

• The total fuel consumed, computed as the sum of the fuel consumptions for each

task using equation 3.9.

• The number of UAVs used in the mission. A mission performed with a lower

number of vehicles is usually better because the remaining vehicles can perform

other missions at the same time.

Chapter 3. Architecture Model for UAV Mission Model 26

• The total flight time, which is computed as the sum of the flight times for each

task using equation 3.8.

As Gecode does not provide a method for computing the POF, our model uses weights

to map these three objectives into a single cost function, as the similar approach WCOP

[41]. This function is computed as the sum of percentage values of these three objec-

tives, as shown in Equation 3.17. In this sense, in the second experimental phase, a

comparative assessment of weights for finding feasible solutions of the problem will be

carried out.

fcost(i) = KF
Fuel(i)

maxj Fuel(j)
+KU

N◦UAV s(i)

maxj N◦UAV s(j)
+KT

FlightT ime(i)

maxj FlightT ime(j)

KF ,KU ,KT ∈ [0, 1], KF +KU +KT = 1 (3.17)

Chapter 4

Experimental Setup

Since the Mission Planning problem is so complex and recent in the state of the art,

there does not exist datasets or benchmarks available. For this reason, some simple

datasets have been developed.

In the following sections, we explain the implemented datasets for missions (including

the topology of the mission scenario) and teams of UAVs, and the different schemas

considered according to the temporal preferences between tasks.

4.1 Missions datasets

There has been designed 10 missions, each one composed by an increasing number of

tasks from 1 to 10, i.e the first mission has one task; the second, two tasks; and so on.

Table 4.1 shows the 10 considered tasks, where the first mission will execute task with

ID T1; the second will execute tasks with IDs T1 and T2; and so on. This table shows

the duration of the tasks instead of the start and end times. These times will be fixed

on the experimental phase depending on the number of dependencies between the tasks.

The action IDs come from Table 3.1.

In this approach, we consider the simple topology specified in Figure 4.1, where coloured

areas represent the areas where tasks are performed and helicopters represent the air-

ports where UAVs are situated at the beginning of the mission. In this scenario, there

are four areas and four airports.

27

Chapter 4. Experimental Setup 28

Table 4.1: UAS mission with 10 tasks

Task ID Action ID Duration(min) Zone altitude
window (km)

Mean speed
(km/h)

Restricted
zone?

T1 A0 25 [1.5− 5] 100 NO

T2 A2 20 [1.5− 5] 100 NO

T3 A1 30 [2.5− 6.15] 100 YES

T4 A0 25 [0.5− 3.75] 100 NO

T5 A2 35 [0.5− 3.75] 100 NO

T6 A1 30 [3.85− 5] 100 NO

T7 A1 25 [3.85− 5] 100 NO

T8 A1 12 [1.5− 5] 100 NO

T9 A0 20 [1.5− 5] 100 NO

T10 A2 25 [2.5− 6.15] 100 YES

Figure 4.1: Topology of the scenario where missions are performed.

4.2 UAVs datasets

Different scenarios for solving the missions have been prepared with an increasing num-

ber of UAVs able to perform the tasks. The tasks contain several constraints, so when

the number of tasks is very high, a high number of UAVs is also needed, mainly because

of the fuel constraints. There has been considered groups of 1 to 9 vehicles available to

perform the tasks (see Table 4.2). For a scenario with 1 vehicle, we use UAV with ID

U1; for a scenario with 2 vehicles, UAVs with IDs U1 and U2; and so on.

Chapter 4. Experimental Setup 29

Table 4.2: Team of 9 available UAVs

UAV
ID

Cruise speed
window
(km/h)

Altitude
window
(km)

Restricted
zone

permission

Fuel
consume
(L/km)

Initial
Fuel
(L)

Sensors Available

U1 [90− 110] [0.3− 6.5] YES 0.159 97.52

• Camera EO/IR

• Radar SAR

• Communications Equipment

U2 [90− 110] [0.3− 6] NO 0.159 58.48 • Camera EO/IR

U3 [110− 190] [0.8− 10] YES 0.2 140.23
• Camera EO/IR

• Radar SAR

U4 [90− 110] [0.3− 6] YES 0.159 47.12 • Camera EO/IR

U5 [90− 110] [0.3− 6] NO 0.159 101.48

• Camera EO/IR

• Radar SAR

• Communications Equipment

U6 [90− 110] [0.3− 6] NO 0.159 101.37

• Camera EO/IR

• Radar SAR

• Communications Equipment

U7 [90− 110] [0.3− 6] NO 0.159 58.15 • Camera EO/IR

U8 [110− 190] [0.8− 10] YES 0.2 140.23
• Camera EO/IR

• Radar SAR

U9 [90− 110] [0.3− 6] YES 0.159 47.12 • Camera EO/IR

4.3 Temporal schemas

Three scenarios have been generated with different temporal schemas based on the time

dependencies between the tasks. Figure 4.2a shows an scenario with no time dependen-

cies between tasks, i.e. the tasks do not collide in time. Figure 4.2b shows an scenario

where each task collides in time with the previous task, i.e. there are n − 1 temporal

dependencies, being n the number of tasks. Finally, when each task collides in time with

the two previous tasks, i.e. there are 2(n − 1) − 1 temporal dependencies, we have the

scenario shown in Figure 4.2c.

Chapter 4. Experimental Setup 30

(a) No dependencies

(b) Dependency of each task with the previous task.

