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Abstract

Identifying a subset of features that preserves classoitaiccuracy is a problem of growing im-
portance, because of the increasing size and dimensipoélieal-world data sets. We propose a
new feature selection method, named Quadratic Programkeature Selection (QPFS), that re-
duces the task to a quadratic optimization problem. In oim@é&mit the computational complexity
of solving the optimization problem, QPFS uses the Nystmethod for approximate matrix diag-
onalization. QPFS is thus capable of dealing with very latg& sets, for which the use of other
methods is computationally expensive. In experiments sntlll and medium data sets, the QPFS
method leads to classification accuracy similar to thatleéosuccessful techniques. For large data
sets, QPFS is superior in terms of computational efficiency.

Keywords: feature selection, quadratic programming, Ngstrmethod, large data set, high-
dimensional data

1. Introduction

The task of feature selection is to reduce the number of variables usethingdra classifier. Three
main benefits can be drawn from successful feature selection: firshstamtial gain in computa-
tional efficiency (especially important for any application that requiressdiar execution in real-
time); second, scientific discovery by determining which features are mostiated with the class
labels (which may in turn reveal unknown relationships among featumas)ifaird, reduction of the
risk of overfitting if too few training instances are available (a seriouslprolparticularly in situ-

ations with high dimensionalities relative to training set sizes). Document c&aton (Forman,

2008), prosthesis control (Momen et al., 2007; Shenoy et al., 2088)iac arrhythmia classifica-
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tion (Rodriguez et al., 2005), fMRI analysis, gene selection from micagatata (Ding and Peng,
2005; Li et al., 2004; Zhang et al., 2008), real-time identification of polgnilegitner et al., 2003),
and credit card fraud detection are some real-life domains where thieseaga especially mean-
ingful.

Many methods have been suggested to solve the variable selection proliieyncan be cat-
egorized into three groupsFilter methods perform feature selection that is independent of the
classifier (Bekkerman et al., 2003; Forman, 2003, 2008 appermethods use search techniques
to select candidate subsets of variables and evaluate their fithess Ibaskgfication accuracy
(John et al., 1994; Kohavi and John, 1997; Langley, 1994). Firaihgeddednethods incorporate
feature selection in the classifier objective function or algorithm (Breimah,eit984; Weston et al.,
2001).

Filter methods are often preferable to other selection methods becauser afstiality with
alternative classifiers, their computational speed, and their simplicity (G@@@d8; Yu and Liu,
2003). But filter algorithms often score variables separately from ethe, o they do not achieve
the goal of finding combinations of variables that give the best classificpagdformance. It has
been shown that simply combining good variables does not necessartplgadd classification
accuracy (Cover, 1974; Cover and Thomas, 1991; Jain et al., 200@yefore, one common im-
provement direction for filter algorithms is to consider dependencies amamgples. In this di-
rection approaches based on mutual information, in particular Maximalridepey (MaxDep) and
minimal-Redundancy-Maximum-Relevance (MRMR), have been significaahads (Peng et al.,
2005).

The central idea of the MaxDep approach is to find a subset of featdniek jointly have the
largest dependency on the target class. However, it is often infedsibanpute the joint density
functions of all features and of all features with the class. One aplprimamaking the MaxDep
approach practical is Maximal Relevance (MaxRel) feature selectiamg(Btal., 2005). This ap-
proach selects those features that have highest relevance (mutualdtim) to the target class.
The main limitation of MaxRel is not accounting for redundancy among featuidhe mRMR
criterion is another version of MaxDep that chooses a subset of ésatith both minimum redun-
dancy (approximated as the mean value of the mutual information betweepaiaohvariables in
the subset) and maximum relevance (estimated as the mean value of the mutoaficiobetween
each feature and the target class). Given the prohibitive cost ofdasimgy all possible subsets of
features, the mRMR algorithm selects features greedily, minimizing their redogpdvith features
chosen in previous steps and maximizing their relevance to the class.

The new method proposed in this paper aims at dealing with very large dataitbetsgh di-
mensionality providing a time complexity improvement respect to current methedshdw how
to build on well-established mathematical methods to reduce time and space comlbzityew
method is named Quadratic Programming Feature Selection (QPFS) becabssd@dn efficient
guadratic programming (Bertsekas, 1999). We introduce an objectimtidn with quadratic and
linear terms. The quadratic term captures the dependence (that is, simdariglation, or mu-
tual information) between each pair of variables, whereas the linear egtares the relationship
between each feature and the class label. For large data sets, solviagrat@quprogramming
problem can have high time and space complexity. Therefore, we showchosformulate the
optimization problem in a lower dimensional subspace using the diypstnethod for matrix diag-
onalization (Fowlkes et al., 2001). The Ny@in approximation allows the variables to be sampled,
without losing much information but with a great improvement in the speed ofigfogitam. Ex-
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perimental results show that the QPFS method achieves accuracy similar ¢ dtiaér methods
on medium-size data sets, while on the well-known large MNIST data set, QRr&ésefficient
than its predecessors.

The present manuscript is organized as follows. Section 2 presentsPth8 Glgorithm, in-
cluding the Nystbm approximation, error estimation, theoretical complexity, and implementation
issues. Section 3 provides a description of data sets, and experimenttd e terms of classifica-
tion accuracy and running time.

2. The QPFS Algorithm

Our goal is to develop a feature selection method capable of succeedingemjtlarge data sets.

To achieve this goal, our first contribution is a novel formulation of the tasle new formulation
uses quadratic programming, a methodology that has previously be@ssfuddor a broad range of
other quite different applications (Bertsekas, 1999). Assume the ctdsdining problem involves

N training samples ani variables (also called attributes or features). A quadratic programming
problem is to minimize a multivariate quadratic function subject to linear constisrftdlows:

mxin{;xTQx— FTX} . 1)

Above, x is anM-dimensional vectoiQ € RM*M js a symmetric positive semidefinite matrix, and
F is a vector inRM with non-negative entries. Applied to the feature selection t@slepresents
the similarity among variables (redundancy), &dneasures how correlated each feature is with
the target class (relevance).

