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Abstract
Identifying a subset of features that preserves classification accuracy is a problem of growing im-
portance, because of the increasing size and dimensionality of real-world data sets. We propose a
new feature selection method, named Quadratic ProgrammingFeature Selection (QPFS), that re-
duces the task to a quadratic optimization problem. In orderto limit the computational complexity
of solving the optimization problem, QPFS uses the Nyström method for approximate matrix diag-
onalization. QPFS is thus capable of dealing with very largedata sets, for which the use of other
methods is computationally expensive. In experiments withsmall and medium data sets, the QPFS
method leads to classification accuracy similar to that of other successful techniques. For large data
sets, QPFS is superior in terms of computational efficiency.
Keywords: feature selection, quadratic programming, Nyström method, large data set, high-
dimensional data

1. Introduction

The task of feature selection is to reduce the number of variables used in training a classifier. Three
main benefits can be drawn from successful feature selection: first, a substantial gain in computa-
tional efficiency (especially important for any application that requires classifier execution in real-
time); second, scientific discovery by determining which features are most correlated with the class
labels (which may in turn reveal unknown relationships among features); and, third, reduction of the
risk of overfitting if too few training instances are available (a serious problem particularly in situ-
ations with high dimensionalities relative to training set sizes). Document categorization (Forman,
2008), prosthesis control (Momen et al., 2007; Shenoy et al., 2008), cardiac arrhythmia classifica-
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tion (Rodriguez et al., 2005), fMRI analysis, gene selection from microarray data (Ding and Peng,
2005; Li et al., 2004; Zhang et al., 2008), real-time identification of polymers (Leitner et al., 2003),
and credit card fraud detection are some real-life domains where these gains are especially mean-
ingful.

Many methods have been suggested to solve the variable selection problem. They can be cat-
egorized into three groups.Filter methods perform feature selection that is independent of the
classifier (Bekkerman et al., 2003; Forman, 2003, 2008).Wrappermethods use search techniques
to select candidate subsets of variables and evaluate their fitness based on classification accuracy
(John et al., 1994; Kohavi and John, 1997; Langley, 1994). Finally,embeddedmethods incorporate
feature selection in the classifier objective function or algorithm (Breiman etal., 1984; Weston et al.,
2001).

Filter methods are often preferable to other selection methods because of their usability with
alternative classifiers, their computational speed, and their simplicity (Guyon, 2003; Yu and Liu,
2003). But filter algorithms often score variables separately from each other, so they do not achieve
the goal of finding combinations of variables that give the best classification performance. It has
been shown that simply combining good variables does not necessary leadto good classification
accuracy (Cover, 1974; Cover and Thomas, 1991; Jain et al., 2000). Therefore, one common im-
provement direction for filter algorithms is to consider dependencies among variables. In this di-
rection approaches based on mutual information, in particular Maximal Dependency (MaxDep) and
minimal-Redundancy-Maximum-Relevance (mRMR), have been significant advances (Peng et al.,
2005).

The central idea of the MaxDep approach is to find a subset of featureswhich jointly have the
largest dependency on the target class. However, it is often infeasibleto compute the joint density
functions of all features and of all features with the class. One approach to making the MaxDep
approach practical is Maximal Relevance (MaxRel) feature selection (Peng et al., 2005). This ap-
proach selects those features that have highest relevance (mutual information) to the target class.
The main limitation of MaxRel is not accounting for redundancy among features. The mRMR
criterion is another version of MaxDep that chooses a subset of features with both minimum redun-
dancy (approximated as the mean value of the mutual information between eachpair of variables in
the subset) and maximum relevance (estimated as the mean value of the mutual information between
each feature and the target class). Given the prohibitive cost of considering all possible subsets of
features, the mRMR algorithm selects features greedily, minimizing their redundancy with features
chosen in previous steps and maximizing their relevance to the class.

The new method proposed in this paper aims at dealing with very large data setswith high di-
mensionality providing a time complexity improvement respect to current methods.We show how
to build on well-established mathematical methods to reduce time and space complexity. The new
method is named Quadratic Programming Feature Selection (QPFS) because it isbased on efficient
quadratic programming (Bertsekas, 1999). We introduce an objective function with quadratic and
linear terms. The quadratic term captures the dependence (that is, similarity,correlation, or mu-
tual information) between each pair of variables, whereas the linear term captures the relationship
between each feature and the class label. For large data sets, solving a quadratic programming
problem can have high time and space complexity. Therefore, we show howto reformulate the
optimization problem in a lower dimensional subspace using the Nyström method for matrix diag-
onalization (Fowlkes et al., 2001). The Nyström approximation allows the variables to be sampled,
without losing much information but with a great improvement in the speed of the algorithm. Ex-
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perimental results show that the QPFS method achieves accuracy similar to thatof other methods
on medium-size data sets, while on the well-known large MNIST data set, QPFS ismore efficient
than its predecessors.

The present manuscript is organized as follows. Section 2 presents the QPFS algorithm, in-
cluding the Nystr̈om approximation, error estimation, theoretical complexity, and implementation
issues. Section 3 provides a description of data sets, and experimental results in terms of classifica-
tion accuracy and running time.

2. The QPFS Algorithm

Our goal is to develop a feature selection method capable of succeeding withvery large data sets.
To achieve this goal, our first contribution is a novel formulation of the task.The new formulation
uses quadratic programming, a methodology that has previously been successful for a broad range of
other quite different applications (Bertsekas, 1999). Assume the classifier learning problem involves
N training samples andM variables (also called attributes or features). A quadratic programming
problem is to minimize a multivariate quadratic function subject to linear constraintsas follows:

min
x

{
1
2

xTQx−FTx

}
. (1)

Above,x is anM-dimensional vector,Q∈ R
M×M is a symmetric positive semidefinite matrix, and

F is a vector inR
M with non-negative entries. Applied to the feature selection task,Q represents

the similarity among variables (redundancy), andF measures how correlated each feature is with
the target class (relevance).

After the quadratic programming optimization problem has been solved, the components ofx
represent the weight of each feature. Features with higher weights arebetter variables to use for
subsequent classifier training. Sincexi represents the weight of each variable, it is reasonable to
enforce the following constraints:

xi > 0 for all i = 1, . . . ,M
M

∑
i=1

xi = 1 .

