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Temporal validation of particle filters for video trackingI
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Abstract

We present an approach for determining the temporal consistency of particle filters in video tracking based on model
validation of their uncertainty over sliding windows. The filter uncertainty is related to the consistency of the dispersion
of the filter hypotheses in the state space. We learn an uncertainty model via a mixture of Gamma distributions whose
optimum number is selected by modified information-based criteria. The time-accumulated model is estimated as the
sequential convolution of the uncertainty model. Model validation is performed by verifying whether the output of the
filter belongs to the convolution model through its approximated cumulative density function. Experimental results and
comparisons show that the proposed approach improves both precision and recall of competitive approaches such as
Gaussian-based online model extraction, bank of Kalman filters and empirical thresholding. We combine the proposed
approach with a state-of-the-art online performance estimator for video tracking and show that it improves accuracy
compared to the same estimator with manually tuned thresholds while reducing the overall computational cost.

Keywords: Particle filter, Uncertainty, Model validation, Change detection, Performance evaluation, Video tracking.

1. Introduction

Sequential Monte Carlo methods, also known as Par-
ticle Filters, have demonstrated their success for param-
eter estimation in nonlinear and non-Gaussian problems
in many areas such as video tracking [1], navigation [2],
econometrics [3] and signal processing [4]. When the ob-
served data hold the modeling assumptions, the estimated
errors converge to zero [5] (i.e. with zero mean and small
covariance). However, several sources of error exist that af-
fect the filter performance and lead to inconsistency, where
the estimated errors have non-zero mean or high covari-
ance [6]. Filter consistency is commonly analyzed to detect
estimation errors over time [7].

Determining the temporal consistency of Particle Fil-
ters can be cast as a change detection problem [8]: consis-
tency measures are generated and then analyzed to decide
between one of two cases, namely consistent or inconsis-
tent operation. Examples of such approaches include the
χ2 validation [6], the cumulative sum (CUSUM) [9] and
the expected model likelihood [10]. Their performance
is limited due to drawbacks related to high-dimensional
state spaces [6], prior change magnitude assumptions [9]
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or empirical thresholding [10]. Domain-related knowledge
can be exploited to improve change detection performance.
For example, in video tracking, Particle Filter consistency
is measured as spatial uncertainty [11], time-reversibility [12]
or by combining both approaches [13]. However, current
approaches are tuned to particular data in the consistency
measurement or in the change detection process due to the
need of using empirical thresholding approach [12][13].

In order to enable the application of particle filter val-
idation to unseen data, in this paper we propose an ap-
proach to estimate its temporal consistency without re-
lying on empirical thresholding and we present a robust
model for temporal filter uncertainty. We measure fil-
ter consistency as its uncertainty (dispersion of its hy-
potheses in the state space) and validate an uncertainty
model over sliding windows, allowing to increase the ro-
bustness of the consistency estimation, unlike existing ap-
proaches based on single-point analysis [14][12][13]. Such
uncertainty model is approximated by sequential convolu-
tions of mixtures of Gamma distributions whose number of
mixture components is selected via modified information-
based criteria. By applying hypothesis testing over fil-
ter uncertainty models, the parameters required for de-
tecting inconsistency are automatically determined, un-
like empirical-based approaches [15][12][13][16]. The pro-
posed approach is included in a framework for online per-
formance evaluation of video tracking [13]. The results
show that the proposed approach improves related works
over two heterogeneous datasets containing challenges in
both change detection and video tracking.

The paper is organized as follows: Section 2 states
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the addressed problem and Section 3 discusses the related
work. Section 4 presents the proposed approach whereas
Section 5 describes the filter consistency modeling. Sec-
tion 6 introduces its use for video tracking evaluation.
Section 7 presents and discusses the experimental results.
Finally, Section 8 concludes the paper.

2. Problem statement

Let Xt = {(x(n)
t , π

(n)
t )}n=1,...,N be the output of N

weighted particles generated by a particle filter at time t,

where each x
(n)
t defines a hypothetical estimation weighted

by π
(n)
t . Each particle should have a low (high) weight

when it is far from (close to) the ideal state. Each particle
is recursively obtained with a prediction, g(.) [17]:

x
(n)
t = g(x

(n)
t−1, κt) (1)

and an update step z(.):

π
(n)
t ∝ z(x

(n)
t , ρt), (2)

where {κt}t=1... and {ρt}t=1...are independent and iden-
tically distributed random processes. From these steps
two distributions are derived, namely the prior and poste-
rior distribution. The prior distribution predicts the states
(particles) relying on previous data only; whereas the pos-
terior distribution is estimated by considering the prior
given all observations up to the current observation time.

The problem we address is the online determination
of the consistency of the filter (i.e. its reliability) by ob-
serving the posterior distribution. A consistent behavior
means that Xt provides an accurate state estimation. Let
C and I be the labels for consistency and inconsistency,
respectively. The goal of online inconsistency detection is
to assign a label lt as follows:

Xt
ϕ(·)→ lt ∈ {C, I}, (3)

where ϕ(·) is the labeling approach. Such approach should
be accurate, offer low latency and operate without manual
parameter tuning. Figure 1 shows an example of a particle-
filter-based tracker where the filter becomes inconsistent as
most of the hypotheses are apart from each other and have
small weights. The labeling approach shall automatically
identify this inconsistent behavior of the filter.

3. Related work

In this section, we review the literature for estimating
the consistency of a Particle Filter and for change detec-
tion, which are later particularized for video tracking.

The consistency of a Particle Filter can be estimated
from its posterior. For example, likelihood ratios are com-
puted using filter observations (weights) for consistent and
inconsistent assumptions, which are later accumulated over

time [9]. The Kullback-Leibler divergence is used to mea-
sure differences between prior and posterior distributions [10].
However, the prior is assumed to be static without being
conditioned to the observed data over time, thus limiting
its use to stationary prediction [10], i.e. the variance of the
posterior does not increase with time. Filter consistency
can be estimated as the dispersion of its hypotheses (par-
ticles) in the state space [11]. The posterior hypotheses
could be also converted into uniformly distributed vari-
ables through the cumulative distribution of the observa-
tions [6]. However, its computation for high-dimensional
state spaces is not feasible [12]. The Mahalanobis distance
(MD) between forward and backward filters can also be
used for consistency estimation [12]. However, MD values
have not got a fixed variation range for identifying filter
inconsistency without ambiguities as several values can si-
multaneously represent consistent and inconsistent opera-
tion under different conditions [13]. Recently, concentra-
tion measures have been proposed using the likelihood of
the filter observations [19].