After the quadratic programming optimization problem has been solved, theocemis ofx
represent the weight of each feature. Features with higher weightsetiex variables to use for
subsequent classifier training. Singerepresents the weight of each variable, it is reasonable to
enforce the following constraints:

X > Oforali=1,...,M
M

i;xi = 1.

Depending on the learning problem, the quadratic and linear terms can iffaverd relative
purposes in the objective function. Therefore, we introduce a scatanmgeten as follows:

mXin{;(l—a)xTQx—aFTx} 2)

wherex, Q andF are defined as before ande [0,1]. If a =1, only relevance is considered; the
guadratic programming problem becomes linear and equivalent to the Mexxi®@gon. On the con-
trary, if a = 0, then only independence between features is considered that isefeaith higher
weights are those which have lower similarity coefficients with the rest of festuEvery data
set has its best choice afto extract the minimum number of features for classification purposes.
Nevertheless, a reasonable choicexahust balance the linear and quadratic terms of Equation 2.
Thus, we estimate the mean valyef the elements of the matri@ and on the mean valueof the

1493



RODRIGUEZ-LUJAN, HUERTA, ELKAN AND SANTA CRUZ

elements of the vectds as

_ 1 M M

a = 3 ij »
MZE:J:l

_ 1 M

Since the relevance and redundancy terms in Equation 2 are balancedwhé)q=af, a rea-
sonable initial estimate af is

6=
q+ f

The goal of balancing both terms in the QPFS objective function, Equatiisn@ ensure that
both redundancy and relevance are taken into account. If featwembrslightly redundant, that
is, they have low correlation with each other, then the linear term in Equatiodahigant: f > q.
Making a small reduces this dominance. On the other hand, if the features have kevedjof
redundancy relative to relevanag>$¥ f), then the quadratic term in Equation 1 can dominate the
linear one. In this case, overweighting the linear teanclpse to 1) makes the objective function be
balanced.

Experimental results in Section 3 show that usinteads to good results. Alternatively, it is
possible to use a validation subset to determine an appropriate valmeHawever, that approach
requires evaluating the accuracy of the underlying classifier for eaictt im a grid ofa values.

In this case, QPFS would become a wrapper feature selection method inftediter method
because it would need the classifier accuracy to determine the properfaiu

2.1 Similarity Measures

One advantage of the problem formulation above is that it is sufficientlyrgkete permit any
symmetric similarity measure to be used. In the remainder of this paper, thePearselation
coefficient and mutual information are chosen, because they arentmmed and because they are
representative ways to measure similarity.

The Pearson correlation coefficient is simple and has been shown téebtvefin a wide va-
riety of feature selection methods, including correlation based featureisaléCFS) (Hall, 2000)
and principal component analysis (PCA) (Duda et al., 2000). FormakyP#arson correlation
coefficient is defined as

COWW,W)
var(v;)var(vj)

pPij =

wherecov is the covariance of variables awmdr is the variance of each variable. The sample
correlation is calculated as

S iy (Vi — ) (Vi — V)
\/ZE:l (Vi — Vi)2 3 kg (Vkj — Vj)?

whereN is the number of sampleg, is thek-th sample of random variabig, andyv; is the sample
mean of the random variabig

©)

fij =
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Each matrix elemeny;; is defined to be the absolute value of the Pearson correlation coefficient
of the pair of variables; andv;j, that is,qjj = |pij|. Suppose a classifier learning problem with
classes, the relevance weight of varialld, is computed using a modified correlation coefficient
(Hall, 2000) which is an extension to tkieclass classification scenario. The modified definition is

C
Z K k ’plck

whereK is the target class variabl€y is a binary variable taking the value 1 whin=k and 0
otherwise p(K = k) is the empirical prior probability of clads andpic, is the correlation between
featurev; and binary variabl€y, computed according to Equation 3.

Because the correlation coefficient only measureditiear relationship between two random
variables, it may not be suitable for some classification problems. Mutuahiatton can capture
nonlinear dependencies between variables. Formally, the mutual infornbatiemeen two random
variablesv; andv; is defined as

| (Vi; vj) //pv.,vJ )log <)"p(1))dvdvJ

Computing mutual information is based on estimating the probability distribupong p(vj) and
p(vi,vj). These distributions can be either discretized or estimated by density fumetithrods
(Duda et al., 2000). When mutual information is used, the quadratic tegmp4sl (v;,v;) and the
linear one i/ = 1 (v;,C).

QPFS using mutual information as its similarity measure resembles mRMR, but theme is
important difference. The mMRMR method selects features greedily, ast@dinof features chosen
in previous steps. In contrast, QPFS is not greedy and provides imgarififeatures that takes into
account simultaneously the mutual information between all pairs of featatetha relevance of
each feature to the class label.

2.2 Approximate Solution of the Quadratic Programming Problem

In high-dimensional domains, it is likely that the feature space is reduntfast, the symmetric
matrix Q is singular. We show now how Equation 2 can then be simplified and solvedizce f
dimension less thal, thus reducing the computational cost.

Given the diagonalizatio® = UAUT in decreasing order of eigenvalues, Equation 2 is equiva-
lentto

(1
mxln{z(l—a)xTU/\UTx—O(FTx} . (4)

If the rank ofQ is k < M, then the diagonalizatio = UAUT can be written aQ = UAUT,
whereA is a diagonal square matrix consisting of the higtkesigenvalues oQ in decreasing order
andU is aM x k matrix consisting of the firdt eigenvectors of. Then, Equation 4 can be rewritten
as

mxin{;(l— a)X"UAUTx— GFTX} :
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Lety = UTx be a vector ifR¥. The optimization problem is reduced to minimizing a derived
guadratic function in &-dimensional space:

min {;(1 —a)y Ay — O(FTU_y}

underM + 1 constraints:

Uy

v
ol

Mk_
E;}Eu”yj = 1
i=1j=1

We can approximate the original vectoasx ~ Uy.