Depending on the learning problem, the quadratic and linear terms can have different relative
purposes in the objective function. Therefore, we introduce a scalar parameterα as follows:

min
x

{
1
2
(1−α)xTQx−αFTx

}
(2)

wherex, Q andF are defined as before andα ∈ [0,1]. If α = 1, only relevance is considered; the
quadratic programming problem becomes linear and equivalent to the MaxRel criterion. On the con-
trary, if α = 0, then only independence between features is considered that is, features with higher
weights are those which have lower similarity coefficients with the rest of features. Every data
set has its best choice ofα to extract the minimum number of features for classification purposes.
Nevertheless, a reasonable choice ofα must balance the linear and quadratic terms of Equation 2.
Thus, we estimate the mean value ¯q of the elements of the matrixQ and on the mean valuēf of the
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elements of the vectorF as

q̄ =
1

M2

M

∑
i=1

M

∑
j=1

qi j ,

f̄ =
1
M

M

∑
i=1

fi .

Since the relevance and redundancy terms in Equation 2 are balanced when (1− α̂) q̄ = α̂ f̄ , a rea-
sonable initial estimate ofα is

α̂ =
q̄

q̄+ f̄
.

The goal of balancing both terms in the QPFS objective function, Equation 2,is to ensure that
both redundancy and relevance are taken into account. If features are only slightly redundant, that
is, they have low correlation with each other, then the linear term in Equation 1 isdominant: f̄ ≫ q̄.
Making α small reduces this dominance. On the other hand, if the features have a highlevel of
redundancy relative to relevance ( ¯q≫ f̄ ), then the quadratic term in Equation 1 can dominate the
linear one. In this case, overweighting the linear term (α close to 1) makes the objective function be
balanced.

Experimental results in Section 3 show that usingα̂ leads to good results. Alternatively, it is
possible to use a validation subset to determine an appropriate value forα. However, that approach
requires evaluating the accuracy of the underlying classifier for each point in a grid ofα values.
In this case, QPFS would become a wrapper feature selection method insteadof a filter method
because it would need the classifier accuracy to determine the proper value of α.

2.1 Similarity Measures

One advantage of the problem formulation above is that it is sufficiently general to permit any
symmetric similarity measure to be used. In the remainder of this paper, the Pearson correlation
coefficient and mutual information are chosen, because they are conventional and because they are
representative ways to measure similarity.

The Pearson correlation coefficient is simple and has been shown to be effective in a wide va-
riety of feature selection methods, including correlation based feature selection (CFS) (Hall, 2000)
and principal component analysis (PCA) (Duda et al., 2000). Formally, the Pearson correlation
coefficient is defined as

ρi j =
cov(vi ,v j)√

var(vi)var(v j)

wherecov is the covariance of variables andvar is the variance of each variable. The sample
correlation is calculated as

ρ̂i j =
∑N

k=1(vki − v̄i)(vk j − v̄ j)√
∑N

k=1(vki − v̄i)2 ∑N
k=1(vk j − v̄ j)2

(3)

whereN is the number of samples,vki is thek-th sample of random variablevi , and ¯vi is the sample
mean of the random variablevi .
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Each matrix elementqi j is defined to be the absolute value of the Pearson correlation coefficient
of the pair of variablesvi andv j , that is,qi j = |ρ̂i j |. Suppose a classifier learning problem withC
classes, the relevance weight of variablevi , Fi , is computed using a modified correlation coefficient
(Hall, 2000) which is an extension to theC-class classification scenario. The modified definition is

Fi =
C

∑
k=1

p̂(K = k)|ρ̂iCk|

whereK is the target class variable,Ck is a binary variable taking the value 1 whenK = k and 0
otherwise, ˆp(K = k) is the empirical prior probability of classk, andρ̂iCk is the correlation between
featurevi and binary variableCk, computed according to Equation 3.

Because the correlation coefficient only measures thelinear relationship between two random
variables, it may not be suitable for some classification problems. Mutual information can capture
nonlinear dependencies between variables. Formally, the mutual informationbetween two random
variablesvi andv j is defined as

I(vi ;v j) =
Z Z

p(vi ,v j) log
p(vi ,v j)

p(vi)p(v j)
dvidvj .

Computing mutual information is based on estimating the probability distributionsp(vi), p(v j) and
p(vi ,v j). These distributions can be either discretized or estimated by density functionmethods
(Duda et al., 2000). When mutual information is used, the quadratic term isqi j = I(vi ,v j) and the
linear one isFi = I(vi ,c).

QPFS using mutual information as its similarity measure resembles mRMR, but there isan
important difference. The mRMR method selects features greedily, as a function of features chosen
in previous steps. In contrast, QPFS is not greedy and provides a ranking of features that takes into
account simultaneously the mutual information between all pairs of features and the relevance of
each feature to the class label.

2.2 Approximate Solution of the Quadratic Programming Problem

In high-dimensional domains, it is likely that the feature space is redundant.If so, the symmetric
matrix Q is singular. We show now how Equation 2 can then be simplified and solved in a space of
dimension less thanM, thus reducing the computational cost.

Given the diagonalizationQ = UΛUT in decreasing order of eigenvalues, Equation 2 is equiva-
lent to

min
x

{
1
2
(1−α)xTUΛUTx−αFTx

}
. (4)

If the rank ofQ is k ≪ M, then the diagonalizationQ = UΛUT can be written asQ = ŪΛ̄ŪT ,
whereΛ̄ is a diagonal square matrix consisting of the highestk eigenvalues ofQ in decreasing order
andŪ is aM×k matrix consisting of the firstk eigenvectors ofQ. Then, Equation 4 can be rewritten
as

min
x

{
1
2
(1−α)xTŪΛ̄ŪTx−αFTx

}
.
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Let y = ŪTx be a vector inRk. The optimization problem is reduced to minimizing a derived
quadratic function in ak-dimensional space:

min
y

{
1
2
(1−α)yTΛ̄y−αFTŪy

}

underM +1 constraints:

Ūy ≥
−→
0

M

∑
i=1

k

∑
j=1

ūi j y j = 1.

We can approximate the original vectorx asx≈ Ūy.
The matrixQ is seldom precisely singular for real world data sets. However,Q can normally be

reasonably approximated by a low-rank matrix formed from itsk̃ eigenvectors whose eigenvalues
are greater than a fixed thresholdδ > 0 (Fine et al., 2001). More precisely, letQ̃ = UΓUT be the
k̃-rank approximation ofQ, whereΓ ∈ R

M×M is a diagonal matrix consisting of thek̃ highest eigen-
values ofQ and the rest of diagonal entries are zero. Then, the approximate quadratic programming
problem is formulated as

min
x

{
1
2
(1−α)xTUΓUTx−αFTx

}
.