Estimating inconsistency of Particle Filters can be ap-
proached as a change detection problem. The goal is to
recognize significant deviations from a known level of the
measurement. Approaches exist based on single or mul-
tiple detectors [7]. Single-detector approaches apply a
whiteness test to the filter residuals (errors). The cumula-
tive sum approach (CUSUM) is a popular single-detector
example that accumulates likelihood ratios of a Particle
Filter [9]. Then, empirical thresholding is used to detect
changes [9][10][19]. Multi-detector approaches have each
detector matched to a certain change assumption. Al-
though not applied to Particle Filters, several approaches
exist for signal processing such as the bank of matched fil-
ters [7] and Parallel-CUSUM [20]. The former adapts each
detector to new change hypothesis when its prediction er-
ror is high and the latter runs in parallel several (differ-
ently adjusted) CUSUM detectors. Both detect changes
by concatenating over time the results of the most proba-
ble detectors, namely those with lowest prediction errors.
However, CUSUM-based approaches require prior knowl-
edge of the change magnitude, an information that is often
not available. For unknown change magnitudes, model val-
idation has been proposed as an alternative when only the
unchanged status is known by computing its fitness with
observed data [8] such as the χ2 test to verify uniformity of
measurements [6]. Finally, other approaches do not con-
sider any prior modeling or thresholding and use sliding
windows for online model extraction and validation. Ex-
amples are the two-model validation through the χ2 test [7]
and SVMs [21], where both models are extracted from slid-
ing windows with different lengths, assuming that one does
not have any changes. However, online model extraction
requires a minimum window length to get statistically sig-
nificant models.

Particle Filters are widely employed for parameter es-
timation of targets in video tracking. Filter consistency is
analyzed for performance evaluation over time to detect er-
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Figure 1: Example of filter consistency for face video tracking using a color-based Particle Filter [18] (with 100 particles). The green ellipse
represents the ideal target; the red ellipse represents the estimated target. The left image illustrates a consistent behavior. The central and
right image illustrate inconsistent situations. The particles (identified for clarity only by their center) are colored according to their weights:
the warmer the color, the higher the weight.
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Figure 2: Block diagram of the proposed approach.

rors. Examples are those looking at time-reversibility [12],
spatial uncertainty change over time [13], illumination model
consistency [22] or filter selection in multi-camera settings [23].
One of the major problems is the use of consistency statis-
tics [11][12] whose variation range is unknown, thus mak-
ing it difficult to estimate a significant deviation. Empiri-
cal thresholding is broadly applied to detect changes, lim-
iting their application to unseen data. Similar approaches
also exist for non-Particle Filter-based approaches focused
on feature accuracy [14], filter switching [24] or multi-
hypothesis similarity [15][16]. All these approaches are
making use of data-dependent manually selected thresh-
olds (computed offline) for change detection. This manual
tuning prevents the design of online strategies to correct
inconsistency thus limiting the analysis of new data.

Table 1 compares the main approaches discussed in
this section. Current estimators of Particle Filter consis-
tency are limited as most of the extracted measures do not
have a bounded variation range [12], require the knowl-
edge of change magnitudes [9], use empirical threshold-
ing [10][13][22] or are not applicable to large state spaces [6].

4. Accumulated validation of uncertainty

Model validation provides a robust framework for Par-
ticle Filter consistency analysis whose performance could
be improved by sliding windows. For measuring the con-
sistency of the Particle Filter, we first compute the un-
certainty of its posterior and accumulate its change over
a temporal window. Then, we validate an uncertainty
change model to check consistency (Figure 2). We term
the proposed approach as Accumulated Validation of Un-
certainty (AVU).

4.1. Filter uncertainty estimation

We estimate the uncertainty for each time t by mea-
suring the spread of the generated hypotheses in the state
space through Σt = [ζij ] (the covariance matrix of the filter
output Xt), where each element ζij is defined as [11]:

ζij =

N∑
n=1

π(n)(x
(n)
i − µi)(x(n)

j − µj), (4)

where x
(n)
i is the ith element of the nth estimation (parti-

cle) of Xt, µi = E
[
x

(1...N)
i

]
and E [·] is the expectation.

The filter uncertainty is computed as [13]:

ut =
1

C
d
√
det(Σt), (5)

where C is a normalizing constant to consider the target
size as in [13], det(·) is the matrix determinant and d is

the number of dimensions of x
(n)
t . Unlike [13], we compute

the uncertainty ut (Eq. 5) for the complete target state
without temporal smoothing. Figure 3 shows an example
of uncertainty analysis of Particle Filters for video track-
ing where the filter becomes inconsistent when it loses the
target around frame 540.

For detecting uncertainty transitions from low-to-high
or high-to-low values, we compute a change signal ct that
maximizes the difference between ut and previous uncer-
tainty values. We use a sliding window of length W to
remove the offset uncertainty value that could be exhib-
ited due to the initial configuration or the observations:

ct =

∣∣∣∣ut − ut̂ut̂

∣∣∣∣ , (6)

where

t̂ = argmax
j∈W

(∣∣∣∣ut − ujuj

∣∣∣∣) . (7)

4.2. Test statistic and hypothesis testing

The problem consists of detecting changes in the time
series ct (t = 1, 2, ...), which is sampled from a random
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Table 1: Comparison of the reviewed approaches for change detection and model validation. (KEY. CL: Change Length. ET: Empirical
Thresholding. GA: Gaussian Assumption. ML: Maximum Likelihood. MV: Model Validation. PF: Particle Filter. VT: Video Tracking.)

