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Abstract
GMM-UBM-based speaker verification heavily relies on

well-trained UBMs. In practice, it is not often easy to obtain
a UBM that fully matches the acoustic channel in operation. In
a previous study, we proposed to address this problem by a nov-
el sequential UBM adaptation approach based on MAP. This
work extends the study by applying the sequential approach to
speaker model adaptation. In addition, we investigate a new
feature-space sequential adaptation approach based on feature
MAP linear regression (fMAPLR) and compare it with the pre-
viously proposed model-space MAP approach. We find that
these two approaches are complementary and can be combined
to deliver additional performance gains. The experiments con-
ducted on a time-varying speech database demonstrate that the
proposed MAP-fMAPLR approach leads to significant EER re-
duction with two mismatched UBMs (25% and 39% respective-
ly).
Index Terms: MAP, fMAPLR, sequential adaptation, speaker
verification

1. Introduction
The GMM-UBM framework is widely used in speaker verifica-
tion [12]. This approach involves a well-trained universal back-
ground model (UBM) to represent general speakers, and each
enrolled speaker is represented by a Gaussian mixture model
(GMM) which is adapted from the UBM via maximum a pos-
teriori (MAP) estimation [4].

A basic assumption of the GMM-UBM approach is that the
UBM is able to represent all acoustic and phonetic variation-
s in the speech data, so that the deviation of a speaker GMM
from the UBM reflects and only reflects the speaker character-
istics. On the one hand, this requires a large amount of data
in UBM training, and on the other hand, the acoustic channel-
s of the training data should be consistent with the operation
environment. In practice, however, it is often difficult, if not
impossible, to collect sufficient channel-matched data to train
a fully consistent UBM. Furthermore, most of operation chan-
nels in practice are time-variant, which fails a pre-trained UBM
anyway.

A multitude of researches have been conducted to address
the channel mismatch or session variation problem within the
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GMM-UBM framework. These researches can be categorized
into three directions: feature transformation [11, 19, 16], model
compensation [5, 15] and score normalization [12, 1]. A com-
prehensive statistical approach was proposed in [6], where the
authors modeled speaker and channel variation as independen-
t variables spanning in low-rank subspace, and then inferred
channel factors by factor analysis. [13] followed this line, but
allowed only low-rank channel factors, leaving the speaker fac-
tors full-rank. This method is augmented in [10] where the au-
thors presented a straightforward interpretation for the subspace
method together with a simple implementation. In [2], various
feature and model compensation approaches were investigated,
and the conclusion was that adaptation based on low-rank chan-
nel subspace (eigen-channels) is highly effective to deal with
channel mismatch.

Besides GMM-UBM, channel mismatch was also studied
within other verification frameworks. For example, [7] pro-
posed to reduce channel impact for verification systems based
on neural networks by eliminating a proportion of hidden n-
odes; [13] presented some feature mapping functions to miti-
gate channel discrepancy for verification systems based on sup-
port vector machines (SVM).

All of the above researches require some training data
to learn certain compensation structures (transforms or eigen-
subspace). In situations where the working channel is totally
new, or the channel is time-variant, it is usually difficult to col-
lect such data, which in turn fails most of the existing methods.

In a previous study, we proposed a novel MAP-based se-
quential UBM adaptation approach [17]. We have shown that
by adapting the UBM sequentially with the data of every new
enrollment, the system will be gradually adapted to the new
channel. The present paper follows this direction and extend-
s the study by applying the sequential approach onto both the
UBM and speaker models, which means that whenever a new s-
peaker is enrolled, both the UBM and the early enrolled speaker
models are adapted immediately. This leads to a full sequential
adaptation that allows all the models to be adapted in an online
manner.

The second contribution of this paper is that we study a new
sequential adaptation approach based on feature maximum like-
lihood linear regression (fMLLR) [3]. fMLLR is a feature space
adaptation approach and has been widely applied to compensate
for channel mismatch. The disadvantage of fMLLR in our se-
quential adaptation framework is that the maximum likelihood
estimation leads to highly aggressive adaption, which causes
over-fitting to speakers instead of channels for the first few en-
rollments. We therefore consider the MAP-based fMLLR, or
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fMAPLR [9]. We compare the MAP-based and the fMAPLR-
based sequential adaptation, and combine them to attain further
improvement.

The rest of the paper is organized as follows: Section 2 and
Section 3 present the MAP-based and the fMAPLR-based se-
quential adaptation respectively, followed by the combination
approach in Section 4. The experiments are reported in Sec-
tion 5, and the entire paper is concluded in Section 6 with some
ideas for the future work.