(c) Dependency of each task with the two previous tasks.

Figure 4.2: Three schemas of the scenarios based on the number of temporal depen-
dencies between the tasks.

These schemas will be compared in the experimental phase (see Chapter 5) in order to

observe the scalability of the problem as the number of temporal dependencies increase.

Chapter 5

Experimental Results

5.1 Experiment 1: Search of the Complete Space of solu-

tions with Backtracking

BT search implemented by Gecode solver has been used to solve the missions explained

in the previous section, analysing the runtime spent in the process. This search algorithm

performs constraint propagation with different consistency levels depending on the type

of the constraint. For all the developed constraints in our problem, domain (or node)

consistency is applied.

Due to some fuel and flight time constraints, with only 2 or 3 UAVs there is no solution

for a high number of tasks (> 6), so the solver has been run in different scenarios with

4 to 7 vehicles to test the scalability of the problem.

In the following sections, the scalability of the runtime and number of solutions obtained

is studied based on the three different schemas from section 4.3. First each schema is

tested individually, and finally the three are compared between them.

5.1.1 Study with temporally independent tasks

Figures 5.1 and 5.2 shows the number of solutions and runtime obtained when the tasks

do not collide in time (see Figure 4.2a). As we can see, the growth of the number of so-

lutions is nearly exponential as the number of tasks increase. Indeed, the exponentiality

31

Chapter 5. Experimental Results 32

is higher and more appreciable as the number of UAVs increase. For the runtime, the

situation is similar, and the exponentiality growth is much higher. So it is clear that

the scalability of the problem, as the number of variables increase, is exponential.

Figure 5.1: Number of solutions for missions with the No-Temporal Dependency
Schema.

Figure 5.2: Runtime for missions with the No-Temporal Dependency Schema

5.1.2 Study with 1-temporal dependency tasks

On the other hand, Figures 5.3 and 5.4 shows what happens when each task collides

in time with the previous task (see Figure 4.2b). As it can be seen, the growth is still

Chapter 5. Experimental Results 33

pretty exponential for both the number of solutions and the runtime, but much smaller

than with no dependencies. We also note that for less UAVs to perform the tasks,

the exponentiality of the number of solutions disappears. This is because of the high

number of constraints (increased with the new temporal constraints) that reduces the

space search and, for a high number of tasks, makes the problem highly complex.

Figure 5.3: Number of solutions for mission with the 1-Temporal Dependency Schema.

Figure 5.4: Runtime for mission with the 1-Temporal Dependency Schema.

Chapter 5. Experimental Results 34

5.1.3 Study with 2-temporal dependencies tasks

When each task collides in time with the two previous tasks (see Figure 4.2c), the results

in Figures 5.5 and 5.6 show that the growth of the runtime is still exponential, but much

smaller than in the two previous cases. On the other hand, the growth of the number

of solutions has a more polynomial likely behaviour. We can notice how a great number

of constraints affect the scalability of the solutions of the problem.

Figure 5.5: Number of solutions for missions with the 2-Temporal Dependencies
Schema.

Figure 5.6: Runtime for missions with the 2-Temporal Dependencies Schema.

Chapter 5. Experimental Results 35

5.1.4 Interdependency comparison

Finally, in Figures 5.7 and 5.8 we can see for a group of 6 UAVs, a comparison of the

results obtained according to the number of existing dependencies explained in the three

previous experiments. We can see how the temporal constraints highly affect the space

of solutions of the problem, but also the runtime necessary to find this new space of

solutions.

Figure 5.7: Number of solutions for missions with the three temporal dependency
schemas.

Figure 5.8: Runtime for missions with the three temporal dependency schemas.

Chapter 5. Experimental Results 36

On the other hand, we have computed the runtimes expended in these missions but

with 9 UAVs (see table 5.1), which will be compared to the runtimes expended at

finding optimal solutions in the next experiment.

Table 5.1: Runtime for missions with 1 to 10 tasks for a group of 9 UAVs, with the
three temporal dependency schemas.

No. of tasks No Temp. Dep. Schema
Runtime

1 Temp. Dep. Schema
Runtime

2 Temp. Dep. Schema
Runtime

1 task 9.877ms 69.072ms 10.014ms

2 tasks 182.606ms 199.297ms 173.222ms

3 tasks 300.091ms 253.523ms 197.731ms

4 tasks 3.002687s 1.896258s 1.517302s

5 tasks 13.007988s 7.490989s 4.074907s

6 tasks 51.789774s 24.119561s 11.333178s

7 tasks 3m55s 1m10s 23.701752s

8 tasks 18m55s 3m51s 47.584619s

9 tasks 5h0m41s 47m45s 5m10s

10 tasks 22h20m57s 3h15m44s 17m14s

5.1.5 Conclusions

In this experiment, we show that the model is easily computable using a known solver,

and the entire space of solutions can be found provided that the mission is resolvable.

From the obtained results, we have observed that the runtime necessary to search the

entire space of solutions by BT search is exponential as reported in literature. However,

as the number of constraints increases (in this case the dependency constraints making

tasks collide in time), the runtime decreases highly, but this scalability still resembles

exponential. On the other hand, the number of solutions resembles exponential, but

as the number of dependency constraints increases, the scalability loses its exponential

behaviour and resembles more polynomial. This is due to the power of a dependency

temporal constraint, which highly reduces the search space of solutions.

