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SUMMARY 

 To cope with growth under Pi starvation conditions, plants have evolved a series of 

morphological and biochemical adaptations aimed to survive at best the stress situation. Pi 

starvation signaling mechanism in plants has been widely studied in the past two decades. 

However, there were some gaps in the knowledge of this pathway; for instance, on the 

mechanism of regulation of PHR1 (master regulator of Pi starvation responses) activity, on 

the properties of the Pi sensor, the complete TF set controlling the transcriptional 

networks underlying Pi ion homeostasis etc,.   

 In this study we have contributed to the knowledge of phosphate starvation 

signaling at 3 different fronts. 

 1) Identification of candidate TFs controlling PSRs using ionomics -we used a 

large scale ionomic profiling approach to study the elemental profile of the transgenic lines 

of TRANSPLANTA collection conditionally overexpressing TFs. In general, we observed that 

alterations in the ionome involved disturbances in the levels of many elements. Giving 

emphasis to P nutrient signaling, we selected 5 TF candidates (belonging to families of 

DREB, bZIP, NAC and KNAT) whose ionomic pattern indicated potential correlations 

between P and other elements like Zn, Fe and Mn.  

 2) SPX1 is a Pi dependent inhibitor of PHR1. Following a yeast two hybrid 

approach, we identified SPX1 as an interactor of PHR1. Subsequent characterization studies 

included physiological and transcriptomic analysis of spx1spx2 mutants, Co-

immunoprecipitation assay in-planta and in-vitro, as well as DNA binding assays. As a result 

of this characterization, we established that SPX1 is a Pi dependent inhibitor of PHR1, 

qualifying it as a sensor component. 

 3) New roles of PHO2 and NLA in Pi starvation signaling. In this study, we found 

that PHO2 and NLA interact with each other suggesting they act in concert in the 

ubiquitination pathway. In line with the previous finding that the negative growth 

regulators bHLH149 is a target of PHO2, bHLH149 is also shown to be regulated by NLA, 

reinforcing the link between Pi starvation signaling and growth control. In addition, SPX1 is 

also shown to be a PHO2/NLA target, contributing to form a negative regulatory loop in Pi 

starvation signaling involving PHR1, NLA, PHO2 and SPX1. 
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RESUMEN  

 Las plantas han desarrollado una serie de respuestas morfológicas y bioquímicas 

destinadas a adaptar su crecimiento en condiciones de bajo Pi, en el suelo. El mecanismo de 

señalización de ayuno de fosfato en plantas ha sido ampliamente estudiado en las últimas 

dos décadas. Sin embargo, todavía existían importantes lagunas en el conocimiento de esta 

ruta; por ejemplo, sobre cómo se regula la actividad de PHR1 (regulador maestro de las 

respuestas al ayuno de Pi) ; sobre la naturaleza y el modo de accion del sensor de Pi y sobre 

el conjunto de TFs de las redes de transcripción subyacentes a la homeostasis de Pi etc,.  

En este estudio hemos contribuido en tres aspectos diferentes al conocimiento de la 

señalización del ayuno de fosfato.  

 1) Identificación de nuevos TFs candidatos mediante aproximaciones 

ionómicas. – Se ha realizado un analisis a gran escala del pefil ionómico de lineas 

TRANSPLANTA que sobreexpresan condicionalmente TFs de Arabidopsis, para detectar 

TFs cuya sobreexpresión altera el ionoma. En los casos encontrados, en general, se observó 

que las alteraciones en el ionoma implican alteraciones en los niveles de muchos 

elementos. Centrándonos en los TFs relacionados con la homeostasis de Pi, se 

seleccionaron 5 TF candidatos (pertenecientes a familias de DREB, bZIP, NAC y KNAT) cuyo 

patrón ionómico refleja las posibles correlaciones entre P y otros elementos como Zn, Fe y 

Mn.  

 2) SPX1 es un inhibidor de PHR1 dependiente de Pi - Siguiendo una 

aproximación basada en el método de los dos híbridos de levadura, se identificó SPX1 como 

un interactor de PHR1. Estudios de caracterización posteriores incluyeron análisis 

fisiológicos y transcriptómicos de mutantes spx1spx2, ensayos de co-inmunoprecipitación 

in planta e in vitro, así como ensayos de unión de ADN. Como resultado de esta 

caracterización, se estableció que SPX1 es un inhibidor PHR1 directamente dependiente de 

Pi, cualificándolo como un componente del sensor de Pi.  

 3) Nuevas funciones de PHO2 y NLA en la vía de señalización de ayuno de Pi. En 

este estudio, se encontró que PHO2 y NLA interaccionan entre sí lo que sugiere que actúan 

en concierto en la ruta de ubiquitinación implicada en la señalización de Pi. En línea con 

datos previos que establecieron que el inhibidor de crecimiento bHlH149, está controlado 
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por PH02, se ha comprobado que también está regulado por NLA, reforzando el vínculo 

entre la señalización del ayuno de Pi y el control del crecimiento. Además, también hemos 

demostrado que SPX1 es diana de PHO2 y NLA, lo que contribuye a formar un bucle 

regulador negativo en la señalización del ayuno de Pi que implica a PHR1, NLA, PHO2 y 

SPX1.
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INTRODUCTION 

 

1. Phosphorous  
 Phosphorous (P) is an essential macronutrient required for all living organisms, 

including plants. Next to Nitrogen, Phosphorous along with Potassium constitute the 

primary nutrients followed by the 3 secondary nutrients – Ca, Mg and S and the 

Micronutrients – B, Cl, Cu, Fe, Mn, Mo and Zn. P is a component of key macromolecules, 

such as nucleic acids and phospholipids, and as a constituent of ATP/ADP, is involved in the 

regulation of energy transfer reactions and determines a key regulatory event in the post-

translational control of protein activity (i.e., phosphorylation).  

Though the total phosphorous content in soils is quite high, P nutrition is frequently 

a factor, limiting crop productivity due to the fact that inorganic Phosphate (Pi), the form in 

which P is preferentially assimilated by plant roots, is quite unavailable because it gets 

adsorbed to soil particles and insolubilized in the presence of some cations (Fe3+, Ca 2+, 

Mg2+ and Al3+), eventually getting unavailable.  

Conventional practices to cope with Pi limitation involve increased application of 

fertilizers to achieve maximum yield, but reduction of phosphorus fertilizer use is presently 

a main objective towards adopting sustainable agricultural practices, given the serious 

environmental problems associated with excess use (for instance, eutrophication) and the 

non-renewability of the P resources, which will dramatically reduce their availability in the 

next 50 years. Due to this, the adaptive system that allow plant to grow under Pi limiting 

conditions has gained considerable interest in recent years because of its potential for 

improving Pi acquisition and use efficiency in crops. 

2. Plant adaptation to Pi starvation   
 To cope with fluctuations in externally available Pi, plants have developed adaptive 

mechanisms to balance external Pi levels with internal needs to maintain cellular P 

homeostasis in order to coordinate growth, development and reproduction (Lin et al., 

2013). These adaptive strategies involve morphological, biochemical and physiological 
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changes oriented towards increased Pi acquisition and use efficiency and to protect 

themselves from Pi starvation stress.  

 Morphological adaptations exhibited by plants during Pi starvation include 

changes in root architecture, by decreasing primary root length, increasing the number and 

length of the lateral roots & root hairs, leading to increased root to shoot ratio aimed at 

scavenging the Pi from the superficial soil surface (Fig1A). Some plants further modify the 

soil scavenging potential of their roots by forming lateral proliferations called proteoids 

(Massonneau et al., 2001) or establishing symbiotic associations with mycorrhizal fungi 

(for review, see Harrison et al., 1999). 

 Biochemical and physiological adaptations include i) secretion of phosphatases, 

organic acids, and RNases from root exudates to facilitate Pi release from insoluble P pools 

in the rhizosphere, ii) increase in the accumulation of the photo protective anthocyanin 

pigment (Fig1B), decreased rate of photosynthesis, utilization of alternative glycolytic or 

respiratory pathways that circumvent steps requiring phosphate (such as increase in the 

synthesis of sulpholipids and galactolipids to substitute for phospholipids), contributing to 

improved plant survival during prolonged periods of phosphate deprivation. 

 

Fig 1: Morphological & physiological adaptations of plants to Pi starvation 
A) Photographs of plants (upper panels) or plant roots response of plants grown at +P and –P 

conditions for 12 days. 
B) Comparison of levels of Pi, anthocyanin and root: shoot growth ratio between plants grown at –

Pi versus +Pi. 
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3 Key players in the control of Pi starvation responses 
 The variety of adaptive strategies evolved by plants to cope with Pi deficiency 

involves changes in the expression profiles of several hundreds of genes (Bustos et al., 

2010; Secco et al., 2013). Significant progress has been made in the last 2 decades on the 

identification and characterization of regulators of Pi starvation responses that underlines 

the importance of transcriptional control in the regulation of these responses.   

3.1 Transcriptional regulators of Pi starvation responses 

 Transcription factors (TFs) play a key role in regulating gene expression in all 

organisms by binding to target genes through short specific DNA motifs which eventually 

alter the ability of RNA polymerase to be recruited to this target. In Arabidopsis, 

transcriptional regulation of Pi deficiency responses is starting to get disclosed and already 

an array of transcription factors mainly belonging to MYB, bHLH, C2H2 and WRKY families 

have been implicated.  

3.1.1 MYB family TFs 

 PHR1 (At4g28610) is the first TF identified to be involved in the control of Pi 

starvation response in a vascular plant (Rubio et al., 2001). It contains a MYB domain 

specific for plants, and in addition it possesses the C-terminal coiled coil (CC) domain. PHR1 

by itself is not very responsive to Pi levels; it’s a central positive regulator of most of the Pi 

Starvation Induced (PSI) genes. Independent of the Pi status of the plant, PHR1 is localized 

in the nucleus. PHR1 binds DNA as a dimer to an imperfect palindromic 8 base pair 

sequence (GNATATNC) namely the P1BS (PHR1 binding sequence) present in the 

promoters of many Pi starvation responsive genes. Interestingly, Pi starvation repressed 

genes do not show enrichment of P1BS motif in their promoters, indicating that the effect 

of PHR1 on Pi starvation repressed genes is indirect (Bustos et al., 2010). 

 PHL1 (At5g29000) - PHR1-LIKE 1 is a phylogenetically close relative of PHR1 with 

which it displays functional redundancy. Together, these two TFs act as key integrators of 

both specific and generic Pi starvation responses (Bustos et al., 2010). 
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 MYB62 (At1g68320) is a member of R2R3 type MYB TF family (Stracke et al., 2001). 

MYB62 expression is specifically induced in young leaves during Pi starvation. MYB62 is 

localized to the nucleus and exerts negative regulation on Pi starvation responses via 

changes in gibberellic acid metabolism and signaling (Devaiah et al., 2009). 

3.1.2 C2H2 TF family 

 ZAT6 (At5g04340) is the first cysteine-2/histidine-2 (C2H2) zinc finger 

transcription factor reported to regulate root development and nutrient stress responses. 

ZAT6 is a nuclear localized protein whose synthesis is induced during Pi starvation. It 

represses primary root growth and regulates Pi homeostasis through the control of root 

architecture (Devaiah et al., 2007a). 

3.1.3 WRKY TF 6 and 75 

 The C2H2 zinc finger domain of WRKY proteins regulates spatiotemporal 

expression of their target genes by binding to W box (TTGAC/T) elements. One of the 

characteristic features of WRKY proteins is the ability of auto and cross regulation of their 

own promoters and other WRKYs respectively (Rushton et al., 2010). WRKY75 is a positive 

regulator of several phosphate starvation induced (PSI) genes including phosphatases, 

Mt4/IPS1 genes and high affinity Pi transporters. It also acts as a negative regulator of some 

components of root development, independent of Pi stress response (Devaiah et al., 

2007b). WRKY6 and WRKY42 are involved in Arabidopsis responses to low Pi stress by 

regulation of PHO1 expression (Chen et al., 2009). WRKY6 has also been shown to be highly 

induced by Arsenate (As) and is proposed to inhibit Pi transporter PHT1;1 to prevent 

Arsenic entry into the cell, particularly when Pi levels are low (Castrillo et al., 2013).  

3.1.4 bHLH TF family 

 The basic helix-loop-helix (bHLH) proteins are a super family of TFs that bind as 

dimers to specific DNA target sites and are critical regulatory components in 

transcriptional networks. bHLH32 acts as a negative regulator of a range of Pi starvation-

induced processes in Arabidopsis. Among the genes negatively regulated by bHLH32 are 

those encoding PPCK (phosphoenolpyruvate carboxylase kinase), which is involved in 

modifying metabolism so that Pi is spared (Chen et al., 2007). 
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 Another member of this bHLH TF superfamily known to play a role in the control of 

phosphate starvation responses (PSR) is OsPTF1 (Yi et al., 2005). OsPTF1 is located in the 

nucleus independent of the Pi status of the plant and is induced in roots under Pi starvation 

conditions. Overexpression of OsPTF1 enhances tolerance to Pi starvation in rice (Yi et al., 

2005). bHLH149 also known as AIF4 (ATBS1 interacting factor 4) (At1g09250) is a 

negative regulator of cell elongation and growth (Ikeda et al., 2013). Unlike general bHLH 

TFs which binds to DNA to exert its transcriptional activity, bHLH149 encodes a nuclear 

non-DNA binding protein. Previous experiments in our laboratory have shown efficient in-

vivo interaction of bHLH149 with SPX1 under Pi starvation conditions and with PHO2 (see 

section 3.4.3) at Pi sufficient conditions (Isabel Mateos, PhD manuscript, 2010). The 

bHLH149 protein accumulation depends upon the phosphate content during growth and is 

regulated by SPX1 and PHO2. During normal phosphate supply, PHO2 would act as a 

negative regulator of bHLH149 protein activity by promoting its degradation, whereas 

during phosphate starvation, SPX1 would act as a positive regulator of its accumulation. In 

this way, low Pi levels have negative impact on plant growth (Isabel Mateos, PhD 

manuscript, 2010).  

3.2 Role of SPX domain containing proteins in Pi signaling 

 Among the many and diverse proteins involved in the plant response to Pi 

starvation, proteins containing the SPX domain are key players controlling a set of 

processes involved in the maintenance of an internal steady state of Pi ions at the level of 

the cell, defined as Pi homeostasis (for review, see Secco et al., 2012). SPX domain is named 

after the Suppressor of yeast gpa1 (Syg1), the yeast Phosphatase 81 (Pho81), and the 

human Xenotropic and polytropic retrovirus receptor 1 (XPR1). This hydrophilic domain is 

found at the N-termini of various proteins in all major eukaryotes, from Caenorhabditis 

elegans and Drosophila to mammals (Stefanovic et al., 2011). In yeast, proteins containing 

the SPX domain are involved in Pi transport and sensing, or the sorting of proteins to 

endomembranes (Wang et al., 2004). Most of the SPX-domain proteins with known 

functions in plants are involved in the regulation of either nutritional homeostasis or the 

response to environmental cues. Studies in yeast and Arabidopsis have also suggested that 

the SPX domain itself could be involved in the fine tuning of Pi transport and signaling 
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through mechanisms such as physical interactions with other proteins (Duan et al., 2008; 

Hurlimann et al., 2009; Zhou and Ni, 2010). 

