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Abstract 

This paper presents improvements in text-dependent speaker 

recognition based on the use of Maximum A Posteriori 

(MAP) adaptation of Hidden Markov Models and the use of 

new sub-word level T-Normalization procedures. Results on 

the YOHO corpus show that the use of MAP adaptation 

provides a relative improvement of 22.6% in Equal Error Rate 

(EER) in comparison with Baum-Welch retraining and 

Maximum Likelihood Linear Regression (MLLR) adaptation. 

The newly proposed sub-word level T-Normalization 

procedures provide additional relative improvements, 

particularly for small cohorts, of up to 20% in EER in 

comparison with the normal utterance-level T-Normalization.      

Index Terms: speaker recognition, text-dependent. 

1. Introduction 

Automatic Speaker Recognition (SR) aims to recognize the 

speaker that produces a particular speech utterance. It can be 

either text-independent or text-dependent depending on 

whether the linguistic content of the test speech utterance is 

unknown or known by the system. In the latter case the text 

can be a password set by the user or a random text prompted 

to the user (text-prompted). Despite its potential applications 

in interactive voice response systems, text-dependent SR has 

developed at a slower pace than text-independent SR, 

probably due to the lack of competitive evaluation campaigns 

such as NIST text-independent SR evaluations [1].  

The most widely used modeling technique in text-

dependent SR is Hidden Markov Models (HMMs) [2, 3, 4]. 

This paper also focuses on text-dependent SR using HMMs. 

Our previous work [5] compared Baum-Welch retraining 

versus Maximum Likelihood Linear Regression (MLLR) 

adaptation [6] for training the speaker models. In this paper 

we extend this comparison to the use of Maximum A 

Posteriori (MAP) [7] adaptation of the HMMs as a better way 

for obtaining the speaker models.  

Besides this comparison, the other novelties in this paper 

are two new T-Norm procedures particularly designed for its 

use in text-dependent SR and an extensive experimentation 

with them. The main idea behind these new T-Norm 

procedures is to perform T-Norm on scores computed on 

smaller segments of speech (such as phonemes or HMM 

states) so that the averaging of the scores over the full 

utterance is performed on already normalized scores. This 

idea contrasts with the normal way of applying T-Norm in 

which first scores are averaged over the whole utterance and 

T-Norm is applied afterwards to these utterance-level scores. 

We call this normal way of T-Norm Utterance-Level T-Norm 

to distinguish it from the newly proposed schemes operating 

at the sub-word level, which we call Phoneme-Level T-Norm 

and State-Level T-Norm. We introduced these T-Norm 

schemes in [5], where we showed that using a single cohort 

composed of 10 male and 10 female speakers Utterance-Level 

T-Norm actually decreased performance, while Phoneme-

Level and State-Level T-Norm yielded important 

improvements. Although the results were quite clear, some 

concerns could be raised about the generality of the 

conclusions given that the cohort included both genders (and 

therefore included gender-related variance), was small, and 

results included same-gender and cross-gender tests. This 

paper tries to give answer to these concerns by extending the 

experimentation to the cases of using two gender-dependent 

cohorts of 10 and 30 speakers and a male only test using a 

cohort of over 100 speakers. We also try to analyze the data in 

more detail to get insights into the reasons for the behavior 

observed. For the moment, all the experiments with T-Norm 

shown in this paper are performed on the well-known YOHO 

database [8]. We are currently working on extending these 

experiments to other databases [9].       

 The use of T-Norm for text-dependent SR has received 

little attention until very recently [4, 5, 10]. Of particular 

interest for this paper is the work in [10], where the authors 

propose the effect of the lexical mismatch as one of the 

reasons for the modest performance of T-Norm in text-

dependent SR. In [10] the authors propose a technique for 

smoothing the normalization that yields improvements. Here 

we present an alternative way of improving the performance 

of normalization, by performing T-Norm at the phoneme or 

sub-phoneme levels instead of at the utterance level. This 

method, does not solve the problem of the lexical mismatch in 

the speech used in the enrollment of the models and in the 

utterance to verify, but we consider that by reducing the 

amount of the lexical content of the test segment used to 

compute the score before applying T-Norm to one phoneme 

or sub-phoneme the problem could be somewhat alleviated. 