Approach Consistency estimation Modeling of filter status Change detection Usage Computationally
No Change Change Approach Sliding win. restrictions feasible over time

(CUSUM) [7] Accumulated filter residuals Offline Offline ET Yes - Yes
(χ2 test) [7] Gaussian model similarity Online Online MV Yes GA Yes
(Bank filter) [7] Residuals of Kalman filters Online Online ML No CL Yes
[9] CUSUM extension for PFs Offline Offline ET No PF Partial
[21] SVM-based descriptors Online No ET Yes - Yes
[6] Uniform distribution conversion Online No MV Yes PF Partial
[10] Expected log likelihood Offline No ET No PF Yes
[20] Log likelihood ratio Offline Partial ML No - Yes
[12] Forward-backward similarity Online No ET No PF, VT No
[13] Spatial uncertainty Online No ET No PF, VT Yes
Proposed Filter uncertainty Offline No MV Yes PF Yes
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Figure 3: Evolution of the filter uncertainty and its error for color-
based Particle Filter video tracking [18]. Green and red ellipses are,
respectively, ideal and estimated target locations. Sample frames
correspond to vertical dotted lines. The filter error was computed as
in Section 7.1.

variable Q following the probability density function (pdf)
p1(v). For increasing robustness of model validation, we
accumulate ct by using a sliding window of length L:

st =

L∑
r=1

wrcr+t−L, (8)

where L determines the amount of historical data con-
sidered and wr ∈ [0, 1] weights the contribution of each
cr+t−L to st defining the amount of variation required for
detecting the change. For example, a geometric weight
(wr = (1− λ) λ

r

with λ ∈ [0, 1]) [7] gives low importance
to new data, whereas all data are equally considered with a
uniform weight (wr = 1). The former case requires higher
variation in the new incoming data than the latter for de-
tecting a possible change. We use uniform weights as we
are interested in studying changes over time without hav-
ing any prior assumptions on the filter response (i.e. if
changes are long-term or short-term).

Let the null hypothesis H0 indicate that data are con-

sistent with the model (st ∈ S) and st be sampled from
a random variable S following the pdf p2(v) which de-
scribes the time accumulation of p1(v), thus defining the
test statistic for the H0 hypothesis. Let H1 be the hypoth-
esis that a change occurred with unknown magnitude and
parameters (i.e. non-trainable). Model validation implies
that one of the hypotheses holds true [5]:

H0 : st ∈ S
H1 : st /∈ S

, (9)

H1 is accepted (H0 is rejected) when a change is detected
(st /∈ S). For testing the H0 hypothesis, we use the cumu-
lative distribution function (cdf) of S defined as follows:

P2(j) =

jˆ

−∞

p2(v) dv. (10)

For accepting H0, a probability of false alarms α is re-
quired [7] (with values ranging from 0.001 to 0.05 depend-
ing on the application) resulting in the following condition:

P2(st > β) = α, (11)

where β is a constant to determine if st values follow p2(v)
depending on the considered cdf P2(v) and the false alarm
rate α. Then, Eq. 11 is reformulated as P2(|st| < β) =
1− α to define the hypothesis test for detecting a change
in ct as the condition st > β. The value of β can be
(approximately) determined by computing the empirical
distribution of st and estimating the α-quantile.

In summary, the proposed approach relies on estimat-
ing the cdf P2(v), which depends on the pdfs p1(v) and
p2(v) of the data ct and st, respectively, and the compu-
tation of β to accept (lt = C) or reject (lt = I) H0.

5. Modeling the consistency of the filter

We now model the consistent filter status p1(v) and its
window-based accumulation p2(v).
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Figure 4: Histogram of ct values with filter error e(xEt , x
GT
t ) < τ (H0

hypothesis) for 100 runs of a color-based Particle Filter tracker [18]
over the dataset from [13]. The filter error e(.) ∈ [0, 1] is defined as
Eq. 18, between the ideal xGT

t and the estimated xEt states; τ is a
threshold to define the consistent case (H0 hypothesis).

5.1. Filter uncertainty model p1(v)

Obtaining the PF uncertainty change ct considers three
stages. In the first stage, the weighted covariance matrix
of the target state is computed as described in Eq. 4.
Each matrix element is a weighted sum of products be-

tween two terms (x
(n)
i − µi) and (x

(n)
j − µj). Each term

can be modeled as a Random Variable (RV) following a
zero-mean Normal distribution N (0, σi) as defined in Eq.
1. The variance σi of each distribution depends on the
process noise κt as defined in Eq. 1. Therefore, Eq. 4 is a
weighted combination of products between two Gaussian-
distributed RVs that can be expressed as a combination
of Chi-Square RVs (or their equivalent form using Gamma
RVs) [25]. Such weighted covariance matrix only depends
on the common representation of the posterior density in
the PF framework (set of particles and associated weights),
thus being applicable to any PF-based tracker. The sec-
ond and third stages (Eqs. 5 and 6, respectively) consist
of pairwise subtractions, products and ratios of Gamma
RVs. The result of each operation can be expressed via
Bessel functions which are mixtures of Gamma distribu-
tions [26][27].

We propose to model p1(v) as a mixture of K Gamma
distributions [28]. In this mixture, each kth Gamma is
defined by its parameters (ηk and θk) and its contribution

(γk) to the mixture (
∑K
k=1 γk = 1). The pdf p1(v) is then

approximated by:

gm(v; ξ) =
K∑
k=1

γkf(v; ηk, θk), (12)

where v is a data sample, ξ = {〈ηk, θk, γk〉 : k = 1, ...,K}
and f(v; ηk, θk) is the kth Gamma distribution defined as:

f(v; η, θ) = 1
θη

1
Γ(η)v

η−1e−
v
θ

for v ≥ 0 and η, θ > 0
(13)

where η is the shape and θ is the scale. When η > 1
the distribution is bell-shaped, whereas for η < 1, it is
L-shaped. The parameter set ξ is estimated using train-
ing data. Figure 4 depicts examples of p1(v) distribution
using empirical data for various assumptions of the H0 hy-
pothesis or consistent case (i.e. filter error). The ct values
are always positive with an L-shaped distribution close to
zero (the uncertainty is almost constant for the consistent
case) for all considered cases. To compute the mixture
parameters ξ, we used an expectation-maximization (EM)
approach based on maximizing the log-likelihood of the
hypothesized models [29]. However, EM approach does
not correctly determine the optimum number of K compo-
nents as the likelihood can always be increased by adding
more components to the mixture [28]. Standard goodness-
of-fit tests (e.g., χ2 and Kolmogorov-Smirnov [30]) only
consider the likelihood without penalizing the number of
parameters and therefore they are not valid for optimum
mixture modeling.

For choosing K, we modify the Akaike and Bayesian
Information criteria [28] (AIC and BIC, respectively) that
penalize models with a high number of parameters. AIC
minimizes the Kullback-Leibler distance between the true
data distribution and the hypothesized distribution. BIC
extends AIC by considering the number of data samples.
Both criteria include two terms: one depends on the log-
likelihood and the other penalizes models with more pa-
rameters. However, their variation range is different. The
likelihood term depends on the number of samples1 (LK =∑n
i=1 gm(vi; ξ)) whereas the penalization term has none

(for AIC) or low (for BIC) dependency on the number of
samples. Hence, the final decision is completely driven by
the log-likelihood as penalization costs do not influence
enough for large number of samples. Thus, selecting the
hypothesized model with highest likelihood.