Although the runtime needed for exploring the space of solutions is exponential, we have

seen that when there are too many constraints, as the number of tasks increase, there is

a point where the resources of the available UAVs needed to supply all the tasks of the

mission begin to decrease. In this situation, the number of solutions begins to decrease

despite the increase of possible assignments due to a higher number of tasks.

Chapter 5. Experimental Results 37

5.2 Experiment 2: Search of optimal solution with Branch

& Bound

This second experiment treats with the scenario with a group of 9 UAVs to perform a

mission of 10 tasks, and where each task collides in time with its two previous tasks, i.e.

the 2-Temporal Dependency Schema.

Gecode provides a B&B search method for optimization problems, but does not auto-

matically compute the POF, so the cost function for the CSOP will be the one explained

in section 3.3.2.

This experiment starts comparing the different results obtained optimizing the different

objectives individually and then take some of them to optimize altogether. Finally, the

runtime results will be compared with the results from the previous BT experiment in

order to determine the order of the temporal gain from optimization.

5.2.1 Individual Optimization

B&B returns the best solution found based on the cost function used. So, firstly, an anal-

ysis of the optimal solution found considering as cost function each one of the objectives

individually is carried out. It can be seen in Table 5.2.

Table 5.2: Objective values and runtime spent in the search of the optimal solution
using cost functions considering individually each objective.

Cost function Flight Time No. of UAVs Fuel Runtime

100% Fuel 22h 8min 13s 4 269.561L 4min 9s

100% No. of UAVs 23h 22min 23s 4 282.003L 8.87s

100% Flight Time 18h 0min 8s 8 284.875L 7min 32s

It can be appreciated when considering cost function 100% Flight Time that, besides

the high runtime needed, the optimal solution found has a high number of UAVs and

fuel consumption. This could be due to shorter flight times are obtained using UAVs

that reach higher speeds but consuming more fuel, i.e. the flight time and the fuel

consumption (or the number of UAVs too) have some kind of inverse relation. On the

other hand, the number of UAVs and the fuel consumption are highly related.

Respect to the runtime, when considering the number of UAVs the optimization search

finishes very soon, because this variable is computed directly from the assignments. The

Chapter 5. Experimental Results 38

fuel consumption lasts a little more to be computed in each iteration, and the flight time

is nearly the last variable being computed.

In the following experiment, we will try to optimize multiple variables at the same time.

With this purpose, we will try to find a combination of weights that gets a optimal

solution reducing the runtime as much as possible.

5.2.2 Balanced cost function

Attempting to optimize multiple objectives, there has been considered to use balanced

cost function. Table 5.3 shows solutions obtained when considering two objectives, while

Table 5.4 shows the ones when considering three objectives.

Table 5.3: Objective values and runtime spent in the search of the optimal solution
using binary balanced cost functions.

Cost function Flight Time No. of UAVs Fuel Runtime

50% Fuel +
50% No. of UAVs

22h 8min 13s 4 269.561L 54.67s

50% Fuel +
50% Flight Time

18h 29min 20s 7 279.353L 8m11s

50% No. of UAVs +
50% Flight Time

19h 37min 58s 4 278.436L 2min 51s

Table 5.4: Objective values and runtime spent in the search of the optimal solution
using ternary balanced cost functions.

Cost function Flight Time No. of UAVs Fuel Runtime

33% Fuel + 33% No. of UAVs
+ 33% Flight Time

20h 23min 33s 4 269.561L 3m56s

Now it can be seen that combining weighted objectives reduce the runtime spent search-

ing the solution compared to the previous individual optimization experiment in some

cases. Specifically, we can see that combining the number of UAVs with the fuel con-

sumption, gets an optimal solution for both variables. On the other hand, considering

the flight time involves finding some suboptimal solutions for all the variables. In table

5.4, we can clearly see that the flight time is not optimized while the number of UAVs

and the fuel consumption are.

Considering this aspect, we have decided to put the flight time variable aside and only

consider the fuel consumption and the number of UAVs. So, in the next section, a simple

experiment will be considered in which the fuel consumption and the number of UAVs

are considered for a comparative assessment of optimization function weights.

Chapter 5. Experimental Results 39

5.2.3 Optimizing the runtime with weighted cost functions

Table 5.5 show the comparative assessment mentioned in the previously. For simplicity

of the process, we have considered a weight step of 10% between each instance tested.

Table 5.5: Objective values and runtime spent in the search of the optimal solution
using cost functions considering fuel and number of UAVs with different percentages.

Cost function Flight Time No. of UAVs Fuel Runtime

100% Fuel 22h 8min 13s 4 269.561L 4min 9s

90% Fuel + 10% No. of UAVs 22h 8min 13s 4 269.561L 3min 22s

80% Fuel + 20% No. of UAVs 22h 8min 13s 4 269.561L 2min 7s

70% Fuel + 30% No. of UAVs 22h 8min 13s 4 269.561L 1min 39s

60% Fuel + 40% No. of UAVs 22h 8min 13s 4 269.561L 1min 23s

50% Fuel + 50% No. of UAVs 22h 8min 13s 4 269.561L 54.67s

40% Fuel + 60% No. of UAVs 22h 8min 13s 4 269.561L 46.03s

30% Fuel + 70% No. of UAVs 22h 8min 13s 4 269.561L 35.02s

20% Fuel + 80% No. of UAVs 22h 8min 13s 4 269.561L 33.99s

10% Fuel + 90% No. of UAVs 22h 8min 13s 4 269.561L 34.13s

100% No. of UAVs 23h 22min 23s 4 282.003L 8.87s

Analysing results shown in Table 5.5, it can be appreciated that only considering the fuel

consumption in a low percentage, an optimal solution both for the fuel and number of

UAVs minimization is reached. Additionally, it is clearly appreciable that as the weight

of the fuel consumption variable decreases, so it does the runtime spent in the search.