The matrixQ is seldom precisely singular for real world data sets. How&egn normally be
reasonably approximated by a low-rank matrix formed from?ieigenvectors whose eigenvalues
are greater than a fixed threshdd> 0 (Fine et al., 2001). More precisely, [&t=UTUT be the
k-rank approximation of, wherel ¢ RM*M is a diagonal matrix consisting of ttﬁehighest eigen-
values ofQ and the rest of diagonal entries are zero. Then, the approximateatjegaogramming
problem is formulated as

mxin{;(lo()xTUFUTxaFTx} :
Equivalently,
1 T T
myln é(1—0()y Ny—aF'Uy (5)

wherey = UTxe RR, I e Rk<kjs a diagonal matrix with the nonzero eigenvalueg ahdU RMxk
the firstk eigenvectors o). TheM + 1 constraints of the optimization problem are defined as

~ —

Uy > 0
Mk
Zzﬂijyj = 1.
i=1j=1

Given the solutions* of Equation 2 andk* of Equation 5, the error of the approximation can
be estimated using the following theorem.

Theorem 1 (Fine etal., 2001) Give ak-rank approximation of Q, ifQ— (5) is positive semidef-
inite and t{Q — Q) < € then the optimal value of the original problem is larger than the optimal
objective value of the perturbed problem and their difference is bounged b

o B« i

(%) <g(x) < g(X) + —- (6)
where | is the number of active constraints in the perturbed problem andd igoper bound for
the coefficients of the original solution.
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N In our case, X x; < 1 andd = 1. The matrix(Q — Q) is positive semidefinite sincéQ —
Q =UNA-NUuT and(A —T) is a diagonal matrix with positive eigenvalues upper boundeal by
Moreovere < (M —Kk)dandl <M +1, so

o e 1M =K)3 _ (M+1)(M—k)3
o) —g(r) < [ M0 L MEDIMZIRD_,
whereg(x) andd(x) are defined as
gx) = %(1— a)x" Qx—aF Tx for x e RM (7)
gx) = %(1—a)fox—aFTfoorxeRﬁ. (8)

Although the quadratic programming formulation of the feature selection proldeslegant
and provides insight, the formulation by itself does not significantly redueedamputational com-
plexity of feature selection. Thus we introduce the idea of applying a Blysapproximation to
take advantage of the redundancy that typically makes the n@taitnost singular. When this is
true, the rank of is much smaller thaM and the Nysidim method can approximate eigenvalues
and eigenvectors d by solving a smaller eigenproblem using only a subset of rows and columns
of Q (Fowlkes et al., 2001). Suppose that M is the rank ofQ which is represented as

A B
(6

whereA € Rk B e R<M-K) £ ¢ RIM-K*x(M-K) " and the rows ofA B] are independent. Then,
the eigenvalues and eigenvectorstan be calculated exactly from the submaiiB| and the
diagonalization of. Let S= A+ A~2BBTA~3 and its diagonalizatio§ = RER then, the highest
k eigenvalues of) are given by\ = 5 and its associated eigenvecttrsre calculated as,

0~ (g ) ire .

The application of the Nysbm method entails some practical issues. First, a prior knowledge
of the rankk of Q is, in general, unfeasible and it is necessary to estimate the number ofrglésa
r to be used in the Nysim approximation. Second, theows of [A B] should be, ideally, linearly
independent. If the rank dD is greater tham or the rows of[A B] are not linearly independent,
an approximation of the diagonalization@fis obtained whose error can be quantified, in general,
as||E — BTA1B|. Although the Nystbm approximation is not error-free, if the redundancy of the
feature space is large enough, then good approximations can be acligghown in the following
sections.

When QPFS+Nystim is used, the rule for setting the value of thparameter is slightly differ-
ent. In this case, only the tHA B] submatrix ofQ is known, and it is necessary to use the Ngstr
approximatiorQ of the original matrixQ,

A - A B
Q: (qu) = <BT BTAlB> .
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Therefore, the mean value &fis computed as

_ll\/IM

4= ZZ Gij -

The mean valud of the vectorF is still calculated using Equation 3, since QPFS+Nystmeeds
to know all coordinates df. To sum up, the value af for the QPFS+Nystim method is

o

d:q+f' 9)

The algorithm QPFS+Nys<im has two levels of approximation.

1. The first level is to approximate the eigenvalues and eigenvectors ofitfiral matrix Q
based on only a subset of rows, applying the Nystmethod: Q = UAUT. One of the
critical issues with the Nysbm method is how to choose the subset of rows to use (Fowlkes
et al., 2001). Ideally, the number of linearly independent rowj@\d8| should be the rank of
Q. We use uniform sampling without replacement. This technique has begsuwssessfully
in other applications (Fowlkes et al., 2001; Williams and Seeger, 2001)edxer, theoretical
performance bounds for the Ny&in method with uniform sampling without replacement are
known (Kumar et al., 2009). In particular, we use the following theorem.

Theorem 2 (Kumar et al., 2009) Let @ RM*M pe a symmetric positive semidefinite Gram
(or kernel) matrix. Assume that r columns of Q are sampled uniformlgrdom without
replacement (> k), let Q be the rank-k Nysérm approximation to Q, and l&p the best
rank-k approximation to Q. Fog > 0, ifr > %k, then

Bpoliid

wherey;cp() Qi is the sum of the largest r diagonal entries of Q dhd|r represents the
Frobenius norm

E[IQ-Qlr] <IQ-Qllr +¢

As (Q—Q) is a real symmetric positive semidefinite matrix, it is easy to prove [{Qat

Qllr < trace(Q-Q).
Equation 10 shows that the error in the Ngstrapproximation decreases with the number of
sampled rows:,.

2. The second level of approximation is to solve the quadratic programmaigiepn using
the Nystdbm approximation. As stated in Section 2.2, only eigenvalues higher thanda fixe
thresholdd > 0 are considered in the rank of matéx Then, these tol@ eigenvalues of matrix

Q are taken to make up a diagonal mathoc RFK and letd € RM*K the matrix consisting
of the eigenvectors associated®to Therefore, the QPFS+Nysim method approximate3
by Q U/\UT and the quadratic programming problem is defined as,

ax) = %(1— a)x" Ax— aFTOx for x € R¥
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and letX* be its optimal solution, and(x) andd(x) be as described in Equations 7 and 8,
respectively. The best rarfkapproximation toQ is Q = UrUT as given in Section 2.2.
A bound on the total error in the QPFS+Nystr approximation is obtained following the
reasoning in Fine et al. (2001):

Efo0) - §%)] < E[o®) -6

< Sa-aE[E)(e-0) ()
2E (1o Gl I ]
< SM+DE[|Q-Glk] -

Applying the bound for the Nysbm method with uniform sampling without replacement
(Equation 10) and the inequaliyQ — Q||r < trace(Q— Q) < (M —k)3 yields

(*.3.0)sa]
(72,2 ]

The total error is the sum of the errgrobtained from the approximation of the quadratic
programming problem in a subspace (Equation 6) and the error due to stiéiNynmethod.