In order to make equal the influence of the two terms
in the final selection, we introduce a variable penalization
cost to produce the modified AIC, dAIC:

K̂dAIC(d) = argmin
K

(−2ln (LK) + d · 2vK) , (14)

where d represents the weight of the penalization cost and,
for each K -Gamma mixture, vK is its number of param-
eters and LK is its maximized likelihood. The modified
BIC, dBIC is defined as follows:

K̂dBIC(d) = argmin
K

(−2ln (LK) + d · vK ln(n)) , (15)

where n is the sample size. We do not change the like-
lihood term, −2ln (LK), as it is the deviance, a measure

1The EM results are independent of the sample size as the max-
imization is performed over the likelihood variations among the hy-
pothesized models.
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Figure 5: Comparison of likelihood and penalization terms for pro-
posed K selection criteria (dAIC and dBIC) using d = {200, 400}.
Results were computed for a mixture of two Gammas.

of lack of fit for a model [28]. Then, the optimum K is
selected as the most frequent K when scanning the results
obtained for different values of d = 1, ..., D. Note that
d = 1 corresponds to the original AIC and BIC. More-
over, at a certain d value, the variable penalization cost
is higher than that of the likelihood and the first model
(K = 1) is always selected. Hence, these wrong selections
should not be considered for K optimum selection. Figure
5 illustrates an example of the modified criteria showing
that likelihood and penalization terms are comparable.

5.2. Accumulated filter uncertainty model p2(v)

In this paper we propose the use of convolution to ap-
proximate the upper bound of the cumulative distribution
of st [31]. Applying the proposed hypothesis test in Sec-
tion 4 uses the cumulative distribution of st (P2(v), see Eq.
11), which requires to estimate the joint distribution of the
accumulated and dependent RVs, p2(v). This distribution
is unknown and its estimation is not straightforward to
be analytically solved. Therefore, approximations of this
distribution are needed to employ the proposed approach.

One approximation could be to empirically generate
this p2(v) using real data as done for the distribution p1(v)
of the statistic ct. However, this option is limited in two
aspects. First, a large number of samples is required to
provide an accurate distribution estimation, thus requiring
a large training set which cannot be always guaranteed.
Second, each window length needs a different distribution
p2(v) (see Eq. 8), thus increasing the complexity of the
training process. For example, a PF tracker to be analyzed
with window lengths between 1 and 50 frames requires to
get 50 different p2(v).

On the other hand, we do not need a precise shape es-
timation for the true distribution of p2(v) as we are only
interested in the rightmost part of P2(v) to perform the
hypothesis testing. Hence, approximations of the upper

bounds for the sum of the ct statistic are more suitable for
the proposed approach. We formulate the accumulation
of L ct values as the L-sum of Qi RVs where all Qi have
the same distribution p1(v). Such upper bound can be es-
timated for finite (E[Qi] < ∞), dependent, non-negative
and real-valued RVs [31]: these conditions satisfied by all
Qi. Hence, the distance between the sum of dependent
RVs and the sum of their independent duplicates (i.e. as-
suming independentQi) is upper-bounded by a certain fac-
tor which depends on the correlation between Qi’s (their
dependence) and their mean values [31]. We exploit this
conclusion to use convolution as an approximation of the
upper bound of P2(v), which allows to estimate the cut
value for the hypothesis test (β parameter in Eq. 11).
The use of convolution allows to quickly estimate the cut
value for any desired length of the sliding window only
requiring the p1(v) distribution.

After assuming independent Qi to compute such upper
bound, we use the convolution approach [32] to get the pdf
of the sum of two random variables, with pdfs m1(v) and
m2(v), as their convolution m3 = m1 ∗m2 given by:

m3(v) =
∞∑

j=−∞

m1(j) ·m2(v − j), (16)

for v = ...,−2,−1, 0, 1, 2, .... Hence, we can exploit such
property to compute p2(v) as a L-fold convolution of p1(v):

p2(v) = p
(L)
1 (v) = p

(L−1)
1 (v) ∗ p1(v), (17)

where p
(0)
1 (v) = p1(v) and p1(v) ∗ p(0)

1 (v) = p1(v). Al-
though this recursive convolution can be analytically ap-
proached, the existing proposals are based on combinato-
rial analysis [33] that heavily increases the computational
cost of the convolution. According to this, we decide to ob-
tain this convolution by empirically estimating p1(v) (i.e.
generating random samples of p1(v) for computing its pdf)
and then, performing the standard L-fold convolution as
described in Eq. 17.

We do not consider the central limit theorem (CLT) [32]
to approximate p2(v) as it depends on the number of added
random variables to estimate p2(v) as N (Lµ,

√
Lσ2) where

µ = E[Q] and σ2 = var(Q). The proposed approach may
use short windows where CLT accuracy decreases. Figure
6 shows some examples of the empirical cdf P2(v) and their
approximations assuming independence (convolution and
CLT). Although both approximations do not reflect the
empirical cdf (consequently the pdf p2(v)), they allow to
establish an upper bound for P2(v). Moreover, CLT is out-
performed by convolution for short window lengths, thus
decreasing the accuracy of the upper bound estimation.

6. Accumulated performance evaluation of video
tracking

We combine AVU into an online method performance
evaluation of Particle Filter-based video tracking, ARTE [13].
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Figure 6: Approximated cumulative distribution function (cdf) P2(v) (right) for window lengths L = 5−30 using a mixture of K = 4 gammas
(left). For each plot, data corresponds to the obtained P2(v) via the estimated p2(v) with the Empirical, Convolution and Central Limit
Theorem (CLT) approaches using the data described in Sec. 7.1.

Table 2: Description of the proposed modification on ARTE.

Approach # Thresholds Acquisition Signals analyzed

ARTE [13] τ1, τ2, τ3 Manual CW1,t̂
t , CW2,t̂

t , CW1,t
t , CW2,t

t

ARTE* β1, β2 Automatic ct

ARTE determines whether the Particle Filter is success-
fully estimating the target state without the use of ground-
truth. ARTE analyzes the Particle Filter consistency and
the time-reversibility property of target motion.