Nevertheless, it can also be seen that the cost function 20% fuel + 80% No. of UAVs

spends less runtime that the cost function 10% fuel + 90% No. of UAVs, breaking this

linearity. This could be caused by some “noise” in the execution of the program and the

little difference of runtime between these two functions.

For this reason, it can be considered that a cost function of 10% fuel + 90% No. of UAVs

is pretty good for searching feasible solutions in low runtime for this kind of problems.

Finally, in the next section, we will compare the runtime obtained with this cost function

with the one obtained in the BT experiment. In addition, we will compute the runtimes

of this same problem with this cost function but considering the No-Temporal Depen-

dencies Schema and the 1-Temporal Dependency Schema. Then, we will also compare

these runtimes with the ones obtained in the BT experiment.

Chapter 5. Experimental Results 40

5.2.4 BT vs B&B

In this experiment, we have first calculated the runtime spent in the search of optimal

solutions for the mission planning problem composed of 10 tasks and a group of 9 UAVs

with the No-Temporal Dependencies Schema and 1-Temporal Dependency Schema (the

2-Temporal Dependencies Schema case was computed in the previous experiment) using

B&B with the cost function 10% fuel + 90% No. of UAVs.

Then, the runtime spent in the search of feasible solutions and the runtime spent in the

search of the entire space of solutions using BT are compared in Table 5.6.

Table 5.6: Runtime for missions with 10 tasks for a group of 9 UAVs, with the three
temporal dependency schemas, using BT and B&B.

Algorithm
No Dependencies
Schema Runtime

1-Dependency
Schema Runtime

2-Dependencies
Schema Runtime

BT 22h20m57s 3h15m44s 17m14s
B&B (10% Fuel +
90% No. of UAVs)

11.33s 26.74s 34.13s

The time difference observed is high, as expected. A surprising fact is that, unlike it

happened in BT search, as the number of temporal constraints given by the temporal de-

pendency schemas decrease, the runtime decreases. For instance, with the No-Temporal

Dependency Schema, the runtime obtained for the B&B search is 11.33s; while the time

obtained in the 2-Temporal Dependencies Schema is 34.13s. On the other hand, the

runtime for BT in the No-Temporal Dependency Schema is 22h 20min 57s, being higher

than B&B in an order of 8 · 103; while in the 2-Temporal Dependencies Schema the

runtime for BT is 17min 14s, higher than B&B in an order of 30 units.

5.2.5 Conclusions

In this second experiment, we have designed an optimization function to minimize four

objectives: the fuel consumption, the number of UAVs used in the mission and the total

flight time of all the UAVs. From the obtained results, we have observed that the flight

time is the most difficult variable to compute, while the number of vehicles is the easiest.

Studying the solutions found by several cost functions with different weights for fuel

and number of UAVs, we have observed how the runtime spent in the search decrease

as the percentage of fuel decreases. Finally, we have compared the runtime from the

Chapter 5. Experimental Results 41

B&B search obtained using the proposed weighted cost function 10% fuel + 90% No. of

UAVs with the runtime obtained using BT. As shown in the literature, this second is

much higher; concretely we have observed that for this problem with the No-Temporal

Dependency Schema it is 3 ·103 times higher. The most interesting fact observed is that

the runtime spent in the B&B search decreases as the number of temporal constraints

given by the temporal dependency schemas decreases.

It is important to remark that the results obtained are highly dependant on the proposed

scenarios and on the topology of the areas the missions are developed in. So further

works should consider different scenarios and topologies, so a more general conclusion

would be obtained.

Chapter 6

Conclusions and Future Works

6.1 Conclusions

In this work, we try to search feasible solutions for a UAV Mission Planning model based

on TCSP. The presented approach defines missions as a set of tasks to be performed

by several UAVs with some capabilities. The problem is modelled using: (1) tempo-

ral constraints to assure that each UAV only performs one task at a time; (2) logical

constraints such as the maximum and minimum altitude reachable or restricted zone

permissions, and (3) resource constraints, such as the sensors and equipment needed or

the fuel consumption, among others. This simple approach is quite close to real UAV

missions, with less conditions treated.

Concretely, we have designed an optimization function to minimize three objectives: the

fuel consumption, the number of UAVs used in the mission and the total flight time of

all the UAVs.

We have shown that the model is easily computable using a known solver, i.e. Gecode,

and both the entire space of solutions (using BT) and the optimal solution (using B&B)

can be found provided that the mission is resolvable.

From the obtained results, we have observed that the runtime necessary to search the

entire space of solutions using BT search is exponential, as reported in literature, but

decreases as the number of constraints increase (because of the decrease of the number

of possible solutions).

43

Chapter 6. Conclusions and Future Works 44

On a second experiment, we have shown that the WCOP approach is very useful to find

a optimal solution, but not for computing the entire POF. We have also observed that

is very important to consider bigger weights in variables that are computed faster in

order to improve the runtime. An interesting fact observed is that the runtime spent in

the B&B search decreases as the number of temporal constraints given by the temporal

dependency schemas decreases.