 The Arabidopsis genome encodes 20 genes with the SPX domain, classified into four 

sub-families based on the presence of additional domains in their structure namely the 

SPX, SPX-EXS, SPX-MFS and SPX-RING families. Proteins exclusively harboring the SPX 

domain, referred to as SPX proteins constitute 4 and 6 members in Arabidopsis (AtSPX1-

AtSPX4) and rice respectively (OsSPX1-OsSPX6) (Duan et al., 2008). All the SPX genes, with 

the exception of AtSPX4 and OsSPX4, are highly induced by Pi starvation. In addition, 

studies in Arabidopsis showed that these responses were under the control of PHR1 and its 

closest family member PHL1 (Bustos et al., 2010). 

3.2.1 SPX proteins have a broad range of subcellular localization. The SPX1 and SPX2 

isoforms from both Arabidopsis and rice are targeted to the nucleus. While AtSPX3 is 

reported to be localized to unidentified cytoplasmic speckles, AtSPX4, OsSPX3, OsSPX4 and 

OsSPX5 are localized in nucleus and cytoplasm (Duan et al., 2008; Shi J et al., 2014; Lv Q et. 

al, 2014). The different sub-cellular localization of the SPX family proteins attributes to 

their diversified functions. 

3.2.2 SPX-EXS proteins: The PHO1 family members are the only proteins in eukaryotes 

that contain both the SPX and EXS domains. PHO1, one of the well characterized members 

of this family is involved in regulation of Pi homeostasis in Arabidopsis (Wang et al., 2004). 

PHO1 is expressed in roots and is involved in long distance Pi transport from root to shoot 

(Hamburger et al., 2002). PHO1 also plays a crucial role in Pi efflux out of cells to maintain 

intracellular Pi homeostasis (Stefanovic et al., 2007). Recently Khan et al., (2014) have 

demonstrated that PHO1 with its close homolog PHO1; H3 regulate transfer of Pi to shoot 

in response to Zn limitation providing a link between P and Zn homeostasis in Arabidopsis.  

3.2.3 SPX-MFS sub-family proteins: The Major Facilitator Superfamily (MFS) represents 

the largest group of transport carriers in all organisms, which are often coupled to the 

movement of another ion. Proteins of this family can function as uniporters, symporters or 

antiporters, and have a diverse range of substrates, such as ions, sugars, nucleosides, amino 

acids and peptides. Based on the properties of the SPX and MFS domains, it has been 
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hypothesized that proteins harboring these two domains could be involved in both 

transport and signaling (Lin et al., 2010). This family includes OsSPX-MFS1–OsSPX-MFS4 

with OsSPX1-MFS 1 and OsSPX1-MFS 3 repressed by Pi starvation and OsSPX-MFS2 induced 

by Pi starvation (Lin et al., 2010). 

3.2.4 SPX-RING proteins: In both Arabidopsis and rice, only 2 proteins possess the RING 

and the SPX domains. To date, the only characterized member of the SPX-RING family is the 

Nitrogen Limitation Adaptation (NLA- At1g02860) gene (Peng et al., 2007), also called 

benzoic acid hypersensitive 1 (BAH1), for its role in the immune response (Yaeno & Iba, 

2008). The nla mutant was first identified for its altered growth response on nitrogen (N) 

starvation, being unable to accumulate anthocyanin, resulting in an early senescence 

phenotype (Peng et al., 2007, 2008). A recent study has demonstrated the involvement of 

NLA (an E3 Ub ligase) in phosphate homeostasis wherein nla mutant showed increased Pi 

uptake and content leading to Pi toxicity, under low-nitrate and high-phosphate availability 

(Kant et al., 2011). 

3.3 miRNA and non-coding RNAs in post transcriptional regulators of Pi signaling 

 microRNAs (miRNAs) are a small non-coding RNA molecules containing about 22 

nucleotides found in plants, animals, and some viruses, which functions in RNA silencing 

and post-transcriptional regulation of gene expression (Ambros et al., 2004 and Bartel et 

al., 2004). miRNAs silence genes that have complementary or partially complementary 

sequences to the miRNAs by causing mRNA cleavage or translational repression (Ambros 

et al., 2004; Bartel et al., 2004 and He et al., 2004). In Arabidopsis, a limited number of 

miRNA molecules have been shown to be specifically and strongly induced by Pi limitation, 

including miR399, miR778, miR827, and miR2111 (Fuji et al., 2005; Hsieh et al., 2009; Pant 

et al., 2009). miR399 targets the transcript of PHO2, an E2 ubiquitin conjugase (Lin et al., 

2008; Pant et al., 2008) thereby causing an increase in the expression of root Pi-uptake 

transporters (e.g. PHT1;8 and PHT1;9), and hence in the acquisition of Pi by the roots and 

its translocation to the shoot.    

 In addition to miR399 and PHO2, this particular Pi-signaling network also involves 

Induced by Pi Starvation (IPS) genes (Burleigh and Harrison, 1999; Liu et al., 1997). These 
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Pi starvation induced transcripts were characterized by an unusual feature in that they do 

not have long open reading frames; instead they contain a conserved 23-bp region 

complementary to miRNA399. IPS transcripts are thought to operate by a mechanism 

called ‘target mimicry’ to fine-tune the PHO2–miRNA399 pathway by inhibiting the action 

of miRNA399-charged silencing complexes on PHO2 mRNA, and adjusting the transcript 

levels of PHO2, which is a key player in balancing Pi with respect to its supply and demand 

(Franco-Zorilla et al., 2007). 

 miR827, induced by low Pi regulates expression of NLA which is a positive regulator 

of nitrogen starvation responses (Kant et al., 2011).  miRNA2111, specifically regulated by 

Pi starvation, was shown to target At3g27150, which encodes a kelch domain containing F-

box protein (Hsieh et al., 2009). Suppression of miR395 during Pi limitation is suggested to 

up-regulate the expression of APS4 (ATP sulfurylase) and SULTR2;1 (Sulfate transporter) 

which could serve to increase sulfate translocation to meet the augmented demands of 

Sulfur towards sulfolipid synthesis during Pi starvation stress (Hsieh et al., 2009). 

3.4 Post translational regulators 

 Post-translational modifications controlling Pi signaling include Phosphorylation, 

Ubiquitination and Sumoylation. Phosphorylation involves the addition of a covalently 

bound phosphate group to a serine, threonine  or a tyrosine residue of a protein by a 

protein kinase. Ubiquitination and sumoylation of proteins involve the attachment of a 

small peptide, Ubiquitin or SUMO (small ubiquitin-like modifier) respectively, to proteins 

substrates (for review, see Rojas et al., 2014). These modifications either target proteins to 

degradation through the 26S proteosome or alter protein activity, localization or 

interaction abilities (Moon et al., 2004; Ulrich et al., 2005; Colby et al., 2006). 

3.4.1 Protein Phosphorylation  

 Protein phosphorylation is a well-known type of posttranslational modification that 

is involved in the regulation of numerous cellular processes. Besides modulating protein 

activity, an important role of protein phosphorylation is to regulate protein targeting. For 

example, the Arabidopsis nitrate transporter NRT1.1 (Martin et al., 2008) and the 

aquaporin PIP2;1 (Prak et al., 2008) both require phosphorylation to reach the plasma 
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membrane. Protein phosphorylation in-vivo in the C-terminal region of the Pi transporters - 

PHT1;1 (Ser-514 and Ser-520) and PHT1;4 (Ser-524) has been reported by Nuhse et al., 

(2004) and Bayle et al., (2011). Phosphorylation of PHT1;1 at Ser-514 inhibits its 

trafficking to its destination, the plasma membrane under non-limiting Pi conditions (Bayle 

et al., 2011). 

3.4.2 Sumoylation in Pi signaling    

 SIZ1 (At5g60410), a SUMO E3 ligase is a focal controller of Pi starvation-dependent 

responses. T-DNA insertional mutated alleles of SIZ1 exhibits exaggerated 

prototypical Pi starvation responses, including cessation of primary root growth, extensive 

lateral root and root hair development, increase in root/shoot mass ratio, and greater 

anthocyanin accumulation. In line with this, PHR1 has been shown to be an 

SIZ1 sumoylation target in-vitro (Miura et al., 2005). 

3.4.3 Ubiquitination pathway components in Pi signaling  

 PHO2, also known as Ubiquitin Conjugase 24 (UBC24) is a negative regulator of 

PSRs. pho2 mutant accumulate excessive Pi in shoots leading to Pi toxicity accompanied by 

leaf senescence (Aung et al., 2006). PHO2 localizes to the post- endomembranes 

compartments (Golgi apparatus) where it triggers ubiquitination and degradation of its 

target (PHO1). As PHO2 is targeted to degradation by miR399 during Pi starvation 

conditions (see section 3.3), it acts on PHO1 only during Pi sufficiency where PHO2 

interacts with PHO1 at the post-endomembranes system. This leads to targeting of PHO1 to 

degradation via multi-vesicular body mediated vacuolar proteolysis and results in 

inhibition of Pi transport from root to shoot (Liu et al., 2012). This action of PHO2 on PHO1 

is aimed to prevent accumulation of toxic levels of Pi in plants grown in Pi rich soils. 

However, whether or not PHO1 or bHLH149 (another potential target of PHO2 as 

mentioned in section 3.1.4) is directly ubiquitinated by PHO2 is yet to be explored.  

 In addition to PHO2, another component of Ubiquitination pathway controlling Pi 

homeostasis in plants is NLA (as already mentioned in section 3.2.4). Interestingly, the Pi 

overaccumulator pho2 mutant displays enhanced Pi levels at growth conditions of low 

nitrate similar to the case of the nla mutant (Kant et al., 2011). It appears that as a default, 
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low N would result in increased accumulation of Pi and the NLA/PHO2 provides a 

mechanism for preventing excess Pi accumulation in conditions of low N.  

 One recent study showed that PHO2 and NLA act in independent but cooperative 

fashion to mediate degradation of PHT1 transporters (Lin et al., 2013). However, Park et 

al., (2014) demonstrated that NLA specifically requires PHO2 for poly-ubiquitination of 

PHT1;4 in A.thaliana. Additionally, post-translational decay of PHT1;4 at high Pi is inhibited 

by MG132 (proteosome inhibitor), indicating the participation of 26S proteosome. 

Consistent with NLA/PHO2 function in PHT1;4 degradation, co-expression of NLA and 

PHO2, which occurs at high Pi, causes a decrease in PHT1;4 levels (Park et al., 2014).  

4. Local and systemic Pi sensing and signaling 
 In order to adapt to the heterogeneous nutrient availability in soils, plants have 

developed complex mechanisms that not only integrate information of Pi levels in the soil 

(local Pi sensing and signaling) but also considers Pi levels in the whole plant (systemic Pi 

signaling) (Zhang et al., 2014). Roots perceive fluctuations in extracellular nutrient levels 

and send signals to the shoot, via the xylem, as a warning of impending limitation in the 

supply of the particular nutrient. Shoots sense these root derived  nutrient signals and send 

signals both to the shoot apices and roots, via the phloem, to adjust developmental 

processes and nutrient uptake (Lough and Lucas, 2006; Liu  et al., 2009; Lucas et al., 2013). 

Local Pi sensing and signaling can initiate adjustments in root system architecture (RSA) to 

enhance Pi acquisition, whereas the systemic, or long distance signaling pathways act to 

regulate Pi uptake, mobilization and redistribution (Linkohr  et al., 2002; López-Bucio et al., 

2003; Svistoonoff et al., 2007; Thibaud et al., 2010; Chiou and Lin, 2011; Nagarajan and 

Smith, 2012). Pi itself, the phytohormones- auxin, ethylene, cytokinins, abscisic acid, 

gibberellins, and the strigolactones, along with sugars, miRNAs and Ca2+ have all been 

implicated in Pi local and systemic sensing and signaling pathways (Chiou and Lin, 2011).  

5. Limitations of genetic analysis towards dissecting signaling pathways 
and potential strategies to overcome these limitations 
  Functional characterization of genes is a required step towards understanding its 

biological significance. It has benefited from the application of reverse genetics tools either 
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based on the knock out (T-DNA insertion mutant) as well as knock down (artificial 

microRNA) or on the use of constructs overexpressing a particular gene of interest. Despite 

having considerable information and numerous genetic tools, researchers working on the 

functional characterization of genes are often faced with problems caused by functional 

redundancy between members of large gene families (Coego et al., 2014). For instance, 

Transcription factors (TFs) are often part of large families, in which closely related 

members display functional redundancy, thereby hindering their precise characterization.   

 Overexpression of individual members of redundant TF families may be used as an 

approach to overcome redundancy problems; however, this strategy is hampered by the 

fact that ectopic overexpression of TFs often results in deleterious effects or it potentially 

causes off-target effects thus causing misleading phenotypes (Kasuga et al., 1999). To 

overcome this problem, chemically inducible conditional overexpression of TFs offers a 

potential useful solution. The possibility of conditional overexpression allows to control the 

time and place of overexpression of the desired gene thereby, helping in the assessment of 

gene-triggered effects.  

5.1 TRANSPLANTA 

 Using the approach of conditional overexpression system, TRANSPLANTA 

consortium generated a collection of homozygous Arabidopsis TRANSPLANTA (TPT) lines, 

in which the expression of TFs encoded by full-length cDNAs in a Gateway-compatible 

pER8GW vector (Papdi et al., 2008) derived from the original pER8 vector (Zuo et al., 2000) 

is inducible by β–estradiol. Thus far, 1636 independent homozygous lines, representing an 

average of 2.6 lines for every TF, have been produced for the inducible expression of 634 

TFs. The whole TF collection includes members of all TF families defined in AGRIS 

(http://arabidopsis.med.ohio-state.edu/AtTFDB), except for the small RKD, BRR-BPC, 

CAMTA, GeBP, GRF, PHD and WHIRLY families. The representation of TFs from each family 

ranges from 10 to 100%, although for most of the families over 30% of their members are 

present in the TRANSPLANTA collection. Moreover, some of the most important families 

including AP2/EREBP, ABI3/VP1, Alfin-like, BZR, C2C2 CO-like, DOF, YABBY, CCAAT, E2F-

DP, G2-like, GRAS, HSF, MADS, MYB, NAC, RAV, TCP, WRKY and b–ZIP are represented with 

more than 50% of their members in the TRANSPLANTA  collection (Coego et al., 2014). To 
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document the versatile applicability and usefulness of the TPT lines, β-estradiol induced 

proliferation of root hairs, dark-induced senescence, anthocyanin accumulation and 

dwarfism were confirmed in lines conditionally expressing full-length cDNAs encoding 

RHD6, WRKY22, MYB123/TT2 and MYB26, respectively, in agreement with previously 

reported phenotypes conferred by these TFs (Coego et al., 2014). This powerful resource of 

conditionally over-expressing TFs could also be used to identify novel regulators of Pi 

starvation signaling pathway. 

6. Elemental profiles reflect plant adaptations to the environment 
 The majority of the elements that make up a plant, with the exception of carbon and 

oxygen, are obtained from soil through the roots. These soil derived elements are required 

for plant structure, metabolism, protein function, signaling, and proper osmotic and 

electrochemical potential (Baxter et al., 2009). The accumulation of a given element is a 

complex process controlled by a network of gene products critical for uptake, binding, 

transportation, and sequestration. Many of these genes and physiological processes affect 

more than one element. Therefore, to get a complete picture of the gene networks involved 

in the maintenance of a nutrient’s homoeostasis, it would be necessary to simultaneously 

study as many of the elements contained in a cell, tissue or organism as possible. The 

complete elemental profile is termed as the ionome which includes both the mineral ions 

and the trace elements compositions and reflects the physiological state of an organism 

(Baxter et al., 2009). 