Similarly to Eq. 6, ARTE defines four change sig-

nals (CW1,t̂
t , CW2,t̂

t , CW1,t
t and CW2,t

t ) based on spatial
uncertainty (i.e. only considering the center of the tar-
get location) that combines different window lengths and
considerations of the change reference (first or last sam-
ple in the window). In particular, it monitors slow (W1)
or sudden (W2) increases (t̂) or decreases (t) of the un-
certainty. Then, change detection is applied over these
four signals by empirical thresholding to detect when the
Particle Filter posterior is inconsistent. First, the thresh-

old τ1 is applied to CW1,t̂
t and CW2,t̂

t , for positive changes
(consistent-inconsistent). Negative changes (inconsistent-

consistent) are detected by using the threshold τ2 on CW1,t
t

and CW2,t
t . Then, a third one τ3 is applied to CW2,t

t for
negative small changes that indicate increases of the Par-
ticle Filter consistency (i.e. its posterior is becoming more
accurate). For simplifying such tuning, the thresholds were
originally defined based on τ1 : τ2 = −τ1 and τ3 = −τ1/2.

The proposed modification (hereinafter called ARTE*)
aims to substitute ARTE’s change detectors with our pro-
posal. We calculate st and detect consistency by uncertainty-
based validation over sliding windows, which defines a
threshold β1 computed as in Sec. 4.2. Low-to-high (pos-
itive) and high-to-low (negative) transitions are detected
as, respectively, consistent-to-inconsistent and inconsistent-
to-consistent changes of st. For small negative changes,
we include another validation for detecting inconsistent-
to-consistent changes of ct with a threshold β2 = β1/2.
Table 2 summarizes the modification showing that fewer
signal detections are required and the thresholds are au-
tomatically computed.

7. Experimental results

In this section we first compare the results of the pro-
posed AVU and related approaches for analyzing the con-
sistency of particle filters and then, we evaluate the use of
AVU for online performance evaluation of video tracking2.

7.1. Experimental setup

Let us consider a color-based Particle Filter for video
tracking [18] with x

(n)
t being a five-component vector com-

posed of the target position, the two main axes and the
orientation of the bounding ellipse approximating its area
on the image plane. Color histograms are used as target
model and are generated in the RGB space for pedestrian
(P) and car (C) targets and in the HSV one for face targets
(F), using 8x8x8 bins in both cases. The filter parameters
are N = 400 (particles) and the variances for target center
σx,y = 5, size σHx,Hy = 0.75, orientation σθ = 4◦ and ap-
pearance noise σc = 0.2. For AVU, we consider the false
alarm rate α = 0.005 to accept the H0 hypothesis.

We use two evaluation sets (D1 and D2) with sequences
selected from the following datasets: CAVIAR3, PETS20014,
PETS20105, CLEMSON6, VISOR7, AVSS20078, TRECVID9

and MIT TRAFFIC10. D1 is the same set as in [13], which
is composed of 18 sequences (∼ 3400 annotated frames).
D2 contains 51 sequences (∼ 7500 annotated frames). Both
datasets include three target types, namely cars, people
and faces, and present challenging situations for tracking
such as total or partial occlusions, clutter, and illumina-
tion or scale changes. The characteristics of the two sets
are summarized in Table 3. Sample frames (and target
initialization) for D2 are shown in Figure 7 (for D1, we
use the same initialization as shown in [13]).

2Additional results, video sequences and soft-
ware implementations can be found at http://www-
vpu.eps.uam.es/publications/PFConsistency.

3http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/
4http://www.cvg.rdg.ac.uk/PETS2001/
5http://www.cvg.rdg.ac.uk/PETS2010/
6http://www.ces.clemson.edu/˜stb/research/facetracker
7http://imagelab.ing.unimore.it/visor/
8http://www.eecs.qmul.ac.uk/˜andrea/avss2007 d.html
9http://www.itl.nist.gov/iad/mig/tests/trecvid/2011/

10http://www.ee.cuhk.edu.hk/˜xgwang/MITtraffic.html
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Table 3: Summary of the evaluation sets and their tracking chal-
lenges (Key. SC: Scale changes. AC: Appearance changes. IC: Illu-
mination changes. O:occlusions. C:clutter.)

Set Dataset Target Size Tracking challenges

D1 CAVIAR P1 – P4 384x288 IC, C

PETS2001 P5 – P10 768x576 SC, O, C

PETS2010 P12 – P18 768x576 O, C

CLEMSOM F1 – F4 128x196 SC, AC, C, O

VISOR F5, F6 352x288 SC, C, O

D2 AVSS2007 P1 – P4 720x576 O, C, SC

CAVIAR P5 – P6 384x288 SC, C

PETS2010 P7 – P19 768x576 SC, IC, O

TRECVID P20 – P24 720x576 IC, O, C

VISOR F1 – F4 352x288 IC, O, C

TRECVID F5 – F10 720x576 IC, O

MIT CAR C1 – C16 720x480 AC, IC, O, C

Figure 7: Sample target initialization for the evaluation set D2. From
top-left to bottom-right: Pedestrian targets: AB Easy man (P1),
AB Hard man (P2), AB Medium woman (P3), ThreePastShop2cor
(P5), ThreePastShop2cor (P6), S2 L1 v01 (P7), S2 L2 v01 (P8),
S2 L3 v01 (P11) and Trecvid (P20-P21); face targets: Trecvid (F1),
Visor occ 1 (F2); car targets: Dtneu redcar (C1), Mv2 020 silcar
(C3), Mv2 020 whtvan (C6) and Mv2 020 blkcar (C12).

7.2. Evaluation measures

To analyze the accuracy for detecting uncertainty changes,
we define the ground-truth changes δt as the time instants
when the filter error, et ∈ [0, 1], changes from successful
(et < 1) to unsuccessful (et = 1) or viceversa. For video
tracking, we define et as the spatial tracking error [11]:

et(x
E
t , x

GT
t ) = 1−

2
∣∣AEt ∩AGTt ∣∣∣∣AEt ∣∣+

∣∣AGTt ∣∣ , (18)

where xEt and xGTt are the estimated and ideal target lo-
cations at time t;

∣∣AEt ∩AGTt ∣∣ is their spatial overlap (in

pixels); and
∣∣AEt ∣∣ and

∣∣AGTt ∣∣ represent their area (in pix-
els). For obtaining δt, we first identify when the filter is

inconsistent by binarizing et(x
E
t , x

GT
t ) as follows:

ebt =

{
1 if et(x

E
t , x

GT
t ) = 1

0 if et(x
E
t , x

GT
t ) < 1

. (19)