The rest of the paper is organized as follows: section 2 

describes briefly the baseline algorithm used for text-

dependent SR with HMMs. Section 3 describes the three 

different alternatives considered for performing T-Norm, 

section 4 describes the experimental protocol, section 5 

presents experimental results, section 6 presents a discussion 

on the reasons for the behavior observed in the experiments, 

and finally, section 7 presents conclusions and future work.  

2. General framework for text-dependent 

SR based on phonetic HMMs 

The general framework used in this paper for text-dependent 

SR is defined by a common parameterization; a speaker-

dependent sentence model of the utterance to be verified, a 

speaker-independent sentence model and a common way of 

scoring. This general framework is described in detail in [5], 

so we refer the interested reader to this article and will give 

here just a brief summary. 
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The front end starts with a pre-emphasis filter, after which 

the signal is windowed using 25 ms. Hamming windows with 

a window shift of 10 ms. From each window 13 Mel 

Frequency Cepstral Coefficients (MFCCs) are extracted 

(including C0), and their first and second-order differences 

are calculated, for a total of 39 features per frame.  

A speaker-independent sentence model is built for each 

utterance to verify from a set of speaker-independent phonetic 

HMMs, a phonetic lexicon and the orthographic transcription 

of the sentence. The HMMs are 39 context-independent 

English phonetic HMM models previously trained on TIMIT. 

The phonetic models have 3 states, with a Bakis (left-to-right) 

topology with no skips.  

This model will compete against a speaker-dependent 

sentence model built exactly in the same way but using 

speaker-dependent phonetic HMMs obtained from a small 

amount of speech (enrollment data) from that speaker. These 

speaker-dependent phonetic HMMs have exactly the same 

structure as the speaker-independent HMMs and can be 

obtained in different ways. We have explored three of them: 

performing Baum-Welch reestimation [11] of the speaker-

independent phonetic HMMs on the enrollment data, adapting 

the speaker-independent HMMs using MLLR [6], and finally 

performing MLLR followed by MAP adaptation [7].   

After the speaker-independent and the speaker-dependent 

models of the utterance have been built the utterance to verify 

is aligned to each of these two models using a Viterbi 

algorithm which produces the acoustic scores for each frame 

given the speaker-dependent and the speaker-independent 

models of the utterance. The final score is the ratio between 

the average score per frame obtained with the speaker-

dependent model and the average score per frame obtained 

with the speaker-independent model. Assuming that the 

textual content of the utterance is the correct, the larger the 

score the larger the confidence the system has in verifying the 

speaker. This set-up models a text-prompted system where the 

text uttered normally coincides with the expected text.   

In spite of the score normalization provided by the use of 

speaker-independent scores, which can be viewed as similar 

to a UBM (Universal Background Model), the speaker-

dependent score variations and the need for speaker-

independent decision thresholds usually requires the inclusion 

of further score normalization techniques (Z-norm, T-norm, 

…). In this sense we will consider that the scores obtained as 

described in this section are unnormalized scores. In next 

section we will describe three different ways to perform T-

norm in this context. 

3. T-Norm for text-dependent SR at the 

utterance, phoneme and state levels 

In text-independent SR it is very common to use T-

Normalization by comparing the score obtained with a test 

segment, not only to the model of the speaker in the test 

segment, but also against the models of other speakers (i.e. 

against a cohort of impostors).  