2. MAP-based sequential adaptation
2.1. UBM sequential adaptation

MAP is a well established framework for model adaptation. For
a GMM, assume a fixed (but need to estimate) diagonal covari-
ance matrix Σc = diag(σc) for the c-th component. Define a
Gaussian prior on the mean vector µc:

p(µc) = N (µc; µ̂c, diag(σ̂))

where µ̂c is the mean vector. σ̂ is assumed to be shared among
all the components. The MAP estimation for µc with a set of
training data {xi} is given by:

µc =
zc + σc

σ̂
µ̂c

rc + σc
σ̂

where the division is element-wised, and rc and zc are two
accumulative statistics defined as:

rc =
∑
i

rc,i[1]

zc =
∑
i

rc,ixi

where [1] is a vector whose elements are all equal to 1, and rc,i
is the effective occurrence of xi on the c-th component, given
by:

rc,i =
wcN (xi;µc, diag(σc))∑

mwmN (xi;µm, diag(σm))
(1)

In the conventional UBM-GMM framework, the above
MAP approach is used to derive speaker models (GMMs) from
the UBM. In the sequential UBM framework, it is used to adapt
both the UBM and the speaker models. The basic process is
simple: for the k-th enrollment, the statistics rkc and zk

c are
computed based on the current sequential UBM (denoted by
UBMk−1). These statistics are firstly pooled together with the
statistics of the previously enrolled speakers to form the pooled
statistics:

r̄kc =

i=k∑
i=1

ric

z̄k
c =

i=k∑
i=1

zi
c.

r̄c and z̄c are then used to derive the k-th sequential UBM
(UBMk) from the original UBM (UBM0) according to the fol-
lowing equation:

µUBMk
c =

z̄k
c + σ

UBM0
c
σ̂UBM

µUBM0
c

r̄kc + σ
UBM0
c
σ̂UBM

(2)

where we denote the covariance of the prior by σ̂UBM to in-
dicate that the prior is used for UBM update. Once UBMk is

derived, the speaker model GMMk can be obtained by an addi-
tional MAP step over UBMk:

µk
c =

zk
c + σ

UBMk
c
σ̂SPK

µUBMk
c

rkc + σ
UBMk
c
σ̂SPK

where σ̂SPK indicates that the prior is for speaker model adap-
tation. Finally, the pair (UBMk, GMMk) is preserved to use
in verification. Note that in all the adaptation (either for UB-
M or GMM), the covariance matrices remain fixed as adopted
by most UBM-GMM systems. In addition, to guarantee learn-
ing channel characteristics rather than speaker particularities,
we set a much stronger prior in the UBM MAP than in the s-
peaker MAP (σ̂UBM << σ̂SPK ). Our previous experiments
show that this sequential UBM approach provides a substantial
equal error rate (EER) reduction [17].

2.2. UBM-GMM sequential adaptation

A shortage of the UBM sequential adaptation is that each speak-
er reserves its own UBM-GMM pair and keeps it unchanged.
This means that the early enrolled speakers cannot use the later
updated UBM. We therefore extend the approach by re-adapting
all the speaker GMMs whenever the UBM updated. This re-
adapting, however, requires dumping the enrollment speech,
which is storage expensive and usually not allowed. An ap-
proximated solution is to reserve the statistics zk

c and rkc and
use them to perform GMM update later on. This leads to the
UBM-GMM sequential adaptation approach. Specifically, after
the k-th enrollment, the original UBM is updated to UBMk, and
then for every early enrolled speaker m, its GMM is adapted as
follows:

µm
c =

zm
c + σ

UBMk
c
σ̂SPK

µ
UBMk
c

rmc + σ
UBMk
c
σ̂SPK

. (3)
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Figure 1: UBM-GMM sequential adaptation.

Figure 1 illustrates the sequential UBM-GMM process. For
each enrollment k, the speaker statistics rkc and zk

c are computed
based on the current UBM and are accumulated with r̄kc and z̄k

c .
The UBM is updated toUBMk with r̄kc and z̄k

c according to (2),
and all the speaker models (including speaker k) are updated
based on UBMk with rkc and zk

c according to (3).
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3. fMAPLR-based sequential adaptation
MLLR was first proposed by the Cambridge group to deal
with channel mismatch and session variability [8, 14]. Its con-
strained variant, feature MLLR (fMLLR), has been developed
to learn transforms on feature vectors [3]. A major advantage
of fMLLR is that the covariance matrices are implicitly adapt-
ed besides the mean vectors without increasing the number of
training parameters, which often leads to additional gains.