Equivalently,

min
y

{
1
2
(1−α)yT Γ̃y−αFTŨy

}
(5)

wherey= ŨTx∈R
k̃, Γ̃∈R

k̃×k̃ is a diagonal matrix with the nonzero eigenvalues ofΓ andŨ ∈R
M×k̃

the firstk̃ eigenvectors ofU . TheM +1 constraints of the optimization problem are defined as

Ũy ≥
−→
0

M

∑
i=1

k̃

∑
j=1

ũi j y j = 1 .

Given the solutionsx∗ of Equation 2 and ˜x∗ of Equation 5, the error of the approximation can
be estimated using the following theorem.

Theorem 1 (Fine et al., 2001) GiveñQ ak̃-rank approximation of Q, if(Q−Q̃) is positive semidef-
inite and tr(Q− Q̃) ≤ ε then the optimal value of the original problem is larger than the optimal
objective value of the perturbed problem and their difference is bounded by

g̃(x̃∗) ≤ g(x∗) ≤ g̃(x̃∗)+
d2lε

2
(6)

where l is the number of active constraints in the perturbed problem and d isan upper bound for
the coefficients of the original solution.
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In our case, 0≤ xi ≤ 1 andd = 1. The matrix(Q− Q̃) is positive semidefinite since(Q−
Q̃) = U(Λ−Γ)UT and(Λ−Γ) is a diagonal matrix with positive eigenvalues upper bounded byδ.
Moreoverε ≤ (M− k̃)δ andl ≤ M +1, so

g(x∗)− g̃(x̃∗) ≤
l(M− k̃)δ

2
≤

(M +1)(M− k̃)δ
2

= γ

whereg(x) andg̃(x) are defined as

g(x) =
1
2
(1−α)xTQx−αFTx for x∈ R

M (7)

g̃(x) =
1
2
(1−α)xT Γ̃x−αFTŨx for x∈ R

k̃
. (8)

Although the quadratic programming formulation of the feature selection problem is elegant
and provides insight, the formulation by itself does not significantly reduce the computational com-
plexity of feature selection. Thus we introduce the idea of applying a Nyström approximation to
take advantage of the redundancy that typically makes the matrixQ almost singular. When this is
true, the rank ofQ is much smaller thanM and the Nystr̈om method can approximate eigenvalues
and eigenvectors ofQ by solving a smaller eigenproblem using only a subset of rows and columns
of Q (Fowlkes et al., 2001). Suppose thatk < M is the rank ofQ which is represented as

Q =

(
A B
BT E

)

whereA ∈ R
k×k, B ∈ R

k×(M−k), E ∈ R
(M−k)×(M−k), and the rows of[A B] are independent. Then,

the eigenvalues and eigenvectors ofQ can be calculated exactly from the submatrix[A B] and the
diagonalization ofA. Let S= A+A− 1

2 BBTA− 1
2 and its diagonalizationS= RΣ̂RT then, the highest

k eigenvalues ofQ are given byΛ̃ = Σ̂ and its associated eigenvectorsŨ are calculated as,

Ũ =

(
A
BT

)
A− 1

2 RΣ̂− 1
2 .

The application of the Nyström method entails some practical issues. First, a prior knowledge
of the rankk of Q is, in general, unfeasible and it is necessary to estimate the number of subsamples
r to be used in the Nyström approximation. Second, ther rows of [A B] should be, ideally, linearly
independent. If the rank ofQ is greater thanr or the rows of[A B] are not linearly independent,
an approximation of the diagonalization ofQ is obtained whose error can be quantified, in general,
as‖E−BTA−1B‖. Although the Nystr̈om approximation is not error-free, if the redundancy of the
feature space is large enough, then good approximations can be achieved, as shown in the following
sections.

When QPFS+Nystr̈om is used, the rule for setting the value of theα parameter is slightly differ-
ent. In this case, only the the[A B] submatrix ofQ is known, and it is necessary to use the Nyström
approximationQ̂ of the original matrixQ,

Q̂ = (q̂i j ) =

(
A B
BT BTA−1B

)
.
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Therefore, the mean value ofQ̂ is computed as

¯̂q =
1

M2

M

∑
i=1

M

∑
j=1

q̂i j .

The mean valuēf of the vectorF is still calculated using Equation 3, since QPFS+Nyström needs
to know all coordinates ofF . To sum up, the value ofα for the QPFS+Nystr̈om method is

α̂ =
¯̂q

¯̂q+ f̄
. (9)

The algorithm QPFS+Nyström has two levels of approximation.

1. The first level is to approximate the eigenvalues and eigenvectors of theoriginal matrixQ
based on only a subset of rows, applying the Nyström method:Q̂ = ÛΛ̂ÛT . One of the
critical issues with the Nyström method is how to choose the subset of rows to use (Fowlkes
et al., 2001). Ideally, the number of linearly independent rows of[A B] should be the rank of
Q. We use uniform sampling without replacement. This technique has been used successfully
in other applications (Fowlkes et al., 2001; Williams and Seeger, 2001). Moreover, theoretical
performance bounds for the Nyström method with uniform sampling without replacement are
known (Kumar et al., 2009). In particular, we use the following theorem.

Theorem 2 (Kumar et al., 2009) Let Q∈ R
M×M be a symmetric positive semidefinite Gram

(or kernel) matrix. Assume that r columns of Q are sampled uniformly at random without
replacement (r> k), let Q̂ be the rank-k Nyström approximation to Q, and let̃Q the best
rank-k approximation to Q. Forε > 0, if r ≥ 64k

ε4 , then

E
[
‖Q− Q̂‖F

]
≤ ‖Q− Q̃‖F + ε

[(
M
r ∑

i∈D(r)

Qii

)√

M
M

∑
i=1

Q2
ii

] 1
2

(10)

where∑i∈D(r) Qii is the sum of the largest r diagonal entries of Q and‖ · ‖F represents the
Frobenius norm.

As
(
Q− Q̃

)
is a real symmetric positive semidefinite matrix, it is easy to prove that‖Q−

Q̃‖F ≤ trace
(
Q− Q̃

)
.