The direct translation of this approach to text-dependent 

SR is what we call Utterance-Level T-Norm, to distinguish it 

from the novel T-Normalization schemes proposed in 

following sections. As with any T-Normalization scheme, we 

need to define a cohort of M speakers and compute the 

unnormalized scores (as described in Section 2) not only 

using the model of the speaker to verify but also the models 

for the M speakers in the cohort. After we have done this we 

T-Normalize the score in the usual way: 

 
σ

µ−
=

sc
scTNorm ,  (11) 

Where sc is the unnormalized score, µ  and σ  are the mean 

and the standard deviation of the scores obtained against the 

cohort of M speakers and 
TNorm

sc  is the T-Normalized score.    

With this T-Normalization scheme we T-Normalize the 

final scores after averaging over the whole utterance. In this 

sense, we are combining scores computed on very different 

parts of the test utterance (i.e. on different phonemes or 

different parts of the phonemes) which may produce scores 

with very different distributions. For that reason it seems to be 

a good idea to try to normalize the scores for similar segments 

before averaging the scores. We propose the use of sub-word 

level T-Normalization schemes in which we perform T-

Normalization on averages of the acoustic scores over 

segments corresponding to phonemes or even HMM states 

within the phoneme before averaging the already T-

Normalized scores over the whole utterance. We call these 

methods Phoneme-Level T-Normalization and State-Level T-

Normalization. The idea behind these new T-Normalization 

schemes is relatively simple and we consider that a detailed 

description here is unnecessary. However, the interested 

reader can find a detailed description of these methods in [5]. 

4. YOHO experimental protocol 

For the experiments we have used YOHO [3], probably the 

most widely used and well known benchmark for text-

dependent SR system comparison and assessment. It consists 

of 96 utterances for enrollment collected in 4 different 

sessions and 40 utterances for testing collected in 10 sessions 

for each of a total of 138 speakers, 106 male and 32 female. 

Each utterance is a different set of three digit pairs (e.g. “12-

34-56”). The results presented on YOHO are based on the 

following experimental protocol. Speaker models are trained 

using 6 utterances from session 1, the 24 utterances from 

session 1 or the 96 utterances from the 4 sessions. Our main 

focus was on the single session, 6 utterances, since it is the 

closest to what we expect to find in realistic operational 

conditions. Most experiments are referred to this condition. 

Speaker verification is performed using a single utterance 

from the test subset. The target scores are generated by 

matching each speaker model with all the test utterances from 

that user, leading to a total of 138 x 40 = 5,520 scores. The 

impostor scores are computed by comparing each speaker 

model with a single utterance randomly selected from those of 

all other users, which yields 138 x 137 = 18,906 trials. For all 

impostor trials the sentence models are produced using the 

actual text spoken to simulate a text-prompted system in 

which the impostors know what they have to say. 

For experiments using T-Norm the experimental protocol 

has been slightly modified. We have considered 3 different 

cohort sizes for T-norm: 10 male and female speakers, 30 

male and female speakers (this is the maximum we can reach 

with the 32 female speakers in YOHO) and all male speakers. 

For the 10 male and 10 female cohorts we have removed these 

speakers from the test. This way the number of target scores is 

reduced to 118 x 40 = 4,720, and the number of impostor 

scores to 118 x 117 = 13,806. For the 30 male and 30 female 

speakers and for the all male cohorts we cannot remove so 

many speakers from the test, so we have used Jackknife to use 

all trials and large (trial-dependent) cohorts with speakers not 

included in each trial.  

1934



5. Results 

We have organized this section into three subsections. The 

first one compares results without score normalization using 

Baum-Welch and MLLR. The second presents results without 

normalization and with MAP. Finally, the third one focuses 

on the three proposed ways of performing T-Normalization, 

comparing them using several set-ups for the cohort.   