6.2 Future works

As future lines of work, this developed UAV Mission Planning model will be improved

in order to consider a model as close as possible to real missions. We will consider the

GCS as a new scheduling part of the model, in order to decide the GCS for each UAV.

We will also consider refuelling tasks, which will allow the planner to obtain a higher

number of solutions in missions with teams of UAVs with low fuel capacity.

It is important to remark that the results obtained are highly dependant on the proposed

scenarios and on the topology of the areas the missions are developed in. So further

works should consider different scenarios and topologies, so a more general conclusion

would be obtained. In this sense, we will try to developed some robust datasets in order

to have reliable benchmarks for the comparison of our results.

In addition, we will developed a new approach for solving our problem based on the

hybridization of CSP techniques with GAs. This approach will be compared against the

B&B approach in order to compare the quality of the solutions and the runtime spent

in the search.

Furthermore, we will use a Multiobjective model, i.e. MOEA, such as SPEA2 or NSGA-

II algorithms; to find the POF. Using these new algorithms, new heuristics to reduce

the complexity of the problem and adapting our current model, we expect to be able to

simulate problems near to real scenarios.

Appendix A

CSP solvers comparison

There exists several tools for solving CSPs with good results. Here there are those

studied in this work:

• AIspace [46] is a simple but complete Web Java Applet able to solve several CSPs.

It is developed for educational purpose, and it only returns one solution to the

problems. For this reason, it has been discarded.

• Choco 3 [47] is an open source Java library for solving CSPs. It is said to be

flexible, efficient and reliable. It is specially developed for research and academic

use. Although, documentation is still work in progress.

• Gecode [45] is a C++ open source library for solving CSPs. It is said to be

comprehensive, portable, well documented, efficient, allows parallelism and well

tested.

• Gurobi [48] is a commercial optimization tool. It is said to be very powerful, well

documented, intuitive and with lightweight interfaces. Although, as we did not

get an academic license in time, it was discarded.

• ILOG CPLEX CP Optimizer [49] is a commercial optimization tool. It is said to

be very powerful and well documented, and it has been used in several projects.

Although, as we did not get an academic license in time, it was discarded.

• JaCoP [50] is an open source Java library for solving CSPs. It is very simple to

use and model with it, and well documented.

45

Appendix A. CSP solvers comparison 46

• Minion [51] is a C++ open source library for solving CSPs. It is fast and scalable,

and does not need a program but just a text file with the program. Although, it

is poor documented.

• Mistral [52] is a C++ open source library for solving CSPs. It is loosely docu-

mented, pretty bugged and need some good C++ knowledge.

• NumberJack [53] is a python open source library for solbing CSPs. It is well

documented, fast to develop and easy to use.

• Opturion-CPX [54] is a commercial lazy clause generation CSP solver. It is very

recent but it has already get very good results at some CSP contests. Although,

as we did not get an academic license in time, it was discarded.

• OR-Tools [55] is a C++ open source library for solving CSPs. Developed by

Google, it is alive, portable, well documented, pretty efficient and well tested. In

spite of its recent appearance, it has obtained very good results at some CSP

contests.

• Picat [56] is a B-Prolog open source library for solving CSPs. It works with pattern-

machine, imperative, constraints, actors and tabling. It is well documented.

Table A.1 shows the performance of the CSP solvers through a test with a classical

problem: the N-Queens problem, which consist of finding an order for the N queens

on a NxN board such that no queen menace any other. In this case, we prove with

15-Queens to compare the different solvers. Some CSP solvers with low functionalities

were discarded.

Table A.1: Comparison of different CSP solver technologies.

Solver Language Avg. Memory (MB) Avg. CPU (%) Runtime (s)

Choco 3 Java 46,95 100 142,8

Gecode C++ 6,5 99,8 45,15

JaCoP(*) Java 446,57 100 86,03

Minion C++ 0,33 99,3 163,5

Mistral C++ 1,61 100 156,52

NumberJack Python 24,1 99,6 170,05

OR-Tools C++ 49,18 99,8 161,87

Picat B-Prolog 172,26 99,8 37,16

(*) These results were computed for the 14-Queens problem because the 15-Queens resulted
in an out of memory error in Java.

Appendix A. CSP solvers comparison 47

The best performance was made by Gecode, which also has several implementations in

different programming languages and is very well documented. Some tools that made

not very good results with this problem, such as OR-Tools, are not mean to be bad-

efficient with the planning problem, so they must not be entirely discarded for future

works.

In conclusion, the best tool for CSP solving in terms of efficiency obtained from this tests

is Gecode, which would be the first choice to improve. Other nice tools are OR-Tools

(although it has not very good results in the tests done, it has good references and may

be better in the planning problem) and Choco3 (which is easier to understand in terms

of coding and has pretty good results).

Appendix B

Publications

1. Ramirez-Atencia, Cristian; Bello-Orgaz, Gema; R-Moreno, Maria D; Camacho,

David. A simple CSP-based model for Unmanned Air Vehicle Mission Planning.

2014 IEEE International Symposium on Innovations in Intelligent Systems and

Applications (INISTA) Proceedings, pp. 146-153. June 2014.