Define a transformation matrix W = [b A] that projects
an input speech signal xi as follows:

x̂i = Axi + b = Wξi

where A is a rotation matrix and b is a bias term. ξi =
[1 xi

T ]T is the extended observation vector. Assuming that
x̂ is modeled by a GMM given by:∑

c

γcN (x̂;µc, diag(σc))

where γc is the weight of the c-th component, the optimal W
can be attained by maximizing the likelihood function

L(W ) =
∑
i

log
∑
c

γcN (Wξi;µc, diag(σc))

with respect to W . This leads to the following iterative solu-
tion:

W T
l = G(l)−1(αpl + k(l)) l = 1, 2, ..., L (4)

where W l is the l-th column of W , and pl is the extended
cofactor vector [0 cof(Al,1) ... cof(Al,L)]T . G(l) and k(l)

are the accumulative statistics, defined by:

G(l) =
∑
i

ξiξ
T
i

∑
c

rc,i
σc,l

(5)

k(l) =
∑
i

ξi
∑
c

rc,iµc,l

σc,l
(6)

where c indexes the Gaussian components, and rc,i is the ef-
fective occurrence defined in (1). µc,l and σc,l are the l-th di-
mension of the mean and diagonal variance vectors of the c-th
Gaussian component, respectively. The factor α is solved from
the following equation and the root that maximizes the likeli-
hood function is selected:

α2pT
l G

(l)−1pl = αpT
l G

(l)−1k(l) − β = 0

where

β =
∑
c,i

rc,i. (7)

It is clear that the fMLLR adaptation is exclusively deter-
mined by the accumulative statistics G = [G(1), ...,G(L)],
k = [k(l), ...,k(L)] and β, similar as in MAP where rc and zc

determine the adaptation. Therefore, the sequential adaptation
approach originally designed based on MAP can be migrated
to work with fMLLR. Specifically, for each new enrollment m,
the statistics, denoted by Gm, km and βm, are computed ac-
cording to (5)-(7), and then are accumulated with the statistics
of the early enrollments, simply by:

Ḡ
m

=

i=m∑
i=1

Gi

k̄
m

=

i=m∑
i=1

ki

β̄m =

i=m∑
i=1

βi.

Finally, the accumulated Ḡm, k̄m and β̄m are used to esti-
mate the transformation matrixW according to (4), denoted by
Wm. Once Wm is obtained, it is used to transform the input
features for speaker m and derive the speaker model GMMm

from the original UBM. In verification for speaker k, either the
speaker-dependent W k or the latest Wm is used to transfer
the speech signal. The former case corresponds to the UBM
sequential adaptation in the MAP approach, and the later corre-
sponds to the UBM-GMM sequential adaptation.

A major problem of the fMLLR approach is that the adap-
tation is based on maximizing the likelihood of the enrollment
data, which tends to result in aggressive adaptation to the en-
rollment data. For the first few enrollments, this may cause se-
rious over-fitting and it is hard to tell whether the adaptation
learns the channel characteristics or the speaker properties. We
therefore consider to place a prior on the transformation matrix,
which leads to the MAP-based fMLLR, or fMAPLR [9]. For
simplicity, we choose the following prior in our study:

p(W l) ∝ exp[r||W l − Il||22]

where r is a scale factor and Il is the l-th column of the identity
matrix I , and ||·||2 is the `2 norm of a vector. This is a Gaussian
prior with Il as the mean and 1

2r
I as the covariance matrix.

It can be shown that the maximum a posteriori solution takes
the same form of the fMLLR solution (4)-(6), except a slight
modification on the accumulative statistics:

G′(l) = G(l) + rI

k′(l) = k(l) + rIl.

4. MAP-fMAPLR sequential adaptation
When comparing the MAP-based and fMAPLR-based sequen-
tial adaptation, we notice that the MAP approach is ‘local’,
which means that each Gaussian component reserves its spe-
cific accumulative statistics and is adapted individually. The
fMAPLR approach, in contrast, is ‘global’, which means that
all the Gaussian components share the same transform (we do
not consider component-based fMAPLR in this study). Anoth-
er difference is that the MAP approach adapts the mean vectors
only (at least in most UBM-GMM systems), while the fMAPLR
adapts both the means and the covariances. These differences
lead to unique behavior with each approach, and we assume
they are complementary and thus can be combined. Specifical-
ly, the fMAPLR is used to incrementally update the transfor-
m which is then applied to transform the training/verification
speech. Based on the transformed speech, the MAP-based se-
quential UBM-GMM adaptation is conducted. By this combi-
nation, we can utilize the advantage of fMAPLR in terms of its
parsimonious parameters and the advantage of MAP in terms
of its detailed adaptation. The experimental results demonstrate
that this combination leads to considerable performance gains.
The MAP-fMAPLR sequential adaptation is shown in Figure 2.