Equation 10 shows that the error in the Nyström approximation decreases with the number of
sampled rows,r.

2. The second level of approximation is to solve the quadratic programming problem using
the Nystr̈om approximation. As stated in Section 2.2, only eigenvalues higher than a fixed
thresholdδ > 0 are considered in the rank of matrixQ̂. Then, these top̃k eigenvalues of matrix

Q̂ are taken to make up a diagonal matrixˆ̂Λ ∈ R
k̃×k̃ and let ˆ̂U ∈ R

M×k̃ the matrix consisting

of the eigenvectors associated toˆ̂Λ. Therefore, the QPFS+Nyström method approximatesQ

by ˆ̂Q = ˆ̂U ˆ̂Λ ˆ̂UT and the quadratic programming problem is defined as,

ˆ̂g(x) =
1
2
(1−α)xT ˆ̂Λx−αFT ˆ̂Ux for x∈ R

k̃

1498



QUADRATIC PROGRAMMING FEATURE SELECTION

and let ˆ̂x∗ be its optimal solution, andg(x) and g̃(x) be as described in Equations 7 and 8,
respectively. The best rank-k̃ approximation toQ is Q̃ = UΓUT as given in Section 2.2.
A bound on the total error in the QPFS+Nyström approximation is obtained following the
reasoning in Fine et al. (2001):

E
[
g(x∗)− ˆ̂g( ˆ̂x∗)

]
≤ E

[
g( ˆ̂x∗)− ˆ̂g( ˆ̂x∗)

]

≤
1
2
(1−α)E

[
( ˆ̂x∗)T

(
Q− ˆ̂Q

)
( ˆ̂x∗)

]

≤
1
2

E
[
‖Q− ˆ̂Q‖2‖ ˆ̂x∗‖2

2

]

≤
1
2

(M +1)E
[
‖Q− ˆ̂Q‖F

]
.

Applying the bound for the Nyström method with uniform sampling without replacement
(Equation 10) and the inequality‖Q− Q̃‖F ≤ trace

(
Q− Q̃

)
≤ (M− k̃)δ yields

E
[
g(x∗)− ˆ̂g( ˆ̂x∗)

]
≤

1
2
(M +1)


(M− k̃)δ+ ε

[(
M
r ∑

i∈D(r)

Qii

)√

M
M

∑
i=1

Q2
ii

] 1
2




≤ γ+
ε
2

(M +1)

[(
M
r ∑

i∈D(r)

Qii

)√

M
M

∑
i=1

Q2
ii

] 1
2

.

The total error is the sum of the errorγ obtained from the approximation of the quadratic
programming problem in a subspace (Equation 6) and the error due to the Nyström method.

2.3 Summary of the QPFS+Nystr̈om Method

Figure 1 shows a diagram of the proposed feature selection method, whichcan be summarized as
follows:

1. Compute theF vector representing the dependence of each variable with the class.

2. Chooser rows ofQ according to some criterion (typically, uniform sampling without replace-
ment). Arrange theQ matrix so that theser rows are the first ones. Define the[A B] matrix to
be the firstr rows ofQ.

3. Set the value of theα parameter according to Equation 9.

4. Apply the Nystr̈om method knowing[A B]. Obtain an approximation of the eigenvalues and
eigenvectors ofQ, Q̂ = ÛΛ̂ÛT .

5. Formulate the quadratic programming (QP) problem in the lower dimensional space ˆ̂Q =
ˆ̂U ˆ̂Λ ˆ̂UT .

6. Solve the QP in the subspace to obtain the solution vectory.

7. Return to the original space viax = ˆ̂Uy.

8. Rank the variables according to the coefficients of vectorx. In case of equal coefficients, rank
them by decreasing relevanceFk to the class.
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Nyström

method

Reduction to

lower-dimensional space

QP

Getting back to

original space

Features

ranking

Figure 1: Diagram of the QPFS algorithm using the Nyström method. [A B] is the upperr ×M
submatrix ofQ.

2.4 Complexity Analysis

As already mentioned, the mRMR method is one of the most successful previous methods for feature
selection. The main advantage of the QPFS+Nyström method versus mRMR is the time complexity
reduction. The time complexities of mRMR and QPFS both have two components, thetime needed
to compute the matricesQ and F (Similarity), and the time needed to perform variable ranking
(Rank). The computational cost of evaluating correlations or mutual information forall variable
pairs isO(NM2) for both mRMR and QPFS. Table 1 shows the time complexities of the three algo-
rithms mRMR, QPFS and QPFS+Nyström.

mRMR QPFS QPFS+Nyström
Similarity Rank Similarity Rank Similarity Rank

M large

N ≪ pM
O(NM2) O(M2) O(NM2) O(M3) O(NpM2) O(p2M3)

M medium

N ≫ pM
O(NM2) O(M2) O(NM2) O(M3) O(NpM2) O(p2M3)

M small

N ≫ M
O(NM2) O(M2) O(NM2) O(M3) O(NpM2) O(p2M3)

Table 1: Time complexity of algorithms as a function of training set sizeN, number of variablesM,
and Nystr̈om sampling ratep. The predominant cost term is indicated in boldface.

The order-of-magnitude time complexity of QPFS is greater than or similar to that of mRMR.
However, the QPFS+Nyström time complexity is lower forN ≫ pM andN ≫ M. WhenN ≪ pM,
QPFS+Nystr̈om is faster than mRMR ifp2M3 ≪ NM2, that is, whenN ≫ p2M. For example, if
p = 10−2 then QPFS+Nystr̈om is more efficient than mRMR ifN ≫ 10−4M, that is, if the size of
the training set is greater than 10−4 times the number of variables.
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2.5 Implementation

We implemented QPFS and mRMR in C usingLAPACK for matrix operations (Anderson et al.,
1990). Quadratic optimization is performed by the Goldfarb and Idnani algorithm implemented in
Fortran and used in the Rquadprogpackage (Goldfarb and Idnani, 1983; Turlach and Weingessel,
2000).

As mentioned in Section 2.1, in general mutual information computation requires estimating
density functions for continuous variables. For simplicity, each variable is discretized in three seg-
ments(−∞,µ−σ], (µ−σ,µ+σ], and(µ+σ,+∞), whereµ is the sample mean of training data and
σ its standard deviation. The linear SVM provided by theLIBSVMpackage (Chang and Lin, 2001)
was the underlying classifier in all experiments. A linear kernel is used to reduce the number of
SVM parameters, thus making meaningful results easier to obtain. Note that mRMR and QPFS can
be used with any classifier learning algorithms. We expect results obtained with linear SVMs to be
representative.