IN

%) < %(M+1) (M—Kk)d+¢

y+§(M+1)

IN

2.3 Summary of the QPFS+Nystém Method

Figure 1 shows a diagram of the proposed feature selection method, ganidbe summarized as

follows:

1. Compute thé& vector representing the dependence of each variable with the class.

2. Choose rows ofQ according to some criterion (typically, uniform sampling without replace-
ment). Arrange th€ matrix so that theserows are the first ones. Define tfe B] matrix to
be the firstr rows of Q.

3. Set the value of the parameter according to Equation 9.

4. Apply the Nystdém method knowindA BJ. Obtain an approximation of the eigenvalues and
eigenvectors o, Q=UAUT.

5. Formulate the quadratic programming (QP) problem in the lower dimensipaaéé =
OAGT

6. Solve the QP in the subspace to obtain the solution vgctor

7. Return to the original space we= ljy.

8. Rank the variables according to the coefficients of vector case of equal coefficients, rank

them by decreasing relevangeto the class.
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— 3| Nystrém > Reduction to > QPQ N
[AB] method O =UAOT lower-dimensional space 0= UAur min 3(1 — a)y"Ay —aF"Uy
Y
Features | Getting back to
ranking | A~ f]l/ original space

Figure 1: Diagram of the QPFS algorithm using the Ngstrmethod. [A B] is the upper x M
submatrix ofQ.

2.4 Complexity Analysis

As already mentioned, the mMRMR method is one of the most successful gevaihods for feature
selection. The main advantage of the QPFS+Nystmethod versus mMRMR is the time complexity
reduction. The time complexities of mMRMR and QPFS both have two componentsnéeeeded

to compute the matrice® andF (Similarity), and the time needed to perform variable ranking
(Rank) The computational cost of evaluating correlations or mutual informatiomlforariable
pairs isO(NM?) for both mRMR and QPFS. Table 1 shows the time complexities of the three algo-
rithms mRMR, QPFS and QPFS+Nyd&tn.

mMRMR QPFS QPFS+Nystiom
Similarity | Rank | Similarity | Rank | Similarity Rank
Mlarge 2 2 2 3 2 2Mm 3
O(NM oM O(NM oM O(N pM O(pM
N py | O(NM?) [ OM?) | O(NM?) | O(M?) || O(NPM?) | O(p*M?)
M medium ) X X s ) -
O(NM oM O(NM oM O(NpM O(pM
N> py | O(NM?) [ O(M?) | O(NM?) | O(M?) || O(NPM?) | O(p?M?)
M small
N> M O(NM?) | O(M?) | O(NM?2) | O(M3) | O(NpM?) | O(p>M3)

Table 1. Time complexity of algorithms as a function of training set Kizeumber of variableM,
and Nystbm sampling ratg. The predominant cost term is indicated in boldface.

The order-of-magnitude time complexity of QPFS is greater than or similar to tmaRMR.
However, the QPFS+Nystm time complexity is lower foN > pM andN > M. WhenN < pM,
QPFS+Nysiibm is faster than mRMR ip?M3 < NM?, that is, wherN > p’M. For example, if
p = 102 then QPFS+Nystim is more efficient than mRMR K >> 10-M, that is, if the size of
the training set is greater than *times the number of variables.
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2.5 Implementation

We implemented QPFS and mRMR in C usibgPACK for matrix operations (Anderson et al.,
1990). Quadratic optimization is performed by the Goldfarb and Idnanrigtgo implemented in
Fortran and used in the uadprogpackage (Goldfarb and Idnani, 1983; Turlach and Weingessel,
2000).

As mentioned in Section 2.1, in general mutual information computation requstiesating
density functions for continuous variables. For simplicity, each variablesgeatized in three seg-
ments(—co, u— oJ, (L— 0, + 0], and(p+ 0, +), wherep is the sample mean of training data and
o its standard deviation. The linear SVM provided by thBSVMpackage (Chang and Lin, 2001)
was the underlying classifier in all experiments. A linear kernel is useddiaceethe number of
SVM parameters, thus making meaningful results easier to obtain. Note thaRnaRWMQPFS can
be used with any classifier learning algorithms. We expect results obtaitteingar SVMs to be
representative.

3. Experiments

The aim of the experiments described here is twofold: first, to compareifdasen accuracy
achieved using mRMR versus QPFS; and second, to compare their comltatisin

3.1 Experimental Design

The data sets used for experiments are shown in Table 2. These dateesetshasen because
they are representative of multiple types of classification problems. witlecespthe number of
samples, the number of features, and the achievable classification@ccMi@eover, these data
sets have been used in other research on the feature selection tasit @y&009; Lauer et al.,
2007; Lecun et al., 1998; Li et al., 2004; Peng et al., 2005; Zhanly, &008; Zhu et al., 2008).

In order to estimate classification accuracy, for the ARR, NCI60, SRBRITGCM data sets
10-fold cross-validation (10CV) and 100 runs were used (Duda €2@00). Mean error rates are
comparable to the results reported in Li et al. (2004), Peng et al. (20b&hg et al. (2008) and Zhu
et al. (2008). In the case of the RAT data set, 120 training samples (éédsfprand 300 runs were
used, following Hua et al. (2009). The MNIST data set is divided into iingimand testing subsets
as proposed by Chang and Lin (2001), with 60000 and 10000 pattespeatively. Therefore,
cross-validation is not done with MNIST.

Time complexity is measured as a function of training set di¥e dimensionality i), and
the Nystbm sampling rated = %). In all cases, times are averages over 50 runs. In order to

measure time complexity as a function of training set size, the number of SRE@pées was
artificially increased 4 timed\(= 332) and dimensionality reduced = 140. Time complexity
as a function of dimensionality was measured using the original SRBCT datthakis, with
N =83 andM = 2308.