6.1 Ionomics   

 The study of the ionome termed as Ionomics, is defined as the quantitative and 

simultaneous measurement of the elemental composition of living organisms and changes 

in this composition in response to physiological stimuli, developmental stage, and genetic 

modifications (salt et al., 2008). Ionomics requires the application of high-throughput 

elemental analysis techniques, together with the incorporation of Bioinformatics (Fig 2). 

For achieving successful elemental profiling, multi element analysis of plant samples as a 

rapid, robust, sensitive and precise analytical system needs to be established. Various 

techniques including flame atomic absorption spectroscopy and inductively coupled 
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plasma mass spectroscopy (ICP-MS) or inductively coupled plasma optical emission 

spectroscopy (ICP-OES) have been used for both single and multiple element analysis of 

plant samples. ICP-OES has the advantage of lower cost and simplicity over ICP-MS. 

Although ICP-OES is less sensitive than ICP-MS, some of this sensitivity is won back by the 

robustness of ICP-OES in more concentrated sample matrices. Whereas ICP-MS struggles 

with sample matrices with greater than 0.1% solids, ICP-OES can handle up to about 3% 

dissolved solids (Salt et al., 2008). To optimize for high-throughput, cost and precision, we 

chose to use ICP-OES as our analytical tool. 

 

Fig 2:  High throughput Ionomics Picture modified from Salt et al., 2004. 
Diagram represents the steps involved in Ionomics. Elements in the periodic table highlighted in green 
are examples of essential elements for plants and those in red represents nonessential trace elements. 
The table represents Arabidopsis (Col-0) shoot and seed ionome, all elements presented as µg/g dry 
weight. %RSD refers to Relative Standard Deviation. 

6.2 ICP-OES  

 The ICP-OES is composed of two parts: the ICP and the optical spectrometer. ICP is a 

type of plasma source that ionizes the analyte atoms for their detection by ICP-OES or ICP-

MS. The plasma is generated by a silica torch that consists of 3 concentric quartz glass 
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tubes. The output or "work" coil of the radio frequency (RF) generator surrounds part of 

this quartz torch. Argon gas is typically used to create the plasma. Flowing Argon is 

introduced into the plasma torch and the radio frequency field ionizes the gas, making it 

electrically conductive. Plasma at up to 8000K, is insulated both electrically and thermally 

from the instrument, and maintained in position by a flow of coolant (argon) gas. The 

samples to be analyzed are digested with nitric acid at high temperature in a termostatized 

bath and pumped into the nebulizer via a peristaltic pump where it is converted into an 

aerosol, which passes into the spray chamber with the carrier argon gas. On introduction 

into the plasma, atoms in the sample are ionized, generally into singly charged positive 

ions. When the ionized analyte atoms in the ICP plasma fall back to ground state, they emit 

photons at wavelengths characteristic of a particular element. The resulting light from the 

plasma, representing a summation of emitted light from all the atoms introduced to the 

plasma is focused and passed through optical slits into a spectrophotometer. An optical 

fibre within the spectrophotometer separates the collected photons by wavelength, and a 

charge injection device (CID) detector simultaneously measures the intensities of photons 

at multiple wavelengths. By comparing these energy intensities to reference standards a 

quantitative measurement of each element in the sample can be obtained (Fig 3). 
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 Fig 3: Schematic representation of the steps involved in ICP-OES 
Samples are digested with HNO3 at 100 ºC in a termostatized bath and are introduced to ICP-OES. On the 
plasma and at high temperature (8000 K), all elements get excited and emit energy as light at a 
characteristic wavelength. The CID (charge injection device) detector acts as a photographic plate that 
can acquire data for large parts of the spectrum simultaneously. Each element emits light energy at a 
characteristic wavelength. Intensity of the light emitted is directly proportional to its concentration. 
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OBJECTIVES  
 

 Considerable advances in the past two decades has made Pi starvation signaling one 

of the best studied system among those of different mineral nutrients in plants. However, 

there were many gaps in the knowledge of Pi starvation signaling, when this thesis was 

initiated. For instance, on the regulation of PHR1 activity, on the nature of the Pi sensor, or 

regarding the downstream targets of the PHO2-NLA ubiquitination system components, as 

well as on the transcriptional networks underlying Pi ion homeostasis and the complete TF 

set controlling these networks. 

 The objective of my PhD project was to contribute to the further understanding of 

the Pi starvation signaling pathway. Towards this, the following specific objectives were 

pursued: 

1. Identification of novel TFs involved in Pi starvation signaling (Taking advantage of 

the TRANSPLANTA collection of transgenic plants conditionally over expressing TFs 

of Arabidopsis thaliana).  

2. Identification of novel Pi signaling components interacting with PHR1.  Sensor 

properties of SPX1, a Pi dependent inhibitor of PHR1. 

3. New light on NLA (E3 ubiquitin ligase) and PHO2 (E2 ubiquitin conjugase) function 

in Pi signaling. Role in growth control and in a novel feed-back loop in Pi starvation 

signaling. 
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MATERIALS AND METHODS 
 

1. Microbiological strains 
 Escherichia coli (E. coli) DH5α (Woodcock et al., 1989),  

 Escherichia coli DB3.1: (Invitrogen), 

 E. coli BL21pLysS (Novagen), 

 Agrobacterium tumefaciens C58C1 (Yanofsky & Nester, 1986) and  

 Yeast strain - Saccharomyces cerevisae AH109 (Clontech). 

2. Plasmids 
Vectors used for cloning: pDON201, pDON207 and pDON221 (Invitrogen)  

Destination vectors for Y2H: pGADT7 and pGBKT7 (Clonetech).  

Binary vectors: pGWB2, pGWB6, pGWB21 (Nakagawa et al., 2007),  

     pBHA (Parcy F., personal communication). 

Vectors used for BiFC assay - pBiFP 1,2,3,4 (Azimzadeh et al., 2008).  

3. Plant material  
 All Arabidopsis thaliana plants used in this study, including mutants and transgenic 

plants were on the ecotype Columbia (Col-0). Tobacco plants used for transient expression 

were Nicotiana benthamiana. T-DNA insertional mutants (Alonso et al., 2003) spx1 (SALK-

092030) and spx2 (SALK-080503), TF-182 (SALK_103716C) and TF137 (salk_057190) 

were obtained from the Arabidopsis Biological Resource Center (ABRC) and the double 

mutant spx1spx2 was obtained by crossing the single mutants spx1 and spx2 (Puga et al., 

2014). Mutants phr1 (Rubio et al., 2001), pho2 (Delhaize y Randall, 1995) were available in 

laboratory, nla mutant (Peng et al., 2007) was kindly provided by Dr. Steve Rothstein 

(university of Guelph, Canada). Seeds of the transgenic plants over expressing TFs for 

elemental profile analysis were used from TRANSPLANTA (TPT) collection (Coego et al., 

2014). Other transgenic lines used in this study were (PHR1pro)::PHR1-MYC, 35S::GFP-

SPX1 (Puga et al., 2014), 35S::HA-PHR1 (Bustos et al., 2010), 35S::HA-bHLH149, 35S::HA-
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bHLH149_pho2 (Isabel Mateos, PhD manuscript, 2010). 35S::HA-bHLH149_nla and 

35S::GFP-SPX1_nla transgenic lines were developed by crossing the respective 

overexpressing line with nla mutant . 

4. Culture methods 

4.1 Bacterial culture methods 

 Lysogeny broth (LB) medium was used for all the bacterial cultures (10 g/L 

Tryptone, 5g/L yeast extract and 10 g/L NaCl, pH7.0) (Sambrook et al., 1989). E. coli and A. 

tumefaciens were cultured at 37 ºC and 28 ºC respectively with agitation at 250 r.p.m 

(revolutions per minute). Concentration of antibiotics used include: ampicilin (100µg/mL), 

gentamicin (25 µg/mL), hygromycin (40 µg/mL), kanamycin (50 µg/mL), rifampicin (50 

µg/mL), spectinomycin (50 µg/mL). 

4.2 Yeast culture methods 

 For routine growth of AH109 S.cerevisae strain, YPAD (20 g/L peptone/tryptone, 10 

g/L yeast extract, 40 % glucose, 40 mg/L adenine, pH 5.8) was used (Clontech Yeast 

Protocols Handbook). For the selective growth, Yeast nitrogen base (YSD) and YSD 

supplemented with different amino acid drop outs of clonetech (-WL, -WLA, -WLHA) were 

used.  

5. Plant Growth conditions 
 Plants were grown in complete medium (+Pi) as described by Bates and Lynch, 

(1996) using one strength nutrient salts (Johnson et al., 1957). +Pi conditions involved 

1mM KH2PO4. For the Pi deficient medium (−P), KH2PO4 was replaced by equimolar 

amounts of KCl2. Seeds were surface sterilized using 75% bleach before plating and 

stratified at 4°C for 3 days. Growth chamber conditions were 22°C, 60% humidity, and 16-h 

light/8-h dark photoperiod with 100 µmols / m2 s1 of fluorescent light. Short day 

conditions had 8 h light/16h dark period.  

 For the phenotypic screening of TPT lines, seeds were directly germinated on 

Johnson one strength plates with 5µM β-estradiol. For the Elemental profile analysis, TPT 
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collection plants were initially grown for 8 days in Johnson one strength plates and then 

passed to 10µM β-estradiol supplemented conditions for next 6 days. 

6. Binary constructs  
 The ORFs of SPX1, PHR1, NLA were amplified from corresponding fullsized cDNAs 

[SPX1, (ABRC clone 184E21); PHR1 (AJ310799), NLA (RAFL16-64-D14)] and cloned into 

pDONR201 (Invitrogen). The SPX1 and PHR1 entry clones were mobilized to destination 

vectors pBiFP 2 and pBiFP 3 to obtain translational fusions YFPN-SPX1 and YFPC-PHR1 

under the control of the 35S promoter for BiFC assay. SPX1 and NLA entry clones were also 

mobilized to pGWB6 and pGWB21 respectively to obtain translational fusions of GFP 

(35S::GFP-SPX1) and MYC (35S:: MYC-NLA) under the control of the 35S promoter. The 

ORF of PHR1 was cloned to pBHA vector containing the 3×HA epitope (kindly provided by 

F. Parcy, Centre National de la Recherche Scientifique, Grenoble, France) to yield 35S::HA-

PHR1. 35S::PHO2 was developed by Isabel Mateos (PhD Manuscript., 2010).  

 To prepare the PHRI promoter (PHR1pro)::PHR1-MYC construct, a DNA fragment 

containing six MYC repeats was obtained by BamHI/SalI digestion of the pGEM-6×MYC 

plasmid and cloned into pBIB. A 3,847-bp DNA fragment containing the PHR1 genomic 

region (including a 1,787 bp upstream of the first ATG) was PCR-amplified using Expand 

High Fidelity Polymerase (Roche) and primers gPHR1-F/gPHR1-R, digested with SalI, and 

cloned into the previously obtained pBIB-6×MYC vector.  

7. Constructs and Yeast two hybrid (Y2H) assay  
 For the screening of NLA interactors, the entry clones of full length NLA and Δnla 

(lacking the RING domain) were mobilized to yeast destination vectors pGBKT7 to use as 

bait. PHR1, SPX1, PHO2, bHLH149 in pGADT7 (available in laboratory) were used as prey 

proteins. NLL-pGADT7 was developed by cloning ORF of NLL (U61217) to pDON201 and 

eventually mobilizing to destination vector, pGADT7.  

 For the screening of PHR1 interactors, a normalized Arabidopsis cDNA library was 

constructed from phosphate (Pi)-starved plants. Plants were grown for 7 d in complete 

medium and transferred to Pi-depleted media for 0.5, 1, 2, 4, and 7 d. Plants were mixed, 

and RNA was obtained with TriReagent (Ambion) and used to construct a normalized 



MATERIALS AND METHODS 

25 
 

cDNA library. Double-stranded cDNA (ds cDNA) was prepared using the Matchmaker 

protocol PT3529-1 (Clontech) with minor modifications. Normalization was as described 

by Sommer et al., (1990). After separation of single-stranded cDNA (ss cDNA) and ds cDNA 

on a hydroxyapatite column, normalized ss cDNA was converted into ds cDNA, cloned into 

pGADT7-Rec.  

  A PHR1 fragment (aa 208–362, ΔPHR1) lacking transactivation domains was fused 

to the Gal4 DNA-binding domain and used as bait to screen the yeast library for PHR1 

interactors. A deletion series corresponding to SPX1 was generated for interaction assays 

with ΔPHR1 by amplification of full-length SPX1 cDNA with oligonucleotide pairs, as 

indicated in (Table M2), and was cloned to pGADT7.  

 Y2H experiments were done according to the Matchmaker GAL4 Two-Hybrid 

System (Clontech). Bait and Prey proteins co-transformed to AH109 (yeast strain). Positive 

clones were selected on media lacking tryptophan, leucine, histidine, and adenine and in 

the presence of 5 mM 3-amino-1,2,4-triazole, a competitive inhibitor of the product of the 

HIS3 gene which is involved in histidine biosynthesis in S. cerevisae.  

 The list of the primers and the corresponding destination vectors used are shown in 

Table M1 and M2. 