3. Experiments

The aim of the experiments described here is twofold: first, to compare classification accuracy
achieved using mRMR versus QPFS; and second, to compare their computational cost.

3.1 Experimental Design

The data sets used for experiments are shown in Table 2. These data sets were chosen because
they are representative of multiple types of classification problems. with respect to the number of
samples, the number of features, and the achievable classification accuracy. Moreover, these data
sets have been used in other research on the feature selection task (Huaet al., 2009; Lauer et al.,
2007; Lecun et al., 1998; Li et al., 2004; Peng et al., 2005; Zhang et al., 2008; Zhu et al., 2008).

In order to estimate classification accuracy, for the ARR, NCI60, SRBCT and GCM data sets
10-fold cross-validation (10CV) and 100 runs were used (Duda et al.,2000). Mean error rates are
comparable to the results reported in Li et al. (2004), Peng et al. (2005), Zhang et al. (2008) and Zhu
et al. (2008). In the case of the RAT data set, 120 training samples (61 fortest) and 300 runs were
used, following Hua et al. (2009). The MNIST data set is divided into training and testing subsets
as proposed by Chang and Lin (2001), with 60000 and 10000 patterns respectively. Therefore,
cross-validation is not done with MNIST.

Time complexity is measured as a function of training set size (N), dimensionality (M), and

the Nystr̈om sampling rate (p =
r
M

). In all cases, times are averages over 50 runs. In order to

measure time complexity as a function of training set size, the number of SRBCT examples was
artificially increased 4 times (N = 332) and dimensionality reduced toM = 140. Time complexity
as a function of dimensionality was measured using the original SRBCT data set, that is, with
N = 83 andM = 2308.

As mentioned above, MaxRel, mRMR and QPFS are all filter methods that can beused with any
classifier. Figure 2 shows that the choice of the SVM regularization parameter c does not influence
the comparison between mRMR and QPFS. This figure displays the performance of mRMR and
QPFS for the ARR data set and differentc values. Our goal is not to determine the optimalc value
for each data set, but to compare mRMR and QPFS. Therefore,c is set to 1.0 in all experiments.
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Data Set N M C
Baseline

References
Error Rate

ARR 422 278 2 21.81% (Peng et al., 2005; Zhang et al., 2008)

(Li et al., 2004; Zhang et al., 2008)
NCI60 60 1123 9 38.67% (Zhu et al., 2008)
SRBCT 83 2308 4 0.22% (Li et al., 2004; Zhu et al., 2008)

(Li et al., 2004; Zhang et al., 2008)
GCM 198 16063 14 33.85% (Zhu et al., 2008)
RAT 181 8460 2 8.61% (Hua et al., 2009)
MNIST 60000 780 10 6.02% (Lauer et al., 2007; Lecun et al., 1998)

Table 2: Description of the data sets used in experiments.N is the number of examples,M is
the number of variables, andC is the number of classes. Baseline error rate is the rate
obtained taking into account all variables. The last column cites papers where the data sets
have been mentioned.
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mRMR c=0.01

QPFS MI alpha=0.412 c=0.01

mRMR c=1.0

QPFS MI alpha=0.412 c=1.0

mRMR c=10.0

QPFS MI alpha=0.412 c=10.0

Figure 2: Classification error as a function of the number of features forthe ARR data set and
different regularization parameter valuesc in linear SVM. The figure shows that forc =
0.01, the SVM is too regularized. The effect whenc = 10.0 is the opposite and the SVM
overfits the training data. A value ofc = 1.0 is a good tradeoff.

The value of theα parameter chosen for each data set is shown in Table 3. This value is obtained
according to Equations 3 and 9. Our hypothesis is that high values ofα are better for data sets with
high redundancy among variables. On the other hand, if there is low redundancy then smallα should
yield better results. The Nyström sampling ratep is chosen as large as possible while still yielding
a reasonable running time, since larger values reduce error in the approximation of theQ matrix.
Other values of theα parameter,α ∈ {0.0,0.1,0.3,0.5,0.7,0.9}, were considered in all experiments
in order to verify that the proposed method of settingα provides good results.
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Data Set p q̄ f̄ α̂

ARR (cor) - 0.0889 0.0958 0.481
NCI60 (cor) - 0.267 0.165 0.618
ARR (MI) - 0.0106 0.0152 0.411
NCI60 (MI) - 0.0703 0.253 0.217
SRBCT (MI) - 0.0188 0.0861 0.179
GCM (MI) 0.05 0.0284 0.158 0.152
RAT (MI) 0.1 0.0346 0.0187 0.649
MNIST (MI) - 0.0454 0.0515 0.469

Table 3: Values of theα parameter for each data set. Correlation (cor) and mutual information (MI)
were used as similarity measures for ARR and NCI60 data sets. Only mutual information
was used for SRBCT, GCM, RAT and MNIST data sets.p is the subsampling rate in the
Nyström method, ¯q is the mean value of the elements of the matrixQ (similarity among
each pair of features), and̄f is the mean value of the elements of theF vector (similarity
of each feature with the target class). For the MNIST data set only nonzero values have
been considered for the statistics due to the high level of sparsity of its features (80.78%
sparsity in average).

3.2 Classification Accuracy Results

The aim of the experiments described in this section is to compare classification accuracy achieved
with mRMR and with QPFS, with and without Nyström approximation. The MaxRel algorithm
(Peng et al., 2005) is also included in the comparison. Two similarity measures,mutual information
(MI) and correlation are considered. Classification error is measured as a function of the number
of features. We also give results from a baseline method that does random selection of features, in
order to determine the absolute advantage of using any feature selection method.

Figure 3 shows the average classification error rate for the ARR data setas a function of the
number of features. In Figure 3a, correlation is the similarity measure while mutual information
(MI) is applied for Figure 3b. In both cases, the best accuracy is obtained with α = 0.5, which
means that an equal tradeoff between relevance and redundancy is best. However, accuracies using
the values ofα specified by our heuristic are similar.

Better accuracy is obtained when MI is used, in which case (Figure 3b) theerror rate curve
for α = 0.5 is similar to that obtained with mRMR. The random selection method yields results
significantly worse than those obtained with other algorithms. Comparison with thismethod shows
that the other methods provide a significant benefit up to about 150 features.