As mentioned above, MaxRel, nRMR and QPFS are all filter methods that eeedeavith any
classifier. Figure 2 shows that the choice of the SVM regularization paeamédoes not influence
the comparison between mRMR and QPFS. This figure displays the perfceroAmRMR and
QPFS for the ARR data set and differentalues. Our goal is not to determine the optiroaklue
for each data set, but to compare mRMR and QPFS. Theref@eet to 10 in all experiments.
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Data Set N M C Baseline References

Error Rate
ARR 422 278 | 2 21.81% | (Peng etal., 2005; Zhang et al., 2008)
NCI6O | 60 | 1123| 9 | 38.67% Eé‘hitg'éfoggaéhang etal., 2008)
SRBCT | 83 | 2308 | 4 | 022% | (Lietal, 2004; Zhu etal., 2008)
GCM 198 | 16063| 14| 33.85% Eé‘hitg'éfoggééha”g etal., 2008)
RAT 181 | 8460 | 2 8.61% (Hua et al., 2009)

MNIST | 60000| 780 | 10 6.02% (Lauer et al., 2007; Lecun et al., 1998)

Table 2: Description of the data sets used in experimehtds the number of exampled] is
the number of variables, ar@ is the number of classes. Baseline error rate is the rate

obtained taking into account all variables. The last column cites papers Weedata sets
have been mentioned.

I
a1

—mRMR ¢=0.01
40} ---QPFS MI alpha=0.412 c=0.p1
i —mRMR ¢=1.0
&35 ---QPFS MI alpha=0.412 c=1.{
g ] —mRMR ¢=10.0
@ 30 \ it hase NS ---QPFS MI alpha=0.412 c=10.0
E i \‘—\ Tem~_L- S LMD S Saa e, W
o o5\ AT -
N ;_\v L , "
20 g
15 | | | | |
0 50 100 150 200 250

Number of features

Figure 2: Classification error as a function of the number of featureth®ARR data set and
different regularization parameter valuei linear SVM. The figure shows that far=
0.01, the SVM is too regularized. The effect whesa: 10.0 is the opposite and the SVM
overfits the training data. A value of= 1.0 is a good tradeoff.

The value of thex parameter chosen for each data set is shown in Table 3. This value issabtain
according to Equations 3 and 9. Our hypothesis is that high values# better for data sets with
high redundancy among variables. On the other hand, if there is lowdadaynthen smatk should
yield better results. The Ny$tm sampling rate is chosen as large as possible while still yielding
a reasonable running time, since larger values reduce error in thexapption of theQ matrix.
Other values of the parametery € {0.0,0.1,0.3,0.5,0.7,0.9}, were considered in all experiments
in order to verify that the proposed method of setiingrovides good results.

1502



QUADRATIC PROGRAMMING FEATURE SELECTION

Data Set p q f a

ARR (cor) - Q0889 00958 0481
NCI60 (cor) - 0267 Q165 0618
ARR (M) - 0.0106 00152 0411
NCI60 (M) - 0.0703 0253 0217
SRBCT(MI) - 00188 00861 0179
GCM (MI) 0.05 00284 0158 Q152
RAT (M) 0.1 00346 00187 0649
MNIST (MI) - 0.0454 00515 0469

Table 3: Values of the parameter for each data set. Correlation (cor) and mutual information (MI)
were used as similarity measures for ARR and NCI60 data sets. Only mutorathatfon
was used for SRBCT, GCM, RAT and MNIST data sqtds the subsampling rate in the
Nystrom method g is the mean value of the elements of the ma@ixsimilarity among
each pair of features), arfdis the mean value of the elements of therector (similarity
of each feature with the target class). For the MNIST data set only nonatues have
been considered for the statistics due to the high level of sparsity of itgéeg@078%
sparsity in average).

3.2 Classification Accuracy Results

The aim of the experiments described in this section is to compare classificetiaraey achieved
with mRMR and with QPFS, with and without Ny&m approximation. The MaxRel algorithm
(Peng et al., 2005) is also included in the comparison. Two similarity measouésal information
(MI) and correlation are considered. Classification error is measwedfianction of the number
of features. We also give results from a baseline method that doeswmas®lection of features, in
order to determine the absolute advantage of using any feature selectiadmeth

Figure 3 shows the average classification error rate for the ARR dates sefunction of the
number of features. In Figure 3a, correlation is the similarity measure whileamaformation
(MI) is applied for Figure 3b. In both cases, the best accuracy is @gtamth a = 0.5, which
means that an equal tradeoff between relevance and redundaney. islbeever, accuracies using
the values ofi specified by our heuristic are similar.

Better accuracy is obtained when Ml is used, in which case (Figure 3l®rtbe rate curve
for a = 0.5 is similar to that obtained with mRMR. The random selection method vyields results
significantly worse than those obtained with other algorithms. Comparison witm#ifsod shows
that the other methods provide a significant benefit up to about 150deatur

For the NCI60 data set (Figure 4), the best accuracy is obtained whelalmformation is used
(Figure 4b) andh is set to 0217 according to Table 3. In this case, the accuracy of QPFS is slightly
better than the accuracy of mMRMR. The valuenoflose to zero indicates that it is appropriate to
give more weight to the quadratic term in QPFS. When correlation is usedré~#), the best
accuracy is obtained whenis set according to Equation 3.

Generally, MI as similarity measure leads to better accuracy than correldtios.finding is
reasonable given that Ml can capture nonlinear relationships betveembles. Ml is used in the
experiments described in the remainder of this section.
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Figure 3: Classification error as a function of the number of featureth®oARR data set.(a)
QPFS results using correlation as similarity measure with differematues.(b) MaxRel,

MRMR and QPFS results using mutual information as similarity measure and differe
values ofa for QPFS.