5.1. Results with Baum-Welch and MLLR  

In this section we compare MLLR adaptation and Baum-

Welch re-estimation for different amounts of enrollment 

speech. In particular, we have compared the best results 

achieved by MLLR adaptation and Baum-Welch retraining 

for the condition of 6 utterances from the first training 

session, 24 utterances from the first training session, and of 

all 96 utterances in the 4 training sessions. Table 1 and Figure 

1 show the best results obtained after an optimization 

performed on the number of Gaussians per state, the number 

of iterations of Baum-Welch re-estimation and the number of 

regression classes in MLLR adaptation. For Baum-Welch re-

estimation the number of Gaussians per state was varied 

between 1 and 5 and the number of re-estimation iterations 

was either 1 or 4. For MLLR adaptation the number of 

Gaussians per state was varied between 5 and 80 in steps of 5 

and the number of regression classes between 1 and 32 in 

power-of-2 steps. Our best results show that, even in the cases 

with the largest amount of data, MLLR adaptation 

outperforms Baum-Welch re-estimation in text-dependent 

speaker recognition. In fact, the difference in favour of MLLR 

tends to increase as the amount of enrollment material 

increases. The reason for this may be that the amount of 

enrollment material, even using the 96 utterances for training, 

is still very limited for Baum-Welch re-estimation. MLLR 

adaptation seems to be more adequate for the whole range of 

enrollment speech considered.  

5.2. Results with MLLR plus MAP 

After these experiments we tried to get more accurately 

speaker-adapted HMMs by performing MAP [7] adaptation 

after the MLLR adaptation. This yields increased speaker 

recognition performance (Fig. 1 and Table 1). The EER 

decreased by 1.04% absolute (22.6% relative improvement). 

This improvement comes at increased computational and 

storage costs (we need to store a whole new set of phonetic 

HMMs for each speaker, not only the transformation 

matrices) but in some applications we can take advantage of 

it. We have only performed experiments with MLLR followed 

by MAP for the 6 utterances enrollment condition because 

this is the most interesting condition for the applications we 

are considering currently.  

5.3. Results with Utterance-Level, Phoneme-Level 

and State-Level T-Norm 

In this section we make use of the method that produced the 

best results in the former sections, adaptation with MLLR 

followed by MAP, and focus on user enrollment with 6 

utterances, which we consider the case most close to the 

applications we envisage. With these settings we have tested 

the three different schemes for T-Normalization described in 

section 3 with different set-ups of the cohort. Results from 

this extensive testing are summarized in terms of Equal Error 

Rate (EER) in percentage in Table 2.  

The first line of Table 2 presents results obtained with 

MLLR plus MAP adaptation without normalization, and 

serves as the baseline results. These correspond to Figure 1 

but have been further detailed according to the gender in the 

trials. The last column of the table presents global results 

obtained by considering all trials, including same gender and 

cross gender trials.  

The rest of the table is organized in blocks of three lines 

which represent results obtained with Utterance-Level, 

Phoneme-Level and State-Level T-Norm for the following 

cohorts of impostors: 

• G.I. 10m+10f: A gender independent cohort 

including 10 male speakers and 10 female speakers. 

• G.D. 10m – 10f: Two gender dependent cohorts 

obtained by dividing the previous cohort into two 

gender-dependent cohorts. 

• G.D. 30m – 30f: Two gender-dependent cohorts with 

30 speakers for each gender.  

• G.D. All male: A male cohort including all speakers 

in YOHO except those involved in the trial. 

For the two first cases we removed the speakers in the 

cohort from the test, while for the two last we used Jackknife 

and trial-dependent cohorts excluding speakers in the trial. 

From the table we observe that Phoneme-Level and State-

Level T-Norm clearly outperform Utterance-Level T-Norm for 

the smaller cohorts (10 male and 10 female), irrespective of 

whether the cohorts are gender-dependent or independent. In 

 

Figure 1: DET curves with Baum-Welch re-

estimation, MLLR adaptation and MLLR adaptation 

followed by MAP with 6, 24 and 96 utterances for 

enrollment. 

Table 1. EERs (%) with Baum-Welch re-estimation, 

MLLR adaptation and MLLR adaptation followed by 

MAP with 6, 24 and 96 utterances for enrollment.  