 Table M1: List of primers used in NLA and TRANSPLANTA project 
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Primer 
Name Primer Sequence (5’-3’) Application 

SPX1-F AGAGATAGAATTGCGAAAGC Genotyping spx1-1 and 
spx1,spx2 

SPX1-R CTATTTGGCTTCTTGCTCC Genotyping spx1-1 and 
spx1,spx2 

SPX2-F CACCATCAATCCTGTAACCAA Genotyping spx2-1 and 
spx1,spx2 

SPX2-R TGGCCGGAGTCATTCGTCAT Genotyping spx2-1 and 
spx1,spx2 

SPX1.1F CGAAAGCTAAGGATTCAATGGAG spx1 TDNA; genotyping 
SPX1.1R GGATGAAAGGTAAACGCATGAG spx1 TDNA; genotyping 
SPX2.1F ATGAAGTTCGGCAAGAGCCT spx2 TDNA; genotyping 
SPX2.1R GCTCCATAAGCTTGAGCTTC spx2 TDNA; genotyping 
LB1 GCGTGGACCGCTTGCTGCAACT Left border TDNA; genotyping 
SPXB1 GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGAAGTTTGGTAAGAGTCTCAGC ORF SPX1 in pDONR201 
SPXB2-STOP GGGGACCACTTTGTACAAGAAAGCTGGGTCCTATTTGGCTTCTTGCTCCAACAATGG ORF SPX1 in pDONR201 
SPX1-FL-F CCCAGAATTCAAAAGAGCTATGAAGTTTG Y2H 
SPX1-FL-R GTCGGATCCTCTATTTGGCTTCTTG Y2H 
SPX1-del1-F CCCAGAATTCAAAAGAGCTATGAAGTTTG Y2H 
SPX1-del1-R TAGGGATCCAAGGTTGCTAAAGAACTTTC Y2H 
SPX1-del2-F CCCAGAATTCAAAAGAGCTATGAAGTTTG Y2H 
SPX1-del2-R TCAGGATCCGCTAGGCAGCGATTGTG Y2H 
SPX1-del3-F CAACGAATTCATGATCAGACTAAAGG Y2H 
SPX1-del3-R GTCGGATCCTCTATTTGGCTTCTTG Y2H 
SPX1-del4-F CTGGTGAATTCATGCGTTTACCT Y2H 
SPX1-del4-R GTCGGATCCTCTATTTGGCTTCTTG Y2H 
P1BS 4X F GAATTGAATATGCAATGGAATATGCTTAGGCATATTCCATAGAATATTCCTAGA 4xP1BS; Competitive Co-IP 
P1BS 4X R TCTAGGAATATTCTATGGAATATGCCTAAGCATATTCCATTGCATATTCAATTC 4xP1BS; Competitive Co-IP 
mP1BS 4X F GATTTTAAGCTGAAATGTAAGCTGATTAGTCATCGTACATATAAGCGTACTAGA 4xmP1BS; Competitive Co-IP 
mP1BS 4X R TCTAGTACGCTTATATGTACGATGACTAATCAGCTTACATTTCAGCTTAAAATC 4xmP1BS; Competitive Co-IP 
P1BS 1x F GTTATCCGCGGCAAAAGAAACTGTTAGAATATTCCTGA P1BS; EMSA 
P1BS 1x R TCAGGAATATTCTAACAGTTTCTTTTGCCGCGGATAAC P1BS; EMSA 
dPHR1-B1 
 

GGGGACAAGTTTGTACAAAAAAGCAGGCTTAGGCGGTGGGGGAGGCATGGAATTGCG
ACCTGTTAGCACAAC deltaPHR1 in pDONOR201 

dPHR1-B2 GGGGACCACTTTGTACAAGAAAGCTGGGTCTCACCCTTTGGTAAGACCAGAGTTTTGC deltaPHR1 in pDONOR201 
PHT1;1-F CCTCAACTCTCCAGAGAAGTTCTTA qPCR 
PHT1;1-R TTCGGCCATTTCCTAGAGC qPCR 
SQD1-F CATCCTCTAAACCAAAGCGTGT qPCR 
SQD1-R AGTAGCCCAACCGCAATAAC qPCR 
ACP5-F CAGTTTCTAACTAGTGGTGCTGGA qPCR 
ACP5-R GCTTGGGATTGATGGTCACT qPCR 
ACT8-F GACTCAGATCATGTTTGAGACCTTT qPCR 
ACT8-R CCAGAGTCCAACACAATACCG qPCR 
ChIP-ACT8-F CCCGCCTATATAAATAGTTCAACAC ChIP-PCR 
ChIP-ACT8-R GACGACGAGGCAATTCAAAG ChIP-PCR 
ChIP-SPX-F TCACCCACAGATAACCACGA ChIP-PCR 
ChIP-SPX-R GGGGAAGAGGTTTAGAGATATAAAAG ChIP-PCR 
ChIP-IPS1-F AAACTGAAAAGGCAATTTTGG ChIP-PCR 
ChIP-IPS1-R AAGTGGAAGCAGATGATGGAA ChIP-PCR 
ChIP-PHT1-F GCTTATGTTCTCGCGAATATCC ChIP-PCR 
ChIP-PHT1-R CATTTGAGGAGTGACAATCAGG ChIP-PCR 
gPHR1-F CAACGAAGATTACGAAGCTCGAAAGTACCG PHR1pro:PHR1-6myc 
gPHR1-R AAAAGTCGACATTATCGATTTTGGGACGCTTTGGC PHR1pro:PHR1-6myc 
SPX1-GST-F AAAGAATTCATGAAGTTTGGTAAGAGTCTCAGCAAT GST-SPX1 
SPX1-GST-R AAAGTCGACCTATTTGGCTTCTTGCTCCAACAATGG GST-SPX1 
Table M2. Oligonucleotides used in SPX1 project.  
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8. Transformation methods 

8.1 Bacterial transformation 

 Transformation of competent DB3.1 and DH5α  E. Coli cells was carried out by heat-

shock method as described in (Sambrook et al., 1989) or by electroporation as described in 

(Chassy and Flickinger, 1987). Transformation of competent C58C1 A. tumefaciens cells 

was performed as described in (Weigel and Glazebrook, 2002). Transformed E. Coli and A. 

tumefaciens cells were plated to selective media (LB with corresponding antibiotics) and 

incubated overnight at 37 ºC or 48 hours at 28 ºC, respectively. 

8.2 Transformation of Arabidopsis thaliana    

 A. thaliana plants were grown in soil for 20-25 days in long-day growth conditions. 

Young inflorescences were infiltrated by inversion during 10 minutes with a suspension of 

A.tumefaciens carrying the binary construct of interest (floral dip method, Clough et al., 

1998), in Murashige and Skoog (MS) medium (3.67 g of MS from Duchefa Bochemie per 1.5 

L bidistilled water) supplemented with 5 % of sucrose and 0.02 % of the surfactant Silwet 

L77 (Bechtold et al., 1993). Seeds obtained were selected in Johnson medium 

supplemented with 50 µg/mL carbenicilin (used to inhibit A. tumefaciens growth) and the 

corresponding antibiotic for selection.  

9. Transient expression assay 
 3 weeks old N.benthamiana plants were used for transient expression analysis. 

Agroinfiltration of the desired constructs was usually accompanied with P19, the 

suppressor of gene silencing (Voinnet et al., 2003) according to Sparkes et al., (2006). 3 

days post agroinfiltration, samples were either used for western blot or confocal analysis. 

10. RNA extractions, qRT-PCR and transcriptomic assays    

 For quantitative RT-PCR gene expression analysis, total RNA was extracted with 

TriReagent (Ambion) and treated with DNase I Turbo (Ambion). RNA (1 μg) was used for  

first-strand cDNA synthesis with the High-Capacity cDNA Archive Kit (Applied Biosystems), 

and a 1:10 dilution was used as a template for PCR amplification. Triplicate reactions were 
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carried out in an ABI7500 Real-Time PCR System thermocycler using SYBR Green PCR 

Master Mix (both from Applied Biosystems). Oligonucleotides used are listed in (Table M2).  

 For transcriptomic analyses, plant material from three independent replicates was 

obtained. RNA was extracted as indicated and purified with RNeasy Mini Kit columns 

(Qiagen). Total RNA (5 μg) was used to obtain biotinylated cRNA utilizing the 3′ 

Amplification One-Cycle Target Labeling Kit and for hybridization of Arabidopsis ATH1 

arrays (Affymetrix). Arrays were hybridized, washed, stained, scanned, and analyzed as in 

the study by Bustos et al., (2010).  

11. Protein Extraction and 2D Electrophoresis 

 Proteins were extracted  in buffer containing 50 mM Tris·HCl (pH 7.4), 150 mM 

NaCl, 10 mM MgCl2, 1 mM PMSF, 0.1% Nonidet P-40, and 1× complete  protease inhibitor 

(Roche) and centrifuged (16,000 × g, 4 °C,  30 min), and supernatants were collected. This 

step was repeated twice. Proteins were precipitated with 60% (wt/vol) trichloroacetic acid 

and resuspended in sample buffer. Samples were loaded directly on 10% SDS/PAGE for 1D 

separation or on Immobilized pH gradient (pH 3–5.5) strips for initial separation, followed 

by 10% (v/v) SDS/PAGE 2D electrophoresis. After separation, proteins were 

immunoblotted and detected with corresponding antibodies. 

12. ChIP and PCR Amplification   
 ChIP assays were performed as described (Kaufmann et al., 2010). PHR1pro:PHR1-

MYC and Col-0 plants were grown on +Pi  medium for 7 d and transferred to +Pi or −Pi 

medium for 5 d;  plants were then placed in +Pi or −Pi for 4 h. Seedlings (1.5–2 g) and 2.5 

μL of anti-MYC antibody (Sigma) were used for ChIP.  Precipitated DNA was dissolved in 30 

μL of ultrapure H2O, and 1 μL was used for quantitative PCR amplification as above. 

Amplicons corresponded to the promoter regions of the genes IPS1, SPX1, and PHT1;1, each 

spanning a PHR1 Binding Site. Relative enrichment of immunoprecipitated fragments of 

targets was compared with the immunoprecipitated fragment of non-target control (ACT8) 

in the same immunoprecipitation, as described by Zheng et al., (2009). Two biological 

replicates were analyzed.  
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13. Expression of Recombinant Proteins in Escherichia coli    
 SPX1 and ΔPHR1 were expressed in Escherichia coli as fusions with GST 

(Glutathione S-transferase) and maltose-binding protein (MBP) tags, respectively. To 

obtain a ΔPHR1 fragment fused to MBP, ΔPHR1-pENTR201 was transferred to pDEST-TH1 

to yield MBP-ΔPHR1. Recombinant GST-tagged SPX1 was obtained by amplification of full 

length SPX1 and cloning in pGEX-4T-1 (GE Healthcare). For expression, E. coli cultures at 

OD 0.5 were induced with 0.1 mM isopropyl-β-D-thiogalactopyranoside (18 °C, overnight). 

Recombinant proteins were purified using amylose resin (New England BioLabs) or 

glutathione Sepharose 4 Fast Flow (GE Healthcare). 

14. Co-immunoprecipitation assays 
 To assay the interaction between PHR1 and SPX1 in planta, we crossed 35S::HA-

PHR1 and 35S::GFP-SPX1 transgenic plants and analyzed the F2 generation. Plants were 

grown for 8 d in +P and −P conditions and cross-linked in 1% formaldehyde (30 min) to 

preserve in vivo interactions, and proteins were extracted with lysis buffer [50  mM 

Tris·HCl (pH 7.5), 150 mM NaCl, 0.25% Nonidet, 5% (v/v) glycerol] supplemented with 1 

mM PMSF and protease inhibitors (Roche). The soluble extract (400 μg) was used to 

immune-precipitate the HA-PHR1 protein using anti-HA Affinity Matrix (Roche; 4 °C, 2 h). 

GFP-SPX1 was detected with HRP–anti-GFP antibody (Miltenyi) and the SuperSignal 

Chemiluminescence kit (Pierce). Procedures were identical for co-immunoprecipitation of 

proteins expressed in N. benthamiana.  

 Competitive pull-down assays were performed with fixed amounts of MBP-ΔPHR1 

and GST-SPX1 (1.5 pmol and 12.5 pmol, respectively) in binding buffer [10 mM Tris·HCl 

(pH 7.5), 50 mM  KCl, 5 mM MgCl2, 1 mM DTT, 5 mM EDTA, 0.05% Nonidet  P-40, 2.5% 

(v/v) glycerol] in a total volume of 200 μL (4 °C, 2 h). A NaH2PO4 solution was added to 

pull-down buffer to a final concentration of 15 mM Pi, where indicated. Proteins were 

incubated with increasing amounts of a DNA fragment containing four PHR1-binding sites 

(4× P1BS: 0, 0.2, 0.5, 1.25, or 3 pmol). To examine the effect of anions other than Pi on the 

SPX1/PHR1 interaction using pull-down assays, all reactions included  fixed amounts of 

MBP-ΔPHR1, GST-SPX1, and P1BS (1.5, 12.5,  and 3 pmol, respectively). The control 
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reaction contained 50 mM NaCl in pull-down buffer; in other cases, 45 mM NaCl was 

replaced by 15 mM NaH2PO4, 15 mM NaH2PO3, 45 mM NaNO3, and 22.5 mM Na2SO4. 

Proteins were pulled down with dextrin Sepharose resin and detected in immunoblots with 

anti-GST antibody (Sigma). 

15. EMSA 
 MBP-ΔPHR1 (0.3 pmol) was assayed for binding to the 4× P1BS probe (0.1 pmol) in 

the presence of increasing concentrations of bacterially expressed GST-SPX1 (0, 0.6, 1.2, 

2.5, and  5 pmol) in a total volume of 20 μL. The 4× P1BS probe was generated by annealing 

biotin-labeled semicomplementary primers, as described by Becker et al., (1990). For 

EMSA, we used the LightShift Chemiluminescent EMSA Kit (Pierce). A solution of NaH2PO4 

was added to EMSA buffer to a final concentration of 0.1–15 mM Pi in the indicated 

samples, and 0.3–45 mM NaCl replaced 0.1–15 mM Pi in −P samples. 

16. Microscopy 
 Confocal microscopy was performed as described by González et al., (2005) to 

detect protein/protein interactions using bimolecular complementation assays in 

agroinfiltrated N. benthamiana leaves and for analysis of GFP-SPX1 localization in 

Arabidopsis.  

17. Elemental profile analysis 

 Plant material was analyzed for Ionomic profiling (at Timac Agro, Pamplona) 

following Lahner et al., (2003) and Baxter et al., (2008) with some minimal variations. 

Briefly, weighed Shoot samples of TPT lines along with Col-0 were dried at 65°C for 2 days. 

Digestion was carried out in around 40 mg dry weight with 3.5 mL of HNO3 (Sigma-Aldrich 

Trace Metal grade) at 100 ºC in a termostatized bath for 4 h. Each sample was diluted to 7 

mL with 18 MΩ water.  

 Samples were analyzed by Inductively Coupled Plasma-Optical Emission 

Spectrometry (ICP-OES) on a Thermo Scientific iCAP 6500. On the plasma and at high 

temperature (8000 K) all elements are excited and emit energy as light at a characteristic 

wavelength. The CID detector acts as a photographic plate that can acquire data for large 
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parts of the spectrum simultaneously. A number of elements in one determination for each 

sample are obtained. For ionomic analysis these wavelengths were used for each element: 

B, 208.9 nm; Ca, 184.0 nm; Ca, 317.9 nm; Cd, 228.8 nm; Cr, 206. 1 nm; Cu, 324.7 nm; Fe, 

240.4 nm; Fe, 259.9 nm; K, 766.4 nm; Mg, 279.0 nm; Mg, 285.2 nm; Mn, 293. 9 nm; Mo, 

203.8 nm; Na, 589.5 nm; Ni, 231.6 nm; P, 177.4 nm; P, 178.2 nm; S, 182.0 nm; Sr, 216.5 nm; 

Zn, 206.2 nm. 

18. Physiological assays    

 Cellular Pi levels were determined in 12 day-old seedlings grown under different Pi 

conditions in solid media, as described in (Ames, 1966). Anthocyanin content was 

measured as described (Swain et al., 1959). Mean values were compared using the Student 

t-test.   

19. Accession numbers 
 PHR1 (At4g28610), SPX1 (At5g20150), SPX2 (At2g26660), PHO2 (At2g33770), 

bHLH149 (At1g09250), NLA (At1g02860), NLL (At2g38920), TF-117 (At2g40340), TF-137 

(At1g68640), TF-182 (At2g24430), TF-220 (At1g71450), TF-252 (At1g70510). 
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RESULTS 
 

1. Identification of Novel TFs involved in Pi starvation signaling  

1.1 Screening of TRANSPLANTA lines for identification of Pi starvation signaling 
related TFs  

 To identify novel TFs involved in the Pi starvation signaling pathway, we decided to 

screen the collection of transgenic lines conditionally overexpressing TFs of Arabidopsis 

thaliana, developed in the TRANSPLANTA (TPT) project. We carried out visual phenotypic 

screens of the TPT lines by directly seeding on +Pi and –Pi media supplemented with β-

estradiol to induce the transgene overexpression. Pi regime media without β-estradiol was 

used as control to check for any off-target effects. 

 For the visual phenotypic screening, we focused mainly on 2 criteria, namely 

changes in root architecture and anthocyanin pigment accumulation of TF candidate genes 

compared to wild type (WT) Col-0. Out of 560 overexpressing lines corresponding to 280 

TFs screened in Pi regime conditions, only 2 TFs (TCP16 and NAC1) overexpression 

displayed reproducible phenotypic alterations compared to WT. 