For the NCI60 data set (Figure 4), the best accuracy is obtained when mutual information is used
(Figure 4b) andα is set to 0.217 according to Table 3. In this case, the accuracy of QPFS is slightly
better than the accuracy of mRMR. The value ofα close to zero indicates that it is appropriate to
give more weight to the quadratic term in QPFS. When correlation is used (Figure 4a), the best
accuracy is obtained whenα is set according to Equation 3.

Generally, MI as similarity measure leads to better accuracy than correlation.This finding is
reasonable given that MI can capture nonlinear relationships between variables. MI is used in the
experiments described in the remainder of this section.
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Figure 3: Classification error as a function of the number of features forthe ARR data set.(a)
QPFS results using correlation as similarity measure with differentα values.(b) MaxRel,
mRMR and QPFS results using mutual information as similarity measure and different
values ofα for QPFS.

Average error rate for the SRBCT data set and different sampling ratesas a function of the num-
ber of features is shown in Figure 5. Results for the bestα value in the grid{0,0.1,0.3,0.5,0.7,0.9},
α = 0.1, and the estimated̂α = 0.179 are shown in Figure 5a. Accuracies for bothα values are sim-
ilar. The fact that a low value ofα is best indicates low redundancy among variables compared
to their relevance with the target class. QPFS classification accuracy is similarto that of mRMR.
As shown in Figure 5b, when the QPFS+Nyström method is used, the higher the parameterp, the
closer the Nystr̈om approximation is to complete diagonalization. QPFS+Nyström gives classifica-
tion accuracy similar to that of QPFS whenp > 0.1.

Figure 6 shows error rates for the GCM data set using the algorithms MaxRel, mRMR, and
QPFS+Nystr̈om with α = 0.1 andα̂ = 0.152. When the number of features is over 60, accuracy
achieved with QPFS+Nyström is better than with mRMR. A sampling rate of 3% is adequate for
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Figure 4: Classification error as a function of number of features for theNCI60 data set. (a)
QPFS results using correlation as similarity measure with differentα values.(b) MaxRel,
mRMR and QPFS results using mutual information as similarity measure and different
values ofα for QPFS.

this data set, which represents a major time complexity reduction given a featurespace of 16063
variables.

Another data set with many features is the RAT data set, for which Figure 7 shows results. In
this case, QPFS+Nyström gives classification accuracy similar to that of mRMR when the subset
size is over 80 and the sampling rate is 10%. Given the good performance ofthe MaxRel algorithm
for this data set, it is not surprising that a largeα valueα = 0.9 or α̂ = 0.649 is best, considering
also that QPFS withα = 1.0 is equivalent to MaxRel.

The MNIST data set has a high number of training examples. Results for it are shown in Figure 8
for the QPFS withα = 0.3, the estimation̂α = 0.469 and the QPFS+Nyström with α̂ and p ∈
{0.1,0.2,0.5}. Our C code of mRMR is used instead of the code on the mRMR web site (Peng
et al., 2005) which takes a long time to read the training file. The error rate forall algorithms
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Figure 5: Error rates using MaxRel, mRMR and QPFS+Nyström methods, with mutual information
as similarity measure for the SRBCT data set.

reaches a minimum when about 350 features are selected. This is not a surprising fact: analyzing
the sparsity of the MNIST features, approximately 400 of them have a levelof sparsity higher than
70%. But if the feature space needs a greater reduction, significant differences appears between the
studied methods as shown in Figure 8. mRMR and QPFS withα̂ = 0.469 have similiar performance
and close to the best results obtained by QPFS withα = 0.3. For this data set, the number of samples
is much greater than the number of features,N ≫ M, and therefore , the time complexity of mRMR
and QPFS is the same (O(NM2)). When QPFS+Nyström is applied withp = 0.2, the error rate is
competitive and the MNIST provides an example of the ability of QPFS+Nyström to handle large
data sets reducing the computational cost of mRMR and QPFS by a factor of 5. Note that the error
rates shown for the MNIST data set are obtained using a linear kernel. The radial basis function
kernel for SVM classifiers is known to lead to lower error rates for the full MNIST data set, but the
choice of kernel is an issue separate from feature selection, which is thefocus of this paper.
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Figure 6: Error rates using MaxRel, mRMR and QPFS+Nyström methods, with mutual information
as similarity measure for the GCM data set.
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Figure 7: Error rates using MaxRel, mRMR and QPFS+Nyström methods, with mutual information
as similarity measure for the RAT data set.

Figure 9 shows a grid of 780 pixels arrayed in the same way as the images in theMNIST data
sets. A pixel is black if it corresponds to one of the top 100 (Figure 9a) and 350 (Figure 9b) selected
features, and white otherwise. Black pixels are more dense towards the middle of the grid, because
that is where the most informative features are. Pixels sometimes appear in a black/white/black
checkerboard pattern, because neighboring pixels tend to make each other redundant.

Table 4 evaluates the statistical significance of error rate differences. For each data set, 100
classifiers were trained using the stated numberM of selected features. The 100 classifiers arise
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Figure 8: Error rates using MaxRel, mRMR and QPFS+Nyström methods, with mutual information
as similarity measure for the MNIST data set.

Figure 9: First(a) 100 and(b) 350 features selected by QPFS+Nyström (α̂ = 0.469 andp = 0.5)
for the MNIST data set (black pixels).

from 10 repetitions of 10-fold cross-validation, so whichM features are used may be different for
each classifier. The one-tailed paired t-test for equal means is applied to the two sets of error rates,
one set for mRMR and one set for QPFS. The test is one-tailed because the null hypothesis is that
the mRMR method is as good or better than the QPFS method. The test is paired because both
methods were applied to the same 100 data set versions. Results of the test are given in the row
labeledsignificant?.
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For the NCI60 and SRBCT data sets, the best result is obtained when QPFSis used and it is
statistically significantly better than mRMR. When 200 to 400 variables are considered, mRMR
and QPFS are not statistically significantly different but the accuracy is not as good as in the case
of 100 features, probably due to overfitting. In the case of the GCM data set, the mRMR method
is statistically significantly better when fewer than 50 variables are considered. If the number of
features is over 100, the accuracy with QPFS is significantly better than with mRMR, and the best
performance is obtained in this case. For the ARR data set, mRMR is statistically significantly better
than QPFS if fewer than 10 features are considered but the error rate obtained can be improved if
more features are taken into account. When more than 50 featues are selected, the two methods are
not statistically significantly different. The RAT data set behavior is quite similar. When fewer than
100 features are used, the mRMR algorithm is satatistically better than QPFS, but the error rate can
be reduced adding more features. The two algorithms are not statistically significantly different in
the other cases, except if more than 400 features are involved in which case QPFS is statistically
significantly better than mRMR. Note that the error rates shown for QPFS areobtained with the
proposed estimation of̂α. In some cases, as shown in Figures 3 to 7, thisα value is not the best
choice.