Average error rate for the SRBCT data set and different samplingaat@$unction of the num-
ber of features is shown in Figure 5. Results for the bestlue in the grid0,0.1,0.3,0.5,0.7,0.9},
a = 0.1, and the estimatedl = 0.179 are shown in Figure 5a. Accuracies for bothalues are sim-
ilar. The fact that a low value df is best indicates low redundancy among variables compared
to their relevance with the target class. QPFS classification accuracy is dionitaat of mMRMR.
As shown in Figure 5b, when the QPFS+Nsir method is used, the higher the parametethe

closer the Nystim approximation is to complete diagonalization. QPFS+Nystgives classifica-
tion accuracy similar to that of QPFS when> 0.1.

Figure 6 shows error rates for the GCM data set using the algorithms MaxiRMR, and
QPFS+Nystm with a = 0.1 andd = 0.152. When the number of features is over 60, accuracy
achieved with QPFS+Nygim is better than with mRMR. A sampling rate of 3% is adequate for
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Figure 4: Classification error as a function of number of features folNB&0 data set. (a)
QPFS results using correlation as similarity measure with differematues.(b) MaxRel,

MRMR and QPFS results using mutual information as similarity measure and differe
values ofa for QPFS.

this data set, which represents a major time complexity reduction given a fegiace of 16063
variables.

Another data set with many features is the RAT data set, for which Figurewsstesults. In
this case, QPFS+Ny&tm gives classification accuracy similar to that of mMRMR when the subset
size is over 80 and the sampling rate is 10%. Given the good performatize iaxRel algorithm
for this data set, it is not surprising that a lamgealuea = 0.9 or @ = 0.649 is best, considering
also that QPFS witlx = 1.0 is equivalent to MaxRel.

The MNIST data set has a high number of training examples. Results fershawn in Figure 8
for the QPFS witha = 0.3, the estimatiordt = 0.469 and the QPFS+Nys#im with & and p €
{0.1,0.2,0.5}. Our C code of mMRMR is used instead of the code on the mRMR web site (Peng
et al., 2005) which takes a long time to read the training file. The error ratallf@gorithms
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Figure 5: Error rates using MaxRel, mMRMR and QPFS+Nystmethods, with mutual information
as similarity measure for the SRBCT data set.

reaches a minimum when about 350 features are selected. This is ngrigisgrfact: analyzing
the sparsity of the MNIST features, approximately 400 of them have adésglarsity higher than
70%. But if the feature space needs a greater reduction, significéeredites appears between the
studied methods as shown in Figure 8. MRMR and QPFSwitt0.469 have similiar performance
and close to the best results obtained by QPFSavith0.3. For this data set, the number of samples
is much greater than the number of featubsy> M, and therefore , the time complexity of mMRMR
and QPFS is the sam®(NM?)). When QPFS+Nystim is applied withp = 0.2, the error rate is
competitive and the MNIST provides an example of the ability of QPFS+Nysto handle large
data sets reducing the computational cost of mMRMR and QPFS by a factoNoté&that the error
rates shown for the MNIST data set are obtained using a linear kernelratial basis function
kernel for SVM classifiers is known to lead to lower error rates for theMWIST data set, but the
choice of kernel is an issue separate from feature selection, whichfisalr of this paper.
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Figure 6: Error rates using MaxRel, nRMR and QPFS+Nyatmethods, with mutual information
as similarity measure for the GCM data set.
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Figure 7: Error rates using MaxRel, mnRMR and QPFS+Nyatmethods, with mutual information
as similarity measure for the RAT data set.

Figure 9 shows a grid of 780 pixels arrayed in the same way as the imageshiNiisg” data
sets. A pixel is black if it corresponds to one of the top 100 (Figure 9 B&0 (Figure 9b) selected
features, and white otherwise. Black pixels are more dense towards thke midde grid, because
that is where the most informative features are. Pixels sometimes appeataokamite/black
checkerboard pattern, because neighboring pixels tend to make eaclesthndant.

Table 4 evaluates the statistical significance of error rate differencmsedeh data set, 100
classifiers were trained using the stated nunidesf selected features. The 100 classifiers arise
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Figure 8: Error rates using MaxRel, mMRMR and QPFS+Nystmethods, with mutual information
as similarity measure for the MNIST data set.

(a) (b)

Figure 9: First(a) 100 and(b) 350 features selected by QPFS+Ngstr (G = 0.469 andp = 0.5)
for the MNIST data set (black pixels).

from 10 repetitions of 10-fold cross-validation, so whidhfeatures are used may be different for
each classifier. The one-tailed paired t-test for equal means is appliegltiodlsets of error rates,
one set for MRMR and one set for QPFS. The test is one-tailed becauselkiypothesis is that
the mRMR method is as good or better than the QPFS method. The test is paiseddboth

methods were applied to the same 100 data set versions. Results of the tgistarin the row
labeledsignificant?
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For the NCI60 and SRBCT data sets, the best result is obtained when IQRBBE&d and it is
statistically significantly better than mRMR. When 200 to 400 variables are arsidmRMR
and QPFS are not statistically significantly different but the accuracytiasigood as in the case
of 100 features, probably due to overfitting. In the case of the GCM ddtdhe mMRMR method
is statistically significantly better when fewer than 50 variables are considéir¢he number of
features is over 100, the accuracy with QPFS is significantly better than wiMRn&nd the best
performance is obtained in this case. For the ARR data set, mMRMR is statisticalficsigtly better
than QPFS if fewer than 10 features are considered but the errorbi@i@ed can be improved if
more features are taken into account. When more than 50 featues atedédlse two methods are
not statistically significantly different. The RAT data set behavior is quite simildren fewer than
100 features are used, the mRMR algorithm is satatistically better than QRFSe lewuror rate can
be reduced adding more features. The two algorithms are not statisticalifycsigtly different in
the other cases, except if more than 400 features are involved in whsehQRaFS is statistically
significantly better than mRMR. Note that the error rates shown for QPFS8haatned with the
proposed estimation a@. In some cases, as shown in Figures 3 to 7, ¢hislue is not the best
choice.

Beyond simple binary statistical significance, Table 4 indicates that the QP#®Sdhris statis-
tically significantly better when the value afis small. A possible explanation for this finding is
the following. Whend is small, features are highly correlated with the latfel ). The mMRMR
method is greedy, and only takes into account redundancy among featleeted in previous iter-
ations. When features are highly correlated with the label, then mMRMR sededtsds with high
relevance and mostly ignores redundancy. In contrast, QPFS evadllatasables simultaneously,
and always balances relevance and redundancy.