1.1.1 OxTF-TCP16 (OxAt3g45140) and OxTF-NAC1 (OxAt1g01010) plants display 
reduced growth in Pi sufficient conditions.  

 When grown along with WT under +Pi conditions, OxTF-TCP16 and OxTF-NAC1 

displayed reduced growth accompanied with leaf chlorosis; this effect was highly 

pronounced in the case of OxTF-NAC1 transgenic plants (Fig 4 and 5). This growth 

impairment effect was alleviated at Pi deficiency conditions in both OxTF-TCP16 and OxTF-

NAC1 transgenic plants (Fig 4 and 5). To check whether the leaf chlorosis at high Pi growth 

conditions was caused by the accumulation of high phosphate levels, we quantified the 

shoot phosphate levels. OxTF-NAC1 had increased Pi levels (40%) in comparison to wild 

type plants, whereas TCP16 overexpression had no significant effect on Pi levels (Fig 6).  
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 Thus, this phenotypic screening rendered only 1 TF whose overexpression effect 

reflects a potential role of the TF in Pi homeostasis; the potential role in Pi signaling of the 

Fig 6: Pi levels of the OxTF-TCP16 and OxTF-NAC1  
Col-0, OxTF-TCP and OxTF-NAC1 plants were grown 
on +Pi medium supplemented with β-estradiol for 
12 days. Data represents average of 3 biological 
replicates. ** indicate significance difference (P 
≤0.01) according to student t-test.  

 

Fig 4: OxTF-TCP 16 
(OxAt3g45150) plants display 
reduced growth in Pi 
sufficiency 

Col-0 and OxTF-TCP16 plants 
were grown on +Pi and –Pi 
medium supplemented with β-
estradiol for 12 days. Arrow in 
red points to the OxTF-TCP16.  

 

Fig 5: OxTF-NAC1 (OxAt1g01010) 
display reduced growth in +Pi 

Col-0 and OxTF-NAC1 plants were 
grown on +Pi and –Pi medium 
supplemented with β-estradiol for 12 
days.  Arrow in red points to the OxTF-
NAC1. 
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second TF whose overexpression does not alter Pi levels is still uncertain. As an alternative 

approach, we decided to continue the search for novel TFs of Pi starvation signaling, based 

on the ionomic analysis.  

1.2 Elemental profile analysis  

 Towards the large scale elemental profile analysis of the TPT lines conditionally 

overexpressing TFs, we used ICP-OES (performed at TIMAC AGRO facilities 

(www.timacagro.es). In order to obtain sufficient material for analysis and to avoid the 

agar contamination from the plant growth media, we decided to analyse the shoots for the 

elemental profile measurement. 

 Out of the 450 TFs (each with 1-3 overexpressing independent lines) provided by 

TRANSPLANTA consortium, we selected one independent line for 320 TFs for shoot 

ionome analysis. Dried shoot samples (see Methods section-17) of the selected TPT lines, 

grown in +Pi medium supplemented with β-estradiol were used for shoot ionome 

quantification. We measured the amounts of 16 elements namely B, Ca, Cd, Cr, Cu, Fe, K, Mg, 

Mn, Mo, Na, Ni, P, S, Sr, and Zn. Shoot ionomics was performed in batches of 14 TFs along 

with Col-0, to feed the system with internal controls. As most of the candidates are 

expected to have elemental profiles similar to the Col-0, experiment execution in batches 

allows to robustly define the average levels of each element. Of the 16 elements measured, 

we observed that in general, B, Cr and Ni had high standard deviation with lower 

sensitivity. Therefore, these elements were not considered for analysis.  

 Out of the 320 TFs expressing transgenic TPT lines analyzed, overexpression of 34 

TFs showed significant alterations in its ionomic profile compared to Col-0. The ratio of the 

total number of TFs to that of the sum of the number of elements altered in these TFs 

(34/87) in Table1 indicates that ionomic alterations generally concern many elements 

(approximately 3 elements as average). Indeed, overexpression of only 14 TFs had 

alterations in a single element. 
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 Table 1: Number of TFs whose overexpression results in alterations in the levels of each element 

 Giving emphasis to P element, we selected the following TFs whose overexpression 

had alterations in P levels, for further analysis (Table 2).  

 
Table 2: Overexpression of 5 TFs significantly altered P levels.   

  

The ionomic profiles of the selected five TFs overexpressing TPT lines are shown for 

each element in Fig 7 (left bars). Following the 1st round of ionomic profile analysis of the 

TPT lines, we decided to repeat the elemental profile analysis of these 5 TFs 

overexpressing TPT lines (which showed altered Pi levels), to check for data 

reproducibility. For this second round of ionomic analysis, we used all the independent 

overexpressing transgenic lines of these 5 TFs available in the TPT collection. Only one line 

was available for TF-117 and TF-182; two lines for TF-137 and 3 independent 

overexpressing lines for each of TF-220 and TF-252. However, we observed that only one 

overexpressing TPT line per TF, showed altered elemental profile identical to the 

1stscreening, while the other lines/TF had elemental levels similar to Col-0. The line that 

showed alteration is represented by right vertical bars for each element in (Fig 7). 
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Fig 7: Ionomic profile pattern of OxTF-117, OxTF-137, OxTF-182, OxTF-220 and OxTF-252. The bars 
represented in the graph are normalized to Col-0. X-axis corresponds to different elements quantified 
and the Y-axis represents the percentage level of each element relative to Col-0. Values for each TF 
represents the average of 4 independent biological replicates in the case of 1st screening (left bars) and 8 
biological replicates in the case of 2nd screening (right bars). Significant difference of P ≤ 0.05 calculated 
according to Student t-test is represented by single * symbol and P value ≤ 0.01 is represented by ** 
symbol. 

 In order to check whether the observed ionomic alterations were specific to TF 

overexpression (i.e, dependent on β-estradiol treatment) or were due to some off-target 
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effects, we checked the effect of β-estradiol on intracellular Pi levels in lines displaying 

alterations in ionomic profiles corresponding to TF-117, TF-137 and TF-182; we had no 

sufficient seeds for analysis of TF-220 and TF-252. While β-estradiol had no significant 

effect on Col-0 Pi levels, in the TPT lines alterations in Pi levels were β-estradiol dependent 

proving that altered ionomic profiles obtained in candidate TF genes were due to transgene 

overexpression (Fig 8). 

 We observed a good level of concordance in the pattern of elements profile between 

the 2 rounds of ionomics screening. For instance, OxTF-137 showed exactly similar 

ionomics profile in both rounds of screening (Fig 7C) and among these, only in the case of 

OxTF-182, for unknown reasons, Ca and Sr accumulated levels were in opposite direction 

between the two screenings (marked in Fig 7A with  symbol). On comparing the 2 rounds 

of the ionomic profiling results of the candidate TFs overexpressors, we noticed that the 

statistical significance of the 2nd screening was generally higher compared to the 1st 

screening, possibly due to the fact that larger numbers of replicates were analyzed.  

 

 In addition to the TFs shown above, we also found a candidate TF (described here as 

TF-113 – ANAC30) whose overexpression resulted in reduced accumulation in all elements 

examined (Fig 9B). However, TF-113 overexpression had deleterious effect on plant growth 

leading to premature death (Fig 9A). Thus alteration of ionomic profile was likely due to 

plant mis functioning. Therefore, this line was not considered for further analysis. 

Fig 8: Alterations in Pi levels of the 
selected TPT lines is dependent on 
β-estradiol treatment   

Overexpressing lines of TF-117, TF-
137 and TF-182 along with Col-0 were 
grown in +Pi medium supplemented 
with or without β-estradiol. Data 
represents mean ± S.D of 3 biological 
replicates. Based on the student’s t-
test calculation, P ≤ 0.05 is marked 
with * symbol and P ≤ 0.01 is marked 
with ** symbol 
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Fig 9: OxTF-113 showed symptoms of lethality 

A) Phenotype displayed by OxTF-113. Transgenic plants overexpressing TF-113 and Col-0 were 
grown on +Pi medium supplemented with β-estradiol for 12 days. 

B) Ionomic profile of OxTF-113. Values represented here are normalized to Col-0. ** indicate 
significance difference (P ≤0.01) according to student t-test, n=4. 

 

Unaltered Pi levels in knock out mutants of two selected TF candidates 

Following the shoot ionomics analysis of the selected TFs overexpressing TPT lines, 

we wanted to find whether Pi levels were also affected in these selected TF mutant plants. 

Towards this, we searched for mutants in stock centres and found k.o. mutants for 4 TFs 

(TF-137, TF-182, TF-220 and TF-252). However, due to time restrictions, we focused on 

mutants for two TFs (TF-137 and TF-182) that corresponded to Pi starvation inducible 

genes (Bustos et al., 2010). We quantified free intracellular Pi level of the TFs 

overexpressors (OxTF-137 and OxTF-182) and their corresponding knock out mutant (137 

k.o. and 182 k.o.) compared to Col-0. Consistent with our previous results of shoot ionomics 

analysis (Fig 7A, C), overexpression of TF-137 resulted in increased Pi and that of TF-182 

overexpression lead to decreased Pi levels. However, the k.o. mutants of these 2 TFs had Pi 

levels similar to Col-0 (Fig10). These results showing undisturbed Pi content in k.o. 

mutants could reflect functional redundancy. 
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2. Identification of novel Pi signaling components interacting with PHR1.  
Sensor properties of SPX1, a Pi dependent inhibitor of PHR1 

2.1 SPX1 interacts with PHR1 

 To identify proteins that act early in Pi sensing and signaling, we sought interacting 

partners of PHR1, whose gene is only weakly responsive to Pi starvation (Rubio et al., 

2001). We screened a normalized yeast two-hybrid cDNA library, using as bait a truncated 

derivative of PHR1 (△PHR1, amino acids 208-362) that lacks transcription activation 

domains. One candidate PHR1 partner was SPX1 (Fig. 11A), described as a nuclear protein 

involved in Pi signaling (Duan et al., 2008), which has an SPX domain also present in yeast 

Pi sensors. We determined that SPX1 interacts with PHR1 in planta using a co-

immunoprecipitation (co-IP) assay in Nicotiana benthamiana plants (Fig. 11B). We further 

confirmed the SPX1-PHR1 interaction in bimolecular fluorescence complementation (BiFC) 

assays in tobacco leaves, which showed that YFPC-PHR1 interacts with YFPN-SPX1 in the 

nucleus (Fig. 11C). Yeast two-hybrid assays with SPX1 deletion derivatives showed that 

binding to PHR1 required an intact SPX domain and a flanking region at its C terminus (Fig. 

11A). 

Fig 10) Pi levels of overexpressing 
lines and knock out mutants of 
selected TFs compared to Col-0. Data 
represents mean ± S.D of 3 biological 
replicates. Plants were grown for 12 
days in +Pi medium, (supplemented 
with β-estradiol in the case of OxTF-
137 and OxTF-182). Based on the 
student’s t-test calculation, P ≤ 0.05 is 
marked with * symbol and P ≤ 0.01 is 
marked with ** symbol. 
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Fig 11: PHR1 interacts with SPX1 

A. SPX1 interacts with PHR1 in yeast. The interaction between ΔPHR1 and SPX1 or its deletion 
derivatives is indicated by yeast growth in selective media lacking tryptophan, as well as leucine 
(−WL) and leucine, histidine, and adenine (−WLHA). AD, GAL4 activation domain; BD, GAL4 
DNA-binding domain. 

B. Co-immunoprecipitation of GFP-SPX1 and HA-PHR1. Nicotiana benthamiana leaves 
agroinfiltrated with HA-PHR1 and GFP-SPX1 or GFP-expressing constructs were treated with 
formaldehyde after harvest; protein extracts were immunoprecipitated with anti-HA antibody 
and detected in western blot with anti-HA and GFP antibodies. 

C. Analysis of SPX1 and PHR1 interaction by BiFC. Confocal images of N. benthamiana epidermal 
cells expressing different construct combinations as indicated are shown. The interaction 
between SPX1 and PHR1 in the nucleus leads to reconstitution of YFP fluorescence in the 
nucleus of cells that co-express the YFPN-SPX1 and YFPC-PHR1 constructs. Bars=10μm.  
   

2.2 Pi-Dependent effect of spx1 and spx2 mutations 

 In Arabidopsis, SPX1 is part of a subfamily of three nuclear proteins (SPX1, SPX2, and 

SPX3) whose genes are highly responsive to Pi starvation (Duan et al., 2008). We identified 

single spx1 and spx2 mutants in the Salk collection (Alonso et al., 2003) and used them to 

generate a double mutant. We also generated transgenic plants that over-expressed GFP-

SPX1, and examined Pi levels in WT, mutants, and two independent transgenic plants 

grown in four Pi regimens (0, 30, 100, and 2,000 μM). In the 2,000 and 100 μM Pi growth 
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conditions, the spx1spx2 double mutant showed a significant increase in Pi accumulation 

relative to WT plants, whereas the opposite was the case for the two GFP-SPX1 over-

expressing lines (Fig. 12A). In 0 and 30 μM Pi growth conditions, however, plants with 

altered SPX1 and/or SPX2 activity showed Pi levels similar to Pi levels of WT plants (Fig. 

12A). The effect of SPX1 and SPX2 on Pi accumulation is therefore Pi-dependent. Single 

spx1 and spx2 mutations had a marginal effect on Pi accumulation, indicating marked 

functional redundancy between these SPX proteins (Fig. 12A). 

 We also examined the effect of altered SPX1 activity on other physiological 

responses to −P, such as anthocyanin accumulation, root-to-shoot growth ratio, and root 

hair number and length (Fig. 12B, C). The root-to-shoot growth ratio increased only in the 

spx1spx2 double mutant compared with WT and was only significant when plants were 

grown at the highest Pi regimens (1,000 and 100 μM). Anthocyanin accumulation was 

higher in the spx1spx2 double mutant and lower in OxGFP-SPX1 plants compared to WT in 

all Pi regimens except the highest (2mM). Significant alterations in root hair number 

and/or length (local Pi-controlled responses, Bates et al., 1996) compared with WT plants 

were detected in spx1spx2 in both +Pi and −Pi, and in the SPX1-over-expressing line when 

grown in –P (Fig 12C). It is noteworthy that in +Pi conditions, the spx1spx2 mutant showed 

reduced root hair size relative to WT plants. This could be due to higher Pi levels in mutant 

plants than in WT plants, which would override the potentially positive effect of the 

spx1spx2 mutation on root hair development. The results show that some effects of altered 

SPX1 activity are largely Pi-dependent (Pi accumulation and root-to-shoot growth ratio), 

whereas others appear to be less so (anthocyanin accumulation and root hair number and 

length) that the SPX1 and SPX2 effect on certain responses is not fully Pi dependent; 

alternatively, the effect on some responses (anthocyanin accumulation and root hair 

number and length) of SPX1 and SPX2 impairment or overexpression in −P conditions 

results from their altered activity at intermediate Pi levels before full Pi starvation 

conditions are reached. We examined these possibilities relative to anthocyanin 

accumulation by examining two Pi starvation time points (10 and 20 d; Fig. 12D). The effect 

of altered SPX1 activity on anthocyanin accumulation was more pronounced at day 10 than 

at day 20 in Pi starvation. SPX1 function thus appears to be primarily Pi-dependent.  
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 Fig 12: Effects of altering SPX1 and SPX2 activity in physiological/morphological responses to Pi 

starvation.  