Then, we assume a consistent start of the filter (δ0 = 0)
and obtain each δt as the initial and ending instants of the
inconsistency operation:

δt =
∣∣ebt − ebt−1

∣∣ ,∀t > 0. (20)

Let TP and FP be the generated changes that match
(TP ) or not (FP ) with ground-truth ones δt for each time
t. A match is allowed within a tolerance window of ±5
frames. Let FN be the unmatched δt. To evaluate detec-
tion performance, we compute Precision (P ), Recall (R)
and F-score (F ):

P = TP/(TP + FP ), (21)

R = TP/(TP + FN), (22)

F = 2 · P ·R/(P +R). (23)

To evaluate the performance of online tracking eval-
uation, we focus on the temporal segmentation task (i.e.
determining whether the tracker is successful) by means
of the Receiver Operating Characteristic (ROC) analysis.
ROC analysis requires the definition of an ideal (manual)
segmentation to compute the similarity between the gen-
erated and the ideal segmentation. A successful track is
determined when the error et(x

E
t , x

GT
t ), defined as in Eq.

18, is et < 1. An unsuccessful track is identified by et = 1.

7.3. Uncertainty modeling

We use the data of the color-based PF tracker [18] to
obtain the pdf p1(v) of Q, which is then convolved to get
p2(v). Different subsets of ct values are employed to esti-
mate the pdfs which are extracted from:

{X1, ..., XT |et(xEt , xGTt ) < τ}, (24)

where X1...T are T filter posteriors and τ is a threshold
that defines the consistent case.

We first compare the pdfs generated by D1 and D2.
Figure 8 depicts the similarity between the pdfs p2(v) ob-
tained for D1 and D2 using the KS statistic [30]. Multi-
ple p2(v) are considered depending on the allowed ground-
truth error of ct values (via the threshold τ). For L = 1,
p2(v) corresponds to p1(v). Low τ values have the lowest
similarity (i.e. highest KS values). The tracker rarely has
low ground-truth errors and, therefore, a reduced number
of samples is used to estimate p2(v), which decreases its
accuracy. High τ values slightly increase the dissimilar-
ity as ct values of PF inconsistency are included to model
p2(v) (i.e. before the tracker loses the target). Mid-range
τ values get the highest similarity which have a balance
between the number of samples and inconsistency of ct
values. Finally, the two-sample KS test [30] determined
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Figure 9: Relative difference between the cut values β estimated
for D1 and D2 datasets. Data employed considers various window
lengths L and uses st values with different filter errors (τ).

that the p2(v) pdfs for D1 and D2 are different distribu-
tions. This suggests that empirical thresholding may not
efficiently detect changes for both datasets simultaneously.

Nevertheless, we are interested in the upper bound of
the P2(v) cdf (see Section 4.2) instead of an accurate p2(v)
estimation. Figure 9 shows the difference between the cut
values β obtained for D1 and D2 (β1 and β2, respectively).
We consider the difference D = (β1 − β2) /min(β1, β2) as
a similarity measure between the results. We observe that
high (low) τ values provide the highest (lowest) similarity
as more (less) samples are considered to estimate P2(v).
These results suggest that p1(v) should be modeled using
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Figure 10: Distribution fitting for ct values with different filter errors
(τ) using the Kolmogorov-Smirnov test. Bold are best results.
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Figure 11: Selected optimum K for each weight of the penalization
term (for models with K = 1...25).

ct values with an associated error between τ ∈ [0.7, 0.9].
We compute filter uncertainty data for the consistent

status, with a window length W = 25, by running the
filter 100 times over D1. Then, we extract the ct val-
ues corresponding to H0 (1938032 examples in total) that
are represented in Figure 4 for each τ value (computed
as indicated in Eq. 18). Figure 10 shows the pdfs for
the extracted data with τ = {0.3, 0.6, 0.9} and the fitting
results for well-known distributions using the two-sample
Kolmogorov-Smirnov (KS) test [30] where Gamma is the
best one in all cases. After that, we use the data for τ = 0.9
(highest error) for uncertainty modeling. Although its KS
values are the lowest ones, the significance level of the KS
test indicates that the Gamma fitting is not perfectly ac-
curate and therefore, motivating the proposed modeling
with a mixture of K Gamma distributions [28].

To select the optimum K for the mixture, we use dAIC
and dBIC (Eqs. 14 and 15, respectively). Figure 11 shows
the results for weights d ranging from 1 to 600: dBIC
has higher penalization costs than dAIC when evaluating
models with high K, quickly converging to K = 1. How-
ever, if we exclude K = 1 as explained in section 5.1, both
criteria agree on the optimum K = 4 for modeling p1(v).
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Figure 12: Comparison of selected cut values β for hypothesis testing using the approximations of the p2(v) pdf based on the empirical,
convolution and CLT approaches (all based on the p1(v) learned with D1 dataset).

Figure 12 compares the results of selected cut values β
for the hypothesis testing under different false alarm rates
(α) and using the approaches to compute p2(v) described
in Sec. 5.2. The empirical results represent the optimum
β values to be approximated. These values are better es-
timated by the convolution approach for the various false
alarms of the H0 hypothesis. The total accumulated dif-
ference in results between empirical and convolution ap-
proaches is 34.75 whereas between empirical and CLT is
86.15, thus demonstrating the preferred used of the convo-
lution. Moreover, the error of both approaches increases
when decreasing the false alarm rate α which shows the
limitations of the upper-bound approximation.

7.4. Change detection results

We compare AVU against representative approaches
for online change detection without thresholding: the χ2

two-model sliding window (Two−MChi) [7] that assumes
Gaussian-distributed data, the bank of Kalman filters adapted
to various change hypothesis (Mmodel) [7] and the empir-
ical thresholding approach (EmpTh) [13], which is tuned
using D1. All approaches are applied to the uncertainty
change signal ct obtained as described in section 4.1. Ex-
periments with different lengths of the sliding window (L)
are performed for testing the robustness of AVU and the
results are summarized in Figure 13 for the D1 and D2.