3.2.1 GOMPARISON WITHOTHER FEATURE SELECTION METHODS

The experiments of this work are focused in comparing QPFS with the gféthtype method
MRMR (difference form, named MID) which also takes into account thereiffee between redun-
dancy and relevance. Nevertheless, other feature selection methegemadent of the classifier
have been considered in the described experiments:

e MRMR (quotient form, named MIQ) (Ding and Peng, 2005). While in mMRMR (MID form)
the difference between the estimation of redundancy and relevancesisiemd, in the case
of mMRMR (MIQ form) the quotient of both approximations is calculated.

e reliefF (Robnik-éikonja and Kononenko, 2003). The main idea of ReliefF is to evaluate the
quality of a feature according to how well it distinguishes between instaheg¢sare near
to each other. This algorithm is efficient in problems with strong dependehetveen
attributes.

e Streamwise Feature Selection (SFZhou et al., 2006). SFS selects a feature ifltbaefit
of adding it to the model is greater than the increase in the model complexityalgorthm
scales well to large feature sets and considers features sequentialydition to a model
making unnecessary to know all the features in advance.

Average error rates for MaxRel, mRMR (MID), mRMR (MIQ), reliefF aQ@FS using linear
SVM (c = 1.0) and different number of features are shown in Table 5. Table 6stimerror rate
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M
10 50 100 200 400

RAT
mMRMR 2115+0.31| 16.18+0.27 | 1488+0.24 | 1281+0.25 | 10.95+0.23
QPFSG =0.65 | 27.13+0.33 | 1816+0.29 | 1524+0.27 | 1285+0.26 | 10.51+0.21
significant? no no no no yes
p value 1.00 1.00 0.89 0.56 1.7 x 1072

ARR
MRMR 2519+£0.65 | 20.76+0.63 | 21.71+0.61 | 21.64+0.61 -

QPFSG =0.41 | 28054+0.65 | 21.30+0.65 | 21.52+0.65 | 21.76+0.58 -
significant? no no no no -
p value 1.00 0.96 0.69 0.39 -

NCI60
mMRMR 5350+£2.17 | 3433+1.74 | 3200+£1.93 | 3283+ 1.84 | 3364+1.80

QPFSG =0.22 | 46.33+2.19 | 29.83+1.68 | 29.00+1.83 | 3467+1.81 | 3517+£1.95

significant? yes yes yes no no
p value 16x10°2 | 75x10% | 3.3x107? 0.95 0.96
SRBCT
mMRMR 9.38+1.06 | 231+0.51 | 047+0.23 | 0.244+0.17 | 0.49+0.30
QPFSa =0.18 | 3.89+0.75 | 0.11+0.11 | 0.05+0.11 | 0.11+0.11 | 0.35+0.25
significant? yes yes yes no no
p value 54x10°° 5.6x10°° 2.3x107? 0.27 0.36
GCM

MRMR 54.26+1.19 | 43.38+1.18 | 41.38+1.08 | 38.26+1.06 | 3850+ 1.10
QPFSG =0.15 | 65.66+1.03 | 4411+1.11 | 39.57+1.24 | 38.06+1.16 | 3523+ 1.17

significant? no no yes no yes
p value 1.00 0.81 0.037 0.40 1.42x 1074

Table 4: Average error rates using the mRMR and QPFS methods, foifielasbased o fea-
tures. The parametér of the QPFS method is indicated; rows are ordered according to
this value. The Nystim approximation was used for the GCM and RAT data sets.

and the average number of features selected by Streamwise FeatutéoSel8ES was applied
to the binary data sets ARR and RAT and was used only as a feature seleetibod (a feature
generation step was not included).

Table 5 shows that for ARR, NCI160, SRBCT and GCM data sets, the élester is mMRMR or
QPFS. A statistical study of the performance of both methods is given in Zabiethe case of the
RAT data set, the best methods are MaxRel and reliefF. The fact thaeghedsults are obtained
with methods which only consider relevance with the target class fits in with tigsimof Figure 7.
Finally, for the MNIST data set the best choice is the mRMR (MIQ) algorithmveltbeless, the
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performance of MIQ in some data sets is not competitive (see, for instdre&RR and NCI60
results). The accuracy of QPFS+Nysir (p = 0.2) is good if a high enough number of features is
used, and it has lower computational cost than mRMR and QPFS.

Regarding SFS, Table 6 shows that SFS provides a competitive errdordte ARR data set
with few features (around 11) but its effectiveness in the RAT data $mipioved by other feature
selection algorithms when more than 6 attributes are considered. It is ndéickatefficiency of
SFS getting acceptable accuracies using a small number of features.

ReliefF and SFS are feature selection methods which need to establish tnefvedme param-
eters like in QPFS. In ReliefF all instances were used (not randomrsiptiag) and the number of
neighbors was set to 3 for all data sets, except for MNIST where itfibers were considered. In
the case of the SFS algorithm, the default values (wealttb anda a = 0.5) were used.

3.3 Time Complexity Results

Since the previous subsection has established the effectiveness ¢tR%erethod, it is useful now
to compare mMRMR and QPFS experimentally with respect to time complexity. As stafadlanl
in Section 2.4, the running times of MRMR and QPFS with and without Rgsall depend linearly
onN whenM andp are fixed. In order to confirm experimentally this theoretical dependdinoe
consumption as a function of the number of training examples is measured SRBET data set.

Figure 10a shows the time consumed for the modified SRBCT data set, averages0 runs,
as a function of the number of samplék,for the mRMR, QPFS and QPFS+Ny@tn methods.

As expected, both mRMR and QPFS show a linear dependence on the nofvgadterns.
For QPFS+Nystim, Table 1 shows that the slope of this linear dependence is proportiotie to
sampling ratep. Over the rang® = 0.01 top = 0.5, a decrease ip leads to a decrease in the slope
of the linear dependence ot Therefore, although all algorithms are linearly dependeniNon
the QPFS+Nystim is computationally the most efficient. The time cost advantage increases with
increasing number of training examples because the slope is greater foRrttiRM for QPFS.