Beyond simple binary statistical significance, Table 4 indicates that the QPFS method is statis-
tically significantly better when the value ofα̂ is small. A possible explanation for this finding is
the following. Whenα̂ is small, features are highly correlated with the label (f̄ ≫ q̄). The mRMR
method is greedy, and only takes into account redundancy among features selected in previous iter-
ations. When features are highly correlated with the label, then mRMR selects features with high
relevance and mostly ignores redundancy. In contrast, QPFS evaluatesall variables simultaneously,
and always balances relevance and redundancy.

3.2.1 COMPARISON WITH OTHER FEATURE SELECTION METHODS

The experiments of this work are focused in comparing QPFS with the greedyfilter-type method
mRMR (difference form, named MID) which also takes into account the difference between redun-
dancy and relevance. Nevertheless, other feature selection methods independent of the classifier
have been considered in the described experiments:

• mRMR (quotient form, named MIQ) (Ding and Peng, 2005). While in mRMR (MID form)
the difference between the estimation of redundancy and relevance is considered, in the case
of mRMR (MIQ form) the quotient of both approximations is calculated.

• reliefF (Robnik-̌Sikonja and Kononenko, 2003). The main idea of ReliefF is to evaluate the
quality of a feature according to how well it distinguishes between instancesthat are near
to each other. This algorithm is efficient in problems with strong dependencies between
attributes.

• Streamwise Feature Selection (SFS)(Zhou et al., 2006). SFS selects a feature if thebenefit
of adding it to the model is greater than the increase in the model complexity. Thealgorithm
scales well to large feature sets and considers features sequentially foraddition to a model
making unnecessary to know all the features in advance.

Average error rates for MaxRel, mRMR (MID), mRMR (MIQ), reliefF andQPFS using linear
SVM (c = 1.0) and different number of features are shown in Table 5. Table 6 shows the error rate
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M
10 50 100 200 400

RAT
mRMR 21.15±0.31 16.18±0.27 14.88±0.24 12.81±0.25 10.95±0.23

QPFSα̂ = 0.65 27.13±0.33 18.16±0.29 15.24±0.27 12.85±0.26 10.51±0.21

significant? no no no no yes

p value 1.00 1.00 0.89 0.56 1.7×10−2

ARR
mRMR 25.19±0.65 20.76±0.63 21.71±0.61 21.64±0.61 -

QPFSα̂ = 0.41 28.05±0.65 21.30±0.65 21.52±0.65 21.76±0.58 -

significant? no no no no -

p value 1.00 0.96 0.69 0.39 -

NCI60
mRMR 53.50±2.17 34.33±1.74 32.00±1.93 32.83±1.84 33.64±1.80

QPFSα̂ = 0.22 46.33±2.19 29.83±1.68 29.00±1.83 34.67±1.81 35.17±1.95

significant? yes yes yes no no

p value 1.6×10−3 7.5×10−3 3.3×10−2 0.95 0.96

SRBCT
mRMR 9.38±1.06 2.31±0.51 0.47±0.23 0.24±0.17 0.49±0.30

QPFSα̂ = 0.18 3.89±0.75 0.11±0.11 0.05±0.11 0.11±0.11 0.35±0.25

significant? yes yes yes no no

p value 5.4×10−9 5.6×10−5 2.3×10−2 0.27 0.36

GCM
mRMR 54.26±1.19 43.38±1.18 41.38±1.08 38.26±1.06 38.50±1.10

QPFSα̂ = 0.15 65.66±1.03 44.11±1.11 39.57±1.24 38.06±1.16 35.23±1.17

significant? no no yes no yes

p value 1.00 0.81 0.037 0.40 1.42×10−4

Table 4: Average error rates using the mRMR and QPFS methods, for classifiers based onM fea-
tures. The parameter̂α of the QPFS method is indicated; rows are ordered according to
this value. The Nystr̈om approximation was used for the GCM and RAT data sets.

and the average number of features selected by Streamwise Feature Selection. SFS was applied
to the binary data sets ARR and RAT and was used only as a feature selectionmethod (a feature
generation step was not included).

Table 5 shows that for ARR, NCI60, SRBCT and GCM data sets, the best selector is mRMR or
QPFS. A statistical study of the performance of both methods is given in Table4. In the case of the
RAT data set, the best methods are MaxRel and reliefF. The fact that the best results are obtained
with methods which only consider relevance with the target class fits in with the analysis of Figure 7.
Finally, for the MNIST data set the best choice is the mRMR (MIQ) algorithm. Nevertheless, the
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performance of MIQ in some data sets is not competitive (see, for instance,the ARR and NCI60
results). The accuracy of QPFS+Nyström (p = 0.2) is good if a high enough number of features is
used, and it has lower computational cost than mRMR and QPFS.

Regarding SFS, Table 6 shows that SFS provides a competitive error ratefor the ARR data set
with few features (around 11) but its effectiveness in the RAT data set isimproved by other feature
selection algorithms when more than 6 attributes are considered. It is noticeable the efficiency of
SFS getting acceptable accuracies using a small number of features.

ReliefF and SFS are feature selection methods which need to establish the value of some param-
eters like in QPFS. In ReliefF all instances were used (not random subsampling) and the number of
neighbors was set to 3 for all data sets, except for MNIST where 10 neighbors were considered. In
the case of the SFS algorithm, the default values (wealth= 0.5 and△ α = 0.5) were used.

3.3 Time Complexity Results

Since the previous subsection has established the effectiveness of the QPFS method, it is useful now
to compare mRMR and QPFS experimentally with respect to time complexity. As stated inTable 1
in Section 2.4, the running times of mRMR and QPFS with and without Nyström all depend linearly
on N whenM andp are fixed. In order to confirm experimentally this theoretical dependence, time
consumption as a function of the number of training examples is measured on theSRBCT data set.