A. Pi levels in WT, spx1 and spx2 single mutant plants, spx1spx2 double mutant plants, and two 
independent transgenic lines overexpressing GFP-SPX1 (OxSPX1-1, OxSPX1-2), all grown in four 
Pi regimens (2,000, 100, and 30 μM, and −Pi) for 10 d. 

B. Histograms of anthocyanin content and of root-to-shoot fresh weight (FW) ratio of WT and 
spx1spx2 double mutant plants and an OxGFP-SPX1 transgenic plant, all grown in four Pi 
regimens (2,000, 100, and 30 μM and −Pi) for 10 d. 

C. Histograms of root hair length and number in WT, spx1spx2, and OxGFP-SPX1 plants grown in 
the +Pi (2 mM) or −Pi conditions (Left), and a detail showing root hairs of these genotypes 
grown in −Pi conditions (Right). 

D. Anthocyanin content of WT, spx1spx2, and OxGFP-SPX1 plants grown in −P conditions and 
harvested at two different times after germination (10 and 20 d).  
In all cases, data show mean ± SD (n = 3).  Shared or different letters above bars indicate non 
significant and significant differences between groups (P < 0.05) according to Student t tests. 
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To determine the effects of the spx1spx2 double mutation on gene expression and its 

possible Pi dependence, we analyzed transcriptomes of plants grown in +Pi and −Pi 

conditions. Given that SPX1 and SPX2 are Pi starvation-inducible, whereas most 

physiological effects of altering their activity require Pi (Fig. 12), we also analyzed 

transcriptomes of Pi-starved plants after short-term Pi refeeding. Results showed marked 

Pi dependence of the spx1spx2 effects (Fig. 13 and Table 3; microarray data has been 

deposited in the Gene Expression omnibus database, www.ncbi.nlm.nih.gov/geo; accession 

number GSE52046). Although only 29 genes showed significant expression differences 

between the spx1spx2 and WT plants grown in −Pi conditions (15 up-regulated and 14 

down-regulated, 2-fold cut-off, FDR ≤0.05), when these plants were grown in +Pi 

conditions or Pi-refed, this number was >20-fold higher (697 and 760 genes, respectively). 

In +Pi-grown plants, >65% of genes whose expression was higher or lower 

in spx1spx2 than in WT plants were PSI or Pi starvation-repressed genes, respectively; this 

indicates that SPX1 and SPX2 are primarily regulators of PSRs. For spx1spx2 double mutants 

in Pi-refeeding conditions, 58% and 38% of the up-regulated and down-regulated genes, 

respectively, were PSI. Of these up-regulated PSI genes, 65% were direct PHR1 targets, as 

described by Bustos et al., (2010), whereas only 2.5% of the down-regulated PSI genes 

were direct PHR1 targets. Expression of PHR1 PSI targets is thus especially influenced 

by SPX1 and SPX2 after brief Pi refeeding. These transcriptomic phenotypes are consistent 

with the hypothesis that SPX1 and SPX2 are Pi-dependent inhibitors of PHR1 activity       

(Fig 13).  

 

 

 

 

 

 

 

Fig 13: Diagram showing transcriptomic analysis of the effect of Pi growth conditions on 
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gene expression in WT and spx1spx2 plants grown for 8 d in +Pi, in −Pi,	or	after	brief	Pi	refeeding	
(4 h). The total number of genes whose expression is induced or repressed by Pi starvation in WT plants 
or is higher (Refeeding > −Pi) or lower (Refeeding < −Pi) in Pi-refed vs. Pi-starved WT plants is shown 
above bars (2×cut-off; false discovery rate is ≤0.05). The number of genes whose expression is higher 
[mutation (mut) > WT] or lower (mut < WT) in spx1spx2 plants than in WT plants in each growth 
condition is also shown. The percentage of Pi starvation-responsive genes (−Pi-induced and −Pi-
repressed) is indicated, as well as the percentage of PHR1 direct targets (as described by Bustos et al., 
2010). Three biological replicates were analyzed.   
 

 We compared our transcriptomic data with the data of Thibaud et al.,(2010), which 

dissected systemically and locally controlled molecular responses to Pi (Table 3). We found 

notable differences between the two studies with regard to the repression response.  For 

example, the Pi starvation-repressed gene set reported by Thibaud et al., (2010) shows 

greater overlap with the PSI gene set than with the Pi starvation-repressed gene set of our 

study; the repression response was therefore not considered further. There was 

nonetheless a good degree of coincidence between PSI genes in the study by Thibaud et al., 

(2010) and our study, such that 85 of the 110 systemically controlled induced (Ind.S) and 

181 of the 301 locally controlled (Ind. L) PSI genes were also induced in our study (total of 

2,025 PSI genes). We also found similar relative representation of Ind. S and Ind. L in the 

gene set up-regulated in the spx1spx2 mutant plants grown in +Pi (of 602 up-regulated 

genes in spx1spx2, 24 and 74 were Ind. S and Ind. L, respectively), which indicated that 

primarily SPX1 and related genes control both types of responses at the molecular level. In 

short-term Pi refeeding, Ind.L genes were enriched in the gene set downregulated in the 

spx1spx2 double mutant. This indicates that in contrast to its negative effect on Pi 

starvation induction after long-term growth in a Pi-rich regimen, SPX1-(related) activity 

slows repression of Ind. L genes after Pi refeeding in Pi-starved plants, and suggests that 

SPX1 regulates regulators of Pi starvation other than PHR1.  

 

Table 3: Effect of spx1spx2 on systemically and locally controlled transcriptomic responses to Pi 
starvation: Numbers in the second column (Total genes) indicate the number of genes that are 
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systemically controlled Pi starvation-induced (Ind. S) or -repressed (Rep. S) and locally controlled Pi 
starvation-induced (Ind. L) or -repressed (Rep. L) genes in the study of Thibaud et al., (2010). The 
remaining columns indicate, out of these total genes in Thibaud et al., (2010) gene sets, the number of 
genes that coincide with the genes in the groups identified in this study: induced and repressed by Pi 
starvation (Ind. –P and Rep. –P, respectively) or after Pi refeeding (Ind. refeeding and Rep. refeeding, 
respectively) in wild type plants (WT), and upregulated or downregulated in Pi sufficient conditions (Up 
+P and Down +P, respectively) or after refeeding of spx1spx2 plants compared with WT plants (Up 
refeeding and Down refeeding, respectively). The number of genes for each set of our study is shown in 
parentheses.  

2.3 Pi-Dependent Interaction between SPX1 and PHR1 in-vivo     

 We tested whether the SPX1 Pi-dependent inhibitory effect on PHR1 was due to Pi 

dependence of the SPX1/PHR1 interaction itself, using Co-IP experiments in transgenic 

plants that co-expressed HA-PHR1 and GFP-SPX1 grown in +Pi and −Pi conditions. The 

SPX1/PHR1 interaction was detected only in +Pi conditions (Fig. 14A). Confocal 

microscopy analysis of GFP-SPX1 in plants grown in +Pi and −Pi conditions showed that 

SPX1 is a nuclear protein, irrespective of Pi growth conditions (Fig. 14B). Because PHR1 is 

also constitutively located in the nucleus (Rubio et al., 2001), we concluded that the Pi-

dependent interaction of SPX1 and PHR1 is not due to altered subcellular localization of 

any PHR1 or SPX1 proteins in plants grown in −Pi conditions.  

     

Fig 14: Cellular Pi-dependent interaction between SPX1 and PHR1 in planta.    

A. Co-IP assay of the in planta interaction between GFP-SPX1 and HA-PHR1 in plants grown in +Pi (2 
mM) and −Pi conditions. Arabidopsis plants constitutively expressing GFP-SPX1 and HA-PHR1 were 
grown for 8 d in +Pi or −Pi conditions and preϐixed with formaldehyde after harvest to preserve the in 
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planta protein interaction status (Serino et al., 2003). Protein extracts were immunoprecipitated with 
anti-HA and detected by western blotting using anti-GFP antibody.  

B. Confocal microscopy images showing that GFP-SPX1 is located in the nucleus, irrespective of the Pi 
growth regimen of the plant. 

2.4 PHR1 Binding to Its Targets Is Low Pi-Dependent 

 Two alternative models could explain the inhibitory effect of SPX1 on PHR1. SPX1 

could inhibit PHR1 binding to DNA or could act as a co-repressor, such that the PHR1/SPX1 

complex functions as a repressor, in contrast to the primary role of PHR1 as a transcription 

activator (Bustos et al., 2010). To discriminate between these models, we examined the Pi 

dependence of PHR1 binding to its cognate target elements in vivo, using ChIP coupled with 

PCR of PHR1 targets (Fig. 15). We found strong PHR1 binding to targets in plants grown in 

−P conditions, which was greatly reduced in plants grown in +Pi conditions or after 

refeeding of Pi-starved plants (Fig. 15). These results point to the first model, in which 

SPX1 inhibits PHR1 binding to DNA in a Pi-dependent manner.  Given that Pi levels in Pi-

refed plants are approximately one-half of Pi levels in plants grown in Pi-rich media (Fig. 

15), a direct Pi effect on SPX1 is sufficient to explain the reduction observed in PHR1 

binding to its targets in Pi-refed plants.  

 

Fig 15: Cellular Pi-dependent interaction between PHR1 and its targets in planta 
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ChIP and promoter PCR amplification analysis of PHR1 targets in plants grown in +Pi (2 mM), in −Pi, and 
after Pi refeeding (Ref). Control Columbia (Col-0) and transgenic PHRI promoter (PHR1pro)::PHR1-MYC 
plants were used in the experiment, in which three PHR1 targets (SPX1, IPS1, and PHT1) and one control 
[ACT8 (Act)] were analyzed by qPCR. Recovery of target by Co-IP with anti-MYC antibody was compared 
with recovery of a non-bound control (Act) in the same immunoprecipitation. The Pi levels in plants 
used in the experiment are shown (Upper Right).  Data show mean ± SD (n = 2). Shared or different 
letters above bars indicate non-significant and significant differences between groups (P < 0.05), 
respectively, according to Student t tests. FW refers to fresh weight. 

2.5 Pi-Dependent Inhibition of PHR1 Binding to DNA by SPX1    

 To confirm the possibility that SPX1 is a Pi-dependent inhibitor of PHR1 binding to 

its recognition sequence P1BS (Rubio et al., 2001 and Bustos et al., 2010), we performed in- 

vitro DNA-binding assays using increasing amounts of SPX1 in binding buffer with or 

without Pi (15 mM). To distinguish direct from indirect Pi effects on inhibition, for DNA-

binding assays, we used affinity-purified bacterially expressed ΔPHR1, whose DNA-binding 

specificity is similar to that of the full-sized protein (Rubio et al., 2001) and SPX1 protein; 

these proteins were tagged with MBP and GST, respectively. EMSAs showed that in the 

presence of Pi, GST-SPX1 efficiently displaced the ΔPHR1/P1BS interaction, whereas the 

SPX1 inhibitory effect was very weak when Pi was absent (Fig. 16A). Using EMSA, we 

examined the range of Pi concentrations in which SPX1 effectively inhibits PHR1 binding to 

P1BS (Fig. 16B). SPX1 inhibitory activity showed a clear dose-dependent response to Pi 

levels, with optimal activity at 15 mM and 50% activity at ∼0.3 mM. This sensitivity of SPX1 

inhibitory activity in vitro is compatible with physiological Pi levels in plants grown in Pi-

rich  media [10–15 mM total Pi, 0.5 mM cytosolic Pi (Rouached et al., 2011)].   

 In pull-down assays, we analyzed P1BS competition for the ΔPHR1/SPX1 

interaction. Reciprocal to the finding that SPX1 displaced P1BS binding to ΔPHR1 in the 

presence of Pi, P1BS competed with SPX1 for PHR1 binding only when Pi was lacking (Fig. 

16C). These results show that SPX1 can interact with PHR1 in both +Pi and −Pi conditions 

in the absence of DNA; however, in the presence of excess DNA, the SPX1/PHR1 interaction 

is displaced. This explains why in the in planta co-IP assay (Fig 14A), which is performed in 

the presence of genomic DNA, only when Pi is present is the SPX1/PHR1 interaction 

detected.  Because the in vitro data in (Fig. 17) were obtained using purified bacterially 

expressed proteins, we conclude that Pi itself directly affects the SPX1 competition of the 
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PHR1/P1BS interaction. We also tested the specificity of the Pi effect by analyzing whether 

other anions, such as nitrate, sulfate, and Phi, similarly affected the SPX1/ΔPHR1 

interaction. Other than Pi, only Phi had an effect on the interaction (Fig. 16D). The fact that 

Phi represses PSRs has been considered evidence that Pi itself is a signal (Carswell et al., 

1996 and Ticconi et al., 2001), a concept that is strengthened by our data.  

 

Fig 16: Direct Pi effect on the SPX1/PHR1 interaction 
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A. EMSA of the interaction between MBP-ΔPHR1 and P1BS, showing Pi-dependent inhibition of the MBP-
ΔPHR1/P1BS interaction by GST-SPX1. The experiment was performed with 0.1 pmol of 4× P1BS; 0.3 
pmol of MBP-ΔPHR1; and 0, 0.6, 1.2, 2.5, and 5 pmol of GST-SPX1.  

B. EMSA of the interaction between MBP-ΔPHR1 and P1BS in the presence of SPX1, showing that 
GST/SPX1 inhibition of the MBP-ΔPHR1/P1BS interaction is Pi dose-dependent. The experiment was 
performed with 0.1 pmol of 4× P1BS, 0.3 pmol of MBP-ΔPHR1, and 5 pmol of GST-SPX1 with varying Pi 
concentrations (0–25 mM), as indicated. Binding inhibition was normalized to the sample lacking SPX1. 
The tagged ΔPHR1 and SPX1 proteins used in these experiments were bacterially expressed and affinity-
purified  

C. Pull-down assays showing that the MBP-ΔPHR1/GST-SPX1 interaction is displaced by P1BS only 
when Pi is lacking in the incubation buffer. The experiment was performed with 1.5 pmol of MBP-ΔPHR1 
or MBP; 12.5 pmol of GST-SPX1; and 0, 0.2, 0.5, 1.25, or 3 pmol of 4× P1BS probe.  

D. Pull-down assays showing that only Phi can replace the Pi effect on the SPX1/PHR1 interaction. All 
reactions included fixed amounts of MBP-ΔPHR1, GST-SPX1, and P1BS (1.5, 12.5, and 3 pmol, 
respectively). The control (Ct) reaction contained 50mM NaCl in pull-down buffer; in other cases, 45 mM 
NaCl was replaced by 15 mM NaH2PO4 (+Pi), 15 mM NaH2PO3 (+Phi), 45 mM NaNO3 (+N), and 22.5 mM 
Na2SO4 (+S). Proteins were pulled down with dextrin Sepharose resin and detected in immunoblotting 
with anti-GST antibody. The tagged ΔPHR1 and SPX1 proteins used in these experiments were 
bacterially expressed and affinity-purified.  

 

3. New light on NLA (E3 ubiquitin ligase) and PHO2 (E2 ubiquitin 
conjugase) function in Pi signaling.  Role in growth control and in a novel 
feed-back loop in Pi starvation signaling. 
 As already mentioned, nla displays Pi toxicity symptoms similar to pho2 under low 

nitrate and high Pi conditions (see introduction section 3.2.4 and 3.4.3), suggesting that 

both NLA and PHO2 may function in the same pathway.  To test this possibility, we first 

decided to examine whether NLA interacts with PHO2 and other components of Pi 

starvation signaling pathway. 