2. Ramrez-Atencia, Cristian; Bello-Orgaz, Gema; R-Moreno, Maria D.; Camacho,

David. Branching to find feasible solutions in unmanned air vehicle mission plan-

ning. Proceeding of the 15th International Conference on Intelligent Data Engi-

neering and Automated Learning IDEAL 2014, vol. 8669, pp. 286-294. September

2014.

48

Bibliography

[1] Corey Schumacher, Phillip Chandler, Meir Pachter, and Lior Pachter. UAV Task

Assignment with Timing Constraints via Mixed-Integer Linear Programming. In

AIAA 3rd Unmanned Unlimited Systems Conference, pages 238–252, 2004.

[2] Wen-Chyuan Chiang and Robert A Russell. Simulated annealing metaheuristics

for the vehicle routing problem with time windows. Annals of Operations Research,

63:3–27, 1996.

[3] S. Leary, M. Deittert, and J. Bookless. Constrained UAV mission planning: A

comparison of approaches. In Computer Vision Workshops (ICCV Workshops),

2011 IEEE International Conference on, pages 2002–2009, November 2011.

[4] Christophe Guettier, Bertrand Allo, Vincent Legendre, Jean-Clair Poncet, and

Nelly Strady-Lecubin. Constraint model-based planning and scheduling with mul-

tiple resources and complex collaboration schema. In Procedings of the Sixth In-

ternational Conference on Artificial Intelligence Planning Systems (AIPS), pages

284–292, 2002.

[5] Stuart J. Russell and Peter Norvig. Artificial Intelligence - A Modern Approach (3.

internat. ed.). Pearson Education, December 2010. ISBN 978-0-13-207148-2.

[6] Angelo Oddi Riccardo Rasconi Daniel Diaz, Amedeo Cesta and Maria D. R-Moreno.

Efficient Energy Management for Autonomous Control in Rover Missions. IEEE

Computational Intelligence Magazine, 8(4):12–24, 2013. Special Issue on Computa-

tional Intelligence for Space Systems and Operations.

[7] David Camacho, Ricardo Aler, Daniel Borrajo, and Jose Manuel Molina. A Multi-

Agent architecture for intelligent gathering systems. AI Communications, 18(1):

15–32, 2005.

49

Bibliography 50

[8] David Camacho, Ricardo Aler, Daniel Borrajo, and Jose Manuel Molina. Multi-

agent plan based information gathering. Applied Intelligence, 25(1):59–71, 2006.

[9] David Camacho, Cesar Hernandez, and Jose Manuel Molina. Information classifi-

cation using fuzzy knowledge based agents. In Proceedings of the IEEE Systems,

Man, and Cybernectics Conference (SMC-2001), volume 4, pages 2575–2580, USA,

2001. IEEE.

[10] George Vachtsevanos, Liang Tang, Graham Drozeski, and Luis Gutierrez. From

mission planning to flight control of unmanned aerial vehicles: Strategies and im-

plementation tools. Annual Reviews in Control, 29(1):101 – 115, 2005. ISSN 1367-

5788.

[11] Kanna Rajan, Frederic Py, Conor McGann, John Ryan, Tom OReilly, Thom

Maughan, and Brent Roman. Onboard adaptive control of AUVs using automated

planning and execution. In International Symposium on Unmanned Untethered

Submersible Technology (UUST), pages 1–13, 2009.

[12] David Camacho, Daniel Borrajo, Jos M. Molina, and Ricardo Aler. Abstract Plan-

ning in Dynamic Environments. In Proceedings of the IEEE Systems, Man, and

Cybernectics Conference (SMC-2001), volume 4, pages 2331–2336, Tucson (AZ),

USA, 2001. IEEE.

[13] Mubbasir Kapadia, Alejandro Beacco, Francisco Garcia, Vivek Reddy, Nuria

Pelechano, and Norman I Badler. Multi-domain real-time planning in dynamic

environments. In Proceedings of the 12th ACM SIGGRAPH/Eurographics Sympo-

sium on Computer Animation, pages 115–124. ACM, 2013.

[14] Patrick Doherty, Jonas Kvarnström, and Fredrik Heintz. A temporal logic-based

planning and execution monitoring framework for Unmanned Aircraft Systems.

Autonomous Agents and Multi-Agent Systems, 19(3):332–377, December 2009. ISSN

1387-2532.

[15] Matthew Whalley, M Freed, R Harris, Ma Takahashi, G Schulein, and Jason

Howlett. Design, integration, and flight test results for an autonomous surveil-

lance helicopter. In Proceedings of the AHS International Specialists Meeting on

Unmanned Rotorcraft, 2005.

Bibliography 51

[16] NASA Dryden. NASA’s environmental research aircraft and sensor technology

program Apex Project completes critical design review, April 1998.

[17] P. Fabiani, V. Fuertes, A. Piquereau, R. Mampey, and F. Teichteil-Konigsbuch.

Autonomous flight and navigation of VTOL UAVs: from autonomy demonstrations

to out-of-sight flights. Aerospace Science and Technology, 11(2-3):183–193, 2007.

ISSN 1270-9638.

[18] F. Teichteil-Konigsbuch and P. Fabiani. A multi-thread decisional architecture for

real-time planning under uncertainty. In 3rd ICAPS Workshop on Planning and

Plan Execution for Real-World Systems, Providence, RI, 2007.