Figure 10a shows the time consumed for the modified SRBCT data set, averaged over 50 runs,
as a function of the number of samples,N, for the mRMR, QPFS and QPFS+Nyström methods.

As expected, both mRMR and QPFS show a linear dependence on the numberof patterns.
For QPFS+Nystr̈om, Table 1 shows that the slope of this linear dependence is proportional tothe
sampling ratep. Over the rangep= 0.01 to p= 0.5, a decrease inp leads to a decrease in the slope
of the linear dependence onN. Therefore, although all algorithms are linearly dependent onN,
the QPFS+Nystr̈om is computationally the most efficient. The time cost advantage increases with
increasing number of training examples because the slope is greater for mRMR than for QPFS.

The next question is the impact on performance of the number of features,M. Table 1 shows
that mRMR and QPFS have quadratic and cubic dependence onM, respectively. However, the
QPFS+Nystr̈om cubic coefficient is proportional to the square of the sampling rate. When small
value ofp are sufficient, which is the typical case, the cubic terms are not dominant.

These results are illustrated in the experiments shown in Figure 10b. This figure shows the
average time cost for the SRBCT data set as a function of the problem dimension,M, for the mRMR,
QPFS, and QPFS+Nyström methods. As expected from Table 1, mRMR and QPFS empirically
show quadratic and cubic dependence on problem dimension. QPFS+Nyström shows only quadratic
dependence on problem dimension, with a decreasing coefficient for decreasingp values. In all
cases, at-test has been used to verify the order of the polynomial that best fits each curve by
least-squares fitting (Neter and Wasserman, 1974). Overall, for small Nyström sampling rates,
QPFS+Nystr̈om is computationally the most efficient.

Last but not least important, Table 1 shows there should be a quadratic dependence on sampling
rate for the QPFS+Nyström algorithm. Figure 10c shows the empirical average time cost for the
SRBCT data set as a function of the sampling ratep. As expected, there is quadratic dependence on
p and cubic dependence on the problem dimensionM.
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Data Set Method
M

10 20 40 50 100 200 400

MaxRel 27.48 24.68 21.70 20.82 20.31 21.73 -
MID 25.19 22.99 20.64 20.76 21.71 21.64 -

ARR MIQ 29.79 27.78 23.89 23.32 21.53 21.74 -
reliefF 30.64 24.48 21.54 21.34 20.90 21.66 -
QPFS 28.05 23.72 22.39 21.30 21.52 21.76 -

MaxRel 61.33 49.83 40.00 38.67 34.83 35.50 34.17
MID 53.50 41.50 36.33 34.33 32.00 32.83 33.67

NCI60 MIQ 56.50 47.50 38.83 38.17 32.83 35.50 35.17
reliefF 56.93 54.17 48.49 48.49 38.07 32.13 34.36
QPFS 46.33 36.00 33.00 29.83 29.00 34.67 35.17

MaxRel 21.58 14.33 6.36 4.51 2.19 0.24 0.13
MID 9.39 3.33 2.01 2.31 0.47 0.24 0.49

SRBCT MIQ 10.11 2.18 0.47 0.72 0.24 0.25 0.72
reliefF 6.38 4.18 1.65 1.79 0.96 0.40 0.40
QPFS 3.89 1.57 0.97 0.11 0.05 0.11 0.35

MaxRel 79.32 60.78 48.46 45.58 40.98 39.98 38.77
MID 54.26 48.45 44.16 43.38 41.38 38.26 35.50

GCM MIQ 79.32 56.48 46.64 43.96 41.80 38.46 38.05
reliefF 61.25 51.61 46.36 43.83 39.35 39.75 37.08
QPFS+Np = 0.05 65.66 54.72 46.09 44.11 39.57 38.06 35.26
MaxRel 19.95 17.32 15.40 15.16 14.34 13.54 11.97
MID 21.15 18.46 16.53 16.18 14.88 12.81 10.95

RAT MIQ 23.69 19.62 17.23 16.61 15.07 12.46 10.96
reliefF 22.16 20.40 17.44 16.45 13.68 11.43 9.85
QPFS+Np = 0.1 27.13 21.89 19.02 18.16 15.24 12.85 10.51

MaxRel 59.19 40.98 25.77 22.5 12.09 7.64 6.72
MID 53.39 29.37 19.56 17.40 11.72 7.55 6.66

MNIST MIQ 51.69 25.98 11.79 10.87 7.78 6.90 6.33
reliefF 50.91 40.20 23.81 19.56 12.31 8.47 6.86
QPFS+Np = 0.2 57.00 35.39 23.62 20.48 11.31 7.71 6.54

Table 5: Error rates for different feature selection methods and LinearSVM. The best result in each
case is marked in bold. QPFS+N indicates that the Nyström approximation is used in the
QPFS method andp represents the subsampling rate in Nyström method. In all cases, the
α parameter of QPFS is set toα̂.

4. Conclusions

This paper has presented and studied a new feature selection method for multiclass classifier learn-
ing problems. The new method, named Quadratic Programming Feature Selection(QPFS), is based
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Data Set Number of Selected Features (average)Error rate (%)

ARR 10.75±0.155 23.34±0.63

RAT 6.12±0.13 22.87±0.33

Table 6: Streamwise Feature Selection error rates.
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Figure 10: Time cost in seconds for mRMR and QPFS as a function of:(a) the number of patterns,
N; (b) the dimension,M; and (c) the sampling rate,p. QPFS+N indicates that the
Nyström approximation is used in the QPFS method.

on the optimization of a quadratic function that is reformulated in a lower-dimensional space using
the Nystr̈om approximation (QPFS+Nyström). The QPFS+Nyström method, using either Pearson
correlation coefficient or mutual information as the underlying similarity measure, is computation-
ally more efficient than the leading previous methods, mRMR and MaxRel.

With respect to classification accuracy, the QPFS method is similar to MaxRel and mRMR
when mutual information is used, and yields slightly better results if there is high redundancy. In all
experiments, mutual information yields better classification accuracy than correlation, presumably
because mutual information better captures nonlinear dependencies. Smallsampling rates in the
Nyström method still lead to reasonable approximations of exact matrix diagonalization, sharply
reducing the time complexity of QPFS. In summary, the new QPFS+Nyström method for selecting
a subset of features is a competitive and efficient filter-type feature selection algorithm for high-
dimensional classifier learning problems.
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