3.1 NLA interacts with PHO2, SPX1 and bHLH149  

 Full length NLA and a RING domain deletion mutant of NLA (described here as Δnla) 

were used as baits for Y2H assay (Fig 17A). PHR1, SPX1, PHO2, bHLH149 and NLL (NLA-

like, a close homolog of NLA) were used as prey proteins. UBC8 (Ubiquitin conjugase 8) 

was used as a positive control as it was demonstrated to interact with NLA by Peng et al., 

(2007). Intact NLA (possessing both SPX and RING domain) was able to interact with PHO2, 

SPX1 and bHLH149; the interaction being strong with SPX1, intermediate with PHO2 and 
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weak in the case of bHLH149 (Fig 17B). The loss of these positive interactions in the case of 

Δnla implied that NLA interacted with SPX1, bHLH149 and PHO2 via its RING domain. 

Concordant to the recent results of Park et al., (2014), we also confirmed that NLA interacts 

with itself via its RING domain. No interaction was found between NLA and PHR1 or NLL 

(Fig 17B).  

  

Fig 17: NLA interacts with PHO2, SPX1 and bHLH149 in Y2H assay 

A. Schematic representation of structure of bait proteins: full length NLA (E3 ubiqutin ligase) with 
N-terminal SPX domain, represented in blue and C-terminal RING domain in red; and deletion 
mutant (Δnla) lacking the RING domain. This figure is taken from Peng et al., (2007). 

B. Yeast cells co-transformed with bait and prey proteins were selected and subsequently grown 
on yeast synthetic dropout lacking Trp and Leu (-WL) as a transformation control and on 
selective media lacking Trp, Leu, His and Ade (-WLHA) to test protein interactions.  

 

 The finding that PHO2 interacts with NLA in Y2H assay (Fig 17 B) gave evidence to 

our hypothesis that PHO2 and NLA participate in the same pathway. This finding was 

confirmed by data from Chua laboratory (Park et al., 2014) demonstrating that NLA 
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interacts with PHO2 in yeast and in planta. Next we wanted to verify whether NLA interacts 

with bHLH149 and SPX1 in planta. Towards this, we performed Co-immunoprecipitation 

(Co-IP) assay by transient expression in N.benthamiana. Both SPX1 and bHLH149 were 

able to interact in-vivo with NLA (Fig 18A, B and C).  

 

 

Fig 18: NLA interacts with bHLH149 and SPX1 in planta 

A. Schematic diagram showing the constructs used for the Co-IP assay. 
B. Co-IP assay of GFP-SPX1 and MYC-NLA: Transient expression of 35S::GFP-SPX1 and 35S::MYC-

NLA was performed in N.benthamiana using agro-infiltration. GFP-SPX1 was 
immunoprecipitated using anti-GFP antibody with subsequent detection in western blots using 
anti-GFP and anti-MYC antibodies. 

C. Co-IP of MYC-NLA and HA-bHLH149 : 35S::MYC-NLA and 35S::HA-bHLH149 constructs were 
transiently expressed in N.benthamiana leaves and plants extracts were Immunoprecipitated 
with anti-MYC antibody and detected in western blots using anti-MYC and anti-HA antibodies. 
 

3.2 NLA and PHO2 mediate degradation of SPX1 and bHLH149 

 Based on our Y2H and Co-IP assays, we hypothesized that SPX1 and bHLH149 could 

be targets of PHO2 and NLA. To test if SPX1 is regulated by PHO2 or NLA, we first 

performed transient expression assay in N.benthamiana plants, agroinfiltrated with either 

35S::GFP-SPX1 alone or together with 35S::PHO2 and 35S::MYC-NLA. We observed a minor 
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effect of PHO2 or NLA alone on SPX1. However, the combination of PHO2 and NLA greatly 

reduced the level of SPX1 (Fig 19A). To verify that SPX1 degradation by PHO2 and NLA was 

at protein level, we checked SPX1 transcripts by qRT-PCR to exclude an artifact due to 

transgene silencing (Fig 19B). In Parallel, we generated Arabidopsis thaliana transgenic 

plants overexpressing SPX1 in WT, pho2 and nla mutant backgrounds to check the effects 

of these mutations on SPX1 level. We observed that SPX1 protein level was higher in nla 

mutant background compared to WT (Fig 19C). Unfortunately, due to transgene silencing 

in the pho2 background, we could not evaluate the effect of pho2 mutation on SPX1 level. 

The combined effect of nla mutation and SPX1 overexpression on Pi levels is currently 

being examined.  

 

Fig 19: PHO2 and NLA mediate degradation of SPX1 in planta 

A. N.benthamiana plants were agro-infiltrated with 35S::GFP-SPX1 alone or together with 
35S::PHO2, 35S::MYC-NLA; samples were collected after 3 days and used for western blot 
analysis. 35S:GFP was used as internal control.   

B. qRT-PCR expression analysis of SPX1 in the samples of (A). 35S::GFP co-infiltrated with the 
samples was used as the endogenous control. Data represents mean ± S.D of 3 independent 
biological replicates. 
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C. Effect of nla mutation on SPX1 protein level in Arabidopsis: OxGFP-SPX1 and OxGFP-SPX1_nla 
transgenic plants were grown on complete nutrient conditioned soil. Rubisco was used as 
loading control. 2 independent transgenic lines were analyzed. 
 

To assess if bHLH149 is also a target of PHO2 and NLA, we transiently expressed 

35S::HA-bHLH149 alone or together with 35S::PHO2 and 35s::MYC-NLA in N.benthamiana. 

Contrary to our expectation, bHLH149 stability was unaffected by PHO2 or NLA (Fig 20A). 

There are many possibilities that could explain this negative result, since a transient assay 

in a heterologous system does not perfectly mimic the situation in the homologous system. 

Therefore, we decided to examine the effects of pho2 and nla mutation on bHLH149 protein 

stability in Arabidopsis. We observed increased level of bHLH149 protein in pho2 or nla 

background compared to WT background (Fig 20B). Interestingly, protein levels of 

bHLH149 in mutant backgrounds had a positive correlation with plant size reduction. i.e., 

OxbHLH149_pho2 and to a lesser extent OxbHLH149_nla had clearly a smaller plant size 

compared to OxbHLH149_WT (Fig 20C). The combined effect of pho2 or nla mutation and 

bHLH149 overexpression on Pi levels is currently being characterized. 
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Fig 20: Effect of PHO2 and NLA on bHLH149  

A. Western blot analysis showing the effect of PHO2 and NLA on bHLH149.  N.benthamaiana was 
agroinfiltrated with 35S::HA-bHLH149 alone or with 35S::PHO2 and 35S::MYC-NLA and samples 
were collected after 3 days. 35S: GFP used as the internal control. Each sample includes 3 
independent biological replicates. 

B. Activity of PHO2 and NLA on bHLH149 in stable Arabidopsis transgenic lines. 2 individual 
transgenic plants for each line are displayed. Rubisco is shown as loading control. 

C. Picture represents 3 weeks old OxbHLH149, OxbHLH149_pho2 and OxbHLH149_nla transgenic 
plants grown in complete nutrient soil under short day conditions. 
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DISCUSSION 

 

 Plants have evolved a set of adaptive responses including developmental and 

biochemical/metabolic changes to cope with growth under Pi limiting conditions. 

Considerable information have been gathered in the past decade on the components of the 

Pi starvation signaling pathway including (i) identification of PHOSPHATE STARVATION 

RESPONSE 1 (PHR1) and related transcription factors as master regulators of Pi starvation 

responses (PSRs) (Rubio V et al., 2001; Zhou J, et al., 2008; Bustos R, et al., 2010; Ren F, et 

al., 2012; Wang J, et al., 2013) (ii) demonstration of the involvement of ubiquitination 

system components, including PHO2 and NLA in Pi signaling (Bari R et al., 2006; Kant S et 

al., 2011; Huang TK, et al., 2013; Lin WY et al., 2013; Park BS et al., 2014) (iii) identification 

of miRNAs as mobile signals in Pi homeostasis (Pant BD et al., 2008; Kuo HF and Chiou TJ, 

2011); and (iv) identification of Pi starvation-induced (PSI) riboregulators of miRNA 

activity, based on target mimicry (Zorrilla JM, et al., 2007) and natural antisense RNA that 

activates translation of PHO1 mRNA (Jabnoune M, et al., 2013).  

 In this study, we have contributed to the knowledge on the control of these 

responses in three aspects:  

1. Identification of five new candidate TFs controlling PSRs. 

2. Identification of SPX1 as a Pi dependent inhibitor of PHR1, qualifying it as a 

component of the Pi sensor.  

3. Uncovering new roles of PHO2 and NLA in Pi starvation signaling regarding growth 

control and in the generation of a feedback loop concerning SPX1. 

1. Identification of Novel TFs involved in Pi starvation signaling  
 In this project we report data that establishes the use of ionomic profiling as a 

potential functional genomics tool for the identification of genes involved in the 

accumulation of mineral nutrients and trace elements in plants. In our first round of 

elemental profile screening involving 320 TFs overexpressing TPT lines, we identified in 

total 34 TFs overexpressing TPT lines with altered elemental profiles using ICP-OES, out of 
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which overexpression of 5 TFs showed significant alterations in P levels (shown by left 

vertical bars for each element in Fig 7)  

 Repetition of the ionomic analysis of these selected 5 TFs overexpressing TPT lines 

(which included analysis of all the available overexpressing transgenic TPT lines of these 

TFs) gave a good level of concordance in the ionomic profile pattern with the 1st screening  

However, the alteration in ionomic profile could be observed only in one transgenic line 

per TF (represented by right vertical bars for each element in Fig 7), despite that for 3 out 

of 5 TFs, we examined atleast two independent lines.  Nonetheless, we showed that the 

effect on the ionome of the lines showing alterations was only found upon β-estradiol 

treatment (Fig 8), indicating that the ionome alterations in the selected lines is dependent 

on TF overexpression.  

With regard to the ionomic signatures obtained among the selected 5 TFs, 

overexpression of one of these TFs (TF-137) resulted in increased level of P, while the 

overexpression of the other 4 TFs (TF-117, TF-182, TF-220 and TF-252) caused decrease in 

the level of P suggesting that among these 5 TFs, TF-137 would probably act as positive 

regulator of Pi starvation responses (Fig 7).  

 In addition to P, we also observed some interesting correlations in the type of 

changes in the accumulation pattern of P and those of other elements. P accumulation 

exhibited a positive correlation with accumulation of Zn, Mn, Cd and to a lesser extent with 

that of K. Thus, in all four OxTF lines (TF-117, TF-182, TF-220 and TF-252), displaying lower 

P than WT plants, they showed lower Zn and except for OxTF-220, lower Mn (Fig 7A, B, D 

and E); whereas OxTF-137 had increased levels of P as well as of Zn and Mn (Fig 7C). 

Similar correlations were observed between P and Cd in the case of three TFs 

overexpressors; wherein OxTF-182 and OxTF-117 showed reduced levels of these 2 

elements (Fig 7A and B) and OxTF-137 caused increase in the accumulation of these 2 

elements (Fig 7C). In addition, P also exhibited a positive correlation in the accumulation 

pattern with K, but only in the case of OxTF-137 and OxTF-182 (Fig 7A and C). These 

correlations in the accumulation of several ions informs of the existence of positive cross 

talks of different strengths between the signaling pathways of these ions.    

A potential crosstalk between P and Zn has already been documented. For instance, 

Zn concentration in wheat and maize plants was reported to decrease with the application 



DISCUSSION 

60 
 

of P and vice versa (Robson and Pitman, 1998; Verma and Minhas, 1987).  In barley, Zn-

deprivation resulted in over-accumulation of Pi in shoots (Huang et al., 2000). Recently, it 

was demonstrated that Zn deficiency caused an increase in shoot Pi content in the WT and 

pho2 mutant, but not in the phr1 and pho1 mutants indicating the role of PHR1 and PHO1 in 

the co-regulation of Zn and Pi homeostasis. In addition, PHO1; H3 (close homolog of PHO1) 

was also found to be upregulated in response to Zn deficiency (Khan et al., 2014). These 

observations can be explained in the framework of our findings that indicate that Zn and P 

uptake systems are co-regulated.  

 In our ionomic profiling analysis, we also observed that, P accumulation displayed a 

moderated negative correlation with some of the elements like Na, Mg and Mo. For 

example, low P levels were accompanied with high Mg in OxTF-182 and vice versa in OxTF-

137 (Fig 7A and C). Similarly, low P levels in OxTF-117 and OxTF-182 plants caused increase 

in the accumulation of Na levels (Fig 7A and B). In case of Mo, the pattern of accumulation 

of P with Mo in these TFs overexpressing lines were different; while OxTF-182 showed 

reduced levels of both P and Mo (Fig 7A), OxTF-117, OxTF-252 and OxTF-137 had the 

accumulation of these 2 elements oriented in opposite directions; OxTF-117 and OxTF-252 

had decreased P accompanied with increased Mo and vice-versa in the case of OxTF-137 

(Fig 7B, E and C). 

A more complex situation concerns Pi: Fe inter-relationships. In the recent years 

many research groups have studied the gene networks that control Fe homoestasis  

(Lahner et al., 2003) and the links between P and Fe nutrition (Baxter et al., 2008; Bournier 

et al., 2014). Studies have shown that increased Fe uptake by IRT1 (Iron tranporter) in 

plants was accompanied with side effects of increased accumulation of Mn, Co, Zn and Cd 

(Vert et al., 2002, Guerinot et al., 1996 and Rampey et al., 2006). In our ionomic profile 

analysis, we also observed similar side effects associated with Fe levels although not in a 

strict manner. In the overexpressing lines of TF-117 and TF-182, decreased Fe levels were 

accompanied with decreased levels of Cd, Zn, and P (Fig 7 A and B). But in the case of OxTF-

137, we observed a negative correlation between these elements wherein decreased Fe 

content was accompanied by increased Cd, P and Zn (Fig 7C). It would be important to 

check with a larger number of TFs to establish the strictness of these correlations. 
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 Altogether, our ionomic profile data has given the first evidence for the involvement 

of these five TFs in P starvation signalling and its cross talk with those of other nutrients. 

Moreover, based on transcriptomic data of Pi starvation by Bustos et al., (2010), we found 

that out of these 5 TFs studied, two of them (belonging to families bZIP and NAC) were 

induced by Pi. 

 Recently, Lahner et al., (2003), based on their mutant’s analysis estimated that 2-4% 

of the genome of A.thaliana contributes to controlling the rosette leaf ionome of unstressed 

plants. Our data points to a larger proportion of TF (10%) affecting the ionome which 

indicates that changes in TFs activity have a higher impact on the ionome than changes in 

other types of genes, in line with the more important role of TFs in the control of gene 

expression.  

2. SPX1 is a Pi dependent inhibitor of PHR1  
 In this study, we identify a mechanism for Pi-dependent negative control of PHR1 

activity in Arabidopsis, based on a nuclear SPX domain protein that inhibits PHR1 DNA-

binding activity in a Pi dependent manner. This conclusion is substantiated by three lines of 

evidence. In the first, phenotypic effects of altering SPX1 (and SPX2) are largely Pi-

dependent, particularly the transcriptomic phenotype, and affect systemically and locally 

controlled PSRs. Second, PHR1 binding to SPX1 and to its targets in-vivo is Pi-sensitive. 