Results for D1 are shown on the left part of Figure
13. In general, F-score results demonstrate that AVU out-
performs the selected state-of-the-art approaches for any
length L showing stable F-scores around 0.40 (with a per-
formance peak for L = 5 and L = 10). M−model is able to
detect several δt (high recall) as it generates many changes
in the uncertainty signal (low precision). Two−MChi get
best results for L = 5 and L = 10 but heavily decreases
its performance for large L values because of the unsat-
isfaction of the data Gaussianity assumption. Compared
to optimum thresholding (EmpTh), it can be observed
that for most of the values of L = {1, 20, 30, 40, 50, 60},
AVU detects less δt (having lower recall). However, AVU
clearly outperforms EmpTh as its precision is higher, re-
sulting in a high F-score compared to EmpTh. Moreover,
AVU presents a slight decrease in F-score as L increases.
Although larger L values increases AVU’s precision, its re-
call decreases as a higher amount of change is required in

the sliding window. Additionally, Particle Filter uncer-
tainty is not usually high for long periods of time as for
video tracking, Particle Filters tend to estimate the state
of the most similar object to the target after inconsistency
(thus, becoming consistent). Hence, large L values do not
improve the overall performance.

The results for D2 (right column of Figure 13) present
similar conclusions to the ones for D1 where AVU also
improves the selected approaches for any window lengths.
However, AVU’s results show a different pattern as for D1.
Unlike D1, the performance peak (considering F-score) is
not centered around L = {5, 10} being shifted towards
L = {20, 30}. This can be explained because of two rea-
sons. The first one is that the filter data seems to be very
stable (47 ground-truth changes in average for each run
which contains 51 targets, ∼ 0.92 errors/target) compared
to D1 (∼ 1.21 errors/target) indicating that D2 is easier
to analyze than D1. Hence, filter errors in D2 are more
significant helping the change detection task. The second
reason regards the duration of the change, D2 sequences
are longer and the filter rarely finds similar objects in the
image after becoming inconsistent (thus, not changing to
the consistent status). On the other hand, the filter esti-
mation changes from consistent to inconsistent (and vicev-
ersa) for some targets of D1 (more frequently than in D2),
thus making more difficult the change detection task.

Figure 14 shows an example of the compared approaches
applied over the uncertainty signal (black) with the objec-
tive of detecting the ground-truth changes (cyan). On the
left column, a ground-truth change is defined (δ89 = 1)
which is correctly detected by all the approaches. How-
ever, M −model generates additional detections for every
small change in the uncertainty signal. Observe that al-
though EmpTh and AVU correctly detect the change, the
length is shorter for EmpTh as it does not use any sliding
windows. The right column describes a situation when the
filter shows a small inconsistency (frames 25-40) that does
not produce a ground-truth change. EmpTh, Two−MChi
and M −model wrongly detect such change as an uncer-
tainty variation whereas AVU does not due to the use of
sliding windows allowing to tolerate a certain amount of
change before detecting it.
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Figure 13: Comparison for selected change detection approaches with different lengths (L) of the sliding windows for evaluation sets D1 (left)
and D2 (right).
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Figure 14: Example of change detection for determining Particle Filter consistency for targets P1 (left) and P6 (right).
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Table 4: ROC analysis for successful-unsuccessful segmentation of video tracking for sets D1 (left) and D2 (right). Data are presented as mean
± standard deviation. (Key. ARTE: Adaptive Reverse Tracking Evaluation [13]; ARTE*: threshold-automatic ARTE; AUC: area under the
curve, FPR: false positive rate, TPR: true positive rate).

Approach AUC TPR FPR

ARTE [13] .772± .06 .717± .05 .172± .02

ARTE* (L=5 ) .770± .07 .737± .05 .197± .03

ARTE* (L=10) .785± .05 .799± .03 .228± .01

ARTE* (L=20) .766± .04 .779± .04 .247± .02

ARTE* (L=30) .750± .07 .760± .05 .235± .01

ARTE* (L=40) .743± .06 .739± .03 .224± .01

ARTE* (L=50) .700± .02 .765± .03 .236± .03

ARTE* (L=60 ) .698± .04 .723± .06 .300± .04

Approach AUC TPR FPR

ARTE [13] .747± .06 .732± .14 .237± .05

ARTE* (L=5 ) .770± .07 .800± .14 .261± .04

ARTE* (L=10) .806± .05 .900± .10 .289± .03

ARTE* (L=20) .763± .04 .926± .08 .401± .03

ARTE* (L=30) .735± .07 .868± .14 .398± .03

ARTE* (L=40) .717± .06 .796± .12 .361± .03

ARTE* (L=50) .722± .06 .767± .14 .279± .05

ARTE* (L=60 ) .710± .06 .776± .14 .276± .04

Table 5: Comparison of execution times for temporal segmentation
with ARTE and ARTE* using 10 runs for datasets D1 and D2. Data
are presented as mean ± standard deviation.

Approach Execution time per frame (ms)

Min Max Mean

ARTE [13] 2.2± 0.25 397.6± 110.04 4.58± 1.25

ARTE* (L=5 ) 2.4± 0.33 409.7± 111.32 3.9± 0.75

7.5. Track quality estimation

The results of the method described in Sec. 6 for online
evaluation are presented in Tables 4 and 5.

The left part of Table 4 shows that ARTE* has simi-
lar accuracy to ARTE for D1. A noticeable improvement
in TPR is observed for ARTE* with all lengths. However,
ARTE* slightly increases the False Positive Rate compared
to ARTE because of the use of the sliding window, requir-
ing a higher amount of variation to detect an uncertainty
change. This implies in some situations a short delay in the
detection of changes. ARTE* reaches similar performance
to that of the change detector of ARTE whose thresh-
old values were manually tuned on the same dataset (D1).
The right part of Table 4 (results on D2) shows a situation
where the thresholds of ARTE are not optimum. As it can
be observed, shorter windows got higher results than that
of ARTE demonstrating that the proposed approach gen-
eralizes better than the optimum thresholding of ARTE.
However, a performance decrease is observed as the length
of the window increases due to the reduction of the number
of detected changes. The main advantage of ARTE* over
ARTE is that it does not require to set any thresholds.

In Table 5, we can observe the effect of the proposed
approach in the computational cost of the track quality
estimator. The most noticeable difference is the reduction
of the mean processing time around 15%, from 4.58 ms
(ARTE) to 3.9 ms (ARTE*). As ARTE* detects a smaller
number of (false) changes than ARTE, it avoids the anal-
ysis of the stages for checking the origin of such changes,
i.e. the tracker has failed, recovered after a failure or fo-
cused on a distractor object.