Enrollment utterances 

(and sessions) 
Baum-Welch MLLR 

MLLR 

+ MAP 

6 (1 session) 5,6 4,6 3,56 

24 (1 session) 3,2 2,1 -- 

96 (4 sessions) 1,9 0,9 -- 
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these cases, Utterance-Level T-Norm actually worsens the 

results obtained without normalization, while Phoneme and 

State-Level T-Norm produce important improvements. In the 

case of two gender-dependent cohorts with 10 male and 10 

female speakers the relative improvement achieved by State-

Level T-Norm over Utterance-Level T-Norm reaches 20.1% 

(0.73% absolute) in the all gender condition. 

When we move to larger cohorts we observe that 

Phoneme and State-Level T-Norm still tend to perform better 

than Utterance-Level T-Norm. However, the increase of the 

cohort has a larger improvement effect on Utterance-Level T-

Norm than on sub-word levels T-Norm. This reduces the 

difference between utterance and sub-word levels T-Norm.     

6. Discussion 

It is reasonable to consider that the different phonemes have 

different discrimination capabilities. In fact, this is the 

hypothesis of a recent work [12] in which the scores produced 

by different phonemes are combined with different weights 

using boosting for improved performance. In the context of T-

Norm this will mean that the scores produced by different 

phonemes should be normalized in different ways. In fact, we 

have studied the impostor score distributions for different 

phonemes (not presented here due to space limitations) and 

have noticed important differences among them, which again 

suggest the convenience of sub-word level normalizations. 

Our experiments in this paper, however, have made that 

advantages clear particularly for small cohorts, pointing out 

other important advantage of sub-word score normalization 

schemes: their robustness to small cohorts.     

7. Conclusions 

In this paper we have experimented with three different ways 

of obtaining the speaker models from the enrollment material 

for a text-dependent SR system based on HMMs: Baum-

Welch reestimation, MLLR adaptation and MLLR followed 

by MAP adaptation. Among them, we have found that MLLR 

followed by MAP tends to produce the best results, which are 

over 22.6% relatively better in terms of EER than those 

achieved by the second best, MLLR. We have also performed 

an extensive experimentation with T-Normalization methods, 

comparing the normal method, Utterance-Level T-Norm, with 

two novel methods, Phoneme-Level T-Norm and State-Level 

T-Norm. Experiments have been performed with different 

cohort set-ups, showing that Phoneme-Level T-Norm and 

State-Level T-Norm tend to perform better than Utterance-

Level T-Norm. These differences are particularly noticeable 

(up to 20.1% relative improvements in EER) when small 

cohorts are used for T-Norm, probably due to the higher 

robustness to small cohorts of these new sub-word T-Norm 

methods compared to the normal, utterance-based T-Norm. 
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Table 2. T-Norm results (EERs in %) obtained on 

YOHO (with only 6 utterances from a single session 

as enrollment material) using MLLR and MAP 

adaptation. The table compares results obtained 

without normalization and with Utterance-Level, 

Phoneme-Level and State-Level T-Norm for different 

set-ups for the cohort. 

Gender Condition 
Cohort  

Type of  

T-Norm Male Female All 

NO NO 3.90 7.26 3.56 

Utterance 4.13 5.84 3.91 

Phoneme 3.21 4.76 2.98 

G.I. 

10m + 

10f State 3.34 4.55 3.04 

Utterance 3.53 13.85 3.64 

Phoneme 2.92 5.19 2.97 

G.D. 

10m –  

10f State 3.02 4.55 2.91 

Utterance 2.74 4.07 3.10 

Phoneme 2.52 4.13 2.98 

G.D. 

30m – 

30f State 2.47 4.03 2.96 

Utterance 2.55 -- -- 

Phoneme 2.43 -- -- 

G.D. 

All 

male State 2.52 -- -- 
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