Third, SPX1 competes for PHR1 binding to its recognition sequence in a manner greatly 

dependent on the presence of Pi or of its nonmetabolizable analog Phi. PHL1 acts 

redundantly with PHR1 (Bustos et al., 2010), and we show here that SPX1 and SPX2 are 

functionally redundant; it is thus likely that our findings for PHR1 and SPX1 can be 

extrapolated to PHL1 and SPX2.   

 The fact that Pi dependence on SPX1 inhibition of PHR1 DNA binding can be 

recreated in-vitro with purified proteins indicates that the SPX1/PHR1 module links Pi 

perception and signaling, and further strengthens the idea that Pi itself acts as a signal, 

especially given the finding that Phi can replace Pi in the SPX1/PHR1 interaction (Fig. 16D). 

The Phi effect on the SPX1/PHR1 interaction provides a simple mechanistic explanation for 

the previously reported observation that Phi can repress PSRs. Results similar to the 
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results reported here have been obtained in the rice system (Oryza sativa), which indicates 

the ubiquity of SPX1 function in plants (at least for angiosperm plants; see companion 

paper by Wang et al., (2014). 

 Several yeast SPX domain proteins have a role in Pi homeostasis, and there is 

evidence that two of them, PHO81 and PHO87, have Pi-sensing properties, although the 

precise mode of Pi sensing by the SPX domain in these yeast proteins is not yet known. In 

the case of the yeast PHO81 sensor, the SPX domain is dispensable for some of the sensing 

properties, mediated by the P-rich compound myo-D-inositol heptakisphosphate, whose 

synthesis is increased by Pi starvation (Lee et al., 2007), although some PHO81 functions 

depend on its SPX domain (Swinnen et al., 2005). It thus appears that SPX domain proteins 

might have evolved additional Pi sensing mechanisms, mediated by domains other than 

SPX. Nevertheless, it will be interesting to evaluate whether the SPX domains of distinct 

proteins, from yeast to animals, share biochemical mechanisms with SPX1, which shows a 

Pi-sensitive affinity for PHR1. Rice SPX4, an SPX1 homolog in cytosol, was recently shown 

to inhibit traffic to the nucleus of the rice PHR1 homolog, PHR2; Pi levels control SPX4 

protein stability through an unknown mechanism (Lv Q et al., 2014). The possibility that 

Pi-mediated conformational effects underlie the Pi-dependent stability of SPX4 should be 

examined.  

  An important feature of SPX1 action is its inducibility by Pi starvation, thereby 

forming a negative regulatory loop with PHR1 whose output is Pi-dependent. A model for 

the SPX1/PHR1 functional interplay is schematically shown in Fig. 21. Such a loop allows 

self-regulation of the strength of PSRs to meet the Pi demand of the plant. It is of interest 

that because SPX1 inhibition of PHR1 is Pi-dependent, prolonged Pi starvation provokes 

physiological and temporal uncoupling between SPX1 protein accumulation and activity. A 

possible explanation for the strong SPX1 induction by Pi starvation is that it allows rapid 

repression of PHR1 PSI targets after Pi refeeding. It thus appears that during Pi starvation, 

plants accumulate SPX protein to allow shutdown of direct PHR1 targets after Pi refeeding; 

the strength and speed of this repression depend on the severity of the Pi starvation stress. 

In contrast, PSI genes whose expression must be maintained during early stages of Pi 

refeeding are not under direct PHR1 control, and some are positively controlled by SPX1 
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and SPX2. This type of SPX1 (-related) control might ultimately indicate that the greater the 

stress severity, the higher is the potential toxicity of a sudden Pi boost. For rapid shutdown 

of expression of direct  PHR1 targets after refeeding, the nuclear localization of SPX1 is  

more appropriate than the cytoplasm localization of SPX4,  because SPX1 could inhibit 

nuclear PHR1 that is present and acting on its targets and not only PHR1 that would be 

newly  synthesized. 

 

Fig 21) Model for the negative regulatory loop between SPX1 and PHR1, and its Pi dependence. 
SPX1 is a target of PHR1. In the presence of Pi, SPX1 displays high binding affinity to and sequesters 
PHR1; thus, binding of PHR1 to its PSI targets via P1BS is inhibited, and their transcription, including 
that of SPX1, is just basal. In the absence of Pi, the affinity of the SPX1/PHR1 interaction is reduced and 
PHR1 interacts with its targets, resulting in their transcriptional induction. As a consequence, in −Pi-
grown plants, there is increased SPX1 expression and protein accumulation, although these plants lack 
inhibitory activity; however, high SPX1 protein levels allow rapid shutdown of PHR1 target gene 
expression after Pi refeeding. AAA, Poly A tail of mRNA. 

 Our findings in this study indicate that PHR1 is the main target of SPX1 inhibition, 

although we cannot rule out SPX1 control of other regulatory proteins. Indeed, our 

transcriptomic data indicated that upon refeeding, locally controlled genes display induced 

expression in the mutants, which reveals that SPX1 positively regulates these genes 

transiently upon refeeding. One model to explain this is shown in Fig 22. Although a large 

proportion of the genes whose expression is altered in the spx1spx2 double mutant 

compared with WT plants are Pi starvation responsive  genes, there is still a considerable 

proportion of the genes with altered expression in the double mutant that are not Pi 

starvation-responsive (Fig. 14). This finding again raises the possibility of additional SPX1-

controlled regulatory genes, which would broaden the potential role of SPX proteins in 

plant physiology, emphasizing the need for further research into SPX1 partners.  
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Fig 22: Model to explain the role of SPX1 in early stages of Pi refeeding 
During Pi refeeding conditions, SPX1 inhibits PHR1 thereby eventually repressing direct targets of PHR1 
mostly corresponding to systemically controlled Pi starvation induced genes.  However, locally 
controlled Pi starvation induced genes, although indirectly controlled by PHR1, at early stages of 
refeeding their expression depends on additional TFs that are positively controlled by SPX1. 

3. New light on NLA and PHO2 function in Pi signaling.  Role in growth 
control and in a novel feed-back loop in Pi starvation signaling 
 The nla mutant was initially identified in a genetic screen for impaired growth 

under nitrogen limiting conditions (Peng et al., 2007). Subsequently, it was found that this 

growth defect was due to high Pi levels indicating the system of crosstalk between nitrogen 

and Pi starvation signaling (Kant et al., 2011). High accumulation of Pi in nla resembles 

pho2 mutant which also accumulates high phosphate under phosphate sufficient 

conditions. In addition, the fact that both are components of ubiquitination pathway, 

suggested they share functions in mediating ubiquitination. In line with this, in our study, 

we found that PHO2 and NLA interact and cooperate at least in the degradation of some 

targets (e.g., SPX1). This finding has been recently confirmed by Park et al., (2014), that 

demonstrated that NLA interacts with PHO2 in-vitro and in-vivo, and the PHO2/NLA pair 

together polyubiquitinates the high affinity Pi transporter PT2 (PHT1;4) and targets it for 

degradation.  In addition to our finding that PHO2 and NLA interact with each other we 

also showed that they control the accumulation of SPX1 and of the negative regulator of 

growth bHLH149. 

3.1 Control of SPX1 by PHO2 and NLA – a new feedback loop in Pi signaling 

 We have shown here that SPX1 is efficiently degraded by the co-expression of PHO2 

and NLA in transient expression assays in N.benthamiana (Fig 19A). Moreover, studies in 

homologous system show that SPX1 displays enhanced accumulation in nla mutant 
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background Vs that in the WT (Fig 19C). Altogether, this data indicates that SPX1 stability is 

regulated by PHO2 and NLA.   

 The finding that SPX1 interacts with PHO2 and NLA both in yeast two hybrid assays 

(Fig 17 B) and in-planta, as shown by Co-IP (Fig 18B) suggest that the effect of PHO2 and 

NLA on SPX1 is direct. i.e, SPX1 is a substrate of PHO2 and NLA. However, the possibility of 

SPX1 being a substrate of PHO2 and NLA is in apparent contradiction to its localization; 

SPX1 is in the nucleus while PHO2 and NLA are shown to be localized to endomembranes 

and to plasma membrane respectively. One possible explanation to conciliate this paradox 

is to invoke that SPX1 may be recycling between nucleus and cytoplasm and, out of the 

nucleus; it could be degraded by PHO2 and NLA. 

 The existence of this negative control of SPX1 by PHO2 and NLA generates a 

negative feedback loop in Pi signaling (Fig. 23). 

 

 

3.2 Control of bHLH149 by PHO2 and NLA. Integration of growth control in Pi 
signaling 

 Previous experiments in our laboratory have found that bHLH149 (a negative 

regulator of cell growth and elongation) was regulated by PHO2 in a Pi dependent manner 

(Mateos, PhD manuscript, 2010).  Given this, we were interested to find whether bHLH149 

was regulated by NLA also. Towards this, we first checked the activity of PHO2 and NLA on 

bHLH149 in N.benthamiana by transient expression. Though, we were not successful in 

demonstrating the degradation of bHLH149 by PHO2 and NLA in N.benthamiana (Fig 20A), 

Fig 23: Model representing the 
regulatory feedback loop between 
PHR1, SPX1, PHO2 and NLA SPX1 at 
+Pi conditions inhibits PHR1 activity. 
As a result, the inhibitory effect on 
PHO2 and NLA accumulation by 
miRNAs is relieved; leading to the 
degradation of SPX1 by PHO2/NLA.  
Blue lines refer to pretranslational 
control; and red refers to regulation 
involving protein-protein interactions.  
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which could be attributed to the fact that transient expression does not exactly mimic the 

in-vivo situation, our results in the homologous system were quite conclusive (Fig 20B). 

Notably, the increased protein levels of bHLH149 in pho2 and to a lesser extent in nla 

mutant backgrounds compared to WT had a positive correlation with plant size reduction 

(Fig 20C).  

 The direct interaction of bHLH149 with PHO2 (Mateos, PhD manuscript, 2010) and 

NLA (Fig 17B and 18C) suggests that bHLH149 is a most likely a direct target of PHO2 and 

NLA. Like with SPX1, the possibility of bHLH149 as direct target of PHO2 and NLA requires 

an explanation for the different localization. 

 

 The regulation of bHLH149 by PHO2 and NLA provides a mechanism for Pi 

starvation control of growth (Fig 24), beyond the simplistic expectation that growth 

reduction is a direct consequence of starvation. Indeed growth reduction will lower the Pi 

demand and the reduction in cell size increases the surface/volume ratio providing a 

suitable geometry to adapt to low nutrient availability. In Fig 25, it is provided a schema 

integrating our findings in the Pi starvation signaling pathway. 

 The finding of the link between PHO2/NLA and bHLH149 informs on a possible 

biotechnological strategy to uncouple Pi starvation and growth control, so that by reducing 

Fig 24: Model linking growth 
control with Pi starvation signaling 
via the action of NLA and PHO2 on 
bHLH149. The regulation of 
bHLH149 by PHO2 and NLA provides 
a mechanism for growth control by Pi 
starvation. Blue lines refer to 
pretanslational control; and red lines 
refer to control involving protein- 
protein interactions.   
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the negative control of PHO2 and NLA by miR399 and miR827 respectively, or by impairing 

bHLH149, we could limit the negative impact of reducing Pi supply on growth. 

 

Fig 25: Schematic representation of the Pi starvation signaling pathway 
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CONCLUSIONS 

 

1. The TRANSPLANTA collection of transgenic plants conditionally overexpressing TFs 

has served as a powerful resource for the identification of TFs involved in Pi 

starvation signaling pathway. 

2. We provide data that establishes the use of elemental profiling as a practical 

functional genomics tool for the identification of genes involved in the accumulation 

of P mineral ion and other elements. In general, alterations in the level of one 

element normally disturbed levels of many elements giving evidence that ion 

signaling pathway in plants are linked. 

3. We have identified 5 TFs [(two DREB family TFs At2g40340 and At1g71450), bZIP 

TF (At1g68640), ANAC38 (At2g24430), and KNAT2 (At1g70510)] whose over 

expression resulted in significant alterations in the level of P and other elements. 

Two of them (ANAC38 and bZIP TF) correspond to Phosphate starvation induced 

genes. 

4. In a study aimed at finding the potential interactors/regulators of PHR1, we 

identified SPX1 and found it is a Pi dependent inhibitor of PHR1 in Arabidopsis.  

5. Intact SPX domain is necessary for the interaction of SPX1 with PHR1. 

6. SPX1 and PHR1 form a negative feedback loop that allows self-regulation of the 

strength of Phosphate Starvation Responses to meet the Pi demand of the plant. 

7. In a study to find targets of PHO2 and NLA in Pi starvation signaling pathway, we 

found bHLH149 and SPX1 as potential targets of PHO2 and NLA. 

8. PHO2 and NLA mediate degradation of bHLH149 (negative regulator of cell 

elongation) possibly at +Pi revealing a novel growth control mechanism. 

9. PHO2 and NLA together mediate degradation of SPX1. This provides the basis for a 

negative feedback regulatory loop between PHO2, NLA, SPX1 and PHR1 aimed to 

maintain Pi homeostasis. 



CONCLUSIONS 

70 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CONCLUSIONS 

71 
 

CONCLUSIONES 

 

1. La colección TRANSPLANTA de líneas transgénicas que expresan condicionalmente 

diferentes factores de transcripción (FTs), ha resultado una herramienta idónea para 

la identificación de FTs implicados en la ruta de señalización de la carencia de 

fosfato. 

2.  Aportamos datos que establecen que la caracterización de los perfiles de 

acumulacion de elementos constituyen una herramienta de genómica funcional para 

la identificación de los genes implicados en la acumulación del P mineral y de otros 

elementos. Las alteraciones en el nivel de un elemento concreto, generalmente, están 

asociadas a alteraciones en los niveles de varios elementos, lo que evidencia la 

relación ión-homeostasis en plantas. 

3. Hemos identificado 5 FTs [dos DREB FTs (At2g40340) y (At1g71450), bZIP TF 

(At1g68640), ANAC38 (At2g24430) y KNAT2 (At1g70510)] cuya sobrexpresión 

provocó alteraciones significativas en los niveles de P y otros elementos. Cabe 

resaltar que dos de estos FTs (ANAC38 y bZIP TFs) corresponden a genes inducidos 

por ayuno de fosfato. 

4. En otro estudio encaminado a identificar potenciales interactores/reguladores de 

PHR1, hemos identificado a SPX1, habiendo establecido que es un inhibidor de PHR1 

dependiente de Pi en Arabidopsis. 

5. La interacción entre SPX1 y PHR1, requiere el dominio SPX intacto. 

6. SPX1 y PHR1 conforman un bucle de retroalimentación negativo que permite la 

autorregulación de las respuestas frente al ayuno de fosfato, para adaptarse a la 

demanda de fosfato por parte de la planta. 

7. En otro estudio encaminado a conocer dianas de PHO2 y NLA en la ruta de 

señalización del ayuno de fosfato, hemos encontrado que bHLH149 y SPX1 son 

dianas de PHO2 y NLA. 
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8. PHO2 y NLA posiblemente determinan directamente la degradación de bHLH149 (un 

regulador negativo de la elongación celular) en +Pi, evidenciando un nuevo 

mecanismo de control del crecimiento. 

9. PHO2 junto con NLA median la degradación de SPX1. Esto contribuye a la formación 

de un bucle de retroalimentación negativo entre PHO2, NLA, SPX1 y PHR1 para el 

mantenimiento de la homeostasis de Pi.
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