The next question is the impact on performance of the number of feaMre$able 1 shows
that mMRMR and QPFS have quadratic and cubic dependend#, aespectively. However, the
QPFS+Nystbm cubic coefficient is proportional to the square of the sampling rate. n\ghmall
value of p are sufficient, which is the typical case, the cubic terms are not dominant.

These results are illustrated in the experiments shown in Figure 10b. Thie 8gows the
average time cost for the SRBCT data set as a function of the problem damgwis for the mRMR,
QPFS, and QPFS+Nys#im methods. As expected from Table 1, mMRMR and QPFS empirically
show quadratic and cubic dependence on problem dimension. QPF8siNwhows only quadratic
dependence on problem dimension, with a decreasing coefficient ¢oeaengp values. In all
cases, d-test has been used to verify the order of the polynomial that best fits @age by
least-squares fitting (Neter and Wasserman, 1974). Overall, for smattdy sampling rates,
QPFS+Nystbm is computationally the most efficient.

Last but not least important, Table 1 shows there should be a quadnaéndEnce on sampling
rate for the QPFS+Nygim algorithm. Figure 10c shows the empirical average time cost for the
SRBCT data set as a function of the sampling @t&s expected, there is quadratic dependence on
p and cubic dependence on the problem dimenkion
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M
Data Set) Method 10 | 20 | 40 | 50 | 100 | 200 | 400
MaxRel 2748 | 2468 | 21.70 | 2082 | 2031 | 2173 | -
MID 2519 | 2299 | 2064 | 2076 | 2171 | 21.64 | -
ARR | MIQ 2979 | 27.78 | 2389 | 2332 | 2153 | 2174 | -
reliefF 3064 | 2448 | 2154 | 2134 | 2090 | 21.66 | -
QPFS 2805 | 2372 | 2239 | 2130 | 2152 | 2176 | -
MaxRel 6133 | 4983 | 4000 | 3867 | 3483 | 3550 | 3417
MID 5350 | 4150 | 36.33 | 3433 | 3200 | 3283 | 3367
NCI60 | MIQ 5650 | 4750 | 3883 | 3817 | 3283 | 3550 | 3517
reliefF 5693 | 5417 | 4849 | 4849 | 3807 | 3213 | 34.36
QPFS 4633 | 3600 | 3300 | 20.83 | 2900 | 3467 | 3517
MaxRel 2158 | 1433 | 636 | 451 | 210 | 024 | 013
MID 939 | 333 | 201 | 231 | 047 | 024 | 049
SRBCT | MIQ 1011 | 218 | 047 | 072 | 024 | 025 | 0.72
reliefF 6.38 | 418 | 1.65 | 1.79 | 0.96 | 0.40 | 0.40
QPFS 389 | 157 | 097 | 011 | 005 | 011 | 0.35
MaxRel 7932 | 60.78 | 4846 | 4558 | 40.98 | 39.98 | 38.77
MID 5426 | 4845 | 4416 | 4338 | 4138 | 3826 | 3550
GCM | MIQ 7932 | 5648 | 4664 | 43.96 | 4180 | 3846 | 3805
reliefF 6125 | 5161 | 4636 | 4383 | 39.35 | 39.75 | 37.08
QPFS+Np = 0.05 | 6566 | 5472 | 4609 | 4411 | 3957 | 3806 | 35.26
MaxRel 10.05 | 17.32 | 1540 | 1516 | 1434 | 1354 | 11.97
MID 2115 | 1846 | 1653 | 16.18 | 1488 | 1281 | 10.95
RAT | MIQ 2369 | 1962 | 17.23 | 1661 | 1507 | 1246 | 1096
reliefF 2216 | 2040 | 17.44 | 1645 | 1368 | 1143 | 9.85
QPFS+Np=0.1 | 2713 | 2189 | 1902 | 1816 | 1524 | 1285 | 1051
MaxRel 5910 | 4098 | 2577 | 225 | 1209 7.64 | 6.72
MID 5339 | 2937 | 1956 | 17.40 | 11.72 | 7.55 | 6.66
MNIST | MIQ 5169 | 2598 | 1179 | 1087 | 7.78 | 6.90 | 6.33
reliefF 5091 | 4020 | 2381 | 1956 | 1231 | 8.47 | 6.86
QPFS+Np—0.2 | 57.00 | 3539 | 2362 | 2048 | 11.31 | 7.71 | 654

Table 5: Error rates for different feature selection methods and LBékt. The best result in each
case is marked in bold. QPFS+N indicates that the Nyst@pproximation is used in the
QPFS method ang represents the subsampling rate in Ngstrmethod. In all cases, the
o parameter of QPFS is setdo

4. Conclusions

This paper has presented and studied a new feature selection methodtidasuiclassifier learn-
ing problems. The new method, named Quadratic Programming Feature Se(@&ie8), is based
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Data Set| Number of Selected Features (averag&rror rate (%)
ARR 10.75+0.155 23.344+0.63
RAT 6.12+0.13 22.87+0.33

Table 6: Streamwise Feature Selection error rates.
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Figure 10: Time cost in seconds for mMRMR and QPFS as a functigiajpthe number of patterns,
N; (b) the dimensionM; and (c) the sampling ratep. QPFS+N indicates that the
Nystrom approximation is used in the QPFS method.

on the optimization of a quadratic function that is reformulated in a lower-dimeakspace using
the Nystbm approximation (QPFS+Nys$itm). The QPFS+Nystm method, using either Pearson
correlation coefficient or mutual information as the underlying similarity meassicomputation-
ally more efficient than the leading previous methods, mMRMR and MaxRel.

With respect to classification accuracy, the QPFS method is similar to MaxRein&MR
when mutual information is used, and yields slightly better results if there is bdyindancy. In all
experiments, mutual information yields better classification accuracy thaglation, presumably
because mutual information better captures nonlinear dependencies. samaling rates in the
Nystrdom method still lead to reasonable approximations of exact matrix diagonalizatiarply
reducing the time complexity of QPFS. In summary, the new QPFS+diyatnethod for selecting
a subset of features is a competitive and efficient filter-type featuretmelealgorithm for high-
dimensional classifier learning problems.
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