Figure 15 illustrates a comparative example for on-
line evaluation of video tracking. A car target is tracked
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Figure 15: Online evaluation example for a color-based particle filter
tracker to detect successful and unsuccessful results using ARTE [13]
and the proposed approach ARTE*. Images correspond to frames 50,
120 and 200 of Mv2 020 whitevan (target C16). Green ellipse: ideal
target location; red ellipse: estimated target location. The filter
error is computed as described in Section 7.1.

throughout the sequence and as the filter error indicates,
the Particle Filter loses the target around frame 150 due to
scale changes and similar objects. At this frame, the un-
certainty signal change is not noticeable and therefore, no
changes are detected. Then, a gradual change appears in
the uncertainty around frame 200 due to a shadow. Only
ARTE* is able to detect it and correctly perform a good
segmentation of filter success.

7.6. Application to other trackers

We demonstrate the generality of the proposed ap-
proach by evaluating two state-of-the-art trackers [34][35].
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Table 6: Comparison of change detection approaches for the selected PF-based trackers. Best results are indicated in bold. Data are presented
as mean ± standard deviation. (Key. P: Precision, R: Recall, F: F-score).

(a) Dataset D1

Approach
Color-tracker [18] Frag-tracker [34] Sparse-tracker[35]
P R F P R F P R F

Two-M Chi .133± .01 .220± .02 .166± .01 .186± .03 .251± .02 .214± .01 .080± .01 .788± .04 .145± .03
Mmodel .074± .03 .624± .01 .133± .02 .134± .02 .541± .01 .215± .01 .104± .02 .718± .03 .182± .02
EmpTh .233± .06 .539± .03 .326± .04 .142± .01 .530± .03 .224± .02 .102± .06 .410± .04 .163± .04
AVU (L=20) .404± .03 .430± .04 .417± .02 .264± .04 .587± .02 .364± .03 .264± .09 .503± .03 .346± .05

(b) Dataset D2

Approach
Color-tracker [18] Frag-tracker [34] Sparse-tracker[35]
P R F P R F P R F

Two-M Chi .210± .00 .202± .00 .206± .00 .139± .00 .071± .00 .094± .00 .080± .00 .525± .00 .138± .00
Mmodel .119± .00 .537± .00 .195± .00 .119± .00 .245± .00 .160± .00 .099± .00 .475± .00 .164± .00
EmpTh .134± .00 .466± .00 .208± .00 .134± .00 .245± .00 .173± .00 .102± .00 .468± .00 .167± .00
AVU (L=20) .440± .00 .451± .00 .446± .00 .328± .00 .263± .00 .292± .00 .253± .00 .728± .00 .375± .00

Table 7: Comparison of video tracking performance evaluation for the selected PF-based trackers. Data are presented as mean ± standard
deviation. (Key. ARTE: Adaptive Reverse Tracking Evaluation [13]; ARTE*: threshold-automatic ARTE; AUC: area under the curve, FPR:
false positive rate, TPR: true positive rate).

Tracking approach
Dataset D1 Dataset D2
ARTE [13] ARTE* (L=20) ARTE [13] ARTE* (L=20)
AUC TPR FPR AUC TPR FPR AUC TPR FPR AUC TPR FPR

Color-tracker [18] .772± .06 .717± .05 .172± .02 .766± .04 .779± .04 .247± .02 .747± .06 .732± .14 .237± .05 .763± .04 .926± .08 .401± .03
Frag-tracker [34] .727± .07 .748± .13 .294± .04 .746± .07 .738± .09 .246± .06 .715± .02 .822± .04 .390± .02 .788± .04 .718± .06 .143± .04
Sparse-tracker [35] .723± .05 .684± .05 .239± .13 .742± .06 .798± .05 .315± .09 .720± .06 .812± .04 .371± .13 .775± .06 .730± .05 .180± .11

The first tracker models targets as fragments adaptively
selected over time which are embedded in the PF frame-
work [34]. The second tracker performs multi-hypothesis
estimation based on sparse appearance models, presenting
a PF-like structure [35]. We employ the code provided by
the authors with the default parameter settings. For the
proposed approach, we learn p1(v) for each tracker using
D1 dataset and we use L = 20 as a compromise between
the previously described results for D1 and D2 datasets.
The EmpTh approach is tuned to get best results for D1.
The presented results are the mean of 10 runs.

Table 6 summarizes the results of uncertainty change
detection for the selected trackers. AVU gets the highest
Precision and Recall scores for all trackers in most of the
cases as compared to the selected change detection ap-
proaches. The Precision increase of AVU is due to the
use of the sliding window to filter noise and the mod-
eling of the uncertainty signal. The results also exhibit
low Precision values for all trackers, indicating that the
uncertainty signal is difficult to analyze and many false
positives are generated. AVU’s Recall is also improved in
many sequences as slow changes are also considered within
the window. Recent trackers [34][35] often employ mecha-
nisms to gradually adapt the target model over time and,
therefore, the uncertainty slowly changes as tracking fail-
ures are integrated in the target model. Analysis over slid-
ing windows improves performance proportionally to the
adaptation rate (high for [35] and low for [34]) as observed
in the corresponding results.

Table 7 compares the results for track quality estima-
tion. The proposed approach has two effects for online per-

formance evaluation of tracking. First, it reduces the FPR
due to the improved accuracy for the detected changes in
filter consistency. This effect can be observed for ST in
D2 dataset and for FT in D1 and D2 datasets. Second, it
also improves TPR as less false changes are generated and
therefore the online evaluator has to analyze less (possi-
bly) wrong changes which may lead to evaluation errors.
This effect is observed for ST in D1 dataset and for PF in
D1 and D2 datasets.

8. Conclusions

We presented an online estimation of particle filter con-
sistency that uses a sliding-window-based hypothesis test-
ing approach and models filter uncertainty as convolutions
of mixtures of Gamma distributions. Compared to manual
thresholding, the proposed approach increased the preci-
sion and maintained the recall values. We applied the
proposed approach to online evaluation of video tracking,
without the need of ground truth data. Experiments show
that the proposed approach generalizes better than the
corresponding threshold-based solution. Results also in-
dicate that filter inconsistency does not last long time in
video tracking, which requires to use short window lengths.
The high precision values of the proposed approach allows
us to reduce the overall computational time as a smaller
number of detections are generated. Finally, the results
over recent video trackers demonstrate the flexibility of
the proposed approach.

Although our approach was demonstrated on particle
filter, it can be applied to other multi-hypothesis filters
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that allow the measurement of the spread of its hypothe-
ses (i.e, representing its posterior target estimation as set
of samples and associated weights). As future work, we
will explore its application to deterministic filters through
appropriate adaptations [15][36], model validation based
on multiple detectors and the selection of the optimum
window length for a particular particle filter setting.
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