[19] Florian Adolf and Franz Andert. Onboard mission management for a VTOL UAV

using sequence and supervisory control, chapter 19, pages 301–316. InTech, October

2010. ISBN 978-953-307-062-9.

[20] Farid Kendoul. Survey of advances in guidance, navigation, and control of un-

manned rotorcraft systems. J. Field Robot., 29(2):315–378, March/April 2012. ISSN

1556-4959.

[21] Luis Merino, Fernando Caballero, J Ramiro Mart́ınez-de Dios, Joaquin Ferruz, and

Ańıbal Ollero. A cooperative perception system for multiple uavs: Application to

automatic detection of forest fires. Journal of Field Robotics, 23(3-4):165–184, 2006.

[22] Brett Bethke, Mario Valenti, and Jonathan How. Cooperative vision based esti-

mation and tracking using multiple uavs. In Advances in Cooperative Control and

Optimization, pages 179–189. Springer, 2007.

[23] B. Bethke, M. Valenti, and J. P. How. UAV Task Assignment. IEEE Robotics and

Automation Magazine, 15(1):39–44, March 2008.

[24] Mehdi Alighanbari. Task Assignment Algorithms for Teams of UAVs in Dynamic

Environments. Master’s thesis, Massachusetts Institute of Technology, Department

of Aeronautics and Astronautics, Cambridge MA, June 2004.

[25] David M Ryan, Curt Hjorring, and Fred Glover. Extensions of the petal method

for vehicle routeing. Journal of the Operational Research Society, pages 289–296,

1993.

Bibliography 52

[26] Jonas Kvarnström and Patrick Doherty. Automated planning for collaborative UAV

systems. In Control Automation Robotics & Vision, pages 1078–1085, December

2010.

[27] Roman Barták. Constraint programming: In pursuit of the holy grail. In Proceed-

ings of the Week of Doctoral Students, pages 555–564, 1999.

[28] Christian Bessière. Constraint propagation. Handbook of constraint programming,

pages 29–83, 2006.

[29] Peter Van Beek. Backtracking search algorithms. Handbook of constraint program-

ming, pages 85–134, 2006.

[30] Christian Bessière, Pedro Meseguer, EugeneC. Freuder, and Javier Larrosa. On

forward checking for non-binary constraint satisfaction. In Joxan Jaffar, editor,

Principles and Practice of Constraint Programming CP99, volume 1713 of Lecture

Notes in Computer Science, pages 88–102. Springer Berlin Heidelberg, 1999. ISBN

978-3-540-66626-4.

[31] Eddie Schwalb and Llúıs Vila. Temporal constraints: A survey. Constraints, 3(2-3):

129–149, 1998. ISSN 1383-7133.

[32] Malek Mouhoub. Solving temporal constraints in real time and in a dynamic en-

vironment. Technical Report WS-02-17, American Asociation for Artificial Intelli-

gence (AAAI), 2002.

[33] Malek Mouhoub. Reasoning with numeric and symbolic time information. Artificial

Intelligence Review, 21(1):25–56, 2004.

[34] Marco Ragni and Stefan Wlfl. Temporalizing cardinal directions: From constraint

satisfaction to planning. In KR’06, pages 472–480, 2006.

[35] Emma Rollon and Javier Larrosa. Multi-objective Russian doll search. In Pro-

ceedings Of The National Conference On Artificial Intelligence, volume 22, pages

249–254. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999,

2007.

[36] Emma Rollon and Javier Larrosa. Bucket Elimination for Multiobjective optimiza-

tion problems. Journal of Heuristics, 12(4-5):307–328, 2006. ISSN 1381-1231.

Bibliography 53

[37] C.M. Fonseca and P.J. Fleming. Multiobjective optimization and multiple con-

straint handling with evolutionary algorithms. I. A unified formulation. Systems,

Man and Cybernetics, IEEE Transactions on, 28(1):26–37, Jan 1998.

[38] Antonio Gonzalez-Pardo and David Camacho. A new CSP graph-based repre-

sentation for ant colony optimization. In 2013 IEEE Conference on Evolutionary

Computation (CEC 2013), volume 1, pages 689–696, 2013.

[39] Héctor Palacios and Héctor Geffner. Planning as Branch and Bound: A constraint

programming implementation. In Proceedings of Conferencia Lationamericana en

Informatica (CLEI), volume 2, pages 239–251, 2002.

[40] S.J. Rasmussen and T. Shima. Branch and bound tree search for assigning co-

operating uavs to multiple tasks. In American Control Conference, pages 6–14,

2006.

[41] Marc Torrens and Boi Faltings. Using Soft CSPs for Approximating Pareto-Optimal

Solution Sets. In In AAAI Workshop Proceedings Preferences in AI and CP: Sym-

bolic Approaches. AAAI Press, 2002.

[42] A.J. Pohl and G.B. Lamont. Multi-objective uav mission planning using evolution-

ary computation. In Winter Simulation Conference (WSC 2008), pages 1268–1279,

December 2008.

[43] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. SPEA2: Improving the

strength pareto evolutionary algorithm. In Proceedings of Evolutionary Methords

for Design, Optimization and Control with Applications to Industrial Problems,

pages 95–100. Eidgenössische Technische Hochschule Zürich (ETH), Institut für

Technische Informatik und Kommunikationsnetze (TIK), 2001.

[44] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective

genetic algorithm: NSGA-II. Evolutionary Computation, IEEE Transactions on, 6

(2):182–197, Apr 2002.