5. Experiments
5.1. Database and configurations

We conduct the experiments on a time-varying database [18]
which involves 60 speakers (30 males and 30 females) record-
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Figure 2: MAP-fMAPLR sequential adaptation.

ed with a desktop microphones from 2010 to 2012. The sam-
pling rate of the signals is 8 kHz and the sample size is 16 bits.
For each speaker, 100 Chinese utterances were recorded. The
enrollment utterances are about 20 seconds in length, and the
verification utterances are of 5-10 seconds. The 16-dimensional
Mel frequency cepstral coefficients (MFCC) plus their first or-
der derivatives are used as the acoustic features. Both the UBM
and the speaker models involve 1024 Gaussian components.

In order to test the capability of the sequential approach
in learning new channels, we conduct the experiments with t-
wo initial UBMs that were trained with databases that are a-
coustically inconsistent with the enrollment/verification speech:
UBMa which was trained on 3 hours of desktop microphone
speech data (45 males and 38 females), and UBMb which was
trained on 6 hours of telephone speech data (150 males and 150
females). Clearly, UBMa is just slightly mismatched with the
operation condition, while UBMb is more mismatched.

5.2. Experimental results

We treat the static UBM approach, i.e., without any adaptation
once the UBM is delivered, as the baseline. We test the follow-
ing sequential adaptation approaches:

• SUBM: The MAP-based UBM sequential adaptation,
reported in [17].

• SUBM-GMM: The MAP-based UBM-GMM sequential
adaptation, as presented in Section 2.

• fMAPLR-SPK: The fMAPLR-based sequential adapta-
tion. Each speaker uses its own fMLLR matrix. This
corresponds to the SUBM approach in the MAP style.

• fMAPLR-LATEST: The fMAPLR-based sequential
adaptation. All speakers use the latest fMLLR matrix.
This corresponds to the SUBM-GMM approach in the
MAP style.

• SUBM-GMM + fMAPLR-SPK: The fMAPLR is used
to transform speech signals, based on which SUBM-
GMM is conducted. Each speaker uses its own fMLLR
matrix.

• SUBM-GMM + fMAPLR-LATEST: The fMAPLR
is used to transform speech signals, based on which
SUBM-GMM is conducted. All speakers use the latest
fMLLR matrix.

In our experiment, the elements of the prior covariance vec-
tor σ̂SPK for speaker model adaptation were chosen to be the

EER%
Baseline 11.77
SUBM 11.05
SUBM-GMM 9.24
fMAPLR-SPK 11.77
fMAPLR-LATEST 11.14
SUBM-GMM + fMAPLR-SPK 9.38
SUBM-GMM + fMAPLR-LATEST 8.82

Table 1: EER results with UBMa as the initial.

EER%
baseline 10.44
SUBM 8.79
SUBM-GMM 6.93
fMAPLR-SPK 8.95
fMAPLR-LATEST 8.70
SUBM-GMM + fMAPLR-SPK 6.69
SUBM-GMM + fMAPLR-LATEST 6.41

Table 2: EER results with UBMb as the initial.

same value 0.5. In SUBM and SUBM-GMM, the elements
of the prior covariance vector σ̂UBM for the UBM adaptation
were chosen to be the same value 0.003. In fMAPLR-SPK and
fMAPLR-LATEST, the prior parameter r was chosen to be 105.
These values were selected to optimize the performance. We
see that the prior for the UBM adaptation, either with MAP or
fMAPLR, is much stronger than the prior for the speaker mod-
el adaptation, which yields a slow but stable adaptation to the
channel character.

The verification performance is evaluated in terms of the
EER. The results with UBMa and UBMb as the initial model-
s are presented in Table 1 and Table 2 respectively. We first
observe that for both UBMa and UBMb, the MAP-based se-
quential adaptation approaches, both SUBM and SUBM-GMM,
lead to significant EER reduction, particularly with the SUBM-
GMM approach. The fMAPLR approach is less effective, par-
ticularly for UBMa the improvement is marginal. This might
be attributed to the fact that UBMa was trained on data record-
ed with desktop microphones and therefore is less mismatched
with the operation environment than UBMb. This less mis-
match leads to less effectiveness of the sequential adaptation
technique, particularly with fMAPLR which is global and thus
limited in thorough adaptation. Nevertheless, combining the
fMAPLR with the MAP leads to the best performance, con-
firming our conjecture that these two approaches are comple-
mentary.

6. Conclusions
This paper extended our previous study on sequential UBM
adaptation. We proposed to apply the sequential approach to
adapt speaker models, and comparatively studied two adapta-
tion methods based on MAP and fMAPLR respectively. We
find that the MAP-based approach is more effective than the
fMAPLR-based approach, and they are complementary so can
be combined. This study leads to a relative EER reduction of
25% for a slightly mismatched UBM and 39% for a more mis-
matched UBM. Further work involves study of sequential adap-
tation based on component-dependent fMAPLR.
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