[45] Christian Schulte, Guido Tack, and Mikael Z. Lagerkvist. Modeling and Program-

ming with Gecode, 2010. URL http://www.gecode.org/.

http://www.gecode.org/

Bibliography 54

[46] Byron Knoll, Kisyński, Giuseppe Carenini, Cristina Conati, Alan Mackworth, and

David Poole. Aispace: Interactive tools for learning artificial intelligence. In Pro-

ceedings of the AAAI 2008 AI Education Workshop, Chicago, IL, July 2008. URL

http://www.aispace.org/.

[47] Narendra Jussien, Guillaume Rochart, Xavier Lorca, et al. Choco: an open source

Java constraint programming library. In CPAIOR’08 Workshop on Open-Source

Software for Integer and Contraint Programming (OSSICP’08), pages 1–10, 2008.

URL http://www.emn.fr/z-info/choco-solver/.

[48] Gurobi. URL http://www.gurobi.com/.

[49] Ilog cplex cp optimizer. URL http://www-03.ibm.com/software/products/en/

ibmilogcpleoptistud/.

[50] Krzysztof Kuchcinski and Radosaw Szymanek. JaCoP Library user guide, 4.0 edi-

tion, May 2014. URL http://www.osolpro.com/jacop/index.php.

[51] Ian P. Gent, Chris Jefferson, and Ian Miguel. Minion: A fast, scalable, constraint

solver. In Proceedings of the 2006 Conference on ECAI 2006: 17th European Con-

ference on Artificial Intelligence August 29 – September 1, 2006, Riva Del Garda,

Italy, pages 98–102, Amsterdam, The Netherlands, The Netherlands, 2006. IOS

Press. ISBN 1-58603-642-4. URL http://minion.sourceforge.net/.

[52] Emmanuel Hebrard. Mistral, a constraint satisfaction library. Proceedings of the

Third International CSP Solver Competition, pages 31–39, 2008. URL http://4c.

ucc.ie/~ehebrard/mistral/doxygen/html/main.html.

[53] Emmanuel Hebrard, Eoin Mahony, and Barry Sullivan. Constraint programming

and combinatorial optimisation in numberjack. In Andrea Lodi, Michela Milano,

and Paolo Toth, editors, Integration of AI and OR Techniques in Constraint Pro-

gramming for Combinatorial Optimization Problems, volume 6140 of Lecture Notes

in Computer Science, pages 181–185. Springer Berlin Heidelberg, 2010. ISBN 978-

3-642-13519-4. URL http://numberjack.ucc.ie/.

[54] Peter Stuckey and Mark Wallace. Opturion-CPX, 2011-2014. URL http://www.

opturion.com/.

http://www.aispace.org/
http://www.emn.fr/z-info/choco-solver/
http://www.gurobi.com/
http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud/
http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud/
http://www.osolpro.com/jacop/index.php
http://minion.sourceforge.net/
http://4c.ucc.ie/~ehebrard/mistral/doxygen/html/main.html
http://4c.ucc.ie/~ehebrard/mistral/doxygen/html/main.html
http://numberjack.ucc.ie/
http://www.opturion.com/
http://www.opturion.com/

Bibliography 55

[55] Nikolaj van Omme, Laurent Perron, and Vincent Furnon. Google or-tools open

source library user’s manual. Google, 0.2.11 edition, September 2014. URL https:

//code.google.com/p/or-tools/.

[56] Neng-Fa Zhou and Jonathan Fruhman. A Users Guide to Picat, 0.6 edition, Septem-

ber 2014. URL http://www.picat-lang.org/.

https://code.google.com/p/or-tools/
https://code.google.com/p/or-tools/
http://www.picat-lang.org/

	Abstract
	Resumen
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Document structure

	2 Related Work
	2.1 Mission Planning
	2.1.1 Mission Planning for UAS
	2.1.2 Collaborative Mission Planning

	2.2 Constraint Satisfaction Problems
	2.2.1 Temporal Constraint Satisfaction Problems
	2.2.2 Constraint Satisfaction Optimization Problems

	3 Architecture Model for UAV Mission Planning
	3.1 Framework Architecture
	3.2 Mission Data Model
	3.2.1 Sensors
	3.2.2 Zones
	3.2.2.1 Coordinates
	3.2.2.2 Line
	3.2.2.3 Zone

	3.2.3 uav
	3.2.4 Tasks

	3.3 TCSP Mission Modelling
	3.3.1 TCSP Modelling using Gecode
	3.3.2 Optimization Function and Constraint Optimization Problem

	4 Experimental Setup
	4.1 Missions datasets
	4.2 uav datasets
	4.3 Temporal schemas

	5 Experimental Results
	5.1 Experiment 1: Search of the Complete Space of solutions with Backtracking
	5.1.1 Study with temporally independent tasks
	5.1.2 Study with 1-temporal dependency tasks
	5.1.3 Study with 2-temporal dependencies tasks
	5.1.4 Interdependency comparison
	5.1.5 Conclusions

	5.2 Experiment 2: Search of optimal solution with Branch & Bound
	5.2.1 Individual Optimization
	5.2.2 Balanced cost function
	5.2.3 Optimizing the runtime with weighted cost functions
	5.2.4 bt vs bb
	5.2.5 Conclusions

	6 Conclusions and Future Works
	6.1 Conclusions
	6.2 Future works

	A csp solvers comparison
	B Publications
	